
University of New Orleans University of New Orleans

ScholarWorks@UNO ScholarWorks@UNO

University of New Orleans Theses and
Dissertations Dissertations and Theses

Fall 12-18-2015

Extracting Windows event logs using memory forensics Extracting Windows event logs using memory forensics

Matthew Veca
University of New Orleans, mveca@uno.edu

Follow this and additional works at: https://scholarworks.uno.edu/td

 Part of the Information Security Commons

Recommended Citation Recommended Citation
Veca, Matthew, "Extracting Windows event logs using memory forensics" (2015). University of New
Orleans Theses and Dissertations. 2119.
https://scholarworks.uno.edu/td/2119

This Thesis-Restricted is protected by copyright and/or related rights. It has been brought to you by
ScholarWorks@UNO with permission from the rights-holder(s). You are free to use this Thesis-Restricted in any
way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you
need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative
Commons license in the record and/or on the work itself.

This Thesis-Restricted has been accepted for inclusion in University of New Orleans Theses and Dissertations by
an authorized administrator of ScholarWorks@UNO. For more information, please contact scholarworks@uno.edu.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of New Orleans

https://core.ac.uk/display/216844752?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.uno.edu/
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/etds
https://scholarworks.uno.edu/td?utm_source=scholarworks.uno.edu%2Ftd%2F2119&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=scholarworks.uno.edu%2Ftd%2F2119&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uno.edu/td/2119?utm_source=scholarworks.uno.edu%2Ftd%2F2119&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uno.edu

Plugin for Volatility advanced memory analysis framework:
Extracting Windows event logs (Windows Vista, 7 and 8)

A Thesis

Submitted to the Graduate Faculty of the

University of New Orleans
in partial fulfillment of the

requirements for the degree of

Master of Science
in

Computer Science

by
Matthew Veca

B.S. Louisiana State University, 1994
December 2015

ii

© Matthew Veca, 2015

University of New Orleans

Graduate School

iii

Acknowledgments

Golden

Jared

Parents and family

Tu

vi

Table of Contents

List of Tables iv

List of Figures v

Abstract vi

Chapter 1: Windows Event Logs

 1.1 What are they? 1

 1.2 What is in them? 1

Chapter 2: The Forensic Value of Windows Event Logs

 2.1 Why are they important? 6

Chapter 3: Hasta la Vista, XP!

 3.1 Volatility 7

 3.2 Windows Xp to Vista 7

 3.3 XML structure 9

 3.4 Log File Structure 11

Chapter 4: Finding .evtx in Memory 15

 4.1 Volatility and evtx 16

 4.2 evtx.py 16

Conclusion 26

References 27

vi

Vita 28

List of Tables

Table 1 3-4

Table 2 5

List of Figures

Figure 1 10

Figure 2 12

Figure 3 13

Figure 4 14

vi

Abstract

 Microsoft’s Windows Operating System provides a logging service

that collects, filters and stores event messages from the kernel and

applications into log files (.evt and .evtx). Volatility, the leading open

source advanced memory forensic suite, currently allows users to extract

these events from memory dumps of Windows XP and Windows 2003

machines. Currently there is no support for users to extract the event logs

(.evtx) from Vista, Win7, Win8 or Win10 memory dumps, and Volatility

users have to rely on outside software in order to do this. This thesis

discusses a newly developed evtxlogs.py plugin for Volatility, which allows

users the same functionality with Vista, Win7, Win8 and Win10 that they

had with Windows XP and Win 2003’s evtlogs.py plugin. The plugin is

based on existing mechanisms for parsing Windows Vista-format event

logs, but adds fully integrated support for these logs to Volatility.

Keywords: Volatility, event logs, .evt, .evtx, memory forensics

1

Chapter 1: Windows Event Logs

1.1 What are they?

Windows events logs are “special files that record significant events on

your computer, such as when a user logs on to the computer or when a

program encounters an error. Whenever these types of events occur,

Windows records the event in an event log” (Microsoft Corporation, 2014a).

1.2 What is in them?

Any event that Microsoft has deemed as “significant” enough to generate

an alert or notification to a user is potentially written into one of the logs.

These logs differ by the type of the events that they record (table 1.1). The

following are some examples of system and application events by severity

level. An information event indicates that a change in an application or

component has occurred, such as an operation has completed

successfully, a resource has been created, or a service has been started.

A warning event indicates that an issue has occurred, such as low disk

space or a lack of other resources, that can impact service and/or result in

a more serious problem if action is not taken. An error message indicates

2

that a problem has occurred, which might impact functionality, that is

external to the application or component that triggered the event. A critical

event indicates that a failure has occurred from which the application or

component that triggered the event cannot automatically recover. These

last two examples are possible events in the security log. A success audit

event indicates an audited security event that was completed successfully,

such as a user being granted access by providing proper credentials or

password. A failure audit event indicates an audited security event that did

not complete successfully, such as a user being denied access by not

providing proper credentials or password. Also included for each event are

the computer name, user account, date and time, process ID, thread ID,

processor ID, session ID, kernel time, user time and processor time. All of

this information can be used to diagnose behavior, performance and

security issues. As important as this information can be for an

administrator user, it is equally important for forensic analysis.

3

Table 1 (Microsoft Corporation, 2014b)

Property Name Description

Source The software that logged the event, which can be either a program name, such as "SQL Server", or

a component of the system or of a large program, such as a driver name. For example, "Elnkii"

indicates an EtherLink II driver.

Event ID A number identifying the particular event type. The first line of the description usually contains the

name of the event type. For example, 6005 is the ID of the event that occurs when the Event Log

service is started. The first line of the description of such an event is "The Event log service was

started." The Event ID and the Source can be used by product support representatives to

troubleshoot system problems.

Level A classification of the event severity. The following event severity levels can occur in the system and

application logs:

 • Information. Indicates that a change in an application or component has occurred, such as

an operation has successfully completed, a resource has been created, or a service started.

 • Warning. Indicates that an issue has occurred that can impact service or result in a more

serious problem if action is not taken.

 • Error. Indicates that a problem has occurred, which might impact functionality that is

external to the application or component that triggered the event.

 • Critical. Indicates that a failure has occurred from which the application or component

that triggered the event cannot automatically recover.

The following event severity levels can occur in the security log:

 • Success Audit . Indicates that the exercise of a user right has succeeded.

 • Failure Audit. Indicates that the exercise of a user right has failed.

User The name of the user on whose behalf the event occurred. This name is the client ID if the event was

actually caused by a server process or the primary ID if impersonation is not taking place. Where

applicable, a security log entry contains both the primary and impersonation IDs. Impersonation

occurs when the server allows one process to take on the security attributes of another.

Operational Code Contains a numeric value that identifies the activity or a point within an activity that the

application was performing when it raised the event. For example, initialization or closing.

Log The name of the log where the event was recorded.

Task Category Used to represent a subcomponent or activity of the event publisher.

Keywords A set of categories or tags that can be used to filter or search for events. Examples include

"Network", "Security", or "Resource not found.”

Computer The name of the computer on which the event occurred. The computer name is typically the name

of the local computer, but it might be the name of a computer that forwarded the event or it might

be the name of the local computer before its name was changed.

4

Table 1 (Microsoft Corporation, 2014b)

Property Name Description

Date and Time The date and time that the event was logged.

Process ID The identification number for the process that generated the event.

Thread ID The identification number for the thread that generated the event.

Processor ID The identification number for the processor that processed the event.

Session ID The identification number for the terminal server session in which the event occurred.

Kernel Time The elapsed execution time for kernel-mode instructions, in CPU time units.

User Time The elapsed execution time for user-mode instructions, in CPU time units.

Processor Time The elapsed execution time for user-mode instructions, in CPU ticks.

Correlation Id Identifies the activity in the process for which the event is involved. This identifier is used to specify

simple relationships between events.

Relative Correlation Id Identifies a related activity in a process for which the event is involved.

These events are categorized into different types Admin, Operational,

Audit, Analytic and Debug. By separating the events in such a way, it

provides a way for certain user types to be able to focus on the stuff

pertinent to there needs. The following table (Table 2) shows these

different types, what they include and which users would possibly find them

useful.

5

Table 2 (Menn, 2008)

Event Type Description Used By

Admin The Admin type will suffice for the majority of system administrators. These

events are very high level and they often provide enough information to

identify a problem and determine its solution. At the very least, Admin events

should identify when an issue occurs or indicate when an application, a

component, or the system as a whole is in or has recovered from an

unhealthy state. Most Admin events are errors or warnings, and they are

usually actionable.

Administrators,

support personnel, and

Monitoring and

analysis programs

Operational Like Admin events, Operational events enable problem diagnosis.

Operational events consist of more than just errors and warnings. They also

inform users about normal operation of an application or OS component.

The volume of these events is kept quite low so Operational events can be

enabled without affecting system performance. The Operational events—

along with the Admin events—are used by support personnel, monitoring

utilities, and some sophisticated administrators.

Advanced

administrators,

support personnel, and

monitoring and

analysis programs

Audit Audit events provide a historical record of any resource access or actions

taken by the users. These events do not in themselves represent failure or

success of the program, but indicate a failure or success of the action. Audit

events can be completely disabled or selectively enabled with varying levels of

granularity. Security auditing at the OS level is supported (the events can be

found in the Security log of the Event Log).

Advanced

administrators,

security auditors, and

Forensics specialists

Analytic Analytic events, which are not very different from Operational events, are

logged during normal operation of applications and components. But the

volume and detail of Analytic events is much greater than Operational events

and therefore there is a potential of them having a negative effect on system

performance. Thus, Analytic events are normally disabled. To make use of

Analytic events, enable them before a diagnostic session and then disable

them before examining the trace.

Support personnel

Monitoring and

analysis programs

Debug Debug events are also high-volume events that are normally disabled. They

are used mainly by developers and are seldom viewed by IT professionals.

Developers

6

Chapter 2: The Forensic Value of Windows Event Logs

2.1 Why are they important?

Windows events logs, in general, are very helpful in determining what has

taken place on any given Windows machine. However, these logs prove

essential in the realm of digital forensics as they can provide a who, what,

where, when, why and how. All of this stored information can tell you what

user account logged in or failed to log in, what machine was used, what

time and duration the account and machine were used, what applications

(malware, keyloggers) were installed and/or removed (e.g., in the case of

intellectual property (IP) theft, etc.), if possible malware or viruses are

responsible for undesirable behavior (false logins and crashes), what type

of hardware and when it was added (possibly temporarily) or removed,

reasons for system crashes (possible vulnerability exploit attempts) and the

times of said crashes, and the list goes on. This is just a small percentage

of why events logs have become increasingly valuable for digital forensics

and memory analysis.

7

Chapter 3: Hasta La Vista, XP!

3.1 Volatility

Volatility is the leading open source advanced memory forensic suite. It is

heavily used and relied upon in the digital forensics and memory analysis

communities. The Volatility framework, having been written in Python,

allows for cross platform usability. The modular design (plugins) provides

flexibility and allows for faster updates. Also, this design helps prevent total

loss of functionality when operating systems are changed or updated.

Some plugins may be broken, but others won’t be, which will still allow for

some level of functionality until appropriate changes to the framework can

be made.

3.2 Windows XP to Vista

When Microsoft upgraded Windows XP to Vista, many things were

changed which had everyone trying to figure out what would still work and

what would need attention. One thing that did change was the way in

which Windows Vista dealt with event logs. Some of the first things noticed

were that these event logs were no longer stored in the

C:\Windows\system32\config directory and the EVT file no longer

8

had the extension .evt. Now it was time to figure out what things were

changed and how those changes affect event logging.

The Windows Event Log service was redesigned because of scalability

restrictions of the Event Log (which limited the total size of all logs to the

amount of available memory) and event publishing performance restrictions

(which limited the number of events that could be published on an active

Domain Controller) that earlier versions of Windows had experienced. By

publishing events in an asynchronous manner, the event publishing

application doesn’t have to wait for the logging service to store the event,

which increases performance (Menn, 2008).

With the completely new event logging service of Windows Vista, the first

thing is to find how and where the new events logs are stored. With very

little publicly available information regarding the handling and storage of the

event logs, Andreas Schuster dedicated many, many hours in order to

understand the new system behavior of system event logging in Windows

Vista and how they are stored. Fortunately, Schuster was able to answer

many of the questions that hindered forensic analysis of these logs.

9

First, the old .evt files were renamed to .evtx and stored in

C:\Windows\System32\winevt\Logs. Having located the files, it was

determined that the logs were stored using a proprietary binary XML

(Extensible Markup Language) format. Using XML provides a more

structured format then the previous .evt logs. This new XML log format will

provide more granularity and flexibility in output customization and queries.

Templates can be designed, specific to each forensic case, in order to

target desired information. While this is an improvement, unfortunately

there is always cost. XML can be very wasteful because of the high amount

computational resources, CPU cycles and memory, which are necessary in

order to parse this file format (Schuster, 2007).

3.3 XML Structure

Events in an event log are XML fragments that can be validated against the

Event Schema. The XML fragment is divided into seven elements:

<System>, <EventData>, <UserData>, <DebugData>, <BinaryEventData>,

<ProcessingErrorData>, and <RenderingInfo>. All the elements are

optional except for the <System> element.

10

The event depicted in Figure 1 contains a <System> element, and a

<UserData> element. The <System> element defines information about the

event, such as the event's level, the name of the event publisher that

published the event, the time the event was published, the channel the

event was published in, and the event identifier. The <UserData> element

Figure 1

Microsoft Corporation, 2014

<Event xmlns="http://schemas.microsoft.com/win/2004/08/events/event">
 <System>
 <Provider Name="Microsoft-Windows-TaskScheduler"
 Guid="{de7b24ea-73c8-4a09-985d-5bdadcfa9017}" />
 <EventID>310</EventID>
 <Version>0</Version>
 <Level>4</Level>
 <Task>310</Task>
 <Opcode>0</Opcode>
 <Keywords>8000000000000000</Keywords>
 <TimeCreated SystemTime="2006-02-28T21:51:44.754Z" />
 <EventRecordID>7664</EventRecordID>
 <Correlation />
 <Execution ProcessID="1068" ThreadID="1496" />
 <Channel>Microsoft-Windows-TaskScheduler</Channel>
 <Computer>MyComputerName</Computer>
 <Security UserID="S-1-5-18" />
 </System>
 <UserData>
 <TaskEngineProcessStarted
 xmlns:auto-ns2="http://schemas.microsoft.com/win/2004/08/events"
 xmlns="http://manifests.microsoft.com/win/2004/08/windows/eventlog">
 <TaskEngineName>S-1-5-19:NT AUTHORITY\Local Service:Interactive:LUA</TaskEngineName>
 <Command>taskeng.exe</Command>
 <ProcessID>6120</ProcessID>
 <ThreadID>5920</ThreadID>
 </TaskEngineProcessStarted>
 </UserData>

</Event>

11

contains the reason the event was published. This information is defined

through a custom event template (custom XML elements) defined by the

event publisher. This particular event contains a

<TaskEngineProcessStarted> element, which gives an event consumer

information about the event. This event occurred because the Task

Scheduler service raised an informational event when the taskeng.exe

process was started. This is conveyed through the elements in the

<UserData> element (Microsoft Corporation, 2014).

3.4 Log File Structure

File Header

The log file consists of a file header and a chunk or chunks. Chunks are

blocks of space (memory or hard disk) where the log file records are

stored. The file header is 4096 bytes, but only 128 bytes are actually used.

The reason for having the extra space preallocated is that some logs, such

as Application, Security and System, tend to be used more often and will

need this space to grow because as the new events are stored, more

chunks will be needed to house them. The file header is protected using a

32-bit checksum. Also, inside the file header is the string “ElfFile” (0x45,

0x6C, 0x66, 0x46, 0x69, 0x6C, 0x65, 0x00). This is considered the magic

12

string and when it is paired with a version number of 3.1, is indicative of a

Windows event log file (Figure 2). The number assigned to the chunk that

is currently being used will also be stored in the file header. These chunk

numbers are zero based and if the current chunk is not the last chunk, then

the retention policy calls for the oldest records to be overwritten.

 Figure 2

13

Chunks

Every chunk will include a small header, a hash table of strings and XML

templates, and a series of event records. The chunk header is 128 bytes

and is protected by a 32-bit check sum. As with the file header, the chunk

header has it’s own magic string “ElfChnk” (0x45, 0x6C, 0x66, 0x43, 0x68,

0x6E, 0x6B, 0x00) (Figure 3). This magic string will make it easy to

identify individual chunks. There are also pointers to the offset of the last

record and to the offset of the next record.

14

 Figure 3

Event Record

The event record always starts off with the magic string “**00” (0x2A, 0x2A,

0x00, 0x00) and is followed by the record size. It also includes the number

of the record, a timestamp and the binary XML stream, which is the logged

information.

15

Figure 4

Chapter 4: Finding .evtx in Memory

Since each file header is exactly 4096 bytes in size (a page) and always

starts with the magic string “ElfFile” and each chunk is 64KB, including the

header which contains the magic string “ElfChnk” and each event record

contains its individual size and the magic string “**00”, data carving can be

very effective in discovering log data. By targeting these magic strings and

16

knowing their size, we are able to find and extract each log file as a whole

or even each event record individually. Because of the binary XML format,

the use of templates makes it possible to retrieve files which weren’t closed

properly and sometimes corrupted. There are a few tools available that are

capable of extracting or viewing evtx log files, but they require using

different modules to do different things. EVTXtract and python-evtx are

tools written in Python and were created by Willi Ballenthin. They were

modeled after Andreas Schuster’s EvxtParser tool that was implemented in

Perl.

4.1 Volatility and evtx

Since Volatility’s support for extracting Windows event log information was

interrupted due to the new format and storage, users were forced to look to

other tools in order to get the very important information stored in these log

files, hindering the ease of use that Volatility users have become

accustomed to. Volatility is written in Python and is designed to be

modular, by use of plugins. This allows functionality, at least partially, after

an update to an operating system such as Windows. Adding plugins

17

provides the ability to update and add to the functionality very easily.

Simply, a user can just drop a plugin into Volatility and it will be able to do

the task it was created to do.

4.2 Evtxlogs.py

While Volatility is still chugging along after the many Windows operating

systems updates, there is a need to return the functionality for extracting

Windows event log files to Windows Vista and beyond. EVTXtract and

python-evtx have already proved to be extremely useful. Having the

commonality of being implemented in Python, consolidating and integrating

all the necessary modules within EVTXtract and evtx-python into a single

file that would be compatible with volatility, seemed like the logical choice.

EVTXtract consists of many different Python scripts that are designed to be

called in different sequences depending on the desired results. Trying to

automate the process required removing some of the redundancies that

were present in many of the scripts. This was due to the fact that, no

matter the number or combinations of scripts used, it still had to be able to

save the output on termination. EVTXtract can recover and reconstruct

fragments or partial log files from raw binary data, including unallocated

18

space and memory images (Ballenthin, 2014). Unfortunately, due to

dependencies, it is not a standalone tool.

Since EVTXtract is dependent on python-evtx in order to execute, the

inclusion of the modules from python-evtx are essential in creation of this

plugin. Python-evtx consists of four modules, BinaryParser.py, Evtx.py,

Nodes.py and Views.py. Python-evtx is a standalone package, also

created by Willi Ballenthin, that parses Windows log files with the .evtx file

extension. It allows access to both the file and chunk headers, record

templates and the event entries. Because of the dependency above, very

little modification is necessary for these two to interact within the same file

space.

After following the workflow of EVTXtract and following some

recommendations from Ballenthin,

https://github.com/williballenthin/EVTXtract, the next step was to add the

necessary code Volatility requires for integration.

“Volatility requires all plugins to conform to certain criteria and format. This

not only guarantees seamless performance, but also allows for stability and

uniformity of its product. The Base Class: “Plugins should inherit from the

commands.command base class, or any other plugin that descends from it.

A plugin (command object) by default features the following functions:

https://github.com/williballenthin/EVTXtract

19

help, execute and calculate.

The help function should return a short string describing the plugin, by

default this returns the plugin class docstring, and generally will not require

overriding.

The execute function firsts calls the plugin's calculate function and then

returns the results of calculate to an appropriate render function (based on

the output command line parameter). Again, this function should in general

not be overridden.”

The calculate function should carry out the main operation against any

memory images being analyzed. This function takes no arguments and

returns a single "data" variable, which can be of any form as long as it is

then successfully processed by the plugin's render_<type> functions.”

(Volatility, Plugin Interface,2012).

Using a terminal, typing the following commands, within the ~/volatility

directory will execute the evtxlogs.py plugin.

python vol.py -f ~/Desktop/memDumps/WIN-TTUMF6EI3O3-20140203-

123134\(Win7SP1x86\).raw --profile=Win7SP1x86 evtxlogs -D evtxoutput

python - denotes Python is being used

vol.py - name of the executable file (launches Volatility)

20

-f - filename of the image to open

~/Desktop/memDumps/WIN-TTUMF6EI3O3-20140203-

123134\(Win7SP1x86\).raw - the path and actual image to open

—profile=Win7SP1x86 - the matching image profile to use

evtxlogs - the name of the plugin being used

-D - the name of the directory for storing the evtx-output.txt

evtxoutput - the actual name of the directory for storing the evtx-output.txt

file * this directory can be named whatever the user chooses, but must be

created and located in the ~/volatility directory prior to execution*.

The following code is the class EvtxLogs.

class EvtxLogs(common.AbstractWindowsCommand):

 """Extract Windows Event Logs (Vista/7/8/10 only)"""

 def __init__(self, config, *args, **kwargs):

 common.AbstractWindowsCommand.__init__(self, config, *args, **kwargs)

 config.add_option('DUMP-DIR', short_option = 'D', default = None,

 cache_invalidator = False,

 help = 'Directory in which to dump log files’)

 self.files_to_remove = []

 @staticmethod

21

 def is_valid_profile(profile):

 """This plugin is valid on Vista/7/8/10"""

 return (profile.metadata.get('os', 'unknown') == 'windows' and

 profile.metadata.get('major', 0) == 6)

Inheriting from the commands.command base class gives access to

Volatility and its default features including help, execute and calculate.

This code adds the option to assign a directory ”Dump-Dir”, denoted by the

‘D’. It also adds the text, “Directory in which to dump log files”, explaining

the usage of the option -D. This plugin is for the profiles of Windows Vista,

7 and 8 (not tested on Windows 10, but it should work because the

structure wasn’t changed), so there is a need to check that the profile being

used is compatible with this address space. The @staticmethod decorator

for def is_valid_profile(profile): starts the check for the ensure

the appropriate profile is currently being used.

The calculate method below, will start retrieving all the data that is being

generated from python-evtx and EVTXtract. The chunks (possibly partial

and/or corrupted) and their offsets will be found thanks to their magic

strings and set size. The format of the data tokens being processed will

determine the template that is chosen to be populated.

22

 def calculate(self):
 records = []

 image_path = (config.LOCATION).replace('file://', '')
 image_path = image_path.replace('%28', '(')
 image_path = image_path.replace('%29', ')')

 with State("default") as state:
 self.files_to_remove.append(os.path.realpath(state._filename))
 with Mmap(image_path) as buf:
 num_chunks_found = self.find_evtx_chunks(state, buf)
 print("# Found %d valid chunks." % num_chunks_found)

 with State("default") as state:
 with TemplateDatabase("default.db") as templates:
 self.files_to_remove.append(os.path.realpath(templates._filename))
 with Mmap(image_path) as buf:
 num_templates_before = templates.get_number_of_templates()
 num_valid_records_before = len(state.get_valid_records())
 self.extract_valid_evtx_records_and_templates(state, templates, buf)
 num_templates_after = templates.get_number_of_templates()
 num_valid_records_after = len(state.get_valid_records())
 print("# Found %d new templates." % (num_templates_after -
 num_templates_before))
 print("# Found %d new valid records." % (num_valid_records_after -
 num_valid_records_before))

 with State("default") as state:
 ranges = []
 range_start = 0
 for chunk_offset in state.get_valid_chunk_offsets():
 ranges.append((range_start, chunk_offset))
 range_start = chunk_offset + 0x10000
 ranges.append((range_start, os.stat(image_path).st_size)) # from here to
 end of file

 with Mmap(image_path) as buf:
 num_potential_records_before =
 len(state.get_potential_record_offsets())
 for offset in self.find_lost_evtx_records(buf, ranges):
 state.add_potential_record_offset(offset)
 num_potential_records_after = len(state.get_potential_record_offsets())
 print("# Found %d potential EVTX records." %
 (num_potential_records_after -
 num_potential_records_before))

23

 with State("default") as state:
 if len(state.get_valid_records()) == 0:
 print ("# No valid records found.")

 for event in state.get_valid_records():
 records.append(event["xml"])

 return records

Once the data and template computations are complete, the render_text

method will start creating a file, evtx-output.txt, to store into the

predetermined directory (see below).

def render_text(self, outfd, data):

 name = 'evtx-output.txt'

 fh = open(os.path.join(self._config.DUMP_DIR, name), 'wb')

 for record in data:

 fh.write(str(record))

 fh.close()

 outfd.write('Parsed data sent to {0}\n’.format(name))

 #Removes/deletes temporary files default and default.db created during

 #the extraction process. Fixes bug caused by switching memory images.

 #Also fixes the inflated number of return results when running the same

 #image multiple times.

 for f in self.files_to_remove:

 os.remove(f)

24

The following from an actual evtx-output.txt file produced by the evtxlogs.py

plugin on Windows 7.

<Event xmlns="http://schemas.microsoft.com/win/2004/08/events/event"><System><Provider
Name="Microsoft-Windows-WindowsBackup" Guid="01979c6a-42fa-414c-b8aa-
eee2c8202018"></Provider>
<EventID Qualifiers="">100</EventID>
<Version>0</Version>
<Level>4</Level>
<Task>0</Task>
<Opcode>0</Opcode>
<Keywords>0x8000000000000000</Keywords>
<TimeCreated SystemTime="2014-02-03 03:09:18.457090"></TimeCreated>
<EventRecordID>1</EventRecordID>
<Correlation ActivityID="" RelatedActivityID=""></Correlation>
<Execution ProcessID="1696" ThreadID="2400"></Execution>
<Channel>Microsoft-Windows-WindowsBackup/ActionCenter</Channel>
<Computer>WIN-TTUMF6EI3O3</Computer>
<Security UserID="S-1-5-19"></Security>
</System>
<EventData><Data Name="hc_stateid">1</Data>
<Data Name="pwszTimeStamp"></Data>
</EventData>
</Event>
<Event xmlns="http://schemas.microsoft.com/win/2004/08/events/event"><System><Provider
Name="ThinPrint AutoConnect"></Provider>
<EventID Qualifiers="0">4001</EventID>
<Level>4</Level>
<Task>1</Task>
<Keywords>0x0080000000000000</Keywords>
<TimeCreated SystemTime="2014-02-03 08:45:36"></TimeCreated>
<EventRecordID>1</EventRecordID>
<Channel>ThinPrint Diagnostics</Channel>
<Computer>WIN-TTUMF6EI3O3</Computer>
<Security UserID=""></Security>
</System>
<EventData><Data><string>8 printer(s) of session 1 were deleted.</string>
</Data>
<Binary>OI2lkltLA0EMhc+zv2Kor1U61ar4JmoVvEKF+qrbrRd0C7pC8df7TfZlhS2TKkOGTCY5OblE9
VtnQwPuaPpUpR51qqWCTrRQoS+9Y6tUY7nE8qAZ7w9t6lA7v3D66hFT6g2pkcC7tzZiigmcbTtBN7r
A0uZ4C86YnyNiCj3rxbIV3AkhOjjlEPIcJlbBjL87KkgeFZZr9CbLEN+IJLxdB6P18PL8xnR1ad57juxtb2/
/j+ldSVwNx2Z2Q3fnu2Lzea+YU4H/Qp/I3PbnHsRJ52ZN8Wzm2mQYOdj9N0O+hnPQkn3OSblKvRqD
wFRH+A3QztDSrCtt6duQDxzc/4rs2fWKWT1ZrQFbtMh911Z3R67K+QMVBpng</Binary>
</EventData>
</Event>

25

The following is from an actual evtx-output.txt file produced by the

evtxlogs.py plugin on Windows Vista.

<Event xmlns="http://schemas.microsoft.com/win/2004/08/events/event"><System><Provider
Name="Microsoft-Windows-WindowsUpdateClient" Guid="{945a8954-c147-4acd-923f-
40c45405a658}"></Provider>
<EventID Qualifiers="">39</EventID>
<Version>0</Version>
<Level>4</Level>
<Task>1</Task>
<Opcode>17</Opcode>
<Keywords>0x4000000000000280</Keywords>
<TimeCreated SystemTime="2006-05-26 20:43:46.327250"></TimeCreated>
<EventRecordID>3</EventRecordID>
<Correlation ActivityID="" RelatedActivityID=""></Correlation>
<Execution ProcessID="856" ThreadID="428"></Execution>
<Channel>Microsoft-Windows-WindowsUpdateClient/Operational</Channel>
<Computer>26L2233C6-05</Computer>
<Security UserID="S-1-5-18"></Security>
</System>
<EventData></EventData>
</Event>
<Event xmlns="http://schemas.microsoft.com/win/2004/08/events/event"><System><Provider
Name="Microsoft-Windows-WindowsUpdateClient" Guid="{945a8954-c147-4acd-923f-
40c45405a658}"></Provider>
<EventID Qualifiers="">29</EventID>
<Version>0</Version>
<Level>3</Level>
<Task>1</Task>
<Opcode>17</Opcode>
<Keywords>0x4000000000000001</Keywords>
<TimeCreated SystemTime="2006-05-26 18:09:51.490128"></TimeCreated>
<EventRecordID>4</EventRecordID>
<Correlation ActivityID="" RelatedActivityID=""></Correlation>
<Execution ProcessID="928" ThreadID="1780"></Execution>
<Channel>Microsoft-Windows-WindowsUpdateClient/Operational</Channel>
<Computer>Galactica</Computer>
<Security UserID="S-1-5-18"></Security>
</System>
<EventData></EventData>
</Event>

Conclusion

26

Windows Vista and its predecessors were released many, many years ago.

While Volatility has still been providing support for those operating systems

since Windows XP, there has been a disruption in the framework for

retrieving the event logs and the information that they hold. Even though

there are other ways to get this information, Volatility takes pride in being

an all-in-one solution for memory analysis. Restoring the functionality of

retrieving the information residing in the Windows event logs in the more

recent releases (Windows Vista, Windows 7 and Windows 8), will alleviate

the burden of having to rely on software outside of the Volatility framework.

By combining some existing open-source software, it is possible for

Volatility to resume the retrieval of Windows event logs in Windows Vista

through Windows 8.

27

References

Microsoft Corporation, 2014a

http://windows.microsoft.com/en-us/windows/what-information-event-logs-event-viewer#1TC=windows-7

Microsoft Corporation, Event Properties, 2014b

https://technet.microsoft.com/en-us/library/cc765981.aspx

Val Menn, New Tools for Event Management in Windows Vista, 2008

https://technet.microsoft.com/en-us/magazine/2006.11.eventmanagement.aspx

Microsoft Corporation, Event Representation for Event Consumers, 2009

https://msdn.microsoft.com/en-us/library/aa385229.aspx

Willi Ballenthin, EVTXtract, 2014

https://github.com/williballenthin/EVTXtract

Willi Ballenthin, Python-Evtx, 2014

https://github.com/williballenthin/python-evtx

Volatility, Plugin interface, 2012

https://code.google.com/p/volatility/wiki/Vol20PluginInterface

Volatility Foundation, 2015

https://github.com/volatilityfoundation

http://windows.microsoft.com/en-us/windows/what-information-event-logs-event-viewer#1TC=windows-7
https://technet.microsoft.com/en-us/library/cc765981.aspx
https://technet.microsoft.com/en-us/magazine/2006.11.eventmanagement.aspx
https://msdn.microsoft.com/en-us/library/aa385229.aspx
https://github.com/williballenthin/EVTXtract
https://github.com/williballenthin/python-evtx

28

VITA

The author was born in New Orleans, Louisiana. He obtained his

Bachelor’s degree in general studies from Louisiana State University in

1994. He joined the University of New Orleans computer science graduate

program to pursue a Master of Science degree in information assurance

and memory forensics.

	Extracting Windows event logs using memory forensics
	Recommended Citation

	tmp.1454339175.pdf.liWE9

