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Sonar signal enhancement using fractional Fourier transform 

Madalina Barbu *, Edit J. Kaminsky, and Russell E. Trahan 
Department of Electrical Engineering, University ofNew Orleans, 2000 Lakeshore Dr., 

New Orleans, LA, 70148 

ABSTRACT 

In this paper we present an approach for signal enhancement of sonar signals. Work reported is based on sonar data 
collected by the Volume Search Sonar (VSS), as well as VSS synthetic data. The Volume Search Sonar is a 
beamformed multibeam sonar system with 27 fore and 27 aft beams, covering almost the entire water volume (from 
above horizontal, through vertical, back to above horizontal). The processing of a data set of measurement in shallow 
water is performed using the Fractional Fourier Transform algorithm. The proposed technique will allow efficient 
determination of seafloor bottom characteristics and bottom type using the reverberation signal. A study is carried out to 
compare the performance of the presented method with conventional methods. Results are shown and future work and 
recommendations are presented. 

Keywords: Fractional Fourier transform, impulse response, sonar signal processing, Wigner distribution, volume search 
sonar. 

1. INTRODUCTION 

The reported data herein is based on sonar data collected by the Volume Search Sonar (VSS), one if the five sonar 
System in the AN/AQS-20. The AQS-20 system is an underwater towed body containing a high resolution, side
looking, multibeam sonar system used for minehunting along the ocean bottom, as well as a forward looking sonar, and 
the volume search sonar. The system is illustrated in Figure I. The VSS consists of two separate arrays: the transmit 
array and the receive array. The VSS is a beamformed multibeam sonar system with 54 beams arranged as 27 fore-aft 
beam pairs, covering almost the entire water volume (from above horizontal, through vertical, back to above 
horizontal)'. The VSS can be used in two modes: volume mode and SPD mode. The acoustic energy received by the 
VSS hydrophone array is pre-amplified and conditioned. Conditioning includes dynamic range compensation using time 
varying gain (TVG), bandshifting to IF (750 KHz), and band pass filtering. After conditioning, analog to digital (AID) 
conversion is performed and signals are undersampled at 200KHz. The beamforming function forms all beams and then 
quadrature demodulates the beam data to baseband (only the image centered at 50 KHz is retained and basebanded). A 
hybrid time delay phase shift function is used to beamform by using a Hilbert transform after the element delays. The 
beam outputs are produced by shading (weighted sum) of array element data, delayed to compensate for cylindrical 
array geometry. Data from this sonar may be used for bathymetry computation, bottom classification, target detection, 
and water volume investigations2
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Figure I: AQS - 20 mine hunting sonar 
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Our investigation is focused on the bottom-return signals since we are interested in determination the impulse 
response of the ocean bottom floor. The bottom-return signal is the convolution between the impulse response of the 
bottom floor and the transmitted sonar chirp signal. The method developed here is based on Fractional Fourier 
Transform, a fundamental tool for optical information processing and signal processing. In recent years, interest in and 
use of time-frequency tools has increased and become more suitable for sonar and radar applications3

.4·
5

. Major research 
directions include the use of time-frequency analysis for target and pattern recognition, noise reduction, beam forming, 
and optical processing. In this paper we begin by presenting the essential concepts and definitions related to Fractional 
Fourier transform. The overview is followed by a description of the implementation of the Fractional Fourier transform 
and the methods proposed for evaluating the impulse response of the ocean bottom. The Fractional Fourier transform 
requires finding the optimum order of the transform based on the properties of the chirp signal. The bottom impulse 
response is given by the magnitude of the Fractional Fourier transform applied to the bottom return signal. The 
technique introduced in this work has been tested both on the synthetic data and real sonar data. A study is carried out to 
compare the performance of the presented method to conventional methods. Results are shown and future work and 
recommendations are presented. 

2. FRACTIONAL FOURIER TRANSFORM OVERVIEW 

The Fractional Fourier transform (FrFT) is a generalization of the identity transform and the conventional Fourier 
transform {FT) into fractional domains. The Fractional Fourier transform can be understood as a Fourier transform to 
the a1

h power where a is not required to be an integer. There are several ways to define the FrFT; the most direct and 
formal one is given b/: 

f. (u) = [ K. (u, u' )f(u' )du' (1) 

. 2 2 .J . aK whereK0 (u,u') = Aa exp[IK{cota·u -2csca·u ·u'+cot a·u' )] andAa = 1-1cota, a=- when a :1:- 2k 
2 

K 0 (u,u') = o(u-u') when a= 4k 

K 0 (u,u') = o(u+u') when a= 4k ±2 

where k is a integer and Aa is a constant term. The order of the transform is a and sometimes is referred to as a . If we 

set a=1, that correspond to a=" and Aa =1, so that the FrFT becomes the ordinary Fourier transform off(u): 
2 

.fi(u) = [e-i2mm'f(u')du' (2) 

Due to periodic properties, the a range can be restricted to (-2, 2] or [0, 4), respectively ae (-K,K] or 

ae [0,2K). The Fractional Fourier transform operator, F', satisfies important properties such as linearity, index 

additivity Fa1 F 02 = Fa 1+a!, commutativity F 01 Fa2 =Fa! Fa1 , and associativity {F 01 Fa2 )F 01 = F 01 (F 02 Fa'). In the 
operator notation, these identities follow5

: fil=I; F1 =F; F=P; P=FP=PF; P=F'= /;and pk+a=pk'+a, where I is a 
identity operator, Pis a parity operator, and k and k' are arbitrary integers. According to the above definition (1), the 
zero-order transform of a function is the same as the function itselff(u), the first order transform is the Fourier transform 
off(u), and the ± 2"d order transform is equal tof(-u). 

One ofthe most important properties of the FrFT states that the Wigner distribution ofthe FrFT of a function is 
a rotated version of the Wigner distribution of the original function6

: 

Wra(u,J.L) = Wr(ucos a- J.Lsin a,usin a+ J.Lcosa). (3) 

The Wigner distribution of a signal/is defined as6
: 

Wr (u,J.L) = J.r<u + u' I 2).( (u -u' I 2)e-i2~r""'du' (4) 

and can be interpreted as a function that indicates the distribution of the signal energy over the time-frequency space. 

Proc. of SPIE Vol. 5807 171 

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 02/01/2016 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx 



The most significant properties of the Wigner distribution are stated in the following equations: 

l. J w,(u,,LL)d,LL = it<u)l2 

2. Jw,(u,p)du = IF(u)l 2 

3. J Jwr (u,p)dudp = 11!11
2 = En[f] 

4. g = h(u) * f(u) has Wigner distribution Wg(u,p) = Jwh(u -u' ,p)Wr(u' ,p)du' 

5. g = h(u)f(u) has Wigner distribution Wg(u,p) = Jwh(u,,LL- .U')W,(u,p')dp' 

(5) 

(6) 

(7) 

(8) 

(9) 

6. Wigner distribution of the Fourier transform is the Wigner Distribution of the original function rotated 
clockwise by the right angle. 

The Wigner distribution is completely symmetric with respect to time-frequency domains, it is everywhere real 
but not always positive. The Wigner distribution exhibits advantages over the spectrogram (short-time Fourier 
transform): the conditional averages are exactly the instantaneous frequency and the group delay, whereas the 
spectrogram fails to achieve this result, no matter what window is chosen. The Wigner distribution is not a linear 
transformation, a fact that complicates the use of the Wigner distribution for time-frequency filtering. 

The ambiguity function has a correlative interpretation and it is defined as 6
: 

A1(u,Jl) = J!(u'+u I 2)f* (u'+u I 2)e-iZtrJiu'du' (l O) 

This ambiguity function is related to the Wigner distribution as a two-dimensional Fourier transform 

Ar(u,Jl) = Jfw,(u,p)e-i 2tr(Jlu-ii.uldudp (11) 

Another relationship between the Wigner distribution and the Fractional Fourier transform is given by the 
Radon transform operation, RDN a , which maps a two-dimensional function to its integral projection onto an axis 

making angle a with the u axis 6 : 

Jwr" (u,p)d,LL = RDNa[Wf (u,p)] (12) 

Using equation (12), equations ( 7) and ( 8) can be generalized and expressed in terms of the Radon transform as: 

RDN a[Wr (u,,LL)] = lfa (u)l 2 
(13) 

Equation (13) is a powerful relation that can be applied to determine the relationship between the magnitude of the a 
order of the Fractional Fourier transform fa(u)and the Wigner distribution Wr(u,p). 

3. APPLICATION OF FRACTIONAL FOURIER TRANSFORM 

In order to evaluate Fractional Fourier transform techniques, several methods have been proposed7
. Fast computation of 

the Fractional Fourier transform implies different decompositions that lead to different algorithms. Successive steps of 
simple operations such as chirp multiplication followed by chirp convolution followed by another chirp multiplication 
yield the fast convolution algorithm7

. Optimization of the main interval of the fractional order increases calculation 
accuracl. 

In this paper we use a Fractional Fourier transform Matlab routine available from the Mathworks website 10
• 

First, a chirp with the specific parameters characterizing the system in questions -such as a bandwidth of 10400 Hz 
and a chirp duration of 4.32 ms for VSS- are generated. In order to corroborate our techniques we generate a synthetic 
impulse response of the seafloor, a Green function is utilized. The synthetic sonar return signal is generated by the 
convolution between the Green function and the transmitted VSS chirp. This synthetic data were used for testing both 
methods: classical frequency-domain deconvolution and our proposed deconvolution using Fractional Fourier 
transform. 

The classical method applies the inverse Fourier transform to equation (14) to obtain the impulse response. 
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R1 (fi1)P1 (tiT)+ RQ (fi1)PQ (li1) 
HI (fiT) = ----:------"'-::------"--

P/2 (tiT)+ PQ 2 (tiT) 

H (li1) = -RI (fi1)PQ (tiT)+ RQ (tiT) PI (tiT) 

Q P/(fi1)+P/(li1) 

(14) 

(15) 

(16) 

In the above equations R(li1) and P(fi1) are the Fourier transforms of complex baseband received signal and of 
transmitted pulse, respectively. The subscripts I and Q denote, respectively, the real (in-phase) and imaginary 
(quadrature-phase). 

The second method consists of using the Fractional Fourier transform that is applied to the sonar return data. 
The order of the transform is determined by the chirp properties: the rate of change A. , sampling rate ft, and the length 
of the data segment N, 3

: 

a= (2/tr) · tan-1 (f. 2 /N/2.4) (17) 

Wigner distribution has been used to visually determine the correct order of the transform. The optimum 
transfer order is achieved when the representation of the chirp in the Wigner distribution is a delta function. If the 
properties of the chirp are not known, a can be optimized visually. The impulse response is given by the absolute value 
of the correct order of the Fractional Fourier transform of the function that represents the return data: 

(18) 

4. EXPERIMENTAL RESULTS 

In this section we present the experimental results for synthetic data as well as for real sonar data. The synthetic 
transmitted chirp pulse presented in Figure 2 consists of a synthesized version of the actual VSS transmitted pulse. The 
synthetic Green function has been simulated using an exponential function and three impulses. The synthetic data has 
been generated by convolving a chirp signal with the previously mentioned characteristics and a Green function as 
illustrated in Figures 3 and 4. The impulse response of the seafloor can be obtained in two different ways. The first 
method uses the classical deconvolution between the return data and the chirp signal producing the results presented in 
Figure 4 (b). 

Synthetic VSS Chirp 

1.5 2.5 
time 

3 3.5 4 

4.5 
X 10-3 

Figure 2: In-phase and Quadrature-phase components of the synthetic VSS pulse vs. time 
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Synthetic Green function 
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Figure 3: Synthetic Green function 
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Figure 4: (a) Synthetic return signal (convolution ofVSS Synthetic 
Source with the simulated Green function) 

(b) Deconvolved signal (using classical method from ref2) 

Given the deconvolved signal (Figure 4 (b)) it is simple to find the time (or sample number) of the returns. The 
return signal location in time is found to be equal to the original location in the Green function. The impulses in the 
original Green's function occur at sample numbers 600, 1100, and 1500. The peaks of the deconvolved return (once 
shifted by the length of the source), also occur at 600, 1100, and 1500. 

The second method investigated in this paper employs Fractional Fourier Transform applied to the return data. 
In order to determine the order of the transform we used equation (17) and we validated its value by examination of the 
chirp's Wigner distribution as shown in Figures 5 and 6. In general the Wigner distribution of the chirp function is 
found to be concentrated along the line giving the instantaneous frequency of the chirp6

• Taking the ath Fractional 

Fourier Transform of a signal is equivalent to rotating the Wigner distribution by an angle a= a a in the clockwise 
2 

direction5
• The Wigner Distribution of the synthetic return data corresponds to the convolution of the Wigner 

distribution of the chirp signal with the Wigner distribution ofthe Green function. 

Wigner distribution of Source 
Wlgoer dlstnbUI1on of So!J'ce 

05 15 25 35 
time •10 """' JC10' 

Figure 5: Wigner Distribution of the source with BW=10400 Hz Figure 6: Wigner Distribution of the source a=0.035 
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After choosing the optimum order (0.035) the Fractional Fourier transform was applied to the bottom synthetic 
data return. The Wigner distribution of the chirp's Fractional Fourier transform at optimum order is a delta function as 
illustrated in Figure 6. The synthetic bottom impulse response (synthetic Green function) was obtained by taking the 
magnitude of the Fractional Fourier transform of the bottom synthetic data return as shown in Figure 7. Although a 
slight shift occurred in determining the bottom impulse response, a good match between it and the original Green 
function has been achieved. The Fractional Fourier transform is represented as a function of sample number, hence the 
x-axis is a-dimensional. 

Experimental Results on Synthetic Data using Fractional Fourier Transform a= 0.035 
3r-----~----;-----~~==~====~ 

__________ ·r ______ --· ___ ·r-- _________ _1_~ _ ~-~~~~~~!~-~~~-u-~-~~~~~~ _I 

' ' ' . ' 

!it: 
1n---~---~~~~--~~~--r-~r-----• 1- Fractional Fourier Transform (FRFl) Source I 

;;; .... a: 05 
~ &,"- -
o:,I'O 
z 

. ' . ----------- --~------ ------- -~ ------------ -~----- ---------:- -----------
I I I I 
I I I I 
I I I I 
I I I I 
I I I I 

Figure 7: Experimental Results on Synthetic Data using Fractional Fourier transform 

We applied the same techniques to actual VSS sonar data and the results are shown in Figures 8 thru II. The 
data available consist of a small number of pings. A typical nadir beam amplitude return in its raw received form is 
illustrated in Figure 8. The "transmitted pulse" (as seen by the receiver array) and the main return are clear on this plot, 
where the bottom return occurs at 0.132 seconds from transmission. The total length of the signal is 0.9648 seconds. As 
expected the nadir beam raw data shows a clear bottom return with high amplitude and little spreading. The received 
signal shown is normalized to a maximum amplitude of I. 

The deconvolution method in ref 2 and the Fractional Fourier transform method presented here have been 
applied to the same beams and pings and their respective results are presented in Figures 9 and 10. We used the same 
window of 256 samples for both methods. The optimum order of the Fractional Fourier transform corresponds to the 
highest pulse compression and it was found to be 0.269 for this specific chirp. The amplitude of the Fractional Fourier 
transform applied to the bottom return data for the optimum order represents the bottom impulse response (Figure 9). 

Figure II illustrates the bottom impulse response using both methods discussed in this paper. The plots are 
shifted so that they can be compared easily by visual inspection. 

The energy levels, mean and standard deviation of the bottom impulse response for I 00 samples corresponding 
to a range 10%- 90% have been computed for both methods and they are presented in Table I. 
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Figure 8: Received Ping data 
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Figure 10: Normalized Magnitude of the windowed data 
before and after deconvolution 
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Fractional Fourier 0.2681 
Transform 
Method 
Deconvolution 0.3039 
Method from ref 2 
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Figure 9: Bottom impulse response 
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Figure II: Comparison between Fractional Fourier Transform method 
(solid line) and Deconvolution method (dash line) 

Standard Energy 
Deviation 
0.2025 10.1385 

0.2316 12.6609 

12.56 19.92 

Table I: Comparison between Fractional Fourier Transform method and Deconvolution method 

5. SUMMARY AND CONCLUSIONS 

In this paper we proposed a technique for determining the bottom impulse response by using the Fractional Fourier 
transform that has great potential in sonar signal processing. We also presented a classical method for determining the 
bottom impulse response based on frequency domain deconvolution. The two methods have been tested and compared 
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on synthetic as well as on real sonar data. The experimental results shown demonstrate a good agreement between the 
two methods. Future work includes a complete statistical analysis of the obtained impulse responses for. further 
sediment classification. 
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