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Abstract 

Numerous hydrodynamic theories may be used to predict the performance of marine 

propellers.  The goal of this thesis is to investigate and implement a lifting line theory as a program 

written in FORTRAN and to test its capabilities on some Wageningen B-Series propellers.  Special 

attention is given to the validation of the routines involved in the implementation of the theory.  

Difficulties were experienced in obtaining results that accurately reflect the published 

experimental results, and some discussion is included regarding possibilities for the sources of 

these errors.  Also discussed are the results of other lifting line codes and their respective 

differences from the current implementation. 
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Section 1 – Introduction 

1.1 Background 

The delivery of thrust to a ship by a propeller is caused by the local forces and differences 

in pressure that are produced by the motion of the propeller itself in the surrounding water.  Ideally, 

this is accomplished with minimal drag and rotational losses.  The complexities of the flow local 

to the ship and its propeller contribute to the difficulty in maintaining real-world simplifications.  

Numerous methods and tools exist in the field of hydrodynamics which are used to predict the lift 

and drag of a given propeller and its characteristics, but it can be a challenge to find or construct 

one which allows for a practical method of implementation while providing results that are based 

on assumptions in agreement with reality.  Some examples of these methods include two-

dimensional models, such as momentum theory and lifting line methods, and three-dimensional 

models, such as lifting surface methods, vortex lattice methods, panel methods, and computational 

fluid dynamics (or CFD) analysis.  Two-dimensional models are frequently used in the preliminary 

prediction stages because of their practicality, whereas three-dimensional models are desirable in 

the stages of propeller analysis for better reliability and more complete consideration of the 

important factors related to the production of lift and drag.  However, severe time and financial 

costs may be added in implementing three-dimensional models especially when purchasing 

commercial software or CFD codes, although they often can provide a greater range of accuracy 

in the prediction. 

The development of a two-dimensional lifting-line representation of a propeller blade 

incorporates some of the important and necessary factors that need to be considered when 

predicting lift and drag.  Some examples of this include the principal blade geometry, viscous 

losses (by reasonable empirical corrections), and the effects of velocities induced by helical 
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vorticity.  Other, perhaps less significant, factors are difficult to consider using the lifting line 

model, such as additional propeller geometry (skew, rake, hub effects, maximum camber location 

etc.), since it is a two-dimensional model and chiefly considers the foil-induced circulation.  The 

overall circulation is found at a discrete set of chord sections (2-D foils) of a blade with parameters 

given which describe the operation environment, and a radial distribution of these sectional 

circulations is formed along the span-wise direction of the blade.  The resulting distribution "line" 

forms the basis on which the lift and drag of the propeller blade in consideration can be found. 

 

Figure 1: Illustration of Prandtl’s classic lifting-line theory for a straight wing (Carlton, 2012) 

1.2 Previous Work 

Lifting line theory was first formally introduced in 1918 by Ludwig Prandtl and had its 

beginnings as a calculation of lift as a result of circulation produced by straight wings.  A vortex 

that is said to be bound to the wing is responsible for this circulation, and it was found by Prandtl 

that the bound vortex strength diminishes along the span of the wing and ultimately vanishes at 

the wing tip.  In addition to the bound vortex, a free vortex sheet (which is represented by trailing 

line-vortices) forms and is shed in the wake of the wing.  These concepts were studied in the field 
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of aerodynamics and wing theory for airplanes.  Numerous hydrodynamicists in the early twentieth 

century advanced the theory to be adapted appropriately for propellers, especially with the 

consideration of an infinite number of blades rotating about an origin.  Further developments were 

made to advance the concept by formalizing the idea that realistic propellers have a finite number 

of blades (and thus lifting lines) instead of infinitely many lines that are so close together that they 

appear to form a disk.  This not only brings the theory closer to reality for the calculation of 

circulation, but it also allows for the consideration of the influence of the vortices induced in the 

blades’ wakes on other nearby vortex distributions.  This phenomena usually causes a reduction in 

the delivered thrust.  These vortex sheets are no longer rectangular and flat as they are in wing 

theory; the wake vortex sheet for propellers is helical for each blade (see Figure 2 for an 

illustration).  Dr. H.W. Lerbs published a paper with the Society of Naval Architects and Marine 

Engineers (SNAME) in 1952 which gives detailed derivations of most of the components of the 

modern version of the theory that is implemented in this thesis.  

The use of Dr. Lerbs’ lifting line method is quite common among 

naval architects to produce relatively simple and quick models 

of moderately-loaded propellers.  Distinguishing moderately-

loaded conditions from heavily loaded or lightly-loaded means 

that the propeller is working in the middle of its range of 

capabilities.  As can be seen in the open water diagrams in 

Appendix C: Open Water Diagrams Used, the efficiency curve 

declines rapidly near the heavily-loaded condition and starts at 

zero at the lightly-loaded condition.  In Dr. Lerbs’ moderately-

loaded model, each blade is represented by a lifting line and a 

Figure 2: Helical vortex 

sheet (Carlton, 2012) 
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trailing vortex sheet which allows for an estimate to be made for the delivered thrust and torque of 

the propeller.  

The lifting line theory’s mathematical model is outlined and presented concisely by 

(Kerwin and Hadler, 2010).  Also included is Wrench’s (1957) approximations for the axial and 

tangential velocities induced by the helical vortex sheets as well as Glauert’s method for 

computing the circulation produced by a two-dimensional foil section.  These developments 

present equations which are computational-friendly and can be applied to the lifting-line method 

without the necessity of performing any further derivations. 

1.3 Scope of this Thesis 

The goal of this thesis is to implement a lifting line theory adapted to propellers in a 

computer program written in the FORTRAN 90 programming language.  The program’s versatility 

should allow lift and drag calculations for any propeller with a finite number of blades that has 

geometry which agrees reasonably with the assumptions used in the derivation of the governing 

equations. Programming in FORTRAN was chosen in lieu of a spreadsheet implementation for 

numerous reasons, some of which include the ease of operations on arrays and linear systems of 

equations, its power in iterative calculations, and the generation of executable files of the program 

code.  Conveniently, lifting line theory (especially the discretization of propeller geometry which 

will be discussed later) requires numerous applications of iteration and the assignment of large 

numbers of different types of variables. 

Since propeller geometry and accompanying performance data are difficult to acquire, the 

reliability of the program is to be tested by observing its computational methods on some 

Wageningen B-Series propellers and comparing the results with the existing experimental data for 

the corresponding performance characteristics.  Though these propellers are rarely used for 
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implementation in modern ship applications, they are possibly the most widely used propeller 

series for research in propeller hydrodynamics because of their accessibility and readily available 

results.  The Maritime Research Institute in the Netherlands (MARIN) and Dr. Gert Kuiper 

published The Wageningen Propeller Series (1992) which contains all of the necessary 

geometrical and performance characteristics of the Wageningen B-Series propellers to be tested in 

the program.  The use of this propeller series and its published data will suffice in determining the 

reliability of the program implementation of lifting line theory.  Particular attention is to be given 

to the details of the individual subroutines which are used for implementing the different 

components of lifting line theory. 

Individual input files are required for each propeller to be tested containing the operating 

conditions and required geometry.  These files are individually read into the program and separate 

output (results) files are automatically generated upon execution of the program.  Analysis of the 

open water diagrams in the appendices of (Kuiper, 1992) allows for the computation of the actual 

performance of the propeller in consideration, and this data can then be compared to the results of 

the program.  These “checks” are a valuable component of this thesis because the indication of the 

program’s computational reliability will be necessary for future use and development.  Therefore, 

three propellers with different geometries and different operating conditions will be tested. 
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Section 2 – The Propellers 

At some point in the ship design process a propeller must be selected to meet the 

requirements for thrust delivery with a given applied torque.  Propeller selection is no simple task 

due to the vast number of factors to consider.  Fortunately for ship designers and hydrodynamicists, 

some propeller series have been developed and published with accompanying performance data 

given by model tests.  These series can be used as a starting point for identifying the type and size 

of propeller that will be required to accomplish the design tasks for the ship.  MARIN’s B-Series 

has standard geometry and easily acquired data which makes it favorable for research in 

hydrodynamics.  The available publications include experiments on over 120 models providing a 

various assortment of propellers with different geometrical characteristics.  Further analysis with 

more unique propeller geometries can be accomplished upon verification of the theoretical 

calculations with the corresponding performance characteristics. 

The geometry of the Wageningen B-Series propellers is defined in terms of the span-wise 

blade sections taken from the hub to the tip.  Reference to (Kuiper, 1992) is sufficient for the 

presentation of the geometrical equations as well as the non-dimensional performance 

characteristics presented in the form of open-water diagrams in “Diagrams” (chapter 11).  The 

only exception is the pitch distribution 𝑃/𝐷 – given as a ratio to the propeller’s diameter – which 

appeared with a misprint in the 1992 publication.  Reference to (Lewis, 1988) is used to obtain the 

correct the distribution (see Figure 3).  All propellers in the B-Series have a constant pitch 

distribution over the radius, except for the four-bladed propellers.  These have a reduction in pitch 

from the hub to half the radius 0.5𝑅.  Kuiper notes that “this was done to adapt the [four-bladed] 

propeller[s] to the wake distribution around the hub. The effect of this pitch reduction on the 

propulsive parameters is negligible, however” (Kuiper, 1992, p. 41). 
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(1) 

(2) 

 

Figure 3: Pitch-diameter distribution for four-bladed B-Series Propellers (Lewis, 1988) 

2.1 Geometry 

Each two-dimensional foil section is defined along the radius at the appropriate distance 

r/R from the center of rotation and is based on various factors.  The primary characteristic which 

determines the dimensions is the expanded area ratio 𝐴𝐸/𝐴0.  Others are specific to the section of 

interest which makes tabulating the factors a simple method of presentation.  Each characteristic 

is presented in non-dimensional form.  The chord length is given in terms of the diameter D, 

expanded area ratio, number of blades 𝑍, and non-dimensional factor 𝐾(𝑟).  Similarly, the 

maximum camber 𝑓0 is defined in terms of the maximum thickness 𝑡0 and a factor 𝐾𝑓.  The other 

necessary parameters are simply given as shown in  

Table 1.  The formulas for finding the chord length and maximum camber offset are 

𝑐(𝑟) =
𝐾(𝑟) ∙ 𝐷 ∙ 𝐴𝐸 𝐴0⁄

𝑍
       𝑓0 =

𝑡0

2
− 𝐾𝑓 ∙ 𝑡0 

Of course, the geometric pitch angle is necessary and can be computed from the pitch 

distribution as 

𝛽𝑔 = tan−1 (
𝑃

2𝜋𝑟
) = tan−1 (

𝑃/𝑅

2𝜋𝑟/𝑅
) = tan−1 (

𝑃/𝐷

𝜋 ∙ 𝑟/𝑅
) 
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Table 1: Factors used for determining section geometry. 

r/R K(r) Kf 

t0/D 

Z = 3 Z = 4 Z = 5 Z = 6 Z = 7 

0.2 1.600 0.330 0.0406 0.0366 0.0326 0.0286 0.0246 

0.3 1.832 0.271 0.0359 0.0324 0.0289 0.0254 0.0219 

0.4 2.023 0.193 0.0312 0.0282 0.0252 0.0222 0.0192 

0.5 2.163 0.101 0.0265 0.0240 0.0215 0.0190 0.0165 

0.6 2.243 0.023 0.0218 0.0198 0.0178 0.0158 0.0138 

0.7 2.247 0 0.0171 0.0156 0.0141 0.0126 0.0111 

0.8 2.132 0 0.0124 0.0114 0.0104 0.0094 0.0084 

0.9 1.798 0 0.0077 0.0072 0.0067 0.0062 0.0057 

0.975 1.220 0 0.0042 0.0041 0.0039 0.0038 0.0037 

Any particular B-Series propeller’s name is formatted such that a user can easily identify 

the number of blades and the expanded area ratio.  As an example, the B4-70 has four blades and 

an expanded area ratio of 0.70.  Typically, once the geometry of the blade sections has been 

determined, a visual representation of the propeller blade is made using an expanded blade diagram 

(an example can be seen in Figure 4).  This is a plot of the blade sections placed on their respective 

chord lengths at the corresponding radii. 

 

Figure 4: B4-70 Expanded blade with D = 5.33 ft (Birk, 2015) 
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(3) 

(4) 

2.2 Experimental Data: Performance Characteristics 

Once a propeller with the desired geometrical characteristics has been selected, the open 

water diagrams generated from experimental data can be utilized to obtain the thrust and torque 

produced by that propeller.  The curves plotted in these diagrams represent non-dimensional forms 

of the thrust 𝐾𝑇, torque 𝐾𝑄 (typically plotted as 10𝐾𝑄 for clarity), and open water efficiency 𝜂0 

versus the advance coefficient 𝐽.  First, the operating conditions are set to produce a selected 

advance coefficient.  This requires iterations of the advance speed Va and rate of rotation n (in 

rev/s) since 𝐽 is given as 

𝐽 =
𝑉𝑎

𝑛𝐷
 

The typical non-dimensional thrust and torque coefficients can be written in equation form as 

𝐾𝑇 =
𝑇

𝜌𝑛2𝐷4
   and    𝐾𝑄 =

𝑄

𝜌𝑛2𝐷5
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(6) 

(5) 

Section 3 – Lifting Line Theory: Description of the Method 

As already mentioned, the prediction of thrust and torque produced by a propeller is not a 

trivial task, and obtaining more realistic results requires significantly more work no matter the 

starting point.  Lifting line theory supposedly offers moderate reliability for standard propeller 

geometry as a result of a moderate amount of work in the broad scope of propeller theories. 

3.1 Foil Sections 

The classical solution for two-dimensional foils originally given by (Glauert, 1947), which 

is summarized in (Kerwin and Hadler, 2010), is used by the program to compute the bound 

circulation produced at each chord-wise section of the propeller blade.  The method assumes that 

the velocities induced by the local bound circulation distribution satisfy the so-called linearized 

boundary condition.  More information can be found in (Kerwin and Hadler, 2010, pp. 15-17). 

𝑣(𝑥) = 𝑈 (
d𝑓

d𝑥
− 𝛼) 

The bound circulation is responsible for the generation of lift by each foil section of the 

propeller blade.  Glauert’s famous solution for this bound circulation distribution is based on Thin 

Foil Theory which assumes that the foil’s thickness to chord ratio is small, or 𝑡0 𝑐⁄ ≪ 1, and that 

the lift is produced only by the foil’s camber and angle of attack (see Figure 6, top left).  The foil’s 

mean line, which represents the camber distribution along the chord length 𝑐 of the foil section, 

will be used to compute the lift per unit span.  An infinite series in a transformed 𝑥 coordinate with 

coefficients related to the sectional camber distribution is used to approximate the bound 

circulation 𝛾.  Figure 5 is given for definition of the general use of foil coordinates. 

𝛾(𝑥) = −2𝑈 (𝑎0

1 + cos �̃�

sin �̃�
+ ∑ 𝑎𝑛 sin(𝑛�̃�)

∞

𝑛=1

) 
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(10) 

(11) 

(9) 

(7) 

(8) 

(13) 

(12) 

 

Figure 5: Foil coordinates 

For a mean line which is parabolic, i.e. only the maximum camber offset 𝑓0 and chord 

length 𝑐 need to be defined, the camber distribution and its derivative (slope) can be expressed by 

𝑓(𝑥) = 𝑓0 [1 − (
𝑥

𝑐/2
)

2

] 

d𝑓

d𝑥
= −

8𝑓0𝑥

𝑐2
 

A transformed 𝑥 coordinate �̃� is used by Glauert and is related to 𝑥 by 

𝑥 = −
𝑐

2
cos �̃� 

which provides for easy computation of the series coefficients 𝑎0 and 𝑎1 as seen below.  

𝛼 − 𝑎0 =
1

𝜋
∫

𝑑𝑓

𝑑𝑥
d�̃�

𝜋

0

= 0  →   𝑎0 = 𝛼 

𝑎𝑛 =
2

𝜋
∫

d𝑓

d𝑥
cos(𝑛�̃�) d�̃�

𝜋

0

= {
4

𝑓0

𝑐
   for  𝑛 = 1

 
0  for  𝑛 > 1      

 

These simplifications allow for the infinite series to be reduced to the simple form of 

𝛾(�̃�) = −2𝑈∞𝛼 (
1 + cos �̃�

sin �̃�
) − 8𝑈

𝑓0

𝑐
sin �̃� 

The circulation distribution is integrated over the length of the chord to obtain the total 

sectional circulation 𝛤 which is given by 

𝛤 = ∫ 𝛾(𝑥)
𝑐/2

−𝑐/2

d𝑥 

x
mean line

0f

y

c
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(14) 

(15) 

(16) 

(17) 

The Kutta-Joukowski Lift Theorem can be used to relate this circulation strength to the lift 

𝐿 produced by the foil section by the simple expression 

𝐿 = −𝜌𝑈𝛤 

Though 𝛤 is positive counter-clockwise (for positive lift “up” in the positive 𝑦-direction) 

𝑈 is assumed to approach the foil in the negative 𝑥-direction, so a negative sign is introduced.  In 

the case where the circulation is positive, or clockwise, the lift produced will be negative.  Results 

are typically transformed into non-dimensional form for ease of computation.  Lift is non-

dimensionalized as the typical lift coefficient 𝐶𝐿 which can be given for the parabolic section as 

𝐶𝐿 =
𝐿

1
2 𝜌𝑈2𝑐

= 2𝜋𝑎0 + 4𝜋
𝑓0

𝑐
= 2𝜋𝛼 + 4𝜋

𝑓0

𝑐
 

3.2 Perturbation Velocities and Cavitation 

In order to account for more of the effects of the foil geometry, it is helpful to know more 

about the flow characteristics local to each foil.  According to thin foil theory, the calculation of 

the velocity and pressure distributions very near to the foil surface is accomplished by considering 

only the camber, thickness, chord length, and angle of attack.  First, computing the perturbation 

velocities – and also the pressure distribution – due to foil thickness allows for cavitation checks, 

so 𝑢/𝑈 is computed for a given thickness.  This is done with a parabolic thickness distribution (see 

Figure 6, bottom).  

𝑡(𝑥) = 𝑡0 [1 − (
𝑥

𝑐/2
)

2

] 

Then, with integration as given by (Kerwin and Hadler, 2010), the disturbance velocity 

(normalized on 𝑈) due to thickness 𝑢𝑡 is given as 

𝑢𝑡

𝑈
= −

4𝑡0

𝜋𝑐2
[𝑥 log (

𝑐/2 + 𝑥

𝑐/2 − 𝑥
) − 𝑐] 
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(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

Other contributions to the perturbation velocity are due to the camber distribution uc and 

angle of attack 𝑢𝑎.  Their components are given respectively as 

𝑢𝑐

𝑈
= −

1

2

𝛾

𝑈
 

𝑢𝛼

𝑈
= 𝛼√

𝑐/2 − 𝑥

𝑐/2 + 𝑥
 

These three components are superimposed to produce the total perturbation velocity 

normalized on the free stream velocity 𝑈.  

𝑢

𝑈
=

𝑢𝑡

𝑈
+

𝑢𝑐

𝑈
+

𝑢𝛼

𝑈
 

Still it is necessary to find the difference in the velocities on the upper and lower surfaces 

of the foil.  The only difference is due to the circulation, so 

( 
𝑢

𝑈 

 

)
𝑢𝑝𝑝𝑒𝑟

=
𝑢𝑡

𝑈
−

𝑢𝑐

𝑈
+

𝑢𝛼

𝑈
    and    ( 

𝑢

𝑈 

 

)
𝑙𝑜𝑤𝑒𝑟

=
𝑢𝑡

𝑈
+

𝑢𝑐

𝑈
+

𝑢𝛼

𝑈
 

Now the pressure coefficients on the upper and lower surfaces of the foil can be determined 

from the linearized Bernoulli equation (Kerwin and Hadler, 2010).  

𝐶𝑃𝑢𝑝𝑝𝑒𝑟
= −2 ( 

𝑢

𝑈 

 

)
𝑢𝑝𝑝𝑒𝑟

   and     𝐶𝑃𝑙𝑜𝑤𝑒𝑟
= −2 ( 

𝑢

𝑈 

 

)
𝑙𝑜𝑤𝑒𝑟

 

The cavitation number 𝜎 is now introduced and compared with the pressure coefficients to 

check for cavitation inception.  If 𝜎 < 𝐶𝑃 then the local pressure has dropped below vaporization 

pressure and cavitation is likely.  Here, 𝑃∞ is the hydrostatic pressure local to the propeller shaft, 

𝑃𝑎 is the atmospheric pressure, and ℎ is the depth of the shaft below the surface. 

𝜎 =
𝑃∞ − 𝑃𝑣

1
2 𝜌𝑈2

    where     𝑃∞ = 𝑃𝑎 + 𝜌𝑔ℎ 

 



14 

 

 

Figure 6: Foil shape approximations 

Camber and angle of attack of foil section (top left), thickness of realistic foil section with no 

camber (top right), and foil section with symmetric parabolic thickness (bottom) 

3.3 Induced Velocities 

Now we are interested in approximating the velocities induced on the lifting line due to the 

influence of the helical vortex sheets in the wake of each blade.  The computation of these induced 

velocities is governed by the Biot-Savart Law which was first introduced as a method of computing 

the magnetic flux through a point at some distance from a current-carrying wire.  The Biot-Savart 

Law relates the magnitude, direction, and proximity of a single vortex filament in the wake of a 

section of the blade to the velocity at the lifting line.  The vortex sheet is thought to be made up of 

individual line vortices shed from each foil section, and the influence of each section’s wake vortex 

affects the velocity induced at any point on the lifting line.  An analytical solution to this system 

practically does not exist, and evaluating the integrals numerically can be highly demanding in 

terms of time and effort.  Fortunately, J. W. Wrench derived a set of highly accurate closed form 

approximations using sums of Bessel functions in 1957 (Wrench, 1957), eliminating the necessity 

to solve the equations numerically. 

Though Wrench’s equations are presented below, reference to The Calculation of Propeller 

Induction Factors (Wrench, 1957) is advised for a thorough discussion about their derivation.  

Essentially, �̅�𝑎 and �̅�𝑡 – the axial and tangential velocities induced by a helical vortex filament of 
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(24) 

(25) 

(26) 

(27) 

(28) 

(29) 

(30) 

(31) 

unit circulation strength at particular radii (each 𝑟/𝑅) on the lifting line – are approximated using 

Wrench’s method; then the products of these with the span-wise distribution of bound circulation 

(defined in section 3.5 Calculation of Thrust and Torque) are integrated over the span of the 

propeller blade to obtain 𝑢𝑎
∗  and 𝑢𝑡

∗ which are the total axial and tangential velocities induced at a 

point on the lifting line.  Wrench’s approximations and the velocity integrals are computed using 

the following equations and conditions (Kerwin and Hadler, 2010).  

When 𝑟𝑣  >  𝑟𝑐: 

�̅�𝑎(𝑟𝑐, 𝑟𝑣) =
𝑍

4𝜋𝑟𝑐

(𝑦 − 2𝑍𝑦𝑦0𝐹1) 

�̅�𝑡(𝑟𝑐, 𝑟𝑣) =
𝑍2

2𝜋𝑟𝑐
𝑦0𝐹1 

 

When 𝑟𝑐  > 𝑟𝑣:  

�̅�𝑎(𝑟𝑐, 𝑟𝑣) =
𝑍2

2𝜋𝑟𝑐
𝑦𝑦0𝐹2 

�̅�𝑡(𝑟𝑐, 𝑟𝑣) =
𝑍

4𝜋𝑟𝑐
𝑦(1 + 2𝑍𝑦0𝐹2) 

Where:  

𝐹1 ≈
−1

2𝑍𝑦0
(

1 + 𝑦0
2

1 + 𝑦2
)

0.25

{
𝑈

1 − 𝑈
+

1

24𝑍
[

9𝑦0
2 + 2

(1 + 𝑦0
2)1.5

+
3𝑦2 − 2

(1 + 𝑦2)1.5
] ln (1 +

𝑈

1 − 𝑈
)} 

𝐹2 ≈
1

2𝑍𝑦0
(

1 + 𝑦0
2

1 + 𝑦2
)

0.25

{
1

𝑈 − 1
−

1

24𝑍
[

9𝑦0
2 + 2

(1 + 𝑦0
2)1.5

+
3𝑦2 − 2

(1 + 𝑦2)1.5
] ln (1 +

1

𝑈 − 1
)} 

𝑈 = [
𝑦0(√1 + 𝑦2 − 1)

𝑦(√1 + 𝑦0
2 − 1)

exp (√1 + 𝑦2 − √1 + 𝑦0
2)]

𝑍

 

𝑦 =
𝑟𝑐

𝑟𝑣 tan 𝛽𝑤
      and     𝑦0 =

1

tan 𝛽𝑤
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(32) 

(33) 

(34) 

(35) 

(36) 

The Biot-Savart integrals for the induced velocities are: 

𝑢𝑎
∗ (𝑟𝑐) = ∫ [−

𝜕𝛤(𝑟𝑣)

𝜕𝑟
�̅�𝑎(𝑟𝑐, 𝑟𝑣)]

𝑅

𝑟ℎ

d𝑟𝑣 

𝑢𝑡
∗(𝑟𝑐) = ∫ [−

𝜕𝛤(𝑟𝑣)

𝜕𝑟
�̅�𝑡(𝑟𝑐, 𝑟𝑣)]

𝑅

𝑟ℎ

d𝑟𝑣 

These velocity components are essentially deductions from the undisturbed inflow velocity 

(see Figure 7).  The control point radius 𝑟𝑐 is the radial location on the lifting line where the velocity 

is induced, and the radius 𝑟𝑣 is the radial location of the particular vortex filament of concern.  

Since a line vortex is shed from each of the foil’s wakes, we need to compute the influence of each 

of these line vortices on every section.  One issue experienced in the computation of these induced 

velocities involves the singular behavior when 𝑟𝑐 is equal to 𝑟𝑣 (see Figure 9).  To correct this, it is 

“useful to factor out the singular part, leaving a regular function that depends on the geometry of 

the helix” (Kerwin and Hadler, 2010, pp. 80-81).  This is done with the induction factors proposed 

by Lerbs (1952) as shown below 

𝑖𝑎(𝑟𝑐, 𝑟𝑣) = −
�̅�𝑎(𝑟𝑐, 𝑟𝑣)

1
4𝜋(𝑟𝑐 − 𝑟𝑣)

    and    𝑖𝑡(𝑟𝑐, 𝑟𝑣) =
�̅�𝑡(𝑟𝑐, 𝑟𝑣)

1
4𝜋(𝑟𝑐 − 𝑟𝑣)

 

These factors are employed in a new equation for the induced velocities as 

𝑢𝑎
∗ =

𝑉𝑎

1 − 𝑟ℎ 𝑅⁄
∫

𝑖𝑎(𝑟𝑐, 𝑟𝑣) ∑ 𝑗𝑎𝑗 cos(𝑗�̃�𝑣)𝐽
𝑗=1

cos �̃�𝑣 − cos �̃�𝑐

𝜋

0

d�̃�𝑣 

𝑢𝑡
∗ =

−𝑉𝑎

1 − 𝑟ℎ 𝑅⁄
∫

𝑖𝑡(𝑟𝑐, 𝑟𝑣) ∑ 𝑗𝑎𝑗 cos(𝑗�̃�𝑣)𝐽
𝑗=1

cos �̃�𝑣 − cos �̃�𝑐

𝜋

0

d�̃�𝑣 

where 𝑎𝑗 are the coefficients found using a Fourier transformation of the span-wise bound 

circulation distribution.  This requires the definition of the angular coordinate �̃� as a transformation 

of the physical radial coordinate 𝑟 defined by 
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(37) 

(38) 

(39) 

(40) 

(41) 

�̃� = cos−1 (
𝑅 + 𝑟ℎ − 2𝑟

𝑅 − 𝑟ℎ
) 

The Fourier series of the circulation distribution is found in terms of the non-dimensional 

circulation 𝐺(�̃�) as a function of the radial coordinate.  The motivation for this is to allow the 

circulation to vanish at the hub and tip by using strictly a sine series.  For brevity, the details of the 

computation of the Fourier series coefficients is omitted.  Standard Fourier series analysis 

procedures are used (Taravella, 2015).  

𝐺(�̃�) =
𝛤(�̃�)

2𝜋𝑅𝑉𝑎
= ∑ 𝑎𝑗 sin(𝑗�̃�)

𝐽

𝑗=1

 

Using vector addition, it is clear that the total inflow velocity 𝑉∗ and its angle (the 

hydrodynamic pitch angle) 𝛽𝑖 from the free stream are (see Figure 7) 

𝑉∗(𝑟) = √(𝑉𝑎 + 𝑢𝑎
∗ )2 + (𝜔𝑟 + 𝑢𝑡

∗)2 

𝛽𝑖 = tan−1 (
𝑉𝑎 + 𝑢𝑎

∗

𝜔𝑟 + 𝑢𝑡
∗) 

The total inflow velocity allows for the computation of the inviscid force per unit radius as 

𝐹𝑖(𝑟) = 𝜌𝑉∗(𝑟)𝛤(𝑟) 

 

Figure 7: Foil section with velocities, angles, and circulation shown 
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(42) 

(43) 

(44) 

(45) 

(46) 

3.4 Empirical Estimation of Viscous Drag 

Since the principles of lifting line theory do not account for the viscous nature of water, it 

is necessary to make some correction for its effects.  Fortunately, a simple method is quite 

sufficient using a two-dimensional flat plate drag coefficient.  The coefficient of choice is the ITTC 

1957 friction coefficient.  

𝐶𝐷𝑣 = 2 ∙
0.075

(log10 𝑅𝑒 − 2)2
=

0.15

(log10 𝑅𝑒 − 2)2
 

The factor of 2 is present because propeller blades experience frictional drag on both the 

blade face and back.  The Reynolds number found in the denominator is defined for a propeller 

blade section as 

𝑅𝑒 =
𝑐𝑉∗

𝜈
 

where ν is the kinematic viscosity of water.  Then the viscous force per unit radius becomes 

𝐹𝑣(𝑟) =
1

2
𝜌[𝑉∗(𝑟)]2𝑐(𝑟)𝐶𝐷𝑣(𝑟) 

3.5 Calculation of Thrust and Torque 

Lifting line theory is given its name due to the distribution of circulation as a “lifting line” 

spanning the blade from the hub to the tip.  The distribution of circulation may be thought of at 

this point as a radial distribution rather than sectional or chord-wise. 

𝛾(𝑟) = −
dΓ

d𝑟
 

Breaking the inviscid forces due to circulation and the viscous forces into their respective 

axial and tangential components provides the following for the total axial and tangential forces per 

unit span 

𝐹𝑇,𝑎𝑥𝑖𝑎𝑙 = −𝜌𝑉∗𝛤 cos 𝛽𝑖 −
1

2
𝜌(𝑉∗)2𝑐𝐶𝐷𝑣 sin 𝛽𝑖 
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(47) 

(48) 

(49) 

𝐹𝑇,𝑡𝑎𝑛𝑔 = −𝜌𝑉∗𝛤 sin 𝛽𝑖 −
1

2
𝜌(𝑉∗)2𝑐𝐶𝐷𝑣 cos 𝛽𝑖 

Integrating these forces over the span of the blade and multiplying by the number of blades 

provides the desired torque and thrust of the propeller.  

𝑇 = 𝑍 ∫ 𝐹𝑇,𝑎𝑥𝑖𝑎𝑙

𝑅

𝑟ℎ

d𝑟 = 𝜌𝑍 ∫ [−𝑉∗𝛤 cos 𝛽𝑖 −
1

2
(𝑉∗)2𝑐𝐶𝐷𝑣 sin 𝛽𝑖]

𝑅

𝑟ℎ

d𝑟 

𝑄 = 𝑍 ∫ 𝐹𝑇,𝑡𝑎𝑛𝑔

𝑅

𝑟ℎ

d𝑟 = 𝜌𝑍 ∫ [−𝑉∗𝛤 sin 𝛽𝑖 −
1

2
(𝑉∗)2𝑐𝐶𝐷𝑣 cos 𝛽𝑖] ∙ 𝑟

𝑅

𝑟ℎ

d𝑟 
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Section 4 – Program Development/Implementation 

The main logical progression of the code can be observed in the main program.  

Subroutines are utilized to accomplish the underlying functions behind the input of information, 

blade discretization, velocity and circulation distribution calculations, etc.  The only computations 

performed in the main program include the pitch angles 𝛽, 𝛽𝑔, 𝛽𝑖 and angle of attack 𝛼, the total 

inflow speed 𝑉∗, and the thrust 𝑇 and torque 𝑄.  The following subsections further explain the use 

of the main program and subroutines.  Some particular lines of code from the program are shown 

to provide clarity. 

4.1 The Input: Propeller Geometry and Operating Conditions 

The task which must first be accomplished in the program is reading the propeller’s 

geometry and associated operating conditions.  This is accomplished by means of a subroutine 

called readinfo and is where the program receives, upon execution, the necessary information from 

an external document for making all of its calculations.  The desired information is read from a 

text file (.txt) which is uniquely formatted so that the program knows where each piece of 

information is going to be located in the file.  A sample input file can be found in Appendix B: 

Sample Input File.  Included in the import are the propeller diameter, number of propeller blades, 

shaft rotational speed (rpm), advance velocity 𝑉𝑎, chord-wise discretization 𝑁, and number of blade 

sections 𝑁𝑠.  Also included are the following one-dimensional arrays: span-wise distance of blade 

section (𝑟) normalized by propeller radius (𝑅) 𝑟/𝑅, sectional chord length 𝑐(𝑟) to propeller radius 

ratio 𝑐(𝑟)/𝑅, maximum section thickness 𝑡0(𝑟) to chord length ratio 𝑡0(𝑟)/𝑐(𝑟), maximum 

camber offset 𝑓0(𝑟) to chord length ratio 𝑓0(𝑟)/𝑐(𝑟), and sectional geometric pitch angle 𝛽𝑔(𝑟).  

The number of elements in each of these arrays should match the number of blade sections for 

which the geometry is provided 𝑁𝑠.  The only computations performed in the first subroutine 
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include converting the propeller’s rotational speed to (rad/s) from (rpm) and dimensionalizing the 

sectional geometry, e.g. multiplying 𝑓0(𝑟)/𝑐(𝑟) by 𝑐(𝑟) to obtain 𝑓0(𝑟) in (feet). 

4.2 The Main Program 

As already mentioned, the main program performs only a few calculations.  The first 

subroutine called is readinfo which has also already been discussed.  Next, subroutines glauert, 

thickness, and pressure are called to compute the circulation and perturbation velocities at each 

section.  Then subroutine transforms is called which transforms the physical radial coordinate 𝑟 

(dimensionalized from 𝑟/𝑅) to �̃� and represents the circulation distribution as a Fourier series.  

Subroutine totindvel is then called to compute the axial and tangential induced velocities 𝑢𝑎
∗  and 

𝑢𝑡
∗ at each section which are used to obtain a new inflow speed 𝑉∗, pitch angle 𝛽𝑖, and angle of 

attack 𝛼.  The circulation is calculated once more using the new angle of attack, and subroutine 

ittc is called to estimate the effects of the water’s viscosity using the ITTC 1957 skin friction 

coefficient and a Reynolds Number based on the chord length.  Subroutine transforms is called 

once more for a new Fourier representation of the new circulation distribution, and finally the 

thrust and torque are computed using numerical integration. 

4.3 Blade Section Discretization and Circulation/Lift Coefficient Calculation 

The next task (after the input is received) is to perform the first iteration in the calculation 

of the angle of attack using the undisturbed inflow speed.  This is the velocity oriented at angle 𝛽 

in Figure 7.  The angle of attack and inflow speed allow for the calculation of the lift coefficient 

using subroutine glauert which discretizes the foil and calculates the circulation at each blade 

section using the classical solution for 2-D foils known as Glauert’s (1947) solution.  With the 

approximation of the foil’s mean line as a parabolic mean line, the circulation distribution 

(normalized on the advance velocity 𝑉𝑎) caused by the foil’s angle of attack and maximum camber 
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offset can be written in the code as 

gam = -2.*alpha*((1.+dcos(xtilde))/dsin(xtilde)) - 8.*f0*dsin(xtilde)/c 

 

where xtilde was previously defined using 

dxtilde = pi/N 

xtilde(1) = dxtilde/2. 

do i = 2,N 

  xtilde(i) = xtilde(i-1) + dxtilde 

end do 

x = -c/2.*dcos(xtilde) 

 

In this subroutine, the lift coefficient is also computed using equation (14). 

4.4 Foil Shape Effects and Cavitation 

Since the propeller’s performance prediction is dependent only upon the attack angle and 

camber offset of each section, it is necessary to determine the perturbation velocities due to the 

foil thickness and superimpose this with the disturbance velocities due to attack angle and camber 

for a reliable check for cavitation inception.  Two subroutines are used to determine these 

perturbation velocities: subroutines thickness and pressure.  Once again, these subroutines employ 

the transformed 𝑥 coordinate �̃� and use the following lines of code for the perturbation velocities: 

uUt = -4*t0/(pi*c**2.) * (x*dlog((c/2+x)/(c/2.-x))-c) 

uUupper = uUt – gam/2. + alpha*dsqrt((c/2.-x)/(c/2.+x)) 

uUlower = uUt + gam/2. + alpha*dsqrt((c/2.-x)/(c/2.+x)) 

 

The velocity uUt is the disturbance velocity due to foil thickness normalized on the inflow 

velocity, which in this case is simply the advance velocity 𝑉𝑎.  The superimposed equations for the 

total disturbance velocity are defined for the upper and lower sides of the foil as uUupper and 

uUlower.  These velocities can then be used to obtain the pressure coefficients on the upper and 

lower sides of the foil as described in Section 3.2 Perturbation Velocities and Cavitation.  Although 

this was not accomplished in the code, cavitation can now be checked for by means of the 

cavitation number as previously discussed. 
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4.5 Calculation of Velocities Induced on a Lifting Line 

The velocities induced on the lifting line from the vortices shed in each of the propeller 

blades’ helical wakes are computed using subroutines totindvel and inducevel.  The latter 

subroutine is called within the former and is an implementation of Wrench’s (1957) closed form 

approximations of the normalized induced velocities.  Some of the equations appear in (Kerwin 

and Hadler, 2010) with errors that have been corrected and checked by reproducing the plots at 

the bottom of page 80 in (Kerwin and Hadler, 2010) in Figure 9.  Subroutine totindvel checks each 

of the section’s effects on all other sections and uses Lerbs’ (1952) induction factors to obtain 

better behavior (without the inherent singularities where 𝑟𝑐 is equal to 𝑟𝑣).  This singular behavior 

(discussed in Section 3.3 Induced Velocities) at 𝑟𝑐/𝑟𝑣 = 1 is evident in these figures.  The 

correction made using Lerbs’ induction factors can be seen as plotted in Figure 10. 

Figure 9 contains plots of the induced velocities 𝑢𝑎 and 𝑢𝑡 (normalized by 𝑉𝑎) induced on 

a lifting line at radius 𝑟𝑐/𝑅 by helical free vortices of strength 𝛤 = 2𝜋𝑅𝑉𝑎 originating at 𝑟𝑣 = 1.0.  

The parameters 𝑍 = 5 and 𝛽𝑤 = 10, 20, 30, 40, 50, and 60 degrees were set in order to recreate 

Kerwin’s Fig. 4.20 (Propulsion, p. 80) for verification of subroutine inducevel.  Velocities 𝑢𝑎 and 

𝑢𝑡 were obtained and plotted by multiplying the normalized �̅�𝑎 and �̅�𝑡 by 𝛤. 

A comparison of these plots with those presented by (Kerwin and Hadler, 2010) reveals no 

distinct differences.  Therefore it may be concluded that the routines used to generate the data 

plotted in these figures have been validated and that the normalized induced velocities and the 

axial and tangential induction factors are being computed properly. 
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Figure 8: Normalized axial velocities induced on a lifting line 

 

 

Figure 9: Normalized tangential velocities induced on a lifting line 
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Figure 10: Lerbs induction factors for a five-bladed propeller 

The code used to call subroutine inducevel for �̅�𝑎 and �̅�𝑡 and to compute the induction 

factors 𝑖𝑎 and 𝑖𝑎 is implemented as given below. 

do v = 1,Ns-1 

 

  ! Compute rv, the radii of the midpoints of rc(v) and rc(v+1) 

  rv(v) = (rc(v+1)+rc(v))/2. 

  drv(v) = rc(v+1)-rc(v) 

 

  call inducevel(rc(c), rv(v), Zi, betaw, uabar(v), utbar(v)) 

   

  ! Compute Lerbs (1952) induction factors using eq. 4.56 

  ia(v) = uabar(v) / (1./(4.*pi* (rc(c)-rv(v)) )) 

  it(v) = utbar(v) / (1./(4.*pi* (rc(c)-rv(v)) )) 

   

end do 

 

The radial coordinate �̃� (at the endpoints and midpoints of the discrete spanwise circulation 

distribution) is computed using 

! We need rctilde (endpoints), rvtilde (midpoints), and 

! drvtilde which is the distance between endpoints 

do cc = 1,Ns 

  rctilde(cc) = dacos((Diam/2.+rc(1)-2.*rc(cc)) / (Diam/2.-rc(1))) 

end do 
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do cc = 1,Ns-1 

  rvtilde(cc)  = (rctilde(cc+1)+rctilde(cc))/2. 

  drvtilde(cc) =  rctilde(cc+1)-rctilde(cc) 

end do 

 

Then the induced velocities 𝑢𝑎
∗  and 𝑢𝑡

∗ are finally computed using 

! Compute the integrals of eq. 4.102 

sumia = 0. 

sumit = 0. 

do v = 1,Ns-1 

  sumb = 0. 

  do jj = 1,J 

    sumb = dble(jj)*b(jj)*dcos(dble(jj)*rvtilde(v)) + sumb 

  end do 

  sumia = ia(v)*sumb*drvtilde(v) / (dcos(rvtilde(v))-dcos(rctilde(c))) & 

          * drvtilde(v) + sumia 

  sumit = it(v)*sumb*drvtilde(v) / (dcos(rvtilde(v))-dcos(rctilde(c))) & 

          * drvtilde(v) + sumit 

end do 

 

! Compute velocities ua and ut using eq. 4.102 

ua =  Va / (1.-rc(1)/(Diam/2.)) * sumia 

ut = -Va / (1.-rc(1)/(Diam/2.)) * sumit 

 

Figure 11 shows a plot of the Fourier series representation of the non-dimensional span-

wise circulation distribution for a B4-70 propeller.  This was used in determining an appropriate 

number of Fourier coefficients to reasonably approximate the distribution.  As expected, half of a 

sine wave is obtained for one coefficient.  The fit appears to improve from two to five coefficients, 

but increasing the number of coefficients beyond five results in some undesirable fluctuations or 

“wiggles” around the actual distribution.  Therefore, five coefficients were chosen for the Fourier 

series fit.  Obviously, most of the distributions have been omitted for the sake of clarity. 

The final step in the code is to compute the thrust and torque of the propeller for the given 

operating conditions.  This is done by numerical integration of equations (47) and (48) presented 

in section 3.5 Calculation of Thrust and Torque.  First each integrand is computed for each span-

wise blade section, then a loop is utilized to add each section’s contribution using a simple 

trapezoidal rule integration.  The results are multiplied by the water density  (to obtain the units 

of lbf and ft-lbf) and the number of blades 𝑍 (to obtain the contribution from each blade on the 

propeller). 
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! Computing integrand of equations 4.45 and 4.46 

Ti =  -V*fcirc*dcos(betai) - 0.5*(V**2.)*c*Cdv*dsin(betai) 

Qi = (-V*fcirc*dsin(betai) - 0.5*(V**2.)*c*Cdv*dcos(betai))*rad 

 

 

! Computing equations 4.45 and 4.46 

Thrust = 0. 

Torque = 0. 

do cc = 2,Ns 

   

  Thrust = 0.5*(Ti(cc)+Ti(cc-1))*(rad(cc)-rad(cc-1)) + Thrust 

  Torque = 0.5*(Qi(cc)+Qi(cc-1))*(rad(cc)-rad(cc-1)) + Torque 

   

end do 

Thrust = rho*Z*Thrust 

Torque = rho*Z*Torque 

 

 

 

Figure 11: Fourier series representation of circulation distribution 
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Section 5 – Results 

Typically, lifting line theory is known to yield solutions to 2-D external foil flow problems 

which are satisfactory in practice and principle, yet some difficulties were experienced in the 

development of a reliable algorithm for computing the lift generated by the rotating motion of the 

Wageningen B-Series propellers.  The primary factors which influence the performance of the 

propeller according to lifting line theory are the bound and free vortices which are unique to each 

blade section.  The bound vortex is directly related to the foil’s lift coefficient at the given operating 

conditions and is computed using only the sectional angle of attack and camber to chord length 

ratio.  The free vortices are the source of the induced velocities which are expected to cause a slight 

reduction in the produced thrust. 

Table 2 shows the results of the Lifting Line code on three different propellers.  Note that 

propeller 1 is in a “lightly loaded” operating condition while propellers 2 and 3 are considered to 

be in “moderately loaded” conditions.  Observation of the results (see Table 3) obtained even 

before considering the effects of the induced velocities indicates an issue with the theory behind 

the bound vortex model.  The source of the error is yet unknown, but suspicion lies most 

significantly within the validity and applicability of Glauert’s solution for a 2-D thin foil to the 

rotating marine propeller.  It is unreasonable to expect that the induced velocities will cause such 

a dramatic reduction in performance prediction.  For example, the thrust computed for propeller 1 

(see the tables below) by the program is about four times that calculated from the published 

experimental results (the target thrust). 

Further analysis to check for convergence towards the published experimental results 

includes setting the maximum camber offset to zero to see the significance of its influence in the 

final result.  A quick glance at each of the tables indicates that the blade sections’ camber 
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influences the outcome of the prediction quite heavily, though it does not appear to be a step toward 

the desired solution. 

Table 2: Program results 

Characteristic Symbol Units Propeller 1 Propeller 2 Propeller 3 

Propeller diameter D ft 5.33 5.33 5.33 

Number of blades Z - 4 4 3 

Expanded area ratio AE/A0 - 0.7 0.4 0.65 

Pitch-diameter ratio P/D - 1.4 1.0 1.0 

Advance velocity Va ft/s 20.0 10.0 10.0 

Shaft speed n RPM 183.0 173.1 173.1 

Propeller thrust T lbf 8054.2 8811.8 11252.3 

Propeller torque Q ft-lbf 8510.1 5562.3 6354.2 

Advance coefficient J - 1.2303 0.6503 0.6503 

Thrust coefficient, calculated KT - 0.5395 0.6597 0.8424 

Torque coefficient, calculated KQ - 0.1070 0.0781 0.0893 

Thrust coefficient, target KT - 0.1210 0.2000 0.1900 

Torque coefficient, target KQ - 0.0315 0.0340 0.0315 

 

Table 3: Results without induced velocities 

Characteristic Symbol Units Propeller 1 Propeller 2 Propeller 3 

Thrust coefficient, calculated KT - 0.6867 0.8017 1.1293 

Torque coefficient, calculated KQ - 0.1326 0.0814 0.1147 

Thrust coefficient, target KT - 0.1210 0.2000 0.1900 

Torque coefficient, target KQ - 0.0315 0.0340 0.0315 

 

Table 4: Results without camber 

Characteristic Symbol Units Propeller 1 Propeller 2 Propeller 3 

Thrust coefficient, calculated KT - 0.4005 0.5509 0.924 

Torque coefficient, calculated KQ - 0.0765 0.0555 0.0935 

Thrust coefficient, target KT - 0.1210 0.2000 0.1900 

Torque coefficient, target KQ - 0.0315 0.0340 0.0315 

 

Interpolating the characteristics of the propeller blade geometry is another attempt that was 

made to improve the results.  It was found that adding four sections at 𝑟/𝑅 = 0.25, 0.35, 0.85, and 

0.9375 by means of a second-order Lagrangian polynomial (Rao, 2006) and a fifth section at the 
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blade tip (𝑟/𝑅 = 1.0) with dimensions of approximately zero actually reduced the computed thrust 

and torque by about five percent.  This is likely due to the inherent errors present in the numerical 

integration of the discrete data points.  Adding more sections at 𝑟/𝑅 = 0.45, 0.55, 0.65, and 0.75 

produced another gradual decrease in the computed performance, though the results converged 

rapidly. 

Every computation made in the FORTRAN program was checked by hand for mistakes, and 

a rigorous search for mishandled sign conventions was conducted in order to identify issues with 

the current model of the physics of the flows.  And though numerous adjustments were made as 

unnoticed mistakes were uncovered, a satisfactory solution was not achieved.  Perhaps a different 

model for computing the local bound vortex distribution that is more appropriate for marine 

propellers could be used.  Other such methods may include propeller vortex lattice methods (PVL) 

or panel methods which are described in detail in numerous sources.  The application of Glauert’s 

solution to the 2-D foil assumes a small thickness to chord length ratio and a high aspect ratio (i.e. 

a small expanded area ratio).  The latter is obviously not valid for most marine propellers since 

cavitation is a greater threat with low expanded area ratios. 

Table 5, Table 6, and Table 7 are shown to demonstrate some of the computations required 

in lifting line theory.  The induced velocities at each section, the attack angles, lift coefficients, 

viscous drag coefficients, circulation distributions, and hydrodynamic inflow velocities and angles 

are shown.  Note that the attack angles presented are those which were computed after the induced 

velocities have been determined.  Also, 𝛤(𝑟) refers to the first computed radial circulation 

distribution, and 𝛤2(𝑟) refers to the distribution found after the new attack angles have been 

computed. 
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Table 5: Propeller 1, computed characteristics 

𝑟/𝑅 𝛤(𝑟) 𝑢𝑎
∗  𝑢𝑡

∗ 𝑉∗ 𝛽𝑖 𝛼 𝐶𝐿 𝐶𝐷𝑣 𝛤2(𝑟) 

(ft) (ft2/s) (ft/s) (ft/s) (ft/s) (rad) (rad) (-) (-) (ft2/s) 

0.2 -1.776 -4.242 -5.622 16.413 1.287 -0.216 -1.079 0.008 13.216 

0.25 -3.904 0.495 1.646 25.056 0.958 0.032 0.486 0.007 -9.780 

0.3 -6.868 0.361 1.423 26.361 0.883 0.039 0.536 0.007 -12.072 

0.35 -10.564 0.002 0.886 27.424 0.817 0.046 0.588 0.007 -14.531 

0.4 -14.891 0.341 1.109 29.625 0.757 0.057 0.665 0.007 -18.582 

0.45 -19.315 0.998 1.531 32.277 0.708 0.059 0.689 0.007 -22.033 

0.5 -22.646 1.452 1.694 34.664 0.667 0.057 0.674 0.007 -23.576 

0.55 -25.072 1.541 1.556 36.645 0.628 0.053 0.644 0.006 -24.359 

0.6 -26.141 1.491 1.343 38.535 0.592 0.047 0.599 0.006 -24.149 

0.65 -26.492 1.624 1.270 40.688 0.560 0.041 0.537 0.006 -22.952 

0.7 -26.034 2.016 1.350 43.141 0.536 0.031 0.446 0.006 -20.175 

0.75 -25.127 2.356 1.394 45.560 0.513 0.023 0.365 0.006 -17.143 

0.8 -23.749 2.243 1.213 47.588 0.486 0.022 0.329 0.006 -15.586 

0.85 -22.011 1.892 0.945 49.464 0.458 0.024 0.319 0.006 -14.922 

0.9 -19.076 2.730 1.239 52.391 0.449 0.011 0.213 0.006 -9.348 

0.9375 -16.146 4.859 2.089 55.811 0.462 -0.018 0.018 0.006 -0.713 

0.975 -12.613 5.446 2.308 57.984 0.454 -0.026 -0.042 0.007 1.375 

1 0.000 -19.576 -8.219 42.854 0.010 0.409 2.572 0.017 0.000 

 

Table 6: Propeller 2, computed characteristics 

𝑟/𝑅 𝛤(𝑟) 𝑢𝑎
∗  𝑢𝑡

∗ 𝑉∗ 𝛽𝑖 𝛼 𝐶𝐿 𝐶𝐷𝑣 𝛤2(𝑟) 

(ft) (ft2/s) (ft/s) (ft/s) (ft/s) (rad) (rad) (-) (-) (ft2/s) 

0.2 -7.202 -21.587 -13.877 12.330 1.222 -0.304 -1.420 0.010 7.464 

0.25 -9.728 4.243 5.981 23.000 0.668 0.160 1.502 0.008 -15.844 

0.3 -12.536 1.579 3.970 21.793 0.560 0.195 1.734 0.008 -18.447 

0.35 -15.579 0.034 2.682 22.010 0.473 0.223 1.921 0.008 -21.782 

0.4 -18.820 0.842 2.779 24.619 0.456 0.191 1.740 0.008 -23.088 

0.45 -21.877 1.988 2.965 27.458 0.452 0.151 1.504 0.008 -23.110 

0.5 -24.552 2.476 2.821 29.721 0.433 0.130 1.374 0.007 -23.534 

0.55 -26.476 2.463 2.503 31.631 0.405 0.120 1.300 0.007 -24.229 

0.6 -27.610 2.521 2.254 33.655 0.381 0.107 1.199 0.007 -24.115 

0.65 -27.871 2.965 2.164 35.981 0.369 0.087 1.029 0.007 -22.238 

0.7 -27.688 3.593 2.140 38.440 0.361 0.065 0.847 0.007 -19.490 

0.75 -26.869 3.891 2.030 40.705 0.348 0.053 0.721 0.007 -17.233 

0.8 -25.503 3.595 1.781 42.653 0.324 0.054 0.677 0.007 -16.409 

0.85 -23.756 3.279 1.563 44.645 0.302 0.056 0.644 0.007 -15.528 

0.9 -20.674 4.353 1.704 47.406 0.308 0.032 0.455 0.007 -10.334 

0.9375 -17.541 6.356 2.092 50.125 0.332 -0.005 0.196 0.007 -4.043 

0.975 -13.727 6.652 2.146 51.985 0.326 -0.011 0.143 0.007 -2.409 

1 0.000 -20.499 -4.266 45.276 -0.234 0.542 3.407 0.017 0.000 
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Table 7: Propeller 3, computed characteristics 

𝑟/𝑅 𝛤(𝑟) 𝑢𝑎
∗  𝑢𝑡

∗ 𝑉∗ 𝛽𝑖 𝛼 𝐶𝐿 𝐶𝐷𝑣 𝛤2(𝑟) 

(ft) (ft2/s) (ft/s) (ft/s) (ft/s) (rad) (rad) (-) (-) (ft2/s) 

0.2 -19.939 -54.137 -40.618 53.910 0.959 0.051 0.568 0.006 -28.314 

0.25 -24.866 13.151 15.350 35.892 0.701 0.204 1.536 0.007 -54.796 

0.3 -29.543 4.688 8.675 27.431 0.565 0.250 1.831 0.007 -53.128 

0.35 -33.937 -0.171 5.047 24.055 0.421 0.317 2.259 0.007 -60.645 

0.4 -38.055 1.218 5.236 27.000 0.428 0.244 1.806 0.007 -56.949 

0.45 -41.790 3.289 5.590 30.388 0.453 0.163 1.306 0.006 -48.104 

0.5 -45.033 3.724 5.156 32.365 0.438 0.129 1.094 0.006 -44.223 

0.55 -47.651 3.228 4.431 33.705 0.403 0.121 1.042 0.006 -44.856 

0.6 -49.488 3.229 3.988 35.528 0.382 0.106 0.936 0.006 -43.082 

0.65 -50.372 4.223 3.925 38.081 0.383 0.073 0.706 0.006 -35.002 

0.7 -50.129 5.474 3.945 40.809 0.389 0.038 0.459 0.006 -24.285 

0.75 -49.008 5.853 3.723 42.985 0.378 0.024 0.342 0.006 -18.729 

0.8 -47.035 5.150 3.251 44.552 0.347 0.032 0.368 0.006 -20.183 

0.85 -44.292 4.874 2.945 46.453 0.326 0.032 0.348 0.006 -18.937 

0.9 -38.892 7.385 3.336 49.938 0.356 -0.016 0.026 0.006 -1.344 

0.9375 -33.163 10.980 4.014 53.581 0.402 -0.075 -0.360 0.006 17.216 

0.975 -26.033 11.613 4.090 55.567 0.400 -0.084 -0.428 0.006 16.761 

1 0.000 -39.532 -7.612 50.283 -0.628 0.936 5.881 0.018 0.000 
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Section 6 – Conclusions 

The fundamental goal driving the motivation behind this thesis was to explore the 

similarities between performance estimates of propellers made by a program written in FORTRAN 

implementing a lifting line theory versus the published experimental data.  The propellers tested 

include three Wageningen B-Series propellers, the geometry and performance characteristics of 

which may be found in Kuiper’s 1992 publication The Wageningen Propeller Series.  Open water 

charts are published with non-dimensional thrust, torque, and efficiency curves for each propeller 

in the last chapter.  The lifting line theory program over predicts the thrust and torque, and some 

measures were taken to identify the location of the error.  In particular, extra attention was paid to 

the various subroutines used to discretize the blade, compute the sectional circulation, calculate 

Fourier series coefficients, etc.  Though numerous unnoticed errors were found and corrected, no 

satisfying solution was obtained which sufficiently improves the program.  It is suspected that 

these errors are associated with the application of Glauert’s solution (1947) for 2-D foils to the 

rotating marine propeller. 

As previously mentioned, numerous other lifting line codes have been developed to analyze 

the performance characteristics of a propeller given its associated geometrical data.  Two examples 

of these include the much-tested open-source OPENPROP which utilizes MATLAB (Epps, 2010) and 

a Master’s thesis written by S. R. Kesler at the University of Utah.  OPENPROP is known to produce 

reliable solutions which agree well with experimental data and is based on a Vortex Lattice 

formulation of lifting line theory.  This is similar to planar lifting line theory, as implemented in 

this thesis, except the vortex system is assumed to be generated by a sequence of horseshoe 

elements rather than free vortex elements.  This new approach to solving for the induced velocities 

could produce different results but likely will not remedy the bound circulation distribution errors.   
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Kesler (2014) wrote a lifting line code and conducted an experiment on a propeller in which 

he measured the thrust at various speeds.  The results for produced thrust ranged from 36% in error 

to 195%, and the causes were identified as non-uniform propeller inflow, flow separation, and 

fluid compressibility.  These errors are certainly significant considering the experimental setup 

and operation with a wooden airplane propeller, but none of these address the issue of unreasonably 

high thrust predicted with only the consideration of the bound circulation distribution. 

OPENPROP utilizes an iterative optimization-based solution for finding the radial circulation 

distribution based on a number of parameters which are to be optimized, and Kesler develops a 

system of equations to be solved based on Prandtl’s original formulation.  It is possible that the 

error experienced with the subroutine implementing Glauert’s solution is related to the assumption 

that the blade span is much larger than the chord length, which is certainly not true for marine 

propellers.  Marine propellers have very low aspect ratios and significant tip vortices at high rates 

of revolution causing the pressure to equalize on the face and back of the blade very near the tip.  

This is the physical principle that motivates driving the sectional circulation to zero at 𝑟/𝑅 = 1.0. 
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Section 7 – Future Work 

Several options may be considered for continuing to develop the program.  Some 

comparison techniques may be incorporated to evaluate the efficiencies or torque requirements of 

more than one propeller.  This could be valuable so as to reduce the time required for a user to 

select a propeller when performing an iterative analysis on different propeller characteristics.  

Also, the cavitation check in the perturbation velocity subroutines could be completed with the 

incorporation of the cavitation number.  This would provide insight regarding the range of 

permissible operating conditions, efficiency, and noise produced. 

Other further developments should certainly include a continuation of the literature review 

to determine why Glauert’s solution over predicts the thrust and torque.  As discussed in the 

Results section of this report the thrust and torque predictions based solely on the radial circulation 

distribution are too high to conclude that the method is reliable.  Therefore, more investigation 

should be performed either to discover what assumptions are invalid with the current method of 

implementation or to find a new technique for computing the sectional bound vorticity and its 

effects on the local velocity distribution. 
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Appendices 

Appendix A: Program Instructions 

After the source code for the program liftline is compiled, an executable file can be created 

which performs the calculations.  The computations performed assume that the user has input data 

for the propeller diameter and speed of advance in English units.  This is because standard values 

for the density and viscosity of seawater have been used.  This could easily be adapted for metric 

units, if desired. 

Appendix B: Sample Input File contains a sample input file demonstrating the required 

format.  The number of decimal places on each number are irrelevant with the exception of the 

number of blades 𝑍 and the number of blade sections 𝑁𝑠 which must be integers, i.e. they have no 

decimal.  The program will display an error if the input file is improperly formatted.  This requires 

that the quantity 𝑁𝑠 (in sample file, 𝑁𝑠 = 18) match the number of sections given.  Otherwise, 

once again, an error message will display.  In addition, the file name must be titled input and have 

a .txt extension. 

The program can be executed once the input file, input.txt, has been transferred to the same 

folder in which the program is located.  The program searches the current folder for the presence 

of the input file. 

A logical flowchart is given for the user’s convenience.  The intent is to clarify the 

progression of the code so that it can be more easily understood by the unfamiliar user.   
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Program liftline 

Subroutine readinfo 
Dimensionalize data for computation 

Compute 𝛼 

input.txt 
Input blade section properties 

and operating conditions 

Subroutine glauert 
Compute 𝛤(𝑟) 

Subroutine thickness 
Subroutine pressure 

Compute 𝑢 𝑈⁄  and 𝐶𝑃 

Cavitation? 

Print indication 

Subroutine transforms 
Compute �̃� and 𝛤(�̃�) 

Subroutine totindvel 
Compute 𝑉∗ and new 𝛼 

Subroutine glauert 
Recompute 𝛤(𝑟) with new 𝛼 

Subroutine ittc 
Compute 𝐶𝐷𝑣 

Subroutine transforms 
Recompute �̃� and 𝛤(�̃�) 

Compute 𝑇 and 𝑄 

Write output as 

output.txt 
End program 

liftline 

Yes No 

Iteration ≤ 3? 

No 

Yes 
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Appendix B: Sample Input File 

Below is the geometry and operating conditions used for Propeller 1, a B4-70 propeller.  

This demonstrates the appropriate formatting required for the program to know where each piece 

of information is going to be located when it is read.  Note that sections 𝑟/𝑅 = 0.25, 0.35, 0.45, 

0.55, 0.65, 0.75, 0.85, and 0.9375 resulted from interpolating the sections defined by the equations 

given for the geometry, and section 𝑟/𝑅 = 1.0 has linear dimensions that are set to ~zero. 

 

5.330  ft propeller diameter 

4  number of blades 

183.0  RPM 

20.0  ft/s advance velocity 

21  chordwise discretization 

18  number of blade sections 

r/R  chord/rad thick/chord camber/chord pitch/diam 

0.2  0.56000000 0.130714286 0.02222143 1.150800 

0.25  0.60239375 0.114856317 0.02263340 1.196650 

0.3  0.64120000 0.101060512 0.02314286 1.241800 

0.35  0.67641875 0.089326870 0.02374979 1.286250 

0.4  0.70805000 0.079655392 0.02445421 1.330000 

0.45  0.74382500 0.071050000 0.02508000 1.364738 

0.5  0.75705000 0.063404002 0.02529820 1.388800 

0.55  0.77402500 0.056581000 0.02499600 1.400000 

0.6  0.78505000 0.050442647 0.02406114 1.400000 

0.65  0.78876900 0.044838000 0.02237900 1.400000 

0.7  0.78645000 0.039671944 0.01983597 1.400000 

0.75  0.77371900 0.034920000 0.01742300 1.400000 

0.8  0.74620000 0.030554811 0.01527741 1.400000 

0.85  0.70958333 0.026367991 0.01318400 1.400000 

0.9  0.62930000 0.022882568 0.01144128 1.400000 

0.9375  0.54043125 0.020728793 0.01036440 1.400000 

0.975  0.42700000 0.018969555 0.00948478 1.400000 

1.0  0.00000001 0.016000000 0.00000001 1.400000 
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Appendix C: Open Water Diagrams Used 

 

Figure 12: B4-70 open water diagram (Kuiper, 1992) 

  



42 

 

Figure 13: B4-55 open water diagram 
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Figure 14: B3-65 open water diagram 
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