
University of New Orleans University of New Orleans

ScholarWorks@UNO ScholarWorks@UNO

University of New Orleans Theses and
Dissertations Dissertations and Theses

Fall 12-18-2015

Towards a Theory of Recursive Function Complexity: Sigma Towards a Theory of Recursive Function Complexity: Sigma

Matrices and Inverse Complexity Measures Matrices and Inverse Complexity Measures

Bradford M. Fournier
University of New Orleans, bmfourni@uno.edu

Follow this and additional works at: https://scholarworks.uno.edu/td

 Part of the Discrete Mathematics and Combinatorics Commons

Recommended Citation Recommended Citation
Fournier, Bradford M., "Towards a Theory of Recursive Function Complexity: Sigma Matrices and Inverse
Complexity Measures" (2015). University of New Orleans Theses and Dissertations. 2072.
https://scholarworks.uno.edu/td/2072

This Thesis is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with
permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright
and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-
holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the
work itself.

This Thesis has been accepted for inclusion in University of New Orleans Theses and Dissertations by an
authorized administrator of ScholarWorks@UNO. For more information, please contact scholarworks@uno.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of New Orleans

https://core.ac.uk/display/216844675?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.uno.edu/
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/etds
https://scholarworks.uno.edu/td?utm_source=scholarworks.uno.edu%2Ftd%2F2072&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/178?utm_source=scholarworks.uno.edu%2Ftd%2F2072&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uno.edu/td/2072?utm_source=scholarworks.uno.edu%2Ftd%2F2072&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uno.edu

Towards a Theory of Recursive Function Complexity:

Sigma Matrices and Inverse Complexity Measures

 A Thesis

Submitted to the Graduate Faculty of the

University of New Orleans

in partial fulfillment of the

requirements for the degree of

Master of Science

In

Mathematics

By

Bradford Fournier

B.S. University of New Orleans, May 2013

December, 2015

© 2015 - Bradford M. Fournier

ii

For C, H, F, O, & P. As well for J-B X.

iii

Acknowledgments

I am personally grateful to my adviser and mentor Professor Kenneth Holladay. His enthusiasm, knowl-

edge and encouragement have been a sustaining force in my personal development and in that of this

manuscript: I will always be grateful for the trust he placed in me - especially on the many days when my

nascent ideas were hardly developed enough to be articulated. The patience, support, and kindness of

others including Professor Ralph Saxton, Padi Fuster, Daniel Duarte, Aram Bingham and Patrick Roach

should not go unremarked. I also thank Raymond Gitz - as much family as friend - who has been a critical

support over many years. His infectious passion for music has given me a constant companion. Finally, I

thank my family, especially my brother Christopher Eriksen. Our friendship and discussions have been a

source of great joy for many years.

iv

Contents

1. Introduction..1

2. The Sigma Matrix...5

3. Graphic Thoughts...12

4. The Complexity Measure..13

Vitae..19

vPrinted by Wolfram Mathematica Student Edition

Abstract

This paper develops a data structure based on preimage sets of functions on a finite set. This structure, called

the sigma matrix, is shown to be particularly well-suited for exploring the structural characteristics of recur-

sive functions relevant to investigations of complexity. The matrix is easy to compute by hand, defined for any

finite function, reflects intrinsic properties of its generating function, and the map taking functions to sigma

matrices admits a simple polynomial-time algorithm . Finally, we develop a flexible measure of preimage

complexity using the aforementioned matrix. This measure naturally partitions all functions on a finite set by

characteristics inherent in each function’s preimage structure.

Keywords: Sigma Matrix, Complexity, Preimage Structures, Algorithm, Combinatorics, Inverse Analysis.

vi

1

Introduction

1.0 A look ahead. The literature is not short on definitions of complexity and no definition unites mathematicians,

information theorists and natural scientists - and rightfully so. Any such definition should not be optimized with

respect to an abstract standard of purity, but rather, be suited to the problem at hand. This paper serves to develop a

useful framework in which to perform a complexity analysis of finite functions.

 The choice is made to use preimage structures as the vantage from which to perform our analysis. In addition to

being a natural way to attack problems of an information-theoretic or cryptographic bent, preimage structure analysis

can be useful across many problem types. Suppose, for example, a chess player is required to start playing mid-game:

the seasoned player will likely look for known lines along which the game is being played - to the game history - for

context, direction and insight. We approach our complexity analysis analogously.

 A data structure called the sigma matrix of f, denoted Σf , is herein developed. This structure possesses properties

making it ideal for computing metrics on its associated function f . The sigma matrix is defined for all functions on a

finite set, is simple to compute by hand (for small domains), and can detect when a domain element a cycle element in

a function structure. Next, an exploration is made of the map C : ℱ → Σℱ which takes functions to sigma matrices.1

This map may be linear-time implemented in the size of , and induces a partitioning of ℱ useful for exploring the

structure of its domain. The product of C, a sigma matrix, will be the vehicle by which we develop an adaptable

measure of complexity.

 1.1 Underlying Objects and Notation. We start by considering the immediate preimage set to an element y in the

domain of a function f , i.e., f -1(y) = x : f 1(x) = y. In addition to the constituents of the preimage set we may be

interested in its order. For example, given two elements y1, y2 ∈ Dom(f), if the number of elements at inverse depth

one are not equal, for example  f -1(y1) <  f -1(y2) , more time or space is required in specifying the elements of

{ x : f (x) = y1} than {x : f (x) = y1}. Extending the inverse depth, we may consider f -i(y) =  x : f i(x) = y for i ∈ ℕ and build

a chain corresponding of f -i(y) as the inverse depth i increases to view a more complete genealogy of y under f :

1

x : f1(x) = y, x : f1(x) ∈ x : f1(x) = y,

{x : f 1(x) ∈ {x : f 1(x) ∈ {x : f 1(x) ∈ {x : f 1(x) = y)}}}.

The small scale objects under consideration will be standard: sets, lists, matrices and arrays. We will make use of

structures built upon sets of preimage elements. Our two primary notational conventions are as follows: firstly, when

the top-level object defined is a set, the argument is enclosed in parentheses, whereas if a list is referenced, brackets

are used; secondly, if the inverse depth is allowed to range from 1 to the size of the domain, an arrow is used.

 To illustrate the use of parenthesis indicating a set, consider the set of all elements which under j applications of f

yield y, written f -j(y). When interested in the union of such sets for multiple domain elements, we write f -j() to

indicate ⋃y∈ f -j(y). A use of square brackets, as in f -j[χ], indicates the list of sets f -j(x) across the entire domain χ.

 Finally, we employ an arrow to indicate a depth ordered list with depths ranging from 1 to j as in f
j

[x]. Compare a list

of j-back preimage sets over χ

f -j[χ] = f -j (x1), f -j (x2), …, f -j (xχ) (1)

(2)

to a depth-ordered list of preimages to x to depth j.

f
j

[x] = f -1(x), f -2(x), …, f -j(x) (3)

Next, we present the ith row of a matrix - of rows - with each sub-list corresponding to a particular element's preimage

depth ranging from 1 to χ.

f -1(xi), f -2(xi), …, f -χ(xi) ∈ f  := f

[] (4)

 The reader should verify that f

[xi] and f -j[] can be taken as the ith and jth row and column of f  : = f


[]

respectively. Unless otherwise specified, it is our convention that  is domain set and f will mean “f with

Dom(f) =  “ It is time for an example.

2

Example 1.1.1 Let f = {(a, b), (b, a), (c, a), (d, b)}

To find f- j(x) : j = 3 for each x ∈ {a, b, c, d}, we calculate the three-back inverse of each element of .

f-3 (a) = {b, c}, f-3(b) = {a, d} , f-3(c) = ∅ = f-3(d)

f-3() = f-3(a), f-3(b), f-3(c) = {b, c, a, d} ,

f -3[] = f-3(a), f-3 (b), f-3(c), f-3(d)

For a single element b with inverse depths up to χ ,

f [b] = f -1(b), f -2 (b), f -3(b) = [{a, d}, {b, c}, {a, d}] .

1.2 The Preimage Matrix It should be noted that most situations will be simplified by the fact that we will be most

interested in examining f -j[xi] where both j, i range over [1, 2, ..., χ]: namely a list of lists ranging over all elements

of Dom(f) and all inverse depths from 1 to the size of the domain. The reader should verify that f

[xi] and f -j[] can

be taken as the ith row and jth column respectively in f

[]. This list of lists and its notational conventions will be

used often and thus given the simplified notation f . We will continue to use  for a set of domain elements and the

notation f () or f to mean “f with dom(f) = ”.

Example 1.2.1 Calculating a Preimage Matrix.

Let f {(a, b), (b, a), (c, a), (d, b)}, The preimage matrix is given by

f

[] = f -1[], f -2[], f -3[], f -4[]

(5)

f  =

{b, c} {a, d} {b, c} {a, d}

{a, d} {b, c} {a, d} {b, c}

∅ ∅ ∅ ∅
∅ ∅ ∅ ∅

.

3

Next, suppose the preimage matrices of α and β are different:

a a a

b b b

c c c

= α ≠ β =

c b a

a c b

b a c

.

Despite these differences, all elements of the preimage matrices are singletons:

 α  =  β  =

1 1 1

1 1 1

1 1 1

 Both α, β are uniform in structure. This uniformity captures an important property: bijectivity. The value

indicates that for each element y and any inverse depth j , f-j (y) = {x : fj(x) = y} ∈ f  is unique. Once a preimage

matrix has been converted to one representing the size of its elements, there is no way to distinguish a three-compo-

nent bijective function α from a single-component bijection , β.

 As we set about to characterize the complexity of all functions on a finite domain, this loss of information will be an

asset: there is a map from each function to an associated complexity class where multiple functions on the same

domain may have preimage matrices with the same set sizes: resulting in a non-trivial partitioning of all functions on

. This allows for an examination of structural similarities by examining a representative of each partition of ℱ under

a given complexity measure.

4

2

The Sigma Matrix

2.1 The Sigma Complexity Matrix. With the desired characteristics of our complexity measure in mind, we now

turn to developing our primary object for the analysis of preimage structures. We describe a row matrix where for each

element in Dom(f) there is a row corresponding to the list of image elements under repeated application of f . That is,

for each element x ∈ Dom(f) there is a list f [x] of sets

f

[x] =  f (x), f 2(x), … , f n-1(x), f n(x)  s.t n = .

Next, creating a matrix ℳ where for each x ∈ Dom(f) the list f

[x] is a row of ℳ. The resulting matrix of rows is the

forward-image matrix of f over  notated f

 (or just f


). An arbitrary element of the forward image matrix is given by,

f


ij = f j(xi) : 1 ≤ i, j ≤ n =  ,

Recall that the preimage matrix f  is the list of lists where for each x ∈ dom(f) and each inverse depth j there is a row

and column given by the following respectively:

f [x] =  f -1(x), f -2(x), … , f -(n-1)(x), f -n(x) 

f
j

[] = f -j(x1), f -j(x2), …, f -j(xn) : 
i=1

n

xi = .

Thus, ijth of f  is

f ij = f -j(xi) = x : f j(x) = xi : 1 ≤ i, j ≤ n.

The order of f ij for all 1 ≤ i, j ≤ n will constitute the value of element ij in our primary data structure. We define it

now.

Definition 2.1.1 Let f :  →  :  = n. The sigma matrix of f Σf and its ijthentry is then

5

Σf :=

f 
-1

(x1) f 
-2

(x1) ⋯ f 
-n

(x1)

f 
-1

(x2) f 
-2

(x2) ⋯ f 
-n

(x2)
⋮ ⋮ ⋮ ⋮

f 
-1

(xn) f 
-2

(xn) ⋯ f 
-n

(xn)

Where σi
j := σij = f - j

(xi) = # xi : f j(x) = xi.

2.2 Computation of Σf . Preimage and sigma complexity matrices are simple enough. Computation of the sigma

matrix, by a determination and count of preimage elements f ij , is not without its costs. For example, naively creating

the three-by-three sigma matrix from the preimage elements of the constant function on {a, b, c} would require

keeping track of twenty-two objects. Doing the same for {a, b, c, d} it requires a consideration of 52 objects - all to

generate a matrix with only sixteen entries. Below is an example of such a brutish computation for the constant

function on three elements with a the fixed point. Tracking preimages gives the following.

a → {a, b, c} → { {a, b, c}, {}, {} } → { {a, b, c}, {}, {} }

b → {} → {} → {}

c → {} → {} → {}

 To call this method cumbersome is generous. A procedure which constructs Σf in a well defined and reproducible way

for any f is required. Before introducing this procedure, a convenient part of the calculation involved is codified in the

following definition.

Definition 2.2.1 Let ℒ be a list with ithelement ℒ[i], and ℳ be a matrix of  ℒ  columns. Given some x ∈ℳ, if

ℒ[i] counts the occurrences of x in the ith column of ℳ , then ℒ is a column accumulator of x over ℳ . We write

Colsum(ℳ[x]) to indicate the list formed by a column accumulation of x over ℳ. Considering the list of lists

Colsum(ℳ[x]) = ℒx over all unique x ∈ℳ, we write Colsum(ℳ[]) and call it the column accumulator matrix of ℳ .

6

Example 2.2.1 Calculation of a column accumulator matrix.

Suppose ℳ =

n m n

l n m

l l m

.

To find the column accumulator matrix of ℳ , we consider the Colsum(M(x)) for each of {l, m, n}.

Colsum(ℳ[l]) = [2, 1, 0] , Colsum(ℳ[m]) = [0, 1, 2] , Colsum(ℳ[n]) = [1, 1, 1] .

Thus constituent rows formed from the above lists give the column accumulator of ℳ over {l, m, n} give

Colsum(ℳ[]) =
2 1 0

0 1 2

1 1 1

.

Example 2.2.2 f = {(i, l), (j, l), (k, m), (l, n), (m, l), (n, m)}

The reader should verify that the full column accumulator for f

 is given by its Colsum as follows:

f

 =

l n m l n m

l n m l n m

m l n m l n

n m l n m l

l n m l n m

m l n m l n

⟹ Colsum(f

) =

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
3 2 1 3 2 1
2 1 3 2 1 3
1 3 2 1 3 2

 Thus, calculation of Colsum(f

) is simply a matter of list creation and summing over elements of columns. Less

expected is that there is simple way of constructing the sigma complexity matrix of f . The following result exploits this

property of the image matrix while highlighting a relationship between a column accumulation over f

 and the row

elements of Σf .

Theorem 2.2.1: If  is the column accumulator matrix over f

 , then  is also the sigma matrix Σf .

Proof. First we show that dim(f

) = dim(). If #dom (f) = n then dim(f


) = (n⨯n). Thus for each domain

element of f there is a list x = Colsumf [x] ∈ Colsum (f ). Since f

 has n columns, len(x) = n for all

x ∈ dom(f). Thus dim(f

) = (n⨯n) = dim(). Giving the following.

7

Cij = # x : x = xi ∈ f j (x1), f j(x2), …, f j (xn)  = # x : f j (x) = xi = f - j (xi)

Thus we have that f -j (xi) = σi
j ∈ Σf . Thus since dim(f


) = dim() and Cij = σi

j we conclude that

 = Colsum(f

) = Σf .

◼

We present pseudo-code for this process - a process admitting a polynomial-time algorithm.

 = Dom (f)

i = 1

n = size ()
'''

Let Colsum[f

] = []

While i ≤ n :

colsum (xi) = []

While j ≤ n :

S = ∑j=1
n γ (f


ij) : γ (f


ij) =  1 , fij = xi

0 , fij ≠ xi

append S to colsum (xi)

j = j + 1

append colsum (xi) to Colsum[f]
i = i + 1

Σf = colsum[f

]

return Σf

2.3 Properties of the Sigma Matrix. Having now defined the sigma complexity matrix and shown its construc-

tion from the image matrix, we move on to describing some nice properties of Σf . The following properties describe,

directly or indirectly, the distribution of elements of the sigma complexity matrix. A property of Σf will be called local if

it a statement about an individual element σi
j ∈ Σf . A property will be called sigma-global when its object is a column or

row of Σf or the matrix itself.

Proposition 2.3.1: All elements of the sigma complexity matrix are non-negative integers.

8

Proof: The entries σi
j ∈ Σf correspond to set sizes.

◼

Proposition 2.3.2: If xi is a cycle element of G(f) then σ j
i is non-zero for all j where 1 ≤ j ≤ n.

Proof: We have that σi
j :=  f -j (xi) = # xi : f j(x) = xi. If x ∈ C a cycle, x may also be the intersection of a tree

T ⊂ G(f) and C. Suppose first it is not an element of some tree entering C, then f-1
(x) = 1. However, if x ∈ T ⋂ C

then there exists y1, y2 such that when both elements y1, y2 are in the vertex set of f and without loss of generality y1 is

a cycle element, yet y2 is not, then y1, y2 ∈ f -1(x) implies that the set f -1(x) is of size greater than one.

Finally if x ∈ C, there exists some c ∈ C : c ∈ f -k(x) for every k ∈ ℕ, so f-j
(x) ≥ 1 for any j. This argument applies in

the case of multi-component graphs.

◼

Theorem 2.3.1: If Σf is n⨯n then the sum of the elements in any column n .

 Proof: Since σi
j = Cij = x : f j(x) = xi and thus the jth column of Σf has a sum given by :

 
i=1

n

σi
j = #

i=1

n

x : f j
(x) = xi = #

i=1

n

xi ∈ c ∈ f  .

Since f is functional and onto, the set f
 j
[xi] is always a singleton. Thus, for any ithrow of f


, # f

j

[xi] = 1. So,

∑#
i=1

n

xi ∈ f
j

[] must be the number of rows of f
j

[] which by must be the same as the rows of Σf , namely n.

◼

Proposition 2.3.3: If xi ∈ G(f) is not an element of a cycle then there exists some k ≤ n : σi
k = 0.

Proof: If xi is not part of a cycle, it is part of a tree. Every recursive function f contains a cycle. If f contains only the

trivial cycle, say (c, c) ∈ E (G(f)), then the distance from c to any element x ≠ c is less than or equal to n - 1. Thus the

9

distance of a leaf is less than or equal to n - 1. Lastly, for any leaf xL, f -1(xL) = {}, thus for some k ≤ n, σi
k = 0.

 ◼

Theorem 2.3.2 : If some element σi
k ∈ Σf = 0, then all remaining elements σi

k< j≤ n of that row are also zero.

Proof. Recall that σi
j is shorthand for f-j

(xi). Since f-k
(xi) = 0, the associated set f -k(xi) = x : f k(x) = xi is

empty. Now, given an element y ∈ f -j(xi), its preimage f -1(y) is an element of

f -(j+1)(xi) = x : f (x) ∈ f j(x) = xi = x : f (x) ∈ f -j(xi). In position k we have that the set f -k(xi) = ∅ and thus

f -(k+1)(xi) = x : f (x) ∈ f -k(xi) = {x : f (x) ∈ ∅}. We also have that f (x) exists for all x ∈  and therefore x : f

(x) ∈ ∅ is itself

empty. Since {x : f (x) ∈ ∅} = ∅ = f -(k+1)(xi) and so by definition of the sigma complexity matrix f-(k+1)
(xi) = σi

k+1 = 0.

◼

Theorem: 2.3.3 : If f is the constant function on n elements, then Σf has a row of all n's.

Proof. If f is constant then for all x ∈  , f (x) = c for some c ∈ . Let c = xk , then (xk, f (xk)) = (xk, c) ∈ f and thus

xk = c ∈ f -1(c) =  and f-1
(c) =  = n . Inductively, if c ∈ f -j(c) then letting D = f -j(c), it must hold that

f -1(c) ⊂ f -1(D), and c ∈ f -1(c) ⊂ f -1(D) = f -1f -j(c) so f-(j+1) ≥ n . Now we show that f-(j+1)
= n. If y ≠ c ∈ f -j(xk),

then f -1(y) ⊂ f -1f -i(c) = ∅ giving that f -(j+1)(c) = f -1(c) Now since f-1
(c) = f-(j+1)

(xk) = n for any j,

f-j
(xk) = σi

j = n.

◼

Theorem: 2.3.4: The sum of all elements of Σf on n elements is n2.

Proof: Theorem 2.3.1 gives each column sum of n. The sigma matrix has been shown to have the number of

columns as elements, n. It follows that the matrix has a total sum of n2

10

◼

Now that we have established some basic ‘niceness’ properties of the sigma matrix, we move to looking at correspon-

dences between the sigma matrix and the graph of the associated function.

11

3

Graphic Thoughts

3.1 Function Digraphs. The utility of viewing a function as a set of ordered pairs is apparent when associating the

function with its digraph. We use the standard notation G(f) to indicate the graph of f . Many of our key results make

use of the properties of function associated digraphs. This approach is appealing for several reasons: graph

componants are easy to see, the notion of morphism - arrow as object - gives a visual structure to the underlying

ordered pair object, and injectivity / surjectivity is surveyable for small domains suitably arranged. The aforemen-

tioned niceties correspond to procedures which are relevant in many complexity measurements: substructure detec-

tion , measuring (co)domain compression/consolidation, as well as branch counting in trees. Restricting ourselves to

finite functions, we have a relation f where ∀ x ∈  ∃ ! y : x f y. Then given any two ordered pairs in the set defining f ,

we have that if the second elements are different, the first elements must be different. Viewing G(f), the graph of f , for

each domain element there exists a unique directed edge - or arrow- such that the tail corresponds to the domain

element and head to the image element. Dom(f) =  corresponds to the vertices of G(f) and is notated V (G(f)) or just

V (f).

The in-degree of a vertex v is the size of x : f -1(v) = v, i.e., the number of arrows pointing to v. Of course f is a function

and thus the number of arrows leaving any vertex element is always one. The set of all arrows, is notated as

E(G(f)) or E(f). Finally, the neighborhood of y ∈ V (f) is a subset of V (f) and made up of elements which are first-order

image or preimage elements of y.

3.2 Graph Isomorphisms. Suppose that f = {(a, b), (b, a), (c, a), (d, c)} and π = {(a, d), (b, b), (c, c), (d, a)},

then f ∘π = {(a, c), (b, a), (c, a), (d, b)} . It is evident that G(f) and G(f (π(x)) are isomorphic - π , a permutation,

serves to relabel the vertices set of G(f). Correspondingly, there exists a permutation / relabeling of rows of Σf which

produces the sigma matrix Σf ∘π .

 The lexicographically row ordered matrices, given below, have differences which correspond only to differences in

isomorphic graphs, thus

12

 f  = f ∘ π =

2 2 2 2

1 2 2 2

1 0 0 0

0 0 0 0

=

2 2 2 2

1 0 0 0

1 2 2 2

0 0 0 0

That isomorphic graphs of two functions produce the same sigma matrix, and that the sigma matrix is the data

structure upon which our exploration of complexity is based, require that any definition of complexity derived natu-

rally conclude that two functions with isomorphic graphs have the same sigma complexity.

3.3 Information, Access, and Relative Bijectivity. As we develop our notion of complexity, flexibility is key.

However, one reasonable notion of complexity across many domains is resistance to reversibility. Viewing a function

f as a parametrized process, transformation, or operation, we examine a particular state the more preimage elements

this state-element f (y) has, the less certain we are about the state-element f -1(f (y)). Under this view, one might

decide that the bijectivity of a function is a relevant metric in a complexity determination. If the function is bijective, a

unique preimage element can be specified. Thus, given any process which is bijective the state of the system n steps

back from the current state can be known with certainty. In the case of the constant function however, there are 

preimage elements for any target element (see below for a concrete example) . While the function f = c has a very

simple structure for G(f) = G(c), the irreversibility of f = c causes all ' information ' to be lost.

 For example, suppose g = {(a, a), (b, a), (c, a)}. The union of all image elements under g is simply {a}, but the

possible predecessors to a is all of . Compare this to h = {(a, b), (b, c), (c, a)} where the set of image elements is all of

 but each preimage set is a singleton. These results are important to our upcoming development of a preimage

complexity measure.

13Printed by Wolfram Mathematica Student Edition

4

The Complexity Measure

4.1 Definition and Properties. We previously developed a simple method for computing Σf - via the column

accumulation over f
→

. This section animates the sigma matrix: we define a function ℋ to flexibly capture the complex-

ity of some finite f by way of preimage structures. To accomplish a comparison of complexitiy between two functions

in f1, f2 ∈ ℱ, a notion un/equal with respect to ℋ must be developed: a task accomplished by an equivalence relation

ℋ ~ which induces a partitioning ℋ~ of ℱ by ℋ ~ . Thus the equivalence class of f (w.r.t. ℋ ~) is a set of functions

defined by the following [f]~ := {g ∈ ℱ : g ~ f }. The ensuing discussion will develop these ideas with further precision.

 Our complexity function ℋ : f → [f]~ will be determined only by properties of Σf . Thus, a natural property of ℋ is

that given f1, f2 ∈ ℱ s.t. f1 ≠ f2 : Σf1
= Σf2

⟹ ∃ f3 : f1, f2 ∈ [f3]~ Two additional properties will inform our

definition of the generalized complexity function ℋ. The contrasting structures of Σf for fc , fb a constant and bijection

respectively will determine the possibility of some g such that fc , fb ∈ [g]~ . Also, the fact that for all permutations

π :  → , g = f(π(x))⟹ Σf = Σg will inform our definition.

 In summary, any generalized complexity function should be able to compare functions on a finite set by way of the

sigma matrix, should incorporate the structural dichotomy between the constant and bijection, and not be sensitive to

a relabeling of domain elements i.e., permutation of domain elements. Finally, there would be little use in a complexity

function which could compare some characteristic of complexity of functions while being too coarse to ever put two

functions in the same equivalence class. So, a final requirement is that the number of induced partitions under ℋ is

fewer than the order of the domain of the constituents of these partitions. We call this a sigma complexity function

and define it as follows:

Definition 4.1.1 ℋ : ℱ ⟶  is a sigma complexity function when for f , g ∈ ℱ and finite  :

 1. Σf = Σg⟹ ℋ (f) = ℋ (g)

 2. ℋ (f) = ℋ (g) ⟺ ∃ h ∈ ℱ : f , g ∈ [h]~ i.e., f ~ℋ g

 3. If ≤ℋ is defined, let  = ℕ s.t

13

 ≤ℋ (f , g) ⟺ ℋ (f) ≤ ℋ (g)

 4. If f is bijective, and g constant then ℋ (f) ≠ ℋ (g).

It should be noted that  need not be ordered as ℋ may simply partition ℱ rather than rank its functions. How-

ever, when ≤ is defined and ℋ (Σf) = Nf ≥ Ng = ℋ (Σg), we say that the sigma complexity of f is greater than or equal to

that of g , etc.

Example 4.1.1 The induced partitioning of ℱ by ℋ .

The map C : ℱ → Σℱ is not surjective, by requiring Σf = Σg ⟹ ℋ (f) = ℋ (g), several functions f ∈ ℱ must have the

same sigma matrix, and thus the same complexity under an unaltered definition of ℋ. For this example let

 = {a, b, c}. There are 
= 27 functions of this set ℱ{a,b,c}. Consider two functions f , g equal if G(f) ≅ G(g).

Partitioning the functions this way yields seven different equivalence classes:

F1 = {{(a, a), (b, a), (c, a)}, {(a, b), (b, b), (c, b)}, {(a, c), (b, c), (c, c)}}

F2 = {{(a, a), (b, a), (c, b)}, {(a, b), (b, b), (c, a)},

{(a, b), (b, c), (c, c)}, {(a, a), (b, c), (c, a)}, {(a, c), (b, b), (c, b)}, {(a, c), (b, a), (c, c)}}

F3 = {{(a, a), (b, b), (c, a)}, {(a, a), (b, b), (c, b)}, {(a, a), (b, a), (c, c)},

{(a, a), (b, c), (c, c)}, {(a, b), (b, b), (c, c)}, {(a, c), (b, b), (c, c)}}

F4 = {{(a, b), (b, a), (c, a)}, {(a, b), (b, a), (c, b)}, {(a, b), (b, c), (c, b)},

{(a, c), (b, a), (c, a)}, {(a, c), (b, c), (c, a)}, {(a, c), (b, c), (c, b)}}

F5 = {{(a, a), (b, c), (c, b)}, {(a, b), (b, a), (c, c)}, {(a, c), (b, b), (c, a)}}

F6 = {(a, b), (b, c), (c, a)}, {(a, c), (c, b), (b, a)}

F7 = {{(a, a), (b, b), (c, c)}}

It was established that two functions with isomorphic graph structures have the same sigma matrices. Thus we now

take a representativefi of each partition ℱi.

f 1 = {{(a, a), (b, a), (c, a)}, f 2 = {{(a, a), (b, a), (c, b)}

f 3 = {{(a, a), (b, b), (c, a)}, f 4 = {{(a, b), (b, a), (c, a)},

f 5 = {{(a, a), (b, c), (c, b)}, f 6 = {(a, b), (b, c), (c, a)},

f 7 = {{(a, a), (b, b), (c, c)}}

14

This is not the complete picture. Recall that often two functions f, g exist such that G(f) ≇ G(g), yet Σf = Σg. The

sigma matricies are given for a representative of each class F:

f1 =

3 3 3

0 0 0

0 0 0

f2
2 3 3

1 0 0

0 0 0

f3 =

2 2 2

1 1 1

0 0 0

f4 =

2 1 2

1 2 1

0 0 0

f5 =

1 1 1

1 1 1

1 1 1

f6 =

1 1 1

1 1 1

1 1 1

f7 =

1 1 1

1 1 1

1 1 1

Indeed, we find that the representatives of partitions 5, 6 and 7 all have the same sigma matricies.

Theroem 4.1.1 : ℋ (f) = ℋ (fπ ()) for any f and any permutation π :  →  .

Proof: By graph isomorphism property, G(f) ≅ G(f ∘π) ⟹ Σf = Σπ(f) ⟹ ℋ (f) = ℋ (fπ()).

◼

4.2 Examples of Sigma Complexity Functions. It is time to introduce examples of a complexiy functions

according to our example. The first, Id, while not imposing any extra constraints beyond those required by being a

sigma complexity function, is non-trivial: it highlights ways in which for some f , g on the same domain, Σf = Σg while

f ≠ g .

Definition 4.2.1 : Let Id : ℱ →  be induced sigma complexity function with no extra constraints besides those

imposed by the definition.

Example 4.2.1 : Let  = {a, b, c, d}, f = {(a, b), (b, a), (c, a), (d, b)},

15

Also let g = {(a, b), (b, b), (c, d), (d, d)}. Since G(f) has one componant, and G(g) has two, G(f) ≇ G(g).

f


=

b a b a
a b a b
a b a b
b a b a

⟹ Σf =

2 2 2 2
2 2 2 2
0 0 0 0
0 0 0 0

g


=

b b b b
b b b b
d d d d
d d d d

⟹ Σg =

2 2 2 2
0 0 0 0
0 0 0 0
2 2 2 2

=

2 2 2 2
2 2 2 2
0 0 0 0
0 0 0 0

= Σf

Thus, f, g are in the same partition of ℱ{a,b,c,d} under Id.

 Definition 4.2.2 Let 0 be a sigma complexity function such that we call the leaf counting measure,

0 (f) := 
i=1,j=1

n,n

Δf, σi
j : Δ σi

j = 1, σi
j = 0

0, σi
j ≠ 0

.

 The function Δ σi
j =

1, σi
j = 0

0, σi
j ≠ 0

 assigns a value of 1 if (σ ∈ Σf) = 1, otherwise it assigns 0 . Thus,

summing over Δσi
j for all 1 ≤ i, j ≤ n, Δ produces a count of the number of zeros in Σf . That is to say that it counts all

y = f -j(xi) ∈ f : f -1f -j(xi) = {}.

Theorem 4.2.1 0(f) = 0(fπ ()) for π a permutation of .

 Proof: Recall that to each element x ∈  is associated a unique row of the complexity matrix Σf . Being a permuta-

tion, the bijectivity of π :  →  requires that {π(x) : x ∈ } ⋂  = ; thus, for any row R in Σf it must also be in the

matrix Σ f π(). Defining π(xi) := xπ(i), if R =  f [xi] ∈ Σf , R =  f  xπ(i) ∈ Σ f π(). Therefore, except for perhaps a permuta-

tion of rows, Σf = Σfπ() . So 0 (f) is given by

16

Δf, σi
j = 

i=1,j=1

n,n

Δfπ(), σi
j = 0(fπ())

◼

Theorem 4.2.2 If f , g ∈ ℱ and if f is constant 0(f) ≥ 0(g).

 Proof: Since f is the constant function, Σf must have at least as many zeros as the sigma complexity matrix of any

other function on , namely n(n - 1). If g is also a constant function then it holds that Σf = Σ g  and 0(f) = 0(g) -

a fact which follows from :


i=1,j=1

n,n

Δg, σi
j = 

i=1,j=1

n,n

Δf, σi
j.

0(g) = 
i=1,j=1

n,n

Δg, σi
j ,


i=1,j=1

n,n

Δg, σi
j ≤ 

i=1,j=1

n,n

Δf, σi
j ⟹ 

i=1,j=1

n,n

Δf, σi
j = n(n - 1) = 0(f).

◼

Theorem 4.2.3 If f , g ∈ ℱ and if f is a bijection 0(f) ≤ 0(g).

 Proof: Since f is bijective, for all x ∈ the size of the set f -i(x) is one and thus each entry of the associated sigma

complexity matrix is likewise "1". Therefore there are no zeros in Σf , i.e., ∑i=1,j=1
n,n Δf, σi

j = 0 = 0(f). Now if g is also

a bijection, then by the same logic.


i=1,j=1

n,n

Δg, σi
j = 0 = 0(g)

and likewise if g is not a bijection then

17


i=1,j=1

n,n

Δg, σi
j ≥ 1 = 0(g).

Thus, it is proven that if f is bijective then 0(f) ≤ 0(g).

◼

Theorem 4.2.3 0 forms an is an equivalence relation on ℱ .

 Proof: Since 0 : ℱ → ℤ+, together (f1) = N1 and (f2) = N2 give that (f1) = (f2) iff N1 = N2. Letting

∑i=1,j=1
n,n Δf, σi

j = N, if f′ = f or fπ(), then Σf = Σ f ' up to isomorphism . Since Σf = Σ f ' , the following identy

holds:


i=1,j=1

n,n

Δf, σi
j = N = 

i=1,j=1

n,n

Δf ′, σi
j.

Therefore 0(f
′) = 0(fπ()) = 0(f) = N, hence f = 0 f for all f . Of course, by commutativity and trasitivitiy of ℤ+

under equality, f1 = 0 f2 ⟺ f2 = 0 f1 . Thus

f1 = 0 f2 , f2 = 0 f3⟹ f1 = 0 f3
◼

18

Vitae

My interests are varied and my course has been atypical - though, I wouldn't trade my winding path for one

more direct even if I could. I am a certified flight instructor, pianist, composer, and have spent time living in a

monastery. Currently living in New Orleans, I am proud to be a Ph.D student under Kenneth Holladay. I

hope to develop the ideas in this thesis to further examine notions of preimage complexity. Wherever it leads,

the future is bright.

19Printed by Wolfram Mathematica Student Edition

	Towards a Theory of Recursive Function Complexity: Sigma Matrices and Inverse Complexity Measures
	Recommended Citation

	tmp.1449039108.pdf.ljDEN

