University of New Orleans

ScholarWorks@UNO

University of New Orleans Theses and Dissertations

Dissertations and Theses

Fall 12-15-2015

Mineralogy and geochemistry of Late Archean and Paleoproterozoic granites and pegmatites in the Northern Penokean terrane of Marquette and Dickinson Counties, Michigan

Christopher M. Johnson cmjohns6@uno.edu

Christopher M. Van Daalen cmjohns6@uno.edu

Follow this and additional works at: https://scholarworks.uno.edu/td

🗳 Part of the Geochemistry Commons, Geology Commons, and the Tectonics and Structure Commons

Recommended Citation

Johnson, Christopher M. and Van Daalen, Christopher M., "Mineralogy and geochemistry of Late Archean and Paleoproterozoic granites and pegmatites in the Northern Penokean terrane of Marquette and Dickinson Counties, Michigan" (2015). *University of New Orleans Theses and Dissertations*. 2088. https://scholarworks.uno.edu/td/2088

This Thesis is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself.

This Thesis has been accepted for inclusion in University of New Orleans Theses and Dissertations by an authorized administrator of ScholarWorks@UNO. For more information, please contact scholarworks@uno.edu.

Mineralogy and geochemistry of Late Archean and Paleoproterozoic granites and pegmatites in the Northern Penokean terrane of Marquette and Dickinson Counties, Michigan

A Thesis

Submitted to the Graduate Faculty of the University of New Orleans in partial fulfillment of the requirements for the degree of

Master of Science In Earth and Environmental Science

By C. Mark "Leopold" Van Daalen B.Sc. (Hons.), University of New Orleans, 2013 December, 2015

© 2015, C. Mark Van Daalen

ACKNOWLEDGEMENTS

I would like to express my profound gratitude to Dr. William Simmons, Mr. Alexander Falster, and Dr. Karen Webber for providing an unbelievable amount of opportunities to see many, many rocks! Thank you for pushing me to push myself. Thank you for your patience, guidance, and faith throughout this entire process. I will be forever grateful.

Thanks to the University of New Orleans Earth and Environmental Sciences department for funding and scholarships. Each and every professor had a hand in making this thesis possible.

Thanks very much to the MP² Research Lab and the Maine Gem and Mineral Museum for their quality analytical work and guidance with the data.

Thanks to Tom Buchholz, Dan Fountain, and the Yelsky Sisters. Without their help and permission, I would not have been able to have had access to many of the locations from which I gathered samples.

A heartfelt thanks to my office mates: Drew Boudreaux, Karen Marshal, Kimberly Simon, Kristen Camp, Leah Grassi, Myles Felch, Jon Guidry, and Sasha Kreinik. You guys are the best! Also, to the Unna Ibbers: Joe P. Frank, Elijah Adedeji, Trey Kramer, and Josh Flathers. Ikpikpuk! Thanks to Ms. Linda and Norman for their support over the years.

I would also like to thank my parents and family for their support and understanding. And to my Aunt who bought me my first book about rocks.

A very special thanks to Mr. Alexander Falster. Of all the names you have ever called me... Bruder is the one I cherish the most.

And last, but certainly not least, I would like to thank my husband, Nicholas Van Daalen. Every day I ask myself how I ever got so lucky as to have you in my life.

iii

LIST OF FIGURES	xi
LIST OF TABLES	xviii
Abstract	xxii
INTRODUCTION	1
GEOLOGIC HISTORY	4
GNEISS DOME FORMATION	8
METAMORPHISM IN THE NORTHERN PENOKEAN TERRANE	11
LOCAL GEOLOGY	14
Methodology	17
TITRATION	17
Fusion ICP	
DCP	
SEM	
EMP	21
BELL CREEK GRANITE	
Apatite	
BIOTITE	24
Chlorite	27
Feldspars	
Fluorite	
Ilmenite	
Monazite	
Muscovite	
TITANITE	
Zircon	
HUMBOLDT GRANITE	
Apatite	41
BIOTITE	
Feldspars	45
Fluorite	
Magnetite	
Monazite	

Muscovite	
Pyrite	
TA/NB SPECIES	53
Th/U Species	
VANADINITE?	
Zircon	
GRIZZLY PEGMATITE	
Apatite	
BIOTITE	
BISMUTH	
Fluorite	
Feldspars	
K-Feldspar	
Ilmenite	
Monazite	
Muscovite	
RUTILE	
"XENOTIME", "BASTNÄSITE", ZIRCON	
Zircon	
GRIZZLY? URANINITE	
DOLFIN PEGMATITE	
BIOTITE	
K-Feldspar	
Fluorite	
GARNET	
Monazite	
Muscovite	
Pyrite	
Uraninite	
Xenotime	
Zircon	
CROCKLEY PEGMATITE	
BASTNÄSITE	
BIOTITE	

CHALCOPYRITE	
Columbite	
Feldspar	
K-Feldspar	
Plagioclase Feldspar	
Fluorite	
GARNET	
Ilmenite	
Pyrite	
Pyrochlore Supergroup	
"Monazite"	
MUSCOVITE	
RUTILE	
Zircon	
REPUBLIC MINE PEGMATITE	
Apatite	
BIOTITE	
Feldspars	
K-feldspar	
Plagioclase Feldspar	
GARNET	
Ilmenite	
"Monazite"	
CA-RICH MONAZITE	
MUSCOVITE	
RUTILE	
THALÉNITE	
TOURMALINE	
Zircon	
BLACK RIVER PEGMATITE	
Apatite	
Columbite/Tantalite	
PLAGIOCLASE FELDSPAR	
Fluorite	

IRON OXIDE	
"Monazite"	
Muscovite	
Scheelite	
"Xenotime"	
Zircon	
Hwy69 pegmatite	
Apatite	
BIOTITE	
CHALCOPYRITE	
COLUMBITE/TANTALITE	
Euxenite Group	
Feldspars	
K-Feldspar	
PLAGIOCLASE FELDSPAR	
GARNET	
Ilmenite	
"Monazite"	
MUSCOVITE	
Pyrite	
Pyrochlore Supergroup	
ZIRCON	
STURGEON RIVER PEGMATITE	
Apatite	
BASTNÄSITE	
BIOTITE	
Feldspars	
K-Feldspar	
PLAGIOCLASE FELDSPAR	
Fluorite	
GARNET	
Ilmenite	
IRON OXIDE	
"Monazite"	

MUSCOVITE	
Pyrite	
RUTILE	
TOURMALINE	
URANINITE	
"Xenotime"	
Zircon	
GROVELAND PEGMATITE	
Apatite	
Beryl	
BIOTITE	
Columbite	
Feldspars	
K-Feldspar	
Plagioclase Feldspar	
Fluorite	
Gahnite	
Garnet	
IRON OXIDE	
MAGNETITE	
Microlite	
"Monazite"	
Muscovite	
Pyrite	
Pyrophanite	
RUTILE	
TANTALITE	
TOURMALINE	
"Xenotime"	
Zircon	
RESULTS & DISCUSSION	
MINERAL CHEMISTRY	
APATITE GROUP	
Bastnäsite	

Beryl Group	
BISMUTH (NATIVE)	
CHALCOPYRITE	
Chlorite	
COLUMBITE/TANTALITE GROUP	
Euxenite Group	
Feldspars	
Fluorite	
GAHNITE	
GARNET GROUP	
ILMENITE/PYROPHANITE	
MAGNETITE	
MONAZITE GROUP	
MICA GROUP	
Pyrite	
Pyrochlore	
RUTILE	
SCHEELITE	
Thalénite	
TITANITE	
TOURMALINE GROUP	
URANINITE	
VANADINITE	
XENOTIME GROUP	
ZIRCON GROUP	
WHOLE-ROCK GEOCHEMISTRY	
MAJOR ELEMENTS	
TRACE ELEMENTS	
TECTONIC DISCRIMINATION DIAGRAMS	
DISCUSSION	
STANDARDS	
Apatite	
COLUMBITE/TANTALITE	
GARNET	

ILMENITE/PYROPHANITE	355
K-Feldspar	
MICA	
TITANITE	358
TOURMALINE	359
Zircon	
References	
Appendices	
TITRATION RESULTS	
Additional Analyses	
DOLFIN PEGMATITE	
CROCKLEY PEGMATITE	
REPUBLIC MINE PEGMATITE	
Hwy69 Pegmatite	
Sturgeon River Pegmatite	
GROVELAND MINE PEGMATITE	
VITA	

LIST OF FIGURES

Figure 1 Generalized structure map compiled by P.K. Sims, 19912
Figure 2 Stratigraphy of the Great Lakes region (Young, 1983)5
Figure 3 Penokean Orogenic cross section modified from Morey, 19836
Figure 4 Slab roll back after main phase of Penokean Orogeny (Holm et al., 2005)
Figure 5 Archean A) and Proterozoic B) gneiss dome formation. Modified from Tinkham &
Marshak, 2004
Figure 6 Penokean Dome & Keel Belt (Tinkham & Marshak, 2004) 10
Figure 7 Metamorphic isograds. Republic isograds in orange. Peavy isograds in red. FT-Felch
Trough, MRT-Mitchigamme Trough, RT-Republic Trough. Locations of pegmatites and granites
locations are as indicated. Sources listed on image13
Figure 8 Geologic map of Southern Complex supracrustals (Tinkham & Marshak, 2004) 14
Figure 9 Bell Creek granite road-cut exposure
Figure 10 Apatite (crosshairs 1 & 2) with corresponding EDS spectrum. Darker region is
feldspar
Figure 11 BSE image of biotite mica grain (left – crosshairs 1, 2, 3, & 4) with ilmenite inclusion
(crosshairs 5 & 6)
Figure 12 Unconfirmed chlorite grain with associated EDS spectrum (crosshairs 1 & 2)
Figure 13 K-feldspar grain with EDS spectrum. Lighter areas are K-feldspar (crosshair 1) 28
Figure 14 BSE image of plagioclase feldspar grain and EDS spectrum (crosshairs 1 & 2) 28
Figure 15 BSE image of fluorite grain. Crosshair 1 –
Figure 16 BSE image of ilmenite grain and associated EDS spectrum
Figure 17 Bell Creek monazite-(Ce) grain with close-up of inclusions. Associated EDS spectra
included
Figure 18 BSE image and associated EDS spectra. Lighter regions – biotite (crosshairs 2, 3, &
6); darker regions – muscovite (crosshair 1); lightest regions – ilmenite (crosshairs 4, 5, & 7)33
Figure 19 BSE image of unconfirmed titanite and EDS spectrum. Lighter specks are lithium
metatungstate
Figure 20 Zircon BSE image with associated spectra. Crosshair 1 – area of grain with relatively
higher Ca & Fe content. Crosshair 2 – contains relatively less Ca & Fe. Crosshair 3 is a possible
apatite inclusion
Figure 21 Field pictures of Humboldt granite samples
Figure 22 BSE image of apatite grain and associated EDS spectrum
Figure 23 Biotite BSE image with quartz inclusions
Figure 24 BSE image of K-feldspar grain and EDS spectrum
Figure 25 BSE image of plagioclase feldspar grain with associated EDS spectrum
Figure 26 Fluorite BSE image with EDS spectrum
Figure 27 BSE image of grain with pyrite core (crosshair 1) and magnetite cube overgrowth
(crosshair 2)
Figure 28 BSE image of "monazite" (lighter area – crosshair 1) and EDS spectrum. Darker
region is feldspar
Figure 29 BSE image of muscovite mica (crosshair 1)

Figure 30 BSE image of pyrite grain (top right grain - crosshairs 1 & 2) and associated EDS	
spectrum.	52
Figure 31 BSE image and associated spectrum of tantalum/niobium mineral (crosshair 1) on	a
feldspar grain (crosshair 2).	53
Figure 32 BSE image and spectrum of a thorium/uranium-rich mineral species (crosshair 3)	on a
feldspar grain (crosshair 2).	54
Figure 33 Vanadinite crystal BSE image and EDS spectrum	55
Figure 34 BSE image of twinned zircon with EDS spectrum.	56
Figure 35 BSE image of polished zircon grain with internal zonation along with associated H	EDS
spectra. Lighter areas (crosshairs 2, 4, & 5) have relatively lower Ca content. Darker areas	
(crosshairs 1 & 3) have relatively higher Ca content.	56
Figure 36 Field pictures of Grizzly pegmatite.	58
Figure 37 BSE image of polished apatite grain (crosshair 1 & 2)	59
Figure 38 BSE image of polished biotite grain (crosshairs 1 & 2).	61
Figure 39 BSE image of elemental bismuth inclusions (crosshairs 1, 2, & 3 in both top and	
close-up) in fluorite grain (crosshair 4) with corresponding EDS spectra	64
Figure 40 BSE image of fluorite grain along with corresponding EDS spectrum.	65
Figure 41 BSE image of K-feldspar grain.	66
Figure 42 BSE image of K-feldspar grain with close-up of plagioclase inclusion. Associated	I
EDS spectra of all inclusions as well as main K-feldspar grain	68
Figure 43 Ilmenite (crosshairs 2-5) and quartz (crosshair 6) inclusions in biotite grain (crossl	nairs
1 & 7) shown in above BSE image along with EDS spectra.	69
Figure 44 BSE image of monazite-(Ce) grain	71
Figure 45 BSE image of polished monazite-(Ce) grain illustrating numerous inclusions and	
fractures within the grain	73
Figure 46 BSE image of muscovite mica grain. Associated spectra reveal what might have b	been
a "monazite" grain.	74
Figure 47 Muscovite mica and rutile grains in BSE image with associated EDS spectra	77
Figure 48 BSE image shows a grain with possible "bastnäsite", "xenotime", and zircon	78
Figure 49 BSE image of zircon crystals.	79
Figure 50 BSE image of uraninite, pyrite, and apatite grains embedded within muscovite mid	ca
and associated EDS spectra.	81
Figure 51 BSE image showing close-up of uraninite crystal in Figure 50 along with	
corresponding EDS spectra.	82
Figure 52 Dolfin pegmatite image showing poor exposure of pegmatite	83
Figure 53 BSE image of biotite mica grain.	85
Figure 54 BSE image of K-feldspar grain.	88
Figure 55 BSE image of fluorite grain (crosshair 1)	90
Figure 56 BSE image of garnet grain (left; crosshair 1) and polished garnet grain (right;	
crosshair 1).	91
Figure 57 BSE image of polished monazite-(Ce) grain with inclusions of apatite and zircon.	
Associated spectra included.	93
Figure 58 BSE image of monazite-(Ce) grains from the Dolfin pegmatite with corresponding	5
spectra of grain and inclusions.	95
Figure 59 BSE image of muscovite mica grain (1 & 2).	97
Figure 60 BSE image of pyrite grains embedded in a larger "monazite" grain	100

Figure 61	BSE image of zircon grain with uraninite inclusions.	101
Figure 62	BSE image of "xenotime" (crosshair 4) and associated EDS spectra.	102
Figure 63	BSE image of zoned zircon (crosshairs 1, 4 & 5)	104
Figure 64	Field image of the Crockley pegmatite	
Figure 65 F	Field picture of Crockley pegmatite.	107
Figure 66	BSE image of "Bastnäsite" (crosshairs 3, 4, 5, 7, & 8), plagioclase (crosshair 2	2), and
an iron alui	minosilicates (crosshair 1).	108
Figure 67	BSE image of biotite mica grain (crosshairs 1 & 2) and inclusions (crosshairs 3	3-7)
along with	EDS spectra	111
Figure 68	BSE image and corresponding EDS spectrum of chalcopyrite. Zircon (crossha	air 1),
quartz (cros	sshair 2), chalcopyrite (crosshair 3), & mica (crosshair 4).	115
Figure 69	BSE image and associated spectra of biotite grain with columbite inclusion. T	op left
image: K-fe	eldspar (crosshair 1); biotite mica (crosshair 2); quartz (crosshair 3); lead (cros	sshair
4); rutile (c	crosshair 6); crosshair 5 region is enlarged BSE image	116
Figure 70	BSE image of K-feldspar	118
Figure 71	BSE image of plagioclase feldspar	120
Figure 72	BSE image of fluorite (crosshairs 1 & 2) with corresponding spectrum	122
Figure 73	BSE image of garnet grain. Garnet (crosshair 1),	123
Figure 74	BSE image of ilmenite inclusions with corresponding spectrum. Refer to Figu	re 69
for addition	nal EDS spectra of BSE image (left). Close-up BSE image: Biotite (crosshair :	5) &
possible py	vrochlore (crosshair 2).	125
Figure 75	BSE image of pyrite grain	127
Figure 76	BSE image of pyrochlore supergroup grain	128
Figure 77	BSE image of polished "monazite" grain.	130
Figure 78	BSE image of muscovite mica (crosshairs 1 & 2)	132
Figure 79	BSE image of rutile inclusion (crosshair 3) and associated EDS spectrum. Gat	rnet
(crosshair 1	1), K-feldspar (crosshair 2), & quartz (crosshair 4)	135
Figure 80	BSE image of zircon (crosshair 2) and associated EDS spectra of a niobium sp	ecies
(crosshairs	1 & 3), iron oxide (crosshairs 5 & 7), thorium-rich zircon (crosshair 4), and py	yrite
(crosshair 6	5)	137
Figure 81	Representative pegmatite samples from the Republic Mine pegmatite	139
Figure 82	BSE image of apatite grain (1 & 2).	141
Figure 83	BSE image of polished muscovite grain	142
Figure 84	BSE image of polished K-feldspar grain (crosshairs 1 & 4).	145
Figure 85	BSE image of polished plagioclase grain (crosshairs 1 & 3).	147
Figure 86	BSE of garnet grain	149
Figure 87	BSE image of ilmenite rim (crosshairs 1 & 3)	151
Figure 88	BSE image of polished "monazite" (crosshair 1)	153
Figure 89	BSE image of polished grain of monazite	155
Figure 90	BSE image of polished muscovite grain	157
Figure 91	BSE image of rutile rim on mica grain	160
Figure 92	BSE image of thalénite (crosshairs 2 & 3)	161
Figure 93	BSE image of polished tourmaline mount and associated EDS spectra	163
Figure 94 E	BSE image of polished zircon grain.	165
Figure 95	Black River pegmatite	167
Figure 96	BSE of apatite grain with corresponding EDS spectrum (crosshairs 1 & 2)	

Figure 97 BSE image of polished columbite grains (left) & ferrocolumbite grain (right) with	1
regions of ferrotantalite (lighter areas of the grains). Visible zoning (left middle grain) is pre	esent
and corresponds to higher Ta content	169
Figure 98 BSE image of polished plagioclase grain (crosshair 1),	171
Figure 99 BSE image of fluorite grain and corresponding EDS spectrum	173
Figure 100 BSE image and EDS spectrum of magnetite grain.	174
Figure 101 BSE image and EDS spectrum of hematite grains	174
Figure 102 BSE image of polished "monazite" grain	175
Figure 103 BSE image of polished muscovite grain (1-3).	177
Figure 104 BSE image of possible scheelite with corresponding EDS spectrum.	180
Figure 105 BSE image of "xenotime" grain (crosshair 3) & associated EDS spectrum on	
feldspar grain (crosshairs 1 & 2).	181
Figure 106 BSE image of zircon grain.	182
Figure 107 Hwy 69 Pegmatite exposure	183
Figure 108 BSE image of apatite grain along with associated EDS spectrum.	185
Figure 109 BSE image of biotite mica grain along with corresponding EDS spectrum	186
Figure 110 BSE image of chalcopyrite grain (crosshair 3) with corresponding EDS spectrum	n.
Mica (crosshairs 1 & 2), quartz (crosshair 4), & K-feldspar (crosshair 5).	189
Figure 111 BSE image of polished ferrocolumbite grain (1 & 2).	190
Figure 112 BSE image of polished fersmite grain (crosshairs 1, 2, 4, & 5) and K-feldspar	
inclusions (crosshair 3).	192
Figure 113 BSE image of polished K-feldspar grain	194
Figure 114 BSE image of polished plagioclase grain	196
Figure 115 BSE image of Type 1 garnet with fractures and inclusions along withassociated	
spectra	198
Figure 116 BSE image of Type 1 garnet with inclusions along with corresponding EDS spec	ctra.
	200
Figure 117 BSE image of ilmenite grain (crosshair 3) with EDS spectrum. Mica (crosshair 1) &
garnet (crosshair 2)	203
Figure 118 BSE images of unaltered (left) and altered (right) "monazite" grains. Left grain:	
"monazite" (crosshairs 1 & 3) and mica (crosshair 2). See Figure 119 for associated spectra	for
right grain	204
Figure 119 BSE image of right grain in Figure 118 along with associated spectra.	205
Figure 120 BSE image of polished muscovite mica grain.	207
Figure 121 BSE image of pyrite grain with corresponding EDS spectrum	210
Figure 122 BSE image of pyrochlore (crosshairs 1, 2, 4, & 5)	211
Figure 123 BSE image of zircon grain along with corresponding EDS spectrum	212
Figure 124 Field pictures of Sturgeon River pegmatite.	213
Figure 125 BSE image of polished apatite grains (1 & 2)	214
Figure 126 BSE image of polished grain with "bastnäsite"	216
Figure 127 BSE image of polished biotite mica grain (1, 2, & 3)	219
Figure 128 BSE image of polished K-feldspar grain with close-up. Associated EDS spectra	are
included.	222
Figure 129 BSE images of plagioclase feldspar grain (left) with close-up (right). Plagioclas	e
grain (left; crosshair 2), K-feldspar blebs (crosshair 1). Close-up (right): apatite (crosshair 1)) &
pyrite (crosshair 2)	224

Figure 130 BSE image of fluorite grain. Lighter colored matrix is of undetermined chemistry.		
Bottom grain (right) is garnet		
Figure 131 BSE image of polished garnet grain (left) with inclusions: Garnet (crosshairs 1 & 2),		
K-feldspar (crosshairs 3 & 6), plagioclase (crosshair 4), and quartz (crosshair 5). Unpolished		
garnet grain (right; crosshair 1)		
Figure 132 BSE image of garnet with "monazite" inclusion (above). X-ray map with elemental		
color overlay (below). Quartz (red), garnet (mottled light green), mica fracture infill (dark		
green), feldspar (mottled pink; upper right), apatite (yellow), & "monazite" (bright blue)228		
Figure 133 BSE image of ilmenite grain. Mica		
Figure 134 BSE image of iron oxide (crosshair 3)		
Figure 135 BSE image of "monazite" grain		
Figure 136 BSE image of polished muscovite mica grain (1, 2 & 3)		
Figure 137 BSE image of pyrite grain (crosshair 1)		
Figure 138 BSE image of mica grain with rutile inclusions along with associated spectrum.		
Muscovite mica (crosshairs 2 & 5) & biotite mica (crosshair 3).		
Figure 139 BSE image of polished tournaline grain (1 & 2)		
Figure 140 BSE image of uraninite (crosshairs 1 & 2) on mica (crosshairs 2 & 4) along with		
corresponding EDS spectrum 242		
Figure 141 BSE image of epitaxial overgrowth of "xenotime" and zircon along with associated		
FDS spectra 243		
Figure 142 BSE images of polished (left) and uppolished (right) zircon grains 244		
Figure 142 DSE images of poinside (icit) and unpoinside (right) zheon granis		
Figure 144 Close up of kinked miss book from the Groveland Mine permetite		
Figure 145 DSE image of poliched enotite grain (1)		
Figure 145 BSE image of polished apartic grain (1).		
Figure 146 BSE image of polished beryl grain		
Figure 14/ BSE image of polished biotite mica grains (1-4).		
Figure 148 BSE image (top) of mica grain and EDS spectra. BSE image (bottom) of alteration		
with corresponding EDS spectra		
Figure 149 BSE images of columbite/tantalite grain (left; crosshair 1) and polished grain (right;		
crosshairs 1 & 2) with inclusions of plagioclase (left; crosshair 2 & right; crosshairs 3 & 4)253		
Figure 150 BSE image of polished K-feldspar grain (crosshair 2),		
Figure 151 BSE image of polished plagioclase grain		
Figure 152 BSE image of fluorite grain (1)		
Figure 153 BSE close-up image of gahnite as well as other inclusions with associated EDS		
spectra		
Figure 154 BSE images of polished garnet grains		
Figure 155 BSE image of iron oxide grain with corresponding EDS spectra (crosshairs 1-3). 264		
Figure 156 BSE image of magnetite grain (crosshair 5) with K-feldspar (crosshair 1), quartz		
(crosshair 2), and pyrophanite (crosshairs 3, 4, & 6)		
Figure 157 BSE image and associated spectra of quartz grain with plagioclase, K-feldspar, and		
columbite group mineral from Groveland Mine samples		
Figure 158 BSE image of polished "monazite" grain		
Figure 159 BSE image of polished muscovite mica		
Figure 160 BSE image of pyrite grain with corresponding EDS spectrum (1 & 2)		
Figure 161 BSE close-up image of pyrophanite (right; outlined in black; crosshair 3). BSE		
image - left: magnetite (crosshairs 1 & 7), ilmenite/rutile (crosshairs 2 & 3), K-feldspar		

(crosshair 4), plagioclase (crosshair 5), pyrophanite (crosshair 6), and zircon (crosshair 8	8). BSE
image close-up - right: Rutile (crosshairs 1, 2, 4, & 7), pyrophanite (outlined; crosshair 3	3),
titanium species (crosshair 5), fluorite (crosshair 6 & 10), quartz (crosshair 8), & mica (crosshair
9)	273
Figure 162 BSE close-up image of rutile overgrowth on magnetite (crosshairs 1, 2, & 4)275
Figure 163 BSE image of polished tantalite grain.	
Figure 164 BSE images of polished tourmaline grains. BSE image left: quartz (crossha	ir 1) &
tourmaline (crosshair 2). BSE image right: tourmaline (crosshair 1). Note the degree of	f
alteration in tourmaline grain to the right.	
Figure 165 BSE image of tourmaline grain with close-up of "xenotime" inclusion; asso	ciated
EDS spectrum included.	
Figure 166 BSE image of polished zircon grain and uraninite inclusion with possible ra	diogenic
lead	
Figure 167 Anion dominance ternary for apatites.	
Figure 168 Cerium, Lanthanum, Neodymium in bastnäsite group minerals. Yttrium is	>0.02
apfu.	
Figure 169 Beryl from Groveland Mine pegmatite. Na/Li versus Cs Wt.%. Region 1 –	- typical
of NYF-type pegmatites; Region 2 – beryl-type pegmatites; Region 3 – complex pegma	tites;
Region 4 – highly fractionated, pollucite-bearing pegmatites. Modified from Černý, 199	92 286
Figure 170 Columbite/Tantalite quadrilateral.	
Figure 171 Euxenite Group ternary classification. Modified from Černý & Ercit, 1989.	
Figure 172 Feldspar classification ternaries for all pegmatites.	
Figure 173 Modified alkali feldspar structural state diagram (Wright, 1968).	
Figure 174 Magnesium (spinel), zinc (gahnite), and Fe ²⁺ (hercynite) petrogenesis ternar	y based
on molecular ratios.	
Figure 175 Petrogenetic association based on molecular ratios of (Zn+Mn)/Al versus	
(Fe+Mg)/Al.	
Figure 176 Garnet compositional ternary. Circles represent garnets with no alteration.	
Triangles represent areas of garnet assumed to be primary. Squares are secondary garnet	et298
Figure 177 Garnet chemistry ratios. Circles represent garnets with no alteration. Trian	gles
represent areas of garnet assumed to be primary. Squares are secondary garnet	
Figure 178 X-site dominance for altered garnets. Pink dots represent initial garnet cher	nistry.
Figure 179 X-site dominance for altered garnets. Pink dots represent initial garnet cher	nistry.
Figure 180 Ternary of Mg (geikielite) versus Fe (ilmenite) versus Mn (pyrophanite)	
Figure 181 Line plot for "monazite" X-site cation apfu content for all analyzed samples	3. Lighter
purple line represents the Republic Mine sample that is relatively more enriched in Th a	nd Ca.
Figure 182 Coupled substitution plot of negative correlation between Ca + Th apfu and	La + Ce
+ Nd apfu.	
Figure 183 Classification scheme modified from Linthout, 2007. Samples from Grovel	and
Mine, Hwy69, and Crockley are slightly more enriched in Ca & Th relative to other more	nazites
except a sample from the Republic Mine pegmatite.	
Figure 184 Chondrite normalized plot for REE's in "monazites".	

Figure 185	Modified from Tischendorf classification scheme of micas. All dioctahedral mic	cas
are muscov	ite mica	.307
Figure 186	Modified from Tischendorf's classification scheme of micas	.308
Figure 187	Modified from Abdel-Rahman (1996) Biotite Discrimination Diagram	.308
Figure 188	Biotite discrimination diagram based on Fe/(Fe+Mg) versus total aluminum (We	ebber
et al., 2000))	.309
Figure 189	Biotite discrimination diagram based on F Wt.% versus Fe/(Fe+Mg) (Webber et	al.,
2000)		.309
Figure 190	F/(F+OH) apfu[24a] ratio versus ^{VI} Al/(^{VI} Al+Fe _{tot} +Mg) apfu[24a] ratio for biotite	e.
		.310
Figure 191	A-site and B-site content modified from Atencio et al., 2010	.311
Figure 192	Chondrite normalized plot of REE's in thalénite from Republic Mine pegmatite.	.312
Figure 193:	Primary tourmaline group based on X-site dominance (Henry et al., 2001)	.314
Figure 194:	Alkali subgroup based on Schorl-Elbaite-Dravite ternary (Henry at al., 2011)	.315
Figure 195:	F vs X-site Na apfu. All tournalines are fluorine dominant.	.315
Figure 196	Line plot for "xenotime" X-site cation apfu content for all analyzed samples	.317
Figure 197	Chondrite normalized plot of REEs in "xenotimes" from the Groveland and Dol	fin
pegmatites.		.317
Figure 198	Zr/Hf apfu versus HfO2 Wt% plot for zircons.	.319
Figure 199	Hafnium - Thorium - Uranium ternary for zircons based on normalized apfu's.	.319
Figure 200	Bateman et al. (1989) alkalis versus silica diagram.	.321
Figure 201	Shand's Index diagram of Maniar & Piccoli (1989).	.322
Figure 202	R ₁ R ₂ discrimination diagram of De La Roche et al. (1980)	.323
Figure 203	Calc-alkaline versus tholeiitic magma series affiliation of Miyashiro (1975)	.324
Figure 204	K/Rb ratios versus Rb ppm enrichment.	.326
Figure 205	Ce-La-Nd ternary diagram.	.327
Figure 206	Ce-La-Y ternary diagram.	.327
Figure 207	Ti-Nb-Ta ternary diagram.	.328
Figure 208	Chondrite-normalized REE diagram of Sun & McDonough (1989)	.331
Figure 209	Sun and McDonough primitive mantle-normalized spider diagram.	.331
Figure 210	Whalen et al. (1987) tectonic discrimination diagram	.333
Figure 211	Eby A1- & A2-subtype discrimination diagrams (1992, 2006)	.334
Figure 212	Pearce et al. (1984) tectonic discrimination diagrams.	.335
Figure 213	Černý (2012) classification of pegmatites	.338
Figure 214	Trace geochemistry of Hoffman (1987; light blue) & current (dark blue) Bell Cre	eek
granite sam	ples	.341
Figure 215	Trace geochemistry of Albite Granite (AGR) from Hoffman (1987) dissertation.	
Humboldt (HG1 & HG2) and Crockley samples (CP-SW) are analyses conducted for this study.		
Note the change in scale to accommodate stronger relative enrichment of Rb & stronger relative		
depletion of	f Ti compared to Bell Creek and Clotted Granites.	.342
Figure 216	Trace geochemistry of Hoffman (1987) Clotted Granite samples.	.342

LIST OF TABLES

Table 1 Biotite mica representative microprobe analyses. Apfu calculated based on 24 anion	s. 25
Table 2 Monazite-(Ce) representative EMP analyses Apfu calculations based on 4 oxygens	32
Table 3 Representative EMP analysis of muscovite mica Apfu based on 24 anions	34
Table 4 Representative EMP zircon analyses	38
Table 5 Representative EMP analyses of biotite mica Apfu calculations based on 24 anions	
Table continues on next nage	43
Table 6 Representative muscovite mica EMP analyses. Apfu calculations based on 24 anions	. 15
	.50
Table 7 Humboldt granite zircon Microprobe analyses. Apfu calculations based on 4 oxygens	5.
	. 57
Table 8 Representative EMP analyses of apatite. Apfu calculations based on 13 anions	. 60
Table 9 Grizzly pegmatite biotite Microprobe analyses (continued on next page)	. 62
Table 10 K-feldspar EMP analyses. Apfu calculations based on 8 oxygens.	. 67
Table 11 Representative EMP analyses of ilmenite.	. 70
Table 12 Grizzly "monazite" Microprobe analyses. Apfu calculations based on 4 oxygens	.72
Table 13 Representative EMP analysis of muscovite mica.	. 75
Table 14 Representative EMP zircon analyses. Apfu calculations bases on 4 oxygens.	. 80
Table 15 Representative biotite mica EMP analyses. Apfu calculations based on 24 anions	.86
Table 16 EMP representative analyses of K-feldspar. Apfu calculations based on 8 oxygens.	. 89
Table 17 Representative EMP analyses of garnet. Appl calculations based on 12 oxygens	. 92
Table 18 Dolfin monazite-(Ce) grain Microprobe analysis.	.96
Table 19 Representative EMP analyses of muscovite mica.	. 98
Table 20 Representative xenotime-(Y) EMP analyses. Apfu calculations based on 4 oxygens	•
	103
Table 21 Representative EMP analyses of zircon. Apfu calculations based on 4 oxygens	105
Table 22 Representative EMP analyses of bastnäsite-(Ce).	109
Table 23 Representative EMP analyses of biotite mica. Apfu calculations based on 24 anions	5.
Table continues on next page.	113
Table 24 Representative EMP analyses of ferrocolumbite. Apfu calculations based on 6	
oxygens.	117
Table 25 Representative K-feldspar analyses. Apfu calculations based on 8 oxygens	119
Table 26 Representative EMP analyses of plagioclase feldspar. Apfu calculations based on 8	j.
oxygens.	121
Table 27 Representative EMP analysis of garnet	124
Table 28 Representative EMP analyses of ilmenite. Apfu calculations based on 6 oxygens	126
Table 29 Representative EMP analysis of oxynatropyrochlore.	129
Table 30 Representative EMP analysis of monazite-(Ce).	131
Table 31 Representative EMP analyses of muscovite mica. Apfu calculations based on 24	
anions.	133
Table 32 Representative EMP analyses of rutile. Apfu calculations are based on 2 oxygens	136
Table 33 Representative EMP analyses of zircon. Apfu calculations based on 4 oxygens	138

Table 34 Representative EMP biotite analyses. Apfu calculations based on 24 anions	143
Table 35 Representative EMP analyses of K-feldspar. Apfu calculations based on 8 oxyge	ens.
	146
Table 36 Representative EMP analyses of plagioclase (albite). Apfu calculations based on	ι 8
oxygens	148
Table 37 Representative EMP analyses of garnet. Apfu calculations based on 12 oxygens.	150
Table 38 Representative EMP analysis of ilmenite.	152
Table 39 Representative EMP analyses of monazite-(Ce). Apfu calculations based on 4	
oxvgens.	154
Table 40 Representative EMP analysis of Ca-rich monazite.	156
Table 41 Representative EMP analyses of muscovite mica. Apfu calculations based on 24	<u>.</u>
anions.	158
Table 42 Representative EMP analysis of rutile.	160
Table 43 Representative EMP analysis of thalénite. Apfu calculations based on 11 anions.	
Table 44 Representative EMP analyses of fluorschorl. Apfu calculations based on 31 anio	ns.
	164
Table 45 Representative EMP analyses of zircon Apfu calculations based on 4 oxygens	166
Table 46 Representative EMP analyses of ferrocolumbite. Apfu calculations based on 6	
Oxygens	170
Table 47 Representative EMP analyses of plagioclase (albite) Apfu calculations based on	18
oxygens	172
Table 48 Representative FMP analysis of monazite-(Ce)	176
Table 49 Representative EMP analysis of muscovite mica Applications based on 24	
anions. Table continues on next page	178
Table 50 Representative FMP analyses of Fe-biotite mica Apfu calculations based on 24	
anions	187
Table 51 Representative FMP analyses of ferrocolumbite Apfu calculations based on 6	
oxygens	191
Table 52 Representative euxenite group mineral EMP analyses Appli calculations based of	1)1)n 6
oxygens	193
Table 53 Representative EMP analyses of K-feldspar Apfu calculations based on 8 oxyge	ens
	195
Table 54 Representative EMP analyses of plagioclase (albite) Apfu calculations based on	18
oxygens	197
Table 55 Representative FMP analyses of Type 1 garnet Appli calculations based on 12	
oxygens	201
Table 56 Representative FMP analyses of Type 2 garnets Apfu calculations based on 12	
oxygens	202
Table 57 Representative FMP analyses of monazite-(Ce) Applied calculations based on 4	
oxygens	206
Table 58 Representative FMP analyses of muscovite mica Applications based on 24	
anions. Table continues on next page	208
Table 59 Representative EMP analyses of anatite	215
Table 60 Representative EMP analyses for bastnäsite	217
Table 61 Representative EMP analyses of biotite mica Anfu calculations based on 24 ani	ons
Table continues on next nage	220
ruore continues on next puge.	

Table 62Representative EMP analyses of K-feldspar. Apfu calculated based on 8 oxygens223Table 63Representative EMP analyses of plagioclase (albite). Apfu calculations based on 8
oxygens
Table 64 Representative EMP analyses of garnet. Aptu calculations based on 12 oxygens229
Table 65 Representative EMP analysis of ilmenite. April calculations based on 6 oxygens23.
Table 66 Representative EMP analyses of monazite-(Ce). Aptu calculations based on 4
23^2
Table 67 Representative EMP analyses of muscovite mica. April calculations based on 24
anions. Table continues on next page
Table 68 Representative EMP analysis of rutile.
Table 69 Representative EMP analyses of tourmaine. April calculations based on 31 anions.
$= \frac{24}{24}$
Table 70 Representative EMP analyses of apartite
Table /1 Representative EMP analyses of beryl. April calculations based on 18 oxygens250
Table 72 Representative EMP analyses of terrocolumble. Aptu calculations based on 6
Oxygens
Table 75 Representative EMP analyses of K-feidspar. April calculations based on 8 oxygens.
Table 74 Depresentative EMD analyzes of placia lass (albits) Arfy saleylations based on 8
Table 74 Representative EMP analyses of plagloclase (alone). April calculations based on 8
Table 75. Depresentative EMD analyses of achaite
Table 75 Representative EMP analyses of gammat. Arfy calculations based on 12 ovygans.
Table 76 Representative EMP analyses of garnet. April calculations based on 12 oxygens.
Table 77 Popresentative EMP analyses of monorite (Ca) Anfu calculations based on 4
avugens
Table 78 Representative FMP analyses of muscovite mica. Apple calculations based on 24
anions. Table continues on next page 27(
Table 70 Representative FMP analyses of pyrophanite
Table 80 Representative EMP analyses of ferrotantalite Apfu calculations based on 6 oxygens
Table 60 Representative EMT analyses of refformation. April calculations based on 6 oxygens.
Table 81 Representative FMP analyses of tourmaline Apfu calculations based on 31 anions
270
Table 82 Representative EMP analyses of xenotime-(Y) Applied calculations based on 4 oxygens
28'
Table 83 Representative EMP analyses of zircon Apfu calculations based on 4 oxygens 283
Table 84 Fe Titration results for all mice samples Sturgeon River, Grizzly, Groveland Mine.
and Dolfin results are from biotite micas. Muscovite mica from Republic Mine and Black River
was used, which explains the lower FeO wt%
Table 85 Additional feldspar analyses from Dolfin pegmatite samples. Apfu calculations based
on 8 oxygens
Table 86 additional garnet analyses from Dolfin pegmatite samples. Applications based on
12 oxygens.
Table 87 Additional feldspar analyses from Crocklev pegmatite samples. Apfu calculations
based on 8 oxygens
Table 88 Additional muscovite mica samples from Republic Mine pegmatite. Apfu calculations
based on 24 anions

Table 89 Additional tourmaline analyses from Republic Mine samples. Apfu calculations based
on 31 anions
Table 90 Additional zircon analyses from Republic Mine pegmatite. Apfu calculations based on
4 oxygens
Table 91 Additional garnet analyses from Hwy69 pegmatite. Apfu calculations based on 12
oxygens
Table 92Additional garnet analyses from Hwy69 pegmatite.Apfu calculations based on 12
oxygens
Table 93 Additional garnet analyses from Sturgeon River pegmatite. Apfu calculations based
on 12 oxygens
Table 94 Additional garnet analyses from Sturgeon River pegmatite. Apfu calculations based
on 12 oxygens
Table 95 Additional garnet analyses from Sturgeon River pegmatite. Apfu calculations based
on 12 oxygens
Table 96 Additional tournaline analyses from Sturgeon River pegmatite. Apfu calculations
based on 31 anions
Table 97 Additional tourmaline analyses from Sturgeon River pegmatite. Apfu calculations
based on 31 anions
Table 98 Additional ferrocolumbite analyses from Groveland Mine pegmatite. Apfu
calculations based on 6 oxygens
Table 99 Additional ferrotantalite analyses from Groveland Mine pegmatite. Apfu calculations
based on 6 oxygens
Table 100 Additional plagioclase feldspar analyses from Groveland Mine pegmatite
Table 101 Additional garnet analyses from Groveland Mine pegmatite. Apfu calculations based
on 12 oxygens

Abstract

This thesis focuses on mineralogy, geochemistry, and origin of eight pegmatites and two spatially associated granites of Late Archean and Paleoproterozoic ages located in Marquette and Dickinson Counties, Michigan. Biotite geochemistry reveals that both granites and all pegmatites are peraluminous and have an orogenic signature. However, bulk composition reveals the Humboldt granite is a peraluminous A-type granite and the Bell Creek granite is a peraluminous mix between I-, S-, and A-type granites. The Republic Mine pegmatite appears to be geochemically similar to the Bell Creek granite and Grizzly pegmatite. The Crockley pegmatite is genetically related to the Humboldt granite. The Groveland Mine, Sturgeon River, and Hwy69 pegmatites appear to be a product of the Peavy Pond Complex being contaminated with the Marquette Range Super Group. Contamination and anatexis have made classification of the granites and pegmatites problematic. The Grizzly should be classified as a primitive LCT-type even though this pegmatite lacks characteristic enrichment associated with LCT pegmatites. Mineralogical geochemistry reveals that the Republic Mine is relatively more primitive than other pegmatites and should be classified as a primitive Mixed-type pegmatite. Groveland Mine has mineralogy and geochemistry not normally associated with NYF-type pegmatites and should be classified as Mixed. The Crockley pegmatite should be classified as NYF-type with a primitive LCT overprint. Dolfin, Hwy69, Sturgeon River, and Black River pegmatites should be classified as Rare Element, REE, NYF-type, although the Black River has slight tantalum enrichment expressed in columbite group minerals.

pegmatite; Groveland Mine; Republic Mine; gneiss domes; Penokean Orogeny; Humboldt; Bell Creek

xxii

INTRODUCTION

The geology of upper Michigan records a complex tectonic history of rifting, deposition, deformation, and metamorphism that extends across 3.5 billion years. Upper Michigan is unique in that five major stratigraphic units comprising this geologic history are exposed: 1) a 2.7 - 3.4Ga Mesoarchean gneiss-amphibolite terrane (Southern Terrane), 2) a 2.7 - 2.9 Ga Neoarchean granite-greenstone belt (Northern Terrane), 3) 2.3 - 1.8 Ga Paleoproterozoic metasedimentary layers that include banded iron formations, 4) 1.8 Ga granites, interpreted to be intruded during the Penokean orogeny, and 5) the 1.85 Ga volcano-plutonic Wisconsin Magmatic Terrane (Tohver *et al.*, 2007). This thesis focuses specifically on two granitic bodies and eight pegmatites of Late Archean and Paleoproterozoic ages in the Marquette and Dickinson counties, Michigan located in the Northern Penokean terrane between the Great Lakes Tectonic Zone to the north and the Niagara Fault to the south. Figure 1 shows the locations of the pegmatites within the migmatites of the Southern Terrane. They are clustered into a northern and a southern group. The northern group is spatially associated with two potentially genetically related plutons: the Humboldt granite and the Bell Creek granite. The southern group consists of the Sturgeon River, Groveland Mine, and Hwy69. These three pegmatites are spatially associated with the Peavy Pond Complex and may potentially be genetically related to this igneous intrusive complex.

The 2.6 Ga Bell Creek granite is the older of the two granites (Hoffman, 1987). It is genetically associated with the Bell Creek Gneiss (Tinkham & Marshak, 2004) and hosts the Grizzly pegmatite. The younger 1.8 Ga Humboldt granite is associated with the Penokean Orogeny (Holm, *et al.*, 2001). The Crockley pegmatite, Republic Mine, Black River, and Dolfin

Figure 1 Generalized structure map compiled by P.K. Sims, 1991.

pegmatites are all spatially related to the Humboldt granite. All of the pegmatites and granites are within a migmatitic gneiss-amphibolite domain of Late to Early Archean age with the exception of the Sturgeon River, Groveland Mine, and Hwy 69 pegmatites. These three pegmatites are geographically south of the other sampled locations either very near or in the Felch Trough and spatially associated with the Peavy Pond Complex. The Sturgeon River pegmatite is hosted by biotite schist of the Late Archean Dickinson Group metasediments. The Groveland and Hwy 69 pegmatites are both located in metavolcanic and metasedimentary rocks of the Menominee and Chocolay Groups.

All of the sampled locations are located within either the Republic or Peavy nodes of metamorphism. These zones are annular or concentric in shape and represent amphibolite facies metamorphism. The Sturgeon River, Groveland Mine, and Hwy 69 pegmatites are within the Peavy metamorphic node; the other sampled locations are within the Republic node. The Black River pegmatite appears to be the exception, as it is located outside the biotite isograd of the Republic node, but assumed to be within the chlorite isograd. The Dolfin pegmatite is within the sillimanite isograd of the Republic node; all other granites and pegmatites are within their respective staurolite isograds. Both metamorphic nodes are associated with the remobilization of hot Archean gneissic domes during the Penokean orogeny.

The purpose of this research is to determine the mineralogy, geochemistry, and origin of the pegmatites and the spatially associated granites. Furthermore, the geochemistry of pegmatites hosted by either migmatite, schist, or metavolcanic rock and those with granitic plutons will determine whether the pegmatitic body fractionated from the host granitic melt or whether the pegmatitic melt was derived from partial melting of a felsic protolith and subsequently intruded into the existing country rock. In addition, a mineralogical description of each of the eight pegmatites will be provided. In conjunction with results from bulk composition analyses of whole rock chemistry of the granites, geochemistry of specific mineral groups will be examined to determine tectonic origin. The overall mineralogical content and geochemical character of the pegmatites will be used to determine whether to classify each as NYF-, LCT-, or

mixed-type (Černý & Ercit, 2005). Monazite crystals will be used for age dating in order to correlate the pegmatites to tectonic events.

GEOLOGIC HISTORY

The Great Lakes Tectonic Zone (GLTZ) is a ~1400 km long paleosuture associated with formation of the Superia/Kenorland supercontinent around 2.6 Ga (Tohver *et al.*, 2007). The GLTZ separates the Southern Complex, a 2.7 - 3.4 Mesoarchean gneiss-amphibolite terrane, from the Northern Complex, a 2.7 - 2.9 Ga Neoarchean granite-greenstone terrane (Sims, 1996; Schneider *et al.*, 2004; Tohver *et al.*, 2007). Rifting along the GLTZ began around 2.5 Ga in the Lake Huron region to the east and migrated westward in time, possibly beginning around 2.1 Ga in the Lake Superior region (Sims & Peterman, 1983). The Marquette Range Supergroup (MRSG) is an epicratonic sequence of interbedded sedimentary and volcanic rocks (Figure 2) overlying the Archean Southern Complex basement south of the GLTZ (Sims & Peterman, 1984) and is associated with rifting. Greenberg and Brown (1983) refer to this area as the Northern Penokean terrane and it is in fault contact with the Wisconsin Magmatic terrane to the south. The Niagara fault zone is recognized as the main suture dividing the Northern Penokean terrane from the Wisconsin Magmatic terrane that lies south of the fault (Schneider *et al.*, 2004).

The epicratonic MRSG (Figure 2) is composed of three primary depositional cycles (Sims & Peterman, 1984): the Baraga, Menominee, and Chocolay Groups. Deposition of MRSG ceased either before or during the main pulse of deformation accompanying the Penokean Orogeny (Sims & Peterman, 1984). Volcanic rocks of the MRSG are largely bimodal with minor K₂O-rich rhyolite and abundant tholeiitic basalt; rhyolites have been dated at around 1.9 Ga old (Sims & Peterman, 1984).

Figure 2 Stratigraphy of the Great Lakes region (Young, 1983).

Young (1983) uses the term Penokean orogeny to include the main phases of deformation and associated thermal and igneous events that affected the Great Lakes region between an approximate age range of 2.1 to 1.8 Ga. The Penokean orogeny is a Paleoproterozoic event (Van Schmus, 1976; 1980) and one of several southward accretionary events (Figure 4), including Yavapai and Mazatzal orogenies, associated with agglomeration of Laurentia (Tohver *et al.*, 2007). Early Proterozoic Penokean igneous rocks suggest a plate-tectonic process that began with crustal rifting, followed relatively quickly by subduction and formation of a complex volcanic arc system in northern Wisconsin, and finally collision of that arc with Archean crust and continental-margin sequences present in northern Michigan (Figure 3) (Schulz, 1984). Penokean deformation resulted from collision of the southern margin of the Northern Penokean terrane with 1.85 Ga volcano-plutonic Wisconsin Magmatic terranes to the south (Holm *et al.*, 1998; Riller *et al.*, 1999; Schneider *et al.*, 2002).

Figure 3 Penokean Orogenic cross section modified from Morey, 1983.

Initial deformation involved subhorizontal compression (Cannon, 1973) followed by a more dominant vertical style of tectonism due to reactivation of Archean basement gneiss (Sims & Peterman, 1984). Archean gneisses and granites were reworked into domes along with the overlying MRSG (Sims, 1980). Archean basement of the Northern Penokean terrane underwent little deformation north, near the southern shore of Lake Superior in Upper Michigan, but farther south near the Niagara Fault, folding and faulting appears to be much more widespread (Figure 1) (Maass *et al.*, 1980; Young, 1983). Metamorphism and deformation typically intensify on either side of the Niagara fault, but these effects are not always restricted to the fault zone

(Greenberg & Brown, 1983). The main phase of Penokean deformation in the Lake Superior region specifically, is considered to have ceased about 1.82 -1.9 Ga ago (Young, 1983). Thermochronologic data indicating widespread cooling very shortly after post-tectonic plutons were emplaced, suggests that the Penokean orogen was exhumed differentially, by 1.7 Ga (Holm *et al.*, 2005). Slab rollback after Penokean orogeny (Figure 4) would have not supported over-thickened crust and would have facilitated collapse of the Northern Penokean terrane (Holm & Lux, 1996; Schneider *et al.*, 1996; Marshak *et al.*, 1997; Holm *et al.*, 1998b).

Figure 4 Slab roll back after main phase of Penokean Orogeny (Holm et al., 2005).

GNEISS DOME FORMATION

A cluster of gneiss domes occur in the southern Lake Superior region of the Northern Penokean terrane. Most domes are elongated east-west, except within the Republic area where the domes trend northwest-southeast to north-south (Schneider *et al.*, 2004). Whitney *et al.* (2004) highlight fundamental contributions gneiss domes provide during orogeny as being mechanisms for the transfer of heat and mass, their influence on an orogen's P-T-t (pressure, temperature, and time) evolution, as well as long-term processes of felsic differentiation of continental crust. The gneiss dome corridor is more variably metamorphosed and more strongly deformed than the Northern Complex and Wisconsin Magmatic terranes that lie north of the GLTZ and south of the Niagara Fault respectively, and generally the grade of metamorphism decreases to the north (Schneider *et al.*, 2004; Attoh & Klasner, 1989). Whitney *et al.* (2004) believe that anatexis of crustal material is intimately involved with the production of most gneissic domes and suggest that most are migmatitic domes formed by anatectic processes. Domes are flanked by metamorphic supracrustal sequences that represent the overlying Paleoproterozoic sedimentation and are cored by older Archean gneiss (Schneider *et al.*, 2004).

Domes typically consist of a core: composed of metamorphic, migmatitic, and granitic rocks, which are then buried by metavolcanic and/or metasedimentary strata (Eskola, 1949). Eskola (1949) suggests that gneiss dome formation results from superposition of two orogenic events: (1) the production of a granitic basement and (2) the partial melting and remobilization of basement material. The second event leads to a density inversion of crustal material that then generates an upward flow of a metamorphic core (Eskola, 1949). Yin (2004) suggests that granitic plutons dominate cores of some gneiss domes, particularly in domes of Precambrian age (Whitney *et al.*, 2004).

According to Tinkham & Marshak (2004), dome and keel (troughs) structures occur due to orogenic processes involving gneiss domes. This dome-and-keel architecture can involve Paleoproterozoic strata (Marshak, 1999; Marshak *et al.*, 1992; Holm & Lux, 1996), but is quite typical of Archean terranes (Tinkham & Marshak, 2004). Evidence for both, an Archean phase and a Paleoproterozoic dome-and-keel phase (Figure 5), appear to be preserved in the Penokean Dome-and-Keel belt (Figure 6) (Tinkham & Marshak, 2004). The Archean phase involved plastic flow and diapiric ascent of intrusive and intermediate and silicic metamorphic rocks of the Southern Complex into the supracrustal assemblage of the Archean age greenstone and associated sedimentary rocks (Tinkham & Marshak, 2004). The Paleoproterozoic phase formed by displacement along shear zones and resulted in deposition of Paleoproterozoic MRSG into grabens or keels (Tinkham & Marshak, 2004).

Figure 5 Archean A) and Proterozoic B) gneiss dome formation. Modified from Tinkham & Marshak, 2004.

Figure 6 Penokean Dome & Keel Belt (Tinkham & Marshak, 2004).

Hoffman (1987) interprets the Bell Creek Gneiss as syntectonic and is associated with collision of the Southern and Northern Complexes at ca. 2.69 Ga along the GLTZ. When the Bell Creek gneiss/granite intruded into the Twin Lake Assemblage at ~2614 Ma, the Assemblage was penetratively deformed, intensely metamorphosed, and arched into a dome shape (Tinkham & Marshak, 2004). The domal geometry has lead Tinkham & Marshak (2004) to suggest that this represents the Archean phase of gneiss dome formation driven by density inversion and related to diapiric processes (Tinkham & Marshak, 2004). The second, Paleoproterozoic domal event was initiated by the Penokean Orogeny (Tinkham & Marshak, 2004). Original domal architecture established during the Archean phase was subjected to compressional forces during this orogenic event (Marshak *et al.*, 1997). Pre-existing dome-and-keel structure likely led to the reactivation of the Southern Complex and subsequent development of solid-state domes during

post-orogenic collapse (Marshak, 1997). Gregg & Saja (1998) report finding post-collisional extensional structures within the MSRG of the Penokean orogenic belt that support this conclusion.

METAMORPHISM IN THE NORTHERN PENOKEAN TERRANE

It was James (1955) that first described that in the eastern portion of the Northern Penokean terrane, there were concentric zones of amphibolite facies metamorphism associated with gneiss domes. Amphibolite facies metamorphism around some of the domes was superimposed on regional greenschist metamorphism (Sims & Peterman, 1984). Tinkham & Marshak (2004) suggest that development of dome-and-keel structures corresponds to peak metamorphism in the Paleoproterozoic and thermal modeling by Attoh (2000) attributes heating by radiogenic elements in Archean gneiss to the formation of metamorphic zones in the Northern Penokean terrane. There are four main zones, hereafter referred to as either nodes or zones: Watersmeet, Felch, Peavy, and Republic. Sampled locations are located in either the Republic or Peavy nodes (Figure 7). The Peavy and Republic nodes have been interpreted to lack overlap, so the assumption is that sampled locations have only been influenced by either one or the other, in addition to any pre- or post-Penokean metamorphic events.

In the Peavy node, Paleoproterozoic strata (MSRG) include Hemlock, Baraga, and Michigamme Formations (Attoh & Klasner, 1989). The Peavy Pond Complex (PPC) is located in the southwest metamorphic high of the Peavy node (Bayley, 1959). The PPC is a suite of mafic to intermediate to felsic intrusive rocks (Attoh & Klasner, 1989), which later intruded and assimilated parts of the MRSG during the Penokean Orogeny (Bayley, 1959). Cooling of the PPC was slow due to being intruded into an area undergoing regional metamorphism and as a

result, high temperatures were sustained longer than normal (Bayley, 1959). The Felch Trough, (site of the Groveland Mine, Sturgeon River, and Hwy 69 pegmatites) is located east of the Peavy Pond Complex, which contain MSRG metasedimentary and metavolcanic units of Late Archean age (Sims, 1992).

The Felch Trough is located south of the Bush Lake Fault and indications are that the metamorphic conditions reached the staurolite zone. The sillimanite zone of the Peavy node has reached peak temperatures and pressures of about 600° C and about 4.0 kbar (Attoh & Klasner, 1989). North of Bush Lake fault record different peak pressures and temperatures. James (1955) has determined that in the Felch district, where the Felch Trough is located, that peak metamorphism occurred after the peak of deformation. Monazite age dating has yielded two different metamorphic events in the Peavy node (Rose *et al.*, 2003). The first of which occurring at approximately 1828-1832 Ma as well as a younger event occurring at approximately 1795 Ma (Rose *et al.*, 2003).

Paleoproterozoic metasedimentary strata in the Republic node area include Michigamme Formation, Siamo Slate, and Neguanee Iron Formations (Attoh and Klasner, 1989). Upper pressure limits of metamorphism in the Republic node is set by the 500-600° C andalucitesillimanite field of Holdaway (1971), due to the rare occurrence of sillimanite as compared to relatively widespread occurrences of andalucite (Attoh & Klasner, 1989). Pressures of 3 kbar at 550° C and 2 kbar at 600° C are considered the high and low metamorphic conditions present in the Republic node (Attoh and Klasner, 1989). Due to high temperatures that the Republic node was exposed to at relatively shallow crustal levels, there is a distinct possibility of anatexis of crustal rocks with granitic and/or pelitic composition (Attoh and Klasner, 1989). In fact, modeling by Attoh and Klasner (1989) of negative gravity anomalies present near the surface of

both Peavy and Republic nodes are interpreted as being the product of partial melting. They believe that the presence of remobilized gneiss domes offer strong support for the hypothesis originally introduced by Hoffman (1987) and that gravity anomalies provide further support for partial melting at Peavy and Republic nodes.

Figure 7 Metamorphic isograds. Republic isograds in orange. Peavy isograds in red. FT-Felch Trough, MRT-Mitchigamme Trough, RT-Republic Trough. Locations of pegmatites and granites locations are as indicated. Sources listed on image.
LOCAL GEOLOGY

The Grant Lake and Twin Lake domes are separated from one another by the northwesttrending Republic Trough which contains MRSG (Tinkham & Marshak, 2004) and are very near the GLTZ (Figure 6). The Felch Trough (Figure 6) is south of both the Grant Lake and Twin Lake Domes and is close to the Niagara Fault. Archean Southern Complex lithologies consist of two main units, the Twin Lake Assemblage and the Bell Creek Assemblage (Figure 8).

Figure 8 Geologic map of Southern Complex supracrustals (Tinkham & Marshak, 2004).

The Archean Southern Complex also includes the Palmer Gneiss, mafic dikes, and exposures of the 1.8 Ga Humboldt granite (Holm et al., 2001; Tinkham & Marshak, 2004). The Twin Lake assemblage is only of any importance due to its lithology (felsic to mafic gneisses) and its proximity to the Bell Creek Assemblage (Tinkham & Marshak, 2004). The mafic dikes and Palmer gneiss are also considered of little import. The Bell Creek Assemblage, which consists primarily of Bell Creek gneiss, contains the Bell Creek granite (Tinkham & Marshak, 2004) and the Grizzly pegmatite. The Bell Creek Gneiss is described as a medium to mostly coarse-grained, and megacrystic gneissic granite- to granodiorite- to quartz monzonite and being light pink to gray in color (Tinkham & Marshak, 2004). Hoffman (1987) interpreted the Bell Creek gneiss as representing a syntectonic granite that is associated with collision of the Southern and Northern Complexes at ca. 2.69 Ga along the GLTZ. The Humboldt granite, located within the Twin Lake Dome, is a medium grained albite granite that is light red in color (Tinkham & Marshak, 2004). Recent zircon U-Pb dating yielded an age of 1806 ± 21 Ma (Holm et al., 2001) for the Humboldt indicating that it is younger than the Southern Complex lithologies (Tinkham and Marshak, 2004) and is associated with post-Penokean collapse. The Grant Lake Dome lacks sufficient exposure, however Tinkham and Marshak (2004) proposed that it too, is also composed of Bell Creek and Twin Lake Assemblages.

The Dolfin pegmatite is located in the Grant Lake Dome area, south of the Republic Trough. It is located within the sillimanite isograd of the Republic node (Figure 7). The Bell Creek and Humboldt Granites, Crockley and Grizzly pegmatites are located in the Twin Lake Dome area, north of the Republic Trough. These are within the staurolite isograd of the Republic node. The Republic Mine pegmatite is within the staurolite isograd as well, but it is outside the region considered to be either the Grant Lake or Twin Lake Domes. The Black River

15

is the eastern most pegmatite in the study area as well as being in the lowest metamorphic isograd. It is located outside the biotite isograd in what is considered to be the Republic chlorite zone. The other three pegmatites are located near or within the Felch Trough. This area is believed to have undergone deformation and/or metamorphism after emplacement of the pegmatites. The Peavy Pond Complex (PPC) is west of the Felch trough. It is a syntectonic igneous gabbroic body intruded into the Michigamme and Hemlock Formations during the Penokean orogeny (Bayley, 1959). The PPC is situated in the Peavy Pond area and is located at the metamorphic high (sillimanite zone) of the Peavy node (Bayley, 1959). The Sturgeon River, Groveland Mine, and Hwy 69 pegmatites are in the staurolite isograd of the Peavy node.

METHODOLOGY

TITRATION

 Fe^{2+} determinations were conducted using ammonium meta-vanadate method of titration using ferrous ammonium sulfate solution and diphenylamine solution (Von Arnd Peters, 1968). Solid ammonium meta-vanadate weighing 0.10 g was added to 0.20 g of ground sample in 100 ml dry polyethylene bottles with secure, air-tight, water-proof lids. A mixture of 8 ml of 51% hydrofluoric acid and 2 ml of 38% hydrochloric acid was added to each bottle and allowed to stand until all sample powder was completely dissolved (approximately 4 days). To each mixture, 10 ml 50% sulfuric acid and 10 ml of diphenylamine solution were added and transferred to 600 ml a beaker containing 400 ml of distilled water and 10 g of boric acid. The solution was placed on a magnetic stirrer and titrated with ferrous ammonium sulfate until the solution turned from purple to bright green. A blank (no sample powder) was measured as a control. Fe³⁺ was calculated as the difference between microprobe (total Fe) and wet-chemical (Fe²⁺) results from the equation (Von Arnd Peters 1968):

% FeO = [100 (x' - y') z] / w

Where x = ml of ferrous ammonium sulfate required to titrate blank, normalized to 100 mg. x' = x [(sample) mg / 100 mg]

- y' = ml of ferrous ammonium sulfate required for titration of sample
- z = mg of FeO per ml ferrous ammonium sulfate

w = weight of sample in mg

17

FUSION ICP

Fusion Inductively-Coupled Plasma (ICP) Optical Emission Spectrometry (OES) is a bulk chemical analysis technique used for the identification and quantification of trace elements in whole rock samples. Granitic samples and one sample from the Crockley was analyzed by this method. Samples were crushed and powdered in a ceramic wall-lined container containing a ceramic puck and covered with a ceramic lid. The container was secured in an 8510 Shatter Box and milled for a minimum of 40 minutes or longer until the sample was pulverized to at least 95% minus 150 mesh (106 microns) powder consistency. Contamination was prevented by milling and disposing of an aliquot of sample prior to actual sample preparation. The milled samples were stored in 50 ml polyethylene bottles with secure air-tight, water-proof lids. The powdered rock samples were sent for Fusion ICP analysis to Activation Laboratories Ltd. in Ancaster, Ontario using the Lithium Metaborate/tetraborate Fusion method on a combination simultaneous/sequential Thermo Jarrell-Ash ENVIRO II ICP or a Varian Vista 735 ICP. Calibration was performed using 7 prepared USGS and CANMET certified reference materials. DCP

A Beckman Spectraspan V, Direct-Coupled Plasma Spectrophotometer (DCP) was used for trace element and whole rock analyses to verify EMP results, including Li content in muscovite, biotite, and beryl based on calculations. Each sample was prepared for analysis by crushing samples with a SPEX 4200 Jaw Crusher into < 6 mm – sized pieces. Approximately 0.2 g of clean biotite, muscovite, and beryl were separated from samples containing the minerals using tweezers and stereomicroscope. The micas and beryl were digested in 5-10 ml of a mixture of 51% hydrofluoric acid and 38% hydrochloric acid at room temperature for approximately 4 days or until completely dissolved. The samples were then diluted to a volume of 35 ml and analyzed using standard DCP methods. DCP analyses were graciously conducted at the Maine Mineral & Gem Museum. SEM

An AMRAY 1820 Digital Scanning Electron Microscope (SEM) was used for spot chemical analysis, acquisition of elemental maps, and mineral identification using the EDS 2009 system. Tourmalines, biotites, muscovites, apatites, garnets, zircons, monazites, xenotimes, magnetite, columbite-tantalites, feldspars, ilmenite-pyrophanite, and rutile were hand-picked from heavy mineral separations containing the minerals and individually placed on sticky pads on stubs and stored in a desiccator. Each stub was viewed under SEM for mineral identification. The minerals were then encased in epoxy on a microprobe mount and allowed to cure for a minimum of 24-hours. Each microprobe mount was ground flat using grinding powder on a grinding wheel, cleaned in an ultrasonic bath, polished using a polishing wheel and 1 micron, 0.3 micron, and 0.05 micron polishing compound, then cleaned in an ultrasonic bath. Samples were dried and carbon-coated with 250 Ångstroms of carbon under a vacuum of 1x10-5 torr prior to SEM analysis. Each sample was analyzed by SEM for the minerals. Samples were subsequently stored in a desiccator for further analysis by microprobe. EMP

A fully-automated, nine-spectrometer ARL SEMQ Electron Microprobe (EMP) was used for major and minor element analysis of minerals on microprobe mounts. Minerals were handpicked from heavy mineral separates. The following minerals analyzed by EMP: tourmaline, garnet, muscovite, biotite, apatite, plagioclase, k-feldspar, zircon, monazite, ilmenitepyrophanite, and xenotime. Sample preparation process that was conducted for microprobe analysis was the same as SEM sample preparation. Quantitative chemical analyses of these samples were obtained using an ARL-SEMQ electron microprobe in the wavelength dispersive mode with an accelerating potential of 15-20 kV, 15 nA beam current, and 2 µm beam diameter. The following standards were used: Adularia (Fibbia) (K, Si), albite (Tiburon) (Na, K, Al), An₅₀ (Ca, Al), Cpx-26 (Fe, Mg), rhodonite (Broken Hill) (Mn), TiO₂ synthetic (Ti), pollucite (Cs), Rbleucite (Rb), fluorapatite (P), fluorphlogopite (F). Five spots per sample were analyzed with count times was of 30 seconds per spot. Backgrounds were determined using the MAN method (Donovan & Tingle, 1996), using applicable standards listed above and the following standards: hematite (Elba), V₂O₅, ZrO₂, MgO, PbO, ZnO, ZrO, and Al₂O₃. Matrix effects were corrected using $\Phi(\rho Z)$ correction procedure (Pouchou & Pichoir 1991). Data were plotted in MS Excel or PSI-plot software.

BELL CREEK GRANITE

Figure 9 Bell Creek granite road-cut exposure.

Samples from the Bell Creek granite were collected from a road cut along Hwy 95 in Marquette County, Michigan. It was found to be as Tinkham and Marshak (2004) previously described. Overall, the Bell Creek granite is light gray and in some instances light pink in hue. It is in sharp contact with country rock. Xenoliths of country rock were not seen in the exposure of the Bell Creek granite. Visual inspection revealed that the granite is composed of feldspar, quartz, and dark colored mica assumed to be biotite. Heavy mineral separations of Bell Creek granite were inspected by binocular microscope and further analyzed by SEM and/or electron microprobe. Apatite, biotite mica, feldspar (both potassium and plagioclase), fluorite, muscovite mica, monazite-(Ce), titanite, quartz, and zircon were found in samples. Biotite and muscovite micas, monazite-(Ce), and zircon were quantitatively confirmed by electron microprobe.

APATITE

Figure 10 Apatite (crosshairs 1 & 2) with corresponding EDS spectrum. Darker region is feldspar.

Apatite is very rare in heavy mineral separations from the Bell Creek granite. Only two grains have been discovered. Both are anhedral. Both have been qualitatively investigated by SEM.

BIOTITE

Figure 11 BSE image of biotite mica grain (left – crosshairs 1, 2, 3, & 4) with ilmenite inclusion (crosshairs 5 & 6). Close-up of ilmenite inclusion (right – crosshairs 1 & 2).

Biotite is very common in Bell Creek granite heavy mineral separations. Biotite has been investigated by SEM and confirmed as Fe-biotite mica using Tischendorf's (1997) classification scheme via microprobe analyses (Figure 186). Rubidium weight percent is just within detection limits and cesium is below detectable limits. Lithium and trivalent iron are unable to be determined by DCP and titration respectively due to lack of homogeneous grains. Figure 11 demonstrates homogeneity concerns as biotite frequently has inclusions (in this particular instance, crosshairs 1 & 2 indicate an ilmenite inclusion). Even though lithium content has not been determined by DCP analysis, lithium is stoichiometrically accounted for using the equation 155 * magnesium weight percent^{-3.1} (Tischendorf, 1997). Table 1 lists the representative biotite mica analyses.

BIOTITE – BELL CREEK GRANITE									
Wt % Ox	BCG mica	BCG	BCG	BCG	BCG				
	1-1	mica 1-2	mica 2-1	mica 2-2	mica 3-1				
SiO ₂	34.214	34.276	34.300	34.445	34.500				
TiO ₂	3.543	3.720	3.654	3.334	3.228				
Al ₂ O ₃	16.699	16.712	17.003	17.122	17.433				
Fe ₂ O ₃	0.000	0.000	0.000	0.000	0.000				
FeO	23.556	23.544	23.343	23.355	23.165				
MnO	0.210	0.189	0.155	0.174	0.211				
MgO	7.823	7.699	7.534	7.523	7.265				
CaO	0.165	0.112	0.092	0.1	0.144				
Li ₂ O (calc.)	0.264	0.277	0.296	0.298	0.332				
Na ₂ O	0.112	0.165	0.133	0.165	0.2				
K ₂ O	9.236	9.045	8.940	8.700	8.233				
Rb ₂ O	0.017	0.02	0.02	0.022	0.016				
Cs ₂ O	bdl	bdl	bdl	bdl	bdl				
F	1.222	1.312	1.227	1.224	1.154				
H ₂ O	3.278	3.238	3.277	3.276	3.305				
F=O	- 0.515	- 0.552	- 0.517	- 0.515	- 0.486				
Total	99.824	99.757	99.458	99.222	98.700				
apfu									
Si	5.318	5.324	5.330	5.356	5.370				
^{IV} Al	2.682	2.676	2.670	2.644	2.630				
Σ T-site	8.000	8.000	8.000	8.000	8.000				
VIAl	0.378	0.384	0.444	0.493	0.569				
Ti	0.414	0.435	0.427	0.390	0.378				
Fet	3.062	3.058	3.034	3.037	3.016				
Mn	0.028	0.025	0.020	0.023	0.028				
Mg	1.813	1.783	1.746	1.744	1.686				
Li (calc.)	0.165	0.173	0.185	0.186	0.208				
Σ Y-site	5.860	5.858	5.856	5.873	5.885				

 Table 1 Biotite mica representative microprobe analyses. Apfu calculated based on 24 anions.

 Continued on next page.

Σ W-site	4.000	4.000	4.000	4.000	4.000
OH*	3.399	3.355	3.397	3.398	3.432
F	0.601	0.645	0.603	0.602	0.568
Σ X-site	1.895	1.864	1.829	1.795	1.721
Cs	bdl	bdl	bdl	bdl	bdl
Rb	0.002	0.002	0.002	0.002	0.002
Na	0.034	0.050	0.040	0.050	0.060
Ca	0.027	0.019	0.015	0.017	0.024
K	1.832	1.793	1.772	1.726	1.635

CHLORITE

Figure 12 Unconfirmed chlorite grain with associated EDS spectrum (crosshairs 1 & 2).

Quantitatively unconfirmed chlorite has been found in heavy mineral separations from Bell Creek granite samples. Grains have a platy texture associated with mica and appear texturally homogeneous.

Feldspars

Figure 13 K-feldspar grain with EDS spectrum. Lighter areas are K-feldspar (crosshair 1). Darker areas are plagioclase feldspar (crosshairs 2 & 3).

Figure 14 BSE image of plagioclase feldspar grain and EDS spectrum (crosshairs 1 & 2).

Both K-feldspar (Figure 13) and plagioclase feldspar (Figure 14) are found in heavy mineral separations from the Bell Creek granite and have been qualitatively investigated by SEM. Feldspar from Bell Creek has been further analyzed by XRD. Although there is some margin of error with XRD analyses, the analyses plotted very near max microcline field (Figure 173) (Wright & Stewart, 1968).

Fluorite

Figure 15 BSE image of fluorite grain. Crosshair 1 – mica species. Crosshair 2 and lighter areas are fluorite.

Fluorite has been discovered in heavy mineral separations from Bell Creek granite

samples and has been qualitatively investigated by SEM.

Ilmenite

Figure 16 BSE image of ilmenite grain and associated EDS spectrum.

Ilmenite is extraordinarily rare in heavy mineral separations as only one grain has been found in all of the samples investigated. The grain is subhedral and only a few hundred microns in diameter.

MONAZITE

Figure 17 Bell Creek monazite-(Ce) grain with close-up of inclusions. Associated EDS spectra included.

"Monazite" is for the most part, uncommon in Bell Creek Granite samples except for one group of heavy mineral separations, which was found to contain eight grains. As Figure 17 illustrates, "monazite" grains are far from being texturally and mineralogically homogeneous as there are numerous fractures as well as inclusions of apatite, relatively phosphorus-poor /uranium-rich inclusions with possible radiogenic lead, as well as possible yttrium-rich "xenotimes" with depleted HREE's. The analyzed grains should be classified as monazite-(Ce) based on X-site cation dominance. Table 2 lists the representative microprobe analyses.

MONAZITE-(CE) – BELL CREEK GRANITE								
Wt % Ox.	3-BCG	4-BCG	grain 20 BCG	grain 21 BCG	grain 22 BCG			
P ₂ O ₅	29.366	29.226	28.870	28.565	28.764			
SiO ₂	0.133	0.176	0.093	0.100	0.067			
TiO ₂	0.000	0.000	0.000	0.000	0.000			
ThO ₂	5.430	6.740	6.332	6.877	6.445			
UO_2	0.892	0.893	0.689	0.787	0.567			
Al ₂ O ₃	0.051	0.047	0.045	0.023	0.033			
La_2O_3	13.111	12.153	12.454	12.223	12.676			
Ce_2O_3	27.899	26.882	27.556	27.343	27.094			
Pr_2O_3	2.521	3.556	2.560	2.512	2.457			
Nd_2O_3	14.672	14.121	15.211	15.898	15.700			
Sm_2O_3	1.334	1.144	1.091	1.112	1.143			
Eu_2O_3	0.008	0.000	0.000	0.000	0.000			
Gd ₂ O ₃	0.455	0.600	0.476	0.512	0.489			
Dy ₂ O ₃	0.166	0.214	0.000	0.000	0.000			
Yb ₂ O ₃	0.016	0.015	0.216	0.220	0.200			
Y_2O_3	0.678	0.655	0.000	0.000	0.000			
Sc_2O_3	0.034	0.023	0.000	0.000	0.000			
MgO	0.000	0.030	0.000	0.000	0.000			
CaO	2.334	1.998	0.067	0.154	0.112			
MnO	0.050	0.020	0.000	0.000	0.000			
FeO	0.262	0.267	0.455	0.567	0.600			
PbO	0.188	0.198	0.043	0.032	0.065			
Total	99.600	98.958	99.182	99.459	99.432			
apfu								
Th	0.049	0.061	0.057	0.063	0.058			
U	0.008	0.008	0.006	0.007	0.005			
Al	0.002	0.002	0.002	0.001	0.002			
La	0.190	0.178	0.183	0.181	0.186			
Ce	0.402	0.391	0.401	0.401	0.395			
Pr	0.036	0.051	0.037	0.037	0.036			
Nd	0.206	0.200	0.216	0.228	0.223			
Sm	0.018	0.016	0.015	0.015	0.016			
Gd	0.006	0.008	0.006	0.006	0.008			
Dy	0.002	0.003	0.003	0.003	0.003			
Yb	0.000	0.000	0.001	0.002	0.001			
Y	0.014	0.014	0.010	0.012	0.013			
Ca	0.098	0.085	0.114	0.091	0.108			
ΣΧ	1.046	1.031	1.060	1.055	1.063			
Р	0.979	0.982	0.973	0.969	0.971			
Si	0.005	0.007	0.004	0.004	0.003			
ΣΥ	0.984	0.989	0.977	0.973	0.974			

Table 2 Monazite-(Ce) representative EMP analyses. Apfu calculations based on 4 oxygens.

MUSCOVITE

Figure 18 BSE image and associated EDS spectra. Lighter regions – biotite (crosshairs 2, 3, & 6); darker regions – muscovite (crosshair 1); lightest regions – ilmenite (crosshairs 4, 5, & 7).

Grains have been qualitatively investigated by SEM and quantitatively confirmed by microprobe as muscovite using Tischendorf's (1997) classification scheme (Figure 185). Muscovite is relatively uncommon in heavy mineral separations. Rubidium is just within detectable limits and cesium is below detection limits. As is the case with biotites from the Bell Creek granite, there is insufficient material to further investigate muscovite for lithium and trivalent iron via DCP and titration respectively. Lithium has been, however, accounted for stoichiometrically by using an equation based on fluorine weight percent: 0.3935 * fluorine weight percent^{1.326} (Tischendorf, 1997). Table 3 lists the representative analysis.

MUSCOVITE – BELL CREEK PEGMATITE							
Wt % Ox.	BCG	BCG					
5:0	Mica 2-3	$\frac{\text{Mica } 3-2}{46.511}$					
$S1O_2$	40.487	40.511					
T_1O_2	0.206	0.175					
Al ₂ O ₃	34.776	34.812					
Fe ₂ O ₃	0.000	0.000					
FeO	2.455	2.143					
MnO	0.033	0.065					
MgO	0.544	0.344					
CaO	0.054	0.067					
Li ₂ O (calc.)	0.442	0.570					
Na ₂ O	0.455	0.512					
K ₂ O	9.64	9.334					
Rb ₂ O	0.018	0.020					
Cs ₂ O	bdl	bdl					
F	1.091	1.322					
H ₂ O (calc.)	3.986	3.867					
F=O	- 0.459	- 0.557					
Total	99.727	99.185					
apfu							
Si	6.191	6.206					
^{IV} Al	1.809	1.794					
Σ T-site	8.000	8.000					
^{VI} Al	3.649	3.682					
Ti	0.021	0.018					
Fet	0.273	0.239					
Mn	0.004	0.007					
Mg	0.108	0.068					
Li (calc.)	0.237	0.306					
Σ Y-site	4.292	4.320					

Table 3 Representative EMP analysis of muscovite mica. Apfu based on 24 anions.Table continued on next page.

Na	0.117	0.132
Rb	0.002	0.002
Cs	bdl	bdl
Σ X-site	1.765	1.733
F	0.459	0.558
OH (calc.)	3.541	3.442
ΣW-site	4.000	4.000

TITANITE

Figure 19 BSE image of unconfirmed titanite and EDS spectrum. Lighter specks are lithium metatungstate.

Possible titanite has been discovered in heavy mineral separations, although it is exceedingly rare. Only one grain has been analyzed by SEM.

ZIRCON

Figure 20 Zircon BSE image with associated spectra. Crosshair 1 – area of grain with relatively higher Ca & Fe content. Crosshair 2 – contains relatively less Ca & Fe. Crosshair 3 is a possible apatite inclusion.

Zircon is uncommon in heavy mineral separations from Bell Creek granite samples. Zircons have been qualitatively investigated by SEM and confirmed by microprobe analysis. The BSE image in Figure 20 shows a region of the grain that is relatively more enriched in calcium and iron (crosshair 1) as well as an area that is relatively depleted in iron and calcium (crosshair 2). There is an inclusion of apatite (crosshair 3) in the grain as well. Zr/Hf *apfu* ratios are approximately 30%. Table 4 lists the representative zircon analyses.

ZIRCON – BELL CREEK GRANITE									
Wt % Oxide	BC	CG-1	BCG Goi-1						
SiO ₂	32.155	32.13	32.566						
TiO ₂	0.012	0.017	0.038						
Al ₂ O ₃	0.055	0.074	0.054						
ZrO ₂	64.945	64.799	63.156						
HfO ₂	1.344	1.400	3.009						
FeOt	0.212	0.188	0.100						
MnO	0.000	0.008	0.054						
MgO	0.000	0.000	0.000						
CaO	0.345	0.412	0.055						
UO ₂	0.012	0.014	0.020						
ThO ₂	0.034	0.043	0.009						
Total	99.114	99.085	99.061						
apfu									
Zr	0.979	0.977	0.952						
Hf	0.016	0.017	0.036						
U	0.000	0.000	0.000						
Th	0.000	0.000	0.000						
Fe	0.005	0.005	0.003						
Mg	0.000	0.000	0.001						
Mn	0.000	0.000	0.000						
Ca	0.011	0.014	0.002						
ΣΧ	1.011	1.013	0.994						
Si	0.994	0.994	1.007						
Ti	0.000	0.000	0.001						
Al	0.002	0.003	0.002						
ΣΥ	0.996	0.997	1.010						
Zr/Hf Ratios	60.849	58.284	26.430						

Table 4 Representative EMP zircon analyses.Apfu calculations based on 4 oxygens.

HUMBOLDT GRANITE

Figure 21 Field pictures of Humboldt granite samples.

Samples of Humboldt granite have been collected from exposures of granitic material that coincide with previously mapped locations (Hoffman, 1987). Additional samples are provided by Tom Buchholz. Specimens have been gathered using a sledge hammer to ensure freshness. Visual inspection of Humboldt granite reveal a medium- to coarse-grained texture with abundant feldspar and quartz with moderate amounts of mica. Humboldt granite has a range of reddish hues as can be seen from the photographs in Figure 21. Weathered portions have a grayish color, however, once broken, pink to reddish hues are clearly present.

Five GPS locations are sampled from the Marquette County area in Michigan. These samples have been crushed then qualitatively and quantitatively analyzed by SEM and EMP respectively. Apatite, biotite mica, feldspar (potassium and plagioclase), flurorite, ilmenite, magnetite, "monazite", muscovite mica, pyrite, a quantitatively unconfirmed tantalum/niobium mineral, a thorium/uranium-rich mineral species, vanadinite, quartz, and zircon have all been qualitatively investigated by SEM. Biotite and muscovite micas and zircon have been quantitatively confirmed by EMP.

APATITE

Figure 22 BSE image of apatite grain and associated EDS spectrum.

Apatite is very rare in Humboldt granite samples. Only four grains have been discovered and qualitatively investigated by SEM. The BSE image in Figure 22 shows the only grain to be relatively euhedral. The other three grains are anhedral. All grains are less than 300 microns in diameter. Further analyses by microprobe has been unsuccessful owing to the scarcity and size of apatite in heavy mineral separations

BIOTITE

Figure 23 Biotite BSE image with quartz inclusions.

Biotite mica is common in all Humboldt granite samples. Biotite has been qualitatively explored via SEM and quantitatively confirmed as Fe-biotite (Figure 186) after investigation by microprobe (Tischendorf, 1997). Rubidium weight percent is just within detectable limits. Cesium is below detection limits. Biotite micas from the Humboldt granite are considered to be relatively primitive due to the low rubidium content. There is insufficient homogeneous grains of biotite to determine trivalent iron contents (the sample in Figure 23 has quite a few quartz inclusions) by titration analyses. Determination of lithium contents by DCP has likewise not been conducive owing to lack of sufficient quantities of homogeneous grains. Lithium is accounted for regardless by using Tischendorf's equations. Table 5 lists the representative analyses from each of the Humboldt granite locations.

	BIOTITE – HUMBOLDT GRANITE										
Wt % Ox.	GPS.1- 1	GPS.1- 2	GPS.1- 3	GPS.2- 5	GPS.3- 7	HG.2- 18	HG.4- 19	HG.4- 20	HG.5- 22	HG.5- 23	HG.5- 24
SiO ₂	33.454	33.387	33.410	33.298	33.412	33.544	34.336	34.400	34.312	34.500	34.512
TiO ₂	0.450	0.483	0.367	0.856	0.565	0.423	3.433	3.298	1.565	0.891	0.900
Al ₂ O ₃	17.211	17.184	17.423	17.236	17.009	17.655	17.322	17.400	17.877	17.988	18.092
Fe ₂ O ₃	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
FeO	26.332	26.417	26.310	26.093	26.712	26.012	22.788	22.854	22.771	22.800	22.566
MnO	0.438	0.388	0.341	0.354	0.212	0.255	0.164	0.132	0.100	0.091	0.132
MgO	6.766	6.388	6.551	6.400	6.344	6.223	6.988	6.789	6.721	6.671	6.552
CaO	0.065	0.056	0.040	0.044	0.044	0.060	0.115	0.091	0.083	0.112	0.100
Li ₂ O (calc.)	0.249	0.271	0.261	0.270	0.273	0.281	0.374	0.409	0.422	0.432	0.457
Na ₂ O	0.076	0.066	0.111	0.121	0.093	0.143	0.132	0.099	0.115	0.165	0.099
K ₂ O	8.654	8.723	8.556	8.712	8.566	8.788	8.556	8.700	8.679	8.888	8.780
Rb ₂ O	0.013	0.014	0.014	0.016	0.016	0.017	0.020	0.016	0.017	0.021	0.019
Cs ₂ O	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl
F	1.187	1.224	1.312	1.223	1.191	1.100	1.091	1.115	1.150	1.215	1.211
H ₂ O	3.162	3.128	3.095	3.135	3.139	3.201	3.313	3.299	3.225	3.187	3.183
F=O	- 0.500	- 0.515	- 0.552	- 0.515	- 0.501	- 0.463	- 0.459	- 0.469	- 0.484	- 0.512	- 0.510
Total	97.558	97.214	97.239	97.243	97.075	97.238	98.173	98.133	96.553	96.449	96.093
apfu											
Si	5.385	5.398	5.390	5.375	5.410	5.404	5.375	5.389	5.457	5.498	5.508
^{IV} Al	2.615	2.602	2.610	2.625	2.590	2.596	2.625	2.611	2.543	2.502	2.492
Σ T-site	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000
^{VI} Al	0.651	0.673	0.703	0.654	0.656	0.756	0.571	0.601	0.808	0.876	0.911
Ti	0.055	0.059	0.045	0.104	0.069	0.051	0.404	0.389	0.187	0.107	0.108
Fet	3.545	3.572	3.550	3.523	3.617	3.505	2.983	2.994	3.029	3.039	3.012
Mn	0.060	0.053	0.047	0.048	0.029	0.035	0.022	0.018	0.013	0.012	0.018
Mg	1.624	1.540	1.575	1.540	1.531	1.494	1.631	1.585	1.594	1.585	1.559
Li (calc.)	0.161	0.176	0.170	0.175	0.178	0.182	0.235	0.258	0.270	0.277	0.293
Σ Y-site	6.096	6.073	6.089	6.044	6.080	6.023	5.846	5.845	5.902	5.896	5.901

Table 5 Representative EMP analyses of biotite mica. Apfu calculations based on 24 anions. Table continues on next page.

К	1.777	1.799	1.761	1.794	1.769	1.806	1.709	1.739	1.761	1.807	1.788
Ca	0.011	0.010	0.007	0.008	0.008	0.010	0.019	0.015	0.014	0.019	0.017
Na	0.024	0.021	0.035	0.038	0.029	0.045	0.040	0.030	0.035	0.051	0.031
Rb	0.001	0.001	0.001	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002
Cs	bdl										
Σ X-site	1.813	1.831	1.804	1.842	1.808	1.863	1.770	1.786	1.812	1.879	1.838
F	0.604	0.626	0.669	0.624	0.610	0.560	0.540	0.552	0.578	0.612	0.611
OH*	3.396	3.374	3.331	3.376	3.390	3.440	3.460	3.448	3.422	3.388	3.389
Σ W-site	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000

Feldspars

Figure 24 BSE image of K-feldspar grain and EDS spectrum.

Figure 25 BSE image of plagioclase feldspar grain with associated EDS spectrum.

Both K-feldspar and plagioclase feldspar are present in Humboldt granite samples and have been qualitatively analyzed by SEM. A sample of feldspar from one of the GPS locations has been further analyzed by XRD. There is a margin of error in the analysis (Figure 173); however, the analysis plots very near the maximum microcline field (Wright & Stewart, 1968).

Fluorite

Figure 26 Fluorite BSE image with EDS spectrum.

Fluorite is present in heavy mineral separations, but not all Humboldt samples have

fluorite. Grains are small and only few hundred microns in diameter.

MAGNETITE

Figure 27 BSE image of grain with pyrite core (crosshair 1) and magnetite cube overgrowth (crosshair 2). Associated EDS spectra on right.

In addition to finding discrete grains of magnetite, there are a few instances where magnetite forms an overgrowth on pyrite. The BSE image in Figure 27 shows a magnetite cube with a pyrite core.

MONAZITE

Figure 28 BSE image of "monazite" (lighter area – crosshair 1) and EDS spectrum. Darker region is feldspar.

"Monazite" is very rare to find in heavy mineral separations and has been qualitatively investigated by SEM. "Monazite" and apatite are the only two phosphate accessory minerals and other than a single "bastnäsite" grain, the only REE-bearing accessory mineral found in Humboldt granite samples.

MUSCOVITE

Figure 29 BSE image of muscovite mica (crosshair 1).

Muscovite mica is found in heavy mineral separations and has been qualitatively investigated by SEM, and confirmed by microprobe (Figure 185) (Tischendorf, 1997). Rubidium levels are just within detectable limits and cesium is below detection limits, therefore it is suggested that muscovites are poorly evolved. Sufficient quantities of homogeneous grains are not available to determine lithium and trivalent iron by DCP and titration respectively. Lithium is accounted for stoichiometrically using the equation 0.3935 * fluorine weight percent^{1.326} (Tischendorf, 1997). Table 6 lists the representative analyses.
Μτ	J SCOVITE – H	HUMBOLDT	Granite	
Wt % Ox.	HG6-1	HG6-2	HG12-1	HG15-2
SiO ₂	46.344	46.351	46.433	46.337
TiO ₂	0.151	0.148	0.093	0.110
Al ₂ O ₃	34.232	34.187	34.054	34.211
Fe ₂ O ₃	0.000	0.000	0.000	0.000
FeO	2.987	3.112	3.566	3.143
MnO	0.050	0.049	0.052	0.110
MgO	0.211	0.115	0.114	0.091
CaO	0.121	0.131	0.094	0.054
Li ₂ O (calc.)	0.706	0.659	0.566	0.547
Na ₂ O	0.477	0.400	0.345	0.455
K ₂ O	9.088	8.934	8.730	8.345
Rb ₂ O	0.023	0.021	0.017	0.020
Cs ₂ O	bdl	bdl	bdl	bdl
F	1.554	1.476	1.316	1.282
H ₂ O	3.736	3.764	3.834	3.838
F=O	- 0.654	- 0.621	- 0.554	- 0.540
Total	99.026	98.726	98.660	98.003
apfu				
Si	6.213	6.228	6.246	6.250
^{IV} Al	1.787	1.772	1.754	1.750
ΣT-site	8.000	8.000	8.000	8.000
^{VI} Al	3.622	3.641	3.645	3.689
Ti	0.015	0.015	0.009	0.011
Fet	0.335	0.350	0.401	0.355
Mn	0.006	0.006	0.006	0.013
Mg	0.042	0.023	0.023	0.018
Li (calc.)	0.381	0.357	0.307	0.297
Σ Y-site	4.401	4.392	4.391	4.383

Table 6 Representative muscovite mica EMP analyses. Apfu calculations based on 24 anions.Table continues on next page.

K	1.554	1.531	1.498	1.436
Ca	0.017	0.019	0.014	0.008
Na	0.124	0.104	0.090	0.119
Rb	0.002	0.002	0.001	0.002
Cs	bdl	bdl	bdl	bdl
Σ X-site	1.697	1.656	1.603	1.565
F	0.659	0.626	0.560	0.547
OH*	3.341	3.374	3.440	3.453
Σ W-site	4.000	4.000	4.000	4.000

Pyrite

Figure 30 BSE image of pyrite grain (top right grain – crosshairs 1 & 2) and associated EDS spectrum. Crosshairs 3, 4, & 5 are feldspar.

Discrete pyrite grains are found in heavy mineral separations (crosshairs 1 & 2), although it is relatively uncommon.

TA/NB SPECIES

Figure 31 BSE image and associated spectrum of tantalum/niobium mineral (crosshair 1) on a feldspar grain (crosshair 2).

A tantalum/niobium mineral species is very rare as only a single grain has been found in heavy mineral separations. Unfortunately, the grain did not survive sample preparation in order to quantitatively assess the mineral chemistry. The lighter portion of the BSE image in Figure 31 corresponds to the associated spectrum on the right. Buchholz *et al.* (2014) did confirm the occurrence of ferrocolumbite from Humboldt granite samples; however, none have been found in samples collected for this study.

TH/U SPECIES

Figure 32 BSE image and spectrum of a thorium/uranium-rich mineral species (crosshair 3) on a feldspar grain (crosshair 2).

A thorium/uranium-rich overgrowth on a single grain of quantitatively unconfirmed mineral chemistry was discovered in heavy mineral separations by SEM. The bright area (crosshair 3) in Figure 32 corresponds to the EDS spectrum on the right.

VANADINITE?

Figure 33 Vanadinite crystal BSE image and EDS spectrum.

An extraordinary (and small!) vanadinite crystal has been discovered in heavy mineral separations from HG3 location samples. If this is indeed from the Humboldt granite, it would indicate a new means of genesis for the mineral species. However, this has been the only grain found. Matrix is completely lacking, further complicating the assumption that vanadinite does indeed occur in Humboldt samples. The grain was very fragile and removal of the grain from the SEM mount resulted in its destruction.

ZIRCON

Figure 34 BSE image of twinned zircon with EDS spectrum.

Figure 35 BSE image of polished zircon grain with internal zonation along with associated EDS spectra. Lighter areas (crosshairs 2, 4, & 5) have relatively lower Ca content. Darker areas (crosshairs 1 & 3) have relatively higher Ca content.

Zircon is present in all the samples from the Humboldt granite. Heavy mineral

separations from GPS.3 are especially rich in zircon. Most zircons are small (only a few hundred microns at most) with Zr/Hf ratios between 50-60%. Table 7 lists the representative analyses.

		Zı	RCON - H	UMBOLDI	GRANITE	C		
Wt % Oxide	НС	G-2	HG	5-1	HG-C	GPS.1	HG-2 0	Goi 8-1
SiO ₂	32.001	31.899	31.822	31.911	31.771	31.67	33.800	33.650
TiO ₂	0.020	0.013	0.022	0.027	0.012	0.022	0.021	0.019
Al ₂ O ₃	0.101	0.121	0.032	0.040	0.020	0.043	0.056	0.070
ZrO ₂	63.677	64.122	63.544	63.6	62.788	62.678	63.500	63.676
HfO ₂	1.440	1.560	1.544	1.393	1.500	1.565	1.311	1.388
FeOt	0.545	0.123	0.433	0.388	0.452	0.500	0.222	0.211
MnO	0.011	0.013	0.030	0.022	0.455	0.532	0.056	0.023
MgO	0.000	0.000	0.000	0.000	0.000	0.000	0.013	0.011
CaO	0.833	0.104	0.774	0.749	0.655	0.722	0.766	0.211
UO ₂	0.033	0.0310	0.030	0.024	0.071	0.091	0.023	0.033
ThO ₂	0.122	0.109	0.092	0.111	0.200	0.232	0.081	0.089
Total	98.783	98.095	98.323	98.265	97.924	98.055	99.849	99.381
apfu								
Zr	0.964	0.977	0.967	0.967	0.960	0.958	0.940	0.947
Hf	0.017	0.019	0.019	0.017	0.018	0.019	0.015	0.016
U	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.000
Th	0.001	0.001	0.001	0.001	0.001	0.002	0.001	0.001
Fe	0.014	0.003	0.011	0.010	0.012	0.013	0.006	0.005
Mg	0.000	0.000	0.001	0.001	0.012	0.014	0.001	0.001
Mn	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001
Ca	0.028	0.003	0.026	0.025	0.022	0.024	0.025	0.007
ΣX-site	1.024	1.004	1.025	1.021	1.026	1.031	0.989	0.978
Si	0.993	0.996	0.993	0.995	0.996	0.993	1.026	1.026
Ti	0.000	0.000	0.001	0.001	0.000	0.001	0.000	0.000
Al	0.004	0.004	0.001	0.001	0.001	0.002	0.002	0.003
Σ Y-site	0.998	1.001	0.995	0.997	0.997	0.995	1.028	1.029
Zr/Hf ratios	55.683	51.759	51.824	57.493	52.710	50.432	60.993	57.769

Table 7 Humboldt granite zircon Microprobe analyses. *Apfu* calculations based on 4 oxygens.

GRIZZLY PEGMATITE

Figure 36 Field pictures of Grizzly pegmatite.

The Grizzly pegmatite is of a gray color with a slight pink hue. On a macroscopic scale, the Grizzly is composed primarily of feldspar and biotite mica. Quartz is also present, although moderately abundant. Samples from Grizzly pegmatite outcrops were collected along Hwy 95 in Marquette County, Michigan directly across from the Bell Creek granite. Samples were crushed and exposed to lithium metatungstate to float out lighter minerals. In addition, material from a boulder of muscovite schist similar to one previously described by Simmons (2009) was investigated. Samples from the boulder were provided by Tom Buchholz. The following minerals were identified by SEM and EMP from the Grizzly pegmatite: apatite, K-feldspar, zircon, "monazite", "xenotime", elemental bismuth, fluorite, quartz, mica, ilmenite, and possible "bastnäsite". From the muscovite schist boulder, muscovite mica, fluorite, uraninite and quite possibly radiogenic lead, as well as pyrite were identified by the previously mentioned methods. Apatite, biotite and muscovite mica, K-feldspar, ilmenite, monazite-(Ce), elemental bismuth, and plagioclase were all quantitatively confirmed via electron microprobe.

APATITE

Figure 37 BSE image of polished apatite grain (crosshair 1 & 2).

Apatite has been identified from the Grizzly pegmatite by SEM and quantitatively analyzed by microprobe. Apatite, along with "monazite" and "xenotime" are the only confirmed phosphorus-bearing minerals found within samples collected from the Grizzly pegmatite. Apatites are fluorine dominant and therefore should be classified as fluorapatite. Three EMP analyses are listed in Table 8. Grains are sub- to anhedral and approximately one millimeter in size. Grains are translucent, free of inclusions, and lack visible zonation. Grains were identified by using UV lighting as the lack of crystal faces and coloration made recognizing discrete grains with a binocular microscope difficult.

APAT	TITE – GRIZZ	ZLY PEGMAT	ITE
Wt % Oxide	13 GrP	14 GrP	15 GrP
P ₂ O ₅	43.199	42.245	42.244
SiO ₂	0.015	0.034	0.027
Al ₂ O ₃	0.022	0.000	0.000
FeO	0.000	0.011	0.014
CaO	55.575	55.700	55.677
H ₂ 0 (<i>calc</i> .)	0.491	0.491	0.491
F	3.021	3.034	2.822
F=O	-1.272	-1.277	-1.188
Total	101.051	100.238	100.087
apfu			
Ca	4.916	4.986	4.996
Fe	0.000	0.001	0.001
ΣΧ	4.916	4.987	4.997
Р	3.019	2.988	2.995
Si	0.001	0.003	0.002
Al	0.002	0.000	0.000
ΣΥ	3.022	2.991	2.997
F	0.791	0.804	0.748
H (calc.)	0.209	0.196	0.252
ΣΨ	1.000	1.000	1.000

Table 8 Representative EMP analyses of apatite. Apfu calculations based on 13 anions.

BIOTITE

Figure 38 BSE image of polished biotite grain (crosshairs 1 & 2).

Biotite is relatively abundant at the Grizzly pegmatite. Lithium has been detected by Direct Coupled Plasma Spectroscopy and calculated based on recommended equations of Tischendorf (1997). Lithium weight percent is calculated by using SiO₂ and MgO weight percent totals ($0.289*SiO_2 - 9.658$) as recommended by Tischendorf (1997). DCP results of lithium weight percent content, 0.325, are slightly higher than calculated weight percent.

Based on mica classification (Tischendorf, 1997), samples are Fe-biotite (Figure 186). There is some amount of Fe^{3+} that contributes to T-site, although the suggestion is that analyzed samples rarely contain more than one weight percent of trivalent iron. Rubidium is at or below detection limits and fluorine content rarely exceeds one weight percent. Cesium is below detection limits. Table 9 lists the representative analyses.

		В	IOTITE -	- Grizzi	LY PEGM	IATITE			
Wt % Ox.	3-1	6-1	6-3	5a-1-2	5a-2-2	5a-3-2	5b-1-1	5b-2-1	5b-4-2
SiO ₂	34.217	34.166	34.234	34.355	34.300	34.400	34.233	34.233	34.154
TiO ₂	3.099	3.221	2.678	3.077	2.872	2.677	2.556	2.434	2.800
Al ₂ O ₃	16.233	16.444	16.512	16.522	16.332	16.676	17.123	16.988	16.700
Fe ₂ O ₃	1.279	0.918	0.984	0.872	1.422	0.809	0.683	0.921	1.055
FeO	24.615	24.615	24.615	24.615	24.615	24.615	24.615	24.615	24.615
MnO	0.098	0.132	0.093	0.092	0.091	0.088	0.100	0.232	0.056
MgO	5.766	5.743	4.990	5.334	5.665	5.334	4.766	4.445	4.800
CaO	0.126	0.089	0.083	0.188	0.109	0.114	0.100	0.109	0.095
Li ₂ O (<i>calc</i> .)	0.231	0.126	0.236	0.271	0.255	0.284	0.235	0.235	0.213
Na ₂ O	0.100	0.122	0.114	0.122	0.156	0.232	0.155	0.181	0.176
K ₂ O	9.222	9.200	9.455	9.315	9.221	9.116	9.330	9.092	9.346
Rb ₂ O	0.016	0.016	0.011	0.019	0.016	0.015	0.016	0.012	0.012
Cs ₂ O	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl
F	1.091	0.930	0.922	1.111	1.012	0.932	0.966	0.944	0.997
H ₂ O	3.274	3.349	3.314	3.261	3.314	3.335	3.298	3.291	3.280
F=O	- 0.459	-0.392	- 0.388	- 0.468	- 0.426	-0.376	-0.407	-0.397	-0.420
Total	98.907	98.748	97.852	98.686	98.954	98.234	97.771	97.336	97.879
apfu									
Si	5.412	5.406	5.473	5.439	5.422	5.461	5.465	5.490	5.457
^{IV} Al	2.588	2.594	2.527	2.561	2.578	2.539	2.535	2.510	2.543
ΣT-site	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000
VIAl	0.438	0.469	0.584	0.522	0.465	0.582	0.686	0.701	0.602
Ti	0.369	0.383	0.322	0.367	0.342	0.320	0.307	0.294	0.337
Fet	3.408	3.367	3.409	3.363	3.423	3.365	3.368	3.413	3.416
Mn	0.013	0.018	0.013	0.012	0.012	0.012	0.014	0.032	0.008
Mg	1.360	1.355	1.189	1.259	1.335	1.263	1.135	1.063	1.144
Li (calc.)	0.147	0.137	0.151	0.172	0.162	0.181	0.151	0.152	0.137
Σ Y-site	5.735	5.689	5.668	5.695	5.739	5.723	5.661	5.655	5.644

Table 9 Grizzly pegmatite biotite Microprobe analyses (continued on next page).Apfu calculations based on 24 anions.

K	1.861	1.857	1.928	1.881	1.860	1.846	1.900	1.860	1.905
Ca	0.021	0.015	0.014	0.032	0.018	0.019	0.017	0.019	0.016
Na	0.031	0.037	0.035	0.037	0.048	0.071	0.048	0.056	0.055
Rb	0.002	0.002	0.001	0.002	0.002	0.002	0.002	0.001	0.001
Cs	bdl								
Σ X-site	1.915	1.911	1.979	1.952	1.928	1.938	1.967	1.936	1.977
F	0.546	0.465	0.466	0.556	0.506	0.468	0.488	0.479	0.504
OH*	3.454	3.535	3.534	3.444	3.494	3.532	3.512	3.521	3.496
Σ W-site	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000

BISMUTH

Figure 39 BSE image of elemental bismuth inclusions (crosshairs 1, 2, & 3 in both top and close-up) in fluorite grain (crosshair 4) with corresponding EDS spectra.

Elemental bismuth inclusions have been discovered in a polished fluorite mount. These inclusions are no bigger than 50 microns in diameter. Weight percent total for the single analysis are very close to 100% with trace amounts of both lead and iron.

This is the first reported and quantitatively confirmed occurrence of elemental bismuth having been found at the Grizzly pegmatite.

Fluorite

Figure 40 BSE image of fluorite grain along with corresponding EDS spectrum.

Fluorite has been identified under binocular microscope in both the Grizzly pegmatite and the muscovite schist boulder. There are no discrete fluorite grains larger than millimeter size in samples from the Grizzly. Analyzed grains from the Grizzly pegmatite are colorless with purple splotches. Fluorite from the muscovite schist boulder are dark purple to almost completely black. Fluorite from the schist are a few millimeters in size and when subjected to heat turn completely colorless with visible inclusions of quartz, "monazite", zircon, possible biotite mica, and feldspar. These inclusions are approximately 100 micrometers in size. Fluorite is relatively more abundant in the schist than the Grizzly pegmatite.

FELDSPARS

K-Feldspar

Figure 41 BSE image of K-feldspar grain.

Feldspar from the Grizzly pegmatite is mostly potassium-rich. Barium and rubidium are below and at detection limits respectively suggesting that analyzed feldspars are poorly evolved. Grains do contain exsolution lamellae of Na-rich plagioclase, but these are not uniform in appearance. Analyzed grains contain plagioclase inclusions similar in description to previously published data by Hoffman (1987). His samples are from the Bell Creek granite.

Plagioclase inclusions Hoffman has described have a more sodium-rich rim than core, as do samples from the Grizzly, but Grizzly plagioclase inclusions have submillimeter inclusions of muscovite mica, fluorite, and "monazite" not previously described in Bell Creek samples. Table 10 shows analyses of K-feldspar and sodium-rich "lamellae". Figure 42 shows BSE images and corresponding EDS spectra of the rim and core of plagioclase inclusions as well as inclusions of fluorite and muscovite mica.

Grizzly feldspars have been analyzed by X-ray diffraction (Figure 173). An accurate determination of structural ordering has not been possible, owing perhaps to the geochemical variability imparted by inclusions. However, analyses did plot over the maximum microcline field indicating there is some amount of structural ordering present (Wright & Stewart, 1968).

		K-	FELDSPAR	- Grizzly	PEGMATI	ТЕ		
Wt% ox	5a grain	5a grain	5a grain	5a grain	5b grain	5b grain	5b grain	5b grain
	2-1	2-2	3-1	3-2	1-1	1-2	2-1	2-2
P_2O_5	0.009	0.000	0.000	0.000	0.009	0.000	0.000	0.000
SiO ₂	64.722	68.633	64.722	67.276	64.762	67.345	64.743	67.377
TiO ₂	0.011	0.000	0.013	0.000	0.009	0.000	0.013	0.000
Al ₂ O ₃	18.302	19.677	18.383	20.222	18.344	20.322	18.344	20.304
FeOt	0.009	0.000	0.011	0.000	0.012	0.000	0.012	0.000
CaO	0.000	0.822	0.000	1.981	0.000	2.455	0.000	2.333
Na ₂ O	0.422	10.566	0.411	10.211	0.500	9.776	0.383	9.812
K ₂ O	16.500	0.066	16.432	0.156	16.223	0.054	16.612	0.034
Rb2O	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Total	99.986	99.764	99.983	99.855	99.871	99.952	100.116	99.860
apfu								
K	0.975	0.004	0.970	0.009	0.958	0.003	0.981	0.002
Na	0.038	0.895	0.037	0.868	0.045	0.830	0.034	0.833
Ca	0.000	0.038	0.000	0.093	0.000	0.115	0.000	0.109
Rb	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
ΣX-site	1.013	0.937	1.007	0.970	1.003	0.948	1.015	0.944
Al	0.999	1.000	1.003	1.000	1.001	1.000	1.000	1.000
Fe	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
ΣY-site	0.999	1.000	1.003	1.000	1.001	1.000	1.000	1.000
Si	2.997	2.997	2.995	2.950	2.998	2.948	2.995	2.950
Ti	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Р	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al	0.000	0.013	0.000	0.045	0.000	0.049	0.000	0.048
ΣZ-site	2.997	3.010	2.995	2.995	2.998	2.997	2.995	2.998

Table 10 K-feldspar EMP analyses. *Apfu* calculations based on 8 oxygens.

Figure 42 BSE image of K-feldspar grain with close-up of plagioclase inclusion. Associated EDS spectra of all inclusions as well as main K-feldspar grain.

ILMENITE

Figure 43 Ilmenite (crosshairs 2-5) and quartz (crosshair 6) inclusions in biotite grain (crosshairs 1 & 7) shown in above BSE image along with EDS spectra.

Ilmenite inclusions have been identified by SEM and analyzed by EMP. A detectable amount of niobium is present, as is approximately one weight percent of manganese. Of importance is that Fe-biotite micas from the Grizzly contain an appreciable amount of titanium, in excess of three weight percent in some cases. Table 11 shows EMP analyses. Tantalum and magnesium are both below detection limits. Weight percent totals are approximately 97% suggesting that these ilmenite inclusions may be altered in some way.

ILMENITE	E – GRIZZLY PH	EGMATITE
Wt % Ox	Grain 6-2	5b-4-3
SiO ₂	0.122	0.088
TiO ₂	54.354	54.112
Al ₂ O ₃	0.143	0.211
FeO	41.899	41.781
MnO	1.121	0.981
MgO	bdl	bdl
CaO	0.089	0.143
Nb ₂ O ₅	0.022	0.025
Total	97.750	97.314
apfu		
Fe	0.956	0.958
Mn	0.057	0.050
Mg	bdl	bdl
Ca	0.008	0.013
Nb	0.002	0.002
Σ X-site	1.032	1.031
Ti	2.479	2.479
Al	0.002	0.003
Si	0.007	0.005
Σ Y-site	2.479	2.479

Table 11 Representative EMP analyses of ilmenite.Apfu calculations based on 3 oxygens.

MONAZITE

Figure 44 BSE image of monazite-(Ce) grain (crosshair 1) and feldspar (crosshair 2).

"Monazite" has been identified in Grizzly samples by SEM and further analyzed by EMP. Cerium is the dominant REE in the X-site. Monazite-(Ce) grains are far from homogeneous, having numerous inclusions of fluorite, a thorium-rich mineral species containing uranium and possible radiogenic lead, calcium and iron, as well as pyrite grains. Monazite-(Ce) grains appear to be altered in many areas within the grains as well. Table 12 shows representative EMP analyses. Figure 45 shows a BSE image of a polished grain with associated EDS spectra. Monazite-(Ce) is the most common REE-bearing accessory mineral at the Grizzly, ("bastnäsite" and "xenotime" are rarely found) and is only one of three identified phosphatebearing accessory minerals.

Grizz	LY – MONAZIT	E-(CE)
Wt % Ox.	5-GrP-1	6-GrP-1
P_2O_5	28.772	29.453
SiO ₂	0.210	0.093
TiO ₂	0.000	0.000
ThO ₂	8.340	4.998
UO_2	0.933	0.457
Al_2O_3	0.065	0.076
La_2O_3	11.653	13.041
Ce_2O_3	25.875	28.454
Pr_2O_3	2.889	2.670
Nd_2O_3	13.778	14.877
Sm_2O_3	1.231	1.446
Eu_2O_3	0.000	0.000
Gd_2O_3	0.630	0.477
Dy_2O_3	0.000	0.000
Yb ₂ O ₃	0.236	0.200
Y_2O_3	0.000	0.000
Sc_2O_3	0.000	0.000
MgO	0.000	0.000
CaO	0.000	0.022
MnO	0.000	0.000
FeO	0.562	0.773
PbO	0.019	0.023
Total	98.271	99.388
apfu		
Th	0.076	0.045
U	0.008	0.004
Al	0.003	0.004
La	0.172	0.190
Ce	0.379	0.411
Pr	0.042	0.038
Nd	0.197	0.209
Sm	0.017	0.020
Y	0.012	0.016
Ca	0.110	0.084
ΣΧ	1.042	1.038
Р	0.976	0.983
Si	0.008	0.004
ΣΥ	0.984	0.987

Table 12 Grizzly "monazite" Microprobe analyses. Apfu calculations based on 4 oxygens.

Figure 45 BSE image of polished monazite-(Ce) grain illustrating numerous inclusions and fractures within the grain.

MUSCOVITE

Figure 46 BSE image of muscovite mica grain. Associated spectra reveal what might have been a "monazite" grain.

Muscovite mica is rare in Grizzly samples; biotite is much more common. One analysis determines that the mica is indeed muscovite (Figure 185), based on the classification scheme of Tischendorf. The BSE image (Figure 46) of a muscovite grain with associated spectra is shown. Table 13 shows the EMP analysis. Lithium was calculated based on fluorine content using the equation 0.3935 * fluorine weight percent^{1.326} (Tischendorf, 1997).

MUSCOVITH	E-GRIZZLY
PEGM	ATITE
Wt % Ox.	6-1
SiO ₂	45.210
TiO ₂	1.454
Al ₂ O ₃	30.874
Fe ₂ O ₃	0.000
FeO	1.322
MnO	0.080
MgO	2.422
CaO	0.066
Li ₂ O (calc.)	0.387
Na ₂ O	0.223
K ₂ O	9.766
Rb ₂ O	0.012
Cs ₂ O	bdl
F	0.988
$H_2O(calc.)$	3.873
F=O	- 0.416
Total	96.261
apfu	
Si	6.245
^{IV} Al	1.755
Σ T-site	8.000
^{VI} Al	3.271
Ti	0.151
Fet	0.153
Mn	0.009
Mg	0.499
Li (calc.)	0.215
Σ Y-site	4.298

Table 13	Representative EMP analysis of muscovite mica.
	Apfu calculated based on 24 anions.

Table continues on next page.

K	1.721
Ca	0.010
Na	0.060
Rb	0.001
Cs	bdl
Σ X-site	1.792
F	0.432
OH (calc.)	3.568
Σ W-site	4.000

Figure 47 Muscovite mica and rutile grains in BSE image with associated EDS spectra.

Rutile has been identified by SEM from samples, and along with ilmenite, is an accessory titanium-bearing mineral at the Grizzly pegmatite.

"XENOTIME", "BASTNÄSITE", ZIRCON

Figure 48 BSE image shows a grain with possible "bastnäsite", "xenotime", and zircon.

Quantitatively unconfirmed "bastnäsite" and "xenotime" have been found in heavy mineral separations. Both of these minerals are extremely uncommon.

ZIRCON

Figure 49 BSE image of zircon crystals.

Zircon is a somewhat common accessory mineral present at the Grizzly pegmatite. Zircon has been identified in heavy mineral separates by binocular microscope and qualitatively analyzed by SEM. Representative microprobe analyses are listed in Table 14. Figure 49 shows a BSE image of a zircon sample with very nice micron-sized crystal faces.

ZIRCON – GRIZZLY PEGMATITE												
Wt % Oxide	GRP- Goi- 1-1	GRP- Goi- 1-2	GRP- Goi- 2-1	GRP- Goi- 2-2	GRP- Goi- 3-1	GRP- Goi- 4-1	GRP- Goi- 4-2	GRP- Goi- 4-3	GRP- Goi- 5-1	GRP- Goi- 5-2	GRP- Goi- 6-1	GRP- Goi- 6-2
SiO ₂	34.023	33.983	33.787	33.677	33.760	33.782	33.544	33.488	33.655	33.577	33.700	33.634
TiO ₂	0.023	0.019	0.011	0.018	0.010	0.022	0.018	0.011	0.011	0.012	0.009	0.021
Al ₂ O ₃	0.112	0.211	0.155	0.200	0.081	0.034	0.066	0.020	0.050	0.054	0.043	0.065
ZrO ₂	63.683	63.610	63.455	63.332	63.544	63.455	63.355	63.256	63.540	63.766	63.412	63.844
HfO ₂	1.312	1.377	1.345	1.400	1.544	1.277	1.456	1.811	1.311	1.433	1.366	1.477
FeOt	0.112	0.344	0.145	0.210	0.322	0.232	0.101	0.055	0.132	0.133	0.144	0.133
MnO	0.043	0.050	0.033	0.041	0.199	0.020	0.022	0.015	0.054	0.040	0.034	0.054
MgO	0.000	0.009	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.009	0.000	0.009
CaO	0.655	0.566	0.488	0.512	0.454	0.677	0.700	0.550	0.766	0.222	0.658	0.122
UO ₂	0.023	0.030	0.011	0.016	0.071	0.033	0.056	0.050	0.022	0.055	0.033	0.041
ThO ₂	0.092	0.084	0.066	0.060	0.112	0.100	0.880	0.112	0.132	0.233	0.155	0.100
Total	100.078	100.283	99.496	99.466	100.097	99.632	100.198	99.368	99.673	99.534	99.554	99.500
apfu												
Zr	0.939	0.937	0.941	0.940	0.940	0.941	0.940	0.943	0.943	0.949	0.942	0.949
Hf	0.015	0.016	0.016	0.017	0.018	0.015	0.017	0.021	0.015	0.017	0.016	0.017
U	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Th	0.001	0.001	0.000	0.000	0.001	0.001	0.006	0.001	0.001	0.002	0.001	0.001
Fe	0.003	0.009	0.004	0.005	0.008	0.006	0.003	0.001	0.003	0.003	0.004	0.003
Mn	0.001	0.001	0.001	0.001	0.005	0.001	0.001	0.000	0.001	0.001	0.001	0.001
Mg	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Ca	0.021	0.018	0.016	0.017	0.015	0.022	0.023	0.018	0.025	0.007	0.021	0.004
Σ X-site	0.980	0.982	0.978	0.980	0.987	0.985	0.990	0.985	0.989	0.980	0.985	0.977
Si	1.029	1.026	1.028	1.025	1.024	1.027	1.021	1.024	1.024	1.024	1.026	1.025
Ti	0.001	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000
Al	0.004	0.008	0.006	0.007	0.003	0.001	0.002	0.001	0.002	0.002	0.002	0.002
Σ Y-site	1.033	1.034	1.034	1.033	1.027	1.029	1.024	1.025	1.026	1.027	1.028	1.028
Zr/Hf Raios	61.122	58.170	59.409	56.964	51.824	62.572	54.793	43.983	61.031	56.034	58.456	54.431

Table 14 Representative EMP zircon analyses. Apfu calculations bases on 4 oxygens.

GRIZZLY? URANINITE

Figure 50 BSE image of uraninite, pyrite, and apatite grains embedded within muscovite mica and associated EDS spectra.

It is uncertain whether or not greisen material collected near Bell Creek granite and Grizzly pegmatite is associated with either of these two bodies. However, samples have been included in the Grizzly pegmatite section. The BSE image and EDS spectra show the close association between muscovite mica, fluorite, apatite, and uraninite. The color of fluorite can be greatly affected by radiation, perhaps explaining why fluorites are such a deep purple hue.

Figure 51 BSE image showing close-up of uraninite crystal in Figure 50 along with corresponding EDS spectra.

DOLFIN PEGMATITE

Figure 52 Dolfin pegmatite image showing poor exposure of pegmatite

In the late 1800's the Dolfin pegmatite (named after the current property owner) was briefly mined for mica, but little more was heard about the pegmatite until after the turn of the century. During WWII it was part of the strategic minerals survey (Snelgrove *et al.*, 1943), but owing to the paucity of important mineral deposits and relatively high iron content in feldspar, the Dolfin pegmatite was considered economically unviable.

The Dolfin pegmatite is the most poorly exposed of the locations sampled. It is located in Marquette County, Michigan. Of the minerals identified previously, only biotite, fluorite, microcline, molybdenite, quartz, and chlorophane (a variety of fluorite exhibiting green thermoluminescence) are listed. The following are a list of minerals identified by qualitative and quantitative means: biotite, K-feldspar, fluorite, garnet, "monazite", muscovite mica, pyrite, quartz, uraninite, "xenotime", and zircon have been qualitatively analyzed by SEM; Fe-biotite, K-feldspar, garnet, monazite-(Ce), muscovite, uraninite, xenotime-(Y), and zircon are all quantitatively confirmed by electron microprobe analysis.

BIOTITE

Figure 53 BSE image of biotite mica grain.

Biotite is present in heavy mineral separations and has been further analyzed by SEM and EMP. Titration of biotites from the Dolfin pegmatite reveal that there is a measureable amount of trivalent iron as FeO weight percent contents do not account for total iron. Titration reveals a weight percent FeO total of 24.560. Total Fe content from microprobe analyses are approximately 26 wt%. Lithium is calculated based on equations of Tischendorf (1997) despite lack of homogeneous grains of mica for DCP analysis. The equation (2.7/(0.35+MgO) - 0.13) has been used to calculate lithium content. Microprobe analyses determine that these biotites should be classified as Fe-biotite (Figure 186). Representative analyses are listed in Table 15.
	BIOTITE – DOLFIN PEGMATITE								
Wt % Ox.	DP mica 3 top-1	DP mica 3 top-2	DP mica 3 bottom-2	DP mica 8 top 1					
SiO ₂	32.912	33.003	32.946	32.788					
TiO ₂	2.113	2.225	2.332	2.400					
Al ₂ O ₃	16.987	17.004	16.899	16.788					
Fe ₂ O ₃	1.703	1.582	1.835	2.328					
FeO	24.560	24.560	24.560	24.560					
MnO	0.377	0.400	0.292	0.181					
MgO	5.765	5.623	5.699	5.887					
CaO	0.045	0.054	0.073	0.067					
Li ₂ O (calc.)	0.312	0.322	0.316	0.303					
Na ₂ O	0.212	0.232	0.311	0.083					
K ₂ O	9.655	9.599	9.723	9.444					
Rb ₂ O	0.011	0.013	0.012	0.014					
Cs ₂ O	bdl	bdl	bdl	bdl					
F	1.054	1.100	1.091	0.972					
H ₂ O	3.247	3.227	3.240	3.294					
F=O	- 0.444	- 0.463	- 0.459	- 0.409					
Total	98.508	98.481	98.870	98.700					
apfu									
Si	5.268	5.280	5.258	5.236					
^{IV} Al	2.732	2.720	2.742	2.764					
ΣT-site	8.000	8.000	8.000	8.000					
^{VI} Al	0.472	0.486	0.436	0.396					
Ti	0.254	0.268	0.280	0.288					
Fet	3.493	3.476	3.498	3.560					
Mn	0.051	0.054	0.039	0.024					
Mg	1.376	1.341	1.356	1.402					
Li (calc.)	0.201	0.207	0.203	0.195					
Σ Y-site	5.847	5.832	5.812	5.865					

Table 15 Representative biotite mica EMP analyses. Apfu calculations based on 24 anions.Table continues on next page.

K	1.972	1.959	1.980	1.924
Ca	0.008	0.009	0.012	0.011
Na	0.066	0.072	0.096	0.026
Rb	0.001	0.001	0.001	0.001
Cs	bdl	bdl	bdl	bdl
Σ X-site	2.047	2.041	2.089	1.962
F	0.534	0.557	0.551	0.491
OH*	3.466	3.443	3.449	3.509
Σ W-site	4.000	4.000	4.000	4.000

K-Feldspar

Figure 54 BSE image of K-feldspar grain.

Analysis of K-feldspar by SEM reveal 100 to 250 micron thick exsolution lamellae of plagioclase feldspar. Lamellae are irregular in appearance and roughly parallel. Lamellae contain little calcium ($An_{06} - An_{10}$). Barium is below detection limits and rubidium is at or below detection limits suggesting that K-feldspar samples are poorly evolved. In two samples, SEM analyses of fluorite inclusions reveal a detectable amount of yttrium. Analysis by XRD suggests that there is a high degree of structural ordering as the sample plots very near the maximum microcline field (Figure 173) (Wright & Stewart, 1968). Table 16 shows a representative list of feldspar analyses with corresponding analyses of lamellae. Additional feldspar analyses are listed in the appendices in Table 85.

	K-FELDSPAR - DOLFIN PEGMATITE									
Wt% ox	DP3 grain 1-1	DP3 grain 1-2	DP3 grain 2-1	DP3 grain 2-2	DP 8 grain 3-1	DP 8 grain 3-2	DP 8 grain 2-1	DP 8 grain 2-2		
P ₂ O ₅	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
SiO ₂	64.776	69.111	68.687	64.799	64.766	68.576	68.688	64.699		
TiO ₂	0.015	0.000	0.000	0.014	0.012	0.000	0.000	0.009		
Al ₂ O ₃	18.405	19.433	19.432	18.399	18.388	19.755	19.444	18.414		
FeOt	0.011	0.000	0.000	0.013	0.013	0.000	0.000	0.015		
CaO	0.012	0.256	0.266	0.000	0.000	0.488	0.288	0.000		
Na ₂ O	0.494	10.987	11.091	0.293	0.455	10.566	10.877	0.455		
K ₂ O	16.005	0.310	0.181	16.100	15.889	0.255	0.211	15.877		
Rb2O	0.013	0.000	0.000	0.009	0.016	0.000	0.000	0.013		
Total	99.731	100.097	99.666	99.627	99.539	99.640	99.517	99.482		
apfu										
K	0.945	0.017	0.010	0.951	0.939	0.014	0.012	0.939		
Na	0.044	0.928	0.941	0.026	0.041	0.896	0.923	0.041		
Ca	0.001	0.012	0.012	0.000	0.000	0.023	0.014	0.000		
Rb	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
ΣX-site	0.990	0.957	0.963	0.978	0.981	0.933	0.949	0.980		
Al	1.004	0.998	1.002	1.005	1.004	1.018	1.003	1.006		
Fe	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
Σ Y-site	1.004	0.998	1.002	1.005	1.004	1.018	1.003	1.006		
Si	2.998	3.010	3.005	3.001	3.001	2.998	3.007	3.000		
Ti	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
Р	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
Al	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
Σ Z-site	2.999	3.010	3.005	3.002	3.001	2.998	3.007	3.000		

Table 16 EMP representative analyses of K-feldspar. Apfu calculations based on 8 oxygens.

Fluorite

Figure 55 BSE image of fluorite grain (crosshair 1) on K-feldspar (crosshair 2).

Discrete grains of fluorite have been identified in hand sample with a binocular microscope and confirmed qualitatively by SEM. No discrete grains larger than a millimeter in size have been discovered.

GARNET

Figure 56 BSE image of garnet grain (left; crosshair 1) and polished garnet grain (right; crosshair 1).

Garnet grains identified in hand sample and heavy mineral separations rarely reach more than a millimeter in size. Garnets are sub- to euhedral and occasionally, anhedral. Of the grains analyzed by microprobe, none are zoned. A detectable amount of fluorine is present in some of the samples analyzed. Analyses also reveal that samples contain a significant almandine component (\sim Al₈₀), followed by a spessartine component (Sp₁₇ – Sp₂₀), and grossular (Gr₀₂ – Gr₀₄), with very minor pyrope and andradite components (>1%). Table 17 shows a list of representative garnet analyses. This is the first reported and confirmed occurrence of garnet at the Dolfin pegmatite. Additional analyses for Dolfin pegmatite garnets are listed in the appendices in Table 86.

	GARNETS – DOLFIN PEGMATITE											
Wt % Ox	garnets 1-1	garnets 1-2	garnets 2-1	garnets 2-2	garnets 3-1	garnets 3-2	garnets 6-1	garnets 6-2	garnets- 7-1	garnets- 7-2	garnets- 9-1	garnets- 9-2
SiO ₂	36.322	36.400	36.376	36.432	36.403	36.511	36.426	36.344	36.511	36.455	36.454	36.426
TiO ₂	0.011	0.010	0.009	0.011	0.021	0.009	0.012	0.011	0.014	0.013	0.009	0.013
Al ₂ O ₃	20.655	20.345	20.564	20.623	20.433	20.566	20.494	20.505	20.484	20.512	20.488	20.533
FeO	34.544	34.655	34.555	34.332	34.211	34.766	33.112	32.892	32.556	32.600	33.687	33.893
MnO	7.212	7.121	7.412	7.698	7.860	7.121	8.340	8.544	8.556	8.783	7.988	7.566
MgO	0.088	0.091	0.082	0.092	0.062	0.089	0.067	0.056	0.060	0.093	0.100	0.093
CaO	0.766	0.894	0.872	0.911	0.820	0.776	1.540	1.455	1.001	1.113	0.981	0.893
Total	99.598	99.516	99.870	100.099	99.810	99.838	100.002	99.812	99.182	99.569	99.707	99.417
apfu												
Ti	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Fe	2.402	2.401	2.389	2.368	2.365	2.408	2.275	2.268	2.275	2.261	2.332	2.359
Mn	0.504	0.500	0.518	0.537	0.550	0.497	0.582	0.597	0.599	0.614	0.559	0.530
Mg	0.011	0.011	0.010	0.011	0.008	0.011	0.008	0.007	0.007	0.011	0.012	0.011
Ca	0.068	0.079	0.077	0.080	0.073	0.069	0.136	0.129	0.089	0.099	0.087	0.079
Σ X-site	2.986	2.992	2.995	2.997	2.997	2.986	3.002	3.002	2.971	2.987	2.991	2.980
Al	2.010	1.986	2.000	2.002	1.990	1.998	1.990	1.995	2.000	1.998	1.995	2.003
Σ Y-site	2.010	1.986	2.000	2.002	1.990	1.998	1.990	1.995	2.000	1.998	1.995	2.003
Si	2.999	3.014	3.002	3.000	3.008	3.009	3.001	3.000	3.024	3.012	3.011	3.014
Σ Z-site	2.999	3.014	3.002	3.000	3.008	3.009	3.001	3.000	3.024	3.012	3.011	3.014
Component												
Spessartine	17	17	17	18	18	17	20	20	20	21	19	18
Grossular	03	03	03	03	03	02	04	04	03	03	03	03
Almandine	80	80	80	79	79	81	76	76	77	76	78	79

Table 17 Representative EMP analyses of garnet. Apfu calculations based on 12 oxygens.

MONAZITE

Figure 57 BSE image of polished monazite-(Ce) grain with inclusions of apatite and zircon. Associated spectra included.

"Monazite" has been identified by SEM and further analyzed by microprobe for dominant REE content. Quantitative results determine that grains be classified as monazite-(Ce) based on X-site cation dominance. Dolfin monazite-(Ce) samples lack homogeneity both texturally and mineralogically. Numerous inclusions are present within the three grains. Fluorite, zircon, apatite, and "xenotime" are among the more notable inclusions within grains. "Xenotime" inclusions appear to have relatively low quantities of HREEs and are assumed to be xenotime-(Y) based on qualitative SEM data. Having been unable to identify discrete grains of "xenotime" or apatite, it is assumed that "monazite" is the most common phosphate and REE-bearing accessory mineral. Weight percent totals are approximately 95% suggesting that the grains are altered. Table 18 lists representative analyses and Figure 58 shows a BSE image with corresponding spectra. This represents the first reported and quantitatively confirmed occurrence of monazite-(Ce) at the Dolfin pegmatite.

Figure 58 BSE image of monazite-(Ce) grains from the Dolfin pegmatite with corresponding spectra of grain and inclusions.

DOLE	DOLFIN – MONAZITE-(CE)						
Wt % Ox	DP 1	18 DP					
WT /0 UX.	DI -I	uncf-9					
P_2O_5	28.566	18.722					
SiO ₂	0.344	3.411					
TiO ₂	0.000	0.000					
ThO_2	4.984	53.223					
UO_2	0.334	0.455					
Al_2O_3	0.095	0.100					
La_2O_3	12.723	0.012					
Ce_2O_3	27.722	1.653					
Pr_2O_3	2.612	0.000					
Nd_2O_3	14.333	0.032					
Sm_2O_3	1.477	0.012					
Eu_2O_3	0.007	0.000					
Gd_2O_3	0.400	0.000					
Dy_2O_3	0.191	0.000					
Yb_2O_3	0.023	0.000					
Y_2O_3	0.420	0.000					
Sc_2O_3	0.000	0.000					
MgO	0.000	0.000					
CaO	1.823	0.000					
MnO	0.033	0.000					
FeO	0.254	0.000					
PbO	0.322	0.022					
Total	96.663	95.049					
apfu							
Th	0.046	0.619					
U	0.003	0.005					
Al	0.005	0.006					
La	0.190	0.000					
Ce	0.411	0.031					
Pr	0.039	0.000					
Nd	0.207	0.001					
Sm	0.021	0.000					
Y	0.009	0.00					
Ca	0.079	0.098					
ΣΧ	1.031	0.982					
Р	0.993	0.810					
Si	0.014	0.174					
ΣΥ	1.007	.984					

Table 18 Dolfin monazite-(Ce) grain Microprobe analysis.Apfu calculations based on 4 oxygens.

MUSCOVITE

Figure 59 BSE image of muscovite mica grain (1 & 2).

Muscovite mica has been identified in hand samples and by SEM. Muscovite mica has been quantitatively confirmed by microprobe (Figure 185). Fluorine contents are approximately the same for muscovite mica as biotites in Dolfin samples. Homogeneous grains of mica are not present in sufficient quantities to perform DCP analyses in order to determine lithium content; however, stoichiometric lithium is calculated based on the dioctahedral equation $0.3935*F^{1.326}$ (Tischendorf, 1997). Table 19 shows two muscovite mica analyses.

This represents the first reported and quantitatively confirmed occurrence of muscovite mica at the Dolfin pegmatite.

Muscovi	FE – DOLFIN P	EGMATITE	
Wt % Ox.	Mica 3	Mica 8	
5:0	bottom I	bottom I	
S_1O_2	46.633	46.588	
T_1O_2	0.211	0.276	
Al_2O_3	34.215	34.444	
Fe ₂ O ₃	0.000	0.000	
FeO	3.523	3.356	
MnO	0.082	0.101	
MgO	1.655	1.562	
CaO	0.033	0.044	
Li ₂ O (calc.)	0.384	0.442	
Na ₂ O	0.312	0.282	
K ₂ O	9.677	9.700	
Rb ₂ O	0.010	0.013	
Cs ₂ O	bdl	bdl	
F	0.981	1.091	
H ₂ O (calc.)	4.082	4.037	
F=O	-0.413	-0.459	
Total	101.385	101.477	
apfu			
Si	6.149	6.133	
^{IV} Al	1.851	1.867	
Σ T-site	8.000	8.000	
^{VI} Al	3.467	3.478	
Ti	0.021	0.027	
Fet	0.389	0.370	
Mn	0.009	0.011	
Mg	0.325	0.307	
Li (calc.)	0.203	0.234	
Σ Y-site	4.414	4.427	

Table 19 Representative EMP analyses of muscovite mica.Apfu calculations based on 24 anions.Table continues on next page.

K	1.628	1.629
Ca	0.005	0.006
Na	0.080	0.072
Rb	0.001	0.001
Cs	bdl	bdl
Σ X-site	1.714	1.708
F	0.409	0.454
OH (calc.)	3.591	3.546
Σ W-site	4.000	4.000

Pyrite

Figure 60 BSE image of pyrite grains embedded in a larger "monazite" grain.

Pyrite is an accessory mineral found at the Dolfin pegmatite and has been qualitatively confirmed by SEM. The BSE image in Figure 60 is a "monazite" crystal with numerous inclusions of pyrite cubes embedded in the grain. Pyrite has not been previously reported at the Dolfin pegmatite and this represents the first qualitatively confirmed occurrence.

URANINITE

Figure 61 BSE image of zircon grain with uraninite inclusions.

Inclusions of uraninite have been found in a polished zircon mount. There is approximately 1.5 weight percent of lead (assumed to be radiogenic). Weight percent total of uraninite is very near 100%.

This represents the first confirmed reported occurrence of uraninite at the Dolfin pegmatite.

XENOTIME

Figure 62 BSE image of "xenotime" (crosshair 4) and associated EDS spectra.

"Xenotime" has been discovered and quantitatively confirmed. Analysis reveal that yttrium is the dominant cation in the X-site therefore classification is xenotime-(Y). Table 20 lists the analysis.

This represents the first reported and confirmed occurrence of xenotime-(Y) at the Dolfin pegmatite.

XENOTIME-(Y) – DOLFIN			
PEGM	ATITE			
Wt % Ox.	grain1 DP			
P2O5	33.804			
SiO ₂	0.31			
TiO ₂	0.009			
ThO ₂	2.334			
UO_2	0.112			
Al_2O_3	0.154			
Nd ₂ O ₃	0.013			
Sm_2O_3	0.016			
Gd ₂ O ₃	2.888			
Tb ₂ O ₃	1.112			
Dv2O3	7.877			
Ho2O3	0.912			
Er2O3	4 223			
Tm_2O_2	0.696			
Yh2O2	5 877			
	0.166			
V ₂ O ₂	38 893			
ScoOp	0.013			
5C2O3	0.013			
MgO CaO	0.000			
MnO	0.025			
E O	0.010			
FeO PhO	0.032			
PDU	0.000			
Total	99.476			
арји	0.010			
In	0.018			
U	0.001			
Al	0.006			
ING	0.033			
Sm	0.013			
Ga	0.088			
10	0.010			
Dy	0.046			
Ho	0.007			
Er	0.062			
Tm	0.002			
Yb	0.714			
Lu	0.000			
Ŷ	0.000			
Sc	0.001			
Mg	0.000			
Ca	0.001			
Mn	0.000			
Fe	0.033			
Pb	0.013			
ΣΧ	1.002			
P	0.987			
Si	0.011			
ΣΥ	0.998			

ZIRCON

Figure 63 BSE image of zoned zircon (crosshairs 1, 4 & 5) with inclusions of uraninite (crosshairs 2 & 4).

Zircon has been identified from heavy mineral separations by SEM and later confirmed by microprobe. Hafnium content is relatively high, having weight percent totals ranging from approximately 4.1 to 4.6 percent. This indicates a relatively high degree of evolution. Most grains appear to have zonation and/or inclusions. One grain has a rim with elevated levels of thorium and uranium. Inclusions include a niobium-rich species and an inclusion that contains elevated ytterbium content. The grain in Figure 63 has zonation as well as uraninite inclusions. Representative microprobe analyses are presented in Table 21. Note that weight percent totals are very close to or at 100% indicating that these grains have not been altered.

This is the first reported and quantitatively confirmed occurrence of zircon at the Dolfin pegmatite.

ZIRCON – DOLFIN PEGMATITE								
Wt % Oxide	grain 15	DP Goi-1	grain 16 DP Goi-1	grain 17 DP Goi-1	grain 18 DP Goi-1			
SiO ₂	32.222	32.300	32.009	32.100	31.891			
TiO ₂	0.009	0.022	0.034	0.040	0.033			
Al ₂ O ₃	0.223	0.099	0.111	0.078	0.144			
ZrO ₂	63.112	62.945	62.998	63.093	63.022			
HfO ₂	4.600	4.554	4.330	4.112	4.220			
FeOt	0.066	0.050	0.043	0.050	0.067			
MnO	0.041	0.033	0.041	0.044	0.044			
MgO	0.000	0.000	0.000	0.000	0.000			
CaO	0.110	0.024	0.027	0.021	0.022			
UO ₂	0.022	0.010	0.013	0.033	0.021			
ThO ₂	0.011	0.014	0.009	0.012	0.023			
Total	100.416	100.051	99.615	99.583	99.487			
apfu								
Zr	0.946	0.946	0.951	0.952	0.953			
Hf	0.055	0.054	0.052	0.049	0.051			
U	0.000	0.000	0.000	0.000	0.000			
Th	0.000	0.000	0.000	0.000	0.000			
Fe	0.002	0.001	0.001	0.001	0.002			
Mg	0.001	0.001	0.001	0.001	0.001			
Mn	0.000	0.000	0.000	0.000	0.000			
Ca	0.004	0.001	0.001	0.001	0.001			
Σ X-site	1.008	1.003	1.006	1.004	1.008			
Si	0.990	0.995	0.991	0.993	0.989			
Ti	0.000	0.001	0.001	0.001	0.001			
Al	0.008	0.004	0.004	0.003	0.005			
Σ Y-site	0.998	1.000	0.996	0.997	0.995			

Table 21 Representative EMP analyses of zircon. Apfu calculations based on 4 oxygens.

CROCKLEY PEGMATITE

Figure 64 Field image of the Crockley pegmatite.

The Crockley pegmatite is located near the town of Republic in Marquette County just off of Hwy 601. According to Heinrich (1962), the quarry was open in 1902 and reopened for a short time in 1926. In Figure 64, large reddish blocks of feldspar lie higgledy-piggledy around the site. One sample from the south wall was collected for bulk compositional analysis. Minerals identified from previous studies include aeschynite-(Y), albite, allanite-(Ce), bastnäsite-(Y), biotite, bornite, calcite, ferrocolumbite, euxenite-(Y), fluorite, galena, microcline, molybdenite, muscovite, pyrrhotite, quartz, thorite, titianite, and zircon. The following is a list of both qualitative and quantitative analyzed samples: "Bastnäsite", biotite mica, chalcopyrite, columbite, K-feldspar, plagioclase, fluorite, garnet, ilmenite, pyrite, "monazite", muscovite, quartz, rutile, and zircon have qualitatively identified by SEM; Fe-biotite, ferrocolumbite, K- feldspar, plagioclase (albite), garnet, ilmenite, monazite-(Ce), muscovite, rutile, and zircon have been quantitatively confirmed via microprobe analysis.

Figure 65 Field picture of Crockley pegmatite.

BASTNÄSITE

Figure 66 BSE image of "Bastnäsite" (crosshairs 3, 4, 5, 7, & 8), plagioclase (crosshair 2), and an iron aluminosilicates (crosshair 1).

"Bastnäsite" has been qualitatively investigated by SEM and confirmed via microprobe. "Bastnäsite" is a rare earth element fluorocarbonate classified on the basis of the dominance of yttrium, lanthanum, and cerium. Microprobe analyses reveal that cerium is the dominant cation in the A-site, thus classification is bastnäsite-(Ce). Discrete grains of bastnäsite-(Ce) are not found. Table 22 lists the representative EMP analyses.

BASTNÄSITE-(CE) – CROCKLEY					
	PEGMATITE	Γ			
Wt.% oxide	CP-Grain 8-1	CP-grain 8-2			
P ₂ O ₅	0.232	0.093			
SiO ₂	0.092	0.113			
UO ₂	0.011	0.000			
ThO ₂	0.332	0.210			
Y ₂ O ₃	0.830	0.733			
Al ₂ O ₃	0.000	0.088			
La ₂ O ₃	14.221	15.443			
Ce ₂ O ₃	29.234	29.454			
Pr ₂ O ₃	2.443	2.600			
Nd ₂ O ₃	15.034	14.398			
Sc ₂ O ₃	0.032	0.033			
Sm_2O_3	0.890	1.082			
Eu_2O_3	0.000	0.000			
Gd ₂ O ₃	0.422	0.465			
Dy ₂ O ₃	0.198	0.211			
Yb ₂ O ₃	0.043	0.034			
FeO	0.276	0.188			
MnO	0.038	0.055			
CaO	8.655	2.334			
PbO	0.000	0.000			
F	7.650	7.544			
CO ₂	20.082	20.082			
H ₂ O	2.504	8.015			
Sub-Total	103.219	103.175			
Ox. cor. for F	- 3.219	- 3.175			
Total	100.000	100.000			

Table 22 Representative EMP analyses of bastnäsite-(Ce). *Apfu* calculations based on 4 anions. Table continues on next page.

apfu		
Р	0.007	0.003
Si	0.003	0.004
U	0.000	0.000
Th	0.003	0.002
Y	0.016	0.014
Al	0.000	0.004
Fe	0.000	0.000
La	0.191	0.208
Ce	0.390	0.393
Pr	0.032	0.035
Nd	0.196	0.188
Sc	0.001	0.001
Sm	0.011	0.014
Eu	0.000	0.000
Gd	0.005	0.006
Dy	0.002	0.002
Yb	0.000	0.000
Fe	0.008	0.006
Mn	0.001	0.002
Ca	0.338	0.091
Pb	0.000	0.000
F	0.882	0.870
CO ₂	1.000	1.000
H ₂ O	0.609	1.949
Σ REE	0.830	0.846
REE + Ca	1.168	0.938
Σ A-Site	1.197	0.965

BIOTITE

Figure 67 BSE image of biotite mica grain (crosshairs 1 & 2) and inclusions (crosshairs 3-7) along with EDS spectra.

Biotite mica has been identified in heavy mineral separations, qualitatively analyzed by SEM, and confirmed by microprobe as Fe-biotite (Figure 186). Lack of homogeneity has prevented accurate DCP and titration analyses to determine lithium and trivalent iron,

respectively. However, lithium is calculated based on the equation provided by Tischendorf (1997): (2.7/(0.35 + MgO)) - 0.13 based on SiO₂ and MgO values. An alternate equation that is based on fluorine values yields slightly less lithium weight percent (>0.1 difference). Biotite is relatively more abundant at the Crockley than muscovite mica. Table 23 lists the representative analyses. Rubidium is at or below detection limits suggesting that biotites from the Crockley are poorly evolved.

BIOTITE – CROCKLEY PEGMATITE								
Wt % Ox	mica 1b	Mica						
	grain1-3	grain5-1	grain5-2	grain5-3	grain5-4	grain2-1		
SiO ₂	32.655	32.877	32.766	32.655	32.560	32.523		
TiO ₂	2.331	2.433	2.111	2.089	1.981	1.770		
Al ₂ O ₃	16.800	16.622	16.700	16.877	17.044	17.091		
Fe ₂ O ₃	0.000	0.000	0.000	0.000	0.000	0.000		
FeO	26.344	26.455	26.554	26.456	26.234	25.985		
MnO	0.433	0.344	0.299	0.213	0.191	0.172		
MgO	6.116	6.005	5.956	6.099	5.855	5.776		
CaO	0.067	0.099	0.087	0.077	0.100	0.100		
Li ₂ O (<i>calc</i> .)	0.288	0.295	0.298	0.289	0.305	0.311		
Na ₂ O	0.099	0.121	0.088	0.067	0.054	0.112		
K ₂ O	9.544	9.223	9.655	9.655	9.122	9.775		
Rb ₂ O	0.000	0.009	0.011	0.009	0.000	0.011		
Cs ₂ O	bdl	bdl	bdl	bdl	bdl	bdl		
F	0.899	0.988	0.889	0.834	0.792	0.933		
H ₂ O	3.304	3.262	3.299	3.327	3.322	3.251		
F=O	- 0.379	- 0.416	- 0.374	- 0.351	- 0.333	- 0.393		
Total	98.501	98.317	98.339	98.296	97.227	97.417		
apfu								
Si	5.249	5.284	5.280	5.260	5.280	5.281		
^{IV} Al	2.751	2.716	2.720	2.740	2.720	2.719		
ΣT-site	8.000	8.000	8.000	8.000	8.000	8.000		
^{VI} Al	0.432	0.433	0.452	0.464	0.538	0.552		
Ti	0.282	0.294	0.256	0.253	0.242	0.216		
Fet	3.541	3.556	3.579	3.564	3.558	3.529		
Mn	0.059	0.047	0.041	0.029	0.026	0.024		
Mg	1.465	1.439	1.431	1.465	1.415	1.398		
Li (calc.)	0.186	0.191	0.193	0.187	0.199	0.203		
Σ Y-site	5.965	5.960	5.952	5.962	5.978	5.922		

Table 23 Representative EMP analyses of biotite mica. Apfu calculations based on 24 anions. Table continues on next page.

K	1.957	1.891	1.985	1.984	1.887	2.025
Ca	0.012	0.017	0.015	0.013	0.017	0.017
Na	0.031	0.038	0.028	0.021	0.017	0.035
Rb	0.000	0.001	0.001	0.001	0.000	0.001
Cs	bdl	bdl	bdl	bdl	bdl	bdl
ΣX-site	2.000	1.947	2.029	2.019	1.921	2.078
F	0.457	0.502	0.453	0.425	0.406	0.479
OH*	3.543	3.498	3.547	3.575	3.594	3.521
Σ W-site	4.000	4.000	4.000	4.000	4.000	4.000

CHALCOPYRITE

Figure 68 BSE image and corresponding EDS spectrum of chalcopyrite. Zircon (crosshair 1), quartz (crosshair 2), chalcopyrite (crosshair 3), & mica (crosshair 4).

Two grains of chalcopyrite have been qualitatively identified by SEM. Discrete grains have not been found. This represents the first reported occurrence of chalcopyrite having been identified at the Crockley pegmatite.

COLUMBITE

Figure 69 BSE image and associated spectra of biotite grain with columbite inclusion. Top left image: K-feldspar (crosshair 1); biotite mica (crosshair 2); quartz (crosshair 3); lead (crosshair 4); rutile (crosshair 6); crosshair 5 region is enlarged BSE image.

Columbite has been only found as inclusions in mica. No discrete grains have been identified. Based on stoichiometry from microprobe analyses, these inclusions should be classified as ferrocolumbite due to iron and niobium dominance. Other than pyrochlore no other tantalum or niobium mineralization has been found in Crockley pegmatite samples. Table 24 shows the analyses gleaned from EMP results.

Ferrocolumbite – Crockley						
Wt% Ox	Mica 1b grain 2-6	Mica 1b grain 2-7	Mica 1b grain 2-8			
Nb ₂ O ₅	46.220	46.312	45.565			
Ta ₂ O ₅	29.622	29.511	30.320			
SiO ₂	0.044	0.037	0.027			
TiO ₂	4.002	3.933	4.009			
Al ₂ O ₃	0.023	0.031	0.023			
FeO	17.740	17.544	17.655			
MnO	1.980	2.112	2.012			
MgO	bdl	bdl	bdl			
Total	99.631	99.480	99.611			
apfu						
Fe	0.937	0.928	0.935			
Mn	0.106	0.113	0.108			
Si	0.003	0.002	0.002			
Al	0.002	0.002	0.002			
Mg	bdl	bdl	bdl			
ΣX-site	1.048	1.045	1.047			
Nb	1.319	1.324	1.305			
Та	0.509	0.507	0.522			
Ti	0.190	0.187	0.191			
Σ Y-site	2.018	2.018	2.018			

Table 24 Representative EMP analyses of ferrocolumbite. Apfu calculations based on 6 oxygens.

Feldspar

K-Feldspar

Figure 70 BSE image of K-feldspar. Lighter region – K-feldspar (crosshair 1), darker region – plagioclase feldspar (crosshair 2), and fluorite inclusions (crosshair 3).

K-feldspar has been confirmed by microprobe. Exsolution of sodium-rich plagioclase is present, although these lamellae are irregular and rarely parallel. Strontium and rubidium are both at or within detection limits for some of the samples analyzed. Barium and cesium are below detection limits. Therefore, K-feldspar grains analyzed from the Crockley are thought to be poorly evolved. XRD analysis confirms that K-feldspar is maximum microcline (Figure 173) indicating a high degree of structural ordering (Wright & Stewart, 1968). Table 25 lists the representative microprobe analyses.

K-FELDSPAR - CROCKLEY PEGMATITE								
	CP 1b	CP 1b	CP 1b	CP 1b	CP 5	CP 5	CP 5	CP 5
Wt% ox	grain 1-1	grain 1-3	grain 3-2	grain 3-3	grain 2-1	grain 2-3	grain 3-1	grain 3-2
P_2O_5	bdl							
SiO ₂	64.894	68.822	64.801	68.799	68.811	64.783	64.755	64.788
TiO ₂	0.016	0.000	0.000	0.000	0.000	0.015	0.008	0.013
Al ₂ O ₃	18.222	19.734	18.344	19.811	19.487	18.422	18.367	18.399
FeOt	0.014	0.000	0.011	0.000	0.000	0.015	0.009	0.016
CaO	0.011	0.871	0.000	0.912	0.554	0.000	0.000	0.000
Na ₂ O	0.712	10.112	0.581	10.012	10.433	0.611	0.565	0.610
K ₂ O	15.895	0.134	16.009	0.211	0.211	16.278	16.300	16.166
Rb2O	0.009	0.000	0.015	0.000	0.000	0.009	0.012	0.013
Total	99.773	99.682	99.761	99.745	99.509	100.133	100.016	100.005
apfu								
K	0.938	0.007	0.945	0.012	0.012	0.960	0.962	0.953
Na	0.064	0.855	0.052	0.847	0.885	0.055	0.051	0.055
Ca	0.001	0.041	0.000	0.043	0.026	0.000	0.000	0.000
Rb	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
ΣX-site	1.002	0.903	0.997	0.902	0.923	1.015	1.013	1.008
Al	0.994	1.015	1.001	1.018	1.005	1.003	1.001	1.003
Fe	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
ΣY-site	0.994	1.015	1.001	1.018	1.005	1.003	1.001	1.003
Si	3.003	3.003	3.000	3.000	3.009	2.993	2.995	2.995
Ti	0.001	0.000	0.000	0.000	0.000	0.001	0.000	0.000
Р	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
ΣZ-site	3.003	3.003	3.000	3.000	3.009	2.994	2.995	2.995

Table 25 Representative K-feldspar analyses. Apfu calculations based on 8 oxygens.

PLAGIOCLASE FELDSPAR

Figure 71 BSE image of plagioclase feldspar (crosshair 1) and K-feldspar exsolution (crosshair 2).

A few grains of plagioclase feldspar grains have been identified by SEM and confirmed by microprobe. Barium and cesium are below detection limits; a detectable amount of rubidium and strontium is present. These grains are considered to be poorly evolved. Table 26 shows a representative list of plagioclase grains with associated K-feldspar analyses.

PLAGIOCLASE FELDSPAR - CROCKLEY PEGMATITE								
	CP 1b	CP 1b	CP 5	CP 5	CP 6	CP 6	CP 6	CP 6
Wt% ox	grain	grain	grain	grain	grain	grain	grain	grain
	2-2	2-3	1-1	1-2	1-1	1-2	2-1	2-2
P_2O_5	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl
SiO ₂	64.855	68.677	68.833	64.799	64.811	68.855	68.899	64.794
TiO ₂	0.009	0.000	0.000	0.012	0.011	0.000	0.000	0.008
Al ₂ O ₃	18.310	19.865	19.589	18.376	18.411	19.404	19.111	18.423
FeOt	0.008	0.000	0.000	0.014	0.011	0.000	0.000	0.011
CaO	0.000	1.112	0.768	0.000	0.000	0.452	0.223	0.000
Na ₂ O	0.696	10.402	10.311	0.632	0.595	10.634	10.912	0.600
K ₂ O	15.855	0.092	0.166	16.011	16.122	0.171	0.132	16.181
Rb2O	0.016	0.000	0.000	0.009	0.012	0.000	0.000	0.011
Total	99.749	100.170	99.678	99.853	99.973	99.525	99.291	100.028
apfu								
K	0.936	0.005	0.009	0.945	0.951	0.010	0.007	0.954
Na	0.062	0.878	0.873	0.057	0.053	0.902	0.928	0.054
Ca	0.000	0.052	0.036	0.000	0.000	0.021	0.010	0.000
Rb	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
ΣX-site	0.999	0.935	0.918	1.002	1.004	0.932	0.945	1.008
Al	0.999	1.019	1.008	1.002	1.003	1.000	0.987	1.004
Fe	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
ΣY-site	0.999	1.019	1.008	1.002	1.003	1.000	0.987	1.004
Si	3.001	2.989	3.005	2.997	2.996	3.011	3.020	2.995
Ti	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Р	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Σ Z-site	3.001	2.989	3.005	2.998	2.996	3.011	3.020	2.995

Table 26 Representative EMP analyses of plagioclase feldspar. Apfu calculations based on 8 oxygens.
Fluorite

Figure 72 BSE image of fluorite (crosshairs 1 & 2) with corresponding spectrum.

Fluorite from the Crockley was accidently analyzed by microprobe. A few grains fluoresced under UV light and were assumed to be apatite. These grains gave off a yellowishorange fluorescence and thus these "apatites" were mounted along with others. Once polished grains were investigated by SEM before microprobe analysis, it was discovered that these were, in fact, fluorite grains.

A detectable amount of yttrium is present in both SEM and microprobe analyses, although quantities are just within detectable limits for microprobe analyses.

GARNET

Figure 73 BSE image of garnet grain. Garnet (crosshair 1), K-feldspar (crosshair 2), rutile (crosshair 3), and quartz (crosshair 4).

A single grain of garnet has been identified by SEM and confirmed by microprobe. This is the first reported instance of garnet being found at the Crockley pegmatite. Weight percent total is approximately 98%, suggesting that there may have been possible alteration of the grain. The garnet grain is primarily almanditic with minor amounts of grossular, spessartine, and pyrope components. Table 27 lists the analysis. To convey the scarcity of garnet at the Crockley pegmatite, it is important to note that out of approximately 100 grains investigated by SEM and EMP, as well as a great amount of heavy mineral separations investigated by binocular microscope, that this is the only grain confirmed as garnet.

GARNETS – CROCKLEY			
PEGMAIIIE			
Wt % Ox	1b grain 2-1		
SiO ₂	36.658		
TiO ₂	0.011		
Al_2O_3	20.922		
FeO	38.544		
MnO	0.877		
MgO	0.898		
CaO	0.998		
Total	98.908		
apfu			
Ti	0.001		
Fe	2.655		
Mn	0.061		
Mg	0.110		
Ca	0.088		
ΣX-site	2.915		
Al	2.022		
Σ Y-site	2.022		
Si	3.006		
ΣZ-site	3.006		
Component			
Pyrope	04		
Spessartine	02		
Grossular	03		
Almandine	91		

Table 27 Representative EMP analysis of garn	et.
Apfu calculations based on 12 oxygens.	
Components are normalized to 100.	

ILMENITE

Figure 74 BSE image of ilmenite inclusions with corresponding spectrum. Refer to Figure 69 for additional EDS spectra of BSE image (left). Close-up BSE image: Biotite (crosshair 5) & possible pyrochlore (crosshair 2).

Ilmenite has only ever been identified as inclusions in biotite mica grains. No discrete grains have been found, either by visual inspection of heavy mineral separations or by SEM. Ilmenite is the iron dominant member of the mineral series that exists between pyrophanite (Mn-dominant) and geikielite (Mg-dominant). Manganese is below two weight percent in analyses and magnesium is below detection limits. There is less than a weight percent of niobium present and tantalum is below detection limits. This is first reported and quantitatively confirmed instance of ilmenite at the Crockley pegmatite. Table 28 lists the analyses.

Ilmenite – Crockley Pegmatite			
Wt% Oxide	1b grain 1-6	1b grain 1-7	
TiO ₂	54.660	56.220	
SiO ₂	0.065	0.045	
FeO	41.766	40.554	
MnO	1.650	1.455	
MgO	bdl	bdl	
CaO	0.055	0.037	
Nb ₂ O ₅	0.114	0.165	
Ta ₂ O ₅	bdl	bdl	
Total	98.420	98.568	
apfu			
FeO	1.765	1.697	
MnO	0.055	0.048	
MgO	bdl	Bdl	
CaO	0.003	0.002	
Nb	0.003	0.004	
Та	bdl	bdl	
Σ X-site	1.826	1.751	
Ti	2.077	2.116	
Al	0.006	0.005	
Si	0.003	0.002	
Σ Y-site	2.086	2.123	

Table 28 Representative EMP analyses of ilmenite. Apfu calculations based on 6 oxygens.

Pyrite

Figure 75 BSE image of pyrite grain.

Discrete pyrite grains have been identified in heavy mineral separations by binocular microscope and qualitatively confirmed by SEM. This is the first reported and qualitatively confirmed instance of pyrite found at the Crockley pegmatite.

PYROCHLORE SUPERGROUP

Figure 76 BSE image of pyrochlore supergroup grain.

A member of the pyrochlore supergroup has been identified qualitatively by SEM and confirmed by microprobe. Due to sodium and oxygen dominance, the mineral should be classified as oxynatropyrochlore (Atencio *et al.*, 2010). The above BSE image shows that grains can be as large as a millimeter in size. This grain appears to be only a pyrochlore supergroup member, although most grains were associated with zircon.

OXYNATROPYROCHLORE –		
CROCKLEY PEGMATITE		
Wt % Ox.	CP-M-1b	
Nb ₂ O ₅	49.988	
Ta_2O_5	15.988	
SiO ₂	0.032	
TiO ₂	6.878	
UO_2	0.223	
Al_2O_3	0.033	
CaO	9.450	
MnO	0.045	
FeO	8.998	
PbO	1.112	
Na ₂ O	5.988	
H ₂ O	1.800	
F	0.998	
F=O	- 0.499	
Total	101.032	
apfu		
U	0.003	
Al	0.003	
Ca	0.668	
Mn	0.003	
Fe	0.496	
Pb	0.020	
Na	0.766	
Σ A-site	1.959	
Nb	1.490	
Та	0.287	
Si	0.002	
Ti	0.341	
Σ B-site	2.120	
H (calc.)	0.792	
F	0.208	
Σ C-site	1.000	

Table 29 Representative EMP analysis of oxynatropyrochlore.Apfu calculations based on 7 anions.

"MONAZITE"

Figure 77 BSE image of polished "monazite" grain. "Monazite" (crosshairs 1 - 4) and fluorite (crosshair 5).

"Monazite" has been qualitatively analyzed and quantitatively confirmed from heavy mineral samples. This is the first reported and quantitatively analyzed instance of "monazite" at the Crockley pegmatite. Results show that "monazite" from the Crockley should be classified as monazite-(Ce) due to cerium dominance in the X-site cation site. It is important to note that the second most abundant cation in the X-site is thorium followed by neodymium. The grain is also relatively enriched with calcium due to the commonality of thorium (⁺4) and calcium (⁺2) forming a coupled substitution to satisfy the charge balance in the X-site. The analyzed grain has fluorite inclusions. Weight percent total is almost 98% suggesting possible alteration of the "monazite" grain. Table 30 lists the analysis.

MONAZITE-(CE) –		
CROCKLEY		
Wt % Ox.	16 CP-1	
P_2O_5	27.344	
SiO ₂	0.211	
ThO_2	23.564	
UO_2	0.455	
Al_2O_3	0.077	
La_2O_3	6.091	
Ce_2O_3	17.887	
Pr_2O_3	1.933	
Nd_2O_3	11.655	
Sm_2O_3	2.112	
Gd_2O_3	0.834	
Dy ₂ O ₃	0.278	
Yb ₂ O ₃	0.055	
Y_2O_3	0.834	
MgO	0.000	
CaO	3.233	
MnO	0.044	
FeO	0.422	
PbO	0.877	
Total	97.896	
apfu		
Th	0.223	
U	0.004	
Al	0.004	
La	0.093	
Ce	0.272	
Pr	0.029	
Nd	0.173	
Sm	0.030	
Y	0.018	
Mn	0.000	
Fe	0.015	
Ca	0.143	
ΣΧ	1.033	
Р	0.962	
Si	0.009	
ΣΥ	0.971	

Table 30	Representative EMP analysis of monazite-(Ce).
	Apfu calculations based on 4 oxygens.

MUSCOVITE

Figure 78 BSE image of muscovite mica (crosshairs 1 & 2).

Muscovite mica has been confirmed by microprobe after qualitatively analyzed by SEM (Figure 186). Lack of homogeneous grains has made further analyses of grains by titration and DCP impossible due to the expected lack of reliable results. Lithium is stoichiometrically accounted for by using equations provided by Tischendorf (1997). Since muscovite is a dioctahedral mica, the recommended equation: 0.3935 * wt% fluorine^{1.326} has been used. Table 31 lists the analyses. Rubidium is just within detection limits and cesium is below detectable limits suggesting poor evolution.

MUSCOVITE – CROCKLEY PEGMATITE			
Wt % Ox.	mica 1b grain 1-3	mica 1b grain 5-1	mica 1b grain 5-2
SiO ₂	46.334	46.766	46.612
TiO ₂	0.093	0.312	0.292
Al ₂ O ₃	33.766	34.676	34.588
Fe ₂ O ₃	0.000	0.000	0.000
FeO	3.870	2.433	2.377
MnO	0.024	0.132	0.127
MgO	0.143	1.778	1.723
CaO	0.015	0.033	0.028
Li ₂ O (<i>calc</i> .)	0.526	0.446	0.447
Na ₂ O	0.679	0.655	0.599
K ₂ O	10.044	9.677	9.553
Rb ₂ O	0.021	0.015	0.012
Cs ₂ O	bdl	bdl	bdl
F	1.245	1.099	1.100
H ₂ O	3.883	4.054	4.033
F=O	0.524	0.463	0.463
Total	100.119	101.613	101.027
apfu			
Si	6.211	6.130	6.137
^{IV} Al	1.789	1.870	1.863
Σ T-site	8.000	8.000	8.000
^{VI} Al	3.546	3.487	3.505
Ti	0.009	0.031	0.029
Fet	0.434	0.267	0.262
Mn	0.003	0.015	0.014
Mg	0.029	0.348	0.338
Li (calc.)	0.284	0.235	0.237
Σ Y-site	4.305	4.383	4.385

Table 31 Representative EMP analyses of muscovite mica. Apfu calculations based on 24 anions.Table continues on next page.

K	1.718	1.618	1.605
Ca	0.002	0.005	0.004
Na	0.176	0.166	0.153
Rb	0.002	0.001	0.001
Cs	bdl	bdl	bdl
Σ X-site	1.898	1.790	1.763
F	0.528	0.456	0.458
OH*	3.472	3.544	3.542
Σ W-site	4.000	4.000	4.000

RUTILE

Figure 79 BSE image of rutile inclusion (crosshair 3) and associated EDS spectrum. Garnet (crosshair 1), K-feldspar (crosshair 2), & quartz (crosshair 4).

Rutile has been identified via SEM and confirmed via microprobe. There are inclusions of rutile in biotite mica grains and these are less than 100 microns in length. No discrete grains of rutile have been identified. This is first instance of rutile being quantitatively confirmed in samples from the Crockley pegmatite. Of the two analyses, one has over two, and not more than three, weight percent of both niobium and iron. Niobium and/or tantalum, along with divalent cations such as iron, calcium, and manganese can form coupled substitutions for titanium. Tantalum is present, but it is less than one half of a weight percent. Table 32 shows the two analyses.

RUTILE – CROCKLEY PEGMATITE			
Wt% Oxide	1b grain 1-8	1b grain 2-5	
TiO ₂	99.004	95.643	
Al ₂ O3	0.021	0.211	
Nb ₂ O ₅	0.000	2.223	
Ta_2O_5	0.000	0.221	
FeO	0.671	2.002	
MnO	0.021	0.066	
MgO	0.009	0.022	
CaO	0.000	0.043	
SiO ₂	0.033	0.022	
Total	99.759	100.453	
apfu			
Ti	0.995	0.967	
Al	0.000	0.003	
Nb	0.000	0.014	
Та	0.000	0.001	
Fe	0.008	0.023	
Mn	0.000	0.001	
Mg	0.000	0.000	
Ca	0.000	0.001	
Si	0.000	0.000	
Σ X-site	1.004	1.009	

Table 32 Representative EMP analyses of rutile. *Apfu* calculations are based on 2 oxygens.

ZIRCON

Figure 80 BSE image of zircon (crosshair 2) and associated EDS spectra of a niobium species (crosshairs 1 & 3), iron oxide (crosshairs 5 & 7), thorium-rich zircon (crosshair 4), and pyrite (crosshair 6).

Abundant zircon has been identified in heavy mineral separations by binocular microscope from the Crockley pegmatite. Zircon has been previously identified from this location. Hafnium contents never exceed two weight percent, yet are above one weight percent. Zircons from the Crockley are considered to be not very evolved. Some amount of thorium and uranium is found in zircons investigated by microprobe with one sample exceeding thirty-four weight percent. Table 33 shows a representative list of zircon analyses. Note grain 10, which has elevated thorium levels. Two grains have weight percent totals around 98% suggesting possible alteration.

ZIRCON – CROCKLEY PEGMATITE						
Wt % Oxide	grain 1	3-CP-1	grain 1	4-CP-1	grain 1	0-CP-1
SiO ₂	32.22	32.191	32.012	32.072	31.77	30.123
TiO ₂	0.013	0.020	0.013	0.009	0.011	0.112
Al ₂ O ₃	0.021	0.024	0.030	0.037	0.052	0.097
ZrO ₂	64.220	64.651	64.874	64.894	61.89	29.120
HfO ₂	1.455	1.500	1.611	1.561	1.600	0.676
FeOt	0.166	0.200	0.312	0.262	0.877	1.212
MnO	0.009	0.012	0.009	0.000	0.012	0.115
CaO	0.211	0.181	0.200	0.211	0.377	0.445
UO ₂	0.011	0.013	0.010	0.009	0.143	0.988
ThO ₂	0.031	0.028	0.017	0.020	0.878	34.33
Total	98.357	98.820	99.088	99.075	97.610	97.218
apfu						
Zr	0.974	0.977	0.980	0.980	0.952	0.530
Hf	0.018	0.018	0.019	0.019	0.020	0.010
U	0.000	0.000	0.000	0.000	0.001	0.008
Th	0.000	0.000	0.000	0.000	0.006	0.292
Fe	0.004	0.005	0.008	0.007	0.023	0.038
Mg	0.000	0.000	0.000	0.000	0.000	0.000
Mn	0.000	0.000	0.000	0.000	0.000	0.004
Ca	0.007	0.006	0.007	0.007	0.013	0.018
Σ X-site	1.003	1.006	1.015	1.013	1.015	0.900
Si	1.002	0.998	0.992	0.993	1.002	1.124
Ti	0.000	0.000	0.000	0.000	0.000	0.003
Al	0.001	0.001	0.001	0.001	0.002	0.004
Σ Y-site	1.003	0.999	0.993	0.994	1.004	1.131

Table 33 Representative EMP analyses of zircon. Apfu calculations based on 4 oxygens.

REPUBLIC MINE PEGMATITE

Figure 81 Representative pegmatite samples from the Republic Mine pegmatite.

Republic Mine samples have been provided by Dan Fountain. The Republic Mine pegmatite is the only pegmatite not personally visited. As can be seen in the above pictures, samples contain quartz, pink to orange hued feldspars, and mica. Very little to no literature exists for the Republic Mine pegmatite, but the Republic Mine itself is well known as it is the only open-pit mine in Michigan accessible to the public for free viewing. As such, the following minerals are the first qualitatively and quantitatively confirmed minerals identified from the Republic Mine pegmatite: Apatite, biotite, feldspar, garnet, ilmenite, "monazite", muscovite, rutile, thalénite, tourmaline, and zircon have been qualitatively analyzed by SEM; Fe-biotite, K-feldspar and plagioclase feldspar, garnet, ilmenite, Ca-rich monazite, monazite-(Ce), muscovite mica, rutile, thalénite, fluorschorl, and zircon have all been quantitatively confirmed via microprobe analyses.

APATITE

Figure 82 BSE image of apatite grain (1 & 2).

Only one grain of apatite has been identified from heavy mineral separations and qualitatively confirmed by SEM. Due to the apparent rarity of this mineral at the Republic Mine pegmatite, it is assumed that apatite is not an abundant accessory phosphate mineral. Unfortunately, the grain did not survive sample preparation. Efforts to identify additional grains for analysis have been unsuccessful.

BIOTITE

Figure 83 BSE image of polished muscovite grain (crosshairs 1 & 3) with biotite inclusions (crosshair 2) & rutile/ilmenite rim (crosshair 4).

Biotite mica is very rare in samples that have been collected from the Republic Mine pegmatite. No discrete grains have been identified. Only small inclusions of biotite mica are found in muscovite mica grains. Quantitative confirmation by microprobe dictates that biotite mica should be classified as Fe-biotite (Figure 186) (Tischendorf, 1997). Titration and DCP have not been performed due to lack of sufficient material with which to conduct these analyses on biotites. Lithium is calculated for Fe-biotite due to its presence in muscovite micas and has been accounted for stoichiometrically via the equation: 155 * wt% of MgO^{-3.1} (Tischendorf, 1997). Rubidium is within detectable limits, but only just, suggesting that Fe-biotites are poorly evolved. It is important to note that the Republic Mine pegmatite biotite micas have high magnesium weight percent totals, suggestive of a more primitive character. Table 40 lists the representative analyses.

BIOTITE – REPUBLIC MINE PEGMATITE			
Wt % Ox.	RM-rr	RM-rr	
~~~~	grain 2-2	grain 2-3	
SiO ₂	34.322	34.412	
TiO ₂	2.897	3.002	
Al ₂ O ₃	17.009	16.985	
Fe ₂ O ₃	0.000	0.000	
FeO	23.443	23.488	
MnO	0.254	0.237	
MgO	7.978	8.004	
CaO	0.276	0.241	
Li ₂ O (calc.)	0.248	0.246	
Na ₂ O	0.032	0.035	
K ₂ O	9.121	8.993	
Rb ₂ O	0.023	0.025	
Cs ₂ O	bdl	bdl	
F	1.312	1.272	
H ₂ O	3.233	3.259	
F=O	- 0.552	- 0.536	
Total	99.596	99.662	
apfu			
Si	5.339	5.344	
^{IV} Al	2.661	2.656	
ΣT-site	8.000	8.000	
^{VI} Al	0.457	0.452	
Ti	0.339	0.351	
Fet	3.050	3.050	
Mn	0.033	0.031	
Mg	1.850	1.853	
Li (calc.)	0.155	0.153	
Σ Y-site	5.884	5.890	

Table 34 Representative EMP biotite analyses. Apfu calculations based on 24 anions.Table continues on next page.

K	1.810	1.782
Ca	0.046	0.040
Na	0.010	0.011
Rb	0.002	0.002
Cs	bdl	bdl
ΣX-site	1.868	1.835
F	0.645	0.625
OH*	3.355	3.375
$\Sigma$ W-site	4.000	4.000

#### Feldspars

#### K-FELDSPAR



Figure 84 BSE image of polished K-feldspar grain (crosshairs 1 & 4). Darker areas of the grain are plagioclase feldspar (crosshairs 2 & 3).

K-feldspar has been identified in heavy mineral separations, qualitatively analyzed by SEM, and confirmed by microprobe. Feldspar grains are pink to dark red in hue. K-feldspar grains are almost entirely free of plagioclase. Blebs of a relatively sodium rich plagioclase are present, but these blebs are irregular both in shape and orientation. XRD analysis of K-feldspar reveal that a high degree of structural ordering (near maximum) exists suggesting that these grains should be classified as microcline (Figure 173) (Wright & Stewart, 1968). Rubidium, cesium, and barium are all below detection limits suggesting that K-feldspar from the Republic Mine are quite poorly evolved. Table 35 shows a representative list of analyses.

K-FELDSPAR – REPUBLIC MINE PEGMATITE								
	RM-rr	RM-rr	RM-rr	RM-rr	RM-rr	RM-rr	RM-rr	RM-rr
Wt% ox	Grain	Grain	Grain	Grain	Grain	Grain	Grain	Grain
	1-1	1-2	2-1	2-2	3-1	3-3	4-1	4-2
$P_2O_5$	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl
SiO ₂	68.777	64.764	64.699	68.822	64.711	68.566	64.699	64.655
TiO ₂	0.000	0.013	0.009	0.000	0.021	0.000	0.009	0.013
Al ₂ O ₃	19.499	18.399	18.355	19.373	18.423	19.920	18.355	18.377
FeOt	0.000	0.009	0.008	0.000	0.009	0.000	0.008	0.013
CaO	0.231	0.000	0.000	0.211	0.000	1.366	0.000	0.000
Na ₂ O	10.892	0.411	0.383	11.009	0.404	10.223	0.388	0.420
K ₂ O	0.155	15.985	16.114	0.211	15.995	0.083	16.011	15.955
Rb ₂ O	0.000	0.011	0.012	0.000	0.014	0.000	0.011	0.000
Total	99.554	99.592	99.580	99.626	99.577	100.158	99.481	99.433
apfu								
K	0.009	0.945	0.953	0.012	0.946	0.005	0.948	0.944
Na	0.924	0.037	0.034	0.934	0.036	0.863	0.035	0.038
Ca	0.011	0.000	0.000	0.010	0.000	0.064	0.000	0.000
Rb	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
ΣX-site	0.944	0.982	0.987	0.956	0.982	0.932	0.983	0.982
Al	1.005	1.005	1.003	0.999	1.006	1.022	1.004	1.005
Fe	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
ΣY-site	1.005	1.005	1.003	0.999	1.006	1.022	1.004	1.005
Si	3.008	3.000	3.000	3.010	2.999	2.985	3.001	3.000
Ti	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000
Р	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
ΣZ-site	3.008	3.001	3.000	3.010	2.999	2.985	3.001	3.000

Table 35 Representative EMP analyses of K-feldspar. Apfu calculations based on 8 oxygens.

## PLAGIOCLASE FELDSPAR



Figure 85 BSE image of polished plagioclase grain (crosshairs 1 & 3). Lighter areas of the grain are K-feldspar (crosshairs 2 & 4).

Plagioclase feldspar appears to be as equally abundant as K-feldspar. Blebs of K-feldspar are present in samples analyzed by SEM. These blebs are irregular in size and shape. As with K-feldspar from the Republic Mine, rubidium, cesium, and barium are below detection limits suggesting poor evolution. Table 36 lists the microprobe analyses.

PLAGIOCLASE FELDSPAR – REPUBLIC MINE PEGMATITE										
Wt% ox	RM-rr grain 5-1	RM-rr grain 5-2	RM-rr grain 6-1	RM-rr grain 6-2	RM-rr grain 7-1	RM-rr grain 7-2	RM-rr grain 8-1	RM-rr grain 8-2	RM-rr grain 9-1	RM-rr grain 9-2
P ₂ O ₅	bdl									
SiO ₂	64.700	68.811	64.755	68.844	68.799	64.788	68.733	64.699	68.555	64.722
TiO ₂	0.008	0.000	0.011	0.000	0.000	0.009	0.000	0.009	0.000	0.012
Al ₂ O ₃	18.433	19.393	18.455	19.355	19.377	18.500	19.992	18.511	19.988	18.489
FeOt	0.027	0.000	0.011	0.000	0.000	0.011	0.000	0.009	0.000	0.012
CaO	0.000	0.178	0.000	0.156	0.201	0.000	1.411	0.000	1.411	0.000
Na ₂ O	0.334	10.911	0.355	11.004	10.811	0.393	10.091	0.355	10.071	0.324
K ₂ O	15.975	0.211	15.885	0.195	0.155	15.755	0.071	15.710	0.089	15.686
Rb ₂ O	0.000	0.000	0.012	0.000	0.000	0.013	0.000	0.012	0.000	0.010
Total	99.477	99.504	99.484	99.554	99.343	99.469	100.298	99.305	100.114	99.255
apfu										
K	0.945	0.012	0.939	0.011	0.009	0.931	0.004	0.929	0.005	0.928
Na	0.030	0.926	0.032	0.933	0.918	0.035	0.850	0.032	0.850	0.029
Ca	0.000	0.008	0.000	0.007	0.009	0.000	0.066	0.000	0.066	0.000
Rb	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Σ X-site	0.975	0.946	0.971	0.952	0.936	0.967	0.920	0.962	0.921	0.958
Al	1.007	1.000	1.008	0.998	1.000	1.010	1.024	1.012	1.026	1.011
Fe	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Σ Y-site	1.007	1.000	1.008	0.998	1.000	1.010	1.024	1.012	1.026	1.011
Si	3.000	3.011	3.001	3.012	3.013	3.000	2.986	3.000	2.984	3.002
Ti	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Р	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Σ Z-site	3.000	3.011	3.001	3.012	3.013	3.000	2.986	3.000	2.984	3.002

Table 36 Representative EMP analyses of plagioclase (albite). Apfu calculations based on 8 oxygens.

#### GARNET



Figure 86 BSE of garnet grain.

Garnet has been identified in heavy mineral separations, investigated by SEM, and confirmed by microprobe analysis. Garnets contain a considerable spessartine component of almost half the total, with almandine comprising most of the remainder. Pyrope and andradite are negligible and the grossular component is below one percent. Grains are euhedral to subhedral and rarely anhedral. Despite having crystal faces, a number of grains appear to have been altered or infilled along fractures. It is suggested that this represents a secondary mineralization that has occurred during infilling or alteration of the original garnet grain. Micas present within some fractures have been qualitatively analyzed by SEM and appear to be muscovite. Other fractures are filled with possible chlorite, as garnet can readily alter to chlorite given appropriate conditions. This supposed chlorite mineralization is depleted in potassium and manganese and relatively more enriched in iron and magnesium. On closer inspection by SEM, fractures also contain inclusions of silicon, yttrium, calcium, and iron as well as possible lutetium. The width of this mineralization prevented microprobe analysis. In a few instances, garnet seems to have been almost completely altered and only remnant 'islands' remain. Table 37 lists the representative garnet analyses. Components have been normalized.

GARNETS – REPUBLIC MINE PEGMATITE						
Wt % Ox	Goi 2 grain 1-1	Goi 2 grain 1-2	Goi 2 grain 3-1	Goi 2 grain 5-1	Goi 2 grain 6-1	Goi 2 grain 7-2
SiO ₂	36.807	36.722	36.556	36.587	36.565	36.433
TiO ₂	0.022	0.016	0.011	0.032	0.011	0.009
Al ₂ O ₃	20.091	20.100	19.977	20.088	20.232	20.400
FeO	21.871	22.012	22.223	21.981	22.143	22.092
MnO	21.113	21.211	21.004	21.334	21.144	21.223
MgO	0.191	0.200	0.189	0.211	0.156	0.109
CaO	0.123	0.181	0.234	0.212	0.232	0.300
Total	100.248	100.489	100.255	100.503	100.528	100.606
apfu						
Ti	0.001	0.001	0.001	0.002	0.001	0.001
Fe	1.506	1.514	1.534	1.514	1.524	1.520
Mn	1.472	1.478	1.469	1.488	1.474	1.479
Mg	0.023	0.025	0.023	0.026	0.019	0.013
Ca	0.011	0.016	0.021	0.019	0.020	0.026
Σ X-site	3.003	3.034	3.048	3.049	3.056	3.039
Al	1.950	1.949	1.944	1.950	1.962	1.978
Σ Y-site	1.950	1.949	1.944	1.950	1.962	1.978
Si	3.030	3.021	3.018	3.013	3.009	2.997
Σ Z-site	3.030	3.021	3.018	3.013	3.009	2.997
Component						
Andradite	00	01	01	01	01	01
Pyrope	01	01	01	01	01	01
Spessartine	50	50	50	50	49	49
Almandine	49	48	48	48	49	49

Table 37 Representative EMP analyses of garnet. Apfu calculations based on 12 oxygens.

#### Ilmenite



Figure 87 BSE image of ilmenite rim (crosshairs 1 & 3) & rutile (crosshair 2) on mica.

Ilmenite has only been found as a rim on one mica grain. Discrete grains have not been found. Table 38 lists the analysis. Stoichiometry has been calculated based on six oxygens and being that the X-site is less than two and the Y-site is more than two, there is perhaps the possibility that the rim of ilmenite is a product of alteration or represents a solid solution series and does not represent pure ilmenite.

ILMENITE – REPUBLIC					
MINE PEGMATITE					
Wt% Oxide	RM-rr				
	grain 2-4				
TiO ₂	60.987				
Al ₂ O ₃	0.121				
SiO ₂	0.055				
FeO	34.098				
MnO	0.233				
MgO	0.433				
CaO	0.112				
Nb ₂ O ₅	0.212				
Ta ₂ O ₅	bdl				
Total	96.251				
apfu					
FeO	1.405				
MnO	0.008				
MgO	0.032				
CaO	0.006				
Nb	0.005				
Та	bdl				
Σ X-site	1.456				
Ti	2.261				
Al	0.007				
Si	0.003				
$\Sigma$ Y-site	2.271				

Z Y-Site2.271Table 38 Representative EMP analysis of ilmenite.<br/>Apfu calculations based on 6 oxygens.

# "MONAZITE"



Figure 88 BSE image of polished "monazite" (crosshair 1) and possible Ca-rich monazite (crosshair 2) and quartz (crosshair 3).

"Monazite" has been investigated by SEM and confirmed by microprobe. Only one grain seems to have homogeneous texture and mineralogy. Of the grains analyzed, one "monazite" grain appears to be an overgrowth on a Ca-rich monazite grain as previously discussed. Grain RM-rr 15 appears to be altered in some way and contains thorium- and uranium-rich inclusions. Cerium is the dominant REE in all samples as it represents almost half of the X-site cation occupancy. It follows then that these grains should be classified as monazite-(Ce). Weight percent totals are in excess of 98% with the exception of RM-rr 15, which has a weight percent of ~ 97.5%. Table 39 lists the representative EMP analyses.

MONAZITE-(CE) – REPUBLIC MINE PEGMATITE					
Wt % Ox.	13-RM-rr-2	14-RM-rr-1	15-RM-rr-1		
P ₂ O ₅	29.002	28.773	28.445		
SiO ₂	0.344	0.121	0.084		
TiO ₂	0.000	0.000	0.000		
ThO ₂	6.445	6.733	4.112		
$UO_2$	0.623	0.556	0.455		
Al ₂ O ₃	0.033	0.078	0.112		
$La_2O_3$	12.223	11.091	11.760		
$Ce_2O_3$	27.093	28.223	28.780		
$Pr_2O_3$	3.002	2.550	2.458		
$Nd_2O_3$	13.893	13.112	13.433		
$Sm_2O_3$	1.445	1.788	1.883		
$Eu_2O_3$	0.009	0.021	0.015		
$Gd_2O_3$	0.522	0.677	0.700		
$Dy_2O_3$	0.181	0.211	0.199		
Er2O3	0.000	0.012	0.022		
Yb ₂ O ₃	0.021	0.019	0.031		
$Y_2O_3$	0.543	0.932	0.892		
$Sc_2O_3$	0.030	0.000	0.000		
CaO	2.223	3.443	3.622		
MnO	0.044	0.011	0.002		
FeO	0.345	0.277	0.311		
PbO	0.224	0.165	0.145		
Total	98.245	98.793	97.461		
<i>apju</i> Th	0.059	0.061	0.027		
	0.038	0.001	0.037		
	0.000	0.003	0.004		
	0.002	0.004	0.003		
La	0.180	0.102	0.174		
Pr	0.393	0.037	0.422		
Nd	0.198	0.037	0.192		
Sm	0.020	0.024	0.026		
Fu	0.020	0.000	0.000		
Gd	0.007	0.009	0.009		
Dv	0.002	0.003	0.003		
Y	0.012	0.020	0.019		
Sc	0.001	0.000	0.000		
Ca	0.095	0.146	0.155		
Mn	0.001	0.000	0.000		
Fe	0.011	0.009	0.010		
Pb	0.002	0.002	0.002		
ΣΧ	1.034	1.079	1.096		
Р	0.978	0.967	0.965		
Si	0.014	0.005	0.003		
ΣΥ	0.992	0.972	0.968		

Table 39 Representative EMP analyses of monazite-(Ce). Apfu calculationsbased on 4 oxygens.

# CA-RICH MONAZITE



Figure 89 BSE image of polished grain of monazite (crosshair 2) with Ca-rich monazite core (crosshair 1).

What appears to be a core of Ca-rich monazite within a grain of monazite-(Ce) has been identified by SEM and confirmed by microprobe analysis. Table 40 shows the analysis. Weight percent totals are almost 100% which suggests that little or no alteration has occurred.

CA-RICH MONAZITE -				
CROC	KLEY			
Wt % Ox.	13-RM-rr-1			
$P_2O_5$	26.200			
SiO ₂	0.456			
ThO ₂	0.000			
$UO_2$	34.894			
$Al_2O_3$	2.112			
$La_2O_3$	0.043			
$Ce_2O_3$	5.895			
$Pr_2O_3$	12.655			
$Nd_2O_3$	1.221			
$Sm_2O_3$	6.223			
$Gd_2O_3$	0.655			
$Dy_2O_3$	0.011			
Yb ₂ O ₃	0.065			
$Y_2O_3$	0.633			
CaO	7.223			
MnO	0.020			
FeO	0.211			
PbO	0.788			
Total	99.580			
apfu				
Th	0.329			
U	0.019			
Al	0.002			
La	0.090			
Ce	0.192			
Pr	0.018			
Nd	0.092			
Sm	0.009			
Y	0.014			
Mn	0.001			
Fe	0.007			
Ca	0.320			
Pb	0.009			
ΣX - Site	1.108			
Р	0.918			
Si	0.019			
ΣY - Site	0.937			

Table 40	Representative EMP analysis of Ca-rich monazite.
	Apfu calculations based on 4 oxygens.

#### MUSCOVITE



Figure 90 BSE image of polished muscovite grain (crosshairs 1, 2, & 3) and zircon (crosshair 4).

Muscovite mica is much more abundant than biotite mica in samples collected from the Republic Mine pegmatite. It has been identified in heavy mineral separations, qualitatively investigated by SEM, and confirmed by microprobe analysis (Figure 185). Muscovite mica has also been analyzed by DCP and titration for lithium and trivalent iron respectively. The dioctahedral equation specific to fluorine content is used to calculate the weight percent of lithium in muscovite samples owing to the presence of lithium from DCP analyses: 0.3935 * fluorine weight percent^{1.326} (Tischendorf, 1997). Two analyses of muscovite mica reveal lithium content as 0.312 and 0.502 weight percent. The latter value is much closer to calculated values. Titration analysis has yielded a FeO weight percent value of 4.028, greater than results from microprobe analyses. It is assumed then that trivalent iron in muscovite mica is absent or well below detection limits. Cesium is below detection limits and rubidium is just within detection limits suggesting that muscovite mica from Republic Mine pegmatite are poorly evolved. Table 41 lists the representative EMP analyses. Additional analyses listed in appendices (Table 88).
MUSCOVITE – REPUBLIC MINE PEGMATITE										
Wt % Ox.	RM-rr grain 1-1	RM-rr grain 2-1	RM-rr grain 3-1	RM-rr set 1 grain 1-1	RM-rr set 1 grain 2-1	RM-rr set 2 grain 1-2				
SiO ₂	46.576	46.484	46.444	45.977	45.799	45.782				
TiO ₂	0.233	0.188	0.244	0.112	0.099	0.088				
Al ₂ O ₃	34.644	34.631	34.686	35.321	35.623	35.770				
Fe ₂ O ₃	0.000	0.000	0.000	0.000	0.000	0.000				
FeO	2.211	2.343	2.890	2.711	2.723	2.556				
MnO	0.034	0.027	0.021	0.022	0.020	0.014				
MgO	0.899	0.862	0.455	0.333	0.288	0.233				
CaO	0.022	0.018	0.034	0.454	0.223	0.312				
Li ₂ O ( <i>calc</i> .)	0.582	0.547	0.513	0.575	0.491	0.557				
Na ₂ O	0.777	0.833	0.654	0.785	0.774	0.656				
K ₂ O	10.007	9.881	9.944	10.022	10.044	10.066				
Rb ₂ O	0.033	0.017	0.022	0.031	0.023	0.026				
Cs ₂ O	bdl	bdl	bdl	bdl	bdl	bdl				
F	1.344	1.282	1.221	1.332	1.181	1.300				
H ₂ O	3.896	3.916	3.939	3.897	3.960	3.907				
F=O	- 0.566	- 0.540	- 0.514	- 0.561	- 0.497	- 0.547				
Total	100.692	100.489	100.552	101.012	100.751	100.720				
apfu										
Si	6.161	6.161	6.165	6.087	6.076	6.069				
^{IV} Al	1.839	1.839	1.835	1.913	1.924	1.931				
ΣT-site	8.000	8.000	8.000	8.000	8.000	8.000				
^{VI} Al	3.563	3.571	3.591	3.600	3.645	3.658				
Ti	0.023	0.019	0.024	0.011	0.010	0.009				
Fet	0.245	0.260	0.321	0.300	0.302	0.283				
Mn	0.004	0.003	0.002	0.002	0.002	0.002				
Mg	0.177	0.170	0.090	0.066	0.057	0.046				
Li (calc.)	0.310	0.292	0.274	0.307	0.262	0.297				
Σ Y-site	4.322	4.315	4.302	4.286	4.278	4.295				

Table 41 Representative EMP analyses of muscovite mica. Apfu calculations based on 24 anions.Table continues on next page.

K	1.689	1.671	1.684	1.693	1.700	1.702
Ca	0.003	0.003	0.005	0.064	0.032	0.044
Na	0.199	0.214	0.168	0.202	0.199	0.169
Rb	0.003	0.001	0.002	0.003	0.002	0.002
Cs	bdl	bdl	bdl	bdl	bdl	bdl
ΣX-site	1.894	1.889	1.859	1.962	1.933	1.918
F	0.562	0.537	0.513	0.558	0.495	0.545
OH (calc.)	3.438	3.463	3.487	3.442	3.505	3.455
ΣW-site	4.000	4.000	4.000	4.000	4.000	4.000

# RUTILE



Figure 91 BSE image of rutile rim on mica grain (crosshair 2) and ilmenite (crosshairs 1 & 3).

Rutile has been discovered along with ilmenite on a single grain of mica. No discrete grains have been found. Niobium and tantalum are both below detection limits. Table 42 lists the representative microprobe analyses.

<b>RUTILE – REPUBLIC MINE</b>							
PEGM	ATITE						
Wt% Oxide	RM-rr grain 2-5						
TiO ₂	98.770						
Al ₂ O3	0.032						
FeO	0.881						
MnO	0.011						
MgO	0.014						
CaO	0.009						
SiO ₂	0.012						
Total	99.729						
apfu							
Ti	0.994						
Al	0.001						
Fe	0.010						
Mn	0.000						
Mg	0.000						
Ca	0.000						
Si	0.000						
Σ X-site	1.005						

Table 42 Representative EMP analysis of rutile.Apfu calculations based on 2 oxygens.

# THALÉNITE



Figure 92 BSE image of thalénite (crosshairs 2 & 3) and feldspar (crosshair 1).

Thalénite is relatively common in Republic Mine heavy mineral separations. Thalénite has been quantitatively confirmed by microprobe. Weight percent totals are almost 100%, which suggests that no alteration of the grain has occurred. Yttrium is the dominant cation in the A-site and therefore classification is thalénite-(Y). This is the first confirmed occurrence of thalénite-(Y) at the Republic Mine pegmatite and the first confirmed occurrence of thalénite-(Y) in the state of Michigan. Table 43 lists the representative analysis.

THALÉNITE-(Y) -	- REPUBLIC MINE
PEGM	ATITE
Wt % Ox.	Rm-rr GOI
$P_2O_5$	0.055
SiO ₂	32.115
TiO ₂	0.211
$ThO_2$	0.285
UO ₂	0.015
$Al_2O_3$	0.893
$La_2O_3$	0.022
Ce ₂ O ₃	0.154
Nd ₂ O ₃	0.021
Gd ₂ O ₃	0.484
Tb ₂ O ₃	0.300
Dy ₂ O ₃	1.967
Ho ₂ O ₃	1.145
Er ₂ O ₃	4.650
Tm ₂ O ₃	1.810
Yh ₂ O ₃	7 676
Lu2O2	0.500
$V_2O_2$	12 133
1203 McO	42.433
MgO CaO	0.020
CaO M=O	2.105
MnO	0.070
FeO	0.733
PbO	0.021
F	0.000
H ₂ O	1.607
Total	99.958
apfu	0.04.5
11	0.015
Th	0.006
U	0.000
Al	0.098
La	0.001
Ce	0.005
Nd	0.001
Gd	0.015
Tb	0.009
Dy	0.059
Ho	0.034
Er	0.136
Tm	0.053
Yb	0.218
Lu	0.014
Y	2.107
Mø	0.003
Ca	0.216
Mn	0.053
Fe	0.057
Ph	0.001
ΣΛ	2 080
P D	0.004
r Ci	2 996
	3,000
	3.000
UH	1.000
2 C	1.000

Table 43 Representative EMP analysis of thalénite. Apfu calculations based on 11 anions.

#### TOURMALINE



Figure 93 BSE image of polished tourmaline mount and associated EDS spectra.

Tourmaline has been identified in heavy mineral separations by SEM and confirmed by microprobe. Republic Mine tourmalines belong to the alkali group based on X-site dominance (Figure 193). There are apparently two groups of tourmaline found at the Republic Mine pegmatite. The first group owing to there being more sodium, negligible calcium, and fewer vacancies as opposed to the second group of tourmalines having relatively less sodium enrichment and relatively more calcium enrichment and vacancies in the X-site. Y-site dominance determines that both groups of tourmalines are schorl (Figure 194), although there is a trend showing progressive depletion in magnesium and relatively greater enrichment in calculated lithium and iron. Fluorine is dominant over the hydroxyl ion so that all tourmaline analyzed should be classified as fluor-schorl (Figure 195). It should be noted that sodium *apfu* between the two groups ranges by only a couple of tenths. Grains are, for all intents and purposes, geochemically homogeneous. Table 44 lists the representative EMP analyses.

TOURMALINE – REPUBLIC MINE PEGMATITE									
Wt.% Oxide	grain 4-1	grain 1-1	grain 3-1	grain 7-1	grain 9-1	grain 10-1			
SiO ₂	36.282	36.201	36.300	36.255	36.321	36.255			
TiO ₂	0.092	0.144	0.0177	0.113	0.143	0.126			
Al ₂ O ₃	30.223	29.892	29.882	30.033	29.882	29.544			
$B_2O_3$ (calc.)	10.330	10.330	10.350	10.310	10.350	10.330			
FeOt	13.565	13.334	13.221	13.400	13.223	13.245			
MnO	0.223	0.422	0.446	0.299	0.443	0.383			
MgO	3.334	4.093	4.223	3.783	4.223	4.678			
CaO	0.033	0.020	0.544	0.223	0.312	0.255			
Na ₂ O	2.334	2.334	1.871	1.912	1.871	1.981			
K ₂ O	0.020	0.030	0.034	0.021	0.030	0.021			
Li ₂ O (calc.)	0.320	0.140	0.160	0.210	0.130	0.050			
H ₂ O (calc.)	3.040	3.030	3.040	2.990	3.030	3.090			
F	1.112	1.119	1.114	1.200	1.134	1.009			
F=O	- 0.470	- 0.470	- 0.470	- 0.510	- 0.480	- 0.420			
Total	100.44	100.62	100.74	100.24	100.61	100.54			
apfu									
Na	0.762	0.761	0.609	0.625	0.609	0.646			
Ca	0.006	0.004	0.098	0.040	0.056	0.046			
K	0.004	0.006	0.007	0.005	0.006	0.005			
Vac (calc.)	0.228	0.229	0.286	0.331	0.328	0.303			
$\Sigma$ X-site	1.000	1.000	1.000	1.000	1.000	1.000			
Fe	1.909	1.876	1.856	1.888	1.858	1.864			
Mg	0.830	0.952	0.970	0.915	0.974	1.032			
Al	0.000	0.000	0.000	0.000	0.000	0.000			
Mn	0.032	0.060	0.063	0.043	0.063	0.055			
Li (calc.)	0.217	0.094	0.108	0.140	0.087	0.034			
Ti	0.012	0.018	0.002	0.014	0.018	0.016			
$\Sigma$ Y-site	3.000	3.000	3.000	3.000	3.000	3.000			
Al	5.994	5.926	5.913	5.965	5.916	5.859			
Mg	0.006	0.074	0.087	0.035	0.084	0.141			
$\Sigma$ Z-site	6.000	6.000	6.000	6.000	6.000	6.000			
Si	6.106	6.089	6.095	6.109	6.102	6.100			
Al	0.000	0.000	0.000	0.000	0.000	0.000			
$\Sigma$ T-site	6.106	6.089	6.095	6.109	6.102	6.100			
B (calc.)	3.000	3.000	3.000	3.000	3.000	3.000			
H (calc.)	3.408	3.405	3.408	3.360	3.398	3.463			
F	0.592	0.595	0.592	0.640	0.602	0.537			
$\Sigma$ W+V sites	4.000	4.000	4.000	4.000	4.000	4.000			
Spacias	fluor-	fluor-	fluor-	fluor-	fluor-	fluor-			
species	schorl	schorl	schorl	schorl	schorl	schorl			

Table 44 Representative EMP analyses of fluorschorl. Apfu calculations based on 31 anions.

### ZIRCON



Figure 94 BSE image of polished zircon grain.

Zircon has been qualitatively investigated and confirmed by microprobe. Of the grains analyzed, only two are assumed to be unaltered. The range in total weight percent for altered grains ranges from approximately 93% to 95%. Hafnium content is less than one weight percent for altered grains and ranges from 1.4 to 1.7 weight percent for unaltered grains. Zircon from the Republic Mine pegmatite are considered to be relatively poorly evolved. Table 45 lists the representative analyses for both altered and unaltered grains. Additional analyses are listed in Table 90 of the appendices.

ZIRCON – REPUBLIC MINE PEGMATITE									
Wt % Oxide	grain 1-3	Mica Incl	grain 8-	grain 8-RM-rr-1		grain 9-RM-rr-1			
SiO ₂	34.132	33.993	30.110	29.882	28.800	29.131			
TiO ₂	0.011	0.009	0.020	0.013	0.009	0.014			
Al ₂ O ₃	0.322	0.282	0.121	0.081	0.100	0.089			
ZrO ₂	62.500	62.750	58.760	57.986	58.000	57.923			
HfO ₂	1.455	1.476	0.892	0.800	0.910	0.961			
FeOt	0.444	0.383	3.560	3.780	3.450	3.600			
MnO	0.011	0.013	0.200	0.112	0.088	0.070			
MgO	0.000	0.000	0.000	0.011	0.000	0.000			
CaO	0.788	0.800	0.343	0.282	2.221	2.091			
UO ₂	0.071	0.081	0.010	0.019	0.011	0.014			
ThO ₂	0.221	0.215	0.011	0.015	0.020	0.026			
Total	99.955	100.002	94.027	92.981	93.609	93.919			
apfu									
Zr	0.922	0.926	0.940	0.937	0.940	0.934			
Hf	0.017	0.017	0.011	0.010	0.012	0.012			
U	0.000	0.001	0.000	0.000	0.000	0.000			
Th	0.002	0.001	0.000	0.000	0.000	0.000			
Fe	0.011	0.010	0.098	0.105	0.096	0.100			
Mn	0.000	0.000	0.006	0.003	0.002	0.002			
Mg	0.000	0.000	0.000	0.001	0.000	0.000			
Ca	0.026	0.026	0.012	0.010	0.079	0.074			
ΣX-site	0.978	0.981	1.066	1.066	1.129	1.122			
Si	1.032	1.029	0.987	0.990	0.957	0.963			
Ti	0.000	0.000	0.000	0.000	0.000	0.000			
Al	0.011	0.010	0.005	0.003	0.004	0.003			
$\Sigma$ Y-site	1.044	1.044	0.961	0.967	0.961	0.967			

Table 45 Representative EMP analyses of zircon. Apfu calculations based on 4 oxygens.

### BLACK RIVER PEGMATITE



Figure 95 Black River pegmatite.

The Black River pegmatite is located west of Hwy M-95 and a few miles north of the village of Republic. An old railroad bed provides access to the pegmatite. As this pegmatite is frequently visited by rock hounds and the curious, it was some work to remove material from the pegmatite. The Black River pegmatite is in sharp contact with country rock. It is medium to coarse grained and the overall hue of feldspars ranges from a light pink to orange. Visual inspection of the pegmatite revealed that there is abundant mica, feldspar, quartz, and fluorite. Apatite, columbite, feldspar, fluorite, iron oxides, "monazite", muscovite, scheelite, quartz, zircon, and "xenotime" were identified qualitatively by SEM. Ferrocolumbite, ferrotantalite, plagioclase (albite), monazite-(Ce), and muscovite were quantitatively confirmed by electron microprobe.

### APATITE





Figure 96 BSE of apatite grain with corresponding EDS spectrum (crosshairs 1 & 2).

Apatite is exceedingly rare in heavy mineral separations as only two grains have been identified by SEM. Efforts to discover more by UV light has been unsuccessful. This represents the first reported occurrence of apatite at the Black River pegmatite.

Unfortunately, neither grain survived sample preparation for further investigation by microprobe.

#### COLUMBITE/TANTALITE



Figure 97 BSE image of polished columbite grains (left) & ferrocolumbite grain (right) with regions of ferrotantalite (lighter areas of the grains). Visible zoning (left middle grain) is present and corresponds to higher Ta content.

Abundant columbite/tantalite grains have been found in heavy mineral separations collected from the Black River pegmatite. Discrete grains of ferrocolumbite have identified by SEM and confirmed by microprobe. One grain in particular has visible zonation due to relatively elevated levels of tantalum. The analyses associated with the grain (grain 3 BRP Goi-1; Table 46) show that tantalum content is sufficient to classify this area of enrichment as ferrotantalite (Figure 170). Buchholz *et al.* (2014) have confirmed the occurrence of ferrocolumbite at Black River pegmatite, but their analyses did not detect sufficient Ta enrichment for classification as ferrotantalite. Table 46 lists the representative microprobe analyses.

FERROCOLUMBITE – BLACK RIVER										
Wt% Ox	BRP gr	ain 1-1	BRP gr	ain 3-1	grain 3 BRP Goi-1					
Nb ₂ O ₅	66.898	66.643	69.644	69.223	67.344	32.092	30.334			
Ta ₂ O ₅	11.788	11.987	10.004	10.532	11.244	51.225	52.892			
SiO ₂	0.022	0.034	0.043	0.023	0.055	0.044	0.023			
TiO ₂	0.997	1.054	0.055	0.211	1.091	0.445	0.000			
Al ₂ O ₃	0.000	0.000	0.022	0.000	0.041	0.059	0.038			
FeO	17.004	17.100	17.265	17.433	16.554	11.912	10.012			
MnO	2.877	2.783	3.093	2.872	3.244	4.221	6.677			
MgO	bdl	bdl	bdl	bdl	bdl	bdl	bdl			
Total	99.586	99.601	100.126	100.294	99.573	99.998	99.976			
apfu										
Fe	0.838	0.843	0.843	0.851	0.813	0.699	0.595			
Mn	0.144	0.139	0.153	0.142	0.161	0.251	0.402			
Si	0.001	0.002	0.003	0.001	0.003	0.003	0.002			
Al	0.000	0.000	0.002	0.000	0.003	0.005	0.003			
Mg	bdl	bdl	bdl	bdl	bdl	bdl	bdl			
ΣX-site	0.982	0.982	0.997	0.993	0.977	0.955	1.001			
Nb	1.782	1.776	1.838	1.827	1.788	1.018	0.975			
Та	0.189	0.192	0.159	0.167	0.180	0.978	1.023			
Ti	0.044	0.047	0.002	0.009	0.048	0.023	0.000			
$\Sigma$ Y-site	2.015	2.015	1.999	2.004	2.016	2.019	1.998			

Table 46 Representative EMP analyses of ferrocolumbite. Apfu calculations based on 6 oxygens.

#### PLAGIOCLASE FELDSPAR



Figure 98 BSE image of polished plagioclase grain (crosshair 1), K-feldspar bleb (crosshair 2), & fluorite inclusion (crosshair 3).

Grains of plagioclase feldspar have been analyzed by SEM and quantitatively investigated by microprobe. Feldspar grains are revealed to be albite₉₂. Blebs of K-feldspar are present; these blebs are irregular in shape and orientation. Strontium, barium, cesium, and rubidium are all either at or below detection limits. This suggests that feldspars from the Black River pegmatite are poorly evolved. Table 47 lists the plagioclase feldspar analyses. A sample of feldspar has been analyzed by XRD (Figure 173). Even though no discrete grains of Kfeldspar have been found or analyzed by SEM or microprobe, the analysis plots near the maximum microcline field suggesting a high degree of structural ordering (Wright & Stewart, 1968).

	PLAGIOCLASE FELDSPAR – BLACK RIVER PEGMATITE										
Wt% ov	BRP	BRP	BRP	BRP	BRP	BRP					
W170 UX	grain1-3	grain1-4	grain2-1	grain2-2	grain3-1	grain3-2					
$P_2O_5$	bdl	bdl	bdl	bdl	bdl	0.011					
SiO ₂	64.875	68.822	68.804	64.867	68.796	64.844					
TiO ₂	0.017	0.000	0.000	0.014	0.000	0.012					
Al ₂ O ₃	18.316	19.734	19.761	18.400	19.733	18.373					
FeOt	0.011	0.000	0.000	0.009	0.000	0.009					
CaO	0.000	0.366	0.378	0.009	0.364	0.011					
Na ₂ O	0.499	10.871	10.855	0.512	10.900	0.484					
K ₂ O	16.282	0.134	0.165	16.188	0.181	16.111					
Rb ₂ O	0.017	0.000	0.000	0.000	0.000	0.000					
Total	100.017	99.936	99.963	99.999	99.974	99.855					
apfu											
K	0.960	0.007	0.009	0.954	0.010	0.951					
Na	0.045	0.919	0.917	0.046	0.921	0.043					
Ca	0.000	0.017	0.018	0.000	0.017	0.001					
Rb	0.001	0.000	0.000	0.000	0.000	0.000					
ΣX-site	1.006	0.943	0.944	1.001	0.948	0.995					
Al	0.998	1.014	1.015	1.002	1.014	1.002					
Fe	0.000	0.000	0.000	0.000	0.000	0.000					
ΣY-site	0.998	1.014	1.015	1.002	1.014	1.002					
Si	2.999	2.999	2.998	2.997	2.998	2.999					
Ti	0.001	0.000	0.000	0.000	0.000	0.000					
Р	0.000	0.000	0.000	0.000	0.000	0.000					
Al	0.000	0.000	0.000	0.000	0.000	0.000					
ΣZ-site	3.000	2.999	2.998	2.998	2.998	3.000					

Table 47 Representative EMP analyses of plagioclase (albite). Apfu calculations based on 8 oxygens.

# FLUORITE



Figure 99 BSE image of fluorite grain and corresponding EDS spectrum.

Fluorite has been identified in heavy mineral samples and qualitatively confirmed by

SEM. Flourite has been identified at the Black River pegmatite previously.

# IRON OXIDE





Figure 100 BSE image and EDS spectrum of magnetite grain.





Figure 101 BSE image and EDS spectrum of hematite grains.

Excellent crystal specimens of iron oxide have been found in heavy mineral separations and further investigated by SEM. Magnetite is present as well as hematite. Both of these minerals represent the first reported case of either one of these two iron oxides at the Black River pegmatite.

## "MONAZITE"



Figure 102 BSE image of polished "monazite" grain.

"Monazite" has been qualitatively identified by SEM and confirmed by microprobe. Based on the dominance of cerium in the X-site, classification should be monazite-(Ce). Both grains analyzed by SEM lack homogeneity; however, microprobe investigation did yield a weight percent total close to 100%, suggesting that there are some areas of the grain that are intact. The above grain has a rim that is relatively depleted in the LREE's and relatively more enriched in yttrium and ytterbium, suggesting that there is an overgrowth of unconfirmed "xenotime". Table 48 lists the analysis.

MONAZITE-(CE) –						
DLAUN	KIVER					
Wt % Ox.	BRP grain 2					
P ₂ O ₅	28.776					
$SiO_2$	0.122					
ThO ₂	0.000					
$UO_2$	7.554					
Al ₂ O ₃	0.870					
$La_2O_3$	0.060					
$Ce_2O_3$	12.012					
$Pr_2O_3$	27.555					
$Nd_2O_3$	2.431					
$Sm_2O_3$	14.999					
$Gd_2O_3$	0.462					
$Dy_2O_3$	0.188					
Yb ₂ O ₃	0.100					
$Y_2O_3$	0.678					
$Sc_2O_3$	0.025					
MgO	0.000					
CaO	2.113					
MnO	0.045					
FeO	0.042					
PbO	0.225					
Total	99.357					
apfu						
Th	0.029					
U	0.003					
Al	0.001					
La	0.074					
Ce	0.168					
Pr	0.015					
Nd	0.089					
Sm	0.006					
Dy	0.001					
Y	0.006					
Mn	0.000					
Fe	0.015					
Ca	0.038					
Mn	0.001					
Fe	0.001					
Pb	0.001					
ΣΧ	1.033					
Р	0.962					
Si	0.009					
ΣΥ	0.971					

Let Y0.9/1Table 48 Representative EMP analysis of monazite-(Ce).<br/>Apfu calculations based on 4 oxygens.

#### MUSCOVITE



Figure 103 BSE image of polished muscovite grain (1-3).

Muscovite mica is the dominant mica species found in Black River pegmatite (Figure 185) heavy mineral separations. Biotite is not present in heavy mineral separations and is not currently listed as being found at the Black River pegmatite. Analyses by DCP reveal lithium weight percent totals of 0.209 and 0.517 and is accounted for stoichiometrically by the equation 0.3935*Fluorine wt%^{1.326} (Tischendorf, 1997). The latter value is much closer to calculated weight percent. Rubidium weight percent values are just within detectable limits and cesium is below detection limits, suggesting that muscovite mica at the Black River pegmatite is poorly evolved. Table 49 lists representative analyses via microprobe.

	MUSCOVITE – BLACK RIVER PEGMATITE										
Wt % Ox.	BRP grain	BRP grain	BRP grain	BRP grain	BRP grain	BRP grain	BRP grain	BRP grain	BRP grain	BRP grain	
SiO ₂	46.599	46.622	46.578	46.655	46.644	<u> </u>	4-1	4-2	46.619	<u> </u>	
TiO ₂	0.277	0.311	0.332	0.316	0 343	0 381	0 341	0.400	0.382	0.377	
Al ₂ O ₂	34 444	34 478	34 376	34 312	34 476	34 500	34 448	34 387	34 665	35 600	
Fe ₂ O ₂	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
FeO	2.876	3.092	3 2 1 3	3 267	3 222	3 195	3 099	3 367	3 287	3 311	
MnO	0.092	0.097	0.100	0.088	0.083	0.090	0.083	0.095	0.111	0.109	
MgO	1.011	1.111	1.157	1.220	1.191	1.200	0.999	1.091	1.045	1.154	
CaO	0.012	0.017	0.020	0.018	0.020	0.018	0.023	0.019	0.016	0.021	
Li ₂ O ( <i>calc</i> .)	0.459	0.509	0.514	0.564	0.455	0.442	0.459	0.501	0.596	0.767	
Na ₂ O	0.477	0.412	0.378	0.393	0.282	0.272	0.299	0.302	0.234	0.250	
K ₂ O	9.700	9.671	9.788	9.800	9.778	9.766	9.823	9.669	9.723	9.723	
Rb ₂ O	0.010	0.013	0.010	0.009	0.011	0.013	0.011	0.016	0.013	0.011	
Cs ₂ O	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl	
F	1.123	1.215	1.223	1.312	1.115	1.091	1.123	1.200	1.367	1.654	
H ₂ O	3.995	3.965	3.961	3.926	4.016	4.033	3.999	3.975	3.908	3.837	
F=O	0.473	0.512	0.515	0.552	0.469	0.459	0.473	0.505	0.576	0.696	
Total	100.602	101.002	101.135	101.328	101.166	101.252	100.833	101.161	101.390	102.840	
apfu											
Si	6.172	6.156	6.151	6.151	6.154	6.156	6.166	6.156	6.136	6.063	
^{IV} Al	1.828	1.844	1.849	1.849	1.846	1.844	1.834	1.844	1.864	1.937	
$\Sigma$ T-site	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	
^{VI} Al	3.550	3.522	3.501	3.483	3.515	3.515	3.538	3.505	3.514	3.507	
Ti	0.028	0.031	0.033	0.031	0.034	0.038	0.034	0.040	0.038	0.037	
Fet	0.319	0.341	0.355	0.360	0.356	0.352	0.343	0.372	0.362	0.359	
Mn	0.010	0.011	0.011	0.010	0.009	0.010	0.009	0.011	0.012	0.012	
Mg	0.200	0.219	0.228	0.240	0.234	0.236	0.197	0.215	0.205	0.223	
Li (calc.)	0.244	0.271	0.273	0.299	0.241	0.234	0.244	0.266	0.315	0.400	
ΣY- site	4.351	4.395	4.401	4.423	4.389	4.385	4.365	4.409	4.446	4.538	

Table 49 Representative EMP analyses of muscovite mica. Apfu calculations based on 24 anions. Table continues on next page.

K	1.639	1.629	1.649	1.648	1.646	1.642	1.658	1.628	1.633	1.610
Ca	0.002	0.002	0.003	0.003	0.003	0.003	0.003	0.003	0.002	0.003
Na	0.123	0.105	0.097	0.100	0.072	0.070	0.077	0.077	0.060	0.063
Rb	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Cs	bdl									
Σ X-site	1.765	1.737	1.750	1.752	1.722	1.716	1.739	1.709	1.696	1.677
F	0.470	0.507	0.511	0.547	0.465	0.455	0.470	0.501	0.569	0.679
OH (calc.)	3.530	3.493	3.489	3.453	3.535	3.545	3.530	3.499	3.431	3.321
Σ W-site	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000

# SCHEELITE



Figure 104 BSE image of possible scheelite with corresponding EDS spectrum.

What is possibly scheelite has been qualitatively identified by SEM. Only a few of these grains have been found in heavy mineral separations. If indeed scheelite, this will represent the first reported occurrence at the Black River pegmatite.

# "XENOTIME"





Figure 105 BSE image of "xenotime" grain (crosshair 3) & associated EDS spectrum on feldspar grain (crosshairs 1 & 2).

A single grain of what is possibly "xenotime" has been identified by SEM. The grain appears to be relatively enriched in yttrium, ytterbium, and dysprosium. Efforts to quantitatively investigate the mineral further by electron microprobe have been unsuccessful.

# ZIRCON



Figure 106 BSE image of zircon grain.

Zircon is not overly abundant in samples from the Black River pegmatite. Only a few grains have been discovered in heavy mineral separations and qualitatively analyzed by SEM. None have survived sample preparation, owing perhaps to the size of the grains. Hafnium appears to be below detectable limits of SEM analyses and thus it is suggested that zircon is relatively poorly evolved.

### Hwy69 pegmatite



Figure 107 Hwy 69 Pegmatite exposure.

The Hwy69 pegmatite is, as its name implies, located on Hwy69 in Dickinson County, Michigan. Visually, the Hwy69 pegmatite has pink to reddish-orange feldspar, mica, and quartz. Within the larger pegmatitic body, there are numerous fractures filled with presumably biotite mica. In addition, there are areas that have been preferentially weathered away, which look like pock-marks of variable size. None of these pock marks are very large and are only perhaps an inch or so in diameter and approximately a half inch deep. The Hwy69 pegmatite is poorly exposed as can be seen from the above photograph. The following minerals were qualitatively and quantitatively analyzed: apatite, biotite, chalcopyrite, columbite group minerals, euxenite group minerals, feldspar, garnet, ilmenite, "monazite", muscovite, pyrite, quartz, and zircon have been analyzed by SEM; ferrocolumbite, fersmite from the euxenite group minerals, K-feldspar and plagioclase feldspar, garnet, monazite-(Ce), and muscovite mica have been analyzed by electron microprobe.

# APATITE





Figure 108 BSE image of apatite grain along with associated EDS spectrum.

Only five discrete grains of apatite have been found at the Hwy69 pegmatite. Aside from "monazite", apatite was the only phosphorus-bearing accessory mineral. Apatite was qualitatively analyzed by SEM.

### BIOTITE



Figure 109 BSE image of biotite mica grain along with corresponding EDS spectrum.

Biotite is exceedingly rare in heavy mineral separations and only found in fractures at the Hwy69 pegmatite. It has been identified in heavy mineral separations and qualitatively investigated by SEM and later confirmed by microprobe. Table 50 lists the representative analyses. There was not enough homogeneous material with which to titrate for trivalent iron content. Lithium was detected in DCP analysis of muscovite mica. Lithium has been calculated based on magnesium weight percent: 155 * Mg wt%^{-3.1}, based on Tischendorf's equations (1997).

FE-BIOTITE – HWY69 PEGMATITE										
Wt % Ox.	4sz-2-1	4sz-1-2	4sz-1-3	4sz-3-1						
SiO ₂	34.887	34.786	34.877	34.533						
TiO ₂	3.099	2.967	3.234	3.095						
Al ₂ O ₃	17.988	18.099	18.103	18.200						
Fe ₂ O ₃	0.000	0.000	0.000	0.000						
FeO	22.233	22.178	22.112	21.899						
MnO	0.433	0.377	0.544	0.630						
MgO	8.004	7.788	8.044	8.233						
CaO	0.044	0.067	0.040	0.035						
Li ₂ O ( <i>calc</i> .)	0.246	0.267	0.242	0.225						
Na ₂ O	0.233	0.191	0.234	0.155						
K ₂ O	9.650	9.788	9.698	9.433						
Rb ₂ O	0.010	0.009	0.000	0.000						
Cs ₂ O	bdl	bdl	bdl	bdl						
F	1.099	1.104	0.973	0.977						
H ₂ O	3.405	3.389	3.478	3.453						
F=O	- 0.463	- 0.465	- 0.410	- 0.411						
Total	100.868	100.546	101.169	100.457						
apfu										
Si	5.328	5.331	5.309	5.288						
^{IV} Al	2.672	2.669	2.691	2.712						
Σ T-site	8.000	8.000	8.000	8.000						
^{VI} Al	0.566	0.600	0.558	0.572						
Ti	0.356	0.342	0.371	0.357						
Fet	2.840	2.843	2.815	2.804						
Mn	0.056	0.049	0.070	0.082						
Mg	1.822	1.779	1.826	1.879						
Li (calc.)	0.151	0.165	0.148	0.139						
Σ Y-site	5.790	5.778	5.787	5.833						

Table 50 Representative EMP analyses of Fe-biotite mica. Apfu calculations based on 24 anions.Table continues on next page.

K	1.880	1.914	1.884	1.843
Ca	0.007	0.011	0.007	0.006
Na	0.069	0.057	0.069	0.046
Rb	0.001	0.001	0.000	0.000
Cs	bdl	bdl	bdl	bdl
ΣX-site	1.957	1.983	1.960	1.895
F	0.531	0.535	0.468	0.473
OH (calc.)	3.469	3.465	3.532	3.527
ΣW-site	4.000	4.000	4.000	4.000

## CHALCOPYRITE





Figure 110 BSE image of chalcopyrite grain (crosshair 3) with corresponding EDS spectrum. Mica (crosshairs 1 & 2), quartz (crosshair 4), & K-feldspar (crosshair 5).

Two grains of chalcopyrite have been identified in heavy mineral separations and qualitatively confirmed via SEM. These grains lack crystal faces and are approximately 100 microns in width.

### COLUMBITE/TANTALITE



Figure 111 BSE image of polished ferrocolumbite grain (1 & 2).

Columbite/tantalite is relatively ubiquitous in heavy mineral separations. Grains have been qualitatively identified by SEM and confirmed by microprobe. Analyses suggest that grains be identified as ferrocolumbite due to iron and niobium dominance over manganese and tantalum. Stoichiometric manganese ranges between 20 and approximately 40 percent; tantalum *apfu* ranges are between 20 and approximately 23 percent. Grains are texturally and geochemically homogeneous and are sub-, an-, as well as euhedral in appearance. Table 51 lists microprobe analyses.

Ferrocolumbite – Hwy69 Pegmatite								
Wt% Ox	hwy 69 g	grain 12-1	hwy 69 grain 13-1		hwy 69 grain 14-1		hwy 69 grain 15-1	
Nb ₂ O ₅	67.112	67.051	66.093	66.112	65.900	65.899	66.900	67.112
Ta ₂ O ₅	12.566	12.766	13.650	13.988	14.222	14.430	13.009	12.877
SiO ₂	0.022	0.040	0.022	0.015	0.011	0.056	0.021	0.054
TiO ₂	0.021	0.018	0.021	0.050	0.022	0.025	0.012	0.020
Al ₂ O ₃	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
FeO	12.566	12.433	16.005	15.988	15.443	13.450	13.112	14.655
MnO	7.645	7.711	3.938	3.983	4.554	6.112	7.300	4.877
MgO	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl
Total	99.932	100.019	99.729	100.136	100.152	99.972	100.354	99.595
apfu								
Fe	0.621	0.615	0.797	0.794	0.767	0.669	0.647	0.727
Mn	0.383	0.386	0.199	0.200	0.229	0.308	0.365	0.245
Si	0.001	0.002	0.001	0.001	0.001	0.003	0.001	0.003
Al	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mg	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl
ΣX- site	1.005	1.003	0.997	0.995	0.997	0.980	1.013	0.975
Nb	1.794	1.792	1.779	1.774	1.770	1.772	1.785	1.800
Та	0.202	0.205	0.221	0.226	0.230	0.233	0.209	0.208
Ti	0.001	0.001	0.001	0.002	0.001	0.001	0.001	0.001
$\Sigma$ Y-site	1.997	1.998	2.001	2.002	2.001	2.006	1.995	2.009

Table 51 Representative EMP analyses of ferrocolumbite. Apfu calculations based on 6 oxygens.

#### EUXENITE GROUP



Figure 112 BSE image of polished fersmite grain (crosshairs 1, 2, 4, & 5) and K-feldspar inclusions (crosshair 3).

A grain quantitatively analyzed by microprobe revealed that it belongs to the euxenite group of minerals. The analyses show niobium dominance over tantalum and calcium dominance over divalent iron, manganese, and magnesium. The sample was not analyzed for cerium, neodymium, and yttrium; however, weight percent totals are very close to 100 percent suggesting that these three elements are at or below detection limits. Due to calcium dominance in the A-site and niobium dominance in the M-site, these should be classified as fersmite. Table 52 lists the representative analysis.

EUXENITE GROUP – FERSMITE					
Wt% Ox	grain 9 Hwy 69 Goi-1				
Nb ₂ O ₅	78.612	78.555			
Ta ₂ O ₅	3.003	3.336			
SiO ₂	0.114	0.112			
TiO ₂	0.088	0.188			
Al ₂ O ₃	0.121	0.144			
CaO	17.698	17.711			
FeO	0.112	0.091			
MnO	0.033	0.024			
MgO	0.011	0.014			
Total	99.792	100.175			
apfu					
Ca	1.029	1.027			
Fe	0.005	0.004			
Mn	0.002	0.001			
Si	0.006	0.006			
Al	0.008	0.009			
Mg	0.001	0.001			
Σ A-site	1.051	1.048			
Nb	1.929	1.921			
Та	0.044	0.049			
Ti	0.004	0.008			
Σ M-site	1.978	1.977			

Table 52 Representative euxenite group mineral EMP analyses. Apfu calculations based on 6 oxygens.
#### Feldspars

#### K-Feldspar



Figure 113 BSE image of polished K-feldspar grain (crosshair 1) with plagioclase blebs (crosshairs 2, 3, & 4).

K-feldspar has been qualitatively investigated by SEM and confirmed by microprobe. Blebs of plagioclase feldspar are present. These are elongated, irregular in shape, and roughly parallel. K-feldspar is pink to reddish-orange in hue. Rubidium weight percentages are just within detectable limits. Cesium is below detectable limits. Only one grain analyzed has detectable barium and strontium, but these values are just within limits of detectability. This suggests that K-feldspar is relatively poorly evolved. An XRD analysis reveal that there is a high degree of structural ordering in K-feldspars, as the analysis plots near the maximum microcline field (Wright & Stewart, 1968). Table 53 has a list of analyses.

H	K-Feldspar – Hwy69 Pegmatite							
Wt% ox	hwy69 vz grain 1-1		hwy69 vz grain 2-1					
P ₂ O ₅	bdl	bdl	bdl	bdl				
SiO ₂	64.811	68.984	64.851	68.966				
TiO ₂	0.012	0.000	0.009	0.000				
Al ₂ O ₃	18.444	19.544	18.411	19.488				
FeOt	0.013	0.000	0.015	0.000				
CaO	0.009	0.454	0.011	0.446				
Na ₂ O	0.393	10.565	0.399	10.522				
K ₂ O	16.005	0.211	15.899	0.191				
Rb ₂ O	0.012	0.000	0.010	0.000				
Total	99.699	99.758	99.627	99.626				
apfu								
K	0.945	0.012	0.939	0.011				
Na	0.035	0.894	0.036	0.891				
Ca	0.000	0.021	0.001	0.021				
Rb	0.000	0.000	0.000	0.000				
ΣX-site	0.980	0.927	0.976	0.923				
Al	1.006	1.005	1.005	1.003				
Fe	0.000	0.000	0.000	0.000				
ΣY-site	1.006	1.005	1.005	1.003				
Si	2.999	3.009	3.002	3.012				
Ti	0.000	0.000	0.000	0.000				
Р	0.000	0.000	0.000	0.000				
Al	0.000	0.000	0.000	0.000				
$\Sigma$ Z-site	2.999	3.009	3.002	3.012				

Table 53 Representative EMP analyses of K-feldspar. Apfu calculations based on 8 oxygens.

#### PLAGIOCLASE FELDSPAR



Figure 114 BSE image of polished plagioclase grain (crosshair 1 & 3) with K-feldspar exsolution blebs (crosshair 2).

Plagioclase has been qualitatively investigated by SEM and confirmed by microprobe analysis. Grains not only have blebs of K-feldspar, but also excellent examples of thin, parallel, approximately one micron thick, exsolution lamellae of K-feldspar. Of the plagioclase grains that have been analyzed by microprobe, barium, strontium, cesium, and rubidium are just at or below detection limits. Table 54 shows a list of the plagioclase analyses.

		PLAGIC	OCLASE FEL	DSPAR – H	wy69 Peg	MATITE		
Wt% ox	hwy69 6iz	z grain 1-1	hwy69 6iz	z grain 2-1	hwy69 7 grain 1-1		hwy69 7 grain 2-1	
P ₂ O ₅	bdl	bdl	bdl	bdl	bdl	0.011		
SiO ₂	64.788	64.699	64.803	64.566	64.606	64.799	64.588	64.805
TiO ₂	0.021	0.000	0.014	0.000	0.000	0.011	0.000	0.009
$Al_2O_3$	18.422	22.089	18.433	22.113	22.091	18.438	22.143	18.455
FeOt	0.009	0.000	0.011	0.000	0.000	0.009	0.000	0.011
CaO	0.009	3.122	0.012	3.433	3.322	0.010	3.522	0.000
Na ₂ O	0.376	9.904	0.365	9.455	9.600	0.344	9.455	0.355
K ₂ O	16.100	0.143	16.094	0.134	0.155	16.101	0.213	16.045
Rb ₂ O	0.010	0.000	0.010	0.000	0.000	0.011	0.000	0.012
Total	99.735	99.957	99.742	99.701	99.774	99.723	99.921	99.692
apfu								
K	0.951	0.008	0.950	0.008	0.009	0.951	0.012	0.947
Na	0.034	0.847	0.033	0.810	0.822	0.031	0.809	0.032
Ca	0.000	0.147	0.001	0.162	0.157	0.000	0.166	0.000
Rb	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
ΣX-site	0.985	1.002	0.984	0.980	0.988	0.982	0.987	0.980
Al	1.005	1.000	1.006	1.000	1.000	1.006	1.000	1.007
Fe	0.000	0.000	0.000	0.000	0.000	0.000		
ΣY-site	1.005	1.000	1.006	1.000	1.000	1.006	1.000	1.007
Si	2.999	2.852	2.999	2.851	2.852	2.999	2.848	2.999
Ti	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Р	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al	0.000	0.148	0.000	0.151	0.149	0.000	0.151	0.000
Σ Z-site	2.999	3.000	2.999	3.002	3.001	2.999	2.999	2.999

Table 54 Representative EMP analyses of plagioclase (albite). Apfu calculations based on 8 oxygens.

### GARNET



Figure 115 BSE image of Type 1 garnet with fractures and inclusions along withassociated spectra.

Garnets from Hwy69 are of two types. The first are typified by being sub- to anhedral in appearance. These garnets contain fractures and have inclusions. Most of the garnets of the Type 1 (Figure 116) have weight percent totals equaling less than 100 percent suggesting that there has been some alteration that has occurred. The second type are eu- to subhedral. This second type appears to have been fractured and the original garnet replaced or altered. This alteration/replacement region has a lower spessartine component and higher almandine component than the original/primary garnet. The grossular and pyrope components fluctuate as well, although not to the same degree as the range in spessartine and almandine. The portions of the grains supposed to be the original garnet have weight percent totals very close to 100 percent; alteration/replacement areas have weight percent totals near 96-97 percent, supporting the notion of some type of alteration/replacement. In addition to the geochemical characteristics, the original area of the grains appear to be more resistant to polishing and have some amount of beveled relief to the replaced/altered portions giving grains of the second type an "island" texture. These islands that represent remnant garnets, range in size, shape, and number. Additionally, what is curious about this second type, is that both altered/replaced and original garnet chemistry are homogeneous in texture and geochemistry. Meaning that there appears to be very little to no zonation in composition of the original garnet chemistry within a single grain, regardless of which remnant "island" is investigated and a similar trend is seen as well in the replaced/altered portion within a single grain. Tables 55 and 56 list the representative garnet analyses. Additional analyses are listed in Tables 91 and 92 of the appendices.



Figure 116 BSE image of Type 1 garnet with inclusions along with corresponding EDS spectra.

			GARN	ETS TYPE	1–Hwy	59			
Wt % Ox	Grain 1-1	Grain 2-1	Grain 3-1	Grain 4-1	Grain 5-1	grai	n6-1	grai	n7-1
SiO ₂	36.565	36.455	36.344	36.400	36.512	36.534	36.445	36.433	36.377
TiO ₂	0.032	0.019	0.011	0.020	0.018	0.015	0.009	0.024	0.009
Al ₂ O ₃	20.077	20.005	19.956	20.109	20.200	20.066	20.100	20.111	20.089
FeO	38.049	37.800	37.878	37.654	37.723	37.344	33.421	37.565	33.112
MnO	0.899	0.983	0.923	1.023	0.892	1.433	8.676	0.984	9.022
MgO	0.788	0.844	0.755	0.723	0.752	0.712	0.554	0.743	0.455
CaO	0.676	0.888	0.845	0.834	0.840	0.766	0.751	0.785	0.855
Total	97.086	96.994	96.712	96.763	96.937	96.870	100.013	96.645	99.978
apfu									
Ti	0.004	0.002	0.001	0.003	0.002	0.002	0.001	0.003	0.001
Fe	2.718	2.694	2.711	2.703	2.706	2.678	2.272	2.703	2.252
Mn	0.064	0.070	0.066	0.073	0.063	0.102	0.607	0.070	0.632
Mg	0.098	0.106	0.095	0.091	0.094	0.089	0.068	0.093	0.056
Ca	0.061	0.080	0.076	0.075	0.075	0.069	0.066	0.071	0.076
ΣX-site	2.945	2.942	2.949	2.945	2.940	2.940	3.014	2.940	3.017
Al	1.984	1.979	1.981	1.993	1.997	1.986	1.956	1.994	1.957
ΣY-site	1.984	1.979	1.981	1.993	1.997	1.986	1.956	1.994	1.957
Si	3.065	3.060	3.061	3.061	3.062	3.068	3.008	3.065	3.006
ΣZ-site	3.065	3.060	3.061	3.061	3.062	3.068	3.008	3.065	3.006
Component									
Andradite	00	00	00	00	00	00	02	00	02
Pyrope	03	04	03	03	03	03	02	03	02
Spessartine	02	02	02	02	02	04	20	03	21
Grossular	02	03	03	03	03	02	01	02	01
Almandine	93	91	92	92	92	91	75	92	74

Table 55 Representative EMP analyses of Type 1 garnet. Apfu calculations based on 12 oxygens.Components are normalized to 100.

		G	ARNETS T	YPE 2 – H	Iwy69			
Wt % Ox	Grain	n 4-1	grain	5-1	grain 6-1		grain 7-1	
SiO ₂	36.333	36.265	36.554	36.523	36.588	36.620	36.555	36.612
TiO ₂	0.014	0.025	0.020	0.013	0.014	0.031	0.025	0.015
Al ₂ O ₃	20.110	19.981	20.140	20.112	20.144	20.092	20.000	20.044
FeO	34.544	37.640	37.555	34.430	34.510	37.554	34.551	37.476
MnO	6.895	0.944	1.101	6.445	6.500	1.211	6.488	1.311
MgO	0.676	0.766	0.800	0.644	0.595	0.822	0.544	0.809
CaO	0.740	0.899	0.844	0.894	0.900	0.855	0.783	0.822
Total	99.349	96.520	97.014	99.073	99.263	97.185	98.957	97.089
apfu								
Ti	0.001	0.002	0.001	0.001	0.001	0.002	0.002	0.001
Fe	2.395	2.655	2.632	2.386	2.388	2.629	2.399	2.626
Mn	0.484	0.067	0.078	0.452	0.456	0.086	0.456	0.093
Mg	0.084	0.096	0.100	0.080	0.073	0.103	0.067	0.101
Ca	0.066	0.081	0.076	0.079	0.080	0.077	0.070	0.074
ΣX-site	3.030	2.901	2.887	2.998	2.998	2.897	2.994	2.895
Al	1.965	1.986	1.990	1.965	1.965	1.982	1.957	1.979
Σ Y-site	1.965	1.986	1.990	1.965	1.965	1.982	1.957	1.979
Si	3.012	3.059	3.064	3.027	3.027	3.065	3.035	3.068
ΣZ-site	3.012	3.059	3.064	3.027	3.027	3.065	3.035	3.068
Component								
Andradite	01	00	00	01	01	00	01	00
Pyrope	03	03	03	03	03	03	02	03
Spessartine	16	02	03	15	15	03	15	03
Grossular	01	03	03	02	02	03	02	03
Almandine	79	92	91	79	79	91	80	91

Table 56 Representative EMP analyses of Type 2 garnets. *Apfu* calculations based on 12 oxygens.

# Ilmenite





Figure 117 BSE image of ilmenite grain (crosshair 3) with EDS spectrum. Mica (crosshair 1) & garnet (crosshair 2).

Ilmenite has been discovered in heavy mineral separations while qualitatively investigating grains by SEM. The EDS spectrum (Figure 117) corresponds to the grain on the lower right in the BSE image (left; crosshair 3).

#### "MONAZITE"



Figure 118 BSE images of unaltered (left) and altered (right) "monazite" grains. Left grain: "monazite" (crosshairs 1 & 3) and mica (crosshair 2). See Figure 119 for associated spectra for right grain.

"Monazite" has been identified by SEM and confirmed by microprobe. The BSE images in Figure 118 show the range of grain textures and crystal faces present in two of the grains analyzed. The first BSE image (left) is sub- to euhedral and the BSE image of the grain on the right is anhedral. The grain on the right has numerous inclusions of a thorium-rich phosphate. The grain on the left is free of inclusions and it appears to lack zonation. Based on X-site cation dominance, all of the grains analyzed should be classified as monazite-(Ce). Although, to note, that the inclusions within the grain (right) have a thorium weight percent of close to 20% as opposed to the other analyses that yielded thorium weight percentages ranging between three and seven percent. There is also an elevation of calcium weight percent in the areas of the grain that have elevated amounts of thorium, as these two elements often form a coupled substitution to satisfy charge balances in "monazites". Table 57 lists the representative monazite-(Ce) analyses.



Figure 119 BSE image of right grain in Figure 118 along with associated spectra.

MONAZITE-(CE) – HWY69 PEGMATITE						
Wt % Ox.	1 hwy	69-7-1	2 hwy69-7-1			
P ₂ O ₅	29.765	28.219	29.454			
SiO ₂	0.211	0.187	0.244			
TiO ₂	0.000	0.000	0.000			
ThO ₂	3.775	19.221	6.554			
$UO_2$	0.445	0.389	1.223			
Al ₂ O ₃	0.076	0.055	0.060			
$La_2O_3$	13.433	6.543	12.344			
$Ce_2O_3$	28.554	20.544	27.115			
$Pr_2O_3$	2.452	2.009	2.654			
$Nd_2O_3$	14.765	12.633	14.551			
$Sm_2O_3$	1.556	1.765	1.091			
$Eu_2O_3$	0.009	0.008	0.010			
$Gd_2O_3$	0.676	0.854	0.566			
Dy ₂ O ₃	0.334	0.393	0.255			
Er2O3	bdl	bdl	bdl			
Yb ₂ O ₃	0.023	0.000	0.020			
$Y_2O_3$	0.677	0.788	0.744			
$Sc_2O_3$	0.030	0.224	0.053			
MgO	0.045	0.043	0.020			
CaO	2.654	3.788	2.090			
MnO	0.066	0.054	0.033			
FeO	0.221	0.422	0.245			
PbO	0.122	0.876	0.233			
Total	99.889	99.015	99.559			
apfu						
Th	0.033	0.177	0.059			
U	0.004	0.003	0.011			
Al	0.003	0.003	0.003			
La	0.193	0.097	0.179			
Ce	0.406	0.304	0.391			
Pr	0.035	0.030	0.038			
Nd	0.205	0.182	0.205			
Sm	0.021	0.025	0.015			
Eu	0.000	0.000	0.000			
Gd	0.009	0.011	0.007			
Dy	0.004	0.005	0.003			
Y	0.014	0.017	0.016			
Sc	0.001	0.008	0.002			
Mg	0.003	0.003	0.001			
Ca	0.111	0.164	0.088			
Mn	0.002	0.002	0.001			
Fe	0.007	0.014	0.008			
Pb	0.001	0.010	0.002			
ΣΧ	1.052	1.053	1.029			
Р	0.979	0.964	0.981			
Si	0.008	0.008	0.010			
ΣΥ	0.987	0.972	0.991			

Table 57 Representative EMP analyses of monazite-(Ce). Apfu calculations based on 4 oxygens.

#### MUSCOVITE



Figure 120 BSE image of polished muscovite mica grain.

Muscovite has been identified in heavy mineral separations, qualitatively investigated by SEM, and later confirmed by microprobe. Analyses reveal that grains are indeed muscovite, as defined by Tischendorf's (1997) mica classification scheme (Figure 185). Muscovite mica is far more common than biotite in Hwy69 samples. Muscovite has been analyzed by DCP for lithium content and is accounted for stoichiometrically by the equation 0.3935* fluorine weight percent^{1.326} (Tischendorf, 1997). Calculated lithium content is higher than DCP results of 0.273 weight percent. Rubidium weight percent is either just within or below detection limits. Cesium is below detection limits. This suggests that muscovite micas from the Hwy69 pegmatite are rather poorly evolved. Table 58 lists the representative analyses.

		Muscovit	E – HWY69 I	PEGMATITE		
Wt % Ox.	4sz-3-2	.7.2-1	.7.2-2	.7.3-1	iz-1-1	iz-2-1
SiO ₂	46.165	45.998	45.896	45.799	46.009	45.985
TiO ₂	0.022	0.017	0.009	0.014	0.010	0.014
Al ₂ O ₃	32.127	33.977	34.009	34.223	34.277	34.533
Fe ₂ O ₃	0.000	0.000	0.000	0.000	0.000	0.000
FeO	2.544	2.009	2.332	2.111	2.002	2.033
MnO	0.211	0.132	0.113	0.092	0.098	0.093
MgO	1.322	1.225	1.344	1.540	1.233	1.091
CaO	0.033	0.055	0.065	0.070	0.056	0.042
Li ₂ O ( <i>calc</i> .)	0.513	0.470	0.384	0.470	0.431	0.447
Na ₂ O	0.677	0.599	0.733	0.855	0.778	0.833
K ₂ O	9.844	9.754	9.566	9.733	9.566	9.455
Rb ₂ O	0.015	0.016	0.013	0.011	0.009	0.013
Cs ₂ O	bdl	bdl	bdl	bdl	bdl	bdl
F	1.221	1.143	0.982	1.144	1.071	1.100
H ₂ O	3.822	3.915	3.995	3.937	3.963	3.955
F=O	- 0.514	- 0.481	- 0.413	- 0.482	- 0.451	- 0.463
Total	98.001	98.829	99.027	99.517	99.052	99.130
apfu						
Si	6.291	6.189	6.170	6.132	6.171	6.160
^{IV} Al	1.709	1.811	1.830	1.868	1.829	1.840
$\Sigma$ T-site	8.000	8.000	8.000	8.000	8.000	8.000
^{VI} Al	3.451	3.576	3.559	3.532	3.590	3.612
Ti	0.002	0.002	0.001	0.001	0.001	0.001
Fet	0.290	0.226	0.262	0.236	0.225	0.228
Mn	0.024	0.015	0.013	0.010	0.011	0.011
Mg	0.269	0.246	0.269	0.307	0.247	0.218
Li (calc.)	0.281	0.254	0.208	0.253	0.233	0.241
ΣY-site	4.317	4.319	4.312	4.339	4.307	4.311

Table 58 Representative EMP analyses of muscovite mica. Apfu calculations based on 24 anions. Table continues on next page.

K	1.711	1.674	1.641	1.662	1.637	1.616
Ca	0.005	0.008	0.009	0.010	0.008	0.006
Na	0.179	0.156	0.191	0.222	0.202	0.216
Rb	0.001	0.001	0.001	0.001	0.001	0.001
Cs	bdl	bdl	bdl	bdl	bdl	bdl
ΣX-site	1.896	1.839	1.842	1.895	1.848	1.839
F	0.526	0.486	0.418	0.484	0.454	0.466
OH (calc.)	3.474	3.514	3.582	3.516	3.546	3.534
ΣW-site	4.000	4.000	4.000	4.000	4.000	4.000

# Pyrite





Figure 121 BSE image of pyrite grain with corresponding EDS spectrum.

Pyrite has been identified in heavy mineral separations and qualitatively analyzed by SEM.

### PYROCHLORE SUPERGROUP



Figure 122 BSE image of pyrochlore (crosshairs 1, 2, 4, & 5) and K-feldspar (crosshair 3) inclusions from Hwy69.

A member of the pyrochlore supergroup has been quantitatively confirmed from Hwy69 samples. The grain has K-feldspar inclusions, but is otherwise geochemically homogeneous. Weight percent totals are very near 100%. The grain is subhedral. This sample is niobium dominant and based on oxygen and calcium dominance, classification should be oxycalciopyrochlore.

# ZIRCON





Figure 123 BSE image of zircon grain along with corresponding EDS spectrum.

Zircon has been identified in heavy mineral separations and qualitatively investigated by SEM. Zircon is uncommon in heavy mineral separations. Grains are small, being over just a couple of hundred microns. None have survived sample preparation for further microprobe analysis. SEM analyses have been unable to detect a hafnium, so the assumption is that zircon from the Hwy69 pegmatite is poorly evolved.

### STURGEON RIVER PEGMATITE



Figure 124 Field pictures of Sturgeon River pegmatite.

The Sturgeon River pegmatite has by far the largest exposure of any of the pegmatites visited. It is located in Dickinson County, Michigan. It is about six miles west of the Hwy69 pegmatite and just west of the North branch of the Sturgeon River. Visually, the Sturgeon River contains pink to orange colored feldspar, mica, black tourmaline, and quartz. The following minerals have been qualitatively and quantitatively identified by SEM and EMP: apatite, "bastnäsite", biotite, feldspar, fluorite, garnet, ilmenite, iron oxides, "monazite", muscovite mica, pyrite, rutile, tourmaline, uraninite, "xenotime", quartz, and zircon have been analyzed by SEM; fluorapatite, bastnäsite-(Ce), Fe-biotite, K-feldspar and plagioclase feldspar, garnet, ilmenite, monazite-(Ce), muscovite, rutile, and fluorschorl tourmaline have been quantitatively confirmed by microprobe.

#### APATITE



Figure 125 BSE image of polished apatite grains (1 & 2).

Apatite is relatively common at the Sturgeon River pegmatite. Grains are sub- to euhedral and lack visible zonation. Apatites are fluorine dominant and therefore classified as fluorapatite. Apatite has been discovered at Sturgeon River before; however, it is only qualitatively listed as the generic 'apatite'. This is the first set of analyses quantitatively identifying the mineral by its end-member nomenclature. Aside from "xenotime" and "monazite", apatite is the only accessory phosphate mineral at the Sturgeon River. Table 59 lists the representative analyses.

APATITE -	APATITE – GROVELAND MINE				
I	<b>PEGMATITE</b>				
Wt % Oxide	2SR-1	2SR-2			
P ₂ O ₅	42.210	42.156			
SiO ₂	0.023	0.044			
Al ₂ O ₃	0.000	0.021			
FeO	0.000	0.008			
MnO	0.000	0.009			
CaO	55.610	55.675			
H ₂ 0 ( <i>calc</i> .)	0.402	0.353			
F	2.892	3.001			
F=O	- 1.218	- 1.264			
Total	99.920	99.986			
apfu					
Ca	5.001	5.006			
Fe	0.000	0.000			
ΣΧ	5.001	5.006			
Р	2.999	2.995			
Si	0.002	0.004			
Al	0.000	0.002			
ΣΥ	3.001	3.001			
F	0.768	0.796			
H (calc.)	0.232	0.204			
$\Sigma \overline{W}$	1.000	1.000			

Table 59 Representative EMP analyses of apatite.	
Apfu calculations based on 13 anions.	

### BASTNÄSITE



Figure 126 BSE image of polished grain with "bastnäsite".

"Bastnäsite" has been qualitatively investigated by SEM and confirmed via microprobe. "Bastnäsite" is a rare earth fluorocarbonate classified based on the dominance of yttrium, lanthanum, and cerium. Microprobe analyses reveal that cerium is the dominant cation, thus classification is bastnäsite-(Ce). No discrete grains of bastnäsite-(Ce) have been found, only inclusions in other grains. The above sample has a mottled appearance with mica and feldspar. This represents the first reported occurrence of bastnäsite-(Ce) at the Sturgeon River pegmatite. Bastnäsite-(Ce) is a rare earth element accessory mineral that has been found at the Sturgeon River in addition to "monazite" and "xenotime". Table 60 lists the representative analysis.

BASTNÄSITE – STURGEON					
<b>RIVER PEGMATITE</b>					
Wt. % oxide	SR-1				
P ₂ O ₅	0.232				
SiO ₂	0.092				
UO ₂	0.055				
ThO ₂	5.565				
Y ₂ O ₃	0.809				
Al ₂ O ₃	0.088				
$La_2O_3$	15.223				
Ce ₂ O ₃	29.766				
Pr ₂ O ₃	2.530				
Nd ₂ O ₃	15.445				
Sc ₂ O ₃	0.044				
$Sm_2O_3$	1.122				
$Eu_2O_3$	0.000				
Gd ₂ O ₃	0.500				
Dy ₂ O ₃	0.176				
Yb ₂ O ₃	0.029				
FeO	0.332				
MnO	0.033				
CaO	2.665				
PbO	0.022				
F	6.850				
CO ₂ (calc)	20.082				
H ₂ O	1.223				
Sub-Total	102.883				
Ox. cor for F	2.883				
Total	100.000				

Table 60 Representative EMP analyses for bastnäsite.Apfu calculations based on 4 anions. Table continues on next page.

anfu	
ирји	0.007
Р	0.007
Si	0.003
U	0.000
Th	0.046
Y	0.016
Al	0.004
Fe	0.000
La	0.205
Ce	0.397
Pr	0.034
Nd	0.201
Sc	0.001
Sm	0.014
Eu	0.000
Gd	0.006
Dy	0.002
Yb	0.000
Fe	0.010
Mn	0.001
Ca	0.104
Pb	0.000
F	0.790
С	1.000
OH	0.297
Σ REE	0.861
REE + Ca	0.965
Σ A Site	1.043

#### BIOTITE



Figure 127 BSE image of polished biotite mica grain (1, 2, & 3).

Fe-biotite mica has been identified in heavy mineral separations, qualitatively analyzed by SEM, and confirmed by electron microprobe analysis as Fe-biotite based on Tischendorf's (1997) mica classification scheme (Figure 186). It has been further tested by DCP in order to determine lithium content. DCP analysis has revealed muscovite micas from the Sturgeon River pegmatite contain lithium and has been stoichiometrically accounted for in biotites based on the equation of Tischendorf (1997): 155 * magnesium weight percent^{-3.1}. Rubidium and cesium are both below detectable limits. Muscovite mica is currently listed as a mica species found at the Sturgeon River, but this is the first reported occurrence of biotite mica that has been quantitatively confirmed. The Sturgeon River pegmatite is in direct contact with a vein of biotite schist. Although this biotite has not been quantitatively confirmed by microprobe, SEM EDS spectral analyses reveal that this mica appears to be relatively more enriched in magnesium and depleted in iron, than the biotite from the pegmatite itself. Titration of biotite from schist reveal a FeO weight percent of 15.697, which is lower than biotite from pegmatite samples. Results from titration of pegmatite biotite yield 27.045 weight percent, a value in excess of microprobe

analysis. The difference in FeO content might be due to relatively higher magnesium content in SEM analyses. Table 61 lists the representative analysis. Only one analysis is listed due to equipment error when analyzing the other biotite mica grains.

BIOTITE – STURGEON BIVER PECMATITE				
Wt % Ox.	SR grain			
SiO ₂	35.388			
TiO ₂	2.776			
Al ₂ O ₃	17.722			
Fe ₂ O ₃	0.000			
FeO	21.334			
MnO	0.566			
MgO	8.766			
CaO	0.031			
Li ₂ O (calc.)	0.185			
Na ₂ O	0.221			
K ₂ O	9.457			
Rb ₂ O	0.000			
Cs ₂ O	bdl			
F	0.966			
$H_2O$	3.476			
F=O	- 0.407			
Total	100.481			
apfu				
Si	5.394			
^{IV} Al	2.606			
ΣT-site	8.000			
^{VI} Al	0.578			
Ti	0.318			
Fet	2.720			
Mn	0.073			
Mg	1.992			
Li (calc.)	0.114			
Σ Y-site	5.795			

Table 61 Representative EMP analyses of biotite mica. Apfu calculations based on 24 anions. Table continues on next page.

K	1.839
Ca	0.005
Na	0.065
Rb	0.000
Cs	bdl
Σ X-site	1.909
F	0.466
OH*	3.534
$\Sigma$ W-site	4.000

#### Feldspars

#### **K-Feldspar**



Figure 128 BSE image of polished K-feldspar grain with close-up. Associated EDS spectra are included.

K-Feldspar is present at the Sturgeon River pegmatite. The rubidium content in Kfeldspar analyzed by microprobe is just within detection limits suggesting that K-feldspar at the Sturgeon River pegmatite is poorly evolved. Cesium, barium, and strontium are all below detectable limits. Grains have irregular blebs of plagioclase as well as occasional inclusions of apatite and biotite mica (Figure 128; BSE image left; crosshair 1). K-feldspar grains have been further analyzed by XRD and it has been determined that there is a large degree of structural ordering, therefore K-feldspar should be classified as microcline (Figure 173) (Wright & Stewart, 1968). Table 62 lists the representative microprobe analyses.

K-FELDSPAR – STURGEON RIVER PEGMATITE								
Wt% ox	6c grain 1-1	6c grain 1-2	6c grain 2-1	6c grain 3-1	6g grain 1-1	6g grain 1-2	6g grain 2-1	6g grain 2-2
P ₂ O ₅	bdl							
SiO ₂	64.672	64.711	64.699	64.700	64.833	69.055	64.799	68.889
TiO ₂	0.012	0.008	0.009	0.015	0.010	0.000	0.012	0.000
Al ₂ O ₃	18.383	18.391	18.373	18.341	18.341	19.566	18.355	19.499
FeOt	0.011	0.009	0.008	0.009	0.009	0.000	0.011	0.000
CaO	0.000	0.000	0.000	0.008	0.009	0.312	0.012	0.245
Na ₂ O	0.454	0.393	0.434	0.393	0.595	10.871	0.494	10.982
K ₂ O	16.222	16.181	16.181	16.282	15.985	0.233	16.112	0.233
Rb ₂ O	0.014	0.015	0.016	0.020	0.011	0.000	0.013	0.000
Total	99.768	99.708	99.720	99.768	99.793	100.037	99.808	99.848
apfu								
K	0.959	0.956	0.957	0.963	0.944	0.013	0.951	0.013
Na	0.041	0.035	0.039	0.035	0.053	0.918	0.044	0.929
Ca	0.000	0.000	0.000	0.000	0.000	0.015	0.001	0.011
Rb	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.000
ΣX-site	1.000	0.991	0.996	0.999	0.997	0.946	0.996	0.953
Al	1.004	1.004	1.003	1.002	1.000	1.004	1.001	1.003
Fe	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
ΣY-site	1.004	1.004	1.003	1.002	1.000	1.004	1.001	1.003
Si	2.996	2.998	2.998	2.998	3.000	3.007	2.999	3.006
Ti	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.000
Р	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Σ Z-site	2.996	2.998	2.998	2.999	3.000	3.007	2.999	3.006

Table 62 Representative EMP analyses of K-feldspar. Apfu calculated based on 8 oxygens.

#### PLAGIOCLASE FELDSPAR



Figure 129 BSE images of plagioclase feldspar grain (left) with close-up (right). Plagioclase grain (left; crosshair 2), K-feldspar blebs (crosshair 1). Close-up (right): apatite (crosshair 1) & pyrite (crosshair 2).

Plagioclase feldspar is present in heavy mineral separations and has been further investigated by SEM as well as by electron microprobe. Plagioclase feldspar grains contain inclusions of Fe-rich mica, apatite, and pyrite. Plagioclase also have blebs as well as thin, irregularly shaped ribbons of K-feldspar. Rubidium, barium, and cesium are all below detectable limits. Table 63 lists the representative analyses.

PLAGIOCLASE FELDSPAR – STURGEON RIVER PEGMATITE								
Wt% ox	feldspar	feldspar	1a grain	1a grain	1a grain	1a grain	6h grain	6h grain
W 170 UX	uncl-2-1	uncl-2-2	1-1	1-2	2-1	2-2	1-1	1-2
$P_2O_5$	0.013	bdl						
SiO ₂	64.903	64.922	64.885	64.784	64.756	68.674	68.677	64.800
TiO ₂	0.017	0.013	0.008	0.011	0.014	0.000	0.000	0.008
Al ₂ O ₃	18.392	18.410	18.388	18.393	18.412	19.988	19.733	18.411
FeOt	0.011	0.014	0.011	0.014	0.009	0.000	0.000	0.009
CaO	0.009	0.000	0.000	0.000	0.000	0.971	0.487	0.000
Na ₂ O	0.455	0.464	0.512	0.544	0.467	10.512	10.588	0.383
K ₂ O	16.093	16.008	16.100	16.093	16.006	0.167	0.178	16.004
Rb ₂ O	0.013	0.012	0.014	0.016	0.015	0.000	0.000	0.012
Total	99.906	99.843	99.931	99.869	99.679	100.312	99.663	99.627
apfu								
K	0.949	0.944	0.949	0.950	0.946	0.009	0.010	0.946
Na	0.041	0.042	0.046	0.049	0.042	0.886	0.897	0.034
Ca	0.000	0.000	0.000	0.000	0.000	0.045	0.023	0.000
Rb	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
ΣX-site	0.990	0.986	0.995	0.999	0.988	0.940	0.930	0.980
Al	1.002	1.003	1.002	1.003	1.005	1.024	1.016	1.005
Fe	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Σ Y-site	1.002	1.003	1.002	1.003	1.005	1.024	1.016	1.005
Si	2.999	3.001	2.999	2.997	2.999	2.985	3.000	3.001
Ti	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Р	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
ΣZ-site	3.001	3.001	2.999	2.997	2.999	2.985	3.000	3.001

Table 63 Representative EMP analyses of plagioclase (albite). Apfu calculations based on 8 oxygens.

# FLUORITE



Figure 130 BSE image of fluorite grain. Lighter colored matrix is of undetermined chemistry. Bottom grain (right) is garnet.

Fluorite (crosshair 2) has been discovered in heavy mineral separations and qualitatively confirmed by SEM. Fluorite in heavy mineral separations is relatively rare at the Sturgeon River. This represents the first reported occurrence of fluorite at the Sturgeon River.

### GARNET



Figure 131 BSE image of polished garnet grain (left) with inclusions: Garnet (crosshairs 1 & 2), K-feldspar (crosshairs 3 & 6), plagioclase (crosshair 4), and quartz (crosshair 5). Unpolished garnet grain (right; crosshair 1).

Abundant garnet is found in heavy mineral separations. Garnets have been qualitatively analyzed by SEM and quantitatively confirmed by electron microprobe. Despite the lack of textural homogeneity, garnet from the Sturgeon River is surprisingly geochemically homogeneous from core to rim. All grains investigated have fractures, which have been subsequently filled, as well as numerous inclusions of quartz, muscovite mica, feldspar, zircon, and rare "monazite" and "xenotime". The fracture infills appear to be a member of the mica species. The almandine component in garnets ranges from 83-86% and the spessartine component 14-16%. The pyrope, andradite, and grossular components are either not present or below 01%. Table 64 lists the representative analyses. An X-ray map of elemental composition for a grain of garnet with an inclusion of "monazite" and quartz is shown (Figure 132) to illustrate the presence of fractures and associated inclusions. Additional analyses are listed in Tables 93, 94, and 95 of the appendices.



Figure 132 BSE image of garnet with "monazite" inclusion (above). X-ray map with elemental color overlay (below). Quartz (red), garnet (mottled light green), mica fracture infill (dark green), feldspar (mottled pink; upper right), apatite (yellow), & "monazite" (bright blue).

An X-ray map has been conducted to investigate homogeneity of a garnet grain. The above set of images in Figure 132 includes BSE images of a garnet grain with a close-up of a "monazite" inclusion. Quartz inclusions can be clearly seen (red) as well as the fracture infills of an Fe-rich mica species (darker green). The "monazite" in the close-up BSE image (bright blue) is suggested to be cerium dominant. The yellow rim surrounding most of the grain is apatite.

The uniform coloration illustrates the geochemical homogeneity of garnets found at the Sturgeon River.

GARNETS – STURGEON RIVER PEGMATITE								
Wt % Ox	grain 1-2	grain 2-1	grain 3-1	grain 4-1	grain 5-1	grain 6-1	grain 7-1	
SiO ₂	36.522	36.498	36.488	36.466	36.488	36.522	36.505	
TiO ₂	0.009	0.011	0.008	0.009	0.009	0.013	0.021	
Al ₂ O ₃	20.600	20.577	20.489	20.568	20.466	20.540	20.544	
FeO	36.198	36.088	36.333	36.522	36.600	36.766	36.544	
MnO	7.009	7.099	6.785	6.400	6.555	6.330	6.766	
MgO	0.054	0.033	0.028	0.041	0.040	0.029	0.028	
CaO	0.077	0.054	0.044	0.027	0.029	0.040	0.029	
Total	100.469	100.360	100.175	100.033	100.187	100.240	100.437	
apfu								
Ti	0.001	0.001	0.000	0.001	0.001	0.001	0.001	
Fe	2.493	2.489	2.510	2.531	2.527	2.540	2.518	
Mn	0.488	0.495	0.474	0.447	0.458	0.442	0.472	
Mg	0.007	0.004	0.003	0.005	0.005	0.004	0.003	
Ca	0.007	0.005	0.004	0.002	0.003	0.004	0.003	
Σ X-site	2.996	2.994	2.991	2.986	2.994	2.991	2.997	
Al	1.997	1.997	1.992	1.999	1.990	1.995	1.994	
Σ Y-site	1.997	1.997	1.992	1.999	1.990	1.995	1.994	
Si	3.004	3.005	3.010	3.007	3.010	3.009	3.006	
ΣZ-site	3.004	3.005	3.010	3.007	3.010	3.009	3.006	
Component								
Pyrope	00	00	00	00	00	00	00	
Spessartine	16	17	16	15	15	15	16	
Grossular	00	00	00	00	00	00	00	
Almandine	84	83	84	85	85	85	84	

Table 64 Representative EMP analyses of garnet. Apfu calculations based on 12 oxygens.
### Ilmenite



Figure 133 BSE image of ilmenite grain. Mica (crosshairs 1 & 5), quartz (crosshair 2), & ilmenite (crosshairs 3 & 4).

Ilmenite has been identified via SEM and confirmed by microprobe. Only a single discrete grain of ilmenite has been found in heavy mineral separations collected from the Sturgeon River pegmatite. Inclusions of ilmenite are found in mica grains (Figure 133). Table 65 lists the representative analysis. Weight percent totals are approximately 96% suggesting that there may be some alteration of the grain.

ILMENITE – STURGEON								
<b>RIVER PE</b>	GMATITE							
Wt% Oxide	SR grain 2-3							
TiO ₂	50.099							
$Al_2O_3$	0.091							
SiO ₂	0.055							
FeO	42.433							
MnO	2.988							
MgO	bdl							
CaO	bdl							
Nb ₂ O ₅	bdl							
Ta ₂ O ₅	bdl							
Total	95.543							
apfu								
FeO	1.021							
MnO	0.160							
MgO	bdl							
CaO	bdl							
Nb	bdl							
Та	bdl							
Σ X-site	1.181							
Ti	2.409							
Al	0.002							
Si	0.000							
Σ Y-site	2.411							

Table 65 Representative EMP analysis of ilmenite.Apfu calculations based on 6 oxygens.

# IRON OXIDE



Figure 134 BSE image of iron oxide (crosshair 3) and feldspar (crosshairs 1 & 2).

Iron oxide (either hematite or magnetite) was present in heavy mineral separations and

investigated by SEM.

# "MONAZITE"



Figure 135 BSE image of "monazite" grain.

"Monazite" has been found as inclusions as well as discrete grains at the Sturgeon River pegmatite. "Monazite" has been qualitatively analyzed by SEM and confirmed by electron microprobe. Cerium is the dominant X-site cation, therefore classification is monazite-(Ce). Weight percent is near 99%, suggesting that only slight (if any) alteration has occurred with the analyzed grain. Other than apatite and "xenotime", monazite-(Ce) is the only accessory phosphate mineral. "Monazite" is relatively more common REE-bearing mineral than either "xenotime" or "bastnäsite" in samples. Both of the latter occur as rare inclusions. Table 66 lists the representative analysis.

MONAZITE-(CE) –							
STURGEON RIVER							
PEGM	ATITE						
Wt % Ox.	8 SR-2						
P ₂ O ₅	29.166						
$SiO_2$	0.154						
ThO ₂	0.000						
$UO_2$	5.895						
$Al_2O_3$	0.893						
$La_2O_3$	0.052						
$Ce_2O_3$	12.544						
$Pr_2O_3$	27.860						
$Nd_2O_3$	2.443						
$Sm_2O_3$	14.215						
$Gd_2O_3$	0.512						
$Dy_2O_3$	0.236						
Yb ₂ O ₃	0.031						
$Y_2O_3$	0.677						
$Sc_2O_3$	0.022						
MgO	0.032						
CaO	2.245						
MnO	0.031						
FeO	0.322						
PbO	0.182						
Total	98.626						
apfu							
Th	0.053						
U	0.008						
Al	0.002						
La	0.184						
Ce	0.405						
Pr	0.035						
Nd	0.202						
Sm	0.015						
Y	0.014						
Sc	0.001						
Mg	0.000						
Ca	0.096						
Mn	0.001						
Fe	0.011						
ΣΧ	1.041						
Р	0.981						
Si	0.006						
ΣΥ	0.987						

Table 66	Representative EMP analyses of monazite-(Ce).
	Apfu calculations based on 4 oxygens.

#### MUSCOVITE



Figure 136 BSE image of polished muscovite mica grain (1, 2 & 3).

Muscovite mica has been identified in heavy mineral separations, qualitatively investigated, and confirmed as muscovite (Figure 185) by microprobe using Tischendorf's classification scheme of micas (1997). Muscovite mica has rubidium contents just within detectable limits. Cesium is below detection limits. DCP analyses reveal a lithium weight percent of 0.338 and 0.627 and as such, is stoichiometrically calculated for by the equation: 0.3935 * fluorine weight percent^{1.326}. Calculated lithium weight percent falls in between these two values. Table 67 lists the representative muscovite mica analyses.

	MUSCOVITE – STURGEON RIVER PEGMATITE										
Wt %	SR mu	SR mu	SR mu	SR mu	grain	grain	grain	grain	grain	grain	
SiO ₂	44.974	44.906	44.877	44.9	45.784	45.788	45.644	46.077	45.778	45.800	
TiO	0.015	0.013	0.012	0.023	0.009	0.021	0.014	0.009	0.011	0.014	
Al ₂ O ₂	31 945	31 677	32 001	31 891	34 099	34 533	34 668	34 336	34 655	34 745	
Fe ₂ O ₂	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
FeO	3.224	3.399	3.114	3.500	2.899	1.999	1.891	2.112	2.009	1.651	
MnO	0.655	0.587	0.544	0.443	0.077	0.093	0.100	0.092	0.143	0.114	
MgO	1.332	1.544	1.5	1.734	1.122	0.761	0.671	0.722	0.687	0.633	
CaO	0.177	0.212	0.225	0.167	0.055	0.071	0.121	0.088	0.072	0.078	
$Li_2O$	0.442	0.455	0.514	0.455	0.384	0.454	0.382	0.411	0.446	0.457	
Na ₂ O	0.673	0.543	0.566	0.512	0.766	0.687	0.855	0.723	0.677	0.595	
K ₂ O	9.512	9.121	9.023	8.923	9.444	9.335	9.451	9.500	9.444	9.655	
Rb ₂ O	0.015	0.014	0.011	0.013	0.013	0.022	0.015	0.012	0.012	0.014	
Cs ₂ O	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl	
F	1.092	1.116	1.223	1.115	0.981	1.113	0.978	1.033	1.099	1.119	
H ₂ O	3.829	3.803	3.760	3.815	3.995	3.919	3.980	3.966	3.931	3.918	
F=O	- 0.460	- 0.470	- 0.515	- 0.469	- 0.413	- 0.469	- 0.412	- 0.435	- 0.463	- 0.471	
Total	97.425	96.921	96.855	97.021	99.214	98.327	98.358	98.646	98.501	98.322	
apfu											
Si	6.204	6.215	6.200	6.197	6.156	6.174	6.159	6.201	6.166	6.174	
^{IV} Al	1.796	1.785	1.800	1.803	1.844	1.826	1.841	1.799	1.834	1.826	
ΣT-site	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	
^{VI} Al	3.398	3.382	3.412	3.386	3.559	3.662	3.674	3.647	3.668	3.694	
Ti	0.002	0.001	0.001	0.002	0.001	0.002	0.001	0.001	0.001	0.001	
Fet	0.372	0.393	0.360	0.404	0.326	0.226	0.213	0.238	0.226	0.186	
Mn	0.077	0.069	0.064	0.052	0.009	0.011	0.011	0.010	0.016	0.013	
Mg	0.274	0.319	0.309	0.357	0.225	0.153	0.135	0.145	0.138	0.127	
Li ( <i>calc</i> .)	0.245	0.253	0.286	0.252	0.207	0.246	0.207	0.222	0.242	0.248	
ΣY-site	4.370	4.417	4.432	4.453	4.327	4.300	4.241	4.263	4.291	4.269	

Table 67 Representative EMP analyses of muscovite mica. Apfu calculations based on 24 anions. Table continues on next page.

K	1.674	1.610	1.590	1.571	1.620	1.606	1.627	1.631	1.623	1.660
Ca	0.026	0.031	0.033	0.025	0.008	0.010	0.017	0.013	0.010	0.011
Na	0.180	0.146	0.152	0.137	0.200	0.180	0.224	0.189	0.177	0.156
Rb	0.001	0.001	0.001	0.001	0.001	0.002	0.001	0.001	0.001	0.001
Cs	bdl									
Σ X-site	1.881	1.788	1.776	1.734	1.829	1.798	1.869	1.834	1.811	1.828
F	0.476	0.488	0.534	0.487	0.417	0.475	0.417	0.440	0.468	0.477
OH (calc.)	3.524	3.512	3.465	3.513	3.583	3.525	3.583	3.560	3.532	3.523
ΣW-site	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000

# Pyrite



Figure 137 BSE image of pyrite grain (crosshair 1).

In addition to inclusions of pyrite in feldspar grains, discrete grains of pyrite have been found in heavy mineral separations. Grains have been qualitatively analyzed by SEM. Pyrite was relatively abundant at the Sturgeon River pegmatite.

#### RUTILE



Figure 138 BSE image of mica grain with rutile inclusions along with associated spectrum. Muscovite mica (crosshairs 2 & 5) & biotite mica (crosshair 3).

Rutile at the Sturgeon River pegmatite consists of rare inclusions in mica and even rarer discrete grains. SEM analyses reveal a detectable amount of niobium in the sample. The single microprobe analysis however, lacks detectable amounts of niobium. Due to the stoichiometric quantity of iron, there is some doubt as to whether the microprobe analysis represents rutile at all and may in actuality be ilmenorutile instead. Table 68 lists this analysis.

<b>RUTILE – REPUBLIC MINE</b>								
PEGM	ATITE							
Wt% Oxide	SR grain 2-4							
TiO ₂	73.994							
Al ₂ O3	0.121							
FeO	23.983							
MnO	1.445							
MgO	0.055							
CaO	0.100							
SiO ₂	0.000							
Total	99.698							
apfu								
Ti	0.839							
Al	0.002							
Fe	0.302							
Mn	0.014							
Mg	0.001							
Ca	0.002							
Si	0.000							
Σ X-site	1.160							

Table 68 Representative EMP analysis of rutile.Apfu calculations based on 2 oxygens.

#### TOURMALINE



Figure 139 BSE image of polished tourmaline grain (1 & 2).

Tourmaline is rather ubiquitous at the Sturgeon River pegmatite. Tourmaline has been identified in heavy mineral separations and investigated by SEM. Tourmaline has been confirmed via microprobe as fluorschorl. Sturgeon River tourmalines are part of the alkali group based on X-site dominance. Tourmalines are relatively depleted in calcium as well as potassium. Sodium is the dominant alkali element. Sturgeon River pegmatites are somewhat enriched in magnesium, with a small amount of calculated lithium. Fluorine is dominant versus hydroxyl ions. Inclusions of quartz, intergrowths of quartz, K-feldspar, and mica are present in grains. Many grains are texturally and geochemically homogeneous. Table 69 has a list of representative analyses. Additional analyses listed in Tables 96 and 97 of the appendices.

TOURMALINE – STURGEON RIVER PEGMATITE										
Wt.%	grain									
Oxide	1-1	1-2	2-1	2-2	3-1	3-2	4-1	4-2	5-1	5-2
SiO ₂	36.311	36.331	36.400	36.238	36.351	36.333	36.400	36.412	36.550	36.417
TiO ₂	0.044	0.052	0.043	0.115	0.110	0.091	0.103	0.114	0.106	0.145
$Al_2O_3$	29.772	29.800	29.922	30.293	29.956	30.093	30.110	30.096	30.100	30.085
$B_2O_3$	10 222	10.220	10 245	10.220	10 217	10.224	10.246	10.246	10 271	10.246
(calc.)	10.525	10.520	10.545	10.559	10.517	10.554	10.540	10.540	10.571	10.540
FeOt	13.893	13.734	13.655	13.588	13.600	13.595	13.499	13.562	13.600	13.593
MnO	0.161	0.143	0.121	0.234	0.113	0.131	0.129	0.173	0.188	0.167
MgO	3.788	3.800	3.755	3.344	3.412	3.415	3.600	3.484	3.356	3.365
CaO	0.022	0.031	0.024	0.024	0.030	0.035	0.029	0.033	0.028	0.040
Na ₂ O	2.355	2.292	2.400	2.412	2.334	2.412	2.292	2.312	2.400	2.343
K ₂ O	0.033	0.044	0.021	0.040	0.033	0.034	0.032	0.026	0.045	0.031
Li ₂ O	0.222	0.251	0.286	0.200	0.260	0.250	0.210	0.222	0.402	0.269
( <i>calc</i> .)	0.252	0.231	0.280	0.299	0.309	0.550	0.510	0.555	0.402	0.508
$H_2O$	2 077	2 020	2.064	2 002	2 001	2 000	2 042	2 052	2 0 9 2	2 526
( <i>calc</i> .)	5.077	5.059	5.004	5.002	2.991	2.777	5.042	5.052	5.065	5.520
F	1.022	1.100	1.066	1.191	1.200	1.194	1.113	1.091	1.044	0.091
F=O	- 0.430	- 0.463	- 0.449	- 0.501	- 0.505	- 0.503	- 0.469	- 0.459	- 0.440	- 0.038
Total	100.602	100.475	100.653	100.617	100.310	100.514	100.537	100.575	100.834	100.479
apfu										
Na	0.769	0.748	0.782	0.786	0.763	0.787	0.747	0.753	0.780	0.763
Ca	0.004	0.006	0.004	0.004	0.005	0.006	0.005	0.006	0.005	0.007
K	0.007	0.009	0.005	0.009	0.007	0.007	0.007	0.006	0.010	0.007
Vac	0.220	0.237	0.200	0.201	0.225	0.200	0.241	0.235	0.205	0.223
( <i>calc</i> .)	0.220	0.237	0.207	0.201	0.225	0.200	0.241	0.235	0.205	0.225
$\Sigma$ X-site	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Fe	1.956	1.934	1.919	1.910	1.916	1.912	1.896	1.905	1.906	1.910
Mg	0.858	0.869	0.865	0.838	0.804	0.821	0.863	0.831	0.783	0.799
Al	0.000	0.000	0.000	0.002	0.000	0.000	0.000	0.000	0.000	0.000
Mn	0.023	0.020	0.017	0.033	0.016	0.019	0.018	0.025	0.027	0.024
Li	0.157	0.170	0 193	0.202	0.250	0.237	0.210	0.225	0.271	0 249
( <i>calc</i> .)	0.157	0.170	0.175	0.202	0.250	0.237	0.210	0.225	0.271	0.247
Ti	0.006	0.007	0.005	0.015	0.014	0.012	0.013	0.014	0.013	0.018
$\Sigma$ Y-site	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000
Al	5.908	5.915	5.925	6.000	5.947	5.965	5.961	5.959	5.945	5.957
Mg	0.092	0.085	0.075	0.000	0.053	0.035	0.039	0.041	0.055	0.043
$\Sigma$ Z-site	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Si	6.114	6.118	6.116	6.092	6.124	6.111	6.115	6.117	6.125	6.118
Al	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
$\Sigma$ T-site	6.114	6.118	6.116	6.092	6.124	6.111	6.115	6.117	6.125	6.118
В	3 000	3 000	3 000	3 000	3 000	3 000	3 000	3 000	3 000	3 000
(calc.)	5.000	5.000	5.000	5.000	5.000	5.000	5.000	5.000	5.000	5.000
Н	0.456	0.414	0.434	0 367	0.361	0.365	0.400	0.420	0.447	0.052
(calc.)	0.450	0.414	0.434	0.507	0.501	0.505	0.409	0.420	0.447	0.952
F	0.544	0.586	0.566	0.633	0.639	0.635	0.591	0.580	0.553	0.048
$\Sigma W+V$	4 000	4 000	4 000	4 000	4 000	4 000	4 000	4 000	4 000	4 000
sites	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000
Species	fluor-									
species	schorl									

Table 69 Representative EMP analyses of tourmaline. Apfu calculations based on 31 anions.

### URANINITE





Figure 140 BSE image of uraninite (crosshairs 1 & 2) on mica (crosshairs 2 & 4) along with corresponding EDS spectrum.

Uraninite with possible radiogenic lead has been discovered qualitatively in grains from heavy mineral separations by SEM. The associated EDS spectrum shows the uranium and lead peaks.

# "XENOTIME"



Figure 141 BSE image of epitaxial overgrowth of "xenotime" and zircon along with associated EDS spectra.

Even though "xenotime" is exceedingly rare in heavy mineral separations, a spectacular example of epitaxial intergrowth of single crystals of zircon and "xenotime" has been discovered. Efforts to further explore the sample by microprobe have failed due to the fragility of the grain. It is suggested that this particular grain be classified as xenotime-Y; however, without quantitative confirmation, this classification is uncertain.

# ZIRCON





Figure 142 BSE images of polished (left) and unpolished (right) zircon grains.

Zircon is relatively common in heavy mineral separations and has been investigated by SEM. Efforts to gain meaningful microprobe data has not been possible due to the heavily altered nature of the grains. It is important to note that SEM analyses of a few of the grains did reveal a detectable amount of hafnium.

### **GROVELAND PEGMATITE**



Figure 143 Field picture of Groveland Mine pegmatite exposure.

The Groveland Mine pegmatite is located in Dickinson County, Michigan just off of Hwy69 on Groveland Mine Rd. It is on the property included with the Groveland Iron Ore Mine from where it gets its name. Production stopped in the 1980's and the mine is currently owned by the Yelsky sisters who permitted access to the pegmatite. The pegmatite is poorly exposed. Visual inspection reveals abundant feldspar, quartz, and mica as well as beryl. Feldspar at the Groveland Mine is a brick red hue; the darkest shade of any of the samples collected. Of interest is that there are muscovite mica books that are kinked (Figure 144). Previous work on the Groveland Mine has been conducted and 24 minerals have been identified. Qualitative identification of heavy minerals by SEM reveal: apatite, beryl, biotite, columbite, K-feldspar and plagioclase feldspar, fluorite, gahnite, garnet, iron oxides, magnetite, "monazite", muscovite, pyrite, pyrophanite, quartz, rutile, tantalite, tourmaline, "xenotime", and zircon. The following minerals were quantitatively confirmed by electron microprobe: fluorapatite, beryl, Fe-biotite, ferrocolumbite, K-feldspar and plagioclase feldspar, gahnite, garnet, magnetite, monazite-(Ce), muscovite mica, pyrophanite, ferrotantalite, fluorschorl, xenotime-(Y), and zircon.



Figure 144 Close-up of kinked mica book from the Groveland Mine pegmatite.

#### APATITE



Figure 145 BSE image of polished apatite grain (1).

Apatite is extremely rare in heavy mineral separations and has been identified by using UV light. Only a single discrete grain has been found. Apatite is clear and colorless. Fluorine is dominant over both hydroxyl ions and chlorine, therefore apatite should be classified as fluorapatite. Table 70 lists the representative analyses. Along with "monazite" and "xenotime", apatite is an accessory phosphate mineral found at the Groveland Mine pegmatite.

APATITE – GROVELAND MINE								
PEGMATITE								
Wt % Oxide	GMP-1	GMP-2						
P ₂ O ₅	42.344	42.178						
SiO ₂	0.033	0.055						
Al ₂ O ₃	0.000	0.009						
FeO	0.000	0.008						
MnO	0.000	0.009						
CaO	55.622	55.700						
H ₂ 0 ( <i>calc</i> .)	0.392	0.354						
F	2.922	3.001						
F=O	- 1.230	- 1.264						
Total	100.083	100.050						
apfu								
Ca	4.991	5.005						
Fe	0.000	0.001						
ΣΧ	4.991	5.006						
Р	3.003	2.995						
Si	0.003	0.005						
Al	0.000	0.001						
ΣΥ	3.006	3.001						
F	0.774	0.796						
H (calc.)	0.226	0.204						
ΣΨ	1.000	1.000						

Table 70 Representative EMP analyses of apatite.Apfu calculations based on 13 anions.

BERYL



Figure 146 BSE image of polished beryl grain.

Beryl is relatively quite common at the Groveland Mine pegmatite. All samples have a light yellow-green hue. None are of gem quality. Beryl has been investigated by SEM and further analyzed by microprobe. DCP analysis of beryl reveals a lithium weight percent content of 0.329. SEM investigation has revealed an inhomogeneous texture. One grain in particular has a four millimeter long, few micron thick fracture which has been subsequently infilled by an aluminum-rich mica. A few beryl grains have inclusions approximately 50 microns in diameter. These inclusions are iron-rich, as well as calcium, aluminum, silicon, and phosphorus poor. One inclusion appears to be a thorium-rich phosphate. Only the beryl grains themselves have been analyzed by microprobe, owing to the size and rarity of the inclusions. Beryl grains are geochemically homogeneous from core to rim. Table 71 lists the representative analyses.

BERYL – GROVELAND MINE PEGMATITE								
Wt% ox	Beryl	Beryl	Beryl	Beryl	Beryl	Beryl	Beryl	
SiO ₂	66 996	67 044	66 974	<u> </u>	<u> </u>	66 972	5-1 66 956	
$TiO_2$	0.000	0,000	0.009	0.011	0.000	0.000	0.000	
	18 967	18 944	19 004	18 956	18 897	18 900	18 988	
BeO(calc.)	14 001	14 019	14 021	13 998	13 982	13 990	14 003	
FeO	0.221	0 388	0 341	0.211	0 144	0.215	0 154	
MnO	0.000	0.009	0.009	0.011	0.000	0.000	0.000	
MgO	0.000	0.003	0.005	0.021	0.000	0.000	0.000	
CaO	0.077	0.030	0.051	0.021	0.0021	0.000	0.000	
Rb ₂ O	0.022	0.000	0.000	0.000	0.021	0.022	0.000	
	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
NacO	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
K ₂ O	0.065	0.052	0.411	0.303	0.435	0.437	0.555	
Total	100.638	100 864	100.917	100.632	100 502	100 580	100 699	
anfu	100.050	100.004	100.917	100.032	100.502	100.500	100.077	
Be (calc.)	3 000	3 000	3 000	3 000	3 000	3 000	3 000	
$\mathbf{\Sigma} \mathbf{R}_{0}$	3.000	3.000	3.000	3.000	3.000	3.000	3.000	
	3.000	1.062	1.061	1.060	1.070	1.069	1.060	
AI Ea	1.9/1	1.905	1.901	1.909	1.970	1.908	0.011	
ге Ма	0.010	0.029	0.023	0.010	0.011	0.010	0.011	
NIN M-	0.000	0.001	0.001	0.001	0.000	0.000	0.000	
Mg	0.006	0.004	0.004	0.003	0.001	0.000	0.000	
Ca	0.002	0.003	0.005	0.005	0.002	0.002	0.000	
$\Sigma$ Octahedral	1.995	1.980	1.996	1.994	1.984	1.986	1.980	
Si	5.976	5.973	5.966	5.975	5.981	5.979	5.972	
Al	0.024	0.027	0.034	0.025	0.019	0.021	0.028	
Ti	0.000	0.000	0.001	0.001	0.000	0.000	0.000	
Σ Tetrahedral	6.000	6.000	6.001	6.001	6.000	6.000	6.000	
Na	0.056	0.060	0.071	0.063	0.075	0.076	0.092	
K	0.007	0.006	0.007	0.005	0.006	0.005	0.007	
Σ Channel	0.063	0.066	0.078	0.068	0.081	0.081	0.099	

Table 71 Representative EMP analyses of beryl. Apfu calculations based on 18 oxygens.

#### BIOTITE



Figure 147 BSE image of polished biotite mica grains (1-4).

Biotite mica is relatively common at the Groveland Mine pegmatite. Fe-biotite present in hand samples and heavy mineral separations has been qualitatively investigated by SEM and later confirmed (Figure 186) as such by microprobe using Tischendorf's classification scheme (1997). Rubidium is just within detectable limits and cesium, below detection limits. DCP analyses detected lithium in muscovite mica samples and the equation (2.7 / (0.35 + magnesium weight percent)) - 0.13 has been used to stoichiometrically account for lithium (Tischendorf, 1997). Titration of biotite mica has yielded divalent iron contents of 27.959 weight percent, in excess of total iron in microprobe analyses, suggesting that biotite micas may contain divalent iron only. Weight percent totals are approximately 96% suggesting that biotites from the Groveland may have been altered.

One very notable example of alteration is a biotite grain that has numerous parallel alteration patterns. The overall grain chemistry suggests either biotite or possible chlorite (owing to the lack of potassium in SEM analyses). The outer most borders of the line of alteration is quartz, just inside of the quartz border is a mica species (possibly muscovite or biotite), and all

251

along the inner most zone are grains which appear to be a niobium-tantalum (possibly columbite/tantalite) species that is tantalum dominant. In some cases the length of the alteration line is in excess of a millimeter; the width of the line is about 40 microns.



Figure 148 BSE image (top) of mica grain and EDS spectra. BSE image (bottom) of alteration with corresponding EDS spectra.

#### COLUMBITE



Figure 149 BSE images of columbite/tantalite grain (left; crosshair 1) and polished grain (right; crosshairs 1 & 2) with inclusions of plagioclase (left; crosshair 2 & right; crosshairs 3 & 4).

Columbite is relatively very common at the Groveland Mine pegmatite. Some excellent (albeit small) crystals have been identified in heavy mineral separations. Grains are, for the most part, texturally and geochemically homogeneous. Microprobe analyses reveal that columbite grains are iron dominant and should be classified as ferrocolumbite. Table 72 lists representative analyses. Additional analyses listed in Table 98 of the appendices.

	FERROCOLUMBITE – GROVELAND MINE PEGMATITE										
Wt% Ox	GMP g	rain 5-1	GMP grain 6-1		GMP g	GMP grain 7-1		GMP grain 8-1		GMP grain 9-1	
Nb ₂ O ₅	69.666	69.643	69.333	69.400	69.786	69.722	66.778	66.734	65.578	65.600	
Ta ₂ O ₅	9.877	9.909	10.232	10.377	9.678	9.700	13.122	13.217	14.446	14.541	
SiO ₂	0.033	0.042	0.034	0.033	0.044	0.045	0.022	0.030	0.000	0.020	
TiO ₂	0.034	0.031	0.012	0.014	0.026	0.030	0.021	0.022	0.121	0.091	
Al ₂ O ₃	0.000	0.000	0.000	0.000	0.000	0.000	0.022	0.000	0.000	0.000	
FeO	16.778	16.562	14.876	14.700	16.800	16.712	15.311	15.265	15.899	15.766	
MnO	3.588	3.700	5.612	5.589	3.447	3.512	4.800	4.779	4.212	4.311	
MgO	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl	
Total	99.976	99.887	100.099	100.113	99.781	99.721	100.076	100.047	100.256	100.329	
apfu											
Fe	0.820	0.810	0.728	0.719	0.822	0.818	0.758	0.756	0.790	0.783	
Mn	0.178	0.183	0.278	0.277	0.171	0.174	0.241	0.240	0.212	0.217	
Si	0.002	0.002	0.002	0.002	0.003	0.003	0.001	0.002	0.000	0.001	
Al	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.000	0.000	0.000	
Mg	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl	
Σ X-site	0.998	0.994	1.006	0.996	0.993	0.992	1.000	0.996	1.002	1.000	
Nb	1.841	1.842	1.833	1.835	1.846	1.845	1.787	1.787	1.761	1.761	
Та	0.157	0.158	0.163	0.165	0.154	0.154	0.211	0.213	0.233	0.235	
Ti	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.005	0.004	
ΣY-site	2.000	2.001	1.996	2.000	2.001	2.001	1.999	2.000	2.000	2.000	

Table 72 Representative EMP analyses of ferrocolumbite. Apfu calculations based on 6 oxygens.

#### Feldspars

#### K-Feldspar



Figure 150 BSE image of polished K-feldspar grain (crosshair 2), plagioclase blebs (crosshair 2), and mica inclusion (crosshair 3).

K-feldspar has been qualitatively investigated and confirmed by microprobe analysis. K-feldspar grains are a dark red hue. Blebs of plagioclase, when present, are irregular in shape and orientation. Barium, strontium, and cesium are all below detection limits. Rubidium, when present, is just within detectable limits. This suggests that feldspar from the Groveland Mine is poorly evolved. XRD analyses reveal that K-feldspar from the Groveland Mine may have a certain degree of disorder as the analysis did not plot quite within the maximum microcline field (Figure 173). Table 73 lists the representative analyses.

	K-FELDSPAR – GROVELAND MINE PEGMATITE											
Wt% ox	GMP g	rain 3-1	GMP g	rain 5-1	GMP g	rain 7-1						
P ₂ O ₅	bdl	bdl	bdl	bdl	bdl	bdl						
SiO ₂	64.833	68.745	68.764	64.788	68.698	64.800						
TiO ₂	0.011	0.000	0.000	0.014	0.000	0.017						
Al ₂ O ₃	18.383	19.811	19.733	18.413	19.655	18.511						
FeOt	0.015	0.000	0.000	0.011	0.000	0.012						
CaO	0.009	0.211	0.112	0.000	0.000	0.000						
Na ₂ O	0.700	11.511	11.654	0.674	11.500	0.733						
K ₂ O	15.755	0.100	0.120	15.899	0.188	15.512						
Rb ₂ O	0.025	0.000	0.000	0.020	0.000	0.025						
Total	99.731	100.378	100.383	99.819	100.041	99.610						
apfu												
K	0.930	0.006	0.007	0.938	0.010	0.915						
Na	0.063	0.971	0.983	0.060	0.973	0.066						
Ca	0.000	0.000	0.000	0.000	0.000	0.000						
Rb	0.001	0.000	0.000	0.001	0.000	0.001						
ΣX-site	0.994	0.976	0.995	0.999	0.983	0.982						
Al	1.002	1.015	1.012	1.004	1.011	1.009						
Fe	0.000	0.000	0.000	0.000	0.000	0.000						
Σ Y-site	1.002	1.015	1.012	1.004	1.011	1.009						
Si	2.999	2.989	2.991	2.997	2.996	2.997						
Ti	0.000	0.000	0.000	0.000	0.000	0.001						
Р	0.000	0.000	0.000	0.000	0.000	0.000						
Al	0.000	0.000	0.000	0.000	0.000	0.000						
Σ Z-site	2.999	2.989	2.991	2.997	2.996	2.998						

Table 73 Representative EMP analyses of K-feldspar. Apfu calculations based on 8 oxygens.

#### PLAGIOCLASE FELDSPAR



Figure 151 BSE image of polished plagioclase grain (crosshairs 1 & 3) and K-feldspar blebs (crosshairs 2 & 4).

Plagioclase feldspar has been qualitatively identified by SEM and confirmed by microprobe. As with K-feldspar grains, plagioclase is also a dark red hue. Barium, strontium, and cesium are all below detectable limits. A detectable amount of rubidium is present in the blebs of K-feldspar that have exsolved. Blebs of K-feldspar are irregular in shape and size. A list of representative analyses is listed in Table 74. Additional analyses listed in Table 100 of the appendices.

	PLAGIOCLASE FELDSPAR – GROVELAND MINE PEGMATITE										
Wt% ox	GMP g	rain 1-1	GMP grain 2-1		GMP g	rain 4-1	GMP grain 5b-1				
P ₂ O ₅	0.011	0.000	0.000	0.009	0.000	0.000	0.012	0.000			
SiO ₂	64.894	68.800	68.782	64.833	64.833	68.823	64.698	68.743			
TiO ₂	0.009	0.000	0.000	0.011	0.011	0.000	0.011	0.000			
Al ₂ O ₃	18.411	19.484	19.600	18.383	18.383	19.745	18.455	19.745			
FeOt	0.015	0.000	0.000	0.015	0.015	0.000	0.016	0.000			
CaO	0.008	0.032	0.051	0.009	0.009	0.091	0.000	0.000			
Na ₂ O	0.655	11.781	11.688	0.700	0.700	11.611	0.678	11.455			
K ₂ O	15.766	0.160	0.091	15.755	15.755	0.092	15.682	0.212			
Rb ₂ O	0.032	0.000	0.000	0.025	0.025	0.000	0.023	0.000			
Total	99.801	100.257	100.212	99.740	99.731	100.362	99.575	100.155			
apfu											
K	0.930	0.009	0.005	0.930	0.930	0.005	0.927	0.012			
Na	0.059	0.995	0.987	0.063	0.063	0.979	0.061	0.968			
Ca	0.000	0.001	0.002	0.000	0.000	0.004	0.000	0.000			
Rb	0.001	0.000	0.000	0.001	0.001	0.000	0.001	0.000			
Σ X-site	0.990	1.005	0.994	0.994	0.994	0.988	0.989	0.980			
Al	1.003	1.001	1.006	1.002	1.002	1.012	1.007	1.014			
Fe	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000			
$\Sigma$ Y-site	1.003	1.001	1.006	1.002	1.002	1.012	1.007	1.014			
Si	2.999	2.998	2.996	2.999	2.999	2.993	2.996	2.995			
Ti	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000			
Р	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000			
Al	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000			
$\Sigma$ Z-site	2.999	2.998	2.996	2.999	2.999	2.993	2.996	2.995			

Table 74 Representative EMP analyses of plagioclase (albite). Apfu calculations based on 8 oxygens.

# Fluorite



Figure 152 BSE image of fluorite grain (1).

Fluorite is not very abundant in heavy mineral separations. Fluorite has been qualitatively investigated by SEM. Grains contain purple splotches and have visible inclusions when viewed under binocular microscope.

# GAHNITE



Figure 153 BSE close-up image of gahnite as well as other inclusions with associated EDS spectra.

Gahnite, a zinc spinel, has been identified qualitatively by SEM and confirmed by microprobe. Grains are approximately 20 microns in diameter and incredibly rare. Gahnite is associated with mica, magnetite, rutile, and pyrophanite. Table 75 lists the analyses.

GAHNITE – GROVELAND MINE									
PEGMATITE									
Wt % Oxide	grain 2-1	grain 2-2							
TiO2	0.133	0.099							
Al2O3	55.998	56.023							
Cr2O3	0.140	0.130							
FeOt	8.980	9.344							
MnO	1.221	1.116							
NiO	0.000	0.000							
MgO	0.230	0.100							
ZnO	33.678	33.672							
Total	100.38	100.48							
apfu									
Fe ²⁺	0.212	0.221							
Mn	0.031	0.028							
Ni	0.000	0.000							
Mg	0.010	0.004							
Zn	0.746	0.746							
Σ A-site	0.999	0.999							
Ti	0.002	0.001							
Fe ²⁺	0.002	0.001							
Fe ³⁺	0.005	0.006							
Cr	0.002	0.002							
Al	0.990	0.991							
Σ B-site	1.001	1.001							
End Members									
Spinel	0.010	0.004							
Hercynite	0.203	0.212							
Galaxite	0.031	0.028							
Gahnite	0.746	0.746							
Trevorite	0.000	0.000							
Magnetite	0.005	0.006							
Chromite	0.002	0.002							
Ulvöspinel	0.003	0.002							

Table 75 Representative EMP analyses of gahnite.Apfu calculations based on 4 oxygens.

#### GARNET



Figure 154 BSE images of polished garnet grains.

Garnet is relatively common at the Groveland Mine pegmatite. There are a number of textural characteristics present in analyzed grains. A few grains are subhedral with little to very few inclusions and fractures (above left). There are anhedral grains that appear to be almost completely altered with only a few remnants of the original grain present (above right). "Intermediate" grains have wider fractures and relatively more inclusions, yet still preserve a subhedral appearance (above center). Inclusions are typically either quartz or mica. All of the original areas of the grains that have been analyzed have very similar components. Almandine components range from 80-85% and spessartine components range from 13% to just over 16% in some cases. The grossular and pyrope components are >01% and in rare instances grains contain an andraditic component of less than >01%. One grain has a very high almandine component of 95%; however, the original grain appears almost completely obliterated and very few areas of the original grain are present. Of importance is that fractures that have been infilled and/or altered appear to be manganese poor. Table 76 lists the representative analyses. Additional analyses listed in Table 101 of the appendices.

GARNETS – GROVELAND MINE PEGMATITE										
Wt % Ox	grain 1-1		grain 2-1		grain 3-1		grain 5-1			
SiO ₂	36.500	36.477	36.388	36.555	36.459	36.466	36.500	36.499		
TiO ₂	0.015	0.020	0.009	0.011	0.009	0.012	0.008	0.010		
Al ₂ O ₃	20.544	20.577	20.533	20.588	20.544	20.455	20.488	20.533		
FeO	36.544	36.600	36.722	36.800	36.773	36.435	36.700	36.555		
MnO	6.330	6.211	6.112	6.077	6.112	6.131	5.605	6.255		
MgO	0.044	0.033	0.031	0.034	0.027	0.030	0.030	0.027		
CaO	0.233	0.244	0.228	0.217	0.231	0.218	0.211	0.243		
Total	100.210	100.162	100.023	100.282	100.155	99.747	99.542	100.122		
apfu										
Ti	0.001	0.001	0.001	0.001	0.001	0.001	0.000	0.001		
Fe	2.519	2.524	2.537	2.534	2.537	2.521	2.541	2.522		
Mn	0.442	0.434	0.428	0.424	0.427	0.430	0.393	0.437		
Mg	0.005	0.004	0.004	0.004	0.003	0.004	0.004	0.003		
Ca	0.021	0.022	0.020	0.019	0.020	0.019	0.019	0.021		
Σ X-site	2.988	2.985	2.990	2.982	2.988	2.975	2.957	2.984		
Al	1.996	2.000	1.999	1.998	1.997	1.995	1.999	1.996		
ΣY-site	1.996	2.000	1.999	1.998	1.997	1.995	1.999	1.996		
Si	3.009	3.007	3.006	3.010	3.007	3.017	3.022	3.010		
Σ Z-site	3.009	3.007	3.006	3.010	3.007	3.017	3.022	3.010		
Component										
Pyrope	00	00	00	00	00	00	00	00		
Spessartine	15	14	14	14	14	14	13	15		
Grossular	01	01	01	01	01	01	01	01		
Almandine	84	85	85	85	85	86	86	84		

Table 76 Representative EMP analyses of garnet. Apfu calculations based on 12 oxygens. Components are normalized to 100.

# IRON OXIDE





Figure 155 BSE image of iron oxide grain with corresponding EDS spectra (crosshairs 1-3).

Iron oxide is present in heavy mineral separations and qualitatively investigated by SEM.

### MAGNETITE



Figure 156 BSE image of magnetite grain (crosshair 5) with K-feldspar (crosshair 1), quartz (crosshair 2), and pyrophanite (crosshairs 3, 4, & 6).

Magnetite is relatively very common in heavy mineral separations. In one set of heavy mineral separations, magnetite comprises approximately 90% of the sample! A magnet has been placed against the plastic test tube and then moved around, in order to determine the amount of magnetite present in each set of heavy mineral separations.
## MICROLITE



Figure 157 BSE image and associated spectra of quartz grain with plagioclase, K-feldspar, and columbite group mineral from Groveland Mine samples.

An overgrowth of microlite on a columbite group mineral inclusion in a quartz grain with associated plagioclase and K-feldspar was discovered via microprobe analysis. Tantalum is dominant as is calcium and oxygen. Classification should therefore be oxycalciomicrolite.

### "MONAZITE"



Figure 158 BSE image of polished "monazite" grain.

"Monazite" is present in heavy mineral separations, has been qualitatively investigated by SEM, and has been confirmed as monazite-(Ce) by microprobe. Cerium is the dominant X-site cation, although one of the grains analyzed has relatively elevated levels of thorium. This grain also has greater amounts of calcium due to preferential incorporation of calcium in the X-site whenever thorium is present. Calcium and thorium frequently form a coupled substitution in "monazites" to satisfy charge balances. Along with apatite and "xenotime", monazite-(Ce) is an accessory phosphate mineral present in heavy mineral separations and is the only REE-bearing mineral other than "xenotime" discovered in samples. Table 77 lists the representative EMP analyses.

MONAZITE-(CE) – GROVELAND MINE									
Wt % Ox	9 GMP-1	10 GMP-1							
P2O5	27 892	29 437							
SiO2	0.135	0.088							
$ThO_2$	0.000	0.000							
	22 133	5 776							
$Al_2O_2$	0 544	0.923							
$La_2O_3$	0.022	0.033							
$Ce_2O_2$	6 344	12.982							
$Pr_2O_2$	18 833	27 671							
$Nd_2O_3$	1 981	2.822							
$Sm_2O_3$	12.334	14.235							
Gd2O3	0.773	0 393							
$Dv_2O_3$	0.400	0.211							
$2^{1}$ $y_{2}^{2}$ $y_{3}^{3}$	0.044	0.009							
$Y_2O_3$	0.898	0.565							
$S_{C_2O_3}$	0.011	0.021							
MgO	0.024	0.000							
CaO	2.920	2.004							
MnO	0.032	0.020							
FeO	0.334	0.232							
PbO	0.983	0.176							
Total	98.437	99.160							
apfu									
Th	0.207	0.052							
U	0.005	0.008							
Al	0.001	0.002							
La	0.096	0.189							
Ce	0.284	0.401							
Pr	0.030	0.041							
Nd	0.181	0.201							
Sm	0.026	0.021							
Gd	0.011	0.005							
Dy	0.005	0.003							
Yb	0.001	0.000							
Y	0.020	0.012							
Sc	0.000	0.001							
Mg	0.001	0.000							
Ca	0.129	0.085							
Mn	0.001	0.001							
Fe	0.011	0.008							
Pb	0.011	0.002							
ΣΧ	1.020	1.031							
Р	0.972	0.986							
Si	0.006	0.003							
ΣΥ	0.978	0.989							

Table 77 Representative EMP analyses of monazite-(Ce).Apfu calculations based on 4 oxygens.

### MUSCOVITE



Figure 159 BSE image of polished muscovite mica (crosshairs 1 & 2) and a columbite/tantalite species (crosshair 3).

Muscovite mica has been identified in heavy mineral separations, qualitatively investigated by SEM, and confirmed as muscovite mica (Figure 185) by microprobe using Tischendorf's classification scheme (1997). Rubidium is just within detection limits and cesium is below detection limits. DCP analyses have detected lithium weight percent ranging from 0.200 to 0.628 in mica samples and has been stoichiometrically accounted for by using the equation 0.3935 * fluorine weight percent^{1.326} (Tischendorf, 1997). Calculated weight percent of lithium ranges from 0.384 to just over one weight percent. Table 78 lists representative analyses.

MUSCOVITE – GROVELAND MINE PEGMATITE												
Wt %	GMPGMPGMPGMPGMPGMP						GMP	GMP				
Ox.	mica	mica	mica	mica	mica	mica 5 1	mica	mica				
SiO ₂	46 678	46 585	46 595	46 523	46 566	46 623	46 587	46 634				
TiO ₂	0.312	0.265	0 277	0 244	0.044	0 144	0.160	0.100				
	34 982	35 334	35 565	34 223	36 233	34 655	34 500	34 563				
Fe2O3	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000				
FeO	2.872	2 233	2.114	3.632	1 700	3 093	3 1 5 4	2.892				
MnO	0.077	0.123	0.154	0.092	0.114	0.121	0.112	0.088				
ΜσΟ	0.872	0.721	0.674	1 123	0.322	0.981	1 387	1 430				
CaO	0.053	0.044	0.065	0.038	0.054	0.055	0.034	0.042				
Li ₂ O ( <i>calc</i> .)	0.974	1.047	1.035	0.464	0.903	0.507	0.458	0.384				
Na ₂ O	0.455	0.487	0.555	0.332	0.675	0.422	0.466	0.465				
K ₂ O	9.556	9.600	9.367	9.677	9.500	9.454	9.022	9.343				
Rb ₂ O	0.021	0.019	0.020	0.016	0.020	0.014	0.013	0.015				
Cs ₂ O	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl				
F	1.981	2.092	2.074	1.133	1.871	1.211	1.122	0.982				
H ₂ O	3.640	3.583	3.597	3.992	3.688	3.961	4.003	4.069				
F=O	- 0.834	- 0.881	- 0.873	- 0.477	- 0.788	- 0.510	- 0.472	- 0.413				
Total	101.639	101.252	101.219	101.013	100.902	100.732	100.546	100.594				
apfu												
Si	6.113	6.106	6.100	6.159	6.103	6.164	6.160	6.166				
^{IV} Al	1.887	1.894	1.900	1.841	1.897	1.836	1.840	1.834				
ΣT-site	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000				
VIAl	3.512	3.565	3.587	3.499	3.701	3.564	3.537	3.553				
Ti	0.031	0.026	0.027	0.024	0.004	0.014	0.016	0.010				
Fet	0.315	0.245	0.232	0.402	0.187	0.342	0.349	0.320				
Mn	0.009	0.014	0.017	0.010	0.013	0.014	0.013	0.010				
Mg	0.170	0.141	0.132	0.222	0.063	0.193	0.274	0.282				
Li (calc.)	0.513	0.552	0.545	0.247	0.476	0.270	0.244	0.204				
Σ Y-site	4.550	4.543	4.540	4.404	4.444	4.397	4.433	4.379				

Table 78 Representative EMP analyses of muscovite mica. Apfu calculations based on 24 anions. Table continues on next page.

K	1.597	1.605	1.564	1.634	1.589	1.595	1.522	1.576
Ca	0.007	0.006	0.009	0.005	0.008	0.008	0.005	0.006
Na	0.116	0.124	0.141	0.085	0.172	0.108	0.120	0.119
Rb	0.002	0.002	0.002	0.001	0.002	0.001	0.001	0.001
Cs	bdl							
ΣX-site	1.722	1.737	1.716	1.725	1.771	1.712	1.648	1.702
F	0.820	0.867	0.859	0.474	0.776	0.506	0.469	0.411
OH (calc.)	3.180	3.133	3.141	3.526	3.224	3.494	3.531	3.589
Σ W-site	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000

# Pyrite





Figure 160 BSE image of pyrite grain with corresponding EDS spectrum (1 & 2).

Pyrite is present and relatively abundant in heavy mineral separations. Pyrite has been qualitatively analyzed by SEM.

### PYROPHANITE



Figure 161 BSE close-up image of pyrophanite (right; outlined in black; crosshair 3). BSE image - left: magnetite (crosshairs 1 & 7), ilmenite/rutile (crosshairs 2 & 3), K-feldspar (crosshair 4), plagioclase (crosshair 5), pyrophanite (crosshair 6), and zircon (crosshair 8). BSE image close-up - right: Rutile (crosshairs 1, 2, 4, & 7), pyrophanite (outlined; crosshair 3), titanium species (crosshair 5), fluorite (crosshair 6 & 10), quartz (crosshair 8), & mica (crosshair 9).

Pyrophanite is very rare and is closely associated with magnetite and gahnite.

Pyrophanite is present as overgrowths on magnetite and is also associated with rutile, gahnite,

and mica. This is the first reported and quantitatively confirmed occurrence of pyrophanite

(outlined are, right BSE image; Figure 161) at the Groveland Mine pegmatite. Table 79 lists the

representative analyses.

PYROPHANITE – GROVELAND MINE									
PEGMATITE									
Wt% Oxide	GMP Mag	gnetite 11							
TiO ₂	52.777	52.699							
Al ₂ O ₃	0.112	0.134							
SiO ₂	0.034	0.062							
FeO	7.433	7.845							
MnO	39.677	39.623							
MgO	0.017	0.02							
CaO	0.065	0.055							
Nb ₂ O ₅	bdl	bdl							
Ta ₂ O ₅	bdl	bdl							
Total	100.115	100.438							
apfu									
FeO	0.145	0.153							
MnO	1.722	1.719							
MgO	0.001	0.001							
CaO	0.005	0.004							
Nb	bdl	bdl							
Та	bdl	bdl							
Σ X-site	1.873	1.877							
Ti	2.060	2.057							
Al	0.002	0.002							
Si	0.002	0.003							
Σ Y-site	2.064	2.062							

Table 79 Representative EMP analyses of pyrophanite.Apfu calculations based on 6 oxygens.

## RUTILE





Figure 162 BSE close-up image of rutile overgrowth on magnetite (crosshairs 1, 2, & 4).

Rutile is closely associated with magnetite, pyrophanite, mica, and gahnite at the Groveland Mine pegmatite and has been qualitatively investigated by SEM. Rutile is often found as an overgrowth on magnetite grains. Discrete grains have also been found. Figure 161 shows a complete list of associated spectra and mineralogy.

### TANTALITE



Figure 163 BSE image of polished tantalite grain.

Tantalite appears to be just as ubiquitous as columbite in heavy mineral separations. Tantalite has been qualitatively investigated by SEM and further analysis by microprobe has confirmed tantalum dominance over niobium as well as iron dominance over manganese. Ferrotantalite, and for that matter, ferrotapiolite have both been reported as being found at Groveland Mine pegmatite. Without XRD analysis of grains, it remains uncertain as to whether or not these are ferrotantalite or ferrotapiolite. Buchholz *et al.* (2014) have reported the occurrence of compositions ranging from tantalite-(Fe) to tapiolite-(Fe), although their analyses are relatively more iron-rich. It should be noted that a few analyses plot very close to the manganotantalite field, having a Mn/(Mn+Fe) ratio of 0.496. Table 80 lists the representative analyses. Additional analyses listed in Table 99 of the appendices.

FERROTANTALITE – GROVELAND MINE PEGMATITE											
Wt% Ox	GOI gra	ain 10-1	GOI gra	ain 11-1	GOI grain 12-1		GOI grain 13-1		GOI grain 15-1		
Nb ₂ O ₅	28.565	30.444	29.788	29.544	2.877	2.834	29.544	29.655	28.665	8.766	
Ta ₂ O ₅	54.555	52.788	53.211	53.677	82.887	82.766	53.500	53.568	54.337	75.699	
SiO ₂	0.028	0.018	0.019	0.440	0.033	0.045	0.044	0.040	0.065	0.022	
TiO ₂	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Al ₂ O ₃	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
FeO	9.450	9.111	8.776	8.900	8.433	8.450	9.004	8.676	8.555	8.766	
MnO	7.530	7.788	8.006	7.883	5.778	6.800	7.743	8.330	8.312	6.834	
MgO	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl	
Total	100.128	100.149	99.800	100.444	100.008	100.895	99.835	100.269	99.934	100.087	
apfu											
Fe	0.566	0.541	0.524	0.526	0.591	0.586	0.538	0.516	0.513	0.566	
Mn	0.457	0.468	0.484	0.472	0.410	0.477	0.469	0.502	0.505	0.457	
Si	0.002	0.001	0.001	0.031	0.003	0.004	0.003	0.003	0.005	0.002	
Al	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.000	0.000	0.000	
Mg	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl	
ΣX-site	1.025	1.010	1.009	1.029	1.004	1.067	1.012	1.021	1.013	1.025	
Nb	0.926	0.977	0.962	0.944	0.109	0.106	0.955	0.954	0.929	0.926	
Та	1.063	1.019	1.034	1.032	1.888	1.866	1.040	1.037	1.060	1.063	
Ti	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Σ Y-site	1.989	1.996	1.996	1.976	1.997	1.972	1.995	1.991	1.989	1.989	

Table 80 Representative EMP analyses of ferrotantalite. Apfu calculations based on 6 oxygens.

#### TOURMALINE



Figure 164 BSE images of polished tourmaline grains. BSE image left: quartz (crosshair 1) & tourmaline (crosshair 2). BSE image right: tourmaline (crosshair 1). Note the degree of alteration in tourmaline grain to the right.

Tourmaline is rather abundant in heavy mineral separations, although it is rare to find unaltered tourmaline (above left) and much more likely to have grains that are to some degree altered in appearance (above right). Tourmaline has been investigated qualitatively by SEM and has been further analyzed by microprobe. Tourmalines are all but depleted in calcium and potassium and much more sodium-rich. Based on X-site dominance, tourmalines from the Groveland Mine are part of the alkali group. There is approximately 25% vacancy in the X-site. Y-site is iron dominant. There is some amount of magnesium (>1 weight percent) and calculated lithium content ranges from 0.6 and 0.8 weight percent. Fluorine is dominant over hydroxyl ions. Tourmaline from the Groveland Mine pegmatite should therefore be classified as fluorschorl. Table 81 lists the representative analyses.

TOURMALINE – GROVELAND MINE PEGMATITE										
Wt.% Oxide	grair	n 1-1	grair	n 2-1	graiı	n 3-1	graiı	n 4-1	grain 6-1	
SiO ₂	36.500	36.522	36.544	36.499	36.499	36.511	36.488	36.500	36.455	36.500
TiO ₂	0.133	0.125	0.112	0.132	0.133	0.122	0.133	0.122	0.111	0.101
Al ₂ O ₃	31.819	31.834	31.412	31.755	31.533	31.566	31.002	31.121	31.511	31.488
B ₂ O ₃ (calc.)	10.404	10.394	10.381	10.376	10.381	10.358	10.325	10.339	10.370	10.349
FeOt	11.565	14.122	11.655	14.011	11.455	14.200	14.543	14.444	11.487	11.505
MnO	3.223	0.544	3.655	0.512	3.830	0.526	0.211	0.181	3.899	2.766
MgO	0.766	0.643	0.675	0.595	0.633	0.544	0.899	0.912	0.577	0.700
CaO	0.012	0.022	0.020	0.024	0.043	0.030	0.043	0.045	0.030	0.018
Na ₂ O	2.344	2.311	2.333	2.336	2.282	2.289	2.300	2.353	2.292	2.400
K ₂ O	0.030	0.042	0.023	0.023	0.012	0.022	0.045	0.055	0.040	0.019
Li ₂ O (calc.)	0.680	0.742	0.697	0.787	0.678	0.798	0.782	0.790	0.674	0.844
H ₂ O (calc.)	3.053	3.038	3.008	3.017	3.023	3.005	3.045	3.040	2.993	3.050
F	1.132	1.156	1.211	1.188	1.178	1.200	1.091	1.112	1.234	1.099
F=O	- 0.477	- 0.487	- 0.510	- 0.500	0.496	- 0.505	- 0.459	- 0.468	- 0.520	- 0.463
Total	101.18	101.01	101.22	100.75	101.18	100.67	100.45	100.55	101.15	100.38
apfu										
Na	0.759	0.749	0.757	0.759	0.741	0.745	0.751	0.767	0.745	0.781
Ca	0.002	0.004	0.004	0.004	0.008	0.005	0.008	0.008	0.005	0.003
К	0.006	0.009	0.005	0.005	0.003	0.005	0.010	0.012	0.009	0.004
Vac (calc.)	0.232	0.238	0.234	0.232	0.249	0.245	0.232	0.213	0.241	0.211
Σ X-site	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Fe	1.616	1.975	1.632	1.963	1.604	1.993	2.047	2.031	1.610	1.616
Mg	0.191	0.160	0.168	0.149	0.158	0.136	0.226	0.229	0.144	0.175
Al	0.264	0.274	0.198	0.269	0.222	0.242	0.151	0.166	0.224	0.233
Mn	0.456	0.077	0.518	0.073	0.543	0.075	0.030	0.026	0.553	0.393
Li (calc.)	0.456	0.499	0.469	0.530	0.456	0.539	0.529	0.534	0.454	0.570
Ti	0.017	0.016	0.014	0.017	0.017	0.015	0.017	0.015	0.014	0.013
Σ Y-site	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000
Al	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Mg	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Σ Z-site	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Si	6.097	6.107	6.118	6.114	6.111	6.126	6.142	6.136	6.110	6.130
Al	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
$\Sigma$ T-site	6.097	6.107	6.118	6.114	6.111	6.126	6.142	6.136	6.110	6.130
B (calc.)	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000
H (calc.)	3.402	3.389	3.359	3.371	3.376	3.363	3.419	3.409	3.346	3.416
F	0.598	0.611	0.641	0.629	0.624	0.637	0.581	0.591	0.654	0.584
$\Sigma$ W+V sites	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000
Species	fluor- schorl									

Table 81 Representative EMP analyses of tourmaline. Apfu calculations based on 31 anions.

## "XENOTIME"



Figure 165 BSE image of tourmaline grain with close-up of "xenotime" inclusion; associated EDS spectrum included.

"Xenotime" occurs as small inclusion in tourmaline grains as well as discrete grains. "Xenotime" has been quantitatively confirmed by microprobe and should be classified as xenotime-(Y) due to yttrium dominance in the X-site. Yttrium comprises approximately 70% of the cations in the X-site. Not one of the HREE's that are present account for greater than 10% of cations in the X-site. Other than Xenotime-(Y) being found as inclusions, only two discrete grains have been discovered. These grains are associated with zircon. Table 82 lists the representative analyses of the inclusions.

XENOTIME-(Y) – GROVELAND MINE									
	PEGMATITE								
Wt % Ox.	9 GMP-1	10 GMP-1							
$P_2O_5$	33.765	33.877							
SiO ₂	0.244	0.211							
ThO ₂	0.000	0.000							
UO ₂	2.654	3.655							
Al ₂ O ₃	0.221	0.232							
Nd ₂ O ₃	0.011	0.013							
Sm ₂ O ₃	0.022	0.020							
Gd ₂ O ₃	3.650	3.766							
Tb ₂ O ₃	0.889	0.922							
Dy ₂ O ₃	7.090	7.320							
Ho ₂ O ₃	1.009	1.100							
Er ₂ O ₃	4.033	3.899							
Tm ₂ O ₃	0.776	0.832							
Yb ₂ O ₃	6.099	6.455							
$Lu_2O_3$	0.232	0.233							
$Y_2O_3$	38.443	37.231							
Sc ₂ O ₃	0.020	0.016							
MgO	0.000	0.000							
CaO	0.044	0.041							
MnO	0.009	0.000							
FeO	0.013	0.020							
PhO	0.009	0.011							
Total	99 310	99 898							
anfu	<i>yy</i> 1010	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							
Th	0.021	0.029							
U	0.002	0.002							
Al	0.003	0.002							
Nd	0.000	0.000							
Sm	0.000	0.000							
Gd	0.042	0.043							
Th	0.010	0.010							
Dv	0.079	0.082							
Но	0.011	0.002							
Fr	0.044	0.042							
Tm	0.008	0.042							
Yh	0.064	0.068							
In	0.007	0.000							
V	0.708	0.686							
Sc.	0.001	0.000							
Ma	0.001	0.000							
	0.000	0.000							
Ca Mn	0.002	0.002							
Fe	0.000	0.000							
Dh	0.000	0.001							
	0.000	0.000							
	0.999	0.991							
P C'	0.990	0.994							
S1	0.008	0.007							
ΣY	0.998	1.001							

Table 82 Representative EMP analyses of xenotime-(Y).Apfu calculations based on 4 oxygens.

## ZIRCON



Figure 166 BSE image of polished zircon grain and uraninite inclusion with possible radiogenic lead.

Zircon has been found in heavy mineral separations and has been further analyzed by SEM and microprobe. Little to no detectable zonation is present in the zircons that have been analyzed. Hafnium weight percent ranges from 1.60-2.30% in zircons. As such, zircon samples are relatively primitive. Some grains appear to be altered as weight percent totals are below 98%. Table 83 lists the representative analyses.

ZIRCON – GROVELAND MINE PEGMATITE											
Wt % Oxide	grain 1-	GMP-1	grain 2-GMP-1		grain 3-GMP-1		grain 4-GMP-1		grain 5-GMP-1		
SiO ₂	30.541	30.494	31.344	31.600	31.870	32.002	32.211	32.300	32.043	31.981	
TiO ₂	0.000	0.013	0.010	0.012	0.011	0.014	0.020	0.023	0.014	0.018	
$Al_2O_3$	0.044	0.048	0.055	0.063	0.040	0.010	0.050	0.062	0.032	0.028	
ZrO ₂	63.770	64.112	64.667	64.700	64.780	64.662	64.440	64.213	64.044	63.873	
HfO ₂	1.988	1.934	1.599	1.711	1.677	1.599	1.981	1.955	1.761	2.334	
FeOt	0.454	0.494	0.332	0.292	0.388	0.400	0.311	0.256	0.432	0.393	
MnO	0.022	0.025	0.012	0.020	0.011	0.015	0.000	0.011	0.022	0.025	
MgO	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
CaO	0.566	0.623	0.334	0.343	0.299	0.282	0.300	0.285	0.338	0.356	
$UO_2$	0.033	0.040	0.021	0.018	0.033	0.029	0.016	0.020	0.019	0.023	
ThO ₂	0.112	0.091	0.100	0.077	0.100	0.091	0.067	0.094	0.055	0.043	
Total	97.530	97.874	98.474	98.836	99.209	99.104	99.396	99.219	98.760	99.074	
apfu											
Zr	0.988	0.990	0.987	0.983	0.979	0.977	0.970	0.967	0.970	0.967	
Hf	0.024	0.024	0.019	0.021	0.020	0.019	0.024	0.023	0.021	0.028	
U	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Th	0.001	0.001	0.001	0.001	0.001	0.001	0.000	0.001	0.000	0.000	
Fe	0.012	0.013	0.009	0.008	0.010	0.010	0.008	0.007	0.011	0.010	
Mn	0.001	0.001	0.000	0.001	0.000	0.000	0.000	0.000	0.001	0.001	
Mg	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Ca	0.019	0.021	0.011	0.011	0.010	0.009	0.010	0.009	0.011	0.012	
Σ X-site	1.045	1.050	1.027	1.025	1.020	1.016	1.012	1.007	1.014	1.018	
Si	0.970	0.966	0.981	0.984	0.988	0.992	0.995	0.998	0.995	0.992	
Ti	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.000	
Al	0.002	0.002	0.002	0.002	0.001	0.000	0.002	0.002	0.001	0.001	
Σ Y-site	0.972	0.968	0.983	0.986	0.989	0.992	0.997	1.001	0.996	0.993	

Table 83 Representative EMP analyses of zircon. Apfu calculations based on 4 oxygens.

## **RESULTS & DISCUSSION**

### MINERAL CHEMISTRY

### APATITE GROUP

Apatite is the most abundant of the phosphorus-bearing minerals and found in almost all igneous rocks. Apatite is typically rare in NYF-type pegmatites (Simmons *et al.*, 2003) owing to their phosphorus-depleted nature (London *et al.*, 2008). Apatite group minerals are classified by the dominant anion fluorine and chlorine as well as the hydroxyl ion; generally, the fluorine dominant end-member, fluorapatite, is the most abundant. Apatite is extremely rare in samples from all locations. Discrete apatite grains from the Sturgeon River, Groveland Mine, Crockley, and Grizzly pegmatites were analyzed by EMP and determined that the apatites were fluorapatite (Figure 167). Other locations did yield apatite, but these are inclusions associated with other minerals.



Figure 167 Anion dominance ternary for apatites.

### BASTNÄSITE

Although extremely rare in samples collected, "bastnäsite" happens to be one of the more abundant rare earth element-bearing minerals. "Bastnäsite" consists of a family of three fluorocarbonate minerals: bastnäsite-(Ce), bastnäsite-(La), and bastnäsite-(Y). "Bastnäsite" has only been found in samples from the Sturgeon River and Crockley pegmatites. Both sets of samples are cerium dominant (Figure 168) and therefore are classified as bastnäsite-(Ce). One analysis from Crockley pegmatite samples is relatively more enriched in calcium than other analyses from Sturgeon River or Crockley pegmatites.



Figure 168 Cerium, Lanthanum, Neodymium in bastnäsite group minerals. Yttrium is >0.02 apfu.

#### BERYL GROUP

Beryl is typically more abundant in the more peraluminous LCT-type pegmatites; however, it can occur in NYF-type pegmatites as well. Trace element content of beryl often reflects the geochemical evolution of a pegmatite and beryl varieties are often used to determine the degree of evolution the pegmatite has attained (Simmons *et al.*, 2003); however, analyses for trace element content were not conducted. Beryl was only found at the Groveland Mine pegmatite. Samples are pale green with a slight yellow hue and range in size from about  $\frac{1}{2}$  cm to 1 cm in length with a diameter roughly  $\frac{1}{2}$  cm. All samples have excellent crystal faces, but no discernable terminations. SEM analyses show a slight Fe peak with no detectable zonation from core to rim. Some samples have fracture infillings of Mg-rich biotite composition. One sample has inclusions of a Th-rich silicate/phosphate (see beryl in Groveland Mine pegmatite section). None of the analyzed samples appear to be texturally homogeneous. Figure 169 reveals that although the Groveland is peraluminous and enriched in boron, beryl from the Groveland Mine is relatively primitive and typical of NYF-type pegmatites (Černý, 1992).



Figure 169 Beryl from Groveland Mine pegmatite. Na/Li versus Cs Wt.%. Region 1 – typical of NYF-type pegmatites; Region 2 – beryl-type pegmatites; Region 3 – complex pegmatites; Region 4 – highly fractionated, pollucite-bearing pegmatites. Modified from Černý, 1992.

#### BISMUTH (NATIVE)

Native bismuth has only been found as inclusions in fluorite samples from the Grizzly pegmatite. No other pegmatite contains elemental bismuth or any other bismuth mineralogy

#### CHALCOPYRITE

Chalcopyrite is brass-yellow, has a metallic luster and is often tarnished or iridescent. Chalcopyrite is an important ore for copper, the most widely occurring copper-bearing mineral, and has a variety of paragenetic origins. Chalcopyrite has been found in samples collected from the Crockley and Hwy69 pegmatites.

#### CHLORITE

Chlorites are a group of minerals very similar to micas in that they are layered and have perfect basal cleavage. Garnets (especially almandine) can become "chloritized" meaning that alteration of the garnet grain can give rise to chlorite. Given that garnets analyzed had some degree of alteration and/or fracture infilling, it is suggested here that some of these garnets have been chloritized although this has not been quantitatively confirmed by microprobe analysis. One grain from the Bell Creek granite (Figure 12) was qualitatively analyzed by SEM and assumed to be chlorite based on EDS spectral analysis and the platy texture of the grain.

#### COLUMBITE/TANTALITE GROUP

The columbite-tantalite group (CTG) consists of four end-members (Černý & Ercit, 1986) based on the relative enrichment of Fe vs. Mn and Ta vs. Nb. Columbite-tantalite group members are excellent indicators of the geochemical evolution of pegmatites. The ratios Mn/(Mn+Fe) and Ta/(Ta+Nb) tends to increase with increasing degree of evolution of the pegmatite (Černý, 1992). Discrete grains of the columbite-tantalite group minerals have been identified from the Crockley, Black River, Groveland Mine, and Hwy69 pegmatites. Other CTG occur as inclusions in mica. The CTG quadrilateral (Figure 170) reveals that samples are mostly ferrocolumbite, with the exception of ferrotantalites from Groveland Mine and Black River samples.

CTG is relatively more abundant at the Groveland Mine pegmatite than any other sampled location. The Groveland Mine samples are unique in that some analyses show enrichment of tantalum over niobium, which is unusual for NYF-type pegmatites. These analyses plot within the ferrotantalite-tapiolite, two phase field. Without further analysis by XRD, it is uncertain how to classify these grains. Also, these same analyses are relatively more enriched in manganese than Hwy69, Crockley, and other Groveland samples plotting in the ferrocolumbite field. One analysis in particular has a Mn/(Mn+Fe) ratio of 0.496, which is on the cusp for classification as a manganotantalite. Manganotantalites are typically only found in LCT-type pegmatites. A Black River CTG analysis has progressive enrichment of tantalum from core to rim. The rim analysis is plotting in the ferrotantalite field and the core plots within the ferrocolumbite field.



Figure 170 Columbite/Tantalite quadrilateral.

### EUXENITE GROUP

Fersmite is a member of the euxenite group of minerals. It has only been found in samples from the Hwy69 pegmatite. The ternaries in Figure 171 show the analysis being calcium and niobium dominant.



Figure 171 Euxenite Group ternary classification. Modified from Černý & Ercit, 1989.

#### Feldspars

Feldspar is one of three most abundant minerals found in granites and granitic pegmatites. Plagioclase members form a solid solution series and are classified based on percentages of sodium and calcium content. Typically only the more sodium-rich end members (Albite – Ab₀₀-Ab₁₀) are found in granitic pegmatites. Potassium-rich feldspars (KAlSi₃O₈) are typically classified based on the degree of structural ordering of their polymorphs: high temperature, disordered sanidine, intermediate orthoclase, and low temperature, ordered microcline. NYF-type pegmatites usually have highly ordered microcline, as alkalic fluids and water content present in the pegmatitic melt promote ordering. Rubidium and cesium can substitute for K and K/Rb and K/Cs ratios are used as a measure of degree of evolution of the pegmatite. Analyses have been plotted on the feldspar ternary (Figure 172). Plagioclase feldspar analyses from the Crockley, Grizzly, and Hwy69 pegmatites plot in the albite field and oligoclase fields. K-feldspars have been analyzed by X-ray Diffraction and structural states have been plotted on the Wright (1968) diagram (Figure 173). All are maximum microcline with the exception of samples analyzed from the Dolfin and Grizzly pegmatites and Humboldt and Bell Creek granite samples. Even with the margin of error, samples still fall within or near the maximum microcline field indicating that there is a high degree of structural ordering in Kfeldspar samples. Rubidium and cesium are either below or at detection limits for all K-feldspars analyzed.



Figure 172 Feldspar classification ternaries for all pegmatites.



Figure 173 Modified alkali feldspar structural state diagram (Wright, 1968).

### Fluorite

Fluorite is a relatively abundant accessory mineral in granitic pegmatites. It is easily recognized by its vitreous luster, cubic habit, and its perfect octahedral cleavage. The color of fluorite can range from shades of purple, green, red, and yellow, in addition to colorless. The samples collected are either colorless with purple splotches, to a shade of purple so dark as to be black in appearance. These darkest grains are associated with the greisen material collected near

the Grizzly pegmatite. The dark purple fluorite grains are closely associated with uraninite grains. When heat treated, these samples turn colorless revealing abundant inclusions. Most polished mounts investigated by SEM have inclusions. Other fluorite grains have visible inclusions readily seen under binocular microscope.

The chemistry of most fluorite is at least 99% pure, but substitutions can and do occur. Substitutions for calcium include strontium, yttrium, and cerium. Yttrofluorite, a variety of fluorite, can contain an YF₃ component between 10-20% in some cases. Yttrium is present in some microprobe analyses (as well as peaks in EDS spectra from SEM analyses), EMP analysis of fluorites are not sufficiently enriched in yttrium for classification as yttrofluorite. Samples from the Crockley (assumed to be apatite due to fluorescence) were analyzed by SEM and microprobe. These fluorescent grains were determined by SEM to be in fact, fluorite grains. No other samples from any other pegmatite or granite contains fluorescent fluorite.

#### GAHNITE

Gahnite is part of the spinel group of minerals. It can be green, blue, yellow, grey, or brown. Gahnite has only been found in Groveland Mine samples where it is closely associated with rutile, magnetite, and pyrophanite. Composition of gahnite is expressed in terms of divalent iron (hercynite), magnesium (spinel), and zinc (gahnite) content. Compositional trends can be used to determine the petrogenesis (Figure 174) of gahnite (Batchelor & Kinnaird, 1984). Ratios of zinc and manganese over aluminum versus iron and magnesium over aluminum (Figure 175) can also be used to determine petrogenesis of gahnite as well as the degree of evolution of gahnite, as can Zn/Fe ratios (Batchelor & Kinnaird, 1984). Lower Zn/Fe ratios are associated

294

with Li-poor, NYF-type pegmatites and conversely, higher Zn/Fe ratios are typically associated with Li-rich, LCT-type pegmatites (Batchelor & Kinnaird, 1984; Heimann, 2010). Zn/Fe ratios of gahnite from Groveland are ~3.49 and ~3.36, suggesting that they are poorly evolved and that gahnite is more closely associated with NYF-type pegmatites. Higher Mg content is typically associated with a metamorphic origin (Batchelor & Kinnaird, 1984). Based on compositional relationships of Fe, Zn, and Mg, and molecular ratios of gahnite from Groveland Mine has an igneous petrogenetic origin (Figures 174 & 175).



Figure 174 Magnesium (spinel), zinc (gahnite), and Fe²⁺ (hercynite) petrogenesis ternary based on molecular ratios. Modified from Batchelor & Kinnaird, 1984.



Figure 175 Petrogenetic association based on molecular ratios of (Zn+Mn)/Al versus (Fe+Mg)/Al. Modified from Batchelor & Kinnaird, 1984.

### GARNET GROUP

The garnet group has quite a bit of compositional variation; however, the generalized formula of a garnet unit cell consists of  $X_3Y_2Z_3O_{12}$ . The structure consists of alternating YO₆ octahedra and ZO₄ tetrahedra that share corners to form a three-dimensional network. The oxygen anions shared between the YO₆ and ZO₄ create distorted cubes of eight oxygens, which contain the X-site cations. Fe and Mn, as well as Ca, Mg, Ti, Cr, and V can occupy the X-site. Garnets are a typical accessory mineral in pegmatites from an aluminous source and are often associated with other peraluminous minerals, such as muscovite and members of the tourmaline group (London, 2008). Garnets are relatively more abundant in LCT-type pegmatites due to the more peraluminous signature, but garnets are present in NYF-type pegmatites as well. Garnet

composition is often explained in terms of the dominant component at the X-site. Garnets from inner zones of LCT-type pegmatites often contain a significant spessartine ( $Mn^{2+}$  in X-site) component or can be dominantly spessartine due to other phases in the pegmatite competing for iron (Simmons *et al.*, 2003). The relationship between iron and manganese can also be used to determine the degree of evolution within a pegmatite or be used to compare spatially related pegmatites within a field or group.

Distinct garnet grains have been identified in hand sample and heavy mineral separations at the Dolfin pegmatite, Groveland Mine, Sturgeon River, and Hwy69 pegmatites. Grains from all locations are either euhedral to subhedral and occasionally anhedral. Garnets that have been analyzed from the Dolfin pegmatite appear to be texturally and compositionally homogeneous from core to rim. Garnets from Groveland Mine, Sturgeon River, and Hwy69, however, contain textural and compositional characteristics not seen in Dolfin samples. Garnet from these three locations are fractured to various degrees with what appears to be secondary garnet within the fractures. Others contain inclusions. What is interesting about the mineralization of inferred primary garnet chemistry present in the Groveland Mine, Sturgeon River, and Hwy69 garnets is that it is very similar to the chemistry of garnets analyzed from the Dolfin pegmatite (Figure 176).

But there are distinct dissimilarities both compositionally and texturally between the primary and inferred secondary garnet. The garnet in the fractures shows negative polishing relief. The chemical compositions are also different. The chemical compositions are also different. The chemical compositions are also different. Primary garnet is lower in almandine and spessartine components (Alm₇₆Sp₁₇Py₂Gro₂And₂). The fracture filling garnet composition is richer in almandine component (Alm₉₀Py₃Sp₂Gro₂) and the spessartitic component is reduced, the andraditic

297

component is below detection limits, and the pyrope component remains essentially the same. The Fe-Mg-Mn and Fe-Ca-Mn ternaries (Figures 178 & 179) illustrate the compositional differences of garnet from all pegmatites. Another interesting aspect in regards to composition is that from core to rim, both initial and secondary chemistry seem to be homogeneous, or at the very least, contain little or no detectable zonation.



Figure 176 Garnet compositional ternary. Circles represent garnets with no alteration. Triangles represent areas of garnet assumed to be primary. Squares are secondary garnet.



Figure 177 Garnet chemistry ratios. Circles represent garnets with no alteration. Triangles represent areas of garnet assumed to be primary. Squares are secondary garnet.



Figure 178 X-site dominance for altered garnets. Pink dots represent initial garnet chemistry. Green dots represent secondary garnet chemistry.



Figure 179 X-site dominance for altered garnets. Pink dots represent initial garnet chemistry. Green dots represent secondary garnet chemistry.

#### ILMENITE/PYROPHANITE

Ilmenite is an iron titanium oxide whose molecular formula can be more fully defined as (Fe,Mg,Mn)TiO₃. There is the ilmenite (Fe-dominant) - pyrophanite (Mn-dominant) series as well as an ilmenite - geikielite (Mg-dominant) series. Ilmenite has been identified in heavy mineral separations by SEM for Humboldt granite, Crockley pegmatite, Grizzly, Republic Mine, Hwy69, Sturgeon River, and Groveland Mine pegmatites. Only samples from Republic Mine, Crockley, Grizzly, and Sturgeon River have been quantitatively confirmed by microprobe analysis.

The Groveland Mine pegmatite does have ilmenite that has been identified in heavy mineral separations by SEM; however, only pyrophanite was quantitatively confirmed by microprobe analysis.



Figure 180 Ternary of Mg (geikielite) versus Fe (ilmenite) versus Mn (pyrophanite).

### MAGNETITE

Magnetite is a member of the spinel group of minerals and the pure end-member can best be expressed as (Fe²⁺, Fe³⁺)₃O₄. Magnetite is one of the most abundant oxide minerals and it is a typical accessory mineral in many igneous rock assemblages. Magnetite is found in all heavy mineral separations including the Humboldt granite samples, Republic Mine, Dolfin, Crockley, Hwy69, Black River, Groveland Mine, and Sturgeon River. The Bell Creek granite and Grizzly pegmatite have very little or no magnetite. Samples collected from the Groveland Mine exhibited a high degree of abundance of magnetite in heavy mineral separations. One set of heavy mineral separations was almost completely composed of magnetite (near 90%!).
MONAZITE GROUP

"Monazite" group minerals are an REE-bearing phosphate found as accessory phases in both LCT- and NYF-type pegmatites, but they prefer NYF-type and alkalic pegmatites (Simmons *et al.*, 2003). The most abundant is monazite-(Ce). Thorium and calcium can form a coupled substitution in lieu of light and heavy rare earth elements and Figure 182 shows the negative correlation of Th and Ca in "monazites" analyses. The Th⁴⁺ ion is closer in size to Ce³⁺ and therefore Ca²⁺ can enter the monazite structure in order to complete charge balances (Rapp & Watson, 1986).

"Monazites" were found in all but the Humboldt granite. Hoffman (1987) lists "monazite" analyses for the Bell Creek and Clotted granite in his dissertation; however, it appears he was unable to recover any samples for the Humboldt. Microprobe analyses reveal that all samples are monazite-(Ce) (Figure 181) with a few notable exceptions. "Monazite" plots reveal the relative greater enrichment of Ca in samples from Hwy69, Groveland Mine, Crockley, and especially one sample from the Republic Mine (Figure 181). The ternary modified from Linthout (2007) reveals that the Hwy69, Groveland Mine, and Crockley samples are relatively more enriched in Ca relative to other monazites except for the Republic Mine sample, which is relatively more enriched in Ca with regard to monazites from the other pegmatites and the Bell Creek granite (Figure 183).

Chondrite normalized plots of REE contents in monazite (Figure 184) show that the Republic Mine Ca-rich sample is relatively less enriched in REE's relative to other monazites. Monazites from the Crockley, Hwy69, and Groveland Mine that are relatively less enriched in La, Ce, and Pr correspond to Ca-rich samples. All other normalized plots from the Bell Creek granite, and Hwy69, Grizzly, Sturgeon River, Groveland Mine, Dolfin, Black River and

Republic Mine pegmatites show a very similar trend. There are exceptions: the Republic Mine is relatively erbium poor with regard to the other analyses; the Groveland Mine is relatively ytterbium poor; Bell Creek granite and Black River pegmatite analyses have some the most relatively enriched in ytterbium.



Figure 181 Line plot for "monazite" X-site cation *apfu* content for all analyzed samples. Lighter purple line represents the Republic Mine sample that is relatively more enriched in Th and Ca.



Figure 182 Coupled substitution plot of negative correlation between Ca + Th *apfu* and La + Ce + Nd *apfu*. Lighter purple marker corresponds to a Republic Mine sample relatively more enriched in Th.



Figure 183 Classification scheme modified from Linthout, 2007. Samples from Groveland Mine, Hwy69, and Crockley are slightly more enriched in Ca & Th relative to other monazites except a sample from the Republic Mine pegmatite.



Figure 184 Chondrite normalized plot for REE's in "monazites".

# MICA GROUP

Mica group minerals have a generalized formula of X₂Y₄₋₆Z₈O₂₀(OH,F)₄ (based on 24 anions) and belong to the larger phyllosilicate mineral group. The mica group displays considerable variation in terms of physical and compositional properties. Mica minerals have a composite sheet in which two layers of (Si,Al)O₄ tetrahedra sandwich an octahedrally coordinated layer of cations. The two composite sheets are linked by a plane of cations. Biotite is relatively abundant in many pegmatites and includes annite-phlogopite to siderophyllite-eastonite. Biotite is a trioctohedral mica meaning that three divalent cations are present in the Y-site as opposed to muscovite, which is dioctahedral. Dioctahedrally coordinated micas have two trivalent cations in the Y-site. Muscovite micas are typically more abundant in peraluminous pegmatites, but can occur in both LCT- and NYF-pegmatites. Muscovite grains plot within the

muscovite field (Tichendorf, 1997) with the exception of samples from the Grizzly, which hover between phengite and muscovite composition (Figure 185).

Analyzed biotite grains plot within the Fe-biotite field (Tichendorf, 1997). There is a distinction in that samples from the Sturgeon River, Hwy69, and Republic Mine biotite is relatively more enriched in magnesium (Figure 185). This suggests that biotite mica from these two locations is somewhat more primitive. Biotite composition can be used to determine the tectonic conditions under which the pegmatitic melt was generated (Webber, 2000). All biotites plot within the orogenic field (Webber, 2000). Samples from Sturgeon River, Hwy69, and Republic Mine pegmatites plot closer to the anorogenic field than the Crockley and Grizzly pegmatites. Humboldt granite samples from Hoffman (1987) plot in the anorogenic field. The biotite discrimination diagram of Abdel-Rahman (1996) show that samples plot within the Pfield, suggesting a more peraluminous nature. Figure 190 shows that all biotites are hydroxyl dominant. Figure 190 shows that biotite samples from the Groveland Mine and Grizzly pegmatites and one analysis from the Humboldt granite is relatively more enriched in iron. There is some overlap in that Crockley and Dolfin pegmatite samples plot near the lower range of iron enrichment of the Grizzly pegmatite. Biotite samples from the Dolfin pegmatite and Bell Creek and Humboldt granites are all relatively more enriched in fluorine, although it should be pointed out that F/(F+OH) ratios only range from approximately 0.100 to 0.170. The Sturgeon River biotite samples are relatively more enriched in magnesium.

For muscovite mica analyses, all samples are hydroxyl dominant, although the Groveland Mine samples are slightly more enriched in fluorine than samples from other pegmatites and granites. Muscovite samples from the Humboldt granite and Crockley pegmatite are relatively more enriched in iron. The Grizzly pegmatite muscovite analysis shows relatively greater

enrichment in magnesium. With respect to octahedrally coordinated Al ratios, all muscovite samples are within approximately 5% of one another. Sturgeon River muscovite samples being at the lower threshold of octahedrally coordinated Al enrichment and Grizzly pegmatite samples being at the upper threshold of octahedral Al enrichment.

DCP analyses have been conducted in order to determine the weight percent content of lithium. Suitable quantities of homogeneous micas are only available from the Grizzly, Groveland Mine, Black River, Republic Mine, Sturgeon River, and Hwy69 pegmatites. Lithium content is highest in micas from the Groveland Mine and Sturgeon River pegmatites, although each had an analysis that has the lowest weight percent content of lithium. Titration results yielded  $Fe^{3+}/(Fe^{3+} + Fe^{2+})$  ratios of >1%, indicating that biotites analyzed contained very little to no trivalent iron.



Figure 185 Modified from Tischendorf classification scheme of micas. All dioctahedral micas are muscovite mica.



Figure 186 Modified from Tischendorf's classification scheme of micas. All trioctahedral micas are Fe-biotites with the exception annite from Humboldt.



Figure 187 Modified from Abdel-Rahman (1996) Biotite Discrimination Diagram.



Figure 188 Biotite discrimination diagram based on Fe/(Fe+Mg) versus total aluminum (Webber et al., 2000).



Figure 189 Biotite discrimination diagram based on F Wt.% versus Fe/(Fe+Mg) (Webber et al., 2000).



Figure 190 F/(F+OH) apfu[24a] ratio versus ^{VI}Al/(^{VI}Al+Fetot+Mg) apfu[24a] ratio for biotite.

## Pyrite

Pyrite is the most abundant sulfide mineral and can be found in a variety petrogenetic environments. Pyrite has been identified in heavy mineral separations from the Humboldt granite, the Dolfin, Crockley, Hwy69, Sturgeon River, and Groveland Mine pegmatites.

#### PYROCHLORE

Pyrochlore belongs to the larger pyrochlore supergroup of minerals which also include microlite, betafite, elsmoreite, and roméite. These five group members are categorized based on B-site dominance (Figure 191) of either niobium, as is the case with pyrochlore, tantalum (microlite), titanium (betafite), tungsten (elsmoreite) or antimony (roméite). These minerals are further classified by the dominance of sodium, calcium, and other cations in the A-site (Figure 191) as well as anion dominance in the Y-site. Pyrochlore was only found in Crockley pegmatite samples. W and Sb⁵⁺ were below detection limits.



Figure 191 A-site and B-site content modified from Atencio et al., 2010

#### RUTILE

Essentially TiO₂, Rutile can incorporate niobium and tantalum owing to the similarity of their ionic radii to titanium. Larger crystals are not typically abundant in granitic pegmatites. Generally only a minor accessory mineral, but especially so in NYF-type pegmatites (Simmons *et al.*, 2003). Rutile has been identified in heavy mineral separations by SEM. Rutile was rather rare and in most cases, was found only as inclusions or overgrowths on other minerals such as ilmenite and mica. Only samples from the Republic Mine and Crockley pegmatites were quantitatively analyzed by microprobe. The Grizzly, Sturgeon River, and Groveland Mine pegmatites all had rutile as well. One analysis from the Crockley pegmatite contained just over 2 weight percent of niobium as well as a detectable amount of tantalum (0.221 wt %).

# SCHEELITE

Scheelite, a calcium tungstate, is unusual in granitic pegmatites. However, one sample has been identified from the Black River pegmatite. It was only qualitatively identified by SEM. No other samples have been found in either the Black River pegmatite or any other location.

### THALÉNITE

Thalénite is a rare yttrium silicate; however, it is relatively common in Republic Mine pegmatite samples. Chondrite normalized plots (Figure 192) reveal that thalénite from the Republic Mine has LREE enrichment in Ce that ranges from one to two orders of magnitude below HREE enrichment. This is the first confirmed and reported occurrence of thalénite in the state of Michigan.



Figure 192 Chondrite normalized plot of REE's in thalénite from Republic Mine pegmatite.

#### TITANITE

Titanite (or sphene) can occur as an accessory mineral in felsic igneous rocks as well as granitic pegmatites. Titanite has been identified in heavy mineral separations from the Bell Creek granite by SEM only.

## TOURMALINE GROUP

The borosilicate tourmaline mineral group has a general structural formula of XY₃Z₆[T₆O₁₈][BO₃]₃V₃W. Each site has specific accommodation and charge limitations that determine occupation of each site by particular ions. Tourmaline is a very useful indicator for the degree of evolution of a pegmatite as there are generally specific geochemical trends taking place as a pegmatite crystalizes. Tourmaline-group minerals are found in granites, granitic pegmatites, and aplites and are typically found in LCT-type pegmatites. NYF-type pegmatites are generally depleted in boron and tend to be more alkaline (aluminum poor) than LCT-type pegmatites and thus have insufficient amounts of either boron or aluminum to produce tourmaline. However, tourmaline has been identified in hand samples and heavy mineral separations from the Groveland Mine, Sturgeon River, and Republic Mine pegmatites. Confirmation by SEM and analysis by EMP has determined that tourmaline from these three pegmatites be classified as fluorshorl due to alkali dominance and fluorine and iron enrichment.

Tourmaline-group minerals are divided into three groups, based on principal composition of X-site chemistry (Figure 193). Tourmalines from the Groveland and Sturgeon River plot along the baseline of the Alkali Group X-site ternary due to very little calcium enrichment. Tourmalines from the Republic Mine pegmatite have two distinct clusters. The first group has a

similar chemistry as the Groveland and Sturgeon River. The second cluster is relatively more calcium enriched (although only marginally) as well as having more X-site vacancy. The Alkali Group is further divided into Dravite, Elbaite, and Schorl (Figure 194). Tourmalines from all three locations plot within the Schorl field. Groveland tourmalines, however, are relatively more enriched in calculated lithium than either the Sturgeon River or Republic Mine suggesting that these are slightly more evolved. The Republic Mine tourmalines are relatively more enriched in magnesium than those from the Groveland or Sturgeon pegmatites suggesting that these tourmalines are more primitive; however, there appears to be a trend of evolving toward the Elbaite field. All tourmalines are F-dominant (Figure 195). Republic Mine tourmalines plot in two clusters owing to the relatively depleted sodium content.



Figure 193: Primary tourmaline group based on X-site dominance (Henry et al., 2001).



Figure 194: Alkali subgroup based on Schorl-Elbaite-Dravite ternary (Henry at al., 2011).



Figure 195: F vs X-site Na apfu. All tourmalines are fluorine dominant.

#### Uraninite

Uraninite has been identified in greisen material that is spatially associated with the Grizzly and Bell Creek, but it is uncertain if the greisen material is genetically related. Zircons from the Dolfin pegmatite contain inclusions of uraninite, but no discrete grains have been found. The Sturgeon River has uraninite that contains possible radiogenic lead.

# VANADINITE

One grain was identified; however, it inferred to be from sample contamination.

# XENOTIME GROUP

As with monazite, xenotime-(Y) is also a rare accessory phosphate mineral typically found in NYF-type pegmatites (Simmons, *et al.*, 2003). Xenotime is relatively more enriched in the smaller HREE's than the larger LREE's due to the large ionic radius of  $Y^{3+}$  (Rapp & Watson, 1986). There is also generally too little room for accommodation of the larger SiO₄ tetrahedral group, the result being very little silicon enrichment (Demartin *et al.*, 1991). "Xenotime" has been qualitatively identified in heavy mineral separations from the Grizzly, Dolfin, Black River, Sturgeon River, and Groveland Mine pegmatites. Xenotime-(Y) has been quantitatively confirmed (Figure 196) via microprobe for samples from the Dolfin and Groveland Mine pegmatites. Chondrite normalized analyses show that both the Dolfin and Groveland Mine samples have very similar trends (Figure 197). EDS spectral analysis of "xenotimes" reveals that samples are relatively depleted in HREE's relative to yttrium.



Figure 196 Line plot for "xenotime" X-site cation apfu content for all analyzed samples.



Figure 197 Chondrite normalized plot of REEs in "xenotimes" from the Groveland and Dolfin pegmatites.

# ZIRCON GROUP

Pegmatites often contain trace quantities of zircon; however, its abundance can increase as compositions become more alkaline (London, 2008). Zircon typically contains some amount of hafnium, but NYF-type pegmatites typically have low-hafnium zircon (Simmons, et al., 2003). Hafnium and zircon ratios are a good indicator for the degree of evolution of a pegmatite. Weight percent totals of hafnium from microprobe analyses range from slightly less than 0.8% to as much as 2.3%. Zircons from the Humboldt and Bell Creek granites and Republic Mine, Crockley, and Groveland Mine pegmatites have been analyzed by electron microprobe and have been plotted using Zr/Hf apfu vs HfO₂ wt% totals (Figure 198). Bell Creek are only slightly less evolved than the Humboldt samples. The relatively least evolved samples are from the Republic Mine and the relatively most evolved samples are from the Dolfin pegmatite. There is one analysis from the Republic Mine which plots nearer to Groveland Mine samples, but for the most part, there is a clear gap between samples analyzed from the Republic Mine and other locations. The Crockley samples are curious in that thorium contents are higher than samples from other locations. The Th-Hf-U ternary (Figure 199) illustrates the relative enrichment of Hf over Th and U in all samples with the exception of the Crockley.



Figure 198 Zr/Hf apfu versus HfO2 Wt% plot for zircons.



Figure 199 Hafnium - Thorium - Uranium ternary for zircons based on normalized apfu's.

#### WHOLE-ROCK GEOCHEMISTRY

Five whole-rock samples, one from Humboldt granite, three from Bell Creek granite, and one sample of granitic material collected from the Crockley pegmatite location were analyzed by Fusion ICP-OES and ICP-MS methods. Geochemical data includes 10 major elements (shown by weight percent) and 45 trace elements (parts per million-ppm). The geochemical data have been used to create the following plots in this section. Unfortunately, owing to analytical methods, few of the Hoffman (1987) analyses are appropriate for plotting with current samples from the Bell Creek, Humboldt, and Crockley as trace element geochemistry necessary for these plots is unavailable.

# MAJOR ELEMENTS

Igneous rock types can be geochemically distinguished using Na₂O + K₂O versus SiO₂ diagram of Bateman *et al.* (1989). Samples from Humboldt, Crockley, and Bell Creek plot in the granite field, but some of the Hoffman (1987) samples included plot in the Quartz Monzonite field as well as the Diorite, Quartz Diorite, Tonalite and Gabbro, Diabase fields (Figure 200). Granites are also further classified into peralkaline, metaluminous, and peraluminous groups via the Shand's Index plot of Maniar and Piccoli (1989), which graphically illustrates relative dominance of either alkali/alkaline earth elements K, Na, and Ca or aluminum (Figure 201). Two Bell Creek samples are relatively more peralumnious than all other samples including the Hoffman analyses. Hoffman, Bell Creek, and Clotted Granite samples, as well as the more recent Bell Creek samples are relatively slightly more peraluminous than Hoffman Albite granite and the more recent Crockley and Humboldt granite samples. The Humboldt sample plots on the line dividing the metaluminous and peraluminous fields. It is important to note that muscovite mica is found in both the more recent Humboldt, Bell Creek, and Crockley samples, which coincides with s more peraluminous nature and biotite micas plot in the peraluminous field of Abdel-Rahman's discrimination diagram (Figure 187).



Figure 200 Bateman et al. (1989) alkalis versus silica diagram.



Figure 201 Shand's Index diagram of Maniar & Piccoli (1989).

Igneous rock classification can also be divided into the mutually exclusive alkaline and subalkaline magma series. The R₁R₂ discrimination diagram of De La Roche *et al.* (1980) plot whole-rock data and show that Bell Creek samples (both Hoffman and most recent), Humboldt, Crockley, Albite Granite, and Clotted Granite samples all plot within the subalkaline field meaning these all have abundant silica (Figure 202). The subalkaline group can be further subdivided into a calc-alkaline (Fe-poor) and tholeiitic (Fe-rich) magma series (Figure 203). Based on the discrimation diagram of Miyashiro (1975), the more recent Bell Creek samples plot within the calc-alkaline field and the Hoffman Bell Creek samples are plotting within both the tholeiitic and calc-alkaline fields. More recent biotite mica samples from the Bell Creek granite show relative enrichment in magnesium than Humboldt and Crockley pegmatite samples, which corresponds nicely with the calc-alkaline affinity of Bell Creek granite whole rock geochemistry. Clotted Granite samples of Hoffman plot within the calc-alkaline field. Humboldt granite and

Crockley samples plot within the tholeiitic field, with the Humboldt sample having a relatively extreme tholeiitic signature owing to the relative enrichment of iron over magnesium in this sample. Hoffman's Albite Granite sample is not shown due to magnesium being below detectable limits in the analysis.



Figure 202 R₁R₂ discrimination diagram of De La Roche *et al.* (1980).



Figure 203 Calc-alkaline versus tholeiitic magma series affiliation of Miyashiro (1975).

#### TRACE ELEMENTS

The ratios and content of trace elements in granites and pegmatites are often used to determine the degree of evolution as well as to explore potential genetic relationships. Rubidium, for example, is a relatively incompatible substitution for potassium in K-feldspars, therefore the K/Rb ratio is a useful indicator for the degree of evolution when plotted against Rb ppm content as the K/Rb ratio generally decreases with progressive crystallization of a granitic melt (Černý *et al.*, 1985). Figure 204 shows that Bell Creek granite samples have a higher K/Rb ratio and relatively lower enrichement in rubidium. The Crockley sample has a similar K/Rb ratio as the Bell Creek samples, but it is relatively more enriched in rubidium than Bell Creek samples. The Humboldt granite sample has a relatively lower K/Rb ratios than either Crockley or Bell Creek, meaning that Humboldt granite samples are relatively more evolved than Bell Creek and Crockley. The Crockley sample is intermediately evolved when compared with Bell Creek and Humboldt samples. Hoffman Clotted Granite samples are relatively depleted in Rb and have some the highest K/Rb ratios of all other samples. Hoffman Bell Creek samples are also relatively depleted in Rb; however, one of his samples has a relatively low K/Rb ratio, six of his samples have a relatively high K/Rb ratio, and two of his Bell Creek samples have intermediate ratios between these two extremes.



Figure 204 K/Rb ratios versus Rb ppm enrichment.

The ternary diagrams in Figures 205, 206, and 207 compare the normalized percentages of Ce, La, and Nd; Ce, La, and Y; and Ti, Nb, and Ta enrichment/depletion respectively. Bell Creek, Humboldt, and Crockley samples cluster within cerium dominant field, which coincides with cerium dominant monazite-(Ce) samples from the Bell Creek and Humboldt granites as well as cerium dominant "monazites" and "bastnäsites" from the Crockley pegmatite. In the Ce, La, Y ternary (Figure 206), samples from the Bell Creek all cluster in the cerium dominant field. The Crockley and Humboldt samples are both yttrium dominant as well as relatively less enriched in lanthanum than the Bell Creek samples.



Figure 205 Ce-La-Nd ternary diagram.



Figure 206 Ce-La-Y ternary diagram.

In the Ti, Nb, Ta ternary, Bell Creek samples are extremely relatively dominant in titanium than either Humboldt or Crockley samples. This dominance nicely with the fact that

biotite micas from the Bell Creek are relatively more titanium rich than biotites from any other sampled location (Figure 186). The Crockley sample does show a trend of being relatively more enriched in titanium than either niobium or tantalum, although the Crockley sample is relatively more enriched in niobium than tantalum. Columbite samples and biotite micas from the Crockley pegmatite are niobium dominant and relatively more enriched in titanium respectively than the sample from Humboldt granite. The Humboldt granite sample also shows a trend of being relatively more enriched in Nb over Ta, although this sample is relatively depleted in Ti with regards to Bell Creek and Crockley samples. In addition, Crockley and Humboldt samples are niobium dominant and even though relative titanium enrichment in Bell Creek samples eclipse both niobium and tantalum enrichment combined, samples are relatively more enriched in niobium than tantalum as one would expect from NYF-type systems.



Figure 207 Ti-Nb-Ta ternary diagram.

The chondrite-normalized REE diagram of Sun and McDonough (1989) is an effective means to evaluate lanthanide-series REE enrichment or depletion in a rock relative to a primitive, homogeneous crust (Figure 208). Europium is the only REE than has a divalent charge and therefore can be depleted when the common rock-forming minerals (plagioclase specifically) crystallize from a melt. This leads to what is commonly referred to as a negative europium anomaly. This anomaly is used to determine the degree of evolution of a rock.

All Bell Creek samples have a similar trend of being relatively more enriched in LREE's than HREE's. Bell Creek samples also have a relatively modest negative europium anomaly compared to samples from the Crockley and Humboldt. The Humboldt granite sample has LREE enrichment that is similar in both trend and magnitude with regard to Bell Creek; however, this sample has an HREE enrichment that is more similar to that seen in anorogenic, NYF pegmatites. The Crockley sample has a similar trend as the Humboldt sample, but is an order of magnitude lower. The Humboldt and Crockley samples both have a very similar negative europium anomaly, suggesting that both are relatively more evolved than Bell Creek samples.

Another useful spider diagram is the primitive mantle-normalized plot (Figure 209) of Sun and McDonough (1989). As with the chondrite-normalized plot, all Bell Creek samples exhibit a very similar geochemical signature. Bell Creek samples are relatively more enriched in Ba, Th, and U as well as Sr and P. This plot also reveals the geochemical similarities that both the Humboldt and Crockley samples share with Bell Creek samples. The Humboldt sample has similar enrichment in Th and U, Nd, Zr, and Sm as Bell Creek, but is relatively more enriched in Rb than Bell Creek. The Humboldt sample is also roughly an order of magnitude more enriched in Nb and Ta as well as Y, Yb, and Lu with regard to Bell Creek samples. Sr, P, and Ti are each

approximately an order of magnitude depleted in the Humboldt granite sample with regard to Bell Creek granite samples.

The Crockley sample exhibits a roughly intermediate geochemical signature between Bell Creek and Humboldt samples. The Crockley sample is relatively more enriched in Rb than Bell Creek, but not as enriched as the Humboldt. The Crockley sample is relatively depleted in Ba with regard to Bell Creek, but not nearly as depleted with regard to the Humboldt granite. The Crockley sample has a similar enrichment in Nb and Ta as Humboldt, but not to the same degree as the Humboldt, yet is still relatively more enriched in both than Bell Creek samples. The Crockley sample is, however, relatively more depleted in La, Ce, Nd, Zr, and Sm than either Bell Creek or Humboldt samples, but still follows a similar trend at a magnitude below Bell Creek and Humboldt samples. The Crockley is relatively more enriched in Sr than Humboldt, although P is below detection limits. The Crockley has a similar depletion in Eu and Ti as the Humboldt as well as a similar enrichment in Y, Yb, and Lu as Bell Creek sample, although the enrichment is not an order of magnitude lower as seen in Bell Creek samples with regard to the Humboldt. All samples cluster at both potassium and lead.



Figure 208 Chondrite-normalized REE diagram of Sun & McDonough (1989).



Figure 209 Sun and McDonough primitive mantle-normalized spider diagram.

#### TECTONIC DISCRIMINATION DIAGRAMS

Another utility of trace element geochemistry is that certain ratios and concentrations are associated with potential tectonic settings of granitic development. Classification of tectonic settings is typically one of three types: A-type (anorogenic) are typically tholeiitic, relatively potassic and anhydrous, not associated with orogenic events and hence, rarely deformed; S-type (sedimentary) are highly peraluminous, relatively potassic, and high in silica due to the partial melting of metasedimentary packages; I-type (igneous) vary in silica content, are relatively sodium-rich, metaluminous to peraluminous and derived from the fractional crystallization of more mafic magmas (Frost *et al.*, 2001).

The discrimination diagram developed by Whalen *et al.* (1987) uses zirconium, gallium, and aluminum to geochemically differentiate between A-type, S-type, and I-type granites (Figure 210). The Bell Creek samples span the I- & S-type field and A-type field. Hoffman (1987) originally interpretted the Bell Creek granite as syntectonic, therefore this result provides support for his hypothesis. The Humboldt and Crockley samples are all plotting within the A-type field. The Humboldt granite has been interpretted to be associated with post orogenic collapse, which can give an anorogenic signature (Hoffman, 1987; Martin *et al.*, 2005).



Figure 210 Whalen et al. (1987) tectonic discrimination diagram.

The A-type classification of Whalen *et al.* (1987) is further divided into A1 and A2 subtypes (Figure 211) (Eby, 1992). A1 group subtypes have geochemical characteristics that are similar to ocean island basalts. The implication being that these granites are derived from differentiation of magma related to intraplate magmatism and continental rifting. A2 group subtypes have geochemical characteristics that are more similar to island-arc basalts and continental crust, which suggests that this subtype is derived from an underplated crust or continental source rock. The Humboldt sample plots within the A1 field, which is in agreement with Hoffman's interpretation (1987) that the Humboldt granite was emplaced during Penokean post orogenic collapse; however, the sample hovers just near the boundary between the A1 and A2 fields. This suggests that the Humboldt sample has geochemical characteristics that are similar to both an ocean island- and island arc-basalts and continental source rocks. This could suggest possible contamination of the melt that produced the HG2 sample during formation. The

Crockley sample plots near the HG2 sample for both the Y, Nb, Zr and Y, Nb, Ce ternaries yet does not plot quite as near to the A2 field as HG2; however, the Crockley sample plots closer to the Bell Creek samples in the Y, Nb, Ga*3 ternary. It appears that the Crockley sample has similar enrichment in yttrium as Bell Creek, but is less enriched in niobium. It is the gallium*3 value that is greatest influence on the Crockley sample and its proximity to Bell Creek samples.



Figure 211 Eby A1- & A2-subtype discrimination diagrams (1992, 2006).

Pearce *et al.* (1984) developed another important set of tectonic discrimination diagrams (Figure 212) that separate granites into ocean ridge granites (ORG), volcanic arc granites (VAG), within plate granites (WPG), syn-collisional granites (syn-COLG), and post collisional granites. Post collisional granite field is shown in the Rb versus Y + Nb diagram. The WPG class of Pearce *et al.* (1984) is similar to the A1 anorogenic subtype of Eby (1992). The post-collisional granite class consists of the I- and S-types, but is also somewhat like the A2 subtype of Whalen *et al.* (1984). The Bell Creek samples are all plotting in either both the VAG and syn-COLG

fields or as is the case in Rb versus Y + Nb, plots in the post-COLG field. The Crockley sample also plots in the post-COLG field, but in the larger WPG field like the Humboldt sample. The Humboldt sample plots in the WPG field. This is in agreement with the A1 subtype classification of Eby (1992) as the Humboldt granite is associated with Penokean post orogenic collapse.



Figure 212 Pearce et al. (1984) tectonic discrimination diagrams.

# DISCUSSION

Černý and Ercit (2005) use depth of emplacement and petrogenetic parameters to classify pegmatites. Pegmatites are categorized into broader types as being Abyssal, Muscovite, Muscovite-Rare Element, Rare Element, and Miarolitic (Černý & Ercit, 2005; Černý, 2012). The Rare-Element class of pegmatite is further classified into families of pegmatites, based on elemental enrichment, as either being NYF-type (niobium, yttrium, and fluorine), LCT-type (lithium, cesium, and tantalum), or a mixture of these two types (Černý & Ercit, 2005; Černý, 2012). Martin and DeVito (2005) suggest using tectonic regime as a mechanism to predict geochemical characteristics of pegmatites: melts generated by orogenesis typically produce LCTtype pegmatites, NYF-type develop as a result of melts produced during anorogenesis, and Mixed-type are a product of contamination of the parental melt. Neither of these methods are fully suitable in the classification of these particular pegmatites; however, Martin and DeVito (2005) do acknowledge that some pegmatites are produced by the partial melting of either mantle or crustal rocks.

There are a number of factors to consider that complicate classification of these pegmatites: 1) there has been two phases of anatexis involving gneiss domes, Archean and Paleoproterozoic, driven by two orogenic events; 2) melts produced from Bell Creek gneiss in the Archean by anatexis of Bell Creek gneiss could have likely involved either primitive sedimentary packages and/or felsic components of the Twin Lake Assemblage in a reducing environment; 3) anatectic melts produced during the Paleoproterozoic likely involved granitic basement established during the Archean phase of gneiss dome formation, granitic plutons associated with gneiss domes and their subsequent remobilization, or remnant felsic components of the Bell Creek gneiss/granite; 4) contamination of Paleoproterozoic melts would have

involved metasedimentary and metavolcanics produced in an oxidizing environment; 5) anorogenic (Humboldt) or igneous gabbroic (Peavy Pond Complex) melts produced during the Penokean orogeny or during Penokean post-orogenic collapse could have likely been contaminated by any and all of these packages; 6) location of the melt in either domes or troughs would have likely influenced the amount and type of contamination; and 7) anatectic melts would have likely been not only a product of, but also have been influenced by, the metamorphic isograd in which they are located, as well as the overall influence of the isograd on the capacity of the melt to assimilate metasedimentary and metavolcanic packages.
Class	Subclass	Туре	Subtype	Family
Abyssal	HREE LREE U			NYF
	B, Be			LCT
Muscovite				
Muscovite-	REE			NYF
Rare Element	Li			LCT
Rare Element	REE	allanite-monazite euxenite gadolinite		NYF
	Li	beryl	beryl-columbite beryl-columbite-phosphate	
		complex	spodumene petalite lepidolite elbaite amblygonite	LCT
		albite-spodume albite		
Miarolitic	REE	topaz-beryl gadolinite- fergusonite		NYF
	Li	topaz-beryl lepidolite		LCT

Figure 213 Černý (2012) classification of pegmatites.

The Bell Creek granite is believed to have formed during the Archean phase of gneiss dome formation (Hoffman, 1987; Tinkham & Marshak, 2004) by the partial melting of the more felsic components of the Bell Creek gneiss. Based on spatial proximity, as well as geochemical and mineralogical similarities it is suggested that the Grizzly pegmatite fractionated from the Bell Creek granite. Hoffman (1987) suggests that the Bell Creek granite is syntectonic and is associated with the collision of the Southern and Northern Complexes ~ 2.69 Ga along the Great Lakes Tectonic Zone. Tinkham and Marshak (2004) hypothesize that the Bell Creek gneiss penetratively deformed and metamorphosed the Twin Lake Assemblage, which consists of felsic and mafic gneisses. It seems possible then that the Bell Creek granite is not only a product of the partial melting of the felsic components of the Bell Creek gneiss, but also contamination of the anatectic melt with the primitive felsic components of the Twin Lake Assemblage as well. This might explain why the Bell Creek granite has geochemical characteristics similar to an underplated crust or continental source rock as well as to intraplate magmatism and continental rifting. This might also explain why the Bell Creek has I- & S-, and a slight A-type signature as well as a VAG/syn-COLG signature. There is also the matter of Bell Creek samples that plot in the post-collisional field in tectonic discrimination diagrams (Pearce et al., 1984).

Černý (1991a) suggests that I-type granites produced from mafic to intermediate igneous rocks, including immature sedimentary rocks of igneous provenance, could evolve toward more peraluminous compositions. He also suggests that I-types be included with the LCT-type family, even if they should lack characteristic enrichment associated with LCT-type pegmatites (London, 2008). The suggestion is that the Archean Bell Creek granite has been produced under a combination of these circumstances. The Grizzly pegmatite is peraluminous (Abdel-Rahman, 1996) and having fractionated from the Bell Creek granite, should be classified as an LCT-type

pegmatite based on Černý's classification scheme (1991a), even though the residual melt from the Bell Creek granite was relatively too primitive and insufficiently enriched to produce a highly evolved LCT-type pegmatite. In fact the Grizzly pegmatite lacks any enrichment in Li, Ce, and T, making classification of the Grizzly as LCT-type problematic.

The Humboldt granite has an A-type signature and is associated with Penokean postorogenic collapse. Based on subtype classification of Eby (1992; 2006), the Humboldt is more related to differentiation of magma associated with intraplate magmatism and continental rifting. Further, trace geochemistry shows the Humboldt is a within-plate granite. However, biotites analyzed from the Humboldt show an orogenic signature, rather than anorogenic. Meaning, that when the granitic melt intruded into the Northern Penokean terrane, there may have been limited input from the MRSG or that the anorogenic melt that produced the Humboldt may have been contaminated with Bell Creek gneiss/granite. This would explain why the Humboldt, and for that matter the Crockley, have a similar LREE geochemical signature as the Bell Creek, even though the Crockley is an order of magnitude below Humboldt and Bell Creek LREE enrichment. This would also explain the post-collisional signature the Crockley shares with Bell Creek samples.

One of the original goals of this study was to use monazite age dating techniques in order to determine if any of the pegmatites could be associated with the formation of the Humboldt granite. No suitable monazites were found for reliable age dates. However, one granitic sample from the Crockley pegmatite was collected for bulk compositional analysis. Heinrich (1962) suggested that the Crockley pegmatite is related to the 'Republic Granite'. Other than his mention of the Republic Granite, no further literature is present. It is suggested that the Crockley pegmatite is geochemically related the Humboldt granite as bulk compositional analyses reveal

the Crockley granitic sample is very similar to Humboldt granite samples. Hoffman (1987) collected many granitic samples from the Bell Creek, Clotted, and Albite granites. Even though his analyses do not include many of the trace elements in modern techniques, geochemistry available for comparison with current analyses shows that the Crockley pegmatite granitic sample is more similar to both the Humboldt and Albite granites than either the Clotted or Bell Creek granites (Figure 214, Figure 215, Figure 216). Therefore it is suggested that the Crockley pegmatite is genetically related to the Humboldt granite and trace geochemistry supports this claim.



Figure 214 Trace geochemistry of Hoffman (1987; light blue) & current (dark blue) Bell Creek granite samples.



Figure 215 Trace geochemistry of Albite Granite (AGR) from Hoffman (1987) dissertation. Humboldt (HG1 & HG2) and Crockley samples (CP-SW) are analyses conducted for this study. Note the change in scale to accommodate stronger relative enrichment of Rb & stronger relative depletion of Ti compared to Bell Creek and Clotted Granites.



Figure 216 Trace geochemistry of Hoffman (1987) Clotted Granite samples.

The second phase of gneiss dome formation involved original domal architecture present (Marshak *et al.*, 1997; Tinkham & Marshak, 2004). Reactivation of the Southern Complex during the Paleoproterozoic involved displacement along shear zones and deposition of MRSG into grabens and keels (Marshak, 1997; Tinkham & Marshak, 2004). If anatexis is intimately linked with gneiss dome formation as Eskola (1949) and Yin (2004) believe, then it seems possible that a second anatectic melt could have been produced from remnant felsic components of Archean gneiss domes during the Penokean Orogeny. Also just as likely is that these melts could have become subsequently contaminated with MRSG, assisted in part by the regional metamorphism related to the gneiss domes.

This scenario seems especially likely for the Republic Mine pegmatite. The Republic Mine is considered to be peraluminous due to the presence of relatively abundant muscovite mica and garnet as well as biotites that plot within the peraluminous field (Abdel-Rahman, 1996). Tourmaline is also present, which is indicative of a more peraluminous nature, but also that the melt which produced the Republic Mine pegmatite had become enriched in boron, presumably from contamination of the melt with MRSG. Even though tourmaline is present, they are rather primitive due to their relative enrichment in magnesium and calcium. Biotites are also rather primitive, despite being peraluminous, as they are relatively enriched in magnesium, much like Bell Creek biotites. Magnesium is typically not abundant in granites, and especially pegmatites, as it is preferentially taken up in the early rock-forming minerals (Batchelor & Kinnaird, 1984). Zircons from the Republic Mine have the most primitive Zr/Hf ratios out of all the pegmatites in this study and also have some of the highest calcium contents as well.

The Republic Mine pegmatite is suggested to be a product of partial melting of Bell Creek gneiss as well as contamination of that melt with MRSG. The Archean Bell Creek

granites have calcium-rich plagioclase inclusions (Hoffman, 1987) as does the Grizzly pegmatite. If the Bell Creek granite has been produced from the Bell Creek gneiss during an Archean phase of anatexis and gneiss dome formation, then the Paleoproterozoic phase of partial melting involving the Bell Creek gneiss and domes would likely produce a melt with similar geochemical characteristics. If the second anatectic melt became contaminated with MRSG sediments and metavolcanics, this would explain why biotite micas are plotting within the orogenic field (Webber et al., 2000) and peraluminous field (Abdel-Rahman, 1996), something the Republic Mine shares with both the Bell Creek and Grizzly. This would explain the presence of tourmaline, but also how the overall nature of the Republic Mine itself, is primitive. It should be noted that biotites from Grizzly pegmatite are less enriched in magnesium than either the Bell Creek or the Republic Mine. However, this is believed to be through the process of fractionation that preferentially depleted magnesium before the Grizzly pegmatite was formed. Tournaline is absent from both Bell Creek granite and Grizzly pegmatite suggesting that boron was not present in sufficient quantities in the melt that produced either of these igneous bodies. Therefore, if the formation of the Republic Mine pegmatite represents a second anatectic melt produced during the Paleoproterozoic from the Bell Creek gneiss, then boron enrichment would have had to have been introduced by contamination.

It follows then that perhaps all of the pegmatites in this study, with the exception of the Grizzly pegmatite, may have become contaminated by metasediments and metavolcanics of the MRSG or primitive sedimentary packages. The quantity and type of assimilated packages would then affect the overall geochemistry to such a degree so as to produce a hybrid pegmatite that has characteristics of both the original geochemistry and the assimilated packages. The Sturgeon and Hwy69 pegmatites could have been generated under similar circumstances as the Republic Mine,

owing to the more peraluminous and primitive nature. The Sturgeon River pegmatite has abundant tourmaline and garnet as well as muscovite mica. Hwy69 has both garnet and muscovite mica, which suggests that contamination of the Hwy69 pegmatite did not include packages sufficiently enriched in boron to produce tourmaline. Although, considering the spatial relationship it has with the Sturgeon River and Groveland Mine pegmatites, it seems promising that the Hwy69 does contain tourmaline, but perhaps of limited quantity. Biotite micas from both cluster near Bell Creek and Republic Mine samples in the calc-alkaline field (Figure 187). However, the near calc-alkaline affinity of biotite from these two pegmatites could have come from contamination of the melt with Chocolay group, which contain algal dolomite (Ueng & Larue, 1988).

The Groveland Mine pegmatite is especially interesting in that it is spatially associated with the Peavy Pond Complex (PPC): a syntectonic igneous gabbroic body that assimilated parts of the Michigamme Formation (MF) during the Penokean Orogeny (Bayley, 1959). There is abundant garnet, muscovite mica, tourmaline, and also beryl. Biotite micas are peraluminous (Figure 187) and plot with the orogenic field (Figures 188 & 189). In addition, there are a number of minerals present, which are typically associated with LCT-type pegmatites, such as pyrophanite, tantalite, microlite, and gahnite. Not to suggest that these minerals never occur in NYF-type pegmatites, but that the elemental constituents necessary for their formation are typically insufficient to produce them in NYF pegmatite systems. As an example, NYF-type pegmatites are typically enriched in niobium relative to tantalum. Tantalum is generally not sufficient to become the dominant phase, especially in columbite group minerals. LCT-type pegmatites are generally relatively more enriched in Ta and have mangano- and ferrotantalites, whereas NYF-types have mangano- and ferrocolumbites. LCT-type pegmatites also tend to be

more manganese rich and NYF-type pegmatites, more iron rich. The fact that the Groveland has ferrotantalites as well as samples that plot on the cusp of being classified as manganotantalite, is unusual.

Bayley (1959) offers a suitable explanation for the more peraluminous nature of the Groveland Mine. The PPC, located very near the Groveland Mine pegmatite, intruded and assimilated siliceous greywacke and slate of the Michigamme Formation (MF) (Bayley, 1959). The contamination of a more gabbroic melt with greywacke and slate of the MF, would have given rise to various felsic and intermediate magma types (Bayley, 1959). Bayley (1959) further concludes that there was a gradual transition to a more felsic composition depending, of course, on the amount of MF metasedimentary material incorporated into the melt. Cooling of the melt was undoubtedly slow, as the area was experiencing regional metamorphism related to gneissic dome remobilization during the Penokean Orogeny (Bayley, 1959). The Groveland Mine pegmatite is located in the staurolite facies metamorphic isograd and the PPC is located to the west in the metamorphic high sillimanite facies isograd of the Peavy node.

Bayley (1959) concluded that the reaction of greywacke and slate of the MF would have produced granodiorites, granites, and pegmatitic melts. Bayley (1959) listed the following components available for reaction within the rocks as H₂O, CO₂, K₂O, Na₂O, SiO₂, Al₂O₃, B, and F. These components would explain the presence of minerals more closely associated with LCTtype and peraluminous pegmatites. It is further suggested that due to the close proximity to Groveland Mine itself (which has been mined for iron ore in the past) as well as to banded-iron formation deposits, that assimilation of the surrounding formations included these iron deposits. This would explain the relative greater abundance of magnetite and hematite at the Groveland Mine pegmatite itself given that these deposits were produced during more oxidizing conditions. The Bell Creek granite and Grizzly pegmatite contain little to no magnetite, and the implication is that trivalent iron contents were insufficient to produce hematite. Hematite frequently affects the color of feldspars by occurring as microscopic inclusions. The Bell Creek granite and Grizzly pegmatite were produced when the environment was more reducing and even if a melt had assimilated metasediments, trivalent iron would not have been available. Other than the Grizzly, feldspar from the other pegmatites in this study are, to some degree, a hue of red. The Groveland Mine is the most extreme, as feldspar from the Groveland is not only brick red, heavy mineral separations frequently contain quite a bit of magnetite. The broader implication being that there is a relative abundance of trivalent iron present in the Groveland Mine that likely came from assimilation of banded-iron formations.

Garnets from the Groveland can be used to further add to Bayley's hypothesis of contamination of the Peavy Pond Complex with Michigamme Formation. Garnets are frequently fractured and these fractures appear to have been subsequently infilled or recrystallization has occurred. Recrystallization is favored as the 'infilling' does not extend outside of garnet grain boundaries. Analyses show an original garnet chemistry with a higher spessartine component than secondary chemistry, which has a lower spessartine component and higher almandine component. This is unusual in that garnets preferentially incorporate Mn over Fe (London, 2008). If these garnets are in fact relic grains from the MRSG and exposed to an acidic melt such as one produced when the PPC assimilated MF, then perhaps these grains have been chemically attacked. Given the abundance of Fe available from assimilation of sedimentary packages, recrystallization of garnet in fractures could have involved more Fe. Especially if Mn had been sequestered into other mineral phases.

With coexisting ilmenite and magnetite present in metamorphic and igneous rocks for example, Mn is preferentially incorporated into ilmenite (Deer *et al.*, 1962; 1992). Magnetite is locally abundant at the Groveland Mine pegmatite and only pyrophanite, not ilmenite, has been found in heavy mineral separations from this study and others (Buchholz *et al.*, 2014). Also, tantalites are relatively enriched in Mn. If Mn was liberated from relict garnets in MRSG packages, there could have been a combination of competition for Mn as well as the relative enrichment of Fe over Mn when the PPC incorporated MRSG and banded-iron formations. Hwy69 and Sturgeon River also display a similar trend with garnets; however, these two pegmatites lack the Mn enrichment present at the Groveland.

A very tenuous suggestion about the presence of gahnite specifically, is that sulfide deposits in the area might be related to zinc enrichment in the melt (suitable enough to produce at least trace quantities of gahnite). If sphalerite were present in the MF and was subsequently assimilated, the likelihood of sulfur being lost to a gaseous phase (Martin & DeVito, 2005), could have possibly provided the zinc necessary to form gahnite. Another explanation is that trace quantities of zinc can be sequestered in biotites and with assimilation of MF, zinc could have been liberated into the melt. It is prudent though, after all this speculation, to mention even with the additional mineralogy of the Groveland Mine, that beryl from the Groveland Mine is poorly evolved (Figure 169), typical of NYF-type pegmatites. Gahnite, though rare, likewise is poorly evolved and well within range of NYF-type pegmatites (Heimann, 2010). It has more to do with the beryl-phosphate-columbite assemblage that complicates the categorization of the Groveland Mine as either LCT- or NYF-type. It should also be mentioned that associated lithium and cesium enrichment and mineralogy, typical of peraluminous LCT-type pegmatites, is absent.

A final word about the Groveland. Based on previous studies, intrusion of the PPC preceded peak regional metamorphism (Bayley, 1959). James (1955) had determined that peak deformation preceded peak metamorphism during the Penokean Orogeny as the PPC lacks signs of deformation, as opposed to the surrounding country rock. Muscovite mica books present at the Groveland Mine pegmatite are kinked (Figure 144). Buchholz *et al.*, (2014) has also commented on the presence of "kinked" muscovite mica. This suggests that deformation of the pegmatite occurred after its formation and that there has been some overlap of peak deformation and peak metamorphism as originally hypothesized by Bayley (1959).

Given the mineralogical and geochemical signatures of the Bell Creek, it is possible to suggest that the Grizzly pegmatite has been produced during the Archean phase of anatexis and that the Grizzly has fractionated from a parental melt with a post-collisional, VAG/syn-COLG signature. Given the similarities the Republic Mine shares with the Bell Creek and Grizzly, it is suggested that the Republic Mine pegmatite has been produced during the Paleoproterozoic phase of anatexis and is a result of partial melting of remnant felsic components and/or granitic basement initially established in the Archean during gneiss dome formation. It is further suggested that the Republic Mine has been influenced by contamination, which accounts for the additional mineralogy not seen in either the Bell Creek granite or Grizzly pegmatite.

Given the geochemistry that the Crockley granitic sample shares with the Humboldt and Bell Creek samples, it is suggested that the Crockley is a hybrid pegmatite and is a result of contamination of an anorogenic melt with Bell Creek gneiss/granite during Penokean postorogenic collapse. It should be pointed out that the Humboldt granite sample also appears to be a hybrid, although it is quite possible that there are Humboldt granitic bodies that do not exhibit this hybrid signature. Buchholz *et al.* (2014) has suggested that the Black River pegmatite is also

genetically related to the Humboldt granite; however, future study should include bulk compositional analysis of wall zone material from this pegmatite to determine any geochemical similarity it might have with Bell Creek and/or Humboldt as seen in the Crockley.

There is a similar quandary in classification of the other pegmatites. Biotite micas plot in the peraluminous field of Abdel-Rahman's discrimination diagram and orogenic fields in the tectonic discrimination diagrams of Webber *et al.* (2000) yet each have mineralogy and geochemistry closely associated with NYF-type pegmatites, or at the very least, these pegmatites lack mineralogy and characteristic enrichment typically associated with LCT-type pegmatites. Orogenic and peraluminous signatures could very well have been imparted from an anatectic melt produced from Bell Creek gneiss/granite during the Paleoproterozoic and seeing as the Bell Creel granite and Grizzly pegmatite lack characteristic enrichment in Li, Ce, and Ta, any pegmatite that has been contaminated with anorogenic melts or MRSG, would likely readily exhibit the geochemical characteristics from the contamination source. It should also be pointed out that biotite mica from the Grizzly pegmatite appears to be evolving toward an anorogenic signature, which might explain why these pegmatites are exhibiting a more NYF-type character. The Groveland Mine pegmatite especially deserves further study as it is the most geochemically and mineralogically diverse pegmatite with regards to the other pegmatites in this study.

Granitic material or wall rock samples should be analyzed to determine if any hybrid geochemical signatures exist as those seen in Crockley and Humboldt samples. Also, more work should be conducted in order to determine to what degree (if any) metamorphic isograds influence the evolution of the pegmatites as the Dolfin is located in the sillimanite isograd of the Republic node. Zircons from the Dolfin pegmatite are relatively more evolved than any other sampled location. Xenotimes from the Dolfin also have a chondrite-normalized enrichment

trend that is quite different than those from the Groveland. Dolfin xenotimes are also relatively more enriched in Y than GMP xenotimes. However, Dolfin pegmatites are similarly enriched in Mn as garnets from other sampled locations, with the exception of the Republic Mine, which are relatively more enriched in Mn.

The Dolfin, Hwy69, and Sturgeon River pegmatites should be classified as Rare Element, REE, NYF-type. There is an overall lack of geochemical and mineralogical association with LCT-type, with the exception of the Black River pegmatite, which has some slight tantalum enrichment expressed in the rare presence of ferrotantalites.

## **S**TANDARDS

### APATITE

Standards for EMP analyses of garnet

15 kV
15 nA
2 microns
45 seconds per spot

Clinopyroxene	"Cpx-26"	(Si,Al,Mg,Fe)
Fluorapatite	Cerro de Mercado	(F,Ca,P)
Lithiophilite	Emmons, ME	(Mn)

$Al_2O_3$	synthetic
Hematite	Elba
MgO	synthetic
PbO	synthetic
$V_2O_5$	synthetic
ZnO	synthetic
$ZrO_2$	synthetic

## COLUMBITE/TANTALITE

Standards for EMP analyses of garnet

Acceleration potential:	20 kV
Beam current:	22 nA
Beam width:	2 microns
Count time:	45 seconds per spot

Bismuto-tantalite		(Bi)
Cassiterite		(Sn)
CaWO ₄	synthetic	(W)
Clinopyroxene	"Cpx-26"	(Mg,Si,Ca)
Corundum	synthetic	(Al)
Hematite	Elba	(Fe)
Manganotantalite	Himalaya Pegmatite, CA	(Mn,Ta)
Microlite	Harding Pegmatite, NM	(Na,Ca,Ta)
Samarskite	Afghan	(U)
TiO ₂	synthetic	(Ti)
YNbO ₄	synthetic	(Nb)

synthetic
Elba
synthetic

# GARNET

Standards for EMP analyses of garnet

15 kV
15 nA
2 microns
45 seconds per spot

Andalusite	Minas Gerais	(Al,Si)
Clinopyroxene	"Cpx-26"	(Mg,Si,Ca)
Fayalite		(Fe)
Spessartine		(Mn)

$Al_2O_3$	synthetic
Hematite	Elba
MgO	synthetic
PbO	synthetic
$V_2O_5$	synthetic
ZnO	synthetic
$ZrO_2$	synthetic

# ILMENITE/PYROPHANITE

Standards for EMP analyses of ilmenite-pyrophanite

Acceleration potential:	20 kV
Beam current:	20 nA
Beam width:	2 microns
Count time:	45 seconds per spot

Clinopyroxene	"Cpx-26"	(Mg,Si,Al,Ca)
Hematite	Elba	(Fe)
Manganotantalite	<b>RGN Brazil</b>	(Mn,Ta)
TiO ₂	synthetic	(Ti)
YNbO ₄	synthetic	(Nb)

$Al_2O_3$	synthetic
MgO	synthetic
PbO	synthetic
$V_2O_5$	synthetic
ZnO	synthetic
$ZrO_2$	synthetic

# K-Feldspar

Standards for EMP analyses of K-feldspar

15 kV
15 nA
2 microns
45 seconds per spot

Adularia	Fibbia	(K,Si)
Albite	Tiburon	(Si,Al,Na)
An ₅₀	Nine, Canada	(Ca,Al)
BaSO ₄	synthetic	(Ba)
Clinopyroxene	"Cpx-26"	(Fe,Mg)
Fluorapatite	Cerro de Mercado	(P)
Pollucite	Tanco	(Cs)
Rhodonite	Broken Hill	(Mn)
RbAlSi ₂ O ₆	synthetic	(Rb)
SrSO ₄	synthetic	(Sr)
TiO ₂	synthetic	(Ti)

Al ₂ O ₃	synthetic
Hematite	Elba
MgO	synthetic
PbO	synthetic
$V_2O_5$	synthetic
ZnO	synthetic
$ZrO_2$	synthetic

# MICA

Standards for EMP analyses of K-feldspar

15 kV
15 nA
2 microns
45 seconds per spot

Adularia	Fibbia	(K,Si)
Albite	Tiburon	(Si,Al,Na)
An ₅₀	Nine, Canada	(Ca,Al)
BaSO ₄	synthetic	(Ba)
Clinopyroxene	"Cpx-26"	(Fe,Mg)
Fluorapatite	Cerro de Mercado	(P)
Fluorphlogopite	synthetic	(F)
Pollucite	Tanco	(Cs)
RbAlSi ₂ O ₆	synthetic	(Rb)
Rhodonite	Broken Hill	(Mn)
TiO ₂	synthetic	(Ti)

synthetic
Elba
synthetic

# TITANITE

Standards for EMP analyses of titanite

Acceleration potential:	15 kV
Beam current:	15 nA
Beam width:	2 microns
Count time:	45 seconds per spot

"Cpx-26"	(Fe,Mg,Si,Al,Ca)
<b>RGN Brazil</b>	(Mn,Ta)
synthetic	(Ti)
synthetic	(F)
synthetic	(Nb)
	"Cpx-26" RGN Brazil synthetic synthetic synthetic

$Al_2O_3$	synthetic
Hematite	Elba
MgO	synthetic
PbO	synthetic
$V_2O_5$	synthetic
ZnO	synthetic
$ZrO_2$	synthetic

### TOURMALINE

Standards for EMP analyses of tourmaline

Acceleration potential:	15 kV
Beam current:	15 nA
Beam width:	2 microns
Count time:	45 seconds per spot

Adularia	Fibbia	(K)
Albite	Tiburon	(Na)
Andalusite	Minas Gerais	(Al,Si)
Bi4Ge3012	synthetic	(Bi)
Chromite	Stillwater MT	(Cr)
Clinopyroxene	"Cpx-26"	(Fe,Mg,Ca,Ti)
Fluortopaz	Thomas Range, UT	(F)
PbO	synthetic	(Pb)
Rhodonite	Broken Hill	(Mn)
TiO ₂	synthetic	(Ti)
$V_2O_5$	synthetic	(V)
ZnO	synthetic	(Zn)

Al ₂ O ₃	synthetic
Fayalite	
Hematite	Elba
MgO	synthetic
SrSO ₄	synthetic
TiO ₂	synthetic
$ZrO_2$	synthetic

# ZIRCON

Standards for EMP analyses of zircon

20 kV
20 nA
2 microns
45 seconds per spot

Fibbia	(K)
synthetic	(W)
"Cpx-26"	(Fe,Mg,Si,Al,Ca)
Cerro de Mercado	(P)
synthetic	(Hf)
<b>RGN Brazil</b>	(Mn,Ta)
synthetic	(Th)
synthetic	(Ti)
synthetic	(U)
synthetic	(Nb)
synthetic	(Zr)
	Fibbia synthetic "Cpx-26" Cerro de Mercado synthetic RGN Brazil synthetic synthetic synthetic synthetic synthetic synthetic

synthetic
Elba
synthetic

### WHOLE ROCK

Standards for DCP analyses DCP analyses were performed by Maine Mineral & Gem Museum

Li 0.1 ppm standard = 0.096 ppm $\lambda = 670.784 \text{ nm}$ calibration range = 0.02 to 10 mg/l count time = 20 seconds

#### References

- AMATO, J.M., WRIGHT, J.E., GANS, P.B., & MILLER, E.L. (1994): Magmatically induced metamorphism and deformation in the Kigluaik gneiss dome, Seward Peninsula, Alaska. Tectonics, **13**, 515-527.
- ATENCIO, D., ANDRADE M.B., CHRISTY, A.G., GIERÉ, R, & KARTASHOV, P.M. (2010): The Pyrochlore Supergroup of Minerals: Nomenclature. The Canadian Mineralogist, **48**, 673-698.
- ATTOH, K. (2000): Contrasting metamorphic record of heat production anomalies in the Penokean Orogen of northern Michigan. Journal of Geology, **108**, 353-361.
- ATTOH, K. & KLASNER, J.S. (1989): Tectonic implications of metamorphism and gravity field in the Penokean orogen of northern Michigan. American Geophysical Union. Tectonics, 8, no. 4, 911-933.
- BAYLEY, R.W. (1959): Geology of the Lake Mary quadrangle, Iron County, Michigan. U.S. Geological Survey Bulletin, **1077**, 112 p.
- BAROVICH, K.M., PATCHETT, P.J., PETERMAN, Z.E., & SIMS, P.K. (1989): Nd isotopes and the origin of 1.9-1.7 Ga Penokean continental crust of the Lake Superior region. Geological Society of America Bulletin, 101, 333-338.
- BECK, J.W. & MURTHY, V.R. (1982): Rb-Sr and Sm-Nd studies of Proterozoic mafic dikes in northeastern Minnesota [abs]: 28th Annual Institute on Lake Superior Geology, International Falls, Minnesota. Proceedings, 5 p.
- BECK, J.W. & MURTHY, V.R. (1991): Evidence for continental crustal assimilation in the Hemlock Formation flood basalts of the Early Proterozoic Penokean orogen, Lake Superior region. U.S. Geological Survey Bulletin, **1904-I**, 25 p.
- BROWN, C. (1999): Mineralogy of NYF granitic pegmatites. Canadian Mineralogist, **37**, 848-849 (abstract).
- BUCHHOLZ, T.W., FALSTER, A.U., & SIMMONS, W.B. (2014): Accessory mineralogy of an evolved Dickinson County, Michigan pegmatite. 41st Rochester Mineralogical Symposium: Contributed Papers in Specimen Mineralogy, 11-12.
- BUCHHOLZ, T.W., FALSTER, A.U., & SIMMONS, W.B. (2014): Accessory mineralogy of the Black River pegmatite and Humboldt granite, Marquette County, Michigan. Fortieth Rochester Mineralogical Symposium: Contributed Papers in Specimen Mineralogy – Part 1, Rocks & Minerals 89:4, 371-372.
- CAMBRAY, F.W. (1984): Proterozoic geology, Lake Superior, south shore. Geological Association of Canada Annual Meeting Field Trip Guidebook, 55 p.
- CANNON, W.F. (1973): The Penokean orogeny in northern Michigan, in Young, G.M., ed., Huronian stratigraphy and sedimentation. Geological Association of Canada Special Paper, **12**, 251-271.
- CANNON, W.F. (1986): Bedrock geologic map of the Iron River 1°X2° quadrangle, Michigan and Wisconsin. U.S. Geological Survey Miscellaneous Investigations Series Map I-1360-b, scale 1:250,000.
- ČERNÝ, P. (1991a): Rare-element granite pegmatites. I. Anatomy and internal evolution of pegmatite deposits. Geoscience Canada, **18**, 49-67.
- ČERNÝ, P. (1992): Geochemical and petrogenetic features of mineralization in rare-element granitic pegmatites in the light of current research. Applied Geochemistry, **7**, 393-416.
- ČERNÝ, P. & ERCIT, T.S. (1986): Mineralogy of niobium and tantalum: Crystal chemical relationships, paragenetic aspects and their economic implications, 27-79. In P. Moller *et al.*, Eds. Lanthanides, Tantalum, and Niobium. Special Publication of the Society for Geology Applied to Mineral Deposits. Springer Verlag, New York, 380 p.
- ČERNÝ, P. & ERCIT, T.S. (2005): The classification of granitic pegmatites revisited. The Canadian Mineralogist **43**, 2005-2026.
- DEER, W., HOWIE. R., & ZUSSMAN, J. (1962, 1992): An introduction to the rock-forming minerals. Longmans, Green, & Co. Ltd., London, 2nd ed.

- DEMARTIN, F., PILATI, T., DIELLA, V., DONZELLI, S., GENTILE, P., & GRAMACCIOLI, C.M. (1991): The chemical composition of xenotime from fissure and pegmatites in the Alps. Canadian Mineralogist, 29, 69-75.
- EDWARDS, M.A., KIDD, W.S.F., & SCHNEIDER, D.A. (2002): A guide to dome improvement, Lesson 1: Is your dome built on granite or gneiss?. Geological Society of America Abstracts with Programs, 34, no.6, 109.
- ESKOLA, P.E. (1949): The problem of mantled gneiss domes: Quarterly Journal of the Geological Society of London, **104**, 461-476.
- Fox, T.P. (1983): Geochemistry of the Hemlock Metabasalt and Kiernan sills, Iron County, Michigan [Unpublished M.S. thesis]. East Lansing, Michigan, Michigan State University, 81 p.
- GREGG, W.J. (1993): Structural geology of parautochthonous and allocthonous terranes of the Penokean Orogeny of Upper Michigan–Comparisons with Northern Appalachians tectonics. U.S. Geological Survey Bulletin, **1904-Q**, Q1-Q28.
- GREGG, W.J. & SAJA, D.B. (1998): Field evidence for orogenic collapse, examples from the Penokean orogeny in Upper Michigan [abs]: Geological Society of America Abstracts with Programs, 30, A-95.
- HOFFMAN, M.A. (1987): The Southern Complex: Geology, geochemistry, mineralogy, and mineral chemistry of selected uranium- and thorium-rich granites. Michigan Technological University.
- HOLDAWAY, M.J. (1971): Stability of andalucite and the alumino-silicate phase diagram. American Journal of Science, **271**, 97-131.
- HOLM, D.K. & LUX, D.R. (1996): Core complex model proposed for gneiss dome development during collapse of the Paleoproterozoic Penokean orogen, Minnesota. Geology, **35**, 1143-1151.
- HOLM, D.K., DARRAH, K.S. & LUX, D.R. (1998): Evidence for widespread ~1760 Ma metamorphism and rapid crustal stabilization of the Early Proterozoic (1870-1820 Ma) Penokean Orogen, Minnesota. American Journal of Science, 298, 60-81.
- HOLM, D.K., SCHNEIDER, D.A., & COATH, C. (1998b): Age and deformation of Early Proterozoic quartzites in the southern Lake Superior region: Implications for extent of foreland deformation during final assembly of Laurentia. Geology, 26, 907-910.
- HOLM, D.K., VAN SCHMUS, W.R., & MACNEILL, L.C. (2001): Age of the Humboldt Granite, northern Michigan; implications for the origin of the Republic metamorphic node, in Mudrey, M.G., Jr., ed., 47th Annual Meeting, Institute on Lake Superior Geology, Proceedings, Program, and Abstracts: Institute on Lake Superior Geology, 47, 31-32.
- HOLM, D.K., VAN SCHMUS, W.R., MACNEILL, L.C., BOERHOOM, T.J., SCHWEITZER, D., SCHNEIDER, D. (2005): U-Pb zircon geochronology of Paleoproterozoic plutons from the northern midcontinent, USA: Evidence for subduction flip and continued convergence after geon 18 Penokean orogenesis. GSA Bulletin, 117, no. 3/4, 259-275.
- JAMES, H.L. (1955): Zones of regional metamorphism in the Precambrian of northern Michigan. Geological Society of America Bulletin, **66**, 1455-1487.
- LARUE, D.K. (1983): Early Proterozoic tectonics of the Lake Superior region: Tectonostratigraphic terranes near the purported collision zone. Geological Society of America, Memoir **160**, 33-47.
- LARUE, D.K. & SLOSS, L.L. (1980): Early Proterozoic sedimentary basins of the Lake Superior region– Summary. Geological Society of America Bulletin, **91**, 450-452.
- LINTHOUT, K. (2007): Tripartite division of the system 2REEPO₄ CaTh(PO₄)₂ 2ThSiO₄, discreditation of brabantite, and recognition of cheralite as the name for members dominated by CaTh(PO₄)₂. The Canadian Mineralogist, **45**, 503-508.
- MAASS, R.S., MEDARIS, L.G., JR., & VAN SCHMUS, W.R. (1980): Penokean deformation in central Wisconsin. Geological Society of America Special Paper, **182**, 147-157.
- MARSHAK, S. (1999): Deformation style way back when: Thoughts on the contrasts between Archean/Paleoproterozoic and contemporary orogens. Journal of Structural Geology, **21**, 1175-1182.

- MARSHAK, S., ALKMIM, F.F., JORDT-EVANGELISTA, H. (1992): Proterozoic crustal extension and the generation of dome-and-keel structure in an Archaean granite-greenstone terrane. Nature, **357**, 491-493.
- MARSHAK, S., TINKHAM, D.K., ALKMIM, F.F., BRUECKNER, H., & BORNHORST, T. (1997): Dome and keel provinces formed during the Paleoproterozoic orogenic collapse core complexes, diapirs, or neither?: Examples from the Quadrilateral Ferrifero and the Penokean orogen. Geology, **25**, 415-418.
- MARTIN, R.F. & DE VITO, C. (2005): The Patterns of Enrichment in Felsic Pegmatites Ultimately Depend on Tectonic Setting. The Canadian Mineralogist, **43**, 2027-2048.
- MASAU, M. (2003): Mineralogy and geochemistry of the searchlight granite-pegmatite-aplite district, Clark County, Nevada. University of New Orleans.
- MCKENZIE, D.P. (1978): Some remarks on the development of sedimentary basins. Earth and Planetary Science Letters, **40**, 25-32.
- MOREY, G.B. (1993): Continental margin assemblage. Archean and Proterozoic geology, Lake Superior region, 1993. U.S. Geological Society Professional Paper, **1556**, 30-44.
- RAPP, R.P & WATSON, B. (1986): Monazite solubility and dissolution kinetics: implications for the thorium and light rare earth chemistry of felsic magmas. Contributions to Mineralogy and Petrology, 94, 304-316.
- RILLER, U., SCHWERDTNER, W.M., HALLS, H.C., & CARD, K.D. (1999): Transpressive tectonism in the eastern Penokean orogen, Canada Consequences for Proterozoic crustal kinematics and continental fragmentation. Precambrian Research, 93, 51-71.
- ROSE, S., SCHNEIDER, D.A., LOOFBORO, J., & HOLM, D.K. (2003): Results and implications of monazite geochronology from the central Penokean orogen, WI & MI [abs]: Geological Society of America Abstracts with Programs, 35, no.6, 206-208.
- SCHNEIDER, D.A., HOLM, D.K., & LUX, D.R. (1996): On the origin of Early Proterozoic gneiss domes and metamorphic nodes, northern Michigan. Canadian Journal of Earth Sciences, **33**, 1053-1063.
- SCHNEIDER, D.A., BICKFORD, M.E., CANNON, W.F., SCHULZ, K.J., & HAMILTON, M.A. (2002): Timing of Marquette Range Supergroup deposition and Penokean collision-related basin formation, southern Lake Superior region: implications for Paleoproterozoic tectonic reconstruction. Canadian Journal of Earth Science, **39**, 999-1012.
- SCHNEIDER, D.A, HOLM, D.K., O'BOYLE, C., HAMILTON, M., JERCINOVIC, M. (2004): Paleo Proterozoic development of gneiss dome corridor in the southern Lake Superior region, USA. In: Whitney, D.L., Teyssier, C., Siddoway, C.S. eds., Gneiss Domes in Orogeny. Geological Society of America, Special Paper, **380**, 339-357.
- SCHMITZ, M.D., BOWRING, S.A., SOUTHWICK, D.L., BOERBOOM, T.J., WIRTH, K.R. (2006): Highprecision U-Pb geochronology in the Minnesota River Valley sub-province and its bearing on the Neoarchean to Paleoproterozoic evolution of the southern Superior Province. Geological Society of America Bulletin, **118**, 82-93.
- SCHULZ, K.J. (1984): Early Proterozoic Penokean igneous rocks of the Lake Superior region– Geochemistry and tectonic implications. 30th Annual Institute on Lake Superior Geology, Wausau, Wisconsin, Abstracts, 65-66.
- SIMS, P.K. (1980): Boundary between Archean greenstone and gneiss terranes in northern Wisconsin and Michigan. Geological Society of America Special Paper, **182**, 113-124.
- SIMS, P.K. (1992): Geologic map of Precambrian rocks, southern Lake Superior region, Wisconsin and northern Michigan. U.S. Geological Survey Miscellaneous Investigations Series Map MI-2185, scale 1:500,000, 1 sheet.
- SIMS, P.K. (1993): Great Lakes Tectonic Zone. Archean and Proterozoic geology, Lake Superior region, 1993. U.S. Geological Society Professional Paper, **1556**, 24-28.
- SIMS, P.K. (1993): Minnesota River Valley Subprovince (Archean Gneiss Terrane). Archean and Proterozoic geology, Lake Superior region, 1993. U.S. Geological Society Professional Paper, 1556, 14-23.

- SIMS, P.K. (1993): Structure of continental margin. Archean and Proterozoic geology, Lake Superior region, 1993. U.S. Geological Society Professional Paper, 1556, 44-51.
- SIMS, P.K. (1996): Regional tectonic elements, in Sims, P.K. & Carter, L.M.H., eds., Archean and Proterozoic geology of the Lake Superior region, U.S.A., 1993. U.S. Geological Survey Professional Paper, Reston, Virginia, U.S. Geological Survey, 95-99.
- SIMS, P.K. & DAY, W.C. (1993): The Great Lakes Tectonic Zone–Revisited. US Geological Society Bulletin. **91**, 11.
- SIMS, P.K. & MOREY, G.B. (1993): Penokean orogen and related epicrationic rocks. In: Reed Jr., J.C., Bickford, M.E., Houston, R.S., Link, P.K., Rankin, D.W., Sims, P.K., Van Schmus, W.R. (Eds.), Precambrian : Conterminous U.S., Boulder Colorado, Geological Society of America, The Geology of North America, C-2, 45-56.
- SIMS, P.K. & PETERMAN, Z.E. (1983) Evolution of Penokean foldbelt, Lake Superior region, and its tectonic environment. Geological Society of America Memoir **160**, 3-14.
- SIMS, P.K. & PETERMAN, Z.E. (1984): A partisan view of the Early Proterozoic geology of Wisconsin and adjacent Michigan. 30th Annual Institute on Lake Superior Geology, Wausau, Wisconsin. Abstracts. 73-76.
- SNELGROVE, A. K., SEAMAN, W. A., & AYRES, V. L. (1943): Strategic Minerals Investigations in Marquette and Baraga Counties.
- TEYSSIER, C. & WHITNEY, D.L. (2002): Gneiss domes and orogeny: Geology, 21, no.4, 1028.
- TINKHAM, D.K. & MARSHAK, S. (2004): Precambrian dome-and-keel structure in the Penokean orogenic belt of northern Michigan, USA. Geological Society of America, Special Paper **380**, 321-338.
- TOHVER, E., HOLM, D.K., VAN DER PLUIJM, B.A., ESSENE, E.J., & CAMBRAY, F.W. (2007): Late Paleozoic (geon 18 and 17) reactivation of the Neoarchean Great Lakes Tectonic Zone, northern Michigan, USA: Evidence from kinematic analysis, thermobarometry and ⁴⁰Ar/³⁹Ar geochronology. Precambrian Research **157**, 144-168.
- UENG, W.C. & LARUE, D.K. (1998): The early Proterozoic structural and tectonic history of the South Central Lake Superior Region. Tectonics, 7, no. 3, 369-388.
- UENG, W.C., FOX, T.P., LARUE, D.K., & WILBAND, J.T. (1988): Geochemistry and petrogenesis of the Early Proterozoic Hemlock volcanic rocks and the Kiernan sills, southern Lake Superior region. Canadian Journal of Earth Sciences, 25, 528-546.
- WHITNEY, D.L., TEYSSIER, C., & VANDERHAEGHE, O. (2004): Gneiss domes and crustal flow: Gneiss Dome in Orogeny. Geological Society of America, Special Paper, **380**, 15-26.
- WRIGHT, T.L. (1968): X-ray and optical study of alkali feldspar: II. An X-ray method for determining the composition and structural state from measurement of 2θ values for three reflections. The American Mineralogist, 53, 88-104.
- VAN SCHMUS, W.R. (1976): Early and Middle Proterozoic history of the Great Lakes area, North America. Royal Society of London Philosophical Transactions, **280**, Series A, 605-628.
- VAN SCHMUS W.R. (1980): Chronology of igneous rocks associated with the Penokean Orogeny in Wisconsin. Geological Society of America, Special Paper **182**, 159-168.
- YIN, A. (2004): Gneiss domes and gneiss dome systems. Gneiss Domes in Orogeny: Geological Society of America, Special Paper, **380**, 1-14.
- YOUNG, G.M. (1983): Tectono-sedimentary history of early Proterozoic rocks of the northern Great Lakes region. Geological Society of America Memoir, **160**, 15-31.

### **APPENDICES**

#### **TITRATION RESULTS**

	Redo	x AMV &	& Fe Titration	l	
Location	W: Biotite (mg)	AMV (mg)	y': FAmSO4 (mL)	x	Z
Blank 1		101.600	23.200	22.835	2.656
Blank 2		109.700	25.100	22.881	
			Average	22.858	
				x'	wt%FeO
Sr-uncl	110.500	102.600	12.200	23.452	27.045
Sr-BS	111.200	112.400	19.120	25.692	15.697
GrP-3	111.700	102.600	13.100	23.452	24.615
<b>GMP</b> loose	117.300	109.800	12.750	25.098	27.959
DP	113.400	108.000	14.200	24.686	24.560
RM-rr	115.700	105.500	22.360	24.115	4.028
BRP	110.400	113.800	24.210	26.012	4.335
			- [100(-1]-1)-1/-1		
		wt %FeU	= [100(x - y)]/W		

 Table 84
 Fe Titration results for all mica samples. Sturgeon River, Grizzly, Groveland Mine, and Dolfin results are from biotite micas. Muscovite mica from Republic Mine and Black River was used, which explains the lower FeO wt%.

#### ADDITIONAL ANALYSES

#### DOLFIN PEGMATITE

K-FELDSPAR - DOLFIN PEGMATITE										
NUM	DP8	DP8	DP8	DP8	DP 8					
Wt% OX	grain 1-1	100se grain 1-1	orain 1-2	orain 3-1	100se grain 3-2					
P ₂ O ₅	0.000	0.000	0.000	0.000	0.000					
SiO ₂	68.622	64.809	64.688	64.800	68.811					
TiO ₂	0.000	0.014	0.009	0.011	0.000					
Al ₂ O ₃	19.722	18.455	18.400	18.454	19.393					
FeOt	0.000	0.010	0.011	0.013	0.000					
CaO	0.453	0.000	0.000	0.000	0.178					
Na ₂ O	10.643	0.455	0.411	0.255	10.911					
K ₂ O	0.211	15.823	15.877	15.900	0.211					
Rb2O	0.000	0.000 0.013 0.013		0.009	0.000					
Total	99.662	99.579	99.409	99.442	99.504					
apfu										
K	0.012	0.934	0.940	0.940	0.012					
Na	0.902	0.041	0.037	0.023	0.926					
Ca	0.021	0.000	0.000	0.000	0.008					
Rb	0.000	0.000	0.000	0.000	0.000					
ΣX-site	0.935	0.976	0.977	0.963	0.946					
Al	1.016	1.007	1.006	1.008	1.000					
Fe	0.000	0.000	0.000	0.000	0.000					
ΣY-site	1.016	1.007	1.006	1.008	1.000					
Si	2.999	3.000	3.001	3.003	3.011					
Ti	0.001	0.000	0.000	0.000	0.000					
Р	0.000	0.000	0.000	0.000	0.000					
Al	0.000	0.000	0.000	0.000	0.000					
ΣZ-site	2.999	3.001	3.001	3.003	3.011					

Table 85 Additional feldspar analyses from Dolfin pegmatite samples. Apfu calculations based on 8 oxygens.

	GARNETS – DOLFIN PEGMATITE											
Wt % Ox	garnets- 10-1	garnets- 10-2	garnets- 12-1	garnets- 12-2	garnets- 13-1	garnets- 13-2	garnets- 16-1	garnets- 16-2	garnets- 18-1	garnets- 18-2		
SiO ₂	36.500	36.441	36.504	36.459	36.388	36.466	36.488	36.508	36.449	36.487		
TiO ₂	0.015	0.009	0.022	0.017	0.013	0.012	0.010	0.009	0.011	0.012		
Al ₂ O ₃	20.512	20.452	20.511	20.566	20.533	20.600	20.566	20.622	20.522	20.478		
FeO	34.003	34.223	34.300	34.287	34.500	34.398	34.555	34.600	34.700	34.844		
MnO	7.322	7.143	7.322	7.687	7.299	7.400	7.177	7.211	7.155	7.088		
MgO	0.082	0.093	0.086	0.077	0.067	0.060	0.073	0.080	0.098	0.093		
CaO	0.872	0.871	0.955	0.876	0.855	0.766	0.677	0.722	0.800	0.793		
Total	99.306	99.232	99.700	99.969	99.655	99.702	99.546	99.752	99.735	99.795		
apfu												
Ti	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001		
Fe	2.354	2.372	2.368	2.364	2.385	2.376	2.389	2.388	2.397	2.406		
Mn	0.513	0.501	0.512	0.537	0.511	0.518	0.503	0.504	0.501	0.496		
Mg	0.010	0.011	0.011	0.009	0.008	0.007	0.009	0.010	0.012	0.011		
Ca	0.077	0.077	0.084	0.077	0.076	0.068	0.060	0.064	0.071	0.070		
Σ X-site	2.973	2.977	2.985	2.993	2.989	2.982	2.977	2.980	2.988	2.989		
Al	1.997	1.995	1.994	1.998	1.999	2.002	2.000	2.003	1.996	1.992		
Σ Y-site	1.997	1.995	1.994	1.998	1.999	2.002	2.000	2.003	1.996	1.992		
Si	3.015	3.015	3.011	3.005	3.006	3.007	3.011	3.008	3.008	3.011		
Σ Z-site	3.015	3.015	3.011	3.005	3.006	3.007	3.011	3.008	3.008	3.011		
Component												
Spessartine	17	17	17	18	17	17	17	17	17	17		
Grossular	03	03	03	03	03	03	02	02	03	03		
Almandine	80	80	80	79	80	81	81	81	80	81		

Table 86 additional garnet analyses from Dolfin pegmatite samples. Apfu calculations based on 12 oxygens.

#### CROCKLEY PEGMATITE

FELDSPAR - CROCKLEY PEGMATITE											
	CP 6	CP 6	CP 6	CP 6	CP 6	CP 6	CP 6	CP 6			
Wt% ox	grain 3-1	grain 3-2	grain 1-1	grain	grain 2-1	grain 2_2	grain 3-1	grain 3-2			
P ₂ O ₅	bdl	bdl	bdl	hdl	bdl	bdl	bdl	bdl			
SiQ ₂	64.822	68.887	64.800	64.823	64.388	68.911	64.822	68.887			
TiO ₂	0.011	0.000	0.015	0.009	0.008	0.000	0.011	0.000			
Al ₂ O ₃	18.433	19.101	18.409	18.422	18.433	19.004	18.433	19.101			
FeOt	0.009	0.000	0.013	0.009	0.009	0.000	0.009	0.000			
CaO	0.000	0.199	0.000	0.000	0.000	0.188	0.000	0.199			
Na ₂ O	0.544	11.045	0.575	0.499	0.605	11.066	0.544	11.045			
K ₂ O	16.300	0.211	16.202	16.411	16.226	0.155	16.300	0.211			
Rb2O	0.013	0.000	0.012	0.014	0.010	0.000	0.013	0.000			
Total	100.132	99.452	100.026	100.187	99.679	99.334	100.132	99.452			
apfu											
K	0.961	0.012	0.955	0.967	0.961	0.009	0.961	0.012			
Na	0.049	0.938	0.052	0.045	0.054	0.941	0.049	0.938			
Ca	0.000	0.009	0.000	0.000	0.000	0.009	0.000	0.009			
Rb	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000			
ΣX- site	1.010	0.960	1.007	1.012	1.015	0.959	1.010	0.960			
Al	1.004	0.986	1.003	1.003	1.009	0.982	1.004	0.986			
Fe	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000			
$\Sigma$ Y-site	1.004	0.986	1.003	1.003	1.009	0.982	1.004	0.986			
Si	2.994	3.018	2.995	2.994	2.989	3.021	2.994	3.018			
Ti	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000			
Р	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000			
Al	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000			
ΣZ- site	2.994	3.018	2.996	2.994	2.989	3.021	2.994	3.018			

Table 87 Additional feldspar analyses from Crockley pegmatite samples. Apfu calculations based on 8 oxygens.

#### **REPUBLIC MINE PEGMATITE**

	<b>MUSCOVITE – REPUBLIC MINE PEGMATITE</b>										
Wt % Ox.	RM-rr grain 1-2	RM-rr grain 2-1	RM-rr grain 3-1	RM-rr set 1 grain 1-1	RM-rr set 1 grain 2-1	RM-rr set 2 grain 1-2	RM-rr set 2 grain 3-1	RM-rr set 2 grain 3-2	RM-rr set 3 grain 2-1	RM-rr set 3 grain 2-2	
SiO ₂	46.505	46.484	46.444	45.977	45.799	45.782	45.634	45.665	45.545	45.600	
TiO ₂	0.254	0.188	0.244	0.112	0.099	0.088	0.045	0.056	0.177	0.143	
$Al_2O_3$	35.673	34.631	34.686	35.321	35.623	35.770	35.223	35.312	35.772	35.679	
Fe ₂ O ₃	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
FeO	2.334	2.343	2.890	2.711	2.723	2.556	2.892	2.966	2.872	2.800	
MnO	0.028	0.027	0.021	0.022	0.020	0.014	0.012	0.011	0.022	0.023	
MgO	0.872	0.862	0.455	0.333	0.288	0.233	0.244	0.256	0.300	0.292	
CaO	0.031	0.018	0.034	0.454	0.223	0.312	0.211	0.234	0.191	0.181	
Li ₂ O (calc.)	0.578	0.547	0.513	0.575	0.491	0.557	0.515	0.532	0.582	0.622	
Na ₂ O	0.802	0.833	0.654	0.785	0.774	0.656	0.488	0.523	0.555	0.562	
K ₂ O	9.988	9.881	9.944	10.022	10.044	10.066	10.211	10.181	10.132	10.091	
Rb ₂ O	0.029	0.017	0.022	0.031	0.023	0.026	0.021	0.027	0.023	0.021	
Cs ₂ O	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl	
F	1.337	1.282	1.221	1.332	1.181	1.300	1.225	1.256	1.344	1.412	
$H_2O$	3.948	3.916	3.939	3.897	3.960	3.907	3.907	3.903	3.883	3.848	
F=O	- 0.563	0.540	0.514	0.561	0.497	0.547	0.516	0.529	0.566	0.595	
Total	101.816	100.489	100.552	101.012	100.751	100.720	100.112	100.394	100.833	100.679	
apfu											
Si	6.087	6.161	6.165	6.087	6.076	6.069	6.097	6.087	6.041	6.053	
^{IV} Al	1.913	1.839	1.835	1.913	1.924	1.931	1.903	1.913	1.959	1.947	
Σ T-site	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	
^{VI} A1	3.590	3.571	3.591	3.600	3.645	3.658	3.644	3.635	3.634	3.636	
Ti	0.025	0.019	0.024	0.011	0.010	0.009	0.005	0.006	0.018	0.014	
Fet	0.255	0.260	0.321	0.300	0.302	0.283	0.323	0.331	0.319	0.311	
Mn	0.003	0.003	0.002	0.002	0.002	0.002	0.001	0.001	0.002	0.003	
Mg	0.170	0.170	0.090	0.066	0.057	0.046	0.049	0.051	0.059	0.058	
Li (calc.)	0.304	0.292	0.274	0.306	0.262	0.297	0.277	0.285	0.311	0.332	
ΣY-site	4.347	4.315	4.302	4.285	4.278	4.295	4.299	4.309	4.343	4.354	

Table 88 Additional muscovite mica samples from Republic Mine pegmatite.Apfu calculations based on 24 anions.Table continues on next page.

K	1.668	1.671	1.684	1.693	1.700	1.702	1.741	1.731	1.715	1.709
Ca	0.004	0.003	0.005	0.064	0.032	0.044	0.030	0.033	0.027	0.026
Na	0.204	0.214	0.168	0.202	0.199	0.169	0.126	0.135	0.143	0.145
Rb	0.002	0.001	0.002	0.003	0.002	0.002	0.002	0.002	0.002	0.002
Cs	bdl									
ΣX-site	1.878	1.889	1.859	1.962	1.933	1.918	1.899	1.902	1.887	1.881
F	0.553	0.537	0.513	0.558	0.495	0.545	0.518	0.529	0.564	0.593
OH (calc.)	3.447	3.463	3.487	3.442	3.505	3.455	3.482	3.471	3.436	3.407
ΣW- site	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000

	TOURMALINE – REPUBLIC MINE PEGMATITE										
Wt.%	grain	grain	grain	grain	grain	grain	grain	grain	grain	grain	grain
Oxide	4-2	4-3	4-4	4-5	4-6	1-2	1-3	3-2	7-2	9-2	10-2
SiO ₂	36.311	36.266	36.238	36.292	36.223	36.198	36.322	36.328	36.300	36.411	36.300
TiO ₂	0.119	0.106	0.115	0.920	0.133	0.134	0.113	0.143	0.105	0.145	0.130
$Al_2O_3$	30.093	30.110	30.293	30.116	30.200	29.900	29.945	29.845	30.022	29.900	29.622
$B_2O_3$ (calc.)	10.312	10.304	10.339	10.390	10.322	10.325	10.336	10.350	10.330	10.387	10.349
FeOt	13.499	13.505	13.588	13.400	13.451	13.400	13.262	13.217	13.456	13.500	13.400
MnO	0.213	0.211	0.234	0.209	0.225	0.398	0.410	0.454	0.312	0.465	0.400
MgO	3.129	3.200	3.344	3.292	3.334	3.983	3.883	4.199	3.832	4.430	4.700
CaO	0.029	0.031	0.024	0.022	0.028	0.019	0.027	0.485	0.254	0.345	0.258
Na ₂ O	2.400	2.335	2.412	2.344	2.400	2.315	2.292	1.779	1.934	1.823	1.922
K ₂ O	0.019	0.032	0.040	0.015	0.043	0.026	0.022	0.031	0.019	0.034	0.023
Li ₂ O (calc.)	0.424	0.385	0.299	0.330	0.335	0.160	0.229	0.154	0.199	0.038	0.007
$H_2O$	3.041	2.976	3.002	3.028	2.992	3.050	3.071	2.995	2.989	3.000	3.091
( <i>caic.</i> )	1.089	1 221	1 191	1 1 7 4	1 200	1.081	1 044	1 215	1 213	1 232	1.012
F-O	- 0.459	- 0 514	- 0 501	- 0 494	- 0 505	- 0.455	- 0.440	- 0.512	- 0 511	- 0 519	- 0.426
Total	100 220	100 169	100.617	101.039	100 381	100 533	100 517	100 683	100.455	101 101	100 788
anfu	100.220	100.107	100.017	101.037	100.501	100.555	100.517	100.005	100.435	101.171	100.700
upju No	0.794	0.764	0.796	0.760	0.794	0.756	0.747	0.570	0.621	0.501	0.626
INa Co	0.764	0.704	0.780	0.700	0.784	0.750	0.747	0.379	0.031	0.391	0.020
Ca V	0.003	0.000	0.004	0.004	0.005	0.005	0.005	0.087	0.040	0.002	0.040
K Vac	0.004	0.007	0.009	0.003	0.009	0.006	0.005	0.007	0.004	0.007	0.005
(calc.)	0.206	0.224	0.201	0.233	0.202	0.235	0.243	0.327	0.319	0.339	0.323
Σ X-site	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Fe	1.903	1.905	1.910	1.874	1.894	1.886	1.865	1.856	1.893	1.889	1.882
Mg	0.764	0.790	0.838	0.758	0.830	0.932	0.908	0.958	0.914	1.001	1.040
Al	0.000	0.000	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mn	0.030	0.030	0.033	0.030	0.032	0.057	0.058	0.065	0.044	0.066	0.057
Li (calc.)	0.288	0.261	0.202	0.222	0.227	0.108	0.155	0.104	0.135	0.025	0.005
Ti	0.015	0.013	0.015	0.116	0.017	0.017	0.014	0.018	0.013	0.018	0.016
Σ Y-site	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000
Al	5.978	5.985	6.000	5.937	5.993	5.932	5.934	5.906	5.953	5.896	5.863
Mg	0.022	0.015	0.000	0.063	0.007	0.068	0.066	0.094	0.047	0.104	0.137
Σ Z-site	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Si	6.120	6.117	6.092	6.071	6.099	6.094	6.108	6.100	6.107	6.092	6.096
Al	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Σ T-site	6.120	6.117	6.092	6.071	6.099	6.094	6.108	6.100	6.107	6.092	6.096
B (calc.)	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000
H (calc.)	3.420	3,349	3,367	3.379	3,361	3.424	3,445	3,355	3,355	3.348	3.462
F	0.580	0.651	0.633	0.621	0.639	0.576	0.555	0.645	0.645	0.652	0.538
ΣW+V	4.000	4.000	4.000	4.000	4.000	4.000	4,000	4.000	4,000	4.000	4.000
sites	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000
-	fluor-	fluor-	fluor-	fluor-	fluor-	fluor-	fluor-	fluor-	fluor-	fluor-	fluor-
Species	schorl	schorl	schorl	schorl	schorl	schorl	schorl	schorl	schorl	schorl	schorl

Table 89 Additional tourmaline analyses from Republic Mine samples. Apfu calculations based on 31 anions.

ZIRCON – REPUBLIC MINE PEGMATITE										
Wt % Oxide	grain 6-I	RM-rr=1	grain 7-	RM-rr-1	grain 10-	-RM-rr-1				
SiO ₂	31.760	31.799	29.720	29.542	27.787	28.799				
TiO ₂	0.031	0.022	0.023	0.014	0.020	0.023				
Al ₂ O ₃	0.056	0.070	0.454	0.421	0.034	0.086				
ZrO ₂	63.445	63.200	58.760	57.970	57.854	58.112				
HfO ₂	1.660	1.700	0.920	0.780	0.800	0.783				
FeOt	1.110	0.812	4.340	4.950	4.330	4.094				
MnO	0.100	0.088	0.212	0.245	0.022	0.050				
MgO	0.000	0.000	0.012	0.015	0.000	0.000				
CaO	0.678	0.760	0.668	0.652	4.334	3.983				
UO ₂	0.030	0.035	0.000	0.012	0.012	0.015				
ThO ₂	0.066	0.054	0.033	0.034	0.030	0.037				
Total	98.936	98.540	95.142	94.635	95.223	95.982				
apfu										
Zr	0.962	0.961	0.933	0.926	0.933	0.923				
Hf	0.020	0.021	0.012	0.010	0.010	0.010				
U	0.000	0.000	0.000	0.000	0.000	0.000				
Th	0.000	0.000	0.000	0.000	0.000	0.000				
Fe	0.029	0.021	0.118	0.136	0.120	0.112				
Mn	0.003	0.002	0.006	0.007	0.001	0.001				
Mg	0.000	0.000	0.001	0.001	0.000	0.000				
Ca	0.023	0.025	0.023	0.023	0.154	0.139				
ΣX-site	1.037	1.030	1.093	1.103	1.218	1.185				
Si	0.988	0.991	0.968	0.968	0.918	0.938				
Ti	0.001	0.001	0.001	0.000	0.000	0.001				
Al	0.002	0.003	0.017	0.016	0.001	0.003				
Σ Y-site	0.991	0.995	0.986	0.984	0.919	0.942				
Zr/Hf Ratios	48.128	46.814	80.427	93.587	91.064	93.457				

Table 90 Additional zircon analyses from Republic Mine pegmatite. Apfu calculations based on 4 oxygens.
## HWY69 PEGMATITE

			(	GARNETS	– Hwy6	9vz				
Wt % Ox	grain 1-1	grain 1-2	grain 2-1	grain 2-2	grain 3-1	grain 3-2	grain 4-1	grain 4-2	grain 5-1	grain 5-2
SiO ₂	36.455	36.500	36.512	36.483	36.366	36.400	36.333	36.265	36.554	36.523
TiO ₂	0.012	0.013	0.015	0.018	0.023	0.021	0.014	0.025	0.020	0.013
$Al_2O_3$	20.101	20.077	20.110	20.106	20.066	20.006	20.110	19.981	20.140	20.112
FeO	34.009	34.100	33.993	34.056	37.750	37.554	34.544	37.640	37.555	34.430
MnO	7.400	7.512	7.600	7.599	1.113	0.983	6.895	0.944	1.101	6.445
MgO	0.550	0.503	0.533	0.505	0.722	0.722	0.676	0.766	0.800	0.644
CaO	1.400	1.334	1.113	1.200	0.787	0.566	0.740	0.899	0.844	0.894
Total	99.989	100.103	99.927	100.024	96.827	96.252	99.349	96.520	97.014	99.073
apfu										
Ti	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.002	0.001	0.001
Fe	2.346	2.351	2.345	2.349	2.655	2.652	2.395	2.655	2.632	2.386
Mn	0.517	0.525	0.531	0.531	0.079	0.070	0.484	0.067	0.078	0.452
Mg	0.068	0.062	0.066	0.062	0.091	0.091	0.084	0.096	0.100	0.080
Ca	0.124	0.118	0.098	0.106	0.071	0.051	0.066	0.081	0.076	0.079
Σ X-site	3.056	3.057	3.001	3.009	2.937	2.915	3.020	2.931	2.927	2.998
Al	1.954	1.951	1.956	1.955	1.989	1.991	1.965	1.986	1.990	1.965
Σ Y-site	1.954	1.951	1.956	1.955	1.989	1.991	1.965	1.986	1.990	1.965
Si	3.007	3.009	3.012	3.009	3.059	3.073	3.012	3.059	3.064	3.027
Σ Z-site	3.007	3.009	3.012	3.009	3.059	3.073	3.012	3.059	3.064	3.027
Component										
Andradite	02	02	02	02	00	00	01	00	00	00
Ругоре	03	02	02	02	03	03	03	03	03	03
Spessartine	17	18	18	18	03	02	16	02	03	15
Grossular	02	02	02	02	02	02	01	03	03	02
Almandine	76	76	76	76	92	93	79	92	91	80

Table 91 Additional garnet analyses from Hwy69 pegmatite. Apfu calculations based on 12 oxygens.

	GARNETS – HWY69VZ											
Wt % Ox	grain 6-1	grain 6-2	grain 7-1	grain 7-2	grain 8-1	grain 8-2	grain 9-1	grain 9-2	grain 10-1	grain 10-2		
SiO ₂	36.588	36.620	36.555	36.612	36.523	36.499	36.500	36.566	36.455	36.512		
TiO ₂	0.014	0.031	0.025	0.015	0.011	0.019	0.022	0.015	0.026	0.015		
Al ₂ O ₃	20.144	20.092	20.000	20.044	20.005	20.055	20.044	20.014	20.112	20.066		
FeO	34.510	37.554	34.551	37.476	34.333	37.400	37.500	34.444	37.600	33.900		
MnO	6.500	1.211	6.488	1.311	6.623	1.338	1.400	6.455	1.393	6.966		
MgO	0.595	0.822	0.544	0.809	0.484	0.777	0.822	0.477	0.800	0.403		
CaO	0.900	0.855	0.783	0.822	0.784	0.900	0.787	0.734	0.833	0.866		
Total	99.263	97.185	98.957	97.089	98.766	96.988	97.075	98.705	97.219	98.728		
apfu												
Ti	0.001	0.002	0.002	0.001	0.001	0.001	0.001	0.001	0.002	0.001		
Fe	2.388	2.629	2.399	2.626	2.388	2.624	2.630	2.395	2.635	2.358		
Mn	0.456	0.086	0.456	0.093	0.466	0.095	0.099	0.455	0.099	0.491		
Mg	0.073	0.103	0.067	0.101	0.060	0.097	0.103	0.059	0.100	0.050		
Ca	0.080	0.077	0.070	0.074	0.070	0.081	0.071	0.065	0.075	0.077		
Σ X-site	2.989	2.932	2.986	2.931	2.983	2.934	2.938	2.978	2.942	2.979		
Al	1.965	1.982	1.957	1.979	1.961	1.983	1.981	1.962	1.986	1.967		
Σ Y-site	1.965	1.982	1.957	1.979	1.961	1.983	1.981	1.962	1.986	1.967		
Si	3.027	3.065	3.035	3.068	3.037	3.062	3.061	3.041	3.054	3.036		
Σ Z-site	3.027	3.065	3.035	3.068	3.037	3.062	3.061	3.041	3.054	3.036		
Component												
Andradite	01	00	00	00	00	00	00	00	00	00		
Ругоре	03	03	02	03	02	03	04	02	03	02		
Spessartine	15	03	16	03	16	03	03	16	03	16		
Grossular	02	03	02	03	02	03	02	02	03	03		
Almandine	79	91	80	91	80	91	91	80	91	79		

Table 92 Additional garnet analyses from Hwy69 pegmatite. *Apfu* calculations based on 12 oxygens.

## STURGEON RIVER PEGMATITE

	GARNETS – STURGEON RIVER PEGMATITE											
Wt % Ox	grain 1-1	grain 2-1	grain 3-2	grain 4-2	grain 5-2	grain 6-2	grain 7-2					
SiO ₂	36.507	36.498	36.522	36.500	36.509	36.499	36.543					
TiO ₂	0.012	0.011	0.012	0.012	0.009	0.012	0.017					
Al ₂ O ₃	20.566	20.577	20.541	20.600	20.470	20.566	20.600					
FeO	36.233	36.088	36.409	36.466	36.588	36.800	36.499					
MnO	6.988	7.099	6.554	6.733	6.534	6.233	6.622					
MgO	0.041	0.033	0.030	0.035	0.033	0.032	0.031					
CaO	0.087	0.054	0.034	0.033	0.031	0.032	0.033					
Total	100.434	100.360	100.102	100.379	100.174	100.174	100.345					
apfu												
Ti	0.001	0.001	0.001	0.001	0.001	0.001	0.001					
Fe	2.495	2.486	2.512	2.511	2.525	2.538	2.513					
Mn	0.487	0.495	0.458	0.470	0.457	0.435	0.462					
Mg	0.005	0.004	0.004	0.004	0.004	0.004	0.004					
Ca	0.008	0.005	0.003	0.003	0.003	0.003	0.003					
Σ X-site	2.996	2.991	2.978	2.989	2.990	2.981	2.983					
Al	1.996	1.998	1.997	1.999	1.991	1.999	1.999					
Σ Y-site	1.996	1.998	1.997	1.999	1.991	1.999	1.999					
Si	3.005	3.006	3.013	3.006	3.012	3.010	3.009					
ΣZ-site	3.005	3.006	3.013	3.006	3.012	3.010	3.009					
Component												
Pyrope	00	00	00	00	00	00	00					
Spessartine	16	17	15	16	15	15	16					
Grossular	01	00	00	00	00	00	00					
Almandine	83	83	85	84	85	85	84					

Table 93 Additional garnet analyses from Sturgeon River pegmatite. Apfu calculations based on 12 oxygens.

GARNETS – STURGEON RIVER PEGMATITE											
Wt % Ox	grain 1-1	grain 1-2	grain 2-1	grain 2-2	grain 3-1	grain 3-2	grain 4-1	grain 4-2			
SiO ₂	36.433	36.461	36.477	36.477	36.543	36.512	36.633	36.552			
TiO ₂	0.012	0.015	0.010	0.014	0.009	0.016	0.012	0.011			
Al ₂ O ₃	20.554	20.602	20.544	20.484	20.499	20.465	20.500	20.484			
FeO	36.211	36.114	36.420	36.450	36.488	36.511	36.788	36.765			
MnO	7.032	7.143	6.565	6.500	6.421	6.456	5.985	5.900			
MgO	0.026	0.030	0.040	0.055	0.035	0.054	0.051	0.044			
CaO	0.054	0.056	0.044	0.043	0.055	0.039	0.323	0.326			
Total	100.322	100.421	100.100	100.023	100.050	100.053	100.292	100.082			
apfu											
Ti	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001			
Fe	2.497	2.487	2.513	2.517	2.518	2.521	2.532	2.536			
Mn	0.491	0.498	0.459	0.455	0.449	0.451	0.417	0.412			
Mg	0.003	0.004	0.005	0.007	0.004	0.007	0.006	0.005			
Ca	0.005	0.005	0.004	0.004	0.005	0.003	0.028	0.029			
ΣX-site	2.997	2.995	2.982	2.984	2.987	2.983	2.984	2.983			
Al	1.997	2.000	1.998	1.994	1.994	1.991	1.989	1.991			
ΣY-site	1.997	2.000	1.998	1.994	1.994	1.991	1.989	1.991			
Si	3.004	3.002	3.010	3.012	3.016	3.014	3.015	3.015			
ΣZ-site	3.004	3.002	3.010	3.012	3.016	3.014	3.015	3.015			
Component											
Pyrope	00	00	00	00	00	00	00	00			
Spessartine	17	17	15	15	15	15	15	14			
Grossular	00	00	00	00	00	00	01	01			
Almandine	83	83	85	85	85	85	84	85			

Table 94 Additional garnet analyses from Sturgeon River pegmatite. Apfu calculations based on 12 oxygens.

	GARNETS – STURGEON RIVER PEGMATITE GOI											
Wt % Ox	grain	grain	grain	grain	grain	grain	grain	grain				
SiO ₂	3	36.500	36.505	36.512	36.477	36.473	36.447	36.511				
TiO ₂	0.009	0.008	0.010	0.009	0.012	0.013	0.009	0.009				
Al ₂ O ₂	20 494	20.445	20.477	20 513	20.483	20.495	20.480	20 506				
FeO	36 / 88	36 472	36 / 31	36.404	36 522	36 / 86	36 500	20.300 36.400				
MnO	6 5 5 6	6 676	6 5 2 0	6 634	6 1 1 8	6 5 2 3	6 5 6 8	6 477				
MgO	0.050	0.070	0.055	0.054	0.448	0.323	0.308	0.477				
CaO	0.202	0.255	0.412	0.388	0.305	0.322	0.272	0.256				
Total	100.235	100.415	100.420	100.521	100.296	100.367	100.329	100.211				
apfu												
Ti	0.001	0.000	0.001	0.001	0.001	0.001	0.001	0.001				
Fe	2.517	2.513	2.509	2.505	2.518	2.514	2.516	2.509				
Mn	0.458	0.466	0.455	0.462	0.450	0.455	0.459	0.452				
Mg	0.006	0.006	0.007	0.006	0.006	0.006	0.006	0.006				
Ca	0.018	0.023	0.036	0.034	0.027	0.028	0.024	0.023				
Σ X-site	3.002	3.008	3.003	3.008	3.002	3.004	3.006	2.992				
Al	1.993	1.985	1.987	1.989	1.990	1.990	1.990	1.992				
Σ Y-site	1.993	1.985	1.987	1.989	1.990	1.990	1.990	1.992				
Si	3.005	3.007	3.006	3.004	3.007	3.005	3.005	3.010				
Σ Z-site	3.005	3.007	3.006	3.004	3.007	3.005	3.005	3.010				
Component												
Andradite	00	01	00	00	00	00	00	00				
Pyrope	00	00	00	00	00	00	00	00				
Spessartine	15	15	15	15	15	15	15	15				
Grossular	01	01	01	01	01	01	01	01				
Almandine	84	83	84	84	84	84	84	84				

Table 95 Additional garnet analyses from Sturgeon River pegmatite. Apfu calculations based on 12 oxygens.

		Του	RMALINE -	- STURGEC	N RIVER P	EGMATITE			
Wt.%	grain	grain	grain	grain	grain	grain	grain	grain	grain
Oxide	6-1	6-2	7-1	7-2	8-1	8-2	10-1	10-2	11-1
SiO ₂	36.393	36.366	36.289	36.336	36.411	36.373	36.412	36.337	36.310
TiO ₂	0.126	0.121	0.109	0.133	0.098	0.121	0.133	0.127	0.109
Al ₂ O ₃	30.100	30.122	30.088	30.100	29.966	30.132	30.100	30.092	30.144
$B_2O_3$ (calc.)	10.348	10.335	10.308	10.322	10.317	10.337	10.347	10.336	10.335
FeOt	13.484	13.568	13.700	13.561	13.677	13.569	13.600	13.634	13.700
MnO	0.155	0.140	0.156	0.145	0.121	0.140	0.141	0.151	0.101
MgO	3.512	3.278	3.122	3.277	3.224	3.434	3.413	3.444	3.312
CaO	0.043	0.038	0.054	0.065	0.056	0.045	0.065	0.070	0.088
Na ₂ O	2.357	2.400	2.333	2.285	2.300	2.260	2.312	2.303	2.371
K ₂ O	0.031	0.028	0.023	0.031	0.023	0.030	0.034	0.033	0.040
Li ₂ O (calc.)	0.341	0.392	0.396	0.379	0.420	0.332	0.355	0.323	0.355
H ₂ O (calc.)	3.105	3.044	3.007	3.044	3.086	3.088	3.039	3.045	3.049
F	0.981	1.101	1.160	1.091	1.000	1.009	1.121	1.100	1.091
F=O	- 0.413	- 0.464	- 0.488	- 0.459	- 0.421	- 0.425	- 0.472	- 0.463	- 0.459
Total	100.563	100.469	100.256	100.310	100.278	100.445	100.600	100.532	100.545
apfu									
Na	0.768	0.783	0.763	0.746	0.751	0.737	0.753	0.751	0.773
Ca	0.008	0.007	0.010	0.012	0.010	0.008	0.012	0.013	0.016
K	0.007	0.006	0.005	0.007	0.005	0.006	0.007	0.007	0.009
Vac (calc.)	0.218	0.205	0.223	0.236	0.234	0.249	0.228	0.230	0.202
$\Sigma$ X-site	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Fe	1.894	1.908	1.932	1.910	1.927	1.908	1.910	1.917	1.927
Mg	0.838	0.792	0.764	0.796	0.759	0.832	0.813	0.827	0.805
Al	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mn	0.022	0.020	0.022	0.021	0.017	0.020	0.020	0.022	0.014
Li (calc.)	0.230	0.265	0.268	0.257	0.285	0.225	0.240	0.219	0.240
Ti	0.016	0.015	0.014	0.017	0.012	0.015	0.017	0.016	0.014
$\Sigma$ Y-site	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000
Al	5.908	5.915	5.925	6.000	5.947	5.965	5.961	5.959	5.945
Mg	0.092	0.085	0.075	0.000	0.053	0.035	0.039	0.041	0.055
$\Sigma$ Z-site	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Si	6.113	6.115	6.119	6.118	6.134	6.116	6.116	6.110	6.106
Al	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Σ T-site	6.113	6.115	6.119	6.118	6.134	6.116	6.116	6.110	6.106
B (calc.)	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000
H (calc.)	3.479	3.414	3.381	3.419	3.467	3.463	3.405	3.415	3.420
F	0.521	0.586	0.619	0.581	0.533	0.537	0.595	0.585	0.580
ΣW+V sites	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000
51005									
g ·	fluor-	fluor-	fluor-	fluor-	fluor-	fluor-	fluor-	fluor-	fluor-
Species	schorl	schorl	schorl	schorl	schorl	schorl	schorl	schorl	schorl

Table 96 Additional tourmaline analyses from Sturgeon River pegmatite. Apfu calculations based on 31 anions.

		TOURMAN	LINE – STU	RGEON RIV	VER PEGM	ATITE		
Wt.%	grain							
Oxide	12-1	12-2	13-1	13-2	14-1	15-1	16-1	16-2
SiO ₂	36.344	36.338	36.404	36.383	36.367	36.341	36.400	36.377
TiO ₂	0.143	0.120	0.106	0.111	0.103	0.100	0.213	0.188
Al ₂ O ₃	30.105	30.100	30.089	30.077	30.210	30.188	30.192	30.166
$B_2O_3$ (calc.)	10.338	10.331	10.337	10.339	10.344	10.343	10.347	10.347
FeOt	13.678	13.800	13.733	13.677	13.623	13.555	13.561	13.588
MnO	0.144	0.151	0.139	0.144	0.140	0.136	0.141	0.136
MgO	3.366	3.211	3.277	3.300	3.311	3.345	3.333	3.400
CaO	0.100	0.102	0.072	0.045	0.055	0.056	0.045	0.063
Na ₂ O	2.284	2.310	2.288	2.400	2.355	2.433	2.231	2.260
K ₂ O	0.028	0.030	0.034	0.030	0.019	0.023	0.033	0.027
Li ₂ O (calc.)	0.339	0.367	0.373	0.380	0.357	0.366	0.350	0.333
H ₂ O (calc.)	3.067	2.986	3.003	3.014	3.047	3.058	3.062	3.104
F	1.055	1.221	1.189	1.167	1.100	1.077	1.072	0.982
F=O	- 0.444	- 0.514	- 0.501	- 0.491	- 0.463	- 0.453	- 0.451	- 0.413
Total	100.546	100.552	100.543	100.575	100.568	100.568	100.529	100.558
apfu								
Na	0.745	0.753	0.746	0.782	0.767	0.793	0.727	0.736
Ca	0.018	0.018	0.013	0.008	0.010	0.010	0.008	0.011
K	0.006	0.006	0.007	0.006	0.004	0.005	0.007	0.006
Vac (calc.)	0.231	0.222	0.234	0.203	0.219	0.192	0.258	0.247
ΣX-site	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Fe	1.923	1.942	1.931	1.923	1.914	1.905	1.905	1.909
Mg	0.809	0.773	0.784	0.786	0.812	0.816	0.811	0.823
Al	0.000	0.000	0.000	0.002	0.000	0.000	0.000	0.000
Mn	0.021	0.022	0.020	0.021	0.020	0.019	0.020	0.019
Li (calc.)	0.229	0.248	0.252	0.257	0.241	0.247	0.237	0.225
Ti	0.018	0.015	0.013	0.014	0.013	0.013	0.027	0.024
Σ Y-site	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000
Al	5.965	5.968	5.962	5.959	5.982	5.978	5.977	5.972
Mg	0.035	0.032	0.038	0.041	0.018	0.022	0.023	0.028
Σ Z-site	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Si	6.110	6.113	6.121	6.116	6.110	6.106	6.114	6.110
Al	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Σ T-site	6.110	6.113	6.121	6.116	6.110	6.106	6.114	6.110
B (calc.)	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000
H (calc.)	3.439	3.350	3.368	3.380	3.415	3.428	3.431	3.478
F	0.561	0.650	0.632	0.620	0.585	0.572	0.569	0.522
$\Sigma$ W+V sites	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000
Species	fluor- schorl							

Table 97 Additional tourmaline analyses from Sturgeon River pegmatite. Apfu calculations based on 31 anions.

## GROVELAND MINE PEGMATITE

	FERROCOLUMBITE – GROVELAND MINE PEGMATITE												
Wt% Ox	grain 4-1	grain 4-2	grain 10-1	grain 10-2	grain 11-1	grain 11-2	Goi 10-1	Goi 12-1	Goi 13-1	Goi 14-1	Goi 14-2		
Nb ₂ O ₅	69.898	69.870	65.110	64.984	65.110	65.094	67.988	69.666	70.322	69.011	67.233		
Ta ₂ O ₅	9.655	9.621	14.887	14.900	14.699	14.667	11.311	9.877	8.454	9.456	11.870		
SiO ₂	0.030	0.000	0.016	0.013	0.054	0.051	0.025	0.033	0.112	0.065	0.036		
TiO ₂	0.165	0.251	0.113	0.105	0.055	0.060	0.023	0.034	0.065	0.088	0.254		
Al ₂ O ₃	0.000	0.042	0.000	0.000	0.000	0.000	0.054	0.000	0.033	0.112	0.021		
Sc ₂ O ₃	0.009	0.011	0.009	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
FeO	17.322	17.112	16.005	15.933	16.322	16.400	16.344	16.778	16.333	16.445	16.033		
MnO	2.955	3.156	4.009	4.155	3.699	3.712	3.400	3.588	4.321	4.178	4.611		
MgO	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl		
Total	100.034	100.063	100.149	100.090	99.939	99.984	99.145	99.976	99.640	99.355	100.058		
apfu													
Fe	0.845	0.834	0.797	0.795	0.814	0.818	0.810	0.820	0.796	0.808	0.790		
Mn	0.146	0.156	0.202	0.210	0.187	0.188	0.171	0.178	0.213	0.208	0.230		
Si	0.002	0.000	0.001	0.001	0.003	0.003	0.001	0.002	0.007	0.004	0.002		
Al	0.000	0.003	0.000	0.000	0.000	0.000	0.004	0.000	0.002	0.008	0.001		
Sc	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
Mg	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl		
Σ X-site	0.993	0.994	1.000	1.006	1.004	1.009	0.986	1.000	1.018	1.028	1.023		
Nb	1.843	1.841	1.754	1.752	1.756	1.755	1.821	1.841	1.853	1.832	1.790		
Та	0.153	0.152	0.241	0.242	0.239	0.238	0.182	0.157	0.134	0.151	0.190		
Ti	0.007	0.011	0.005	0.005	0.002	0.003	0.001	0.001	0.003	0.004	0.011		
Σ Y-site	2.003	2.004	2.000	1.999	1.997	1.996	2.004	1.999	1.990	1.987	1.991		

Table 98 Additional ferrocolumbite analyses from Groveland Mine pegmatite. Apfu calculations based on 6 oxygens.

	FERROTANTALITE – GROVELAND MINE PEGMATITE											
Wt% Ox	GOI grain 1-1	GOI grain 1-2	GOI grain 2-1	GOI grain 2-2	GOI grain 3-1	GOI grain 3-2	GOI grain 7-1	GOI grain 7-2				
Nb ₂ O ₅	31.445	20.778	31.092	8.776	8.900	30.222	8.322	29.888				
Ta ₂ O ₅	51.677	63.511	52.005	75.623	75.445	52.966	76.112	53.210				
SiO ₂	0.022	0.031	0.040	0.022	0.030	0.022	0.031	0.040				
TiO ₂	0.033	0.000	0.031	0.000	0.000	0.000	0.000	0.000				
Al ₂ O ₃	0.000	0.012	0.000	0.000	0.034	0.000	0.000	0.044				
FeO	10.119	9.523	9.994	8.998	8.655	9.811	8.445	9.565				
MnO	6.700	6.443	6.934	6.347	6.988	6.889	7.121	7.155				
MgO	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl				
Total	99.996	100.309	100.096	99.766	100.052	99.910	100.051	99.902				
apfu												
Fe	0.598	0.596	0.591	0.608	0.582	0.584	0.570	0.570				
Mn	0.401	0.408	0.415	0.434	0.476	0.416	0.487	0.432				
Si	0.002	0.002	0.003	0.002	0.002	0.002	0.003	0.003				
Al	0.000	0.001	0.000	0.000	0.003	0.000	0.000	0.004				
Mg	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl				
ΣX-site	1.001	1.007	1.009	1.044	1.063	1.002	1.060	1.009				
Nb	1.005	0.703	0.994	0.320	0.323	0.973	0.304	0.963				
Та	0.993	1.293	1.000	1.661	1.650	1.026	1.671	1.031				
Ti	0.002	0.000	0.002	0.000	0.000	0.000	0.000	0.000				
ΣY-site	2.000	1.996	1.996	1.981	1.973	1.999	1.975	1.994				

Table 99 Additional ferrotantalite analyses from Groveland Mine pegmatite. Apfu calculations based on 6 oxygens.

	PLAGIO	CLASE FEL	DSPAR –	
	GROVELA	ND MINE P	EGMATITE ·	•
Wt% ox	grain	grain	grain	grain
P2O5	0.000	0.000	0.000	0.009
SiO ₂	68 540	64 678	68 544	6/ 500
	00.040	0.024	00.544	0.012
	10.740	19 552	10.692	19 572
	19.740	18.333	19.085	18.375
FeOt	0.000	0.012	0.000	0.012
CaO	0.000	0.000	0.155	0.000
Na ₂ O	11.344	0.565	11.677	0.672
K ₂ O	0.200	15.600	0.200	15.773
Rb ₂ O	0.000	0.018	0.000	0.023
Total	99.824	99.450	100.259	99.673
apfu				
K	0.011	0.922	0.011	0.932
Na	0.961	0.051	0.987	0.060
Ca	0.000	0.000	0.007	0.000
Rb	0.000	0.001	0.000	0.001
Σ X-site	1.005	0.994	0.994	0.994
Al	1.017	1.013	1.011	1.014
Fe	0.000	0.000	0.000	0.000
Σ Y-site	1.017	1.013	1.011	1.014
Si	2.995	2.996	2.988	2.991
Ti	0.000	0.001	0.000	0.000
Р	0.000	0.000	0.000	0.000
Al	0.000	0.000	0.000	0.000
Σ Z-site	2.995	2.996	2.988	2.991

Table 100Additional plagioclase feldspar analyses from Groveland Mine pegmatite.Apfu calculations based on 8 oxygens.

			GARN	ETS – C	GROVEI	LAND M	INE PE	GMATI	TE			
Wt % Ox	GMP 5- grain 6-1	GMP 5- grain 6-2	GMP 5 grain 7-1	GMP 5- grain 7-2	GMP 5- grain 8-1	GMP 5- grain 8-2	GMP 5-grain 9-1	GMP 5-grain 9-2	GMP 5- grain 10-1	GMP 5- grain 10-2	GMP 5- grain 11-1	GMP 5- grain 11-2
SiO ₂	36.522	36.459	36.556	36.533	36.522	36.548	36.540	36.488	36.533	36.465	36.433	36.439
TiO ₂	0.031	0.027	0.030	0.025	0.011	0.014	0.031	0.023	0.009	0.012	0.010	0.014
Al ₂ O ₃	20.455	20.563	20.544	20.543	20.566	20.533	20.544	20.566	20.549	20.563	20.544	20.531
FeO	36.099	36.100	36.400	36.355	36.477	36.700	41.443	41.544	36.655	36.673	36.543	36.577
MnO	6.899	7.009	6.677	6.750	6.544	6.431	0.233	0.187	6.556	6.599	6.445	6.501
MgO	0.021	0.032	0.023	0.034	0.031	0.022	0.987	1.098	0.112	0.098	0.085	0.077
CaO	0.209	0.188	0.133	0.099	0.117	0.141	0.032	0.041	0.223	0.243	0.188	0.176
Total	100.236	100.378	100.363	100.339	100.268	100.389	99.810	99.956	100.648	100.668	100.248	100.317
apfu												
Ti	0.002	0.002	0.002	0.002	0.001	0.001	0.002	0.001	0.001	0.001	0.001	0.001
Fe	2.489	2.487	2.506	2.504	2.514	2.527	2.852	2.857	2.519	2.521	2.520	2.521
Mn	0.482	0.489	0.466	0.471	0.457	0.449	0.016	0.013	0.456	0.460	0.450	0.454
Mg	0.003	0.004	0.003	0.004	0.004	0.003	0.121	0.135	0.014	0.012	0.010	0.009
Ca	0.018	0.017	0.012	0.009	0.010	0.012	0.003	0.004	0.020	0.021	0.017	0.016
Σ X-site	2.995	2.999	2.992	2.993	2.990	2.994	2.996	3.003	3.002	3.005	2.998	2.999
Al	1.988	1.996	1.994	1.994	1.997	1.993	1.993	1.993	1.990	1.993	1.996	1.995
Σ Y-site	1.988	1.996	1.994	1.994	1.997	1.993	1.993	1.993	1.990	1.993	1.996	1.995
Si	3.011	3.003	3.010	3.009	3.009	3.009	3.007	3.000	3.002	2.998	3.004	3.003
Σ Z-site	3.011	3.003	3.010	3.009	3.009	3.009	3.007	3.000	3.002	2.998	3.004	3.003
Component												
Andradite	00	00	00	00	00	00	00	00	00	01	00	00
Pyrope	00	00	00	00	00	00	04	04	01	01	00	00
Spessartine	16	16	16	16	16	16	01	01	15	14	15	15
Grossular	01	01	00	00	00	00	00	00	00	00	01	01
Almandine	83	83	84	84	84	84	95	95	84	84	84	84

Table 101 Additional garnet analyses from Groveland Mine pegmatite. Apfu calculations based on 12 oxygens.

## VITA

The author was born in Monroe, Louisiana and grew up outside the city limits of West Monroe, Louisiana in the tiny town of Brownsville. His passion for rocks and minerals began when he was a child, as he spent many days collecting rocks in his parents' driveway. He began his collegiate career later than anticipated. He enrolled at the University of New Orleans after much encouragement from a dear friend. Following his early interests, he pursued a Bachelor's degree of Science in Geology and completed his undergraduate degree in May of 2013 summa cum laude with departmental and university of honors.

His undergraduate honors thesis topic focused on carbonate pods of the Mt. Mica pegmatite in Maine under the guidance of Dr. William "Skip" Simmons, Mr. Alexander Falster, and Dr. Karen Webber. He was accepted into the Graduate program in the Fall of 2013 and continued working with these three professors. He has had many travel opportunities to see many different rocks while under their tutelage.

The author has had two name changes during the course of his college academic career. Leopold came from Alexander Falster and represents his academic pursuits. He legally married in his final semester of graduate school and will take his husband's last name of Van Daalen soon. He hopes to legally change his name to Leopold as well.

Leopold will complete his M.S. in Geology in December of 2015 and hopes to begin work soon.

385