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Abstract 

Tracking an individual specimen can be a difficult task especially when one also 

has to keep track of the environmental factors that affect the tracked specimen’s behavior. 

The task of tracking these animals becomes impossible when they become submerged in 

water and their number increases to more than just one. The aquatic species that are being 

tracked by this project in Lake Pontchartrain and the Gulf of Mexico are: tarpon, 

scalloped hammerhead, whale shark, tiger shark, yellowfin tuna, spotted seatrout, redfish, 

and bull shark. We are tracking these fish using acoustic and satellite transmitters. The 

insertion of transmitters in the fish was handled by the Louisiana Department of Wildlife 

and Fisheries biologists. The acoustic transmitters were implanted on smaller fish that 

only swam in Lake Pontchartrain. Due to this, receivers were only implanted at locations 

across the lake on various types of attachments such as buoys, PVC pipes, and pilings. 

These receivers were positioned at more than ninety locations in order to maximize the 

acquisition of detections. These species were tracked in Lake Pontchartrain and the Gulf 

of Mexico. After this preliminary setup, a constant batch of data was generated on a 

regular basis and this data was process by the application developed in this project. A 

Ruby on Rails application was then setup in order to store this data and manipulate it to 

display an animated track. The application utilizes: Ruby, Rails, HTML, CSS, SQL, 

JavaScript and multiple third part libraries. Many optimizations were performed in order 

to ensure reliability and performance when loading a high volume of fish or if a high 

volume of users were to use the application.  
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Introduction 

Observing species in their natural habitat is an important part of biological 

research; however, the study of fish is impeded by the logistics of tracking a single 

specimen amongst a large region inhabited by many other animals. Acoustic and satellite 

tagging solve these problems – researchers can observe fish movements remotely and 

retrieve high-resolution tracking information. In addition, multiple fish may be tracked 

simultaneously, which helps researchers observe their movements in groups. Previous 

studies made by the Louisiana Department of Wildlife and Fisheries as a cooperative 

study with the Louisiana State University at Lake Calcasieu and the University of New 

Orleans collected large quantities of acoustic data on fish at Bayou St. John. However 

this data was not fully utilized at the time and was exclusively available to researchers 

involved with the studies (Louisiana Department of Wildlife and Fisheries, Web).  

Telemetry, a successor of these studies, using data collected by the University of 

New Orleans at Lake Pontchartrain and the Gulf of Mexico, hopes to progress these 

studies by providing a visual component that can aid in the analysis of the collected data. 

Telemetry is a PostgreSQL-driven Ruby on Rails application that allows biologists to 

observe the movements of fish via visual renderings of satellite and acoustic data and to 

discover movement patterns based on environmental dynamics. Data is parsed into the 

system and analyzed to produce paths for each participating animal. A mapping 

component yields a graphic visualization of these paths. Combined with environmental 

sampling including salinity, lunar cycles, and weather patterns, these tools aim to provide 

biologists a rich toolset to monitor and analyze fish patterns. 
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Sampled fish in Lake Pontchartrain are tagged with transmitters emitting signals 

to stationary hydrophones mounted on buoys, pilings and PVC poles in the lake. Data is 

collected periodically from the receivers by field agents and imported into the Telemetry 

system. A user can then fetch this data from the front-end by using the appropriate 

filtering criteria or an animal specific Web-address. This initiates an AJAX request that 

retrieves data consisting of detection objects detailing the latitudes, longitudes, and 

timestamps for each fish. Client-side, this data is stored into JavaScript, which is then 

preprocessed and sorted chronologically. A simulation is then run from the earliest time 

in the dataset to the latest. Movement of each fish from one location to another in the 

visualization is performed based on interpolating each adjacent point. A vector is 

generated for each animal. The fish move along this vector depending on a set simulation 

speed until they reach the next detection point. These results are rendered onto a Leaflet 

map, which uses Esri tiled layers as its base. Esri allows the usage of the ArcGIS 

mapping services in Leaflet (Jgravois, Web). Each fish is represented using a marker with 

an image of the corresponding species. 

Another version of the tracking service has been compiled into a jQuery function 

that allows insertion into any other HTML element. This feature is currently being 

demonstrated at http://fishla.org/fish-tracker/ and is made available to the public.  The 

features uses an external library (head.js) in order to dynamically load the scripts required 

for the fish visualization to render the fish’s paths onto a map. After loading all the 

necessary scripts, it appends the styling to the head so that the visualizations render 

properly. Afterwards, all the elements are generated and inserted into the HTML element 
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that was selected. The mechanism by which the motion of the fish works is implemented 

in the same manner as the main application; however, numbered markers are used here 

instead of images. This secondary implementation of the fish tracker allows other 

developers to integrate the fish tracking service into their own website. 

The original fish tracking services are available to the public at 

https://louisianafisheries.net/telemetry in its initial release. The Telemetry project not 

only allows biologists to monitor fish movements, but also gives access to the fishermen 

for better planning their fishing strategies. With this tool, both biologists and fishermen 

will have a better understanding of how different factors affect fish movement patterns. 
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The Problem 

Tracking an individual animal and relating different factors to its movement 

patterns can be quite difficult. This difficulty exists due to the human aspect that might 

interfere with regular patterns as the presence of the human might startle the animal and 

lead to changed behavioral patterns. Moreover, there is an increase in danger to the 

individual monitoring the creature as the observed specimen or other animals in the same 

habitat might consider the human as a threat, especially in the case of dangerous species. 

In addition, the difficulty increases when water is introduced to the equation, as is the 

case with marine animals. Tracking animals can lead to a variety of positive outcomes. 

Some of which are obvious such as a direct increase in our general knowledge about the 

behavioral patterns of that animal. Others not so obvious, such as the conservation of 

these species of animals, which is true in our case. The majority of recreational anglers 

mostly catch Spotted Seatrout. Around 85% of these Seatrout are from state water along 

the Gulf of Mexico, where most (50-60% annually) of it takes place in Louisiana 

(Callihan, Web). This activity plays an important economical role in the state in terms of 

its monetary ($757 million in 2006) value as well as its ability to create jobs (7800 jobs) 

(Callihan). So we can see that preserving these species has a positive cultural, economic 

and social benefit to the state of Louisiana. Certain species of fish are farmed by the 

LDWF so that when these species start to run low in the lake, they would release them 

there in order to preserve the ecological system (Ward, Interview). In addition to the 

initial difficulty of tracking a single specimen, the ante is increased when the sample size 

is inflated to more than one animal. Doing such a thing individually is virtually 

impossible especially in the oceanic realm. Hence, the involvement of technology is 
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required in order to eliminate any possible dangers and increase the effectiveness of the 

data collection process.  

The Solution 

  Involving automated technology almost always guarantees greater efficiency, and 

in our case, it helps make what was once impossible a reality. Using a multitude of 

technologies, we were able to track multiple fish in Lake Pontchartrain as well as the 

Gulf of Mexico. The technologies involved are Vemco transmitters and receivers, SPOT 

tags, a PostgreSQL database, and a Ruby on Rails application, which itself employs other 

web technologies such as HTML, JavaScript, CSS and SQL.  
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The Physical Aspect 

 The use of transmitters and receivers is one of the key components that enabled 

this study. Louisiana Department of Wildlife and Fisheries (LDWF) have planted 

receivers throughout Lake Pontchartrain. The receivers consist of an outer cylinder, end 

cap, a metal/PVC internal casing and a battery compartment, as shown in Figure 1:

 

Figure 1: A receiver opened to show its constituent components: outer cylinder – end cap – metal/PVC internal 

casing – battery compartment (Vemco, Web).   

 

These receivers were mounted on different kinds of attachments that vary in size and 

shape. In Lake Pontchartrain, they are attached to buoys, pilings, and PVC poles at more 

than ninety sites across the lake. Figure 2 depicts the spread of the receivers in the lake 
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(Ward, Email). 

 

Figure 2: Image of a receiver as well as a map showing the locations of the receivers and the type of attachment 

they are attached to.  

 

In addition to these receivers, LDWF biologists also implant transmitters in the fish. The 

attachment of these transmitters is essential to the project because if it is not performed 

correctly, the fish could lose its transmitter and yield false data about the fish’s path. 

Each fish is captured by a volunteer angler and brought to a surgery vessel, where the 

biologist places the fish in a holding tank and aerates it with oxygen to relieve the fish 

from stress. Measurements of the fish are then taken including weight, length, and the 

dart tag, a blue tag with a phone number and unique ID (Ferguson, E-mail). This tag can 

be used to track the fish should it ever be captured again. After the measurements are 

taken, the fish is placed in a surgery cradle (Ferguson). While the fish is on the cradle, 
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water is passed over its gills and a small incision is made on the ventral side of the fish 

where an acoustic transmitter is inserted (Ferguson). The size of the transmitter being 

inserted is selected based on the fish’s size so that it doesn’t protrude and is easily 

detectable in the fish’s body (Ferguson, Interview). After the insertion is complete, three 

simple interrupted sutures are made to close the incision (Ferguson, Email). These sutures 

are loops that are not connected to each other. The fish is placed in a recovery tank where 

it rests for at least 30 minutes before it is released back in to the lake (Ferguson). Figure 3 

shows the process by which the fish receives the acoustic tag:

 

Figure 3: Illustration depicting the surgical process by which a fish receives a transmitter (Ward, Email). 

 

The acoustic transmitters and receivers used on the fish are from Vemco. The 

frequencies of the acoustic transmitters match those of the receivers so that data from 

other projects using the same type of technology would not cause any interference. In 

addition, the receivers are adjusted according to the water depth and kind of attachment. 

These receivers generate detections that are retrieved wirelessly by the LDWF biologists 

from the buoys across Lake Pontchartrain using Bluetooth technology (Ferguson, 

Interview). The satellite detections are retrieved online by authorized users from the 
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LDWF. All data is then provided to the application in the form of CSV (Comma 

Separated Value) files with specified headers. These CSV files are then parsed into 

temporary files that hold only the necessary information for the database. Once all the 

CSV files are parsed, the data is inserted into the database to the corresponding tables. 

The Software 

The Model 

The database was implemented in PostgreSQL using Rails models and migrations. 

PostgreSQL was chosen is because it was free, fast and reliable. These three factors 

insured that the application would operate at no additional monetary, performance or 

maintenance cost. Moreover, PostgreSQL is capable of handling high volumes of activity 

and data (The PostgreSQL Global Development Group, Web). This is evident from the 

three million plus data entries that we are storing and the thousands of users that make 

use of the service.  

 

Fish and Detections 

Our database stores all persistent features the application requires, ranging from buoy 

locations to fish detections. The way the tables in the database are organized have an 

impact on how easy it is to retrieve the data. The core table in the database upon which 

the rest of the data depends on is the fish table. A fish record consists of the following 

columns: a transmitter id, species id, dart tag, name, weight, total length, time captured, 

and tag type. The transmitter id or dart tag can be used to uniquely identify the fish. Since 
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the transmitter communicates with receivers, the next thing we need are the receivers 

themselves. The receiver table consists of the following columns: a receiver number, and 

a buoy id. The buoy id in the receiver refers to an attachment known as a “buoy” in this 

case. The buoy table consists of the following columns: a site id, an attachment, the 

bottom type and notes. The site id from the buoy is linked to a site whose table consists 

of the following columns: the site name, longitude and latitude. It can be inferred that 

from a receiver id we can get a buoy, which will then give us a site that will help us 

determine the location of the detection. Due to this relationship, the detections table 

consists of these columns: a receiver id, a transmitter id and the time. However, this 

relationship relies on the fact that all fish are communicating with acoustic transmitters to 

hydrophones mounted on attachments. This isn’t the case when it comes to larger species 

that navigate through the Gulf of Mexico. Bigger fish such as Whale Shark, Scalloped 

Hammerhead and Yellowfin Tuna make use of the SPOT satellite tags, which transmit 

direct coordinates of these fish along with their timestamps. Hence, another table was 

created solely for the satellite detections of these fish which consisted of these columns: 

the dart tag number, latitude, longitude and the time. Although, we can now successfully 

query for detections that correspond to the fish, we still do not know what kind of fish are 

being discussed. Hence, we need to link the species id column of the fish to another table. 

We make a table called species which consists of only one column: the common name. 

Each species id found in the fish table will now correspond to its correct common name 

in the species table.  



 

11 

 

Retrieval of Environmental Data 

The basic detections are nice to have in order to display the fish tracks and 

monitor their movements, but along they give little context to these patterns. For this 

reason, environmental data such as water salinity, water temperature and tide is desirable. 

Unfortunately, this data was either not readily available or was not available at a 

reasonable rate. For example, all three were available from the buoys but only for the 

time when the biologist would go to collect the fish detection data from the buoys. This 

means that there would only be a reading of water temperature, tide and salinity every 2-4 

weeks, which is not feasible due to its low frequency. For this reason, I tried to find other 

sources that provide this data at a more reasonable rate. There was no single source that 

could provide me with all three of these environmental variables. The next best thing 

would be a source that provided me with at least two of these variables, which was what I 

found next.  

The NOAA’s (National Oceanic and Atmospheric Administration) website 

exposes an API which allows users to request data given a set of parameters (NOAA, 

Web). These parameters include the type of data, the time interval, the frequency, and the 

format in which you want the data to be displayed (NOAA). For the purposes of my 

application, I needed the water temperature and tide data from the NOAA as these were 

the factors affecting the fish’s behavior. The time range for which I needed the data 

exceeded the thirty day limit imposed by the NOAA’s API. So I partitioned the data 

retrieval to thirty day intervals. The data was being retrieved via an AJAX request from 

the JavaScript and stored in a temporary variable that vanished after the web browser’s 

tab was closed. This posed a problem since the data requests would take a long amount of 
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time due to the partitioning. So the decision was made to load all the necessary data into 

the application’s database. Tables for the water temperature and level were made, and 

then indexed by time in order to speed up their retrieval. After the tables were 

constructed, the data from the NOAA’s API was inserted into them. Using thirty day 

intervals starting from the first ever detection up to the last one, requests were made to 

the NOAA API to fetch the water temperatures and water levels and insert them to the 

database. Once the database was populated, it was faster to perform AJAX calls via the 

JavaScript.  

The third variable, salinity, was attained through the USGS’s (United States 

Geological Survey) website. Their API has similar restrictions to those of NOAA (USGS, 

Web). So a similar set of steps were taken to retrieve the data. A table was made for the 

salinity with the following columns: salinity, and time. Using thirty day intervals again 

from the first detection to the last one, requests were made to USGS API to fetch the 

water salinity and insert them into the database. Once all the data was retrieved, it was 

available for me to load it into my application.  

 

Database Description 

The final schema employs ten tables that are essential to the operation of the 

website. Figure 4 summarizes them in an ER diagram that shows the one-to-one and one-

to-many relationships that exist among the different entities. 
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Figure 4: Database ER Diagram. 
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Stages of Evolution 

Necessity is the Mother of Inventions 

Initially, I was not a part of this project. Another student had begun working on it. 

I will be discussing the student’s work in this section. 

When the application was first developed, it was not made to keep track of fish 

but rather the receivers. Whenever, the biologists went to collect data by visiting the 

receiver locations, they would write down notes about the condition of the receiver. 

However, this was a difficult task due to the presence of water which would smudge their 

notes and also the movement of the boat made it difficult to write. After the launch of this 

application, they were able to keep track of everything using waterproof tablets from 

which they could update the receiver’s status. The receivers were displayed in a table that 

allowed the user to modify the receivers according to its condition. Fig 5 shows what the 

table looked like. 

 

 

Figure 5: Table Showing Receivers.  
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Later, functionality was added to the website that allowed the user to view static paths of 

the fish based on the detections. However, the data displayed was false as the detections 

were not ordered by time. The static paths displayed consisted of a red line that connected 

the arbitrarily ordered detections where the first detection was marked by a green marker 

and the last one was marked by a red marker. The intermediate detections were marked 

with small flag looking marker. The end result was somewhat chaotic as it lead to 

misinformation. The fish was selected of a table similar to that of the receiver and then a 

static track was shown. Fig. 6 illustrates what it looked like. 

 

 

 

 

Figure 6: Inappropriately Drawn Fish Path.  
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The Soft Yet Essential Upgrade 

After that work was done, the student, who had begun developing the application, 

left and then, I was assigned to take over the project. The website was approaching 

retirement as it did not serve any purpose to the biologists other than keeping track of the 

receivers’ statuses. However, that task also seemed unfulfilled. The biologists using the 

application were unable to easily use the application on the boat to update the receivers’ 

statuses via their waterproof tablets. So the website’s focus was shifted from maintaining 

the receivers’ statuses to tracking the fish. So instead of having the fish tracks being 

shown falsely with a static track, the detections were ordered by time and shown 

animated on the map. In addition, the user was now able to select more than one fish at a 

time to be displayed along with their IDs. The table in figure 7 was used to select the fish. 

 

 

Figure 7: Fish Table to select multiple fish for tracking.  
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After selecting the fish to be tracked, the page would redirect to another page 

which displayed the fish as a small marker that moved around on the map. The marker is 

clickable to display the same information that was available on the table from which it 

was selected. A small label at the bottom left corner of the map would indicate the 

simulated time at which the fish was at the location. A set of buttons were also added to 

the top right corner in order to pause or restart the fish path animation and also to remove 

or draw the fish’s path. Another tool that gave the user more control to the animation was 

a small slider above the map that allowed the user to control the speed at which the 

animation occurred. Other features such as recording the animation and selecting the time 

interval during which the detections occur were also added above the map. The end result 

is displayed in figure 8. 

 

Figure 8: Map depicting clickable marker with animated fish track.  
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The website was also aesthetically improved to match the color scheme of 

http://www.fishla.org/ as the website was going to be linked from that website. Another 

visual improvement was performed to the home page, which instead of being a blank 

page as it initially was, was then transformed to include a small table including the total 

number of fish tagged per species along with a small video instructing users on how to 

navigate/use the website. Furthermore, two small buttons were added to the top right 

corner under the navigation bar in order to encourage users to share the website on their 

social media. This is what the new home page looked like after the website was rescued: 

 

Figure 9: The Aesthetically improved Home Page.  

 

The Complete Overhaul 

Once the website was on its feet and away from the dangers of being scrapped, a 

complete overhaul was performed to serve its new purpose of tracking the fish. Instead of 

it loading with pages like a normal website, it would load to a full map. On the right side 

of the map, a filter box is loaded. Inside that filter box, one can filter using a wide array 
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of filtering options which include: the tagging location, species, genders, season tagged, 

fish name, the begin date and the end date. In addition to these filtering options, the filter 

box also includes multiple checkboxes, each with its own added functionality. The 

checkboxes include a display of detections in the past four months, an option to show the 

water level, water temperature and water salinity along with the animated fish tracks. 

These features allow biologists and fishermen to compare the fish’s behavior to 

environmental variables. These variables are displayed as labels at the bottom left corner 

of the map. In order to make them more appealing visually, the salinity label has a small 

graph which was added to it, and the temperature label has a small square that changes 

colors according to the temperature. Moreover, the animation controls were changed 

from buttons with labels to buttons with icons that are more elegant to display. The set of 

controls include: pause/play, draw/remove path, speed up, slow down and share. One last 

feature added to ornament the application was a small moon that was added in between 

the labels and the animation controls. This moon depicts the current status of the actual 

moon in the lunar cycle with respect to the simulated time on the map. Not only that, but 

a small moon emoji was added to the website’s title. This emoji changes along with the 

small moon displayed at the bottom of the page. Here are some graphics demonstrating 

what the website looks like when it is first opened, after a fish is selected to be tracked, 

and when the share button is clicked: 
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Figure 10: The new version of the website upon loading the page.  

 

 

Figure 11: The application after selecting a fish to track. 
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Figure 12: The application’s upgraded social media sharing mechanism.   
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Software Complications 

The Map and its Components 

The first piece of the puzzle is the map. Initially the map component was displayed using 

Google’s mapping service as it was easy to setup and implement. However, later on, the 

need to modify the components of required me to move away from Google’s mapping 

service and use Leaflet maps with the Esri tiled layer service (Jgravois, Web). Esri allows 

us to use ArcGIS services with Leaflet, which allows us to load different kinds of maps 

onto the base (Jgravois). In addition, Leaflet also allows for further customization due to 

its compatibility with the Mapbox API (Mapbox, Web). The Mapbox API allowed the 

utilization of its custom features that were built for the Leaflet maps (Mapbox). This 

includes customized markers and controls. Two map layers were loaded onto the map and 

an additional layer that consists of map markings was also loaded using ArcGIS layers 

via Esri. This gives the user the liberty to choose what he/she wants to view when it 

comes to the bottom layer. Moreover, the initialization of the map is specified along with 

the coordinates and the zoom level of the area at which the map should be at. Ashley 

Ferguson, the LDWF biologist that was providing feedback for the project, asked me to 

initialize it with Lake Pontchartrain in the middle at a zoom level where it is visible along 

with the Gulf of Mexico’s shoreline (Ferguson, Email). Here is a small snippet of what 

loading the two different base map layers along with the markings and the correct 

coordinates and zoom level onto the map looks like:
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var latitude = 30.185793; 

var longitude = -90.099907; 

 

var myLatlng = new L.LatLng(latitude, longitude); 

 

L.mapbox.accessToken = '<API_KEY>' 

 

var worldMap = L.esri.tiledMapLayer("https://ser-

vices.arcgisonline.com/ArcGIS/rest/services/World_Imagery/MapServer", { 

  detectRetina: true, 

  attribution: "Sources: Esri, DeLorme, GEBCO, NOAA NGDC, and other contributors" 

}); 

 

var oceanMap = L.esri.tiledMapLayer("https://ser-

vices.arcgisonline.com/arcgis/rest/services/Ocean/World_Ocean_Base/MapServer", { 

  detectRetina: true, 

  attribution: "Sources: Esri, DigitalGlobe, Earthstar Geographics, CNES/Airbus DS, 

GeoEye, USDA FSA, USGS, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User 

Community" 

}); 

 

var mapMarkings = L.esri.tiledMapLayer("https://ser-

vices.arcgisonline.com/arcgis/rest/services/Ocean/World_Ocean_Reference/MapServer", { 

  detectRetina: true, 

  attribution: "Sources: Esri, GEBCO, NOAA, National Geographic, DeLorme, HERE, 

Geonames.org, and other contributors" 

}); 

 

var myOptions = { 

  center: myLatlng, 

  zoom: 10, 

  layers: [worldMap], 

  attributionControl: false 

}; 

 

map = new L.Map('map_canvas', myOptions); 

 

var baseMaps = { 

  "World Map": worldMap, 

  "Ocean Map": oceanMap 

}; 

 

 

Figure 13: Snippet of code depicting the initialization of a Leaflet map using ArcGIS tiles via the Esri API.  

 

The Filter Box 

The next piece of the puzzle was loading the filter box along with all of its customizable 

filter options. The filter box itself is nothing special as it consists of normal DOM 

elements, mainly divs. What required some amount of work is getting it to minimize and 

maximize without the whole thing disappearing. For this purpose, the box was structured 
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in a specific manner. The outer shell of the filter box consisted of a div that was semi-

transparent. This served a dual purpose. The first is that we will be able to distinguish it 

from the other parts of the box and the second is that it makes it aesthetically better. As 

for the inner elements, there were only two, both of which were also divs with 

customized CSS styling. The top div consisted of the title and an icon for minimizing and 

maximizing the filter box. The minimizing and maximizing feature was easy to 

implement since I used jQuery’s slideToggle() function in order to specify what element I 

wanted this effect to be executed on (jQuery, Web). In my case, the outer box was 

minimized to the size of the top div and the bottom div was completely minimized. The 

reason why the outer box wasn’t fully minimized is because if it did, then there would be 

nothing to click on in order to maximize it back to its original size. The top div’s icon 

would trigger the minimizing and maximizing of the divs and the icon would change 

accordingly from a minus to a plus sign and vice versa. The bottom div was responsible 

for holding all the filtering. The filtering boxes were regular multiple select elements, 

which were then modified using an external library called chosen. The chosen library 

transforms the multiple select items into searchable boxes with selectable items in a list 

(Chosen, Web). This saves space and makes it more appealing to the user. The next step 

would be the filtering, but before we progress to that, we first need to populate our 

multiple select boxes. This was done via AJAX requests to the application itself as the 

data required was in its database. After doing so, the heaviest part yet in terms of 

programming came in, which was the filtering. If we were filtering for one thing only, 

then it would be rather simple to pick the proper fish, but since we have so many 

intertwined filtering options, the task is much more complicated. The box being filtered is 
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the fish name box as that is the selection upon which the showing of the tracks relies on. 

Take a look at figure 10, which was previously shown in order to get a better idea. The 

elements of fish name have metadata attached to them and this metadata makes the 

filtering possible. The metadata consists of the following attributes: tagging location, 

species, gender, and date tagged. These four attributes are more than sufficient to make 

comparisons in order to determine the correct fish to display. Whenever a criteria is 

picked from one of the filter boxes, an event is triggered leading to the filtering process. 

Arrays are initialized for each one of the filtering attributes and they are filled 

accordingly from the selections made by the user. After having filled these arrays, we 

iterate through the fish names and eliminate the ones that do not contain an element in the 

selected attributes. Although, this seems like a simple and straightforward strategy, a 

difficulty arises when no filtering option is selected for one of the attributes as its 

corresponding array will be empty. Since the corresponding array would be empty that 

would mean all of the fish have none of the attributes. Due to this, multiple cases have to 

be taken into consideration where some don’t have any empty arrays, some have at least 

one of the arrays empty and some that have a combination of arrays that are empty. Due 

to this one simple hurdle, the code base grew from one for loop to multiple ones 

depending on what case it is. The code below demonstrates my point (variable names 

have been changed to letters so code would fit):  
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if ($("#names option").hide(), $("#darts option").hide(), o.length > 0 && n.length > 0 

&& s.length > 0) 

  for (var i = 0; i < s.length; i++) 

    for (var u = 0; u < o.length; u++) 

      for (var d = 0; d < n.length; d++) c += i == s.length - 1 && u == o.length - 1 

&& d == n.length - 1 ? '[species="' + s[i] + '"][gender="' + o[u] + '"][location="' + 

n[i] + '"]' : '[species="' + s[i] + '"][gender="' + o[u] + '"][location="' + n[i] + 

'"],'; 

else if (o.length > 0 && s.length > 0 && 0 == n.length) 

  for (var i = 0; i < s.length; i++) 

    for (var u = 0; u < o.length; u++) c += i == s.length - 1 && u == o.length - 1 ? 

'[species="' + s[i] + '"][gender="' + o[u] + '"]' : '[species="' + s[i] + '"][gen-

der="' + o[u] + '"],'; 

else if (o.length > 0 && 0 == s.length && n.length > 0) 

  for (var i = 0; i < o.length; i++) 

    for (var u = 0; u < n.length; u++) c += i == o.length - 1 && u == n.length - 1 ? 

'[gender="' + o[i] + '"][location="' + n[u] + '"]' : '[gender="' + o[i] + '"][loca-

tion="' + n[u] + '"],'; 

else if (0 == o.length && s.length > 0 && n.length > 0) 

  for (var i = 0; i < s.length; i++) 

    for (var u = 0; u < n.length; u++) c += i == s.length - 1 && u == n.length - 1 ? 

'[species="' + s[i] + '"][location="' + n[u] + '"]' : '[species="' + s[i] + '"][loca-

tion="' + n[u] + '"],'; 

else if (s.length > 0 && 0 == o.length && 0 == n.length) 

  for (var i = 0; i < s.length; i++) c += i != s.length - 1 ? '[species="' + s[i] + 

'"],' : '[species="' + s[i] + '"]'; 

else if (0 == s.length && o.length > 0 && 0 == n.length) 

  for (var u = 0; u < o.length; u++) c += u != o.length - 1 ? '[gender="' + o[u] + 

'"],' : '[gender="' + o[u] + '"]'; 

 

 

Figure 14: Snippet of code demonstrating code complexity due to empty arrays.  

 

The Movement of the Fish 

The last part that completes the puzzle is the movement of the fish. The process begins 

after the show track button is clicked. The filtered and selected fish are then passed on to 

a function in the form of an array of IDs that are then used to perform an AJAX request 

in order to fetch their corresponding detections in chronological order. After these 

detections are loaded, the times from the first and last detections are stored into variables. 

After doing so a FishMover object is initialized for every fish that has a set of detections. 

Each FishMover object contains information about the detections, the derived 

information from it such as swimming distance and days travelled, and the fish’s 
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corresponding marker on the map from which we can determine the fish’s current 

location.  After the initialization of all the FishMover objects, AJAX requests are 

performed to fetch the water temperature, level and salinity data if the booleans 

corresponding to each one of them are set. This data is fetched from the first time to the 

last time using the variables in which these times were previously stored. In a similar 

manner as the FishMover objects, a TemperatureData, a TideMaker and a SalinityData 

object are initialized. One last thing that requires initialization is the variable that keeps 

track of the current simulated time, it is set equal to the first time associated with the 

detections. After this preliminary setup, the animate function is called. This function 

works recursively as it calls itself repeatedly until the current time becomes greater than 

the time of the last detection. Once the function is called, the current time is incremented 

by a small fraction and calls to the FishMover, TemperatureData, TideMaker and 

SalinityData objects are made in order to modify some of their internal values. Each of 

these objects has a function call that work in the same manner. The current time is passed 

to the function. When the function executes, it checks to see if the time is in between the 

times for which data is available for. After performing this check, the difference between 

the two elements that have the closest time before and after the current time is stored into 

an element. Let’s call that element Δx. Then we take the two times of the elements and 

calculate the percent progress using the following equation where Tcurrent stands for the 

current time of the simulation, Tinitial is the time of the first element and Tfinal is the time of 

the second element :  
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%𝑃 =  
𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡  −  𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝑇final – 𝑇initial
 

Figure 15: Equation for computing percent progress. 

After calculating the percent progress, we can then determine the current value of the 

object. This value could be the location of the fish, or the temperature, level or salinity of 

the water.   We determine the current value by using the following equation: 

𝑥𝑐𝑢𝑟𝑟𝑒𝑛𝑡 =  𝑥𝑜𝑙𝑑 + %𝑃 × (∆𝑥) 

Figure 16: Equation to calculate the current value of the element. 

Here is a small code snippet showing this calculation being performed to the longitudes 

and latitudes of the fish detections: 

//Compute the percent progress along this path segment. 

var segmentStartTime = new Date(this.times[currentIndex]).getTime(); 

var segmentEndTime = new Date(this.times[currentIndex + 1]).getTime(); 

var pathProgress = (currentTime - segmentStartTime) / (segmentEndTime - segmentStart-

Time); 

 

//Compute new lat/long location. 

var startLat = parseFloat(this.timeSpaces[currentIndex].coordinates[0]); 

var startLon = parseFloat(this.timeSpaces[currentIndex].coordinates[1]); 

var endLat = parseFloat(this.timeSpaces[currentIndex + 1].coordinates[0]); 

var endLon = parseFloat(this.timeSpaces[currentIndex + 1].coordinates[1]); 

var curLat = startLat + pathProgress * (endLat - startLat); 

var curLng = startLon + pathProgress * (endLon - startLon); 

 

 

Figure 17: Snippet of code showing the process by which the current location is determined using the simulated 

time.  

 

Conclusion 

This study shows us that it is possible to track multiple animals with the help of 

technology. Transmitters are the first thing that will be needed. These transmitters should 

be attached to the animal that we want to track. Depending on the type of transmitter, the 
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placement of receivers is also required. They should be placed in such a manner that the 

acquisition of detections is maximized. Then an application/program that is capable of 

communicating with a database is required. A Ruby on Rails was used in the making of 

this project as it facilitated many aspects of the development process and it was easy to 

work with. The next step would be to setup the database in a similar manner as the one 

portrayed in figure 4. Additional tables could be added as seen necessary. Every time data 

is collected, it can then be loaded into the database in whatever manner the developer 

deems appropriate. In the case of this project, CSV files were inserted into the database 

since the data was readily available in that format and the insertion process was quick. 

The last part that we require for completing the visualization part of this application is the 

map component. I would recommend using Leaflet maps as they are easily customizable 

and have a lot of features that are provided via plugins. However, if you are more 

comfortable with some other service such as Google maps, feel free to do so. In the map, 

the developer will then utilize the data in order to display the tracks of the tracked animal 

correctly. This can be achieved using the equations found in figures 15 and 16. 
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