
University of New Orleans University of New Orleans

ScholarWorks@UNO ScholarWorks@UNO

University of New Orleans Theses and
Dissertations Dissertations and Theses

Spring 5-13-2016

A study of three paradigms for storing geospatial data: A study of three paradigms for storing geospatial data:

distributed-cloud model, relational database, and indexed flat file distributed-cloud model, relational database, and indexed flat file

Matthew A. Toups
University of New Orleans, mtoups@cs.uno.edu

Follow this and additional works at: https://scholarworks.uno.edu/td

 Part of the Databases and Information Systems Commons, and the Data Storage Systems Commons

Recommended Citation Recommended Citation
Toups, Matthew A., "A study of three paradigms for storing geospatial data: distributed-cloud model,
relational database, and indexed flat file" (2016). University of New Orleans Theses and Dissertations.
2196.
https://scholarworks.uno.edu/td/2196

This Thesis is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with
permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright
and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-
holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the
work itself.

This Thesis has been accepted for inclusion in University of New Orleans Theses and Dissertations by an
authorized administrator of ScholarWorks@UNO. For more information, please contact scholarworks@uno.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of New Orleans

https://core.ac.uk/display/216845179?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.uno.edu/
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/etds
https://scholarworks.uno.edu/td?utm_source=scholarworks.uno.edu%2Ftd%2F2196&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=scholarworks.uno.edu%2Ftd%2F2196&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/261?utm_source=scholarworks.uno.edu%2Ftd%2F2196&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uno.edu/td/2196?utm_source=scholarworks.uno.edu%2Ftd%2F2196&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uno.edu

A study of three paradigms for storing geospatial data:
distributed-cloud model, relational database, and indexed flat file

A Thesis

Submitted to the Graduate Faculty of the
University of New Orleans
in partial fulfillment of the

requirements of the degree of

Master of Science
in

Computer Science

by
Matthew Toups

B.S. Carnegie Mellon University, 2008
May 2016

Acknowledgments

I must express my deep gratitude to Dr. Elias Ioup and Dr. Mahdi Abdelguerfi who not only
supported me during this work, but without whom my studies in this program would not be pos-
sible. I additionally thank Dr. Shengru Tu and Dr. Md Tamjidul Hoque for their service on my
thesis committee.

Finally, I thank my mother, Merry Toups, for her support throughout.

Matthew Toups

ii

Contents
List of Figures... v

List of Tables... v

Abstract... vi

1 Introduction .. 1

2 Background... 2
2.1 Open Geospatial Consortium data model and services... 2
2.2 Spatial data in a Relational database... 3

2.2.1 PostgreSQL... 3
2.2.2 PostGIS... 4

2.3 Spatial data in an indexed flat file ... 4
2.3.1 Vector Cluster History .. 4
2.3.2 Vector Cluster Format... 6
2.3.3 GeoPackage .. 6

2.4 Spatial data in a distributed-cloud key-value store ... 6
2.4.1 Distributed computing framework: Hadoop... 7
2.4.2 Key-value store: Accumulo.. 8
2.4.3 Spatiotemporal index: GeoMesa .. 8
2.4.4 Other approaches to geospatial computing on Hadoop.................................... 9

2.5 The OpenStreetMap dataset .. 9
2.6 Privacy and Security in geospatial data... 10

3 Methodology ... 11
3.1 Configuration and deployment of Geospatial data services.. 11

3.1.1 Vector Cluster ... 11
3.1.2 GeoMesa/Accumulo/Hadoop platform .. 11
3.1.3 PostgreSQL/PostGIS server ... 12

3.2 Building data stores... 13
3.2.1 Generating a Vector Cluster file ... 13
3.2.2 Ingestion into GeoMesa.. 13
3.2.3 Insertion into PostgreSQL .. 14

3.3 Early Experiments... 15
3.4 Refined experimental design... 16
3.5 Measurements ... 17
3.6 Simulating tile server workload using randomly chosen bounding boxes.................... 17

3.6.1 Within contiguous North America (all-layer tests) .. 18
3.6.2 Within feature-dense areas (single-layer tests)... 19

3.7 Testing with multithreading (all-layer tests) ... 19
3.8 Hardware... 20

4 Results ... 21

iii

4.1 Generalized performance comparison .. 21
4.2 Which parameters impact query performance .. 21

4.2.1 Size of area to be queried ... 22
4.2.2 Number of objects returned .. 24

4.3 Parallelism... 27

5 Conclusions ... 30
5.1 Implications for cloud-based geospatial data infrastructure ... 31
5.2 When is a problem a “big data” problem? .. 32
5.3 Future work ... 33

6 References ... 34

7 Vita .. 37

iv

List of Figures

1 Early testing apparatus . 16
2 Refined testing apparatus . 17
3 Example of building a tile from queries of many layers 18
4 Randomly generated bounding boxes across continental North America 19
5 Randomly generated bounding boxes in and around San Jose, California 20
6 GeoMesa: query times for varying size bboxes (San Jose highway layer) 23
7 PostGIS: query times for varying size bboxes (San Jose highway layer) 23
8 Vector Cluster: query times for varying size bboxes (San Jose highway layer) . . . 24
9 GeoMesa: query times for varying object densities (San Jose highway layer) 25
10 PostGIS: query times for varying object densities (San Jose highway layer) 25
11 Vector Cluster: query times for varying object densities (San Jose highway layer) . 26
12 All 3 services, compared . 26
13 Vector Cluster threading results histogram (all layers) 28
14 PostGIS threading results histogram (all layers) 28
15 GeoMesa threading results histogram (all layers) 29

List of Tables

1 Accumulo’s key/value structure[15] . 8
2 Software versions used for cluster infrastructure 12
3 Service distribution across the available hardware nodes 12
4 SimpleFeatureType schema used in GeoMesa . 14
5 Experimental hardware . 21
6 Overall performance comparison: North America bboxes, full tile (all layers), 7

threads . 21
7 Summary of storage backends and their properties 30
8 Summary of storage backends and their advantages/disadvantages 30

v

Abstract
Geographic Information Systems (GIS) and related applications of geospatial data were once a
small software niche; today nearly all Internet and mobile users utilize some sort of mapping
or location-aware software. This widespread use reaches beyond mere consumption of geodata;
projects like OpenStreetMap (OSM) represent a new source of geodata production, sometimes
dubbed “Volunteered Geographic Information.” The volume of geodata produced and the user
demand for geodata will surely continue to grow, so the storage and query techniques for geospatial
data must evolve accordingly.

This thesis compares three paradigms for systems that manage vector data. Over the past few
decades these methodologies have fallen in and out of favor. Today, some are considered new
and experimental (distributed), others nearly forgotten (flat file), and others are the workhorse of
present-day GIS (relational database). Each is well-suited to some use cases, and poorly-suited to
others. This thesis investigates exemplars of each paradigm.

Keywords:

geospatial index, spatial database, OpenStreetMap, Accumulo, GeoMesa, PostGIS

vi

1 Introduction
The reach and importance of Geographic Information Systems (GIS) have grown since the 1980s,
from a niche software market for a few groups of professionals, to a widely-used technology
present on almost any Internet-connected computer or mobile device. Access to the technology
for both creating and consuming GIS data and related content has made these systems and the data
that they process a part of daily life.

One way that both the creation of use of geospatial data has changed has been the advent and
growth of Volunteered Geographic Information (VGI)[18]. The largest and best-known example of
this is the OpenStreetMap (OSM) dataset, which is both generated by and available to the public,
and is used as raw data for these experiments.

The work presented here will consider the data that powers GIS, in particular, vector data.
What this data is, how it is structured, and three fundamentally different ways of processing it will
be detailed in Section 2. These methods, or paradigms, span a wide range of topics in computing.
The simplest is the flat file, indexed for spatial searches but stored simply on a single filesystem
and accessed using a simple API. The most complex (and newest) is the distributed-cloud key-
value store, built atop many levels of software platforms and a possibly large amount of computing
hardware. Somewhere in between these, and a longtime player in geospatial computing, is the
relational database, a powerful tool for managing many types of data. One exemplar of each type
is selected and described; brief information on other forms not tested here is also provided.

Section 3 details the process used to deploy these three systems, and how testing was performed
in the early part of this investigation. Based on lessons from the initial tests, a more rigorous
experimental design is presented, along with three different types of measurements to apply to
each of the three exemplar systems.

Section 4 presents the results of these tests, from a broad generalized comparison of the three
systems, to more specific questions about what types of queries yield what results, and how they
behave under a simulated load of parallel requests.

Finally, Section 5 summarizes the advantages and disadvantages of each system, relates these
to their respective design choices and philosophies, and comments on future directions for work
on this topic.

This thesis compares three distinct paradigms for systems that manage vector data, in particular
those used in common web-based mapping services. Over the past few decades, as GIS software
has evolved, these methodologies have fallen in and out of favor. Today some are considered new
and experimental (distributed), others nearly forgotten (flat file), and yet others are the (possibly
under-appreciated) workhorse of present-day GIS (relational database). Each of these is well-
suited to some use cases, and poorly-suited to others. This thesis investigates that suitability.

1

2 Background
This thesis is concerned with vector data, often contrasted with raster (or bitmap) data. Raster
data typically (but not necessarily) consists of a 2-dimensional image suitable for human viewing.
Vector data is not an image, but a geometric representation of a spatial feature; the most common
examples of geometric primitives would be a point, a line, and a polygon. Vector data requires
less space to store than raster data, but often requires more processing in order to be used in a GIS
application. [32, pp. 35,193]

Uses of this data include visualizing in a desktop GIS application, display in a web-based
application, or more complex analysis of geospatial data such as routing. As GIS applications
become increasingly web-based, vector data management has followed. The flat files of vector data
used in desktop GIS are typically replaced by relational databases in web applications. According
to Sample and Ioup,

There are two primary methods of storing vector data for tiling: database storage
and file system storage. Database storage of vector data is more common than file
storage when the data is to be retrieved using geospatial queries. File storage is more
commonly used for archival and distribution of vector data as fixed data sets. [32, p.
196]

The newer distributed-cloud key-value stores introduced in recent years1 could also be considered
a type of “database” storage within that dichotomy, but since they introduce many new advantages
and disadvantages, the distributed-cloud model will be considered a distinct third paradigm here.

The authors go on to describe a file format which, perhaps counter-intuitively, achieves some of
the index and query advantages of a database. This idea would become the Vector Cluster format,
detailed in Section 2.3.

Prior to that, in the following two sub-sections, the OGC data model and a common implemen-
tation of it, PostGIS, will be described.

Later in this section, the recently popular distributed-cloud approaches will be described, with
a focus on GeoMesa. Then, more information is presented on the OSM data set, and finally the
growing need for privacy and security features in geospatial data storage systems.

2.1 Open Geospatial Consortium data model and services
Much recent work in geospatial computing utilizes some part of the standards defined by the Open
Geospatial Consortium (OGC), from basic data models and types (such as Simple Features) to
file formats/markup languages (such as KML2) to widely-used publishing services (such as WMS,
WMTS, WFS, WPS3) and others.

The OGC defines open standards for data and services to ensure “geospatial interoperability”.
With this goal in mind, the OGC standards organization began as a collaboration of government,

1At the time of [32]’s publication in 2010, new distributed-cloud frameworks did yet not support geospatial data,
so that work only addresses Hadoop as an ill-suited platform for processing raster tiles, not vector data; that would be
made possible by the advent of GeoMesa and similar systems in later years.

2KML stands for Keyhole Markup Language, popularized by Google Earth, a software package purchased by
Google in 2004 and subsequently distributed at no charge on the Internet.

3These each stand for Web {Map, Map Tile, Feature, Processing} Service.

2

academic, and private-sector members of the GIS community in the early 1990s. Much of the
effort’s origins can be traced farther back to the GRASS GIS community which grew around the
seminal GRASS (Geographic Resources Analysis Support System) software suite created by the
U.S. Army Corps of Engineers in the early 1980s.[8]

The OGC standard of interest in this work is the Simple Feature, a model for the storage and
access of geographic information. [7] This industry standard went on to become an international
standard: ISO 19125. [23] The standard outlines a model for storing geometries, attributes, and
spatial reference systems, specifying names and types for data. Both GeoMesa and PostGIS im-
plement this standard. Vector Cluster does not.

Software described herein uses the Java implementation of the SimpleFeature4 and other
standards from OGC’s Geotools version 11.2. OGC standards also provide standardized abstrac-
tions for common access methods and types, such as DataStore, FeatureStore, and Query.

2.2 Spatial data in a Relational database
Before considering two radically diverging paradigms for geospatial data storage (flat files and
distributed key-value cluster), it is worth examining what could be considered a middle ground:
the relational database (or RDBMS). This is certainly the most widely used of the three methods
considered, and therefore is well studied.

Two components together make up the RDBMS geodata software which will be tested: Post-
greSQL, a very well known and mature general-purpose RDBMS; and PostGIS, an extension for
geospatial data.

Other relational databases support spatial indexes and queries. Oracle has produced a spatial
option for its relational database since the 1990s, known as “Spatial Data Option”, then “Oracle
Spatial”, and most recently “Oracle Spatial and Graph”. More recently, MySQL added extensions
for spatial data, following the OGC specitications, but this is not a mature or widely-used system.
Only PostgreSQL/PostGIS will be tested here.

2.2.1 PostgreSQL

PostgreSQL is used here as exemplar of a traditional relational database. Created in 1986 by
Stonebraker at the University of California at Berkeley (UCB), PostgreSQL is the successor to
Ingres[35] (implemented in 1975-1977, also at UCB) and has been widely influential in the design
of relational databases.

PostgreSQL has traditionally been used as a single-node database server, serving requests from
one or many clients. These clients may be software running on the same host, or connecting from
other systems over a network.

PostgreSQL does have some support for clustering, but this is usually in the form of sim-
ple replication for the purposes of load balancing and high availability.[10] Historically the Post-
greSQL project policy was to avoid supporting replication in the core of the database, and instead
to encourage third parties to develop competing approaches as add-ons. But starting in 2008, the
PostgreSQL core team did introduce simple replication support into the core project. [24]

4Referred to in Java as org.opengis.feature.simple.SimpleFeature

3

2.2.2 PostGIS

PostGIS is an extension to PostgreSQL which adds support for geospatial data and analysis.[6] It
is an open-source project under the Open Source Geospatial Foundation [36] (OSGeo) and inde-
pendent from the PostgreSQL project. Despite yet another similar name, OSGeo is distinct and
unrelated to OGC and OSM. However each of these organizations contribute to the same ecosys-
tem of Free Open Source Software for Geospatial (FOSS4G), which is also the name of an annual
conference organized by OSGeo.[28]

PostGIS uses the standard OGC Simple Features for GIS objects5 as well as functions that op-
erate over them, and OGC-compliant metadata on Spatial Reference Systems (SRS). The PostGIS
spatial index is an R-tree over GiST (Generalized Search Tree). [6]

2.3 Spatial data in an indexed flat file
The oldest method of storing geospatial data is the simple “flat” file. In this context, a flat file is
not necessarily devoid of any structure, but is distinguished by the following properties:

• consists of a single file (can be easily transferred)

• accessible through standard filesystem operations (and stored on virtually any device)

• does not require a server or other software devoted solely to handling requests

Strong proponents of relational databases may consider the flat file to be an obsolete idea,
but some recently created geospatial data file types challenge that notion: Vector Cluster, and
GeoPackage. They both push the boundaries of the notion “flat” by utilizing features from rela-
tional databases (especially spatial indexes), but still meet the three criteria given above. Perhaps
geospatial data has come full circle and returned to consider the flat file again.

The newer format, GeoPackage, will be described briefly in Section 2.3.3; Vector Cluster will
be examined with more detail, and will be used for the experiments in this work.

2.3.1 Vector Cluster History

Vector Cluster is a geospatial data storage format created by the Geospatial Computing Section
at the United States Naval Research Laboratory (NRL). NRL’s products require large amounts of
vector data with fast access times in order to support real-time on-the-fly generation of WMS tiles
based on many data sources. [22]

Prior to the creation of Vector Cluster, many government projects stored vector data in a for-
mat called Vector Product Format (VPF). This format was developed by the National Geospatial-
intelligence Agency (NGA) (previously known as National Imagery and Mapping Agency, and
prior to that known as Defense Mapping Agency) in the late 1980s, and was later adopted into the
Digital Geographic Exchange Standard (DIGEST) standard.[4] [3]

NRL researchers discovered that VPF was an unsuitable format for the modern, dynamic GIS
system they were building. In order to render raster tiles on-demand from vector data, random-
access queries must be practical. VPF had no support for geospatial queries and indices, a major

5Technically PostGIS implements a superset of the OGC Simple Features; PostGIS developers extended the model
to support 3d and 4d coordinates.[6]

4

limitation. This means that, for example, in order to find objects that match a certain bounding
box, every object must be scanned and compared to the bounding box. So any search required a
full scan, greatly limiting the scalability of any GIS service.

At the time that NRL hit this limitation in the late 2000s, they also found the query performance
for geospatial data in relational databases to be poor. More importantly, NRL needed a file format
without the additional requirements of an RDBMS.

Vector Cluster was born from this need, and derives its name from another NRL product, the
Tile Cluster6. A Vector Cluster consists of a single flat file with a format further detailed in Section
2.3.2.

The Vector Cluster format is notable for its simplicity, from which it derives much of its advan-
tages. The format is also much more limited in what it supports, compared to other data storage
approaches, as it was tailored to solve a narrowly defined problem.

NRL Geospatial Computing needed a way for clients to query a large set of vector data to dy-
namically generate maps on demand. These clients may not be strongly connected to a network,
for example those in underwater craft. The client programs may also be running on smaller sys-
tems, such as those running the Android mobile operating system. Vector Cluster supports these
use cases.

Vector Cluster does not support many other features that would be expected in something like
a database. Vector Clusters can not edit or delete records, it is essentially a read-only format7.
Updates to map data are performed periodically by regenerating the vector cluster entirely. One
example given is the Digital Nautical Chart (DNC) data, from which a new Vector Cluster is
generated every two weeks. [22]

Vector Cluster has its own complete API for vector geometries, features, queries, and more. It
does not use any of OGC’s GeoAPI, but implements much of the functionality independently. One
difference is that OGC Simple Feature uses a fixed attribute schema, whereas NRL’s Feature type
can be schema-less. Other than that difference, much of the Vector Cluster API duplicates OGC’s
GeoAPI.

The proponents of Vector Cluster’s simple flat-file design argue that the guarantees commonly
provided by relational databases (atomicity, consistency, isolation, and durability) and related fea-
tures (locking, rollbacks) are not useful for geospatial vector data when generating map tiles. By
eliminating these features, the goal is to achieve a more efficiency for the more frequent use: read-
ing data using a spatial query.[32]

The Vector Cluster format is in production use in several government contexts. The public
Geospatial Computing Tile Server8 uses vector clusters as its vector data source when rendering
tiles. [22]

6The tile cluster is also a flat-file approach, but for storing raster tile data. It is designed to work around filesystem
limitations with regard to many small files.

7Robert Owens of NRL says that it would be possible to add edit/delete support to the Vector Cluster library, but
this has never been implemented.

8http://geoint.nrlssc.navy.mil/

5

http://geoint.nrlssc.navy.mil/

2.3.2 Vector Cluster Format

While a Vector Cluster is a single file, it is well-structured and indexed for efficient access.9 A
Vector Cluster can contain one or many feature layers, which can be found quickly by way of a B+
Tree index on the layers.

Each layer has its own header and is independently indexed. The spatial index is a 2-dimensional
R* Tree. Accordingly, nodes in the tree are ordered by Minimum Bounding Rectangle (MBR). The
Vector Cluster can support attributes with a schema, or use a schema-less key/value pair system.
[22]

2.3.3 GeoPackage

GeoPackage (defined by OGC in 2014) is a newer file format with very similar goals to Vector
Cluster. It aims to provide a single file suitable for disconnected mobile devices, and as an inter-
change format in a heterogenous software environment. GeoPackage is “serverless”, with clients
accessing the file directly (using a software library). And like Vector Cluster, it also uses an R Tree
as a spatial index. [27]

One notable difference is that, despite the simple single-file, serverless model, GeoPackage
does consider itself an RDBMS with the transactional guarantees that typically carries:

all changes to data in the container are Atomic, Consistent, Isolated, and Durable
(ACID) despite program crashes, operating system crashes, and power failures. [27]

These are the same guarantees eschewed by the Vector Cluster designers.
It may seem surprising at first: a simple file format which also promises database-level guar-

antees and accessibility. It turns out GeoPackage is based on a non-geospatial file format which
provides both of these things: SQLite. It may not be as conspicuous as PostgreSQL, but SQLite
is actually used more broadly. Its creators make a convincing argument that it is “Most Widely
Deployed and Used Database Engine”, due to its common use as a configuration file format in
widely used10 software such as the browsers Firefox, Chrome and Safari and even the operating
systems Windows 10, Mac OS, and Android.[34]

This new file format is quite promising and is being widely adopted, from the open-source
library GDAL, to commercial ArcGIS suite from Esri, to government software from the National
Geospatial-Intelligence Agency (NGA). GeoPackage supports both vector and raster data.

Flat-file purists may not be enamored with GeoPackage due to its use of SQLite, but it delivers
the desired flat-file features: single file, serverless, indexed; and unlike Vector Cluster, GeoPackage
is cross-platform compatible with many types of GIS software. The performance of GeoPackage
is not yet well studied, however, and will not be tested in this work.

2.4 Spatial data in a distributed-cloud key-value store
The advent and publication of the Google File System [16] (GFS) in 2003 and the related MapRe-
duce computation model[9] in 2004 has inspired the development of distributed systems and large

9Arguably the index means the file is no longer “flat” — but it is still far simpler than the other methods studied,
so relatively speaking, “flat” (as the term is used here) would still apply.

10This remarkably wide use is made possible because SQLite is dedicated to the public domain and can be embedded
in any program.

6

scale computation frameworks which are now used widely. The most prominent project inspired by
those publications is Hadoop [17], an open-source software framework under the Apache Software
Foundation, with major contributions from engineers at Yahoo Inc.11 and other large web-based
organizations. Although research papers describing the software have been released to the public,
GFS and MapReduce12 are proprietary software not available outside of Google13. Hadoop and
related projects are open-source and freely available, so despite being a later arrival, they see more
use in both research and production.

Many “big data” oriented efforts utilize the Hadoop framework. Many software systems have
been built atop the Hadoop framework, most of which will not be named here. Two prominent
examples are Hive, a data warehouse system, and HBase, a distributed key-value store. HBase has
been used in some geospatial computing work, but will not be used here.

The Hadoop-based datastore used in this work is Accumulo, which is extended for spatio-
temporal data by GeoMesa. These will each be detailed in this section. First, the layer which lies
under these systems, Hadoop, will be described.

2.4.1 Distributed computing framework: Hadoop

At it’s simplest, Hadoop can be broken down into two key components: HDFS and YARN (a
MapReduce implementation).

HDFS is the Hadoop Filesystem, a distributed filesystem over many nodes, which provides
fault tolerance, parallel access and load balancing. HDFS is closely paired with the MapReduce
framework (the 2nd generation of which is called YARN). This tight relationship between dis-
tributed data storage and distributed computational power lies at the core of Hadoop’s large-scale
data analytics design.

When building distributed systems at a large enough scale, hardware failures become a regular
occurrence and must be accounted for in the system design. The GFS design (and thus Hadoop)
have built-in redundancy as well as the ability to add and remove nodes dynamically.

While it is possible for HDFS and YARN to run on a single computer, doing so negates any
benefits the distributed-computing framework offers and is only done for testing purposes. At their
core, HDFS and YARN are designed to run on a large number of (possibly low-cost, commodity)
computers, referred to as “nodes”. Some of these nodes include:

• Name Nodes, which manage and provide HDFS filesystem metadata

• Data Nodes, which store HDFS data blocks

• Yet Another Resource Negotiator (YARN): tracks resources and orchestrates work (such as
MapReduce jobs) across many nodes

• Zookeeper (similar to the Paxos algorithm): manages configuration, naming, and provides
synchronization

11 Yahoo and Google are both Internet advertising firms based in California.
12Originally MapReduce referred to Google’s proprietary implementation, but now the term is used generically to

refer to computation using that model.
13See footnote 11.

7

2.4.2 Key-value store: Accumulo

Accumulo is a distributed key-value datastore based on the BigTable design from Google [33]. As
with GFS and MapReduce mentioned above, the publication of the BigTable paper [5] describes
proprietary software available only within Google, but has spurred new developments in open
source software, especially those under the Apache Software Foundation.

An Apache project since 2011, Accumulo splits tables up into “tablets” of contiguous, sorted
rows which are stored in HDFS, which provides data redundancy and high throughput I/O. [33]
Accumulo also extends the BigTable design in two significant ways:

• Column visibility: this optional value restricts access to each individual cell based on the
authentication tokens specified. Using this value, Accumulo can offer fine-grained data se-
curity/privacy capabilities with this cell-level security label.[14]

• Iterators: similar to reducers in MapReduce frameworks, iterators allow for server-side pro-
cessing. They are typically used to filter and transform data, possibly chained or in parallel
across many tablet servers [33] [15]

Accumulo’s multidimensional key includes the visibility feature for security, as well as various
other fields. Table 1 shows this unique key format, which offers notable advantages. In addition
to the fine-grained access-controls, the timestamp value in the key allows for temporal filtering on
the server side using iterators.

Key
Value

Row ID Column Family Column Qualifier Column Visibility Timestamp

Table 1: Accumulo’s key/value structure[15]

Unlike searches on a relational database, which can utilize the index from multiple columns to
expedite results, in a “NoSQL”14 key/value store such as Accumulo, only one index is built on the
lexicographically-ordered records.

2.4.3 Spatiotemporal index: GeoMesa

GeoMesa enables indexing and querying of spatiotemporal data on Accumulo, similar to the rela-
tionship between PostGIS and PostgreSQL. Like PostGIS, GeoMesa is not a standalone piece of
software, but a library added-on to Accumulo15 to enable support for spatiotemporal data.

GeoMesa uses and extends the OGC SimpleFeature data model and supports spatiotemporal
indexing (within Accumulo’s single key) by interleaving a record’s geometry with its associated
datetime string. This index is then split up between the three components of Accumulo’s key
structure: Row ID, Column Family, and Column Qualifier (as shown in Table 1). [15]

14This term originally referred to non-relational databases, but more recently has been associated with the phrase
“not only SQL”.

15GeoMesa is designed to work on other key/value stores such as HBase. But Accumulo is best supported; support
for HBase is “rather new” and incomplete (as of October 2015), according to author Jim Hughes.[20]

8

2.4.4 Other approaches to geospatial computing on Hadoop

GeoMesa is but one of many approaches to spatial data indexing on the Hadoop framework. Whit-
man et al. reviewed GeoMesa and other Hadoop-based spatial data approaches before proceeding
with implementing a Point Matrix Region (PMR) quadtree index with support for range and k
nearest node (k-NN) spatial queries. GeoMesa does not support k-NN queries. Whitman et al.’s
implementation does not use Accumulo to split and store data, but uses a MapReduce job to build
the quadtree. One advantage they claim is that a MapReduce job is not required for access, pro-
viding “efficient, random-access queries” because “neither a full table scan, nor any MapReduce
overhead is incurred when searching”.[39]

Hadoop-GIS/RESQUE [1] is built on Hive, a Hadoop-based package supporting SQL-like
queries on spatial data, as opposed to Accumulo’s NoSQL key/value approach. Hadoop-GIS was
motivated by medical imaging uses, supports range and self-join queries, and employs an R*-tree.

SpatialHadoop is built on Hadoop MapReduce, uses R+ tree indexing, and supports range,
k-NN, and more computational geometry operations. Unlike Whitman et al.’s approach, Spatial-
Hadoop does require a MapReduce job for each query. Eldawy and Mokbel’s work includes a
MapReduce extractor for OpenStreetMap data. [12]

2.5 The OpenStreetMap dataset
OpenStreetMap16 (OSM) is a notable project that collects, stores, and displays map data con-
tributed by users (“crowd-sourced”).[19] Founded in 2004 in the UK, OSM’s mission is to create
map data available to all under a Free and Open license, powered by free software and by a com-
munity of volunteer editors. It has grown into a complete and vibrant mapping platform with
global coverage and, in some locations, very rich features. Often considered a geographic ana-
log of Wikipedia, the Free Encyclopedia, OSM introduced a novel approach to the collection of
map data. Geospatial data collection was a domain that was previously limited to professional
surveyors. OSM, enabled by widely available an inexpensive GPS and computing equipment,
moved geodata collection into the hands of the public. Goodchild in 2007 dubbed this broader
phenomenon Volunteered Geographic Information (VGI).[18]

OpenStreetMap is not only unique in how it collects its crowd-sourced data, but also in the
infrastructure for storing and displaying the data. The OSM database and software stack were
designed by newcomers to the geospatial computing world who paid little attention to the decades-
long legacy of GIS. In fact, Haklay describes an outright rejection of this legacy:

OSM’s developers deliberately steered away from using existing standards for geo-
graphical information from standard bodies such as the Open Geospatial Consortium
(OGC) — for example, its WMS standard. They felt that most such tools and stan-
dards are hard to use and maintain [. . .] and a lack of adaptability of OGC-compliant
software packages to support wiki-style behavior. [19, pp. 14-15]

This break from the GIS past freed the OSM project to innovate with a completely free-form
database: there is no fixed schema of allowable attributes, any key/value pair (called “tags” in
OSM parlance) is valid. This schemaless design is similar to that of NoSQL storage, described in

16Despite the similar name, OpenStreetMap and the Open Geospatial Consortium are not related.

9

Section 2.4.2. OSM was not built with NoSQL in mind, however; this schemaless design predates
the rise of today’s NoSQL systems. In fact, OSM’s tag system is quite easily used in PostgreSQL
thanks to the Hstore data type[26]. The schemaless freeform “tagging” system was the perfect fit
for a project composed of many disparate volunteers, upon whom no fixed schema or strict rules
would be applied. OSM’s contributors and users may not necessarily share a common language or
culture, so they are not forced into a shared data schema either. OSM’s tagging conventions were
able to grow organically in ways that could not have been predicted by a fixed schema ahead of
time; in that way, this new way of creating geodata is paired with a new data model.

OSM also has no “layers” in the traditional GIS sense17. This also frees the OSM users from
a defined schema of layers. Yet in other ways, OSM’s stark break from the GIS legacy can be
disadvantageous: OSM uses “nodes”, “ways”, and “relations” which mostly duplicate the points,
lines and polygons of traditional GIS. It is more than a semantic difference, as a way can be either
a line or a polygon (“closed way”). OSM’s divergence from the past can make use of data in
traditional GIS software cumbersome.

While the Open Geospatial Consortium grew out of the longstanding government-academic-
corporate GIS community, OpenStreetMap finds its roots and inspiration elsewhere: in the Internet-
based movements for free software (perhaps most associated with the GNU project and the Linux
kernel) and free information (exemplified by Wikipedia)18.

OSM’s data is not only licensed in such a way to enable sharing and reuse; the project en-
courages use of the full dataset by producing daily complete copies of the worldwide dataset for
convenient download at the website http://planet.openstreetmap.org/. As of March
2016, the full dataset with current data is 48GB of bzip2-compressed XML. The full history is also
available, at 74GB of bzip2-compressed XML.

OSM’s database stores data in the WGS84 (EPSG 4326) spatial reference system, which is
what will be used throughout this work.

2.6 Privacy and Security in geospatial data
Recently Palmieri et. al. introduced the Spatial Bloom Filter (SBF)[29] which enables privacy-
preserving computation of location information. A common use of personal location information
is to determine if a user is in an area of interest to a service provider. Smartphone users would
sacrifice privacy by providing their exact location to service providers, and service providers do
not wish to provide their entire dataset to users. Palmieri et. al[29] provide two protocols for secure
multi-party computation using the SBF.

With this and other work, security and privacy concerns are increasingly being used in the
design and selection of geospatial data storage systems. GeoMesa, when used with Accumulo’s
fine-grained visibility key features, is the only example used here which addresses this need. Ei-
ther the old systems will need to adapt to the future demand for privacy and security features
in geospatial storage systems, or these systems will be replaced by those which do provide that
capability.

17OSM does have a “layer” tag, but this is only used to distinguish what objects should be considered above or
below other objects when rendered.

18It is interesting to note that Wikipedia was originally licensed under the GNU Free Documentation License
(GFDL) until 2009, when it adopted the Creative Commons Attribution-ShareAlike License (CC BY-SA). Open-
StreetMap was originally licensed under the CC BY-SA, but changed to the Open Database License (ODbL) in 2012.

10

http://planet.openstreetmap.org/

3 Methodology
The methodology described below developed over the course of investigating the behavior of
various geospatial data services. Early tests of Geomesa began by using it as a data store for
Geoserver, a software server from the OGC for viewing and editing geospatial data from a mul-
titude of sources. From there, GeoMesa support was added to NRL’s vector server by creating a
GeomesaFeatureProvider class. Measurements of this configuration were initially promising, but
did not yield useful results for reasons to be explained below.

Regardless, these early experiences are worth examining as they shaped what would become
the final experimental design. Problems with bottlenecks in irrelevant parts of the software stack
motivated the development of focused, specific tests which could eliminate extraneous bottlenecks
in order to test only the data store component. This experience will be detailed further in Section
3.3.

But prior any testing or measuring, the data store services themselves must be set up and
deployed. Section 3.1 details this process.

3.1 Configuration and deployment of Geospatial data services
Each of the three systems under consideration were configured in simple, standard configurations
similar or identical to those used by many common web-based tile services or GIS vector services.

3.1.1 Vector Cluster

This is by far the simplest data deployment process: copy a single file, to read via NRL’s Java
class, on the same system as the TestRunner. This is the typical use case for a vector cluster, which
has been designed to minimize requirements and maximize efficiency. These design efforts have
succeeded, making setup trivial, other than copying the large data file into place.

On the other hand, this ease in setup has a cost, in that essentially no public-available software
supports the Vector Cluster, so time is required to modify or write software to utilize the format.
The process of writing a class to support Vector Cluster surely took more time then setting up an
existing software package.

3.1.2 GeoMesa/Accumulo/Hadoop platform

On the other end of the complexity spectrum, by far the most involved and intricate configuration
process in preparing for this work was for GeoMesa. It is not a standalone piece of software,
but a Java library used by Accumulo, which in turn requires a Hadoop cluster. The three major
components used versions shown in Table 2.

Hadoop is the first component to put into place when building what will become the GeoMsea
platform. Cloudera’s distribution of Hadoop was used (denoted by the cdh in the version shown in
Table 2). This includes core components of Hadoop: Name Nodes, Data Nodes, YARN managers,
and Zookeeper nodes. See Section 2.4.1 for details on the functions of each of these components.

With a working Hadoop cluster up and running, Accumulo setup can proceed. This is a mat-
ter of building and deploying using standard documented processes, then adding proper Hadoop
addresses and credentials to the Accumulo configuration. With these credentials, Accumulo will

11

be able to access HDFS storage, which Accumulo depends on. With the software deployed and
configured, Accumulo processes can be launched and accessed.

Finally, unlike Hadoop and Accumulo, GeoMesa does not have its own java process, but is
merely a library for Accumulo to use. Once GeoMesa is built, the JAR file is deployed into
/opt/accumulo/lib/ext, thus adding Geospatial support to Accumulo’s distributed key/value
store.

Hadoop 2.0.0-cdh4.6.0
Zookeeper 3.4.5-cdh4.6.0
Accumulo 1.5.1
Geomesa 1.1.0-rc.2

Table 2: Software versions used for cluster infrastructure

Five servers is not a typical size for a production Hadoop system. Usually the benefits of
a cluster environment don’t outweigh overhead until a certain scale is reached, often involving
many servers. However this provides enough of a cluster to simulate the various roles played by
nodes in the cluster: zookeeper nodes, HDFS namenodes (primary/secondary), HDFS datanodes,
Accumulo tablet servers, Accumulo monitor node, Accumulo master node, Accumulo tracer node.
Some of these overlapped, their distribution is given in Table 3. Since each physical system has 8
CPU cores and 32GB RAM (more detail is shown in Table 5), running multiple services on each
is not expected to cause significant performance problems.

For historical reasons, these systems are numbered 03 through 07.

Service Function Server node
03 04 05 06 07

Hadoop

name node X
secondary name node X
data node X X X X X
YARN resource manager X
YARN node manager X X X X X

Zookeeper X X X

Accumulo

Master X
Monitor X
Garbage Collector X
tracer X
slaves X X X X X

Table 3: Service distribution across the available hardware nodes

3.1.3 PostgreSQL/PostGIS server

This project’s “traditional” single-node PostgreSQL system was set up on a single Dell R415 sys-
tem. Although PostgreSQL does have support for various replication and clustering add-ons, this

12

is not the typical case, so PostgreSQL systems set up that way will fall outside the scope of this
work.

This system runs PostgreSQL version 9.3 and PostGIS version 2.1, as provided by Ubuntu
version 14.04.

3.2 Building data stores
3.2.1 Generating a Vector Cluster file

The vector cluster file used for testing was provided by collaborators at NRL-SSC, and was built
with OpenStreetMap data from planet.openstreetmap.org. Since vector clusters are a write-once
read-many format, this process must be manually repeated in order to update the map data with
newer information.

After processing the planet.osm file, the resulting vector cluster OSM WORLD-0-0-0.vcluster
is 74GB. There are approximately 3 billion objects in OSM dataset.

3.2.2 Ingestion into GeoMesa

In order to make the comparison as unbiased as possible, the identical OpenStreetMap-derived
data set was used, by reading through the entire OSM WORLD vector cluster file and inserting each
object into GeoMesa.

The NRL layer scheme was preserved, in order to hold that consistent with the Vector Cluster
design19. There is a one to one mapping between layers in vcluster to tables in geomesa.

One difference between the way schemas work in GeoMesa and Vector Clusters must be ac-
counted for. The Vector Cluster file uses NRL’s feature type (referred to in Java as
mil.navy.nrlssc.commons.vectorData.api.features.Feature<Geometric>,
while GeoMesa uses the Open Geospatial Consortium’s feature type
(org.opengis.feature.Feature). The relevant difference here is that NRL-style features
can support variable numbers of attributes, while OGC-style features must have attributes defined
in the schema. When working with data from OpenStreetMap, highly variable attributes are a com-
mon situation, because of the free-form structure of OSM and due to variations in how millions of
users add their (“crowd-sourced”) data.

The solution to this disparity is to create an OGC schema with a single OSMAttributes
field, which can be a string of varying length. Then the NRL attributes are concatenated into to a
single string, with key/value pairs separated by ::: characters. The conversion is simple and only
happens during the data insertion, not during the critical path being tested in the next section. (The
full SimpleFeatureType schema, including “schema-less” OSMAttributes, is shown in Table
4.)

When looking at storage requirements, due to the way data is replicated in the HDFS storage
on which Accumulo and GeoMesa are built, the total disk space required is much higher. This is
normal and expected for a distributed, cloud-based cluster system like GeoMesa, and is another
(small) part of the higher cost associated.

19However, further testing revealed no significant performance change for individual queries when forgoing layers
and using a single large table

13

SimpleFeatureType Metadata key Value
SRS EPSG:4326
Name layerName
Attribute Type
Type String.class
geomesa index geometry Geometry.class
OSMAttributes String.class
Layer String.class
geomesa index start time Date.class
geomesa index end time Date.class

Table 4: SimpleFeatureType schema used in GeoMesa

3.2.3 Insertion into PostgreSQL

Since the programs to populate the data for both PostGIS and GeoMesa are both written in Java, the
schemas (and Java classes) used as our SimpleFeatureTypes are identical. Likewise, one PostGIS
layer (and thus one PostgreSQL table) is created for each layer in the Vector Cluster.

The main difference from the GeoMesa insert is that instead of writing a Java object to a
“FeatureStore”, the testing software needed to generate SQL statements to insert the data into
PostgreSQL. This is easily accomplished using the common JDBC API in Java.

Before inserting the data, it is necessary to create a database in PostgreSQL and then enable
PostGIS with the statement: CREATE EXTENSION postgis

In addition to the GiST R-tree index, PostgreSQL provides a module for the hstore data
type, which allows for schema-less key-value pairs with support for indexing and querying. This
is crucial for storing and searching OpenStreetMap tags in a PostGIS database, as the schemaless
key/values map perfectly onto the hstore type. Like PostGIS, hstore is not built-in to the standard
PostgreSQL types, so it must be loaded on each database with CREATE EXTENSION hstore;.

However, the tests performed in these experiments were limited to spatial queries, not attribute
queries, so while the hstore type was used when inserting OSM data, its features were not userful
or relevant to this work.

Once the groundwork is laid by loading the extensions above, the bulk insertion can commence.
The Java program InsertFromVectorClusterIntoPostgres makes a replica of the data
stored in the OSM WORLD Vector Cluster used in the experiment, by iterating through each feature
of the file and writing it to the database with a SQL INSERT statement.

After all rows of data are inserted, the GiST index is created with: CREATE INDEX [layer-
name idx] ON [layername] USING GIST (geom); for each feature layer. (While these
GIS-style layers are not generally used for OSM’s database, in order to maintain consistency with
the Vector Cluster, the same layers/tables will be used here.)

After the insertion and indexing is complete, it is advisable to perform a CLUSTER operation
to optimally reorder the data in the spatial index. However this step was not performed before the
measurements described here were made. The CLUSTER command takes considerable time to run
on large tables, but it does increase query performance somewhat.

The PostgreSQL DB for the OSM WORLD data ends up consuming around 79GB of disk space

14

on the database server. This is larger than the the 74GB Vector Cluster, so the various database
structures and indices add an overhead of around 7% compared to the simpler flat file.

3.3 Early Experiments
This effort began by working to adapt existing web-based GIS services to utilize a novel storage
service, GeoMesa. These services, which provide both raster tiles and vector data, traditionally
would use a relational database (for example, PostgreSQL) with geospatial-aware indexing (Post-
GIS). The goal was to measure how the same service behaved when the backing storage system
changed. In addition to testing against the new and highly complex GeoMesa cluster, a system
with nearly opposite design philosophy was also tested: NRL’s Vector Cluster format.

Once a working GeoMesa datastore was built, the first test was to use that datastore for tile
serving using OGC’s Geoserver (version 2.5.2), which can be modified to use GeoMesa backend.
This was useful to verify the validity of the data store, but Geoserver is a large complex Java
application which can be difficult to measure. A simpler visualization of the data was required to
proceed.

NRL’s vector server was a better system for testing, with a much simpler interface to the data
store. Once this server was adapted to use a GeoMesa backend, it proved stable and useful. Ini-
tially, GeoMesa introduced considerable latency and performance cost. But was that cost worth-
while above a certain scale?

To address that question, jmeter was used to benchmark under heavy load. The drive was to
answer these questions: at what scale does vector cluster “top out”? How much more scalability
does a cluster like GeoMesa provide?

Using jmeter and a randomly-generated list of query bounding boxes (using similar methods
as those described in Section 3.6), it quickly became clear that vector cluster performance was
excellent up to a certain level of load. But when the simultaneous request load went above a
certain level20, performance fell off dramatically.

This seemed like a promising result, identifying an inflection point in a curve appeared to be a
clear limit of scalability. However, upon further investigation, it turns out that the scalability limit
was not in the vector cluster, but in the Tomcat engine handling the HTTP/WMS queries. Another
bottleneck came into play before the component of interest was fully utilized.

This was an important lesson in testing and measuring complex multi-component services:
drawing meaningful conclusions requires focusing narrowly on the specific part of a system, and
eliminating other parts of the system as much as possible. Doubtless many researchers have ex-
perienced similar lessons with misleading results, but this experience bears repeating, and also
informs the subsequent decisions made in this research effort’s experimental design.

Tile servers are intricate collections of software engaged in a complex interaction with net-
works, buffers, caches, operating systems, hardware limitations, and much more. Figure 1 shows
the parts of the system which testing revealed to influence or interfere with our ability to measure
the back-end storage components: GeoMesa and Vector Cluster.

In order to make useful measurements of these systems and find real insights into geospatial
data storage practices, it is necessary to eliminate the bottlenecks in other unrelated parts of the

20Approximately 1024 threads, on the desktop computer used for testing at this early stage.

15

vectorservices
(Java servlet)Tomcat

WMS server components

jmeter

QGIS

many WMS requests

(timed)

WMS

ClusterFeatureProvider

GeoMesaFeatureProvider

vectorCluster
(java library)

GeoMesa
(java library)

Figure 1: Early testing apparatus

system. This consideration is what motivated the development of a test harness, described in
Section 3.4.

3.4 Refined experimental design
After adapting both NRL’s vector server and Open Source Geospatial Foundation’s Geoserver to
use GeoMesa, performance testing began, but it was soon discovered that the bottleneck being
measured was not the data back-end, but in the web-front end.

It was then decided to remove all other parts of the tile generation process and focus on isolating
and measuring only the query portion, the part of the process where the choice of geospatial storage
paradigm is felt.

A new testing harness was written in Java, with a TestRunner class, a QueryTest interface,
and three classes implementing QueryTest: VectorClusterTest, GeoMesaTest, and PostGISTest.
These classes each implement a standard query() method, such that each can be measured under
identical conditions.

Full tile rendering was simulated by querying for all features within a bounding box, for all
layers. This results in many queries (turns out to be a bad design decision for a tile service)...

A note on filesystem caching: the Linux kernel’s Virtual Filesystem (VFS) uses an in-memory
cache to hold frequently accessed data structures from the storage medium: disk pages, directory
entries, and inodes. [37] The page cache certainly plays a role in how any storage system performs,
as memory accesses are orders of magnitude faster than disk access. In the course of this inves-
tigation, tests were run under both “cold” and “warm” cache conditions (the “cold” cache being
simulated by using the familiar filesystem interface /proc/sys/vm/drop caches described
in [37]). As expected, the differences are dramatic. However the “cold” cache data was set aside
after considering that a busy tileserver (being simulated here) would only be under “cold cache”
conditions in extremely rare cases (after a reboot, for example). So the “warm cache” case ends up

16

TestRunner

JVM

VectorClusterTest

PostGISTest

GeoMesaTest

vectorCluster
(java library)

GeoMesa
(java library)

(timed)
vcluster API

(timed)
geotools API

vcluster file

VFS system calls

postgis.jar
(timed)
JDBC API

cluster
Accumulo

TCP

nrl03
nrl04

nrl05
nrl06
nrl07

TCP

Figure 2: Refined testing apparatus

being closer to the real conditions of an active tile server.21

3.5 Measurements
The initialization time for each QueryTest object (GeoMesaTest, VectorClusterTest, or PostGIS-
Test) is performed before the stopwatch timer begins. The stopwatch begins when it is time to call
the query() method and stops immediately after query() returns.

Each of the three models tested use a form of lazy evaluation for the results returned from
queries. After a query is performed, an iterable Collection22 is returned but this object may not be
fully populated. So in order to truly test the time needed to fetch data from storage, the test harness
must iterate through the collection. This effectively “touches” the data, forcing the evaluation of
each object in the collection.23

3.6 Simulating tile server workload using randomly chosen bounding boxes
A typical GIS database will contain many layers of vector data. Tile servers generate raster tiles for
display by querying the GIS database for vector data, often from many (or all) layers. For a human

21However, without simulated traffic in geographically disparate areas, the test apparatus may gain an unrealistically
high advantage from the page cache. This issue is addressed by the use of the random bounding boxes described in
Section 3.6

22https://docs.oracle.com/javase/8/docs/api/java/util/Collection.html
23This is analogous to what functional programmers call “forcing a thunk”.

17

https://docs.oracle.com/javase/8/docs/api/java/util/Collection.html

audience, a layer of data (for example, port facilities) is much more meaningful with context (for
example, combining port facilities with coastlines and waterways).

In the dataset used for this experiment, 191 layers have been generated from OpenStreetMap
data. As noted earlier, OSM’s database does not use feature layers. But it is not unusual for GIS
data consumers to organize data extracted from OSM into GIS layers, as NRL has in their Vector
Cluster.

AERIALWAY AREAS

Vector Layer

more layers [. . .]

WATERWAY POINTS

Vector Layer
into: map tile

Raster image

Figure 3: Example of building a tile from queries of many layers

An approximation of the process of generating a raster tile from many vector layers is illustrated
in Figure 3.

In order to simulate the workload of a busy map server serving many simultaneous users spread
across a large area, a common approach is to scatter requests around a large geographic area. Using
an existing tool, simulated map query sample sets (referred to below as “bounding boxes”) were
generated for use in testing.

These bounding boxes were generated using wms request.py 24, a python program origi-
nally written by Frank Warmerdam for the Open Source Geospatial Foundation’s 2009 FOSS4G
conference. At that conference, GeoServer, MapServer, and ArcGIS Server competed for the title
of “Fastest Web Map Server (WMS)”. [13]

In each test case, one of two sets of 2000 randomly-generated bounding boxes are used. One
set of 2000 bounding boxes is across a wide area (described in Section 3.6.1, the other in a smaller,
feature-dense region (described in Section 3.6.2).

3.6.1 Within contiguous North America (all-layer tests)

For our tests that generated full-tiles from 191 layers, bounding boxes were used which spread
across a contiguous section of North America. The sparseness of features across the area is less
of a problem when all layers are queried; empty tiles are less common. This also allows us to
simulate more closely a real workload, where queries come in for disparate geographical areas so
a server cannot simply cache one region.

24https://svn.osgeo.org/osgeo/foss4g/benchmarking/wms/2010/scripts/wms request.py

18

Figure 4: Randomly generated bounding boxes across continental North America

3.6.2 Within feature-dense areas (single-layer tests)

In performing tests across North America, it was observed that many randomly generated bounding
boxes contained few features, and queries on many layers would yield zero results. Given the vast
size and relatively low density of human settlement in North America, it is not surprising that many
randomly chosen bounding boxes will end up in a feature-poor region.

The problem of frequent zero-result bounding boxes was addressed by limiting single-layer
tests to areas known to be feature-rich. Originally chosen for experiments were: Berlin, Germany,
very heavily mapped by OSM volunteers; New Orleans, USA, a much smaller and less dense city;
and San Jose, California, roughly somewhere in between the first two cities in terms of size and
density. Chosen for presentation in this document are results from the San Jose queries.

Figure 5 shows a visualization of the 500 bounding boxes in and around San Jose, California,
used in the single-layer testing. Results from these tests are presented in Sections 4.2.1 and 4.2.2.

3.7 Testing with multithreading (all-layer tests)
The TestRunner class created for this research effort also supports querying all layers within a
given bounding box, using a configurable number of simultaneous threads.

Java, as is common for a widely-used, mature language and runtime environment, can be par-
allelized using a number of different methods. Some of these include standard components of the
JavaTM Platform, such as Timer, ExecutorService, and ForkJoinPool. There are also
third-party libraries such as ParallelJava and Javolution.

The mechanism chosen to parallelize these tests is the ExecutorService (cite oracle docs
java.util.concurrent.ExecutorService). In 2013 Nazario Irizarry Jr. of MITRE Corporation studied[25]
each of the mechanisms listed here and concluded that ExecutorService performs well but is

19

Figure 5: Randomly generated bounding boxes in and around San Jose, California

neither the fastest nor the slowest of those tested.[25, pp. 3-19 to 3-22]

3.8 Hardware
To accommodate the experiments described above, a new geospatial computing cluster was built
based on these needs. The Vector Cluster and PostGIS systems had simple hardware requirements,
but the cluster on which GeoMesa tests would run required new hardware.

In order to create an environment for simulating use of a distributed Hadoop-Accumulo cloud-
based GeoMesa service, a multi-node cluster was needed. A relatively small number of servers
were acquired, installed, and dedicated to this task.

The experimental cluster consisted of five nodes, each a Dell server with the specifications
given in Table 5.

The Hadoop/Accumulo cluster on which the GeoMesa tests ran consisted of these five nodes
(with services distributed across them as described in Table 3). The PostgreSQL and vector cluster
tests ran on a single node only, as they represent traditional non-distributed systems.

20

Make and Model Dell R© PowerEdge R415
CPU Two 8-core AMD R© OpteronTMProcessor 4386 (total 16 CPU cores)
RAM 32GB DDR3 (1600MHz) Synchronous Registered (Buffered)
Disk Toshiba 1TB SATA HDD 7200 RPM
OS kernel Linux 3.13.0 x86 64
OS system Ubuntu 14.04 LTS

Table 5: Experimental hardware

4 Results
Tests from the custom, finely targeted test harness described in Section 3.4 yield data on the three
storage systems under consideration, in order to provide observations on how each performs under
varying workloads.

4.1 Generalized performance comparison

Before digging into details on how each system behaves under varying conditions, an overall pic-
ture of query performance is quite clear. GeoMesa, the distributed-cloud Accumulo-based system,
differs greatly from the others in its design, and the resulting behavior of the system is quite dif-
ferent.

Vector Cluster and PostGIS are both more traditional designs, and their results lie much closer
to one another. All of these are summarized in Table 6, which should be paired with Tables 7 and
8 in the next section when considering overall properties of each paradigm.

System Mean query time (seconds) standard deviation
GeoMesa 17.50 0.6014
Vector Cluster 1.526 0.0552
PostGIS 0.8024 0.0326

Table 6: Overall performance comparison: North America bboxes, full tile (all layers), 7 threads

These figures are extracted from the data based on running queries on all 191 layers (as defined
in the original NRL vector cluster file), with 7 simultaneous threads performing queries in parallel.
See Section 4.3 for more on the behavior of these systems when the number of threads is varied.

It bears repeating that this measurement is for a specific simulated task: a tile server (such as a
WMS server) making queries on many layers in a GIS data store to retrieve vector data, to be used
in generating a raster tile. This is a common task, but very different from other GIS tasks.

4.2 Which parameters impact query performance
Since it is clear that the three paradigms show great differences in query speed (with the workload
used in these tests), it is more useful to look for insights in what the performance curve looks like

21

for each system under different conditions.
By looking at the asymptotic behavior of each system, there is insight to be found in how each

system scales, and what sort of tasks that system is suited to.

4.2.1 Size of area to be queried

First, for a set of queries over a single feature layer, the size of bounding boxes will be varied, and
the impact this change has on query performance is examined.

It may seem intuitive that when searching two regions of the earth for objects (such as building
polygons) that intersect these regions, searching the larger region would require more time than
searching the smaller one. After all, would you expect “find all buildings in New Orleans” or “find
all buildings in Texas” to take longer?

In the thought experiment above, the two regions (New Orleans and Texas) are disjoint and of
vastly different size. To generalize this question, also included is the case where the larger region is
a superset of the smaller (for example, New Orleans and Louisiana) as well as partially overlapping
regions (New Orleans vs. all parts of Louisiana east of the Mississippi River).

It turns out that the intuition about this type of spatial search is wrong. The size of a bounding
box does not significantly correlate with the time of a query. This is due to the properties of the R-
tree and the fact that the distribution of objects like buildings across the planet is very non-uniform.

To continue the thought experiment, it might be considered trivial to find all buildings north of
the 85th north parallel (there are none despite the large area) as opposed to finding all buildings in
Manhattan (a small place with many buildings).

The very weak correlation between bounding box size and query performance is almost cer-
tainly due to the somewhat increased likelihood that a larger bounding box contains more objects
to return. As shown in Section 4.2.2, the number of objects returned is a much more important
parameter to consider.

In Figure 6, almost no relationship (r2 = 0.0087) is seen between bounding box size and query
performance, when applied to the GeoMesa cluster. This is consistent with what is expected from
this type of search: GeoMesa uses a 1-dimensional lexicographically sorted geohash. A bounding
box is translated to a set of partitions within the data, represented by prefixes in the key of each
row in the Accumulo key-value store. In cases where the data is sparse, fetching all rows with a
certain prefix will be fast, regardless of how large that physical area is within the query.

Figure 7 shows the same very weak relationship, with only slightly more effect on PostGIS
than in GeoMesa.

And finally in Figure 8 for Vector Cluster, again very low significance. Since Vector Cluster is
using an R*tree, it is not surprising to see similar behavior as the R*tree index used in PostGIS.
This is also consistent with the understood properties of the R-tree: the depth and complexity of
the tree to search is dependent not on physical area, but on the number of leaf nodes (features)
within a minimum bouding rectangle (MBR) of arbitrary size.

However, the Vector Cluster data is slightly more significant (r2 = 0.02) than the previous
two. In the next section we will explore the way that removing network latency from consideration
affects the results for Vector Cluster, the only method we tested that does not involve any network
connections.

Overall, for each of the geospatial storage paradigms, bounding box size is not a significant
factor in query performance. Since this type of query consists of traversing an R-tree, it can be

22

0 200000 400000 600000 800000 1000000 1200000
size of bounding box (total pixels, x*y)

1400

1600

1800

2000

2200

2400

qu
er
y
tim

e
fo
r b

bo
x
(m

illi
se

co
nd

s)
regression slope=0.000060 r²=0.0087
data points

Figure 6: GeoMesa: query times for varying size bboxes (San Jose highway layer)

0 200000 400000 600000 800000 1000000 1200000
size of bounding box (total pixels, x*y)

0

50

100

150

200

250

300

350

qu
er
y
tim

e
fo
r b

bo
x
(m

illi
se
co
nd

s)

regression slope=0.000023 r²=0.0121
data points

Figure 7: PostGIS: query times for varying size bboxes (San Jose highway layer)

23

0 200000 400000 600000 800000 1000000 1200000
size of tile (total pixels, x*y)

210

220

230

240

250

260

270

280

290

300

to
ta

l q
ue

ry
 ti

m
e

fo
r t

ile
 (m

illi
se

co
nd

s)

regression slope=0.000012 r²=0.0264
data points

Figure 8: Vector Cluster: query times for varying size bboxes (San Jose highway layer)

considered CPU-bound. And like many other workloads, CPU-intensive portions of the work are
insignificant, in terms of time, compared to other bottlenecks like I/O. This result motivated the
next test, given below in Section 4.2.2, where that bottleneck will be examined.

4.2.2 Number of objects returned

Once it is clear that bounding box size is not a significant factor in query performance, the same
queries (on the highway layer in San Jose, USA) can be measured on another axis: number of
objects returned, or put another way: the payload size.

Figures 9 and 10 show that object count is a far more significant factor in query performance
than bounding box size. There are some small differences, however, that are worth noting.

Figure 9 shows a less-tightly-fit regression line (r2 = 0.85) than the data from PostGIS in
Figure 10. Essentially the GeoMesa data is noisier. This observation seems consistent with the
nature of these systems: GeoMesa is the most complex, built on multiple systems with many
sources of latency which can be difficult to measure. PostGIS data in Figure 10 is more tightly fit,
as the time to retrieve the data has a very linear relationship with payload size. PostGIS is much
simpler, with only one network connection, one hard disk, one virtual memory system, etc, coming
into play. So those results are more predicable.

Given the structure of the R-trees, and GeoMesa’s geohash structure, it is not surprising that
this query becomes I/O bound rather than CPU bound.

Figure 11 is notable as it shows the lowest slope and the lowest correlation (r2 = 0.278) with
the results from the test on Vector Cluster. So the size of the query payload is much less important

24

0 500 1000 1500 2000 2500 3000 3500 4000
number of objects returned (query payload size)

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000
qu

er
y
tim

e,
 s
in
gl
e
la
ye
r (
m
illi
se
co
nd

s)

GeoMesa

regression slope=0.297417 r²=0.8506
data points

Figure 9: GeoMesa: query times for varying object densities (San Jose highway layer)

0 500 1000 1500 2000 2500 3000 3500 4000
number of objects returned (query payload size)

0

100

200

300

400

500

600

qu
er
y
tim

e,
 s
in
gl
e
la
ye
r (
m
illi
se
co
nd

s)

PostGIS

regression slope=0.118780 r²=0.9261
data points

Figure 10: PostGIS: query times for varying object densities (San Jose highway layer)

25

0 500 1000 1500 2000 2500 3000 3500 4000
number of objects returned

200

220

240

260

280

300

320

340

360

380

qu
er
y
tim

e
fo
r l
ay

er
 (m

illi
se

co
nd

s)

Vector Cluster

regression slope=0.023185 r²=0.2780
data points

Figure 11: Vector Cluster: query times for varying object densities (San Jose highway layer)

0 500 1000 1500 2000 2500 3000 3500 4000
number of objects returned per query

0

500

1000

1500

2000

2500

3000

qu
er
y
tim

e,
 s
in
gl
e
la
ye
r (
m
illi
se
co
nd

s)

All three backends, compared

Geomesa
vCluster
PostGIS

Figure 12: All 3 services, compared

for queries on the Vector Cluster. This observation also agrees well with what is known about the
Vector Cluster model: this is the only model in which there is no network connection involved,
and the Linux Virtual Filesystem cache likely holds a great deal of the data in memory. So I/O
bandwidth effects are much less pronounced here. More of this time is spent actually traversing

26

the R*Tree index, and less of the time is spent actually fetching and transferring data, compared to
the other two models. As observed above, bounding box size actually was slightly more significant
for Vector Cluster than for the others, again confirming that I/O effects like network and disk are
much less impactful on this local, flat-file approach.

Finally, Figure 12 shows the previous three results combined, emphasizing the intersection
of the vCluster and PostGIS regression lines. This demonstrations the way that the network I/O
effects catch up with PostgreSQL when the dataset rises above a certain size.

4.3 Parallelism
As discussed in Section 3.4 and illustrated in Figure 3, a common workload for a tile server would
be to generate a raster tile for display to a user by querying a (possibly large) number of layers
of vector data. As observed when testing these storage backends as datastores for Geoserver and
NRL’s tile server, performing these queries in parallel is essential for any system with query latency
(or more simply, any system).

Section 3.7 describes the mechanism used for threading in our test software. The testing ap-
proach used was to vary the number of threads used to retrieve the data to build a single tile, in
order to find an optimal level of parallelism.

The parallelism tests were conducted over the North America random bounding boxes, shown
in Section 3.6.1. For each bounding box, all layers are queried as fast as possible (given the thread
concurrency constraint).

In Figures 13, 14 and 15, results are shown for the same workload as the number of threads
is increased. The threading levels are colored differently to stand out, and also include a Normal
PDF plot.

Like in many other examples of software parallelism, vector cluster performance gains consid-
erably when going from 1 to 2 threads, and returns fall off as the number is increased further.

For the Vector Cluster test in Figure 13, 7 threads is the point at which no further improvement
can be made by adding more threads. We do see an increase in variability (indicated by a wider,
shorter PDF curve) as more threads are added: more threads essentially adds noise.

PostGIS seems to benefit slightly more from multithreaded processing. The test shown in
Figure 14 shows the relational database making steady gains up to 8 threads. After 8 threads, very
small gains (less than one standard deviation) are made while the σ value increases: more threads
mean more noise and uncertainty. Above 19 threads, the mean time actually gets worse. Between
8 and 19 threads would seem to be ideal; 8 would be preferable, as the benefits of going higher are
nearly negligible.

This additional parallelism advantage may be due to PostgreSQL’s long history as a high-
performance database system under great concurrency and load.

The results for GeoMesa shown in Figure 15 are less clear. The data is erratic, so while there is
a definite improvement from 1 thread to many threads, the change is not monotonic and very noisy.
This is likely due to factors other than threading level. The Hadoop cluster is far more complex
than either the PostGIS server or the Vector Cluster file, so gaining insight into its behavior will
require extensive investigation. As clustered systems like Hadoop gain in popularity, there will be
more motivation to investigate these performance questions deeply.

27

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
time to query all layers (seconds)

0

5

10

15

20

fre
qu

en
cy

 (b
ou

nd
in

g
bo

x
re

qu
es

ts
)

Vector Cluster
1 thread µ=3.48285 σ=0.1034
2 threads µ=2.21900 σ=0.0757
3 threads µ=1.82977 σ=0.0427
4 threads µ=1.65962 σ=0.0359
5 threads µ=1.57818 σ=0.0343
6 threads µ=1.53483 σ=0.0359
7 threads µ=1.52578 σ=0.0552
8 threads µ=1.53766 σ=0.0714
9 threads µ=1.53080 σ=0.0650
10 threads µ=1.52497 σ=0.0727
11 threads µ=1.53417 σ=0.0997

Figure 13: Vector Cluster threading results histogram (all layers)

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
time to query all layers (seconds)

0

5

10

15

20

25

30

fre
qu

en
cy

 (b
ou

nd
in

g
bo

x
re

qu
es

ts
)

PostGIS
1 thread µ=3.22010 σ=0.1440
2 threads µ=1.78534 σ=0.0599
3 threads µ=1.32208 σ=0.0451
4 threads µ=1.09156 σ=0.0390
5 threads µ=0.95629 σ=0.0361
6 threads µ=0.86486 σ=0.0352
7 threads µ=0.80242 σ=0.0326
8 threads µ=0.75867 σ=0.0333
9 threads µ=0.73501 σ=0.0488
10 threads µ=0.71389 σ=0.0602
11 threads µ=0.71165 σ=0.0708
12 threads µ=0.70635 σ=0.0762
13 threads µ=0.70295 σ=0.0843
14 threads µ=0.69604 σ=0.0906
15 threads µ=0.69574 σ=0.0938
16 threads µ=0.69052 σ=0.0957
17 threads µ=0.68818 σ=0.1021
18 threads µ=0.68347 σ=0.1025
19 threads µ=0.68077 σ=0.1058
20 threads µ=0.68244 σ=0.1096
21 threads µ=0.68350 σ=0.1099

Figure 14: PostGIS threading results histogram (all layers)

28

15 20 25 30 35 40 45 50 55 60
time to query all layers (seconds)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

fre
qu

en
cy

 (b
ou

nd
in

g
bo

xe
s)

GeoMesa: full tile all layers retrieval time histogram, for varying threading levels

1 thread mean: 29.15100 stddev: 1.7361
2 threads mean: 21.83882 stddev: 0.8180
3 threads mean: 20.80924 stddev: 0.9822
4 threads mean: 24.23108 stddev: 6.2789
6 threads mean: 18.05857 stddev: 1.0838
7 threads mean: 17.49751 stddev: 0.6014
8 threads mean: 19.32461 stddev: 3.2137

Figure 15: GeoMesa threading results histogram (all layers)

29

5 Conclusions
The three geospatial data storage systems studied vary greatly in their design, from extremely
simple to highly complex.

Based on experiences from running the experiments in Section 4, a qualitative evaluation of the
strengths and weaknesses of each paradigm is given in Table 8, along with a general description of
each in Table 7.

underlying paradigm hardware requirement index
Vector Cluster flat file low: single node R*tree
PostGIS relational database medium: single server R*treea

GeoMesa distributed key/value high: many-node cluster lexicographicalb

aR*Tree-over-GiST (Generalized Search Tree)
bgeohash interleaved with time

Table 7: Summary of storage backends and their properties

latency scalability security
Vector Cluster low low: limited by filesystem low: none
PostGIS low medium: limited by DB server or cluster medium: table-level security
GeoMesa high high: Hadoop cluster high: row-level security

Table 8: Summary of storage backends and their advantages/disadvantages

As noted in Section 4.2.2, the results from GeoMesa tests were quite noisy and inconsistent
compared to the other two systems. These values should be considered high-uncertainty, and more
work would warranted in tuning GeoMesa and Accumulo for performance and studying what other
factors come into play with this highly complex system.

Regardless of uncertainty in the GeoMesa query times, they are very certainly significantly
worse than the Vector Cluster and PostGIS times. This may not surprise those who have also
studied Accumulo and similar systems. As Sawyer, et al., of MIT Lincoln Lab write:

[N]ew NoSQL databases lack the mature code base and rich feature set of established
RDBMS solutions. [. . .] As a result, optimizing data retrieval in a NoSQL system
can be challenging. [. . .] Because distributed systems are complex, bottlenecks can
be difficult to predict and identify. Many open-source NoSQL databases are imple-
mented in Java and use heavy communication middleware, causing inefficiencies that
are difficult to characterize.[33]

Sawyer, et al.’s work specifically addresses Accumulo, and these remarks seem to fit very well
with the results here as well.

The major drawback seen here in GeoMesa is high latency on query responses. For the case of
a tile server, this is a problem — possibly a major problem. In the cases tested here, where a tile is

30

rendered based on 191 queries, that latency is magnified into something unacceptable. This might
not be so bad in a system which abandons the traditional GIS notion of feature layers, like many
OSM-based tile renderers.

For other use cases, the latency may be more tolerable or even worth the cost. Accumulo’s iter-
ators provide it the ability to perform significant computation on data that these tests did not utilize
when using it merely as a datastore to be read from. Use cases that depend on high-throughput
operations rather than low-latency small queries will be better positioned to utilize the strengths of
a system like GeoMesa.

The order-of-magnitude slower performance seen in the GeoMesa results may be somewhat
less surprising considering that Accumulo does not seem to prioritize low-latency random-access
queries in its design. Instead, many publications about Accumulo’s strengths focus on Ingest
performance, where the desired metric is throughput, not latency. This static dataset did not take
advantage of this strength at all. GeoMesa/Accumulo would be more appropriate for a workload
that involved constant or frequent ingestion (ie, writes to the data store).

This emphasis on high throughput rather than low latency is not limited to Accumulo. Other
distributed-cloud key-value (“NoSQL”) systems such as Apache Cassandra make a similar trade-
off; Rabl, et al. write:

“Cassandra achieves the highest throughput for the maximum number of nodes [. . .]
This comes at the price of a high write and read latencies. Cassandra’s performance is
best for high insertion rates.”[31]

This tradeoff is seen frequently in many other systems, and should not be ignored when considering
this type of software for latency-sensitive applications.

One surprising result was the very fast performance of PostGIS/PostgreSQL, which easily out-
performed Vector Cluster on all queries except the few with the largest payloads (shown in Figure
12). This contradicts the results from a very similar test by Sample and Ioup in 2010 which shows
“File Query” outperforming PostGIS (labelled “DB Query”). What the two results have in com-
mon are the slopes: in both, PostGIS query time grows at a faster rate, so a regression line would
have a larger slope. [32]

One possible explanation is simply the evolution of large, vibrant open-source projects like
PostgreSQL and PostGIS. In the years since the Sample book was published, PostgreSQL has
released a new major version and many minor versions. According to multiple sources, query
performance has become dramatically faster in recent versions. [30] [38] The use of these recent
versions, PostgreSQL 9.3 and PostGIS 2.1, likely explains at least some of the difference between
this result and the Sample/Ioup result of 2010.

5.1 Implications for cloud-based geospatial data infrastructure
That systems like Hadoop suffer from inefficiency has been well described by others; see Anderson
and Tucek’s succinctly titled SOSP09 paper “Efficiency Matters!”. [2] Yet in spite of this, in
all likelihood use of distributed, clustered, and off-site (better known as “Cloud”) storage and
processing of geospatial data will continue to grow and develop. Technologies like GeoMesa (and
the underlying Hadoop cluster) enable many new abilities not previously practical, particularly in
the realm of security, scalability, and high availability.

31

Utilizing a cloud infrastructure in pursuit of these features will come at a cost, and for some
classes of problems, a high cost. The workload used here, a non-temporal geospatial query driven
by traditional GIS services like tile serving, appears to be one for which the cost is very high,
possibly too high.

So in order to adapt to a possible future of cloud-based geospatial data, changes will need
to be made to traditional GIS model when it comes to tile servers and vector servers. Do not
expect to simple drop in a cloud-based distributed system like GeoMesa as a replacement for a
traditional GIS server like PostgreSQL, and certainly not for a ruthlessly simple and efficient file
like a Vector Cluster. A fault-tolerant massively distributed system like Hadoop adds power, but
also great complexity. These systems will be highly valuable, but our front-end services need to
adapt to a different model. Going to the cloud requires a paradigm shift, and is not something to
be done piecemeal or half-way. Go big or go home!

Regardless of the performance cost, cloud-based geospatial (and especially spatiotemporal)
data systems will certainly play a role in future GIS applications. The security features provided
by Accumulo make it uniquely suited to applications which require tight, granular security. As
temporal data becomes more common (and orders of magnitude larger), systems like GeoMesa
will begin to show their advantages.

Traditional GIS services like tile serving may need to adapt to a changing geospatial datastore
landscape. As shown in these experiments, multi-layer queries for tile generation will face serious
latency problems. Due to this latency, some of which is unavoidable in cloud-based infrastructure,
multiple queries should be avoided. A single bounding box query could easily use attribute filtering
to accomplish the same goals, and still provide a “layer” abstraction to the stubborn traditional GIS
user, without paying the large latency penalty seen in Figure 15 earlier.

GeoMesa should only be used in narrow cases, not a general purpose replacement for PostGIS.
Likewise, Vector Cluster by definition can only support narrow use cases, due to its simplistic
read-only structure and limited feature set.

In this work, no temporal data is stored nor queried, so GeoMesa’s hybrid spatio-temporal key
structure is only a hindrance for the tileserver workload. GeoMesa should be used for data and
workloads which are both temporal and spatial.

5.2 When is a problem a “big data” problem?
When considering “big data” oriented solutions like Accumulo (and other Hadoop-based systems),
it is important to ask “is this a big data problem?” This question does not only address the question
of how many bytes of data are in play, but should consider the “3 Vs of Big Data”: Volume,
Velocity and Variety.[11]

OSM’s volume is not terribly large by this standard: less than 100GB of compressed data. This
is all vector data, so this does amount to a large number of database rows, and could be considered
computationally quite large if viewed as a directed graph. But it is not difficult to store this on a
single, or few, modern systems.

OSM data’s schemaless key-value tagging system might seem like an example of the sort of
variety in these problems. But in fact, the data is not terribly noisy in that way. Most OSM map
editors follow conventions, if not schemas, making the data fairly well-defined despite the lack of
formal schema.

32

Most map data consisting of roads, buildings, and other large physical features will almost
certainly not have velocity, at least not at scales anywhere near those of today’s maps. The physical
world does change constantly, but large features like roads and buildings will likely not change in
the millions-of-rows-per-second rates that big data systems expect. OSM is likely the highest-
velocity vector map data source around, seeing on the order of 1 million25 new objects per day, but
this still falls short of “big data” velocity.

When very high resolution, real-time spatiotemporal data is being aggregated into GIS systems,
then the velocity will call for a big data solution. The “big data” solutions will enable new and
powerful abilities in geospatial computing, but they may also be poor solutions for more traditional
GIS computing.

Meanwhile, there are solutions which attempt to combine the strengths of traditional RDBMS
systems and new distributed systems. One example is Greenplum, a shared-nothing massively-
parallel relational database built on PostgreSQL. Greenplum has recently been proposed as a solu-
tion for scaling GIS systems while keeping the relational data paradigm in tact.26

5.3 Future work
GeoPackage, the recently-introduced “flat file” geospatial data format based on SQLite (described
in Section 2.3.3) has RDBMS-like properties not found in Vector Cluster. How does GeoPackage
perform, in terms of query latency and throughput?

What changes do large-memory systems introduce, when much or all of a dataset can be held
in-memory? The Sample/Ioup test in [32] was performed in the late 2000s, with a dataset of the
same order of magnitude as data used here, but on a system with considerably less RAM. So in that
case, the database- and file- based storage systems perform well when they succeed in minimizing
disk access. In newer systems like those used here, the RAM size has grown faster than the vector
data, putting a larger fraction of the data in a database buffer or VFS page cache. How does this
change the performance profiles of each system, now that random disk access may not always
dominate the result?

How can machine learning techniques be applied to changing geospatial data like OpenStreetMap?
Can the computational power of Accumulo contribute to the analysis of spatial data (and more
importantly, spatio-temporal data)? As the number of map edits outstrips the number of people
to manually check them for errors, an open problem with OSM developers27 today is the need
for tools to detect suspicious edits that are likely to contain errors (or deliberate misinformation,
known on Wikipedia as “vandalism”).

More generally, further experimentation on these storage paradigms with a wider variety of
workloads would open up new chances to weigh their strengths and weaknesses. Studying data
with a larger temporal component would open up the questions of streaming updates (high-throughput
ingestion), real-time server-side computation on spatial data, and generation of dynamic spatiotem-
poral content where spatial data changes over time.

25http://wiki.openstreetmap.org/wiki/Stats#New_nodes_and_ways_added_per_day
26http://boundlessgeo.com/2015/10/scaling-your-gis-with-pivotal-greenplum/
27See http://neis-one.org/2016/01/suspicious-osm/ for discussion of a tool which applies some

heuristics for detecting map editors with little experience. Pascal Neis’ solution addresses this problem with a useful
tool, but neither this nor other proposed solutions utilize more sophisticated pattern recognition techniques, yet.

33

http://wiki.openstreetmap.org/wiki/Stats#New_nodes_and_ways_added_per_day
http://boundlessgeo.com/2015/10/scaling-your-gis-with-pivotal-greenplum/
http://neis-one.org/2016/01/suspicious-osm/

6 References

[1] Ablimit Aji, Fusheng Wang, Hoang Vo, Rubao Lee, Qiaoling Liu, Xiaodong Zhang, and Joel
Saltz. Hadoop-GIS: A high performance spatial data warehousing system over mapreduce.
August 2013.

[2] Eric Anderson and Joseph Tucek. Efficiency matters! Operating Systems Review, 44(1):40–
45, 2010.

[3] P Beaulieu and H Dohmann. The digital geographic information exchange standard and
military mapping. Stockholm: Proceedings of the 18th ICC, pages 563–570, 1997.

[4] Kelly Chan. DIGEST A primer for the International GIS Standard, volume 7. CRC Press,
1998.

[5] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach, Mike
Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable: A distributed
storage system for structured data. In Proceedings of the Sixth Symposium on Operating
Systems Design and Implementation, November 2006.

[6] PostGIS Project Steering Committee et al. PostGIS 2.2.3dev Manual. http://postgis.
net/docs/, 2016.

[7] Open Geospatial Consortium. Simple Feature Access, Part 1: Common Architecture. http:
//www.opengeospatial.org/standards/sfa, 2007.

[8] Open Geospatial Consortium. OGC History (Detailed). http://www.
opengeospatial.org/ogc/historylong, 2010.

[9] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on large clusters.
In Proc. Sixth Symp. on Operating System Design and Implementation (6th OSDI’04), pages
137–150, San Francisco, CA, December 2004. USENIX Association. Google.

[10] PostgreSQL Developers. Replication, clustering and connection pooling. https:
//wiki.postgresql.org/wiki/Replication,_Clustering,_and_
Connection_Pooling.

[11] Edd Dumbill. What is big data? https://www.oreilly.com/ideas/
what-is-big-data, 2012.

[12] Ahmed Eldawy and Mohamed F. Mokbel. The Ecosystem of SpatialHadoop. SIGSPATIAL
Special, 6(3):3–10, April 2014.

[13] FOSS4G Organising Committee. Curious How Various Web Mapping Servers Perform?
Press Release, October 2009. https://wiki.osgeo.org/wiki/FOSS4G_2009_
Press_Release_32.

34

http://postgis.net/docs/
http://postgis.net/docs/
http://www.opengeospatial.org/standards/sfa
http://www.opengeospatial.org/standards/sfa
http://www.opengeospatial.org/ogc/historylong
http://www.opengeospatial.org/ogc/historylong
https://wiki.postgresql.org/wiki/Replication,_Clustering,_and_Connection_Pooling
https://wiki.postgresql.org/wiki/Replication,_Clustering,_and_Connection_Pooling
https://wiki.postgresql.org/wiki/Replication,_Clustering,_and_Connection_Pooling
https://www.oreilly.com/ideas/what-is-big-data
https://www.oreilly.com/ideas/what-is-big-data
https://wiki.osgeo.org/wiki/FOSS4G_2009_Press_Release_32
https://wiki.osgeo.org/wiki/FOSS4G_2009_Press_Release_32

[14] Apache Software Foundation. Apache Accumulo User Manual: Security. https:
//accumulo.apache.org/1.5/accumulo_user_manual.html#_security,
2014.

[15] Anthony Fox, Chris Eichelberger, John Hughes, and Skylar Lyon. Spatio-temporal indexing
in non-relational distributed databases. In Big Data, 2013 IEEE International Conference on,
pages 291–299. IEEE, 2013.

[16] S. Ghemawat, H. Gobioff, and S. Leung. The Google file system. In Proceedings of the
nineteenth Symposium on Operating Systems Principles (SOSP’03), pages 29–43, Bolton
Landing, NY, USA, October 2003. ACM, ACM Press.

[17] Dan Gillick, Arlo Faria, and John Denero. Mapreduce: Distributed computing for machine
learning, 2006.

[18] Michael F Goodchild. Citizens as sensors: the world of volunteered geography. GeoJournal,
69(4):211–221, 2007.

[19] Mordechai Haklay and Patrick Weber. OpenStreetMap: User-generated street maps. Perva-
sive Computing, IEEE, 7(4):12–18, 2008.

[20] James Hughes. HBase limitations. https://locationtech.org/mhonarc/
lists/geomesa-users/msg00667.html, 2015.

[21] James N. Hughes, Andrew Annex, Christopher N. Eichelberger, Anthony Fox, Andrew Hul-
bert, and Michael Ronquest. Geomesa: a distributed architecture for spatio-temporal fusion.
In Proceedings of SPIE, volume 9473, pages 94730F–94730F–13, 2015.

[22] Elias Ioup, Norman Schoenhardt, and Robert Owens. Private interview (recording available),
March 15 2016.

[23] ISO 19125-1:2004 Geographic information – Simple feature access – Part 1: Common ar-
chitecture. Standard, International Organization for Standardization, Geneva, CH, August
2004.

[24] Tom Lane. Core team statement on replication in PostgreSQL. http://www.
postgresql.org/message-id/26529.1212070375@sss.pgh.pa.us, 2008.

[25] Nazario Irizarry, Jr. Mixing C and Java for High Performance Computing. MITRE Corpora-
tion, Bedford, MA, Technical Report, 2013.

[26] Regina O. Obe and Leo S. Hsu. PostGIS in Action. Manning Publications Co., Greenwich,
CT, USA, 2nd edition, 2015.

[27] Open Geospatial Consortium. OGC GeoPackage Encoding Standard. http://www.
geopackage.org/spec, 2016.

[28] OSGeo: the Open Source Geospatial Foundation. FOSS4G. https://wiki.osgeo.
org/wiki/FOSS4G, 2015.

35

https://accumulo.apache.org/1.5/accumulo_user_manual.html#_security
https://accumulo.apache.org/1.5/accumulo_user_manual.html#_security
https://locationtech.org/mhonarc/lists/geomesa-users/msg00667.html
https://locationtech.org/mhonarc/lists/geomesa-users/msg00667.html
http://www.postgresql.org/message-id/26529.1212070375@sss.pgh.pa.us
http://www.postgresql.org/message-id/26529.1212070375@sss.pgh.pa.us
http://www.geopackage.org/spec
http://www.geopackage.org/spec
https://wiki.osgeo.org/wiki/FOSS4G
https://wiki.osgeo.org/wiki/FOSS4G

[29] Paolo Palmieri, Luca Calderoni, and Dario Maio. Spatial bloom filters: enabling privacy in
location-aware applications. In Information Security and Cryptology, pages 16–36. Springer,
2014.

[30] Michael P Peterson. Mapping in the Cloud. Guilford Publications, 2014.

[31] Tilmann Rabl, Mohammad Sadoghi, Hans-Arno Jacobsen, Sergio Gómez-Villamor, Victor
Muntés-Mulero, and Serge Mankowskii. Solving Big Data Challenges for Enterprise Appli-
cation Performance Management. In Proceedings of the VLDB Endowment (PVLDB), Vol. 5,
No. 12, pp. 1724-1735 (2012), August 20 2012. VLDB2012.

[32] John T Sample and Elias Ioup. Tile-based geospatial information systems: principles and
practices. Springer Science & Business Media, 2010.

[33] Scott M Sawyer, B David O’Gwynn, An Tran, and Tamara Yu. Understanding query perfor-
mance in Accumulo. In High Performance Extreme Computing Conference (HPEC), 2013
IEEE, pages 1–6. IEEE, 2013.

[34] SQLite Development Team. Most Widely Deployed and Used Database Engine. https:
//www.sqlite.org/mostdeployed.html.

[35] Michael Stonebraker and Lawrence Rowe. ”The Design of Postgres”. In Proceedings of the
ACM SIGMOD International Conference on Management of Data, pages 340–355, 1986.

[36] The Open Source Geospatial Foundation. OSGeo. https://www.osgeo.org/, 2015.

[37] Rik van Riel and Peter W Morreale. Documentation for /proc/sys/vm. https://www.
kernel.org/doc/Documentation/sysctl/vm.txt, 2008.

[38] Tomas Vondra. Performance since PostgreSQL 7.4
/ pgbench. http://blog.pgaddict.com/posts/
performance-since-postgresql-7-4-to-9-4-pgbench, 2015.

[39] Randall T. Whitman, Michael B. Park, Sarah M. Ambrose, and Erik G. Hoel. Spatial in-
dexing and analytics on hadoop. In Yan Huang, Markus Schneider 0001, Michael Gertz,
John Krumm, and Jagan Sankaranarayanan, editors, Proceedings of the 22nd ACM SIGSPA-
TIAL International Conference on Advances in Geographic Information Systems, Dallas/Fort
Worth, TX, USA, November 4-7, 2014, pages 73–82. ACM, 2014.

36

https://www.sqlite.org/mostdeployed.html
https://www.sqlite.org/mostdeployed.html
https://www.osgeo.org/
https://www.kernel.org/doc/Documentation/sysctl/vm.txt
https://www.kernel.org/doc/Documentation/sysctl/vm.txt
http://blog.pgaddict.com/posts/performance-since-postgresql-7-4-to-9-4-pgbench
http://blog.pgaddict.com/posts/performance-since-postgresql-7-4-to-9-4-pgbench

7 Vita
The author was born in New Orleans, Louisiana. He earned a B.S. in Computer Science from
Carngie Mellon University in 2008 and joined the University of New Orleans Computer Science
graduate program in 2013.

37

	A study of three paradigms for storing geospatial data: distributed-cloud model, relational database, and indexed flat file
	Recommended Citation

	List of Figures
	List of Tables
	Abstract
	Introduction
	Background
	Open Geospatial Consortium data model and services
	Spatial data in a Relational database
	PostgreSQL
	PostGIS

	Spatial data in an indexed flat file
	Vector Cluster History
	Vector Cluster Format
	GeoPackage

	Spatial data in a distributed-cloud key-value store
	Distributed computing framework: Hadoop
	Key-value store: Accumulo
	Spatiotemporal index: GeoMesa
	Other approaches to geospatial computing on Hadoop

	The OpenStreetMap dataset
	Privacy and Security in geospatial data

	Methodology
	Configuration and deployment of Geospatial data services
	Vector Cluster
	GeoMesa/Accumulo/Hadoop platform
	PostgreSQL/PostGIS server

	Building data stores
	Generating a Vector Cluster file
	Ingestion into GeoMesa
	Insertion into PostgreSQL

	Early Experiments
	Refined experimental design
	Measurements
	Simulating tile server workload using randomly chosen bounding boxes
	Within contiguous North America (all-layer tests)
	Within feature-dense areas (single-layer tests)

	Testing with multithreading (all-layer tests)
	Hardware

	Results
	Generalized performance comparison
	Which parameters impact query performance
	Size of area to be queried
	Number of objects returned

	Parallelism

	Conclusions
	Implications for cloud-based geospatial data infrastructure
	When is a problem a ``big data'' problem?
	Future work

	References
	Vita

