
University of New Orleans University of New Orleans 

ScholarWorks@UNO ScholarWorks@UNO 

University of New Orleans Theses and 
Dissertations Dissertations and Theses 

Spring 5-13-2016 

Simulation and Performance Evaluation of Algorithms for Simulation and Performance Evaluation of Algorithms for 

Unmanned Aircraft Conflict Detection and Resolution Unmanned Aircraft Conflict Detection and Resolution 

Jeffrey H. Ledet 
University of New Orleans, jhledet@uno.edu 

Follow this and additional works at: https://scholarworks.uno.edu/td 

 Part of the Controls and Control Theory Commons 

Recommended Citation Recommended Citation 
Ledet, Jeffrey H., "Simulation and Performance Evaluation of Algorithms for Unmanned Aircraft Conflict 
Detection and Resolution" (2016). University of New Orleans Theses and Dissertations. 2168. 
https://scholarworks.uno.edu/td/2168 

This Thesis is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with 
permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright 
and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-
holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the 
work itself. 
 
This Thesis has been accepted for inclusion in University of New Orleans Theses and Dissertations by an 
authorized administrator of ScholarWorks@UNO. For more information, please contact scholarworks@uno.edu. 

https://scholarworks.uno.edu/
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/etds
https://scholarworks.uno.edu/td?utm_source=scholarworks.uno.edu%2Ftd%2F2168&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/269?utm_source=scholarworks.uno.edu%2Ftd%2F2168&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uno.edu/td/2168?utm_source=scholarworks.uno.edu%2Ftd%2F2168&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uno.edu


Simulation and Performance Evaluation of Algorithms for
Unmanned Aircraft Conflict Detection and Resolution

A Thesis

Submitted to the Graduate Faculty of the
University of New Orleans
in partial fulfillment of the

requirements for the degree of

Master of Science
in

Engineering
Electrical

by

Jeffrey Harrer Ledet

B.S. University of New Orleans, 2014

May, 2016



© 2016
Jeffrey Harrer Ledet
All Rights Reserved

ii



Acknowledgement

I would like to thank my advisors, Dr. Jilkov and Dr. Li, for their assistance and mentorship throughout

my Master’s program. Dr. Jilkov was pivotal in shaping my mind to become what it is today. I have been

in several of his classes and also worked with him as an RA for three years now, and I can honestly say

that I deeply enjoyed being in his presence every step of the way. I would also like to thank Dr. Azzam,

Dr. Charalampidis, Dr. Alsamman, Dr. Jovanovich, and Dr. Chen of UNO’s Department of Electrical

Engineering for their guidance and support throughout my time in the department. Lastly, I have to give

a huge thanks to my family especially my parents for their tremendous love and support. Without them, I

would not have been able to get this far.

iii



Contents

List of Figures v

Abstract vi

1 Introduction 1
1.1 Aircraft Conflict Detection and Resolution (CDR) Problem . . . . . . . . . . . . . . . . . . . 1
1.2 Model Predictive Control (MPC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Overview of Existing Methods in the Literature . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Multiple Model (MM) CDR Framework 9
2.1 Aircraft Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Multiple Model (MM) Trajectory Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Weather Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Conflict Detection (CD) 13
3.1 Predicted Probability of Conflict (PC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Computing the Predicted PC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 PC Estimation Accuracy Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Conflict Resolution (CR) 22
4.1 When is CR Needed? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 Constrained Optimization: Maneuvering Cost Function . . . . . . . . . . . . . . . . . . . . . 22
4.3 Viterbi Algorithm (VA) & Sequential List VA (SLVA) . . . . . . . . . . . . . . . . . . . . . . 23
4.4 Constrained Sequential List Viterbi Algorithm (CSLVA) . . . . . . . . . . . . . . . . . . . . . 26
4.5 Computational Efficiency Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5 Enhanced CR 34
5.1 Constrained Optimization: Enhanced Cost Function . . . . . . . . . . . . . . . . . . . . . . . 34
5.2 CSLVA-directed Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.3 SMC-based Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.4 Exhaustive Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.5 Trajectory Optimality Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Summary and Conclusions 45

Bibliography 45

Vita 49

iv



List of Figures

1.1 Paths generated by Dijkstra’s algorithm (left), A* search (middle), and Aε* search (right). . . 6
1.2 Conflict Detection and Resolution Flowchart. . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Four main methods for trajectory propagation. . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 MM Trajectory Prediction in a “sense-and-avoid” Scenario. H1, H2, and H3 denote possible
hypotheses on the intruder’s predicted trajectories. . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1 Scenario 1: Truth (top), Combined Prediction (middle) and MM Prediction (bottom) . . . . 17
3.2 Scenario 2: Truth (top), Combined Prediction (middle) and MM Prediction (bottom) . . . . 18
3.3 Scenario 3: Truth (top), Combined Prediction (middle) and MM Prediction (bottom) . . . . 19
3.4 Scenario 4: Truth (top), Combined Prediction (middle) and MM Prediction (bottom) . . . . 20
3.5 PC Comparison over four scenarios. MM prediction denotes the proposed (GM-based) PC

prediction method, Combined Prediction denotes an existing (Gaussian-based) PC prediction
method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1 Model Switching Trellis with M = 5 and N = 6. . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2 CSLVA Efficiencies. PC computations for the overlapping part of the child and parent path

can be waived (top). The next best path p(l+1) can be completely skipped over without any
PC computations (bottom). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3 Unconstrained SLVA-based rerouting illustration. . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.4 Horizontal Scenario (H1): One Intruder (top), Two Intruders (bottom). . . . . . . . . . . . . 31
4.5 Horizontal Scenario (H2): One Intruder (top), Two Intruders (bottom) . . . . . . . . . . . . . 32
4.6 Vertical Scenario (V): One Intruder (top), Two Intruders (bottom). . . . . . . . . . . . . . . . 33

5.1 Horizontal Scenario 1: One Intruder (H1 1) (top), Two Intruders (H1 2) (bottom). . . . . . . 40
5.2 Horizontal Scenario 2: One Intruder (H2 1) (top), Two Intruders (H2 2) (bottom). . . . . . . 41
5.3 Vertical Scenario: One Intruder (V1 1) (top), Two Intruders (V1 2) (bottom). . . . . . . . . . 42
5.4 Weather Scenario: No Intruders (W1 0) (top), One Intruder (W1 1) (bottom). . . . . . . . . 43
5.5 Optimality Comparison over eight scenarios. Optimal denotes the brute force exhaustive

search method, CSLVA denotes the proposed constrained sequential List Viterbi-directed
search method, and SMC denotes the sequential Monte Carlo-based search method. . . . . . 44

v



Abstract

The problem of aircraft conflict detection and resolution (CDR) in uncertainty is addressed in this thesis. The

main goal in CDR is to provide safety for the aircraft while minimizing their fuel consumption and flight

delays. In reality, a high degree of uncertainty can exist in certain aircraft-aircraft encounters especially

in cases where aircraft do not have the capabilities to communicate with each other. Through the use

of a probabilistic approach and a multiple model (MM) trajectory information processing framework, this

uncertainty can be effectively handled. For conflict detection, a randomized Monte Carlo (MC) algorithm is

used to accurately detect conflicts, and, if a conflict is detected, a conflict resolution algorithm is run that

utilizes a sequential list Viterbi algorithm. This thesis presents the MM CDR method and a comprehensive

MC simulation and performance evaluation study that demonstrates its capabilities and efficiency.

Keywords: conflict detection and resolution, collision avoidance, probability of conflict, Viterbi algorithm,

model predictive control, sense-and-avoid, Monte Carlo, multiple model
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Chapter 1

Introduction

1.1 Aircraft Conflict Detection and Resolution (CDR) Problem

As time progresses, global airspace is expected to become more densely packed. To address this issue, in

2012, the United States government began the implementation of a new National Airspace System called

the Next Generation Air Transportation System (NextGen) [1]. The objectives of NextGen include reducing

fuel consumption, reducing time delays for departures and arrivals, and increasing the density of the airspace

without compromising essential safety standards. Aircraft conflict detection and resolution (CDR) is one of

the underlying fields of research that will help further the development of a system such as NextGen.

The problem considered in this thesis is the unmanned aerial vehicle (UAV) sense-and-avoid (SA)

problem. In an SA scenario, a UAV, referred to as the own-ship and denoted by A, is flying around in some

airspace that may also contain civilian (private or commercial) or military aircraft, referred to as intruders

and denoted by B(b), b = 1, 2, . . . . While the own-ship is strictly considered to be a UAV, intruders can

be human operated aircraft or other UAVs. Within this scenario, the own-ship and the intruders are not

capable of communicating with each other, and, therefore, no flight intent information can be shared between

them.

Because of this lack of communication and the knowledge that some intruders may have human lives

onboard, the own-ship has a major responsibility to ensure that it does not collide with any of the intruders

or even come close to colliding for that matter. It realizes this collision avoidance (CA) responsibility by

using its onboard sensors to detect the current state of intruders that are in its nearby region, propagating

their trajectories into the future, evaluating the probability of a conflict occurring within the foreseen future,

and executing any maneuvers that may be necessary to maintain strict safety requirements all while trying

to get to its next waypoint. The Federal Aviation Administration (FAA) sets the minimum safety separation

requirements that all aircraft must adhere to which are currently five miles of horizontal separation and 2,000

feet of vertical separation [2].
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Real-world sensors are prone to measurement error, therefore the current states of the intruders that

the own-ship receives are only estimates of their true state. Because the intruders’ flight intents are unknown

to the own-ship, their future states (i.e., possible future trajectories) are probabilistically distributed based

on the current state estimates. Using these probability distributions, a probability of conflict (PC) can be

evaluated and used to determine if an avoidance maneuver is necessary. If the PC exceeds some specified

safety threshold, then the own-ship must compute an avoidance maneuver that resolves the predicted conflict.

An avoidance maneuver can consist of maneuvering strictly in the horizontal plane, strictly in the

vertical plane, a combination of both horizontal and vertical motion, or even changing the aircraft’s speed.

In this work, only strictly horizontal and strictly vertical maneuvers were considered.

A major challenge of air traffic management (ATM) is to achieve autonomous CDR on each individual

aircraft at short and mid-ranges without the intervention of air traffic controllers. As defined in the 2011

NextGen Avionics Roadmap [29], “In self-separation airspace, capable aircraft, equipped with Automatic

Dependent Surveillance-Broadcast (ADS-B) and onboard conflict detection and alerting, are responsible for

separating themselves from one another”.

1.2 Model Predictive Control (MPC)

Model predictive control (MPC) is one method that is used to solve the CDR problem. In MPC, a dynamic

model is used to predict the future events of a system in order to optimize a control action. At every time step

k, an optimal control strategy (i.e., sequence of control actions) is computed for the duration of a finite time

horizon, k to k+N . Upon acquiring a control strategy, only the first action within the strategy is executed.

The time horizon is then shifted forward one time step, and the process starts all over again. Because the

time horizon is iteratively shifted forward in time, this method is also referred to as receding horizon control.

While MPC does not generally produce optimal solutions, it is very useful for online applications in which

a fast response is required.

CDR is typically performed at three different scales of the look-ahead time horizon [30]. The first

scale is long range where CDR is carried out over the time horizon of several hours across the entire national

airspace. This scale is used for the coordination of daily flight plans and schedules to ensure that no conflicts

exist at airports or en route sectors. The second scale is mid-range where CDR is carried out over the time

horizon of tens of minutes across smaller, more localized regions. This scale is used to update flight plans

mid-flight via communication with an air traffic controller (ATC) to maintain the required safety separations.

The third scale is short range where CDR is carried out over the time horizon of seconds to minutes. This

scale is used to mitigate unforeseen, near-future conflicts via an onboard collision avoidance system (CAS)

on the fly.
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1.3 Overview of Existing Methods in the Literature

In the literature, many different approaches exist that attempt to solve the CDR problem. The most

common categories of CDR methods are geometric, force field, airspace discretization, mixed-integer linear

programming (MILP), and probabilistic [6, 12,19].

Among all of the categories of CDR methods listed, geometric methods are the simplest and most

straightforward theoretically. Using linear projections, the future trajectories of any aircraft in the encounter

are predicted. One geometric method is called the point of closest approach (PCA) method [28], and it

consists of comparing the velocity vectors of the two aircraft to find the PCA which is then used to find

the miss distance vector between them. If the length of the miss distance vector falls below the minimum

separation distance, then the two aircraft will be turned away from each other in order to increase the space

between them.

In the PCA method, some coordination is required because one aircraft will be turned in one direction

and the other in the opposite direction. Furthermore, this method is only optimal for encounters involving

only two aircraft. As the number of aircraft in an encounter increases beyond two, the method becomes

gradually worse because the act of two aircraft fixing a predicted conflict between each other may introduce

a new conflict between a different pair of aircraft.

One geometric method that does not require any coordination is called the collision cone method [25].

In this method, a circle is placed around the obstacle or aircraft that is to be avoided. The collision cone is

formed by two lines that go from the tangents of the circle to the aircraft that is doing the avoiding. If the

velocity vector of the aircraft that is doing the avoiding is between the two tangential lines, then a future

conflict has been detected, and a resolution needs to be made. In this method, a combination of velocity,

heading, and altitude changes can be used to mitigate the conflict. However, the simplest resolution is to

make the velocity vector of the aircraft doing the avoiding match one of the two tangential lines.

The collision cone method is typically used to avoid static objects but can be extended for avoidance

of dynamic objects. Despite this method not requiring any coordination, it still suffers as the number of

aircraft in an encounter increases beyond two in the same way that the PCA method does. One way in

which the PCA method and collision cone method differ is that the PCA method produces only one option

to resolve the conflict (i.e., turn in a particle direction), whereas the collision cone method produces multiple

options, some better than others, to resolve the conflict.

Another popular geometric method which is quite similar to PCA is the reactive inverse proportional

navigation method (RIPNA) [10,13]. RIPNA is derived from the Proportional Navigation (PN) guidance law

which is used to make missiles collide with their targets. The PN guidance law applies a lateral acceleration
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to a missile in order to make the Line of Sight (LOS) rate of rotation between the missile and the target

zero. Making the LOS rate of rotation zero effectively means that the missile is heading directly towards its

target, and a collision is imminent.

RIPNA is essentially an inverse PN guidance law meaning that lateral accelerations are applied that

will increase the LOS rate of rotation between two aircraft thus pulling them out of a collision course. For

each pair of aircraft in an encounter, a Zero Effort Miss (ZEM) distance, the minimum distance that two

aircraft will reach if they both remain on their current trajectories, is computed along with a time-to-go, the

time until the ZEM is reached. The currently selected aircraft will only consider other aircraft with which

it has a ZEM less than some specified desired distance as potential threats. From these potential threats,

the aircraft that it has the smallest time-to-go with is avoided first followed by the aircraft with the second

smallest time-to-go and so on.

Just like with PCA, RIPNA poses the issue of resolving one conflict between a pair of aircraft only

to create a new conflict. Furthermore, while RIPNA can maintain the minimum separation distance between

aircraft, it cannot guide an aircraft to its next waypoint, and, in [10,13], a separate guidance method called

Dubins path is used to guide an aircraft to its destination when no conflicts exist. Dubins path states that

an aircraft must turn at its maximum turn rate until its heading faces its destination. A special case exists

where an aircraft’s destination lies within the circle defined by the aircraft’s maximum turn rate. To resolve

this case, the aircraft must turn in the opposite direction until the destination lies on the edge or outside of

the maximum turn radius circle.

The most novel of the CDR methods fall arguably into the force field category. This CDR category

is derived from particle physics where repulsive and attractive forces dictate the interaction between charged

particles. Aircraft, obstacles, and aircraft destinations all act as charged particles. Aircraft and obstacles

are assigned repulsive charges, and the aircraft destinations are assigned positive charges. When an aircraft

feels the charge of another aircraft, an obstacle, or its destination, a force vector is computed using the force

vector function.

A force field method’s performance is solely dependent on the force vector function that it uses. This

function must be continuous and differentiable, must produce larger force vectors as the distance between

an aircraft and an obstacle decreases, and must produce smaller force vectors as the distance between an

aircraft and its destination decreases. Generally speaking, a force vector function is difficult to design and

implement [34, 37]. However, after obtaining a sufficient force vector function, force field methods benefit

from fast calculations. Such methods can reliably produce safe paths for aircraft to fly when the number of

aircraft is relatively small, although the safe paths are often not optimal. Because force field methods are

purely reactive, the safe paths of aircraft become drastically less optimal as the number of aircraft increases.
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A few special cases exist within the force field methods. One special case occurs when an aircraft

gets stuck in a local minimum which is where the net force is either zero or very close to zero. At the expense

of computation time, when an aircraft is found to be stuck in a local minimum, some additional algorithm

is run to help the aircraft escape the local minimum. Another special case arises when generated waypoints

are unreachable or extremely difficult to reach based on the aircraft’s performance specifications, specifically

maximum turning radius.

Another category of CDR methods revolves around airspace discretization. By dividing the airspace

into discrete, uniformly spaced nodes, the CDR problem becomes one of finding an optimal path through

a weighted graph. Popular computer science search algorithms such as Dijkstra’s algorithm and A* search

can be used to efficiently find the shortest route between two points in a graph.

Dijkstra’s algorithm finds the shortest path from a given source node to every other node in a

graph [8]. When only a single shortest path is being sought, i.e., a single destination node is specified, the

algorithm stops searching when the shortest path from the source node to the destination has been found.

Dijkstra’s algorithm does not directly search in the direction of the destination node but instead gradually

explores, in a circular wavefront-like fashion, farther and farther away neighboring nodes and computing the

shortest path to each consecutive neighboring node.

A* search, an extension of Dijkstra’s algorithm, uses heuristics to make the search more efficient.

Within the CDR framework, one heuristic would be a constraint on the flying direction [35]. This constraint

would limit the searched neighboring nodes to only those that fall within a ±90° radius of the direction of

the current velocity vector thus reducing the total number of nodes searched by one-third. The performance

of A* search is entirely dependent on the heuristics that are used. While Dijkstra’s algorithm guarantees

that the solution is strictly optimal, A* search does not always guarantee the same optimality but benefits

from a reduction in computational complexity.

A derivation of A* search called Aε* works by only exploring neighboring nodes that are within a

fixed, positive ε value of the lowest-cost neighboring node [7]. By searching fewer nodes than A*, Aε* further

reduces the computational complexity at the expense of optimality. Fig. 1.1 shows a comparison of the

paths generated by Dijkstra’s algorithm, A*, and Aε*.

In [23], the CDR problem is formulated as a classic stochastic optimal control problem where an

optimal control input is computed by approximating the stochastic differential equation of motion by a

Markov chain. The method involves time and state-space discretization which makes the computational

complexity quite high. The major caveat with methods that discretize the state-space is the tradeoff be-

tween the resolution of the discretized grid, i.e., the amount of nodes per unit length of the grid, and the

computational complexity. In a two-dimensional setting, N2 amount of nodes will exist within the grid.
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Figure 1.1: Paths generated by Dijkstra’s algorithm (left), A* search (middle), and Aε* search (right).

As the number of nodes per unit length increases, the computational burden of finding an optimal solution

increases exponentially. On the other hand, if the state-space is divided up into fewer but larger nodes, then

the optimality and safety of the generated path will be compromised.

The next category of CDR methods utilize the powerful optimization technique that is MILP [7,12,

32]. MILP models obstacles, collision avoidance rules, and no-fly zones as logical (integer) constraints and

an aircraft’s performance limitations as continuous constraints. Open-source and commercial optimization

software packages are available that can solve the full set of equations and produce minimum flight-time,

collision-free trajectories for all aircraft involved in the scenario. In the MILP framework, the trajectories

of all aircraft in an encounter are optimized jointly, in other words for the “greater good.”A trajectory

optimized in this way may be suboptimal for an individual aircraft, but the sum of the trajectories of all

aircraft is globally optimal.

The attractive feature of MILP is that it is guaranteed to find the most optimal feasible solution

granted that at least one feasible solution exists. The significant drawback of MILP methods is that they are

practically infeasible for real-time CA because the computation time is too high. On top of that, the time

complexity to solve a set of MILP equations increases as more constraints are added. This increase in time

complexity contrasts with a method such as A* search which would benefit from an increase in constraints.

The last CDR category that will be discussed consists of the probabilistic methods. Probabilistic

methods use the uncertainties inherent in the dynamic model to predict the possible future trajectories of

aircraft over a finite time horizon. Each possible future trajectory is weighted depending on its probability

of occurring. Probabilistic approaches are reasonable because they provide a good tradeoff between relying

too heavily on an aircraft sticking to its original flight plan vs. relying too heavily on an aircraft performing

worst-case maneuvers. Within a probabilistic approach, decisions for CR are made based on the fundamental

likelihood of a conflict, i.e., the PC.

Some probabilistic methods model the problem as a discrete-state partially observable Markov deci-
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sion process (POMDP) [3, 38]. In a Markov decision process (MDP), the state of the system (i.e., positions

and velocities of all aircraft) changes probabilistically based on the current states and actions of the aircraft

involved. In a POMDP, the state of the system is now expressed in terms of observations (i.e., an estimation

of an aircraft’s state) which are probabilistically generated and conditioned on the current states and ac-

tions of the aircraft involved. The observations all together form a belief, a probability distribution over all

possible system states. Solving a POMDP consists of computing a policy that selects actions in a way that

either maximizes an expected reward or minimizes an expected cost. The policy accounts for the current

uncertainty in the system (i.e., exact positions and velocities of intruder aircraft are not exactly known) and

the future uncertainty about how the system will evolve (i.e., what maneuvers might the intruders make).

POMDP algorithms generally require discretization of the state-space in order to be able to compute

an optimal control policy. State-space discretization imposes a computational burden that can render these

types of algorithms useless for practical implementation. By using Monte Carlo (MC) methods, the compu-

tational problems introduced by discretizing the state-space can be relieved. In [3], a MC Value Iteration

algorithm was used to solve the POMDP in the continuous state-space.

MC methods account for probabilistic uncertainty due to disturbances, uncertain state estimation,

modeling error, and stochastic mode transitions. As a result, they are well suited for solving chance-

constrained (i.e., the probability of failure must be below a certain threshold) stochastic optimal control

problems. A finite number of particles are used to approximate all aircraft states as probability distribu-

tions. Through this approximation, an intractable stochastic optimization problem can be transformed into

a tractable deterministic optimization problem. By solving the deterministic problem, a solution that ap-

proximates the original stochastic problem can be found. The approximation error decreases as the number

of particles increases. Also, particle-based methods such as MC are able to handle arbitrary probability

distributions.

[4,9,18] proposed solutions to the stochastic MPC problem by using sequential Monte Carlo (SMC).

SMC is similar to simulated annealing in that it is capable of producing a globally optimum solution given

a non-convex optimization problem that may have several local minima or maxima. SMC extends MC by

adding a resampling process wherein the particles of a probability distribution are continually resampled

to allow them to converge to the global optimizer. Despite MC methods fixing the problem of having to

discretize the state-space, their computational complexity can still be very high. The body of work within

this thesis follows a probabilistic approach based around MC which provides a general and systematic way

to handle the uncertainties that exist within the CDR problem.

Fig. 1.2 shows the process of CDR for a probabilistic method. The first step for the own-ship is to

estimate the current states of all aircraft in the surrounding environment. Using the current estimates and
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a dynamic model, the own-ship can find the predicted states of the detected aircraft. For conflict detection,

the predicted states are used to obtain a PC between the own-ship and every other aircraft. If any one of

the calculated PCs exceeds a specified safety threshold, then conflict resolution is required. Otherwise, the

own-ship and all other aircraft progress one time step into the future along their original flight paths.

 

State Estimation 

Environment 

Current States 
PC  ≥  δ  ? Dynamic Model 

Predicted States 
Conflict Detection 

PC Yes 
Conflict Resolution 

No 

Figure 1.2: Conflict Detection and Resolution Flowchart.

Across all of the categories of CDR methods, many ways exist for projecting an intruder’s current

information into the future. The four main methods of trajectory propagation are nominal, worst-case,

probabilistic, and flight-plan sharing. The nominal method projects current states into the future without

the consideration of disturbances or flight-plan changes. An intruder’s position is simply extrapolated based

on it’s current velocity vector or rate of turn. The worst-case method assumes that an intruder will perform

any range of maneuvers with equal probability. This method is extremely conservative because in some cases

a conflict may be declared for a projected trajectory that is very unlikely to happen in a real-world situation.

The probabilistic method constructs a set of possible future trajectories where each trajectory is assigned

a probability of occurring. In the flight-plan sharing method, all aircraft share their flight intents with one

another. This sharing of information makes the CA problem mush easier. As technology progresses and

becomes more widely available, the flight-plan sharing method will see more and more attention. Fig. 1.3

illustrates the four main trajectory propagation methods.

 

 

 

 

 

 

 

 

 

 

 

  

Nominal Worst-Case Probabilistic Flight-Plan Sharing 

100% 33% 33% 33% 15% 70% 15% 
100% 

Figure 1.3: Four main methods for trajectory propagation.
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Chapter 2

Multiple Model (MM) CDR
Framework

The MM framework and algorithms for CDR presented in this thesis were originally proposed and developed

in our papers [15–17].

2.1 Aircraft Model

The characteristic motion models of an aircraft can be classified into the following kinematic categories [20].

In the horizontal plane, the categories are constant velocity (CV) (i.e., straight line motion), constant

acceleration (CA) (i.e., speed up/slow down), and constant turn (CT) (i.e., left/right). In the vertical plane,

the categories are constant height (CH) (i.e., level cruise) and constant climb/descent (CD). A flight mode

is then modeled as a combination of a horizontal and a vertical model. Flight dynamics are described by

a hybrid system (HS) model which includes a set of flight models and the rules that govern the transition

between these flight models.

Consider the Markov Jump Linear System (MJLS) shown below:

xk = Fmkxk−1 +Gmkwk (2.1)

zk = Hmkxk + vk (2.2)

where k = 1, 2, . . . is the time index, xk ∈ Rnx is the continuous kinematic state, mk ∈M =
{
m(1),m(2), . . . ,m(M)

}
is the discrete modal state, zk ∈ Rnz is the sensor measurement, and wk ∼ N (0, Qk) and vk ∼ N (0, Rk)

are mutually independent white process and measurement noises, respectively. For the own-ship, the model

sequence 〈mk〉 is determined by the own-ship itself. While for any intruder, the model sequence 〈mk〉 is

9



assumed to be a Markov chain with the following transition and initial probabilities:

P{mk = m(j)|mk−1 = m(i)} = πij (2.3)

P{m0 = m(i)} = µ
(i)
0 (2.4)

A CA kinematic model is not used in this work. However, CV (2.5) and CT (2.6) kinematic models

are used and are shown below [20]:

xk =



1 T 0 0

0 1 0 0

0 0 1 T

0 0 0 1


xk−1 +



T 2

2 0

T 0

0 T 2

2

0 T


wk (2.5)

xk =



1 sinωT
ω 0 − 1−cosωT

ω

0 cosωT 0 − sinωT

0 1−cosωT
ω 1 sinωT

ω

0 sinωT 0 cosωT


xk−1 +Gwk (2.6)

where xk = [ x ẋ y ẏ ]′ is the state vector, T is the time step duration, ω is a constant turn rate (i.e.,

control input), and wk is the process noise. Note that CV = lim
ω→0

CT(ω).

The CH/CD model that is used is shown below:

xk =


1 T 0

0 1 0

0 0 1

xk−1 +


0

0

T

 vk +


T 2

2 0

T 0

0 T 2

2

wk (2.7)

where xk = [ x ẋ z ]′ is the state vector, T is the time step duration, vk ∈
{
v(1), . . . , v(5)

}
are the constant

climb/descent rates (i.e., control inputs), and wk is the process noise.

2.2 Multiple Model (MM) Trajectory Prediction

Multiple model (MM) trajectory prediction is the new and innovative way to handle the many challenges

that exist in aircraft trajectory prediction. It is widely accepted because of its ability to effectively handle

multiple modes of operation [21]. It is also capable of providing good approximations of highly nonlinear

and non-Gaussian state distributions that are a result of significant uncertainties in the dynamic model such

10



as aircraft intent and various flight modes. Fig. 2.1 illustrates an SA scenario where the own-ship needs to

predict the trajectory of an intruder under uncertainty of the intruder’s intent (for possible maneuvers) in

order to avoid a conflict.

��������

	�
����

�
�

�
�

�
�

Figure 2.1: MM Trajectory Prediction in a “sense-and-avoid” Scenario. H1, H2, and H3 denote possible
hypotheses on the intruder’s predicted trajectories.

In a probabilistic trajectory prediction, the main goal is to approximate as accurately as possible

the PDFs f(xk+n|zk), n = 1, . . . , N , where k is the current time, zk = {z1, . . . , zk} is the available sensor

data, and N is the look-ahead time horizon for how far into the future predictions are made. MM filters

such as GPB, IMM, or VSMM [21] provide state estimates x̂
(ik)
k|k , associated covariances P

(ik)
k|k and model

probabilities µ
(ik)
k|k , ik = 1, . . .M where M is the number of discrete modal states. The MM filter density is

approximated as a Gaussian mixture (GM):

f(xk|zk) =

M∑
ik=1

µ
(ik)
k|k N

(
xk; x̂

(ik)
k|k , P

(ik)
k|k

)
(2.8)

Furthermore, the prediction is based on the motion model given by (2.1) and (2.3) with x̂
(ik)
k|k , P

(ik)
k|k ,

and µ
(ik)
k|k being the “initial” condition.

Let a model sequence in the time interval [k, k +N ] be denoted by

Mk+N
k , (m

(ik)
k , . . . ,m

(ik+N )
k+N ) ∈MN+1 (2.9)

where ik:k+N , (ik, . . . , ik+N ) is the underlying sequence of model indices.

Then

f(xk+N |zk) =
∑
ik:k+N

f(xk+N |Mk+N
k , zk)P{Mk+N

k |zk} (2.10)

11



where

f(xk+N |Mk+N
k , zk) = N

(
xk+N ; x̂

(ik:k+N )
k+N |k , P

(ik:k+N )
k+N |k

)
(2.11)

P{Mk+N
k |zk} = µ

(ik)
k|k πikik+1

. . . πik+N−1ik+N (2.12)

and x̂
(ik:k+N )
k+N |k , P

(ik:k+N )
k+N |k are obtained recursively by the Kalman filter prediction equations for each model

sequence Mk+N
k with the initial x̂

(ik)
k|k , P

(ik)
k|k .

2.3 Weather Model

Along with aircraft-aircraft encounters, aircraft-weather encounters are also taken into account in which the

own-ship is given data of bad weather cells that lie along its intended flight path. As in the aircraft-aircraft

encounters, the own-ship must perform any necessary maneuvers to avoid conflicts with the bad weather.

Based on four-dimensional predicted weather data (available from a weather service repository, such as the

METOC Data Server (MDS)), the spatial density and concentration (severity) of the bad weather can be

obtained. Modeling the bad weather concentration as a spatial random variable ξ, the spatial density can be

viewed as a probability density, and the PDFs of ξ can be constructed by GM fitting of the spatial density

data:

fξ(pk+n) =

Lk+n∑
l=1

µ
(l)
k+nN (pk+n; p̄

(l)
k+n, C

(l)
k+n) (2.13)

where n = 1, . . . , N and p = [x y z]′ is the position vector. Based on (2.13), aircraft-weather CDR can be

done exactly as aircraft-aircraft CDR is done based on (2.10).
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Chapter 3

Conflict Detection (CD)

The MM-based approach and algorithm for CD presented in this chapter were proposed in our paper [16].

3.1 Predicted Probability of Conflict (PC)

Most probabilistic methods for estimating the probability of conflict (PC) in the literature assume that the

predicted separation vector between two aircraft is a Gaussian distribution. In an advanced multiple model

trajectory prediction framework, however, the separation vector has a Gaussian mixture distribution, and

approximating it by a single Gaussian, as in [14, 22, 40], leads to significant inaccuracies of the predicted

PC in a highly uncertain environment. This chapter presents a more accurate method, proposed in [16], for

estimating PC by utilizing the information from multiple model aircraft trajectory prediction.

PC is the probability that the distance between two aircraft falls below a specified minimum sepa-

ration distance. As specified by the current aviation standards, the horizontal (2D) and vertical separation

distances (1D) are commonly treated separately, [27,30], which amounts to a cylindrical protected zone. A 3D

ellipsoidal protected zone, proposed in [5,22], where the horizontal and vertical separations are treated jointly

is considered here. More specifically, let A and B denote two aircraft with position vectors xA = (xA, yA, zA)′

and xB = (xB , yB , zB)′ in an inertial (East-North-Up) Cartesian coordinate system Oxyz, and let the dis-

tance vector be ρAB = xA − xB . If λxy and λz are the given horizontal and vertical separation thresholds,

respectively, the “weighted” distance vector is ΛρAB , where Λ = diag{1/λxy, 1/λxy, 1/λz}, and the ellipsoidal

protected zone is defined as

Rλ =
{
ρ ∈ R3 : ‖Λρ‖ ≤ 1

}
(3.1)

where ‖a‖ = (a′a)
1
2 is the Euclidean norm of a vector a.

If fρABk (ρ) is the probability density function (PDF) of the distance vector ρABk at time k, then

the instantaneous PC is

PCk = P {‖ΛρABk‖ ≤ 1} =

∫
Rλ

fρABk (ρ)dρ (3.2)
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and the maximal PC over a time interval (k, k +N ] is

PC(k,k+N ] = max
0<n≤N

PCk+n (3.3)

In the CDR problem, k is the current time andN is the length of the time horizon. The corresponding

predicted PC is computed via (3.2) and (3.3), respectively, based on predicted densities f̂ρABk+n (ρ|zk) ≈

fρABk+n (ρ), n = 1, 2, . . . , N , where zk = {z1, . . . , zk} is the available sensor data.

Let

xA ∼ fxA(x) =

MA∑
i=1

µ
(i)
A N

(
x; x̂

(i)
A , P

(i)
A

)
(3.4)

xB ∼ fxB (x) =

MB∑
j=1

µ
(j)
B N

(
x; x̂

(j)
B , P

(j)
B

)
(3.5)

If xA and xB are independent, then ρAB also has a GM distribution, given by

ρAB ∼ fρAB (ρ) =

MAB∑
l=1

µ
(l)
ABN

(
ρ; ρ̂

(l)
AB , P

(l)
AB

)
(3.6)

where MAB = MAMB , µ
(l)
AB = µ

(i)
A µ

(j)
B , ρ̂

(l)
AB = x̂

(i)
A − x̂

(j)
B , P

(l)
AB = P

(i)
A + P

(j)
B and the single index l =

1, . . . ,MAB is correspondent to the double index (i, j), i = 1, . . . ,MA, j = 1, . . . ,MB .

3.2 Computing the Predicted PC

The randomized algorithm, given in Algorithm 1, is used to estimate the instantaneous PCk. This algorithm

is based on the direct estimation of PC by the definition (3.2) with (3.6).

Algorithm 1 Randomized Algorithm for Estimating PCk+n
1: Choose NMC , number of MC runs
2: Set P̂Ck+n = 0
3: for r = 1 to NMC do

4: Sample random index l ∼
{
µ
(l)
ABk+n

: l = 1, . . . ,MABk+n

}
5: Sample random vector ρ ∼ N

(
ρ; ρ̂

(l)
ABk+n

, P
(l)
ABk+n

)
6: if ‖Λρ‖ ≤ 1 then

7: P̂Ck+n = P̂Ck+n + 1

8: P̂Ck+n = P̂Ck+n/NMC

The good approximation properties (in a probabilistic sense) of the randomized estimation of PC

are discussed in [30, 31, 39], wherein quantitative bounds on the approximation error can be found. In the

next section, the accuracy of this PC estimation method is evaluated through Monte Carlo simulation.
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3.3 PC Estimation Accuracy Evaluation

The performance of the proposed GM-based PC prediction method is compared, through simulation, with

a traditional Gaussian-based approach over an SA UAV encounter scenario. The results demonstrate and

quantify the improvement achieved by the proposed CD method.

Several SA encounter scenarios, as illustrated in Fig. 2.1, were simulated where the own-ship predicts

the trajectory of an intruder under uncertainty of the intruder’s intent in order to avoid a conflict. More

and more research has been focused on SA recently since SA capability is required for UAVs to be able to

operate in civil airspace [38].

For simplicity, the scenarios are contained within the horizontal plane Oxy. The own-ship, A, is

assumed to have a constant velocity (CV) motion, while the intruder, B, can have either a CV or a constant

turn (CT) motion. An intruder B is modeled through the hybrid system (2.1), (2.3), (2.4) and has three

motion models which are m(1) = CV (straight) with ω(1) = 0 o/s, m(2) = CT (left turn) with ω(2) = 1 o/s,

and m(3) = CT (right turn) with ω(3) = −1 o/s. The flight mode initial and transition probabilities are

µ
(1)
0 = 0.8, µ

(2)
0 = 0.1, µ

(3)
0 = 0.1 and π11 = 0.8, π12 = 0.1, π13 = 0.1, π21 = 0.9, π22 = 0.1, π23 =

0.0, π31 = 0.9, π32 = 0.0, π33 = 0.1. The time step duration is T = 20 sec, and the process noise covariance

is Q = q2I with q = 5m/s2.

Four scenarios are presented each with different aircraft geometries that are generated according

to the aforementioned models. In each scenario, the amount of Monte Carlo runs (i.e., the number of

random trajectories generated) is NMC = 1000, and the time horizon is 60 sec. PC is estimated as the ratio

NC/NMC , the number of runs where a conflict occurred NC over the total number of runs performed NMC .

The minimum horizontal separation distance that defines a conflict is λxy = 1km.

The predicted PC is computed using the proposed algorithm, Algorithm 1, which is based on MM

trajectory prediction (2.10)–(2.12) and is referred to as MM prediction in all of the results. For the purpose

of comparison, the predicted PC is also computed through the algorithm of [14,22,40] where MM trajectory

prediction is still used but the predicted GM is approximated by a single Gaussian matching the mean and

covariance of the mixture. PC predicted in this way is referred to as combined prediction in all of the

results. With this Gaussian approximation, integral (3.2) is computed in the simulation by the randomized

PC estimation algorithm of [30].

Fig. 3.1 shows the scatter plots for the ground truth (top), the combined prediction (middle), and

the MM prediction (bottom) in Scenario 1. In this scenario, the intruder follows a nearly CV motion which

means that it does not take any turns and is only acted upon by a random process noise. The combined

prediction better approximates the true Gaussian distribution, i.e., ground truth, over MM prediction which
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accounts for possible maneuvers made by the intruder. For this scenario, the true PC is 0.2, combined

prediction PC is 0.24, and MM prediction PC is 0.15. In this particular case, the combined prediction

achieved a slightly more accurate predicted PC than the MM prediction did because the intruder’s true

position density is already Gaussian.

Fig. 3.2 shows the results for Scenario 2. In this scenario, the intruder follows a random sequence

of nearly CV and CT motion models that are chosen according to the transition probabilities previously

provided. In this particular case, MM prediction better approximates the true Gaussian distribution over

combined prediction because the true distribution here is in fact a GM. The combined prediction approxi-

mates the true PC fairly poorly. The true PC is 0.25, combined prediction PC is 0.365, and MM prediction

PC is 0.248. As expected, when more uncertainty is present in a scenario, combined prediction fails as

opposed to MM prediction which very accurately predicts PC.

Scenarios 3 and 4 are shown in Figs. 3.3 and 3.4, respectively. As observed in Scenario 2 and all

other scenarios that involve random maneuvers for the intruder, MM prediction more accurately estimates

the true PC than combined prediction does.

Finally, Fig. 3.5 compares, over all four scenarios, the predicted PC as computed by the proposed

method (MM Prediction) and an existing method (Combined Prediction) against the true PC. For the case

in which the intruder makes no maneuvers, both PC prediction methods are comparable. However, for the

cases that involve more serious uncertainty about the intruder’s motion intent, the proposed PC prediction

method is considerably more accurate.
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Figure 3.1: Scenario 1: Truth (top), Combined Prediction (middle) and MM Prediction (bottom)
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Figure 3.2: Scenario 2: Truth (top), Combined Prediction (middle) and MM Prediction (bottom)
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Figure 3.3: Scenario 3: Truth (top), Combined Prediction (middle) and MM Prediction (bottom)
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Chapter 4

Conflict Resolution (CR)

The MM formulation for CR and the optimal constrained sequential list Viterbi algorithm presented in this

chapter were proposed in our paper [17].

4.1 When is CR Needed?

It is assumed that, at each time k (current time), all filtered estimates x̂Ak|k and x̂Bbk|k, b = 1, 2, . . ., are

available. The CD strategy, detailed in Section 3.1, is used to predict the GM PDFs of all intruders and,

given the own-ship mode sequence Mk+N
k , compute the predicted PC

(b)
k+n, n = 1, . . . , N ; b = 1, 2, . . . , where

N is the look-ahead time horizon and b denotes intruder Bb.

A conflict alert is triggered “ON” iff

max
(b,1≤n≤N)

PC
(b)
k+n ≥ δ (4.1)

where δ is a threshold.

Upon a conflict alert, the current mode sequence Mk+N
k of the own-ship needs to be updated to

provide safety (i.e., to guarantee max(b,1≤n≤N) PC
(b)
k+n < δ along the updated flight path).

4.2 Constrained Optimization: Maneuvering Cost Function

Let ck+n(m(i),m(j)), i, j ∈ {1, 2, . . . ,M} be the cost of switching from mode m(i) at time k + n − 1 to

mode m(j) at time k + n, n = 1, 2, . . . , N . Then, the collision avoidance (CA) problem is formulated as the

following “chance-constrained” stochastic MPC problem:

Minimize:

J(Mk+N
k ) =

N∑
n=1

ck+n(m(ik+n−1),m(ik+n)) (4.2)
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subject to:

PC
(b)
k+n < δ, n = 1, . . . , N ; b = 1, 2, . . . (4.3)

It is clear that the formulation of the total cost, given by (4.2), has some limitations. It only

takes into account the costs for switching between flight modes and does not include any information about

the own-ship’s destination. The lack of destination information in the objective function leaves the CDR

problem “half-solved” in a way because some extra guidance algorithm is required to drive the own-ship to

its destination in the absence of conflicts. Likewise, based on (4.2) alone, the own-ship is not capable of

returning to the originally intended flight plan or flight altitude. Although, careful design of the cost matrix

may allow the own-ship to partially control its trajectory. The one property that is guaranteed as a result

of (4.2) and (4.3) is that the overall trajectory of the own-ship will be conflict-free.

Despite these limitations, a strong argument still supports this formulation. First, the primary goal

in CDR is to guarantee the safety of the aircraft involved in a close encounter. Trajectory optimization

comes second meaning that only once a conflict is resolved will the own-ship be allowed to return to the

original flight path or be re-routed to the next waypoint.

More terms could be added to the objective function to remedy such limitations. The only problem

is that having more terms that need to be optimized can lead to drastic increases in the complexity of the

resulting stochastic optimal control problem which can require extensively more computational resources.

For many practical applications, e.g., UAV SA, the computational resources are quite limited. From this

viewpoint, the formulation and approach, proposed in [17], that is presented in this chapter is quite attractive.

4.3 Viterbi Algorithm (VA) & Sequential List VA (SLVA)

The unconstrained optimization problem (4.2) is one of finding a best (least costly) path through a trellis

digraph. Fig. 4.1 illustrates a typical model switching trellis (at current time k) with M = 5 models (nodes)

and look-ahead time horizon N = 6 (i.e., ending time is k+N). Without loss of generality, it is assumed that

at the start and end times (k and k +N , respectively) the own aircraft is in flight mode m(1), CV motion.

As discussed later in Section 4.5), a complete trellis with m(3), m(5) being right CT models and m(2), m(4)

being their symmetrical left CT models is used. The depicted trellis is not complete because switching from

a left CT to a right CT (and vise versa) is only possible through the CV model.

Finding an unconstrained best path through a trellis can be easily and efficiently done via Dynamic

Programming, e.g., via the popular Viterbi algorithm (VA) [11]. The constrained problem (4.2)–(4.3) is

more complicated. The obvious idea of searching for a best path, after determining the feasible (conflict-

free) trellis (a subset of the complete trellis) first is a dead end because it needs evaluation of PC over all
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Figure 4.1: Model Switching Trellis with M = 5 and N = 6.

paths. Since the PC evaluation is the computational bottleneck in this problem, a better idea is to organize

the search of the best paths in a sequential manner (in an increasing order of costs) and then check feasibility

so that PC is only evaluated over lower-cost candidate paths. To put it simply, the strategy is to find the

best path and check its feasibility. If it is not feasible, then the second best path is found, and its feasibility

is checked. If the second best path is infeasible, the search continues for the third best path and so on and

so forth until a path is found which is feasible.

The problem of finding the L best paths through directed graphs has been well studied in the area of

computational geometry and many general algorithms exist. More efficient algorithms, particularly tailored

to the special case of trellis graphs are available in the communications literature, [26,33,36], where algorithms

for finding the L best paths through a trellis are generally referred to as the List Viterbi Algorithms (LVAs).

For the purpose of finding an optimal solution to the constrained problem (4.2)–(4.3), in principle, any LVA

can be used. However, the sequential LVA (SLVA) [36] best suits the problem at hand for two reasons:

1) it finds the next best path recursively based on the previous best paths, and 2) the search is organized

via forward VA-like passes through the trellis, which allows already computed PCs to be reused along the

conflict-free parts of future VA passes.

For simplicity, let the trellis states be denoted by i ∈ {1, 2, . . . ,M} (instead of the previous MM

notation m(i) ∈M). The initial state of the trellis at time n = 0 is assumed to be 1. Let λ
(i)
n be the minimum

cost to reach state i at time n (from the known state 1 at time n = 0), and jn(i) ∈ {1, 2, . . . ,M} be the

state occupied at time n− 1 by the best path into state i at time n.

In SLVA, the lth best path p(l) is found in a sequential manner based on the previously found (l−1)

best paths p(1), p(2), . . . , p(l−1) which are sorted in a non-decreasing order of costs.

p(l) = SLVA(p(1), p(2), . . . p(l−1)), l = 2, 3, . . . (4.4)
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where SLVA symbolizes one recursive step of the algorithm. The first step of SLVA is to obtain the best

path, p(1), via VA. VA is explained in detail in Algorithm 2. Then, using p(1), p(2) can be found by mutating

p(1) with only one forward, cheapest cost split point. If any other split points occur when mutating p(1) into

p(2), then p(2) cannot be the next best path because it will have a higher cost than a path that has only

one, cheapest cost split point from p(1). Furthermore, an issue may arise where multiple paths mutate from

a previous best path with the same cost increase making all of them valid candidates to be the next best

path. This issue is solely governed by the costs assigned between the nodes in the trellis.

So, if i∗n is the state occupied by p(1) at time n, the forward cost-to-go λ
(i∗n)
n (2) of p(2) can be written

as

λ
(i∗n)
n (2) = min{(λ(i

∗
n−1)

n−1 + cn(i∗n−1, i
∗
n)), min

0≤j≤M, j 6=i∗n
(λ

(j)
n−1 + cn(j, i∗n))} (4.5)

The first term in (4.5) represents the 2nd best path to i∗n which has merged to p(1) no later than time n− 1.

The second term represents the 2nd best path to i∗n which has merged to p(1) no earlier than time n. In the

forward pass of the algorithm, the one with the minimum cost remains in contention to become p(2), and the

time of the last best merge, nm, is recorded. Then, p(2) is the 2nd best path to time nm − 1 as determined

by the above recursion and is equal to p(1) from time nm until the end. Finding p(3) from p(1) and p(2) can

be organized in a similar manner. A formal, more detailed description of the algorithm is given in [36].

Algorithm 2 Viterbi Algorithm

Initialization:

1: for i = 1 to M do
2: λ

(i)
1 = c1(1, i)

3: j1(i) = 1

Recursion:

4: for n = 2 to N − 1 do
5: for i = 1 to M do
6: λ

(i)
n = min

1≤j≤M
(λ

(j)
n−1 + cn(j, i))

7: jn(i) = arg min
1≤j≤M

(λ
(j)
n−1 + cn(j, i))

Termination:

8: λ
(1)
N = min

1≤j≤M
(λ

(j)
N−1 + cN (j, 1))

9: jN (1) = arg min
1≤j≤M

(λ
(j)
N−1 + cN (j, 1))

Backtracking:

10: i∗N = 1
11: for n = N − 1 to 1 do
12: i∗n = jn+1(i∗n+1)

Best Sequence:

13: (1, i∗1, . . . , i
∗
N−1, 1)
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4.4 Constrained Sequential List Viterbi Algorithm (CSLVA)

For this CDR method, CD is done by the PC prediction method discussed in Chapter 3 and simply im-

plements (4.1). CR is done by the SLVA search strategy that was discussed in the previous section. A

straightforward implementation of the standard SLVA search strategy which is where PC is computed for

the entire time horizon of each next best path p(l) would lead to many duplicate computations of the same

PC because p(l) has portions of itself that are also present in its children (p(l+1), p(l+2), . . .). To remedy this

careless misuse of computational resources, two efficiency improvements are added to SLVA. By storing the

split times and conflict times of subsequent paths as the search runs, the same PC will never be computed

twice, and some next best paths can even be completely skipped over without computing any PCs at all

because it will be already known that they are infeasible. These two efficiency improvements are illustrated

in Figure 4.2, and Algorithm 3 shows the step-by-step algorithm for the CDR method.

Figure 4.2: CSLVA Efficiencies. PC computations for the overlapping part of the child and parent path can
be waived (top). The next best path p(l+1) can be completely skipped over without any PC computations
(bottom).

Because the CDR method in this chapter operates off of (4.2) which lacks information about the

own-ship’s destination, an extra algorithm is executed in the absence of conflicts to reroute the own-ships’s

trajectory towards its destination. This rerouting algorithm is simple and intuitive but not efficient. It

is basically an unconstrained SLVA search where each next best path that is found is linearly projected

outwards for a fixed distance in order to “search” for the destination. The first path in the SLVA search

that is found to have a point that lies within a specified distance threshold of the destination’s position

is chosen as the rerouted trajectory, and the rerouted trajectory is terminated at the point that “hit” the

destination. The computational cost of this rerouting method depends on many factors such as the number

of discrete modal states, length of the look-ahead time horizon, turning limitations of the own-ship, and

geometry between the own-ship and destination at the time of rerouting. Fig. 4.3 illustrates this rerouting

method and shows what paths within the trellis would be considered acceptable for rerouting the own-ship

to its depicted waypoint.
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Algorithm 3 Proposed CDR Algorithm

At time k:
Initialization:

1: l = 1
2: p(1) = (1, 1, . . . , 1)

Conflict Detection:

3: for n = 1 to N do
4: for b = 1,2,. . . do

5: Compute PC
(b)
k+n(p(l))

6: if PC
(b)
k+n(p(l)) ≥ δ then

7: Go to 10:
8: k = k + 1
9: Go to 1:

Conflict Resolution: (Search trellis for best CR maneuver sequence)
a) Find conflict times:

10: for b = 1,2,. . . do

11: n
(b)
c (p(l)) = min

1≤n≤N
{n : PC

(b)
k+n(p(l)) ≥ δ}

b) Find next best path & split times:

12: l = l + 1
13: p(l) = SLVA(p(1), p(2), . . . , p(l−1))
14: for j = 1 to l − 1 do

15: n
(l|j)
s = min

0≤n≤N
{n : p(l) diverges from p(j)}

c) Find largest split time from conflict-free parent subsequence:

16: n
(l|j0)
s = min

1≤j≤l−1
{n(l|j)s : n

(l|j)
s < n

(b)
c (p(j))}

17: if n
(l|j0)
s = ∅ then

18: Go to 10:
19: for n = n

(l|j0)
s +1 to N do

20: for b = 1,2,. . . do

21: Compute PC
(b)
k+n(p(l))

22: if PC
(b)
k+n(p(l)) ≥ δ then

23: Go to 10:
24: CR sequence = p(l), recalculate guidance from state at time k +N to next WP (or destination).
25: Go to 3:

4.5 Computational Efficiency Evaluation

The performance of the CR method, CSLVA, is compared, through simulation and data analysis, with a

standard implementation of SLVA over SA UAV encounter scenarios that were previously described in Section

3.3. The results clearly show the feasibility of and computational efficiency improvements achieved by the

CSLVA.

Two types of encounter scenarios are considered, one in which the own-ship makes strictly horizontal

resolution maneuvers and one in which the own-ship makes strictly vertical resolution maneuvers. The

horizontal scenarios are contained within the horizontal plane Oxy, and the dynamic model (2.1) of the

own-ship A has M = 5 motion models which are m(1) = CV (straight) with ω(1) = 0 o/s, m(2) = CT (soft
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Figure 4.3: Unconstrained SLVA-based rerouting illustration.

left turn) with ω(2) = 1 o/s, m(3) = CT (soft right turn) with ω(3) = −1 o/s, m(4) = CT (hard left turn)

with ω(4) = 2 o/s, and m(5) = CT (hard right turn) with ω(5) = −2 o/s, where ω is the turn rate.

The model transition costs used are

c(i, j) = |ω(j) − ω(i)|, i, j = 1, . . . , 5 (4.6)

where m(1) is the initial and final trellis state as seen in Fig. 4.1. The look-ahead time horizon is N = 10

for all scenario types in this section.

Each intruder B is modeled through the same hybrid system with the same initial and transition

probabilities that is described in Section 3.3. The time step duration is T = 5 sec, and the process noise

covariance and number of MC runs are the same as in Section 3.3. The minimum horizontal separation

distance that defines a conflict is λxy = 5km, and the threshold on PC for triggering a conflict alert is

δ = 10−3.

Figs. 4.4 and 4.5 show two scenarios with one intruder (top) and two intruders (bottom), respectively.

Integer labels indicate time steps. The uncertainty in intruders’ trajectories is illustrated by scatter plots

sampled from the predicted mixtures. At the time step in the future that a conflict is deemed to occur, the

predicted density of the intruder that is involved in the conflict is highlighted red. The blue dashed line shows

the own-ship’s desired path to its next waypoint, and the blue solid line shows the minimum cost, conflict-

free path computed by the proposed CR algorithm. The figures illustrate the capability of the algorithm to
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successfully resolve a conflict by finding a minimum cost horizontal maneuver. Each scenario was repeated

5000 times with random horizontal maneuver sequences of the intruder(s) and no conflict occurred with the

own-ship minimum maneuver cost trajectory.

The vertical scenarios are contained within the vertical plane Oxz. The dynamic model (2.1) of the

own-ship A has M = 5 motion models which are m(1) = CH (level cruise) with v(1) = 0m/s, m(2) = CD

(soft climb) with v(2) = 10m/s, m(3) = CD (soft descent) with v(3) = −10m/s, m(4) = CD (hard climb)

with v(4) = 20m/s, m(5) = CD (hard descent) with v(5) = −20m/s, where v is the vertical velocity. The

model transition costs for the vertical scenarios are the same as in (4.6) except with ω replaced by v.

Each intruder B has three motion models which are m(1) = CH (level cruise) with v(1) = 0m/s,

m(2) = CD (soft climb) with v(2) = 10m/s, and m(3) = CD (soft descent) with v(3) = −10m/s with the

same flight mode initial and transition probabilities as those used in the horizontal scenarios.

The process noise covariance is Q = q2I with q = 1m/s2, and the time step duration and number of

MC runs are the same in the horizontal scenarios. The minimum vertical separation distance that defines a

conflict is λz = 1000m, and the threshold on PC for triggering a conflict alert is the same as in the horizontal

scenarios.

Fig. 4.6 shows one scenario with one intruder (top) and two intruders (bottom), respectively. It

illustrates the capability of the algorithm to successfully resolve a conflict by finding a minimum cost vertical

maneuver. The scenario was repeated 5000 times with random vertical maneuver sequences of the intruder(s)

and no conflict occurred with the own-ship minimum maneuver cost trajectory.

The computational efficiency of CSLVA as compared with a direct implementation of the standard

SLVA is shown in Table 4.1. The column titled “Search Depth” shows the number of best paths that

were sequentially found to be unsafe by both algorithms before finding the best conflict-free path. Because

the only difference between the two algorithms is their computational efficiency and not their solution, the

“Search Depth” number is the same for both algorithms. Columns “# PC Checks” show the total number

of instantaneous PCs that were computed by each algorithm, respectively. Columns “Comp. Time” show

the amount of time that each algorithm took to find the best conflict-free path. Column “Speedup” shows

the ratio of computation times of SLVA and CSLVA, given in the fifth and sixth columns, respectively.

In all scenarios, CSLVA was more efficient than the direct SLVA. This efficiency improvement is a

result of dramatically reducing the number of PCs computed (illustrated by the comparison of columns three

and four in Table 4.1). The amount of improvement is scenario dependent. For the more difficult horizontal

scenarios, the speedup can be quite significant (as high as 4.83 times), but, for the much easier vertical

scenarios, the speedup is not that significant (can be as low as 1.12 times). In conclusion, the computational

savings are directly proportional to the difficulty of the scenario.
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Table 4.1: Computational Performance: CSLVA vs. SLVA

Scenario Search # PC Checks Comp. Time (sec) Speedup

ID Depth SLVA CSLVA SLVA CSLVA (times)

H1:1 7433 59265 1424 12.09 2.50 4.83

H1:2 28102 227152 3796 38.66 8.38 4.61

H2:1 3274 20864 368 5.69 1.29 4.41

H2:2 3275 21003 379 5.61 1.80 3.11

V:1 361 5073 1473 1.79 1.59 1.12

V:2 1832 26057 7795 5.54 3.51 1.57
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Figure 4.4: Horizontal Scenario (H1): One Intruder (top), Two Intruders (bottom).
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Figure 4.5: Horizontal Scenario (H2): One Intruder (top), Two Intruders (bottom)
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Figure 4.6: Vertical Scenario (V): One Intruder (top), Two Intruders (bottom).
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Chapter 5

Enhanced CR

The enhanced CR method described in this chapter was proposed in our paper [15].

5.1 Constrained Optimization: Enhanced Cost Function

Extending the formulation of the previously discussed maneuvering cost function, let ζ be the travel cost for

A per unit distance, pk+N be the position vector of A at time k+N , p̄
(0)
k+N |k be the predicted position in the

current flight plan, and d be the position vector of the next destination. Now, the CA problem is formulated

as the following, more robust “chance-constrained” stochastic MPC problem:

Minimize:

J(Mk+N
k ) =

N∑
n=1

ck+n(m(ik+n−1),m(ik+n)) + ζ(E(‖pk+N − d‖)− |p̄(0)k+N |k − d|) (5.1)

subject to:

PC
(b)
k+n < δ, n = 1, . . . , N ; b = 1, 2, . . . (5.2)

The new objective function (5.1) is more general and more powerful than (4.2) in that the destination

is now explicitly incorporated. The objective function in (4.2) guarantees a conflict-free path but not a path

that ends up at or near the destination. Now, with the added extra term ζ(E(‖pk+N−d‖)−|p̄(0)k+N |k−d|), the

optimal trajectory will naturally arrive at or very near to its intended destination. For scenarios involving a

vertical maneuver, the destination is an altitude level rather than a coordinate in the horizontal plane.

(4.3) and (5.2) are exactly the same, and here is why. A very large cost for violating minimum safety

separations could be added to the objective function instead of having this violation as a hard constraint.

However, because safety is the absolute number one priority in this problem, fulfilling the safety requirements

must be strictly enforced and not left to be relaxed. If violating minimum safety separations was considered

as some penalty cost in the objective function instead of a hard set constraint, some scenario may exist where
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two aircraft become fatally close to one another in the act of trying to minimize the total cost of the objective

function. Thus, as proposed in [15], the overall problem is to find the least expensive destination-directed

trajectory that guarantees the specified safety level.

5.2 CSLVA-directed Search

Without the extra term ζ(E(‖pk+N −d‖)−|p̄(0)k+N |k−d|) in (5.1), an optimal solution can be efficiently found

using CSLVA as discussed in Chapter 4. Including this extra term in the cost function, however, makes

the optimization problem a lot harder. The total cost is no longer a sum of the transitional costs over the

trellis, and CSLVA is no longer optimal. Nevertheless, it is still possible to take advantage of CSLVA and

organize an efficient search over the trellis to minimize (5.1). Here, the suboptimal algorithm, referred to as

CSLVA-directed search, is discussed in detail.

CSLVA-directed search minimizes the two term objective function by initially finding the first best

path through the trellis minimizing the first term of (5.1), the mode switching costs. The divergence from

destination cost, second term of (5.1), of the first best path is added to the mode switching costs to get a

total cost. The total cost of the first best path is then recorded. Next, the second best path through the

trellis is found. The divergence from destination cost is computed, and the total cost of the second best path

is recorded. The algorithm keeps sequentially searching for next best paths through the trellis and recording

their computed total costs until the allotted time runs out. If an lth best path is found to be infeasible

during the search, then its total cost is neither computed nor recorded. Out of all of the feasible paths that

were searched, the path with the lowest total cost is chosen as the minimizer of (5.1). The allotted search

time cannot exceed the duration of a time step in order for the algorithm to be considered for real-time

applications. Algorithm 4 shows the step-by-step process of CSLVA-directed search.

Algorithm 4 CSLVA-directed CR Search

At time k:

1: Initialize: l = 1, p(1) = (m
(1)
k ,m

(1)
k+1, . . . ,m

(1)
k+N )

2: if p(1) is conflict-free then
3: Record J(p(1))
4: while current runtime < time step duration do
5: Record the earliest conflict time nc(p

(l)) for p(l)

6: l = l + 1
7: Find the next best path p(l)

8: Find the largest split time n
(l|j)
s that p(l) has with any parent path p(j)

9: Recall the conflict time nc(p
(j))

10: if nc(p
(j)) > n

(l|j)
s or nc(p

(j)) = ∅ then

11: if p(l) is conflict-free from n
(l|j)
s to k +N then

12: Record J(p(l))

13: Execute action m
(ik)
k from arg min

p(l)
J(p(l))
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For numerical evaluation of the expectation E(‖pk+N − d‖) in (5.1), one can use Monte Carlo ap-

proximation via sampling random trajectories from (2.1) using the given path Mk+N
k . It is also efficient to

replace E(‖pk+N − d‖) in (5.1) by (‖E(pk+N |zk)− d‖) and take E(pk+N |zk) from x̂
(ik:k+N )
k+N |k which is already

computed by the trajectory prediction part of the CDR algorithm. For this implementation and the other

two described next, the latter is used in the simulations.

5.3 SMC-based Search

Typically, sequential Monte Carlo has been used for the problem of state estimation and is generally labeled

as particle filtering. Only recently has SMC been used for solving MPC optimization problems [9, 18, 24].

A non-convex, non-linear MPC problem can have several local minima or maxima. Therefore, using an

optimization method that produces globally optimum solutions such as SMC, a form of simulated annealing,

is critical. SMC optimization can also be thought of as a genetic (“survival of the fittest”) type of algorithm

where a particle population evolves based on some selection and mutation criteria. An SMC-based search

works by sampling particles from an importance distribution and iteratively resampling these particles until

the particle population has matured enough to produce a satisfactory estimate of the global optimizer or

until some stopping criterion has been met.

Algorithm 5 SMC-based CR Search

At time k:

1: Initialize: l = 1, n = 0
2: while n ≤ Np do
3: Sample a path from the random walk directory
4: if the sampled path is conflict-free then

5: p
(l)
n = sampled path

6: Record the total cost J(p
(l)
n ) and weight w(p

(l)
n )

7: n = n+ 1
8: Remove the sampled path from random walk directory
9: while the allotted runtime has not run out do

10: l = l + 1
11: n = 0
12: while n ≤ Np do

13: Resample a path p
(l)
n0 from the previous generation p(l−1) = (p

(l−1)
1 , p

(l−1)
2 , . . . , p

(l−1)
N ) where the

probability to resample a path is
w(p(l−1)

n0
)∑N

n=1 w(p
(l−1)
n )

14: if p
(l)
n0 is conflict-free then

15: p
(l)
n = mutate(pln0

)

16: Record the total cost J(p
(l)
n ) and weight w(p

(l)
n )

17: n = n+ 1
18: Execute action m

(ik)
k from arg min

p
(l)
n

J(p
(l)
n )

With respect to the considered CDR problem, a particle is a maneuver sequence. In the SMC-based
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implementation shown in Algorithm 5, the initial particle population of size Np is sampled from a random

walk directory. The total cost of each initial particle, mode switching costs plus divergence from destination

cost, is computed and recorded. Each particle’s weight is computed based on its total cost and then recorded.

The initial particle population is not allowed to contain duplicates of the same particle. Therefore, after

a particle has been sampled, it is removed from the random walk directory so that it cannot be sampled

again in a future iteration of the initialization process. If a sampled path violates the PC constraint, then no

data is recorded for that path. The initialization process continues until the initial particle population has

Np particles. Then, resampling begins wherein particles are resampled based on their normalized weights.

After being resampled, a mutation is introduced to the particle (i.e., the maneuver sequence is slightly

altered). The total costs and weights of the second generation particles are computed and recorded, and the

third generation particle population is formed by resampling and mutating the second generation particles.

Recurring epochs of resampling continue until the allotted time runs out at which point the estimate of the

global minimizer is chosen from the final particle population.

5.4 Exhaustive Search

To be able to accurately compare the optimization capabilities of the CSLVA-directed and SMC-based

search methods, for each simulated scenario, the optimal solution is found by implementing a brute force

(BF) exhaustive search which enumerates over all possible maneuver sequences. Throughout the search, the

cheapest path found so far is retained. Each path is first checked for feasibility. If a path is found to be

infeasible at some time n0, then it is dropped immediately from further consideration along with all paths

that stem from it starting at n0. If a path is feasible, its total cost is computed and compared with the total

cost of the cheapest path found so far, and the best of them is retained.

The computational burden of a brute force search depends on the length of the time horizon and the

number of discrete modal states. For example, if a time horizon of 10 time steps with 5 modal states is used,

approximately 9.7 million paths need to be assessed which could take upwards of several hours. However, if

a time horizon of just 6 time steps with 5 modal states is used, only approximately 15.6 thousand paths need

to be assessed which could take a reasonable one to two minutes. Since CDR must be executed in a very

short time frame, the stopping criterion for the CSLVA-directed and SMC-based searches in the simulation

is set to 10 seconds which is the duration of a single time step.

5.5 Trajectory Optimality Evaluation

In Section 4.5, the computational efficiency of CSLVA (with the maneuvering cost function) was demon-

strated. In this section, the optimality of the solution produced by CSLVA (with the enhanced cost function)
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is compared against the solution produced by the popular SMC CR method that is found in the literature.

Comparing the optimality of these two methods requires the optimal solution which is found by a brute

force (BF) exhaustive search. SA UAV encounter scenarios are considered here just as in all other simulation

sections.

This section considers the same two types of aircraft-aircraft encounter scenarios, horizontal and

vertical taken separately, as in Section 4.5 with the addition of an aircraft-weather horizontal encounter

scenario. The aircraft-weather encounter scenario involves the own-ship avoiding bad weather regions and

possibly intruders at the same time in the horizontal plane.

The horizontal scenarios are contained within the horizontal plane Oxy, and the dynamic models for

the own-ship A and intruders B are exactly the same as in the horizontal scenarios of Section 4.5.

The “turning costs”, or costs of being in a particular motion model at time k, are ck(m(1)) = 1

(straight), ck(m(2)) = 5 (soft left turn), ck(m(3)) = 5 (soft right turn), ck(m(4)) = 9 (hard left turn),

ck(m(5)) = 9 (hard right turn). For all scenarios in this section, the look-ahead time horizon is N = 6,

ζ = 2.5, the time step duration is T = 10 sec, the threshold on PC for triggering a conflict alert is δ = 10−2,

and the process noise covariances and number of MC runs are the same as in Section 4.5. The minimum

horizontal separation distance that defines a conflict is λxy = 9.26km.

Figs. 5.1 and 5.2 show two scenarios with one intruder (top) and two intruders (bottom), respectively.

The blue, red, and green trajectories are the minimum cost, conflict-free solutions produced by the brute

force, SMC, and CSLVA methods, respectively. For all three trajectories, every fifth time step is enclosed

by a shape such as a square, diamond, or circle. The uncertainty in intruders’ trajectories is illustrated by

scatter plots sampled from the predicted mixtures. The figures illustrate the capability of CSLVA-directed

search to perform better than the SMC-based method in strictly horizontal aircraft-aircraft scenarios. All

scenarios in this section were repeated 1000 times with random maneuver sequences for the intruder(s) and

random spatial densities for the weather regions, and no conflict occurred with the own-ship minimum cost

trajectory.

The vertical scenarios are contained within the vertical plane Oxz, and the dynamic models for the

own-ship A and intruders B are exactly the same as in the vertical scenarios of Section 4.5.

The ”altitude adjustment costs”, or costs of being in a particular motion model at time k, are

ck(v(1)) = 1 (level cruise), ck(v(2)) = 3 (soft climb), ck(v(3)) = 2 (soft descent), ck(v(4)) = 5 (hard climb),

ck(v(5)) = 4 (hard descent). The minimum vertical separation distance that defines a conflict is λz = 4km.

Fig. 5.3 shows one scenario with one intruder (top) and two intruders (bottom), respectively. The

figure illustrates the capability of CSLVA-directed search to perform much better than the SMC-based

method in V1 1 and slightly better in V1 2 which is the outlier in Fig. 5.5.
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The weather scenarios are set up just like the horizontal scenarios except with bad weather regions

added that the own-ship must avoid. The dynamic model for the own-ship and all simulation parameters

are exactly the same as in the horizontal scenarios within this section. The Gaussian mixture used for the

bad weather region is comprised of six Gaussian components. As can be seen in Fig. 5.4, some parts of the

weather region are severe and, therefore, should be more strongly avoided by the own-ship. Whereas, some

parts are mild enough that the own-ship can fly near or even through.

Fig. 5.4 shows one scenario with only weather (top) and one scenario with weather and one intruder

(bottom), respectively. The figure illustrates the capability of CSLVA-directed search to perform better than

the SMC-based search in strictly horizontal aircraft-weather scenarios.

The CSLVA-directed and SMC-based searches are compared in terms of the closeness of their solu-

tions to the optimal (BF) solution over eight scenarios. For each scenario, the minimum cost achieved by

each algorithm is shown in Fig. 5.5. All costs are normalized (divided by the corresponding optimal cost)

to make the visual comparison clearer. In all scenarios, CSLVA-directed search achieves a minimum cost

that is closer to the optimal than the minimum cost achieved by SMC-based search. Except for V1 2 (i.e.,

in all other seven scenarios), the cost achieved by CSLVA is pretty close (or identical, e.g., H2 2 and V1 1)

to the optimal cost. Scenario V1 2 turns out to be difficult for both suboptimal searches, but CSLVA is still

slightly better.

Because CSLVA searches the trajectory space in order from lowest turning cost trajectories to highest

turning cost trajectories gradually, CSLVA is more capable of minimizing the first cost of (5.1) while also

addressing the second term of (5.1). In contrast, the SMC algorithm does not have a direct way to minimize

the turning cost because it searches the trajectory space in a random walk fashion. As a result, CSLVA-

directed search produces resolution trajectories that are smoother and less jagged than resolution trajectories

produced by the SMC algorithm.
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Figure 5.1: Horizontal Scenario 1: One Intruder (H1 1) (top), Two Intruders (H1 2) (bottom).
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Figure 5.2: Horizontal Scenario 2: One Intruder (H2 1) (top), Two Intruders (H2 2) (bottom).
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Figure 5.3: Vertical Scenario: One Intruder (V1 1) (top), Two Intruders (V1 2) (bottom).
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Figure 5.4: Weather Scenario: No Intruders (W1 0) (top), One Intruder (W1 1) (bottom).
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Summary and Conclusions

A multiple model method is presented here for solving the aircraft conflict detection and resolution (CDR)

problem in uncertainty. The method is applied to unmanned sense-and-avoid scenarios. In an effort to be as

realistic as possible, the formulation and design revolve around a probabilistic foundation where safety is the

number one concern followed by a good balance between swift response time and minimal fuel consumption.

The method is broken up into two distinct parts, conflict detection and conflict resolution. For conflict

detection, a randomized Monte Carlo algorithm is used that estimates the probability of conflict based on

multiple model (MM) trajectory prediction. For conflict resolution, an algorithm is used that is based on

the sequential list Viterbi algorithm wherein a list of maneuver sequences, ordered by non-decreasing cost,

is sequentially built in order to find a lowest cost, conflict-free maneuver sequence.

Comprehensive simulation and performance evaluation show that the method detailed in this thesis:

1) improves the accuracy of the predicted probability of conflict, 2) optimizes the produced resolution

trajectories, and 3) is computationally efficient. As previously shown, when the true predicted densities

of an aircraft are in fact Gaussian mixtures, the probability of conflict can be more accurately estimated

by using a multiple model framework. The optimality of the produced trajectory can be upheld by using a

conflict resolution method that intelligently searches the solution set. Lastly, the number of PC computations

and thus computation times can be greatly reduced by taking advantage of the problem’s characteristics and

adding efficiency improvements to the conflict resolution algorithm. The amount of computational time

reduction is directly proportional to the difficulty of the scenario geometry. Although numerous other CDR

methods exist already, it is fairly uncommon to find one that addresses the three aforementioned attributes

all at the same time as successfully as the MM CDR method does.
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