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Abstract 
Before raw seismic data records are interpretable by geologists, geophysicists must process these data 

using a technique called migration. Migration spatially repositions the acoustic energy in a seismic 

record to its correct location in the subsurface. Traditional migration techniques used a transpose 

approximation to a true acoustic propagation operator. Conventional least squares migration uses a true 

inverse operator, but is limited in functionality by the large size of modern seismic datasets. This 

research uses a new technique, called stabilized least squares migration, to correctly migrate seismic 

data records using a true inverse operator. Contrary to conventional least squares migration, this new 

technique allows for errors over ten percent in the underlying subsurface velocity model, which is a 

large limitation in conventional least squares migration. The stabilized least squares migration also 

decreases the number of iterations required by conventional least squares migration algorithms by an 

average of about three iterations on the sample data tested in this research. 
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Intro 
Seismic migration is one of the most important steps in seismic data processing. Migration is the process 

by which we relocate acoustic energy in raw seismic data records to its correct spatial location in 

subsurface Earth. Conceptually, migrating a seismic record is quite simple: we simply solve the 

differential equation governing wave propagation in the subsurface, and invert the solution to remove 

the propagation effects in the raw data to come up with a description of the media through which the 

waves propagate (Yilmaz 2001). Because of the overdetermined nature of the system and the large size 

of the data sets, inversion is a non-trivial procedure. In fact, traditional migration algorithms are 

designed to find the adjoint of the solution to the wave equation rather than its inverse. A new type of 

migration algorithm is called “least squares migration”. Least squares migration (LSM) is an attempt to 

reconstruct the true inverse solution to the wave equation, rather than its adjoint solution, which is the 

traditional migration process. Unfortunately, LSM is a so-called large problem, because the inverse 

Hessian matrix used to find the inverse solution is far too large to fit in the memory of any existing 

computer (Bancroft 2014). This paper will address an iterative LSM solution, which is computationally 

feasible, and a new technology currently in development at UNO which will drastically reduce the 

computational cost of LSM. Hopefully this technique will allow LSM to come into wide use across the 

industry, and facilitate cost effective high resolution illumination of subsurface Earth. 

There are two major subprocesses in a conventional least squares migration: modeling and migration. In 

the stabilized least squares migration there are three subprocesses: modeling, migration, and velocity 

model update. Because testing the LSM on three dimensional data would be time and cost prohibitive, 

the least squares migration used in this research is based on a two-dimensional (2D) acoustic wave 

equation. The migration algorithm is a 2D Kirchhoff depth migration, the modeling algorithm is a 

Kirchhoff 2D synthesis, and the velocity update is a full waveform inversion.The full waveform inversion 
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(FWI) is based on a finite difference modeling solution to the two-dimensional constant density acoustic 

wave equation. The update step is based on 2D image cross correlation, whereby the modeled data are 

used to drive a computer vision algorithm to make implicit data correction decisions. 

The goal of this research is to determine whether or not stabilizing a least squares migration (LSM) is 

possible using velocity model updates. Traditionally LSM is an unstable process which breaks down in 

the presence of velocity errors. The most popular current method of stabilizing LSM is to use a bank of 

stabilizing preconditioning filters to drive the LSM to a global minimum error solution (Luo 2014). In this 

research to overcome the instability, the algorithm will iteratively correct for velocity error coincident 

with the reflectivity image update generated by the LSM iterations. 

Background 

Wave propagation (modeling) 
The seismic experiment is performed as follows: dynamite, or some other acoustic source, is shot off at 

the surface of the Earth. The acoustic energy propagates through the air, at the Earth-air interface, and 

through the subsurface of the Earth. Geophones, or other types of detectors, are placed on the surface 

and collect the change in displacement of the media as the waves propagate back up to the geophones’ 

locations (Meunier 2011). 

It is possible to perform this experiment mathematically (Sheriff 1991). For the purposes of this 

experiment, change of density is ignored in the formulation of the wave equation. Therefore, the 

reflection and transmission of acoustic energy is affected only by changes in medium velocity. 

Mathematical energy sources are “set off” at time zero, and waves propagate through a previously 

defined velocity model, representative of the subsurface Earth. The displacement information is 

recorded only at the upper surface of the velocity model, as would be the case for real physical 

geophones. The appropriate wave equation in the medium is 
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(1) 

Equation 1 (Dutta 2014) is a constant density two-dimensional acoustic wave equation where v0 is the 

velocity field, u0 is the displacement field of the medium, and f is the forcing function dependent on the 

source characteristics in the seismic experiment. Again, in our mathematical forward modeling 

argument, we know f and v0, so we just solve this second-order partial non-homogenous differential 

equation to obtain u0. In reality, this system is nontrivial to solve because it is so large.  

The forward propagation of acoustic energy could also be represented in linear form (Upadhyay 2004), 

d = L m 
(2) 

where d is the observed seismic data, L is the forward modeling operator from equation 1, and m is 

associated with the velocity field in a manner which will be shown below. A typical modern seismic 

survey could have a d matrix which is 200 gigabytes worth of three-dimensional data. In this case, m 

would be on the order of 10 gigabytes, and L would be on the order of 3.6 terabytes. Finite difference 

modeling is slow, but can be improved using parallelization (Liu 2012). However, the computational cost 

of modeling is trivial compared to the cost of migration and FWI in this experiment. 

In practice the solution is formulated as a finite difference operation in the space domain or the 

frequency domain (Chu 2010) in the following manner. The solution starts at depth step zero and 

applies the forward modeling operator, which is derived from the wave equation. Then the solution 

propagates the wavefield forward one depth step using a finite difference operator. This process is 

repeated until an arbitrary target depth step is reached. The operators do not have to be time-
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stationary (Liu 2011), but in the case of the experiment described below they are, as our operators are 

based on the work of Tarantola (1984). 

The solution begins with the velocity model (ergo the reflectivity information) and the source 

information, and solves for the wavefield generated by acoustic energy propagating through the velocity 

model. 

Wave de-propagation (migration) 
Migration is the inverse of forward modeling. In migration the resulting wavefield and the source 

information are known, and the solution is the reflectivity image. In practice, the source information is 

not necessarily known, and is included in the wave propagation operator (Telford 1990). By solving for 

the reflectivity image, the geophysicist has some information about the velocity model, and thus gains 

some information about the subsurface Earth.  

The process of migration is finding the solution to an inverse relationship. Since seismic data are a 

record of acoustic energy which has propagated through a continuous medium, and the source 

information is approximately known, the geophysicist inverts to find a medium which would create the 

seismic record. Similarly, a telecommunications expert could figure out the length of an optical 

communications cable by sending a broadband pulse through the cable, recording the resultant output 

at the other end of the cable, and inverting the system. Therefore migration is equivalent to solving for 

the Green’s function which causes the wave propagation artifacts shown in the seismic image (Zhang 

2010). 

In linear notation this is a simple operation; we just invert equation 2 for the reflectivity image, 

m = L-1 d 
(3) 
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Therefore, necessarily migration should remove the wave propagation artifacts in the output image. The 

classic example shown below is from Yilmaz (2001), where the diffractive end-effects from seismic event 

termination are removed after migration. In this migration example the dips of the shallow reflectors 

are also positioned correctly. 

  

Figure 1 unmigrated section (left), and migrated section (right), from Yilmaz 2001, figure 8.2-28 

In an exact migration solution, one would find the inverse of the forward modeling operator and apply it 

to the wavefield, generating the reflectivity image, as is shown by equation 3. However, as we can see 

from equation 1, because the forward modeling operator is non-orthogonal and non-square, a true 

inverse does not exist. To overcome this problem, the adjoint operator is applied, but seismic data are 

real (not complex), so the transpose operator may be used. This builds a square matrix, called the 

Hessian matrix, which is then inverted and applied to the data. 

m = (LTL)-1 LT d 
(4) 
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In traditional migration processes this is not done. The inverse Hessian matrix is very large, in fact it is 

too large to be handled by modern computers for realistic data sets, so an approximation is made. In the 

case of our above example with a 200 gigabyte data set, the inverse Hessian would be 1.3*10^25 bytes. 

Multiply by the transpose matrix as above, and the operator becomes 4.7*10^37 bytes. No current 

computer is capable of handling arrays this large. 

Traditionally, because the inverse Hessian is strongly diagonal it is approximated as being purely 

diagonal (Bancroft 2007) and, because the amplitude of the resulting wavefield is qualitative only, an 

assumption is made that the inverse Hessian can be approximated as a scalar multiplied version of the 

identity matrix. Therefore in traditional migration, a scaled adjoint (really a scaled transpose) is applied 

to the data to come up with the reflectivity image. Mathematically, the approximation described above: 

(LTL)-1 ≅ a (I)-1
 

 

means equation 4 is now 

m = a (I)-1 LT d = LT d 
(5) 

where a is a scalar multiplier (which we disregard as unimportant quantitative amplitude information), 

and I is the identity matrix.  

Iterative modeling and migration (LSM) 
LSM attempts to find a true inverse to the forward modeling operator. The Born approximation 

demonstrates in the wave equation that a perturbation in the velocity model generates a perturbation 

in the wavefield, as shown in equation 6 (Dutta 2014).  
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(6) 

The solution is then obtained via an iterative update of the reflectivity image by minimizing the error 

between the predicted (forward modeled) data and the real data. This is done by realizing, as above, 

that the wavefield at one source position, us, is linear in the reflectivity 

 
(7) 

where Ls is the forward modeling operator for one shot. Also we define a subset of these data, ps,r, 

 
(8) 

where Sr, is a receiver station sampling operator. Therefore, the error minimization problem can be 

expressed in the following way (Luo 2014) 

 

(9) 

where J is the error condition, Es,r is the quantitative error, and ds,r is the real, observed data. The error 

condition is our definition of the choice we make to determine the difference between the real and 

synthetic datasets. Through use of an iterative conjugate gradient algorithm (Huang 2014), we can move 

in the direction of negative change in error 
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(10) 

The goal of LSM is to construct a “true amplitude” image (Plessix 2002), which isn’t possible in reality. In 

LSM we generate a solution which is theoretically devoid of errors in the reflectivity image, though in 

reality the Born approximation, the acoustic constraint, and the constant density assumption generate 

non-zero error (Aki 2002). There is also the question of stability and non-uniqueness of the solution 

which will be addressed later in this paper. Gong (2011) discusses the possibility of arriving at a local 

minimum in the error conditional, rather than a global minimum. This turns out to be crucial to this 

research. 

Least squares migration is traditionally constructed on a reverse time migration kernel (Yao 2012; Zhang 

2015). It turns out that LSM can actually produce better results when a Kirchhoff migration kernel is 

used (Yunsong 2014). This claim will be discussed in the results section of this paper. 

The LSM iterative solution is strictly dependent on the input velocity model. Any error in the input 

model generates instability in the modeling and migration subprocesses, which can cause the solution to 

diverge. The LSM solution drives down the error in the residual image, which is calculated as a wavefield 

difference between the forward modeled data and the input (real) data (Wang 2013). With increasing 

velocity error in the input velocity model, more LSM iterations are needed to converge to a reflectivity 

image solution. If the error in the input velocity model is great enough the LSM solution will become 

divergent and thus never reach a stable solution.  

In traditional LSM a large bank of stabilizing preconditioning filters is applied to reduce the instability in 

the reflectivity image iterations. These stabilizing preconditioners decrease the reflectivity image 

solution’s sensitivity to velocity model errors. Current algorithms are able to cope with up to a 5% (Luo 
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2014) velocity error, or up to a 10% (Tan 2014) velocity error in the case of vectorized LSM solvers. This 

error magnitude is very small; in industrial practice, a 5% velocity error is outstanding in the case of 

flawless data acquisition, and unachievable otherwise. 

Luo and Hale (2014) were able to produce a crisp LSM image in the presence of a 5% velocity model 

error: 

 

Figure 2 Least squares migration of the Marmousi velocity model from Luo and Hale 2014, figure 1-d. 

Tan and Huang (2014), using vectorized wavefield separation, were able to produce a crisp LSM image in 

the presence of a 10% velocity model error: 
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Figure 3 Least squares migration of the Marmousi velocity model from Tan and Huang 2014, figure 14-b 

LSM is an extremely computationally expensive process, and cannot feasibly be completed on data 

which has velocity errors significant enough to increase the iteration number dramatically. However, 

handled properly LSM pushes seismic images towards true reflectivity models (Zeng 2014). 

An LSM algorithmic workflow based on equation 10 looks like the following (Wang 2013): 
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Figure 4 Conventional least squares migration workflow description from Wang 2013, figure 1. 

Velocity model updating (full waveform inversion) 
After the initial migration of seismic data often the velocity model is updated and the migration run 

again to get a better reflectivity image. There are many ways of updating a velocity model, one of which 

is full waveform inversion. This technique uses a forward modeling routine to generate a synthetic data 

set which is input to another error minimization algorithm. The algorithm automatically updates the 

velocity model to change the synthetic data. The model is updated iteratively until a global error 

minimum is found between the modeled and real seismic data (Ma 2012). 

Pelissier (2008) described the difficulty in inversion based velocity update as “the trade-off between 

speed (and robustness) and accuracy.” FWI is extremely computationally expensive, and as such many 

FWI algorithms limit the velocity updates to some large threshold value for the error. It is therefore 

advisable to somehow limit the error exposure in the input velocity model to the FWI algorithm, which 

in the case of the stabilized LSM, is completed by driving down the error in the input seismic data. 
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Iterative FWI and LSM (stabilized LSM) 
The experiment described in this paper uses FWI as the stabilizing subprocess in an LSM algorithm. The 

inputs to the stabilized LSM are the seismic shot records and the initial velocity model. The outputs of 

the stabilized LSM algorithm is an optimally updated velocity model and an optimum reflectivity image. 

At each iteration in the LSM routine the traditional least squares reflectivity image error minimization 

process is applied to the data, forming another more accurate image. Also an FWI subroutine is applied 

using updated reflectivity information. The updated velocity model at each step is, at the same time, 

input back into the reflectivity image update. This forms a double parallel loop in which error in the 

resulting image is reduced at a high rate, and the sensitivity to velocity model error is reduced. 

The two benefits of stabilized LSM are decreased velocity error sensitivity and reduction in number of 

LSM iterations.Because of the computational cost of conventional LSM, it is not used in industrial 

practice (Bancroft 2014). Decreasing the number of required iterations is key to building an algorithm 

which can be used on real data. In research and development LSMs velocity sensitivity can be overcome 

by simply starting with a more accurate input velocity model. In practice, the true velocity model is 

unknown, and therefore velocity error sensitivity is paramount to the application of LSM. Decreasing the 

sensitivity of an LSM algorithm is key to building an algorithm which can be used on real data. 

The stabilized LSM algorithm looks like the following: 
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Figure 5 Stabilized least squares migration workflow description. 

Experiment/Methods 

Modeling algorithm 
There were two modeling algorithms used concurrently in this experiment. The first is the modeling 

algorithm used in the main LSM routine. It is a Kirchhoff depth synthesis algorithm written by the Center 

for Wave Phenomena (CWP) at the Colorado School of Mines called “sukdsyn2d”. The algorithm takes 

two inputs, a travel time table generated by a ray tracing algorithm and an input migrated seismic 

section. The output is the synthetic shot records for the seismic data. 

The second modeling algorithm used herein is a finite difference depth algorithm operating on the 2D 

acoustic one-way wave equation. This algorithm is the basis for the modeling steps within the FWI 

subroutine for data comparison. It is an adaptation of work done by CWP called “sufdmod2”. In this case 
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the modeling algorithm is wrapped inside a decision making algorithm which performs the velocity 

updates on the modified velocity model. This algorithm is explicitly derived from Claerbout (1984).  

The runtime of the Kirchhoff depth synthesis algorithm is a small but noticeable contribution to the 

overall stabilized LSM speed. Because the modeling algorithm is directly built from the migration 

algorithm used in the stabilized LSM, the modeling results are extremely accurate. 

The Marmousi velocity model was used in this experiment for completeness. The model is 384 samples 

in the x direction, and 122 samples in the z direction. With a sample spacing of 25 meters per sample, 

this results in a sythetic velocity model of 9600 meters by 3050 meters. The model is shown below: 

 

Figure 6 Marmousi velocity model, red is 5500 m/s, dark blue is 1500 m/s. 

Running the finite difference forward modeling algorithm used in this paper on the Marmousi velocity 

model generates the following output: 



15 
 

 

Figure 7 Brute stack corresponding to the Marmousi velocity model of Figure 6. 

The modeling algorithm outputs shot gathers for use in the LSM workflow, but for demonstration the 

above data have been corrected for geometrical spreading using a time-squared correction factor, 

filtered with a wide open bandpass Ormsby frequency-domain filter, and stacked with a constant lateral 

velocity normal moveout correction. 

Migration algorithm 
The migration algorithm used in this experiment is a standard Kirchhoff depth migration, developed by 

CWP, called “sukdmig2d”. The migration operator is built in the standard way and approximates a scaled 

transpose (as described in the migration subsection of the background section of this paper) to the 

modeling operator used in the LSM routines in this research.  

Several finite difference migration operators (based on Bruno, 2011) were developed in preparation for 

the stabilized LSM with promising imaging results. However, because of the duality of the modeling and 

migration processes in an LSM the finite difference results came out with lower resolution in the final 
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LSM image. The results which produced resolution high enough for analysis were the results using the 

above mentioned sukdmig2d operator. The inverse relationship between the modeling and migration 

operators ensures the high degree of spatial resolution demonstrated in the results section. 

The experiment used a standard migration algorithm on each velocity model as a control. Running a 

standard migration is equivalent to running an LSM algorithm with zero iterations, because there is no 

reflectivity image update in one iteration of LSM, just one migration. For completeness it was necessary 

to demonstrate the resolution difference between a standard migration and an LSM. It was preferable 

to run the same type of migration as exists in the LSM routine, in this case the exact same code. 

For demonstration this migration algorithm was run on the modeled gathers of the above image, with 

the following output: 

 

Figure 8 Depth migrated seismic section derived from the Marmousi velocity model of Figure 6. 
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Again the output has been conditioned for clarity. After migration the image was automatically gain 

controlled with a time gate of 1000 milliseconds, trace balanced on a root mean square amplitude basis, 

lightly FX deconvolved using a trace window of 50 traces, and clip gained at 99%. 

FWI algorithm 
The FWI algorithm in this experiment is a custom code developed by Sandstone Oil & Gas called 

“ssogfwi”. It uses a cross correlation based comparison function to build a difference model based on 

the 2D power spectral density. The main function in this program is a decision making algorithm which 

makes decisions about which direction to update the velocity model based on changes in the modeled 

wavefield. The algorithm iterates through shots and depth steps to minimize the error at each lateral 

position on the seismic line and each depth step in a shot. The comparison function takes the whole 

shot gather at one time, therefore it is a true FWI program. As opposed to tomographic velocity update 

techniques, FWI does actually contain information about all wavelengths (Tang 2013). 

Out of all of the subprocesses in the stabilized LSM program, the FWI runs the slowest, which is to be 

expected. Because this subprocess must analyze the whole data set at one time, the speed is nonlinear 

with respect to both the depth and the lateral extent domains. In the future the FWI code, and thus the 

stabilized LSM, could be optimized in the wavenumber domain (Bracewell 2000) which would increase 

the speed by an estimated factor of 1000 times for the FWI, resulting in an estimated increase in speed 

of 10 times for the stabilized LSM. The use of wavelet decomposition (Strang 1997, Miller 2004) might 

also enhance the speed of the FWI. 

Automatic batch controller (the LSM brain) 
The LSM routine is built in the style of a Unix batch controller. It batches out subprocesses to the CPU 

cores by monitoring the load state of the processors. The flow control is built into a double parallel loop 

which simultaneously updates the velocity model via FWI (the loop on the left side of Figure 5) and the 

reflectivity image (the loop on the right side of Figure 5) via conventional LSM. The two loops are 
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connected to stabilize the LSM at two points. The first pipes the updated image modeled data back into 

the velocity update, and the second pipes the returned updated velocity model and the output shot 

gather data stream back into the conventional LSM routine. 

The inclusion of the updated velocity model in the reflectivity image update is a stabilizing feature which 

is unique to this research. The shot gather balance reinjection into the conventional reflectivity update 

was an alternative approach to a small stabilizing preconditioning filter bank. This procedure is much 

more natural than applying an arbitrary filter bank, as it uses the output of the velocity update loop to 

implicitly stabilize the shot gather data before the residual image calculation. 

The inclusion of an automated batch controller was preferential to a fully parallel build in one large 

C/C++ based program. There are two reasons for this choice. First, from a research standpoint, it makes 

more sense to build a system which is easily piecewise modifiable. This is because you can generate 

perfectly reproducible results from the entire stabilized LSM algorithm, save for the change in one 

subprocess which one uses to test results. Second, more importantly, the batch architecture is 

completely modular. To improve results, a future researcher can simply plug in a more sophisticated 

migration algorithm, or to test a new stabilization routine, a processor could replace the current FWI 

with a custom product. 

Experiment 
Three processes were run: first the simple Kirchhoff depth migration, second the conventional LSM, and 

third the stabilized LSM. These processes were tested using the correct velocity model and three 

velocity models with different types of error.  

The data tested were synthetic data generated by finite difference forward modeling a small velocity 

model, at 50 traces by 100 samples at 25 meter spacing in each direction. This corresponds to a model 

size of 1250 meters by 2500 meters, or 3.1 million square meters. In comparison to a real 2D seismic 
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line, which for example could be 16,000 meters by 12,000 meters, or 192 million square meters, this 

experiment is running a data set which is 1.6% of a real data set.The sample data set took an average of 

10.5 days to run at 6 iterations. 

The first data tested were forward modeled from a simple, heterogeneous two velocity model. The 

upper velocity layer was 2000 meters per second, and the bottom layer was 4000 meters per second.  
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Figure 9 Correct two velocity homogeneous velocity model. 

There were three types of error introduced: first a scalar shift to the entire velocity model, second a 

homogeneous lateral error layer in the first velocity, and third a laterally heterogeneous velocity block. 

Each one of the velocity errors was varied from one to ten percent of the total maximum velocity in the 

model. The error magnitude in the images below is ten percent, as to visually highlight the region of 

error. 
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Figure 10 Two velocity homogenous velocity model with a ten percent scalar velocity error. 
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Figure 11 Two velocity homogeneous velocity model with a ten percent stripe velocity error. 
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Figure 12 Two velocity homogeneous velocity model with a ten percent lateral velocity error. 

The second data tested was on an impulse response velocity model. The background medium has a 

velocity of 2000 meters per second, and the discontinuity has a velocity of 5000 meters per second. 



24 
 

 

Figure 13 Correct impulse response velocity model. 
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Figure 14 Impulse response velocity model with a ten percent scalar velocity error. 
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Figure 15 Impulse response velocity model with a ten percent stripe velocity error. 
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Figure 16 Impulse response velocity model with a ten percent lateral velocity error. 

The third velocity model tested was a two velocity laterally heterogeneous velocity model. The upper 

medium has a velocity of 2000 meters per second and the bottom medium has a velocity of 4000 meters 

per second.  
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Figure 17 Correct two velocity laterally heterogeneous velocity model. 
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Figure 18 Two velocity laterally heterogeneous velocity model with a ten percent scalar velocity error. 
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Figure 19 Two velocity laterally heterogeneous velocity model with a ten percent stripe velocity error. 
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Figure 20 Two velocity laterally heterogeneous velocity model with a ten percent lateral velocity error. 

The second part of the experiment included half of the Marmousi velocity model. With a horizontal and 

vertical sample spacing of 25 meters, the 192 by 122 sample Marmousi model comes out to a total of  

4,800 meters by 3,050 meters. The stabilized least squares migration on the half Marmousi model takes 
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a considerable portion of memory; running at peak efficiency requires about 64GB of memory by the 

end of each iteration. 

 

Figure 21 Correct western half of the Marmousi velocity model. 
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Figure 22 Western half of the Marmousi velocity model with a ten percent lateral velocity error. 

These velocity errors typify and isolate the error encountered in real velocity modeling. Scalar 

inconsistencies in velocity modeling are generated due to an incorrect starting velocity model, as in the 

process of brute stacking. Laterally continuous velocity errors isolated in vertical extent are 

representative of the error in velocity models due to an incorrect high or low pick on a semblance plot, 

including those erroneous picks due to multiple energy. This type of velocity error is also encountered in 

automated velocity update schemes, wherein a velocity updating algorithm assigns an incorrect 

degenerate velocity to a specific data layer (or group of layers). Laterally discontinuous velocity errors 

can be the result of many factors, with the most common factor being the spatial averaging of 

inconsistent human velocity picks across multiple CMP locations. This occurs when a velocity interpreter 

picks an erroneously high or low velocity with respect to the surrounding gross grid locations, as then 

the velocity interpolation scheme spreads that error to the adjacent CMP locations with error 

magnitude diminishing with respect to distance from the incorrect pick. 
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Results 

Modeled data (correct velocity model) 
The following data are the result of running the above mentioned finite difference forward modeling 

algorithm on the correct velocity model listed below. These images should give the reader an 

understanding of the starting point of the data before viewing the results of the migrations in 

subsequent sections. 

 

Figure 23 Common shot gathers modeled from the two velocity homogeneous velocity model. 
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Figure 24 Brute stack of the associate CMP gathers for the two velocity homogeneous velocity model. 
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Figure 25 Common shot gathers modeled from the impulse response velocity model. 
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Figure 26 Brute stack of the associated CMP gathers for the impulse response velocity model. 
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Figure 27 Common shot gathers from the two velocity heterogeneous velocity model. 
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Figure 28 Brute stack of the associated CMP gathers for the two velocity heterogeneous velocity model. 
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Figure 29 Common shot gathers modeled from the Marmousi velocity model. 

 

Figure 30 Brute stack of the associated CMP gathers for the Marmousi velocity model. 
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Conventional depth migration 

 

Figure 31 Correct two velocity homogeneous Kirchhoff depth migration section. 
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Figure 32 Two velocity homogenous Kirchhoff depth migration with one percent scalar velocity error. 
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Figure 33 Two velocity homogeneous Kirchhoff depth migration with five percent scalar velocity error. 
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Figure 34 Two velocity homogeneous Kirchhoff depth migration with ten percent scalar velocity error. 
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Figure 35 Two velocity homogeneous Kirchhoff depth migration with one percent stripe velocity error. 
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Figure 36 Two velocity homogeneous Kirchhoff depth migration with five percent stripe velocity error. 
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Figure 37 Two velocity homogeneous Kirchhoff depth migration with ten percent stripe velocity error. 
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Figure 38 Two velocity homogeneous Kirchhoff depth migration with one percent lateral velocity error. 



49 
 

 

Figure 39 Two velocity homogeneous Kirchhoff depth migration with five percent lateral velocity error. 
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Figure 40 Two velocity homogeneous Kirchhoff depth migration with ten percent lateral velocity error. 
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Figure 41 Correct impulse response Kirchhoff depth migration section. 
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Figure 42 Impulse response Kirchhoff depth migration with one percent scalar velocity error. 
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Figure 43 Impulse response Kirchhoff depth migration with five percent scalar velocity error. 
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Figure 44 Impulse response Kirchhoff depth migration with ten percent scalar velocity error. 
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Figure 45 Impulse response Kirchhoff depth migration with one percent stripe velocity error. 
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Figure 46 Impulse response Kirchhoff depth migration with five percent stripe velocity error. 
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Figure 47 Impulse response Kirchhoff depth migration with ten percent stripe velocity error. 
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Figure 48 Impulse response Kirchhoff depth migration with one percent lateral velocity error. 
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Figure 49 Impulse response Kirchhoff depth migration with five percent lateral velocity error. 
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Figure 50 Impulse response Kirchhoff depth migration with ten percent lateral velocity error. 
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Figure 51 Correct two velocity heterogeneous Kirchhoff depth migration section. 
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Figure 52 Two velocity heterogeneous Kirchhoff depth migration with one percent scalar velocity error. 
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Figure 53 Two velocity heterogeneous Kirchhoff depth migration with ten percent scalar velocity error. 
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Figure 54 Two velocity heterogeneous Kirchhoff depth migration with one percent stripe velocity error. 
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Figure 55 Two velocity heterogeneous Kirchhoff depth migration with five percent stripe velocity error. 
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Figure 56 Two velocity heterogeneous Kirchhoff depth migration with ten percent stripe velocity error. 
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Figure 57 Two velocity heterogeneous Kirchhoff depth migration with one percent lateral velocity error. 
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Figure 58 Two velocity heterogeneous Kirchhoff depth migration with five percent lateral velocity error. 
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Figure 59 Two velocity heterogeneous Kirchhoff depth migration with ten percent lateral velocity error. 
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Figure 60 Correct Marmousi Kirchhoff depth migration section. 

 

Figure 61 Marmousi Kirchhoff depth migration with ten percent lateral velocity error. 
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Conventional LSM  

 

Figure 62 Two velocity homogeneous LSM with one percent scalar velocity error. 4 iterations. 
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Figure 63 Two velocity homogeneous LSM with five percent scalar velocity error. 6 iterations. 
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Figure 64 Two velocity homogeneous LSM with ten percent scalar velocity error. 3 iterations. divergent solution. 
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Figure 65 Two velocity homogeneous LSM with one percent stripe velocity error. 4 iterations. 
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Figure 66 Two velocity homogeneous LSM with five percent stripe velocity error. 5 iterations. 
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Figure 67 Two velocity homogeneous LSM with ten percent stripe velocity error. 4 iterations. divergent solution. 
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Figure 68 Two velocity homogeneous LSM with one percent lateral velocity error. 7 iterations. 
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Figure 69 Two velocity homogeneous LSM with five percent lateral velocity error. 4 iterations. 
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Figure 70 Two velocity homogeneous LSM with ten percent lateral velocity error. 4 iterations. divergent 
solution. 



80 
 

 

Figure 71 Impulse response LSM with one percent scalar velocity error. 5 iterations. 



81 
 

 

Figure 72 Impulse response LSM with five percent scalar velocity error. 4 iterations. 
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Figure 73 Impulse response LSM with ten percent scalar velocity error. 4 iterations. 
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Figure 74 Impulse response LSM with one percent stripe velocity error. 5 iterations. 
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Figure 75 Impulse response LSM with five percent stripe velocity error. 4 iterations. 
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Figure 76 Impulse response LSM with ten percent stripe velocity error. 5 iterations. 
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Figure 77 Impulse response LSM with one percent lateral velocity error. 4 iterations. 
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Figure 78 Impulse response LSM with five percent lateral velocity error. 5 iterations. 
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Figure 79 Impulse response LSM with ten percent lateral velocity error. 1 iteration. divergent solution. 
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Figure 80 Two velocity heterogeneous LSM with one percent scalar velocity error. 6 iterations. 
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Figure 81 Two velocity heterogeneous LSM with five percent scalar velocity error. 5 iterations. 
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Figure 82 Two velocity heterogeneous LSM with ten percent scalar velocity error. 5 iterations. 



92 
 

 

Figure 83 Two velocity heterogeneous LSM with one percent stripe velocity error. 6 iterations. 
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Figure 84 Two velocity heterogeneous LSM with five percent stripe velocity error. 6 iterations. 
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Figure 85 Two velocity heterogeneous LSM with ten percent stripe velocity error. 6 iterations. 
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Figure 86 Two velocity heterogeneous LSM with one percent lateral velocity error. 7 iterations. 
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Figure 87 Two velocity heterogeneous LSM with five percent lateral velocity error. 6 iterations. 
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Figure 88 Two velocity heterogeneous LSM with ten percent lateral velocity error. 2 iterations. divergent 
solution. 
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Figure 89 Marmousi LSM with ten percent lateral velocity error. 2 iterations. divergent solution. 
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Stabilized LSM 

  
Figure 90 Two velocity homogeneous stabilized LSM with one percent scalar velocity error. 3 iterations. 
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Figure 91 Two velocity homogeneous stabilized LSM with five percent scalar velocity error. 4 iterations. 
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Figure 92 Two velocity homogeneous stabilized LSM with ten percent scalar velocity error. 5 iterations. 
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Figure 93 Two velocity homogeneous stabilized LSM with one percent stripe velocity error. 4 iterations. 
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Figure 94 Two velocity homogeneous stabilized LSM with five percent stripe velocity error. 4 iterations. 
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Figure 95 Two velocity homogeneous stabilized LSM with ten percent stripe velocity error. 5 iterations. 
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Figure 96 Two velocity homogeneous stabilized LSM with one percent lateral velocity error. 3 iterations. 
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Figure 97 Two velocity homogeneous stabilized LSM with five percent lateral velocity error. 4 iterations. 
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Figure 98 Two velocity homogeneous stabilized LSM with ten percent lateral velocity error. 4 iterations. 
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Figure 99 Impulse response stabilized LSM with one percent scalar velocity error. 1 iteration. 
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Figure 100 Impulse response stabilized LSM with five percent scalar velocity error. 1 iteration. 
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Figure 101 Impulse response stabilized LSM with ten percent scalar velocity error. 1 iteration. 
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Figure 102 Impulse response stabilized LSM with one percent stripe velocity error. 1 iteration. 
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Figure 103 Impulse response stabilized LSM with five percent stripe velocity error. 1 iteration. 
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Figure 104 Impulse response stabilized LSM with ten percent stripe velocity error. 1 iteration. 
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Figure 105 Impulse response stabilized LSM with one percent lateral velocity error. 2 iterations. 
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Figure 106 Impulse response stabilized LSM with five percent lateral velocity error. 2 iterations. 
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Figure 107 Impulse response stabilized LSM with ten percent lateral velocity error. 1 iteration. 
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Figure 108 Two velocity heterogeneous stabilized LSM with one percent scalar velocity error. 3 iterations. 
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Figure 109 Two velocity heterogeneous stabilized LSM with five percent scalar velocity error. 2 iterations. 
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Figure 110 Two velocity heterogeneous stabilized LSM with ten percent scalar velocity error. 2 iterations. 

 



120 
 

  

Figure 111 Two velocity heterogeneous stabilized LSM with one percent stripe velocity error. 3 iterations. 
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Figure 112 Two velocity heterogeneous stabilized LSM with five percent stripe velocity error. 2 iterations. 

 

 



122 
 

  

Figure 113 Two velocity heterogeneous stabilized LSM with ten percent stripe velocity error. 4 iterations. 
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Figure 114 Two velocity heterogeneous stabilized LSM with one percent lateral velocity error. 5 iterations. 
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Figure 115 Two velocity heterogeneous stabilized LSM with five percent lateral velocity error. 4 iterations. 
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Figure 116 Two velocity heterogeneous stabilized LSM with ten percent lateral velocity error. 2 iterations. 
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Figure 117 Marmousi stabilized LSM with ten percent lateral velocity error. 2 iterations. 
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All of the images in this chapter have excluded any post processing to highlight any numerical 

inconsistencies in the solutions. All of the images in this section are the outputs from the stabilized LSM 

algorithm. The color images on the left are the updated velocity models and the images on the right are 

the updated seismic sections. They are both set at the same scale for visual comparison. Compare the 

results in this section with the results in the depth migration section in this chapter to visualize the 

resolution enhancing ability of the stabilized LSM. 

Analysis 

Iteration comparison 
The following three figures are comparisons of iterations taken to minimal error condition. The 

horizontal axis code is structured as follows: the first two letters correspond to homogeneous, impulse, 

or heterogeneous velocity model, the middle numbers correspond percentage error, and the last two 

letters correspond to scalar, stripe, or lateral velocity error type. 
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Figure 118 Number of iterations sorted by velocity model (homogeneous, impulse, and heterogeneous) 
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Figure 119 Number of iterations sorted by velocity model error percentage (1%, 5%, and 10%) 
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Figure 120 Number of iterations sorted by velocity model error type (lateral, scalar, and stripe) 

In figures 118 - 120, the impulse response velocity model exhibits an anomalously large change in 

iteration number between conventional LSM and stabilized LSM because the stabilized LSM did not 

resolve the velocity anomaly. Each iteration of the stabilized LSM washed out more and more of the 

correct velocity model, implying that the best image was output after one iteration. 

Velocity Sensitivity 
The conventional LSM destabilized in the following cases, all models with ten percent velocity error: the 

homogenous velocity model with all three types of velocity error and all four velocity models with 

lateral velocity error. This is indicative of a higher degree of velocity sensitivity in the lateral dimension 

than the vertical dimension. Because the FWI algorithm which stabilizes the stabilized LSM updates the 

velocity at each iteration in two dimensions, there was no destabilization in these results from the 

stabilized LSM. 
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For completeness, in the course of this research the stabilized LSM algorithm was tested to the point of 

failure with respect to the maximum stable velocity error. During this torture testing, the stabilized LSM 

tested stable up to 18% velocity error for lateral velocity errors, and up to 23% for laterally continuous 

velocity errors (including scalar errors).  

Reflectivity error resolution 
As is demonstrated in the results above, the reflectivity error minimization improves the overall quality 

of the seismic section more than the velocity error minimization. This is evident when comparing the 

depth migrated sections above to the stabilized LSM images and when comparing the depth migrated 

sections to the conventional LSM images. The improvement in image quality between these two steps is 

much more pronounced than the improvement in image quality between the conventional LSM and the 

stabilized LSM. This is to be expected, as the stabilized LSM image quality should be on the same order 

of magnitude as the conventional LSM. 

A comparison of the reflectivity error resolution between the stabilized LSM and the conventional LSM 

demonstrates the ability of the stabilized LSM to produce an output image with higher reflectivity 

accuracy than that of the conventional LSM. This is evident along the left side of the velocity anomaly 

where we see seismic events with a higher degree of lateral continuity in the stabilized LSM output than 

the conventional LSM output. The false anticline below the right side of the velocity anomaly in both of 

these images is also evident, however, in the stabilized LSM output the vertical displacement of the 

anticline is less severe. Lastly, the stabilized LSM output images the high velocity wedge layer below the 

velocity anomaly with increased vertical and lateral resolution as compared to the conventional LSM. 

Velocity solution uniqueness 
The updated velocity sections output from the stabilized LSM suffer from lateral banding artifacts as 

seen in all of the output velocity models. This is due to the non-unique wavefield structural dependency 

on the velocity model. A forward modeling algorithm can output the same structural wavefield 
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characteristics from two different input velocity models. An input velocity model with a paired 

anomalously high and anomalously low lateral velocity inconsistency can forward model with the same 

wavefield structure as a correct velocity model input as long as the vertical extent of the inconsistencies 

is not located on a lateral change in the velocity model. This is shown in every updated velocity section 

from the stabilized LSM above, but it is especially noticeable in the two velocity homogeneous velocity 

models (aside from the ones with lateral velocity errors) obviously because there are no lateral changes 

in velocity. 

However, the amplitudes in the output seismic section from the stabilized LSM do not exhibit the same 

amplitude characteristics as that in the conventional LSM. Intuitively, this makes sense; if the vertical 

extent of the velocity inconsistency is shorter than a quarter of the dominant wavelength there would 

be no effect on the output wavefield, but as the inconsistency grows in vertical length the wavefield will 

exhibit an increased amplitude distortion. 

The above does not hold for laterally discontinuous velocity features. The lateral velocity error bands in 

the updated velocity model do destroy laterally isolated velocity artifacts in a correct model. The 

evidence for this is in the impulse response velocity sections, wherein the wavefield solution does not 

diverge, but the impulse square is washed out of the image with each iteration of wavefield update. 

Velocity error resolution 
In all cases, the input velocity errors were reduced in magnitude. However, velocity errors were 

generated in lateral bands across the velocity sections. The velocity error resolution is most pronounced 

in the cases of lateral velocity error in the two velocity homogeneous and the two velocity 

heterogeneous models. In the cases of the five percent velocity errors the error was reduced by up to 

65% for the homogenous velocity model and 68% for the heterogeneous model. In the cases of the ten 

percent velocity errors the error was reduced by up to 43% for the homogenous velocity model and 49% 
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for the heterogeneous model. In the case of the Marmousi velocity model, the stabilized LSM corrects 

the velocity almost to the point of human perception. While the actual, quantitative correction is the 

same as the other lateral velocity error corrections, this experiment shows the effective velocity error 

resolving effect on real data. 

Conclusions 

Conventional LSM vs. Stabilized LSM 

 

Figure 121 Iteration comparison after removing the divergent solutions in conventional LSM and the impulse 
response velocity models which were not accurately resolved by the stabilized LSM. 

In the above figure we see a fair comparison between the conventional LSM and the stabilized LSM. In 

this figure the divergent conventional LSM solutions have been removed and the impulse response 

velocity model stabilized LSM solutions have been removed. In only two cases did the conventional LSM 

minimize the reflectivity error in the same number of iterations as the stabilized LSM. In all of the other 
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cases the stabilized LSM minimized reflectivity image error with fewer iterations than the conventional 

LSM. This showcases the ability of the stabilized LSM to run on real data in the near future. 

The inclusion of the stabilizing routine in the LSM generated lateral velocity artifacts in the velocity 

output. However, because of the dual error minimization subroutines in the stabilized LSM the image 

solution was improved. This is because the velocity artifacts generated in the velocity update iterations 

are annealed by the reflectivity update iterations. The output images would certainly be even more 

accurate without the generation of velocity errors in the FWI function, so future work must be done to 

include a lateral error reduction subroutine into the FWI function. 

The inclusion of FWI as a stabilizing agent in the LSM solution is effective. The results from the stabilized 

LSM came back with similar or better resolution than the results of the conventional LSM. The use of 

FWI stabilized the imaging solutions for the Marmousi velocity model up to a 19% velocity error, which 

is larger than conventional stabilizing preconditioning banks. In each case the algorithms had trouble 

with lateral resolution of lateral reflectivity discontinuities, but this can be fixed by using a different 

migration algorithm with a sharper lateral impulse response. The design of both the stabilized and the 

conventional LSM algorithms in this paper permit this change easily, as described in the next section. 

Modular algorithm - imaging resolution 
As was discussed in the methods chapter, the stabilized LSM algorithm used in this research is fully 

modular. Each subprocess contained in the stabilized LSM controller can be swapped for another 

algorithm. The huge benefit here is that to improve imaging accuracy all one would need to do is plug in 

a different modeling algorithm or a different migration algorithm.  

As demonstrated in the results chapter, the modeling algorithm in this research generates a non-trivial 

amount of numerical noise in its output. This could easily be corrected by plugging a more advanced 

modeling algorithm into the controller. Also, the migration algorithm used herein is an antiquated one 
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by modern standards. The inclusion of a modern depth migration, especially a finite difference 

migration, would significantly improve the imaging resolution of the stabilized LSM. 

As an additional appendix to this paper, the source code, in its entirety, is located on a private software 

repository on Github. Please visit gra.m-gan.sl for access. 

  

http://gra.m-gan.sl/
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Appendix – stabilized LSM algorithm 
Included below is the source code for the stabilized LSM algorithm. The full source code for all of the 

software in this research is available by request from a private repository. The results in their entirety 

(over 1000 data sets) are also available at a separate online repository. If you would like access, please 

visit gra.m-gan.sl. 

http://gra.m-gan.sl/
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