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Abstract

This paper presents a neural decoder for trellis coded modulation (TCM) schemes. Decoding is performed with Radial Basis
Function Networks and Multi-Layer Perceptrons. The neural decoder effectively implements an adaptive Viterbi algorithm for
TCM which learns communication channel imperfections. The implementation and performance of the neural decoder for trellis

encoded 16-QAM with amplitude imbalance are analyzed.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Most applications of neural networks to communica-
tions systems have concentrated on nonlinear filtering
and equalization (Sheng Chen and Mulgrew, 1993;
Al-Mashaq and Reed, 1994) or on routing for
ATM systems (Mehmet and Kamoun, 1993; Lee,
1993). More recently, work has been performed in the
decoding area (Buckley and Wicker, 1999). Several other
neural network applications to communications, includ-
ing channel modeling, echo and interference cancella-
tion, and receiver design are summarized in Haykin
(2000). In Buckley and Wicker (2000), a neural system
composed of two neural networks is used to predict
turbo decoding error and request re-transmission if
deemed necessary. We present here a novel application:
neural decoding for trellis coded modulation (TCM)
systems.

The neural decoder consists of radial basis function
networks (RBFN) (NeuralWare Technical Publications
Group, 1993) with adaptive centers to adjust to channel
imperfections and noise conditions. The signal mapper,
which ultimately produces the binary output, uses multi-
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layer perceptrons (MLP) (Werbos, 1974; Hagan et al.,
1996; Fa-Long and Unbenhauen, 1997). It has already
been proven (Petsche and Dickinson, 1987) that near
maximum likelihood (ML) estimation can be performed
using trellis-like neural networks. Moreover, Petsche
and Dickinson (1990) recognized the similarities be-
tween the structure of trellis convolutional codes and
neural networks, and applied concepts from coding to
generate fault tolerant, self-repairing neural networks.
We exploit these similarities—in the opposite direc-
tion—to design neural networks to decode TCM
signals in communications systems with imperfections.
Unlike the networks used in Petsche and Dickinson
(1990), which are fully connected and update the weights
based on Grossberg differential equations, we have
networks whose connections depend on the trellis code
being used, and use competition between layers of
RBFNs.

Standard Viterbi algorithm (Viterbi, 1971) decoding
of TCM is intolerant to channel or receiver variations
in the reference signals. The Viterbi decoder’s
behavior does not depend on the channel itself or
on how the noise-free signals in the subset may be
modified by the channel or the receiver. We present the
design of a system which is able to learn the channel/
receiver characteristics and then bases decoding
decisions on the additional information acquired.
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Also, because neural networks are parallel machines, the
speed limitation of the standard Viterbi algorithm is
alleviated by using a neural decoder. Decoding complex-
ity of the neural decoder is still proportional to the
number of encoder states, 2", where v is the encoder
memory.

Standard decoding of TCM is performed in two
phases (Wicker, 1995): path selection and subset
decoding. The neural decoder, therefore, is composed
of two interconnected subnets operating in parallel. The
requirements for Viterbi-like decoding from one net-
work (for path selection) and signal classification with
signal-to-bit mapping by the other network (for subset
decoding) lead to very different designs. The neural
Viterbi decoder network tasked with performing path
selection requires elements that classify received se-
quences with elements that have overlapping decision
regions, and a feedforward architecture with constraints
on the connections between layers. The signal classifier/
mapper is to behave as a simple classifier which
maps non-binary signal inputs to binary output signals.
These requirements led us to choose RBFN for the
Viterbi decoder (path selector) and multi-layer percep-
trons (MLP) for the signal classifier/mapper. This means
that the estimated signals from the RBFN are the inputs
to a signal classification network that identifies the
signals in the constellation and generates the decoded
bits.

The overall goals of this paper are to: (1) present
an adaptive TCM-decoding scheme suitable for
parallel hardware implementation, and (2) provide
insight into the overlapping concepts between the coding
theory and neural networks disciplines. We stress the
latter by discussing the appropriateness of utilizing
RBFNs with Gaussian transfer functions in the path
selection stage of TCM decoding, which effectively
compute the likelihood functions, providing not only the
best path at the output, but a ‘confidence measure’ as to
the certainty that the selected path was actually
transmitted.

We use trellis-encoded 16-QAM throughout to
exemplify our work. Adaptation to channel imperfec-
tions is demonstrated with a simple system with
amplitude imbalance.

The rest of this paper is organized as follows:
Section 2 presents a short review of TCM, trellises,
and the Viterbi decoding algorithm and metrics as
applied to TCM; it also describes the trellis-encoded 16
QAM system using a rate-1/2 convolutional encoder.
Section 3 summarizes RBFN concepts. In Section 4 the
design and implementation of the neural TCM decoder
is explained. Section 5 describes the simulation strate-
gies. Simulation results for the 16-QAM TCM system
with AWGN and amplitude imbalance are given
in Section 6. Concluding remarks are presented in
Section 7, followed by references.

2. Trellis coded modulation

Trellis coded modulation (TCM) is a combined
coding and modulation scheme proposed by Unger-
boeck (1982) to be used primarily over band-limited
channels where bandwidth efficiency is a priority. TCM
schemes use redundant modulation in combination with
a finite-state convolutional encoder. TCM expands the
signal space to provide redundancy for coding and then
performs joint coding and modulation so as to maximize
the minimum Euclidean distance between coded signal
sequences. Ungerboeck proposed the following steps
to improve the bit error rate over uncoded systems:
(1) Add one redundant bit to every m source bits via a
rate m/(m + 1) convolutional encoder; (2) expand the
signal constellation from 2 to 2”*! signals; and (3) use
the m+ 1 encoded bits to select signals from the
expanded constellation. Thus, the modulator maps the
data bits into one of M = 2"*! possible signals for
transmission over the communications channel with a
bandwidth efficiency of m information bits/s/Hz. TCM
schemes, nonetheless, are neither limited to one redun-
dant bit, nor to 1D and 2D constellations. Work by Wei
(1987); Kaminsky et al. (2002), and others have sought
to reduce the normalized redundancy by using multi-
dimensional constellations.

Ungerboeck’s signal assignment rules, restated in
Wicker (1995), are: (1) signals in the same, lowest
partition (subset) are assigned to parallel transitions in
the trellis; (2) signals in the preceding partition are
assigned to transitions that start or stop at the same
state; and (3) all signals are used equally often. The
encoded bits select a subset from the constellation
partition, and the remaining bits select the point to be
transmitted from within the selected subset, as shown in
Fig. 1.

Each node in the convolutional encoder’s trellis
diagram represents the state of the encoder at a given
time. A branch between two states represents the
transition between these states and is labeled with the
output code sequence for convolutional codes, or
subsets for TCM, associated with that transition. Every

[ B

Select point

Convolutional
encoder
R=m/(1m+1)

Select subset

Fig. 1. Typical trellis encoder showing encoded bits selecting subset
and uncoded bits selecting signal from within the selected subset. The
modulated signal point selected, p;, is transmitted.
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possible sequence of transmitted subsets corresponds to
a unique path through the trellis.

At the receiver, a sequence decoder must make a
nearest-neighbor decision as to which sequence out of
the entire coded signal space the received signal
sequence is nearest to. The most probable error is
between signals that are closest in terms of Euclidean
distance (ED). Ungerboeck designed codes to maximize
the free distance and at the same time preserve
bandwidth efficiency by incorporating the redundancy
into the signal set itself. The free distance is defined by

dvee = Min(dpara d), (1)

where dp,r is the distance between parallel trellis
branches, and d is the minimum distance between paths
of length longer than 1 branch. For a detailed discussion
of distance between paths, error-correcting capability of
a code, and the generator function of a convolutional
code or trellis refer to Clark and Cain (1981) or Wilson
(1996).

2.1. Trellis coded 16-QAM

We present here the trellis encoded 16-QAM system
that we use throughout this paper to exemplify the
general neural TCM decoder design. This is also the
system simulated for which we present our neural
decoding results. The neural decoder can easily be
extended to more complex systems with encoders of
higher rate and larger constellations.

It is assumed we want to send 3 bits/s/Hz for which
uncoded 8-PSK could be used if no error correction
were desired. To use TCM with one redundant bit, the
constellation size must be doubled to 16 points. The
signal set of choice for the expanded constellation is,
then, 16-QAM. The two 4-level streams are modulated
using a carrier and a 90° phase-shifted version of the
carrier to provide the in-phase (I) and quadrature-phase
(Q) signals which are transmitted over the noisy
channel.

White noise is assumed to be inherent in the channel.
Adding noise to the signal is equivalent to adding
independent random noise to each of the I and Q
channels, which cause the constellation point to move
relative to its true (noise-free) position.

Redundancy is introduced following Ungerboeck’s
rules by using a rate 1/2 convolutional encoder. One
information bit enters the encoder, and the resulting two
coded bits are used to select one of the four possible
subsets. The remaining two uncoded bits are used to
select one of the 4 possible signals within the selected
subset. We can consider the overall rate of the TCM
system to be of rate 3/4.

Fig. 2 shows the expanded constellation, the 16-QAM
signal set, partitioned following the rules for set
partitioning proposed in Ungerboeck (1987). The points

in the 16-QAM constellation are signed permutations of
the following basic 2D points: (1,1), (1,3), and (3,3). The
minimum distance between points in 16-QAM is there-
fore 2. The constraints placed by the set-partitioning
rules result in the points within each subset having a
greater minimum distance than the parent constellation;
this distance, called the free distance of the system, is 4,
for an asymptotic gain of 3 dB.

Fig. 3 shows the complete TCM encoder, including
the convolutional encoder of rate 1/2. Fig. 4 is the
corresponding 4-state trellis diagram. One uncoded bit,
x!, enters the convolutional encoder, and two encoded
bits are produced at its output, y° and y'. These two bits
select one of four possible subsets, denoted Sy through

Fig. 2. Partition of 16-QAM into 4 subsets.

x} . | Mapper
.2 | Signal
X' select Signal
e e
S Yol Subset
\L/ Select
Yo

Fig. 3. TCM with convolutional encoder of rate 1/2 and constraint
length of 2.

SU: Sl

B, B3

Sl: SU

B3, 52

Fig. 4. Four state trellis diagram.
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S5 in Figs. 2 and 4. Each of these subsets contains 4
points, and it is the other two original bits, x> and x*
that select, from within the selected subset, the point to
be transmitted. Fig. 4 also shows the subset assignment
to each branch of the trellis. For example, the transition
from the second state to the fourth state requires
transmission of a signal from subset S;. If the remaining
uncoded bits are 01, then the point transmitted is

(1,-3).
2.2. Viterbi algorithm

The Viterbi algorithm (VA) was proposed in Viterbi
(1971) for decoding convolutional codes in memoryless
noise. Small modifications to the VA need to be made
for decoding TCM sequences. Costs are associated with
each branch in the trellis, and a path is sought through
the trellis for which the total cost is minimized.

The task of the TCM decoder is to estimate the path
that most closely resembles that of the received signals.
This maximume-likelihood (ML) problem is akin to
finding the shortest distance through the TCM trellis.
Wicker proves in Wicker (1995) that the path selected by
the Viterbi decoder is the maximum likelihood path.

Consider an information sequence x encoded into a
codeword y which is then sent through a communica-
tions channel with additive white Gaussian noise
(AWGN). The decoder must take the received vector r
and generate an estimate y of the transmitted codeword.

The inputs x, each of length m, are the input to a rate
m/k convolutional encoder; as stated previously, we will
use k =m+ 1, so only one redundant bit is used per
symbol. The output of the encoder is the sequence y.
Memoryless channel noise corrupts this output vector
producing the received signal r:

r=y-+n, (2

where n is the zero-mean Gaussian random variable
representing the AWGN. The decoder generates an ML
estimate ¥ as in (3):

y for max p(r|y). (3)

Wicker (1995) summarizes the operation of the VA as
follows: Let the node corresponding to state j at time ¢
be N;,. Metrics V(N;,) are assigned to each node in the
trellis using the following steps:

® set V(Nopo)=0and r=1.

® at time #, compute the path metric for all paths
entering each node.

® set V(Nk,) equal to the best partial path metric
entering the node corresponding to state k at time .
In case of a tie, randomly assign V(Nk,). This is
called the survivor branch.

® all non-survivor branches are deleted from the trellis.

® continue until end of transmission (¢fna).

® start at the last node at #g,, and follow the surviving
branches back through the trellis. The path generated
in this manner corresponds to the ML path.

The metric most often used for soft decoding of TCM is
the squared Euclidean distance (SED), but any mono-
tonic function of the SED may be used. The perfor-
mance criterion used in the analysis of a Viterbi decoder
is minimization of the probability of error event, where
an error event occurs when a path leaves the true path in
the trellis, reemerges with the true path at a later time,
and is declared a survivor.

Since the VA finds the most likely path through the
encoder’s trellis, it minimizes the sequence or event error
probability. The bit error probability is closely related to
the event error probability, and hence the VA also
results in a small, but not necessarily minimum, value of
bit error probability (Lin and Costello, 1983).

2.3. TCM decoding

TCM decoding is performed in two steps:

® Signal selection at each branch (subset decoding): At
each branch in the trellis, the decoder compares the
received signal to all the signals in the subset assigned
to that branch. The identity of the signal closest to
the received signal in Euclidean distance is saved. The
branch is labelled with this metric.

® Path selection: The VA, as described above, is then
applied to the trellis, with surviving partial paths
corresponding to partial signal sequences that are
closest to the received sequence. Thus, the VA is used
to find the signal through the code trellis with the
minimum overall metric (most often the sum of
squared distances) from the sequence of received
signals chosen by subset decoding.

2.4. Metrics

As mentioned above, there is no unique metric
universally used in the VA. If the only requirement is
to select the most likely sequence to have been
transmitted, conditioned on the received sequence, any
metric may be used. The Hamming distance is the most
widely used metric in hard Viterbi decoding, while the
Euclidean distance is most commonly used for soft
decoding. If we have the added requirement of obtaining
some information about the reliability of the decision, a
function of the distance and the channel characteristics
should be used. For example, we may use the
probability that the particular branch is the most likely
branch as the metric; we may also use the log of this
function, or any other monotonic function of it. Again,
it is only the ‘additional information’ obtained that
changes, not the path selected. The standard ML
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decoding does not deliver a reliability measure along
with the selected sequence.

The path metric for path i, V', is given by the sum of
the B branch metrics, y;, in that path (Proakis, 2000):

B
vo=> )
Jj=1

The path with the maximum (or minimum, depending
on how the metrics are defined) metric is chosen as the
ML path.

It is shown in Bossert (1999) that the MAP
probability is proportional to an exponential function
of the path metric:

P(x)P(ylx)~e", (%)

where this is true for the overall metric as well as the
partial metrics.

We can easily understand the decoding strategy if we
look at the problem as hypothesis testing: There are M
possible hypotheses (sequences), S; the decision maker
(the decoder) produces a decision based on the received
sequence r. The decision is made in favor of the sequence
y; if re D;, the decision region of y; (Wilson, 1996). An
error (false hypothesis selected) occurs if the received
vector is within the wrong decision region. The
conditional probability of error is then

P = PaeDS) = [ f(iS)dr, ©

where the superscript ¢ indicates complement.
The overall probability of error is

M-1 M—1
PO =Y PPES)=Y P / (riS) dr. )
i=0 i=0 ol

The decision then becomes

Si = arg max[P/(r]S)]. ®)
Si

Using Bayes’s rule we obtain

Py (x[Si)
f@® -

where f(r) is the marginal pdf, and is independent of i.
So maximization of the prior, maximizes the posterior.

We use the fact that maximization over i of any
monotonic function of P;f(r|S;) is optimal.

Often, it is the product of metrics that is minimized
(or maximized). We will shortly use the fact—recently
discussed in detail in Kschischang et al. (2001)—that we
can also perform the “minimum of sums’ operation
instead of the “sum of products” operation to achieve
the same ML path.

P(Silr) = )

2.5. Performance measures

The upper bound on the node error probability is
important and therefore presented here. If y is the
transmitted coded sequence and ry is the sequence that
diverges from y at some point in the trellis an reemerges
after k branches, and P(y—ry) is the pairwise error
probability of the two sequences, then the union bound
for the probability of error is given by

P, < ; ; Z P(y)P(y > i), (10)

where the innermost summation is for the probability of
error for all the components of the diverging sequence of
length %, the next summation is for all possible
transmitted sequences, and the outermost summation
is for all possible transmitted sequence errors which
diverge for 1 branch, 2 branches, and so on. A simplified
expression for the union bound on P, is

d* Es
ng free
21\ ow,
dfiee Es
X eXp| = T (D)| p—exp(—Es /4N,)> (11)
o

where T'(D) is the weight enumerating function (also
called the generator function) of the convolutional code,
as defined in Wicker (1995), Lin and Costello (1983),
and Wilson (1996). Eg is the average symbol energy, and
the variance of each component of the AWGN is ¢> =
N, /2. The free distance was given in (1).

If the signal to noise ratio is sufficiently high, a more
tractable and widely used approximation for the
probability of error is

d:..Es

P~ N(dfree)Q % > (12)
0

where N(dgee) is the error coefficient, i.e. the average
number of sequences that are at free distance dfe. from
the transmitted sequence.

3. Radial basis function networks

Radial basis function networks (RBFN) have radially
symmetric internal representations of the hidden proces-
sing elements or pattern units (PU). Each PU has a
center, a distance measure, and a transfer function. The
output of an RBFN is a multidimensional function of
the distance between the input vector and the center or
prototype vector. The input-layer neurons of the RBFN
feed the input vector to the hidden layer. The hidden
units compute the distance between the input vector and
the pattern unit’s center.
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We denote the input vector as
X = [1, X2, X3, -5 Xn] " (13)
and the center of each hidden layer neuron i as
C; = [c11, 21, €3ty wvos Ci] (14)

where n is the dimension of the input vector. The output
of each neuron i in the hidden layer is given by

h; = fi(IX = Cil). (15)

The connection between the hidden and output layers is
weighted and each neuron in the output layer has a
linear input/output relationship thereby implementing
summation only. A diagram of an RBFN is shown in
Fig. 5. Notice that the prototype vectors (centers) are
stored as the connection weights between input and
hidden layers.

The weights of the RBFN, i.e., the centers, Cy, and
the output weights, W, must be computed. A clustering
algorithm is used for the centers, while one of the many
available training algorithms (Fa-Long and Unben-
hauen, 1997) are used to select the weights in the output
layer. If the fixed channel structure is known precisely,
the clustering part of the training algorithm for the
RBFN can be eliminated in favor of predetermined node
centers.

The units in an RBFN are ‘selective’ for some range
of input signal space. We will use this ‘selective region’
to be the ‘decision region’, D;, in Eq. (6). Not only do we
determine whether the received signal is within the
region, but how close it is to its center.

Many functions are appropriate for the mapping of
(15). Any strictly positive radially symmetric kernel with
a unique maximum at its center, and which drops off
rapidly to zero away from the center, is appropriate
(Hassoun, 1995). Due to the nature of noise assumed

rda

BN
\

\
L7

Fig. 5. Radial basis function network. The components of the center
vectors (prototypes) are cj; and the output layers’ weights are wj.

(AWGN), we choose to use the Gaussian function for
all neurons

hi:ﬁp( X c,||)’

o2

where ¢ is another RBFN parameter to be determined.
This third parameter, g, is the standard deviation of the
neuron’s receptive field, indicative of the width of the
receptive field of the neuron, and usually obtained by
the nearest neighbor heuristic (NeuralWare Technical
Publications Group, 1993). In our application, this
parameter is the standard deviation of the AWGN in the
communications channel. The nearest neighbor heuristic
indeed yields this result. The norm in (16) is the
Euclidean norm. Under this view, one may interpret
(16) as the probability of observing a certain sequence
under a Gaussian distribution (were constants are
neglected or normalized).

(16)

4. Neural TCM decoder

In order to make the rest of this presentation clear, we
define several terms and indicate the equivalences
between the NN terms and the corresponding TCM
terms. Please refer to the diagrams of Figs. 4 and 6,
where the similarities between the TCM trellis and the
RBFN architecture of our neural decoder become clear
and intuitive.

® Layer: An RBFN neural network layer. There is one
layer per each decoding signalling interval or,
equivalently, one layer per each symbol in the
sequence. We denote the number of layers as I'.

® Dnodes: A decoder node. There is one Dnode per
trellis node, where a trellis node is a starting or ending
state in the encoder’s trellis.

® Subnode: A subnode of a Dnode. There is one
subnode per partition subset, and therefore as many
subnodes per Dnode as there are branches leaving or
entering a trellis node.

® PU: A subnode processing unit. Each PU corre-
sponds to a signal in the partitioned subset. There are
as many PU’s in each subnode as there are signals in
each partition subset.

The neural TCM decoder consists of two interconnected
neural networks operating in parallel. We describe each
in what follows.

4.1. RBFN decoder

A radial basis function network (RBFN) can be
thought of as a multidimensional function that depends
on the distance between the input vector and the center
vector (Fa-Long and Unbenhauen, 1997). This ‘distance
between vectors’ is analogous to the metric of the VA as
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subnodes Dnode

equals the
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a transition
The Pu’s in Lhe
subnoda
correspond to
signalsina
partitioned subset

Layer2

Layerl

Fig. 6. Dnode and subnode architectures of the TCM decoder.

applied to TCM, where the distance between the
transmitted vector and the received vector is of
consequence. The functionality of a PU in an RBFN,
then, is very similar to decoding in a TCM system since
both compute distances between a vector (input pattern
vector in RBFN, received vector in TCM) and a
prototype (the center in RBFN, the possible transmitted
signals in TCM).

For an n-dimensional input vector, each pattern unit
first calculates the distance between the input vector and
its center or prototype vector. In the ideal case, these
centers are known to be equal to the expanded
constellation used in TCM, or the mapped constellation
points if the channel characteristics are known. In the
case of unknown or varying channels, the fixed
constellation signals are used as the initial state for the
centers’ training. This distance measure is then mapped
to an output /; (the metric in the neural TCM decoder)
by a function which depends on the ED between the
input vector and the center of the PU, as given in (16).

At this point it is pertinent to address the following
question: “Why a Gaussian transfer function for the
PU?”. We know each branch in Viterbi decoding is
labelled with a metric directly proportional to the
distance between the received signal and the winning
signal of the subset associated with that branch.
Consider the case of a slightly noisy signal at the input
to a PU. If the noise is a small, the signal will be slightly
displaced from its position in the constellation (i.e., it
will be slightly away from the center of the correct PU).
We want the PU to classify this as being close to its
stored center with a high degree of confidence; as the
effect of noise becomes more pronounced, the con-
fidence of the PU that the received signal is actually
related to the signal stored in its center should decrease.
The exponent in the Gaussian function ensures high
values for small distances, and a decrease for values that
are spaced relatively far away from zero. The standard
deviation term, o, in the Gaussian function (16) controls
the variance of the distribution, and therefore the width

SUBNODE
Fig. 7. TCM RBFN subnode and node architectures.

of the transfer function. Functions that overlap among
neighboring PUs are advantageous as in a low SNR
environment the received signal at the appropriate PU
may be spaced far enough from the center that the
output of the PU may be lower than the output of a
nearest neighbor PU in that node, i.e., a PU whose
center is closer in ED to the PU under consideration.
This signal would cause an error event if 4; is very
narrow, as an erroneous branch would be followed in
the state trellis. The value of o, then, should be chosen
based on the signal constellation being used and the
expected noise level; if unknown or varying, an adaptive
a(t) may be used.

We can think of the Gaussian transfer functions as
yielding a “‘membership value” that describes to what
degree the input pattern fits within the cluster’s region.

Each of these RBFN PUs, then, computes the
distance between the received vector and its stored
prototype vector, and outputs the metric 4;. Several, say
L, such PUs form a subnode in our network, as shown
in Fig. 7. If there are a total of D states in the trellis, T’
transitions per state (incoming or outgoing branches at
each trellis node), and L =2’ points per subset, we
would have a total of D Dnodes in a layer, 7" subnodes
per Dnode (for a total of DT subnodes per layer), and L
PUs per subnode (for a total of LDT PUs per layer). A
subnode, then, consists of as many PUs as there are
signals in each subset.

Each node in the trellis is associated with the subsets
that are assigned to the branches leaving the node, as
shown in Fig. 4. This would mean that each Dnode in
our net would have as constituents the subnodes that
represent the subsets associated with the node under
consideration in the trellis. A subnode therefore per-
forms the first part of the first step in the VA by
computing the distances from the centers of each of its
PUs to the received signal.

The second part of the first step in decoding is keeping
only the signal with the best metric. The input (received
signal) is fed to all the PUs in the Dnodes. The output of



8 E.J. Kaminsky, N. Deshpande | Engineering Applications of Artificial Intelligence 1 (1111) 11111

the Dnodes is from the PU (signal) in a particular
subnode (subset) whose output is a maximum (best
metric). This operation is performed by a modified
competitive transfer function C for the subnode. This
transfer function, for each subnode ¢, is given by

C; = max(PU,). (17)

After the competitive function is applied, only the signal
closest to the received signal in each subnode is kept,
and its metric stored. At this point there will be a total of
TD of these ‘winners’, T per Dnode in each layer.

The first layer of the neural decoder consists of
Dnodes where each Dnode corresponds to a state of the
convolutional encoder. The Dnodes in this first layer are
connected to Dnodes in subsequent layers such that the
subsets associated with the Dnode represent valid trellis
transitions from the state being represented. Our neural
decoder is only partially connected, and the total
number of connections is bounded by a linear function
of N, where N is the number of neurons in the network.

The next layer, and every succeeding layer of the
decoder, will be identical to the first layer. Connections
are formed between the Dnodes of the consecutive layers
only when there exists a valid transition between the
corresponding states of the trellis. Each Dnode also
contains simple neurons that perform the addition
operation for two inputs; this implements the cumula-
tive metric computation as the VA proceeds. One input
to this subsystem is the connection from the preceding
layer and the other input is the received symbol delayed
by k, where k is the layer position. Fig. 8 depicts two
layers of the neural decoder architecture.

L Shift Regl | | Shift Reg2 |
[[1 chanmel T Q@ channei] [ chanoel [Q chansel] |

D =Dnode C = Compstitive
fanction

@ =summer

Fig. 8. Neural decoder architecture showing two layers of two Dnodes
each.

The delayed inputs are sent to the neural net via a
shift register or delay line as shown in Fig. 9. Signals are
not fed to the neural decoder until the shift register is
entirely filled with data during initialization.

To compare paths at each node where two or more
branches are incident, a neuron with the modified
competitive transfer function in (17) is incorporated as
shown in Fig. 8 by the block labelled C. This neuron
picks the Dnode with the largest path metric as the
winner, and enables it to transmit its cumulative path
metric to the succeeding Dnode additive element. The
competitive layer output is also used as a gate input to
the previous layer along the path as shown in Fig. 9.

The next step in giving the network the functionality
of a Viterbi decoding algorithm is incorporating the next
parameter of consequence, the decoding depth I, i.e.,
determining the number of layers in the network. The
ML algorithm assumes that the entire transmitted

Shift Register
- Gate
Input connections r input
. o o\
cisi
= O
o
i o
t - [ layer T layer
:lMLP ! — Note that the connections between the
[ MLP 2 subset and signal decoding nets are unique
|_| and they trigger only a single output at a
Decoded bits time.
. MLP n
L 7

Fig. 9. Neural TCM decoder architecture.
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sequence is received before the path is decoded via the
Viterbi algorithm. Practically, of course, this is not
feasible because the decoder cannot be allowed to have
an infinite delay before releasing the decoded bits. We
have chosen to output the (r — I')th information block
on the surviving path with the best metric. The value of
the decoding depth I' is given in Forney (1974) as
I'~5.8v, where v is the length of the largest shift in the
convolutional encoder. The probability of truncation
error decreases exponentially with I (Forney, 1974). At
low SNR, this probability of truncation error becomes
negligible if I'>5.8v. The number of layers of Dnodes,
then, is equal to the decoding depth I'. At the I'th layer,
a decoding decision is made on the (¢ — I')th received
symbol. The decoder is designed such that the informa-
tion bits associated with a surviving branch at time 7 are
released when the decoder begins operation on the
branches at time ¢+ I'.

A gate input is available to activate the decoded
subnode (subset) within a Dnode. This subnode
activates its unique signal decoding MLP network—
discussed in the next section—that has already per-
formed pattern recognition on the received signal to
decode the remaining bits. The other MLP nets are not
triggered and their signal decoding results are ignored or
discarded. An element of parallelism is seen here, where
the MLP signal decoding structure performs its task
before it is activated based on the subset decoding net.
Apart from enabling the associated signal decoding net,
each Dnode has fixed bits stored in a memory element
attached to the Dnode which correspond to the m
decoded bits related to the & (usually m + 1) encoded
bits that select the subset. The Dnode, then, also serves
to strip off the redundancy in the signal.

The early simulations of our neural system exposed a
tendency of the network to have its branch metrics
strongly influenced by noise in any of the final stages of
the net, thereby often making decisions at the I'th layer
incorrectly. We found that under noisy conditions the
Dnode outputs tended to collapse together, and the
separation between the minimum and maximum Dnode
output was reduced compared to clean signal outputs
where the separation was greater. To alleviate this
problem, a weighting metric for each layer was
developed as given by (18)

W; = max(Dnode;) — min(Dnode;), (18)

where W; is the weighting metric of layer i, and Dnode; is
the output of a Dnode in that layer. All the outputs of
the Dnodes of the layer are then weighted by (18) and
fed as inputs to the last layer so that the final sum at the
competitive layer is a weighted sum of the winning
Dnodes’ outputs. It is possible that the branch metrics
may become so small relative to the path metrics of the
surviving paths that the branch metrics make no
contribution during the update of the path metric. This

may cause the decoder to fail catastrophically. This
problem is remedied by using (18).

One of the disadvantages of RBFN, as stated by Fa-
Long and Unbenhauen (1997), is that the initial learning
phase is an unsupervised clustering algorithm. This
phase is made to work to our advantage for the training
of the PUs. Throughout the design we have made the
assumption that the decoder has total knowledge of the
TCM system at the transmitter end. This enables us to
fix the centers of the PUs before we begin training. This
assignment is the initialization step for an adaptive K-
means algorithm that is used in the training phase of the
RBFNs. Any number of sources or events may disturb
this signal. Sinusoidal interference, amplitude imbal-
ance, amplitude non-linearities, and phase jitter are
shown in Winch (1993) to be potential problems on the
received signal. If the errors in the training sequence are
not too severe, then the PUs actually ‘learn’ these
imperfections by shifting the position of their centers
and, if needed, the ¢ in (16). The center of the winning
PU is modified by

CrY = COM 4 (X — €Oy, (19)

where X is, as before, the input symbol vector, C; is the
center for the ith PU, and « is the learning rate that
either decreases as time increases or is fixed at a value
smaller or equal to 0.5. In the former case training can
be stopped either when a = 0, or after a fixed number
of iterations, or after it is observed that the PU has
adapted to the channel/receiver conditions. If required,
a very small « value may be fixed and training may
continue throughout the operation of the decoder,
enabling the decoder to adapt to long term drifts in
the environment.

4.2. MLP signal mapper

In the previous section we mentioned the issue of
subset decoding, i.e., decoding the signal from within the
selected subset, and obtaining the output bits. These
operations are performed by networks in parallel with
the RBFNs. We describe this mapping/signal classifier
here. The results of those networks not receiving a
trigger signal are neglected. The function of the signal
decoding net involves recognition of the signal in the
subset and the mapping of the signal into bits to be the
output of the decoder. We can use simple pattern
recognition networks because the choice of signals in
the subset decoded are due to the uncoded transmitted
bits of TCM which are independent and memoryless
events.

Our technique is based on the work presented by Bose
and Garga (1993)—which somewhat adds complexity to
the solution but keeps our complete system °‘ neural”—
in which an exact procedure is proposed that not only
determines the number of layers and the number of
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neurons in each layer, but also the connection weights
for the desired multilayer, feedforward topology. This
technique is largely dependent on the construction of
Voronoi diagrams (Okabe and Sugihara, 1992) over the
set of points to be classified. Voronoi, and earlier
Descartes and Dirichlet, considered the set of points
regularly spaced in m dimensional space generated
by linear combinations of m linearly independent
vectors with integer coefficients. The Voronoi diagram
generated by this set of points serves the pur-
pose of partitioning the space into mutually congruent
polyhedra.

The problem at this stage is to correctly classify the
signal within the subset selected by the RBFN im-
plementation of the VA, and to obtain the correspond-
ing decoded bits. This is the subset decoding part of
TCM decoding, and we decode at each stage of the
partition (refer to Fig. 2). Noise forces the signal to be
transformed from a point in signal space to a cloud
distributed around the constellation point. Voronoi
diagrams can be used to generate the decision bound-
aries around the constellation clouds.

It is well known (Minsky and Papert, 1990) that a
single perceptron can solve linearly separable problems
where the two pattern classes can be separated by a
hyperplane. A layer of n neurons can represent the
equation of n distinct hyperplanes. Any Voronoi region
of interest can be expressed as the intersection of a finite
number of closed half-spaces which are in turn defined
by hyperplanes. It would take a single perceptron in a
second layer to implement the intersection of the n
hyperplanes in the first layer. Extending this result to
several such regions of interest, we need a two-layered
net having several neurons in the upper layer, where the
number of neurons in the second layer is the number of
Voronoi polygons. If several such polygons make up a
particular class (partitioned set), then the union of all
the associated Voronoi polygons for the class may be
implemented by a third layer which combines the
outputs from the relevant neurons in the second layer.
The number of neurons in the third layer is equal to the
number of patterns required to be classified.

The design algorithm from Bose and Garga (1993) is
only summarized in what follows.

4.2.1. Algorithm for MLP design

® For all the classes of patterns described by the
specified points in the feature space, construct the
convex hulls C;, using any procedure described in
Okabe and Sugihara (1992).

® [f there are only two classes and the interiors of the
two convex hulls do not intersect, then a hyperplane
may be situated between the two hulls as a deci-
sion boundary. The equation of the hyperplane in
n-dimensional space can be written (Bose and

Garga, 1993) as
H= Aixi + 0, (20)

i=1

where x; are the coordinates of a point in n-
dimensional space, and /4, and ¢ are constants.
Relating this to the equation of a multilayered
perceptron we let A be the connection weights, § be
the neuron bias, and x; be the neuron inputs.

If there are more than two classes, then for each class
form a convex hull C; over the specified point not
belonging to the same ith class by merging the
remaining convex hulls.

If the interiors of each pair of convex hulls C;
and C; do not intersect, then the classes are linearly
separable and a hyperplane exists that separates
the points in that class from other points. The
number of neurons in the layer is equal to the
number of classes.

If the interiors of some convex hulls C; and C;
intersect, then the classes are not linearly separable. A
cluster of Voronoi cells is created for each class.
If a cluster is convex, then it can be represented by
the intersection of a finite number of hyperplanes as
in (20). Let the half spaces described be denoted as
H™ and H~ and be given by (21) and (22),
respectively.

HY =" Jixi+6>0 1)
i=1

and

H = Aixi + 0<0. (22)

i=1

Each neuron in the first layer is then used to
transform the input x; to a boolean variable where
1 implies the input pattern lies in H* and 0 implies
that the input pattern lies in the H~ space. Note that
at each layer a hard limit transfer function is used for
the transformation. A single neuron in a second layer
can be used to combine the output of the first layer
boolean transformation using the AND boolean
operator. The number of neurons in the first layer
is equal to the number of hyperplanes necessary to
implement all the cluster edges.

If the cluster is not convex it can be represented as a
union of a finite number of convex regions. These
convex regions for each class are generated by the
second layer and then combined using an OR
boolean operator in a third layer. The number of
neurons in this third layer is equal to the number of
classes.

The AND and OR prototypes are easily derived
(see, for example Hassoun, 1995 or Hagan et al.,
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1996). The connection weight assignment between
the neurons of the first and second layers is as
follows:

1 X[€H+,
Wi=< -1 x;eH™, (23)
0 X,’¢H+\/H7.

4.2.2. 16-QAM MLP mapper

We present the design of the MLP network for the 16-
QAM system. The subsets to be classified are shown in
Fig. 2, as Sy through S3. Let us examine any one subset,
say So, as the results for this subset can be easily
extended to all other subsets. The points at (—3,3) and
(1,—1) form one subset due to a zero bit (¥? = 0) and
(1,3) and (—3, —1) form the other subset due to a unity
bit (Y2 =1). Only two hyperplanes are necessary to
separate these four ‘regions’.

Following the algorithm described in the previous
subsection, the convex hull for the two classes were
created. As the two convex hulls C; and C; intersect at a
point, we move on down the algorithm to the construc-
tion of the Voronoi diagram over all the specified points.
The equations of these hyperplanes are given by (24) and
(25), for the in-phase and quadrature-phase hyper-
planes, respectively.

H =T1+1, (24)

Hy=0-1. (25)

Using the half-space equations given in (21) and (22), we
can write the hyperplane equations as

H; = H} + Hj, (26)
Ho=Hj + Hy. 27)

Let us denote the region of the subset Sy caused by an
input bit zero as Sy, and Sy; as the subset caused by an
input bit equal to one. The binary relation between the
classes and the regions generated by the hyperplanes are
given by

S = (Hy nHY)U(H] nHp), (28)

Soi = (H; nHp) U(H; nH}). (29)

Since there are two hyperplanes required, the first layer
will contain just two neurons with bias 6; = 1 for the I-
channel inputs, and 69 = —1 for the Q-channel. The
intersection of the two half-spaces is performed by an
AND neuron in the second layer. Since there is one
AND neuron for every intersection, the number of
neurons in the second layer is 4. These four intersections
have to be combined to obtain the output for the
required two subsets (‘classes’). Thus, two OR neurons
are required in the final layer. Using (23), the connection
weights wy; for the ith neuron in the second layer via the
jth neuron in the first layer are given by the elements

(i,)) of

W — -1 1 -1 1 (30)
SO S T B U B

The biases in the second layer are

By =[-05 —05 05 —15] (31)
The weights and biases of the third layer are

1 1

Wi = , 32
3 ll 1] (32)

B} =[-0.5 -0.5]. (33)

The resulting network is shown in Fig. 10. The design
of the networks for the other 3 subsets of the 16-QAM
partition is done in the same way, with the following
hyperplane equations:

Si: Hi=I+1; Hp=0Q+]1,
Sy: H=I-1; Hy=Q+]1, (34)
Si: Hy=I-1; Hy=0Q-1.

At this point there is still one bit left to decode in

the four state trellis, Yn3. This decoding can be
established by tapping the described net at points as
shown in Fig. 10. The competitive layer seclects the
largest perceptron output, and based on the signal-bit
mapping at the transmitter, decides if the bit is to be
inverted or not.

5. Simulations

Monte Carlo (Jeruchim, 1984) computer simulations
using Importance Sampling (Shanmugam and Balaban,
1980) were performed to estimate the performance of
the neural TCM decoder for 16-QAM. We characterize
the performance by the probability of error P,.

Fig. 10. Multilayer perceptron signal decoder architecture.
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Estimates are given by the sample means over N
samples

N
o :% ; do(v7), (35)
where 0y(v) is defined as

So(0) = { Lo (36)

0, v<Vr.

The estimate of the probability of error, P, is given by
N Ne

P, = Fs’ (37)

where n, is the number of errors counted and Nj is the
number of symbols transmitted. This estimate converges
to its true value as Ny— 0.

For a finite number of transmitted symbols, the
reliability of the estimator is quantified in terms of the
confidence interval. The expression

P<P.<h)=1-u (38)

defines the confidence level of the estimate. In other
words, we constrain our estimate to lie between the
upper and lower bounds with a prescribed probability.
To obtain a close estimate of the probability of error,
the difference between the upper and lower bounds must
be small. A rule of thumb for a given P, is that the
number of observations required is of the order of
10/P.. For high SNR, this may mean extremely long
simulation times, so a technique is needed to shorten the
simulation runs.

Importance sampling (IS) is based on the fact than
when random numbers are drawn from a normal
distribution to simulate additive white Gaussian noise
(AWGN) in a communications system, the most
common or ‘expected’ value is the mean of the
distribution, which is zero. This causes no errors most
of the time, and therefore does not lead to any
indication of the worst case performance of the system.
Values from the rarely occurring portion of the
distribution, the tail, are required. In order to achieve
this end Shanmugam and Balaban (1980) proposed to
bias the distribution before the simulation.

If the original pdf is fy(y), a new pdf, fF(y) is
introduced to generate more errors. The P, can be
written as

r- | ) BB A0y

- [ swro. (39)
where
50 = 0 B (40)

and Jy(y) is given by (36); (40) can be interpreted as
weighting the errors counted by the factor
Sr()
W) =
7o)
or, if the sample of the RV is selected from the new pdf

Sy (), its probability of being selected has increased by
the factor B(y), called the bias and given by

(41)

17O)
B(y) = . (42)
=50
The P, can now be estimated by
. 1 Nis N
Pe=5- ; 3 (), 43)

where Nig is the number of samples used in the
importance sampling simulations.

An unbiasing scheme is applied after the approxima-
tion P, of (43) is computed. Shanmugam and Balaban
(1980) suggested a biasing scheme of the form

c
B(y) = ——
Frr
where the constants ¢ and o are chosen so that the
sampling size savings factor, r in (45), is maximized,
while ensuring the new distribution is a valid pdf by
satisfying (46):

_ Nwmc

r= >

Nis
where Nyc is the number of samples needed without IS,
approximately 10/P,.

| sonerdy =1 (#6)

0

(44)

(45)

The approximate expressions for the optimum sample
size saving factor r and the biasing factor o are, from
Shanmugam and Balaban (1980), given by

o)
o= V122 47
op VIR “n

and

_ \/_“—T“‘z‘
oyt — 34+ 942—74}2T (1+T)’ (48)
where 7 is the decision threshold and Q is the
complimentary error function, and independence of
the variables is assumed.

The choice of the subset in the TCM system is
based on the convolutional encoding of m input
bits to form m+ 1 encoded bits. This property of
TCM violates the assumption that the A input bits
influencing the decoding decision are independent.
However, the noise is AWGN and delivers uncorrelated
samples.

IS can then be applied exclusively to the noise and the
probability of error for the system can be written
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(Hecht-Nielsen, 1990) as

r=| J{(so[g(XJr“)]fx(X)

o0

Sn(m)
S¥ @
where the bold typeface denotes that x and n are vectors
and fyx(x) and fy(n) are the density function for the
signal and noise vectors, respectively.

A critical parameter in the application of IS to our
neural Viterbi decoder is the identification of the A bits
that affect a single decoding decision. An ideal decoder
would base its decision on an infinite sequence of inputs,
but as mentioned previously, practical considerations
force the decoder to make a decision for some decoding
depth I'. A decoding decision is made on the oldest of
the I' symbols stored in memory. Thus, the decoder is
definitely influenced by these I' symbols. Each symbol
in our simulation is part of a subset that is selected by
the convolutional encoder of rate m/(m+ 1) at the
transmission end of the system. The decoder decision
thus depends on I'sm input bits. Herro and Novack
(1988) have conjectured that this decision will also
depend on the I'sm input bits prior to the symbol to be
decoded as well as the m bits of the current block. If we
use the minimum decoding depth as given by Forney
(1974), then the expression for A bits that affect a
decoding decision, according to Herro and Novack
(1988), is

2 =m(100 + 1), (50)

} fEm)dxdn, (49

where v is the shift register length (memory order)
of the encoder and m is the number of input bits to the
encoder at a time. For our simulation with the rate
1/2 encoder of Fig. 3,v = 2,m = 1,and A = 21. Thus, 42
input bits affect a symbol decision, but as 2 bits choose
the subset (group of symbols) of that signal, only 21
input signals influence the receiver decision. The choice
of this parameter is critical as proven in Shanmugam
and Balaban (1980), since extraneous inputs may cause a
slight increase in the variance of the estimate of P, of the
system. On the other hand, not accounting for some
inputs leads to a biased estimator.

The steps carried out for the biased noise simulation
are:

® The P, of the system at a particular signal to noise
ratio (SNR) is defined by Es/N,, where Es is the
average symbol energy (10 for the 16-QAM alpha-
bet), and N, is the two-sided noise power spectral
density of the noise with standard deviation g; this is
obtained, for high SNR, based on the approximate
expression for the upper bound of P, as given by
Ungerboeck (1982):

dree
PezN(dﬁee)Q( 7 ) (51)

where N(dpe) is the average number of sequences
that are at distance dpe from the transmitted

sequence. Table 1 shows the order of P, for
various AWGN power for the coded 16-QAM
system. Eq.(51) is used with dpee =4.0 and
N(dfree) =2.

® The sample size required by a counting estimator
(Monte Carlo) for the listed probabilities of error for
a normalized estimate error ¢ as in Shanmugam and
Balaban (1980) is calculated next. The value of &
chosen for our simulations was 0.5 which implies that
the estimate of the probability of error for the system
would lie within + P, of the actual value with a
probability of 95%. Table 1 also shows the order of
magnitude of the sample size for the MC simulations,
N, for different values of P,, with

1

= 75 (52)

® The sample size saving factor r and the bias value o
for various SNRs are obtained from Herro and
Novack (1988) in their plot of bias vs. reduction
factor for the (2,1,2) code which we are using for
our simulation. In case such data are not available,
the values of the biasing parameter « and sam-
ple size saving factor r are calculated from (48)
and (47).

® For each of these r, the sample size of the IS method
is calculated using (45). Simulations for sample
numbers above 10* were reduced via IS with the
parameters shown on Table 2.

® AWGN is added to the 2-dimensional QAM signal
along each dimension and the bias for each point is
calculated using (42). The value of o for the particular
SNR is computed from (48).

® The simulation begins and the associated 2D bias
values are saved. The 2D biased system is converted

Table 1
Approximate probability of error for 16-QAM

dfree dfree
’ 20 Q< 20 ) Pe N
0.8 2.50 6.20 x 1073 12 x 1072 10?
0.7 2.86 213 x 1073 43 %1073 103
0.6 3.33 429 x 107* 8.6 x 1074 104
0.5 4.00 3.17 x 1073 6.3 x 1073 10°
0.4 5.00 2.86 x 1077 5.7 %1077 107
Table 2
IS parameters
a r o
0.6 05 0.37
0.5 20 0.52
0.4 50 0.60
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into a 1D system using

b,-:\/b%,er?,

where the I and Q specify the in-phase and
quadrature-phase dimensions, respectively.

® Each decoder error is then weighted by the product of
the 2/2 — 1 one-dimensional biases proceeding the
current symbol, the 1/2 — 1 biases succeeding the
current symbol, as well as the one dimensional bias
associated with the current symbol itself.

® The IS probability of error, P, is computed using the
weighed errors with Eq. (43), which is the unbiased
estimate (Jeruchim, 1984) of the probability of error.

(53)

Once subset decoding using the neural decoder is
established, signal recognition within the chosen subset
was simulated. Two-dimensional noise was added to the
constellation and its effect on the pattern recognition
network was then studied. The noise margins in the
pattern recognition problem case are higher because of
the set partitioning techniques, and this is reflected in the
plots of probability of missclassification vs. SNR,
discussed in the next section.

6. Results

We obtained encouraging results from both neural
networks—the RBFN and the MLP—designed and
implemented to perform adaptive Viterbi decoding of
trellis-encoded 16-QAM. The performance of the neural
decoder was compared against the node error prob-
ability bound. The graph of the node error probability
vs. SNR (Es/Ny) is shown in Fig. 11 for the AWGN

case, where the baseline curve for comparison, uncoded
8-PSK, was computed using the bound in (12) and is
also shown. A gain of almost 3 dB is achieved with the
neural decoder for operating BER as high as 1073,

The goal was to achieve the same performance for the
neural decoder as with the analytical method (bound)
for, at least, high SNR. We observed that the P, of the
neural decoder converged to that of the bound given by
Ungerboeck (1987), for SNR >9 dB. The performance
of the standard Viterbi decoder is indistinguishable from
that of the neural decoder in cases where AWGN is the
only impairment. Simulations for SNR higher than
10 dB were too time-consuming when using the simple
IS method implemented. More powerful IS techniques
have been recently introduced in Kim and Iltis (2000),
and could be used for higher SNR.

The value of ¢ of the PU transfer function is of critical
importance in optimum performance. At high SNR and
o = 1.5, the decoder missclassifies more noisy signals
than with ¢ = 2.0. A higher spread factor of 2.5 proved
to give a slight increase in P,. Further investigation into
spread factors greater than 2.5 produced similar results.
In fact, ¢ = 2 proved to be optimum, and higher values
yielded no significant improvement or worsening of the
resulting P,. Further authentication of this value is that
it conforms to the value obtained using the P-nearest
heuristic for the design of an RBFN as given by
Fa-Long and Unbenhauen (1997). Also, ¢ =2 is the
distance between nearest neighbors in the simulated 16-
QAM constellation.

As previously mentioned, the centers of the PU may
(and should) be set to the known constellation centers, if
a pre-selected set, known a priori, is available, as it
would be in normal circumstances. In order to adapt to

1 0'7 i i i i

5 5.5 6 6.5 7 7.5
SNR

Fig. 11. Probability of error vs. symbol SNR for the neural decoder (dashed) and the baseline 8-PSK uncoded system (solid).

8 8.5 9 9.5 10
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channel imperfections, often time-varying, adaptation of
the center of the PUs is performed.

We chose to use a clustering algorithm to initialize the
PUs before the network was simulated, assuming the
(1, Q) values of the constellation used are unknown. A
training sequence of 10000 samples was originally used
for each PU, and shown to be much larger than actually
needed; the training sequence was then reduced to 100
samples without performance degradation. The nature
of the noise determines the final centers of the PUs; if
only AWGN is present, the trained centers correspond
very closely to the noiseless case, i.e. 1 and +3 in each
dimension. The concept of ‘center learning’ for the PUs
was validated by simulating a common impairment in
communication channels: amplitude imbalance. Ampli-
tude imbalance occurs when the amplitude levels of the
quadrature carriers are not set correctly which, in turn,
may be the result of a non-linear modulator on an
inaccurate D/A converter. A learning rate of 0.05 was
used and it was found that the PUs quickly adapted
their centers to account for the amplitude imbalance.

To compare the performance of the trained and
untrained center case, amplitude imbalance was simu-
lated on the Q channel where coordinates 1 and —1 were
mapped to 1.6 and —1.3, respectively. The unbalanced
and noisy constellation is shown in Fig. 12. The signal
cloud around the centers is due to the AWGN which
was assumed to interfere with the training sequence as
well. The results obtained for the simulation are shown
in Fig. 13. The plot shows that the trained PU centers
helped the neural subset decoder perform better than a
net with fixed PU centers, and better than a fixed Viterbi

10 T T T T

o g
ST - D

Fig. 12. Noisy 16-QAM constellation with amplitude imbalance in the
Q channel. Dark dots at +1land +3 indicate the centers prior to
adaptation.

decoder. Approximately 0.5 dB improvement is ob-
tained using the adaptive neural decoder. The third
curve is given as a reference, and corresponds to the
probability of error bound if no amplitude imbalance is
present.

The pattern recognition network developed per-
formed well under all SNR conditions. The pattern
classification results for the neural networks correspond-
ing to the subset Sy are shown in Fig. 14. The other three
signal classifiers have similar curves, and the overall
system has the same curve because only the results of

Pe vs SNR for the case of Amplitude Imbalance

T T
O Untrained
& Trained
O Optimum

i
3.5 4 4.5 5 5.5

6 6.5 7 7.5 8
SNR (EslINo) in dB

Fig. 13. Probability of error vs. symbol SNR for the system with amplitude imbalance. Trained neural, untrained neural (equal to standard VA

decoding), and ideal without amplitude imbalance curves are shown.
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Probability of missclassification (Pe)

-5 I I I I

-2 -1 0 1 2

4 5 6 7 8
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Fig. 14. Probability of error vs. SNR for the MLP signal mapper/classifier for subset Sy.

one of the MLP networks are used each time, the rest
are neglected. The P, vs. SNR indicates excellent
performance. An added feature of the MLP classifier
is that the signals are simultaneously mapped into their
corresponding output bits by the neural network.

The overall performance of the neural TCM decoder
is a combination of the two subsystems. The function-
ality of the TCM decoder was separated into a subset
decoding network which estimated the subset being sent
(the RBFN path selector networks) and the signal
selector network (the MLP classifier/mapper).

The performance of the neural system exactly matches
that of the ideal Viterbi decoder if no effects other than
AWGN are introduced by the channel. The perfor-
mance of the neural system is better than the standard
Viterbi decoder when other imperfections are included,
due to the adaptive nature of the neurons in the neural
decoder.

7. Conclusions

Directed graphs in Viterbi decoding share a common-
ality with artificial neural networks in physical structure
as well as functionality. The metric in the Viterbi
algorithm as applied to TCM, and the basic functional
unit of a RBFN are related with regards to the
Euclidean distance parameter both calculate. We
exploited this similarity by implementing an adaptive
Viterbi decoder for TCM using radial basis function
networks.

We also showed that simple neural networks are
capable of mapping non-binary signals into the bits

being transmitted in a digital communications system,
therefore decoding non-binary modulation schemes.
The design technique for MLP’s proposed in Bose and
Garga (1993) was validated in a communications
systems environment. Simple neural networks like
MLPs were shown to be sufficient to perform subset
signal decoding and mapping, without the need for
training.

The adaptive decoder presented is able to learn
channel conditions as well as equipment defects as they
occur. This property was observed and tested in the
subset decoding net where the center of the pattern units
in the RBFN adapted to the amplitude imbalance
condition and the probability of error of the neural
decoder was lower than that of a fixed decoder.

The neural decoder system presented in this paper was
applied to decode trellis-encoded 16-QAM, but can
easily be implemented for other TCM systems, including
those using multidimensional constellations. Extensions
to channels others than AWGN, such as Rayleigh
fading channels, are also possible. Having the TCM
decoder adapt to the fading channel characteristics will
improve the system’s performance over those of fixed
detectors.
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