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DETERMINATION OF HEAD KINEMATICS
FROM IMPACT ACCELERATION TEST DATA USING
NEURAL NETWORKS

EDIT KAMINSKY and ANWER BASHI
Department of Electrical Engineering
University of New Orleans
New Orleans, LA 70148

US.A.

ABSTRACT

This paper presents a study of feed-forward neural network
(NN) systems developed to determine the head kinematics
of subjects who are exposed to impact accelerations. The
neural networks process accelerometer data collected during
short-duration impact acceleration tests conducted at the
National Biodynamics Laboratory’ of the University of New
Orleans. During an impact acceleration experiment, the
subject sits on the sled chair and a piston gives impetus to
the sled to travel down a track. Head data is gathered by an
array of nine accelerometers. Two more accelerometers are
mounted on the sled.

The neural processing systems produce the history of

the rotational and translational position, velocity, and .
acceleration of the origin of the accelerometer array In what follows we present tllze description of ?;16 samples of observable data. The EZFLOW training data
mounted on the mouth. Output produced by a least squares system, results of the neural network, c(:lompailsqn to g consists of 1600 samples of the output kinematic variables Typical Sied Acceleraion Profle
algorithm that uses both photographic and accelerometer results from other processmf systems, and conclusions an and are used as the desired response while training. We 2
raw data are used as a baseline and to provide training data suggestions for further work. determined that using six of these nine accelerometers was 0 A
for the neural networks. The main advantages of the NNs §ufﬁcient for training the network and also for generalizing /
are their speed, and that statistical information and accurate SYSTEM DESCRIPTION Inresponse to new input data. There are only six degrees of 2
modeling of the testing system are not required. Results freedom in the system. \
show that the neural networks provide accurate information The desired output variables are the kinematics of the center 40
about the kinematics of the subject even when no of the accelerometer array mounted on the mouth. The 24- To further reduce the size of the networks we only © \
photographic data are used. element state vector is °}1Y'PUt the rotational and translational acceleration l /
) IV Zor s Zes sy -s ] létl;lematics. If the network. can map t'hese states, then the
Keywords: Neural networks, kinematics, quaternions, 1Y2Y3:21:%9 299190 D12 thef;re:rt:it.esdcan a}ls;l) be.obtam§>d. This is due to the ftact that \ /
accelerometers, impact acceleration . and consists of the displacement, velocity, and acceleration integrat?;?l ;ir ? tl;c e kmfmat'lcs are scalgd summations (or -100 \A / it
of the sled in the x (thrust) direction with respect to the s) of the acceleration kinematics set. i y Rl
INTRODUCTION Sr)l(gdzlazgzg)gez‘:s ri?mt}?esyj;:;?ag)gﬂ&?g}sggé;;f ng(i 1 O‘fr networks will have to consist of at least three 10 | i i
. : : acceleration of the origin of the mouth accelerometer array ;g:rtiasr:;l;e ;Vle d<_) not have a linearly se.:parable s9lution. 0 20 40 6w sm%;g T i i
The National Biodynamics Laboratory (NBDL) of the with respect to the sled coordinate system (z; through z); er function of the output layer is purely linear so

University of New Orleans (UNO) conducts short-duration
sled impact experiments with human subjects or
anthropomorphic mannequins sitting on a sled. A piston
suddenly impacts on the sled (at up to about 16 g’s for
humans) and forces the sled and subject to travel down a

IFormerly the Naval Biodynamics Laboratory.

272-055

700-ft. track. During these impact acceleration tests, NBDL
collects linear inertial acceleration data [1] every 0.5 ms
with arrays of accelerometers mounted on a T-plate and
attached to the subject’s mouth; sled sensor data is also
gathered. Photographic data [2] is collected as well, but is
not currently being used in the neural system.

In this paper we present the development of neural
network (NN) systems used to process accelerometer input
data and produce rotational and translational kinematics
(displacement, velocity, and acceleration) of the subject’s
head. Results of the NNs are compared to those of an
extended Kalman filter [3,4] and EZFLOW, a least-squares
processing algorithm developed by NBDL and currently
used to process all photographic and sensor data collected.

and the rotational displacement, velocity, and acceleration
given in quaternion notation (g, through g,,).

The observable vector, £, consists of the acceleration
measured by each of the nine sensors in the mouth array an
the two sled accelerometers, and is defined as
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C=[(11,(X2,~~-,(X9,‘Yl,’yz]

The observable vector {, or at least some of its
components, is the input to the neural network. These
measurements are, of course, contaminated by measurement
noise. The state vector x or, again, some of its components,
is what the neural network produces as output. The
instrumentation data consists 0of 2000 samples from each of
the nine accelerometers; the sampling rate is 0.5 ms.

THE NEURAL NETWORKS

Several three-layer, fully-connected, feed-forward neural
networks were designed, implemented, and tested to
produce the desired output kinematics. All of them use the
backpropagation training paradigm. Noisy input data are
available from the impact acceleration system, and output
data (kinematic variables) from a processing system
currently used by NBDL, called EZFLOW [5], are also
available and used to train the neural nets.

Eight sets of files containing instrumentation data and
the corresponding (assumed) correct mappings were used to
train each neural network. Three more sets of files (that the
network had not been trained on) were used to test the
neural networks’ generalization abilities. All of the data
contained in the files were obtained from independent runs
performed by NBDL (i.e. different subjects, different “g-
levels”, etc.)

There are 9 accelerometers, each providing 2000

that a.wide range of values can be represented; the transfer
f%mctl(‘)n of the hidden layer was chosen to be a symmetric
Sigmoid. The networks are trained using a back-

propa}gation algorithm with momentum term and variable
lealmng rate.

The general method by which temporal or sequential
Patterns are recognized by a neural network is by applying

~225-

the input vector (let us call the k-time input vector x,) to a
tapped delay line. The set of resulting vectors is then fed
into the network as the new input. Using this technique, a
neural network can recognize the time dependencies of the
data as well as such non-localized properties as rate of
change, variance, mean, etc. We tried two techniques of
presenting the training data: Piecewise presentation, and
complete presentation.

Piecewise Presentation

We can provide a local “windowed” version of the data

by using a tapped delay line with a length that is shorter
than the length of the data to be presented:

<Xiem s - 5 X1 X Xpwts

tee o Xk+m >

For convenience, we will refer to this as the M™-order
model. We will use a slight variation of this window that
has a broader selective window:

< Kieme s+ 9 Xi10Xp Kitler oo » Xk+mt:>

Where ¢ is a positive constant greater than one that
stretches the window’s samples in order to get a better look
at the “big picture”.

We can also assume that our system has discrete
operating modes corresponding to the following: Pre-
impact, impact acceleration, impact deceleration, and
settling down (see Fig. 1).

Fig. 1: Sled acceleration showing pre-impact, impact
acceleration, deceleration, and settling (m/s?).

This leads us to suggest that the input can be presented
for piece-wise analysis since the network can deliver a
response at the presentation of data corresponding to each
mode.




Training signals are generated by applying a sliding
window both to the instrumentation data and to the
processed data. This “local image” of the instrumentation
data is then fed to the network as the input and the image of
the processed data presented as the desired response. We
can thus extract training sets from each run.

Complete Presentation

This technique presents all the input-output data at once.
The difficulty to be overcome here is that 1600 samples for
each of the six selected accelerometers and each output are
to be presented. The size of the resultant network in this
case would be massive. Obviously, some down-sampling is
appropriate here. The output of the network will be
compared to the output of a down-sampled version of the
desired output to produce the error vector.

The most obvious and simple method is to use a
uniform sampling rate applied to both the input and the
desired response to down-sample the original data stream.
We apply a low-pass filter to the input to remove the high-
frequency noise components from the signal before
subsampling.

RESULTS

When presented with the data through a sliding window, the
results were not as good as those obtained with a down-
sampled version of the complete history; we present these
results for completeness. Several runs were performed with
varying number of samples, model order, hidden neurons,
and training epochs. When M=1, poor results were
obtained. The results were better when M=2 and slightly
better than that when M=3. When the model order was
increased to M=4, no significant improvement took place.
The peaks of the estimate of the linear accelerations seem to
start at the same time as the peaks for the desired response,
however the magnitudes don’t match well, with errors as
large as about 30 %.

Sled and Head Accelerations, Concatenated Sequentially
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Fig. 2: Sled and head NN accelerations (complete pres.) (m/s?)
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The best results were obtained when the neury|
network was presented with the complete (un-windoweg
down-sampled signal vector; in this case the networkg
response almost overlaps the desired response, both in the
case of the linear accelerations and in the case of the
rotational accelerations. In Figs. 2 and 3 we show examplg
of the results obtained with the neural network as wel| 5
the results from EZFLOW which are used to validate b,
networks performance. Fig. 2 presents the acceleration of
the head and the sled in the x-direction concatenated, while
Fig. 3 presents each of the four components of fhe
acceleration quaternion, again concatenated into one vector,

Quatemion Acoderations, Concatenated Sequentially
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Fig. 3: Quaternion NN accelerations (complete pres.) (s?)

Our results show that it is possible to solve the non-
linear mapping problem with the use of a simple neural
networks. We trained our networks with 40, 80, and 160
samples (out of a total of 1600), all with similar results.

Some numerical results are displayed in Table I. The
column labeled “Total Error” is obtained by calculating the
sum of absolute error between the network’s response to a
previously unseen stimulus and the desired (EZFLOW)
response to that stimulus; it is the sum of the errors from
each of the network’s output neurons for all time. The
column TE/Sample indicates the sum of the errors for the
six output states, averaged over discrete time.

The optimal size of the network’s hidden layer seems
to be around

Jn+m

where 7 is the number of inputs to the network, and 7 is the
number of outputs.

CONCLUSIONS

we have shown that it is possible to solve the non-linear
mapping problem of inertial accelerometer array data to
head kinematics data with the use of a neural network by
sub-sampling the original sequences and training three-layer
packpropagation networks. Both rotational and translational
kinematics were produced with very small differences when
compared to output from a least squares processing system.
Notice that only accelerometer data was used with the
neural networks, while EZFLOW requires both
accelerometer and photographic data to produce results.

In the future, tests using recurrent networks to solve
this problem with windowed data might prove to be even
more fruitful than the technique presented here. Also, we
may take advantage of the availability of photographic data
and improve the performance of the neural networks by
using these data along with the sensor data.

We can also use specialized sub-nets for each of the
four modes (pre-impact, acceleration, deceleration, and
settling). While more networks would have to be used, each
one would probably be smaller than one single network that
works for all modes.
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Table I: Neural network configurations and results.

Number Input nodes Hidden |Output nodes | Total Error TE/Sample
Samples nodes (sum of 6)
160 960 22 960 15696 98.10
80 480 31 480 7775 97.19
40 240 240 240 3519 87.98
40 240 255 240 1974 49.35
40 240 480 240 1995 49.88
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