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Abstract 

 An interdisciplinary, collaborative program is needed to facilitate predictions of 

the inter-connected factors that will impact coastal systems and the resilience of coastal 

communities over the next few decades. Two interdisciplinary workshops were held, in 

2014 and 2015, to develop consensus as to the needs and scope that might be included in 

such a program. This report integrates the outcomes of those workshops with a review of 

recent literature on the subject. Workshop participants agreed that the program should 

focus on building innovative enhancements of objective decision-making utilizing model 

results. It must integrate natural and social sciences and facilitate a cyber-supported 

network of modelers, scholars and stakeholders from academia, federal agencies, local 

and state governments, non-governmental organizations and the private sector. 

Observational data, imagery, and numerical models should support trans-disciplinary 

research to advance resilience regionally and locally. Improved resilience of low-income 

communities in flood prone areas should be a priority. The scientific community at large 

can initiate and evolve a network of interdisciplinary scientists and supporting cyber-

infrastructure with emphasis on complex coastal systems. Collaborations must be 

facilitated with rigorous data and model standards, open source model code, and effective 

communication with a hierarchy of scientists and operational end users.   Model 

projections are needed to support local government officials in assessing resilience, 

planning for humanitarian assistance and identifying the most vulnerable communities, 

environments, and facilities. Integrative methodologies should utilize historical data, 

probabilistic analyses, physics-based numerical models, socioeconomic models and 

complex systems models. New cyber networks and workshops can enable scientists and 

stakeholders with diverse backgrounds to collaborate and share methods, standards and 

models for solving coastal problems. The most important outcome of this initiative must 

be: developing viable long-range resilience programs that enable continually evolving 

adaptive management strategies underpinned by advanced numerical modeling. 

 
Citation:  Wright, L.D., Nichols, C.R., Cosby, A.G., Danchuk, S., D’Elia, C.F. and Mendez, G.R., 2016. 

Trans-disciplinary Collaboration to Enhance Coastal Resilience: Envisioning a National Community 

Modeling Initiative. Washington, DC: Southeastern Universities Research Association. 30 pp.   

URL: http://bit.ly/1ZRGlDX. 
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1. Introduction 

 

 The academic community, collaborating with each other and with federal 

agencies, state and local entities, non-governmental organizations and the private sector, 

can play a pivotal role in facilitating the integration of natural and social sciences to 

better assess the vulnerability and resilience of coastal systems and help to mitigate future 

disasters. Coastal systems include human communities, subject to changing threats from 

rising seas, increased storm frequency and intensity, evolving societal pressures and 

demographics, land loss, altered river discharge and water quality degradation.  

Haidvogel et al. (2013) among others have emphasized the need for integrating social and 

natural sciences in environmental forecasting programs. Dearing et al. (2014) articulate 

regional-scale social-ecological interdependence. The overall goal of the envisioned 

community effort should be to integrate social and natural sciences to assist planning and 

data- and model- driven risk assessment of coastal communities threatened by both long-

term and event-driven (e.g., by severe storms) inundation, land loss, water quality 

degradation and resulting risks to human health and safety as well as declines in 

industries such as tourism, fisheries, agriculture and shipping. In the future, much greater 

attention must be paid to planning for and enabling the resilience of low-income 

communities in flood prone areas. A long-range vision of such a program is centered on 

the creation of a consortium, or network, of scholars and stakeholders along with a virtual 

cyber domain that enables multi-institutional teams of numerical modelers from the 

National Oceanic and Atmospheric Administration (NOAA), the U.S. Army Corps of 

Engineers (USACE), Department of the Navy, Department of Homeland Security, 

Bureau of Safety and Environmental Enforcement, U.S. and foreign universities and the 

private sector to work together to model coastal threats and community, ecosystem and 

infrastructural responses to future scenarios of environmental and socioeconomic change. 

The rapidly evolving world of “big data” offers ever-widening opportunities for 

collaboration and communication. The consortium that is created will need to flexible 

and responsive to emerging challenges, opportunities and understandings.  

 

 An interdisciplinary collaborative program can help guide development of models 

for forecasting the key factors that will impact coastal systems and the resilience of 

coastal communities over the next few decades. The envisioned program can also assess 

how model results can improve decision-making. Once models have repeatedly proven 

their reliability in real-world events and have undergone rigorous testing, inter-

comparisons and refinements by way of collaborative testbed and proving-ground 

programs, governmental leaders and emergency managers should no longer ignore them, 

as they did in the days and hours before Hurricane Katrina made landfall in coastal 

Louisiana in 2005. However, the scientific community at large must nurture the essential 

enlightenment of leaders via careful and straightforward articulation of scientific 

evidence and predictions informed by a strong social science component. The envisioned 

consortium can also contribute to providing the general public with education about 

coastal hazards and disaster awareness. The challenges to, rationale for, and potential 

approaches to the creation of a consortium for coastal resilience are set out in what 
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follows based on syntheses of relevant literature and outcomes of discussions at 

workshops (Southeastern Universities Research Association, 2015).  

 

2. Guidance from Two Workshops 

 

 This report follows the recommendations resulting from two SURA-sponsored 

workshops to consider the elements of an interdisciplinary collaborative program. As a 

first step and to identify the priorities, science requirements, and long-term goals, the 

Southeastern Universities Research Association’s (SURA) Coastal and Environmental 

Research Committee (CERC), brought together a diverse community of natural and 

social scientists from academia, government and Non-Governmental Organizations 

(NGOs) in a workshop on Understanding and Modeling Risk and Resilience in Complex 

Coastal Systems held in Washington, D.C. on October 29 & 30, 2014 (Southeastern 

Universities Research Association, 2015). The goals of the 2014 workshop were to 

identify the most critical issues in assessing future risks, vulnerabilities and resilience of 

complex coastal systems that involve interdependent social, legal, biogeophysical and 

biogeochemical factors.   The consensus from the 2014 workshop was that a consortium 

to facilitate collaborations among an extended and distributed community of 

interdisciplinary modelers and researchers concerned with coastal resilience and 

representing numerous universities, federal, state and local agencies, non-governmental 

organizations and private companies is urgently needed. The envisioned consortium 

could be modified from the examples of existing non-profit consortia. 

 

 Workshop conveners felt that, in the beginning at least, they should identify a few 

geographically specific cases and explore ways that we might collaborate to address, or 

anticipate, future system responses to plausible scenarios of future changes in natural and 

social conditions at the selected location. At the invitation of the Environmental Planning 

and Community Resilience Division, Broward County, Florida, the second workshop was 

held in Broward County during a time of “King Tides” occurring with the full moon on 

October 27, 2015 beginning with visits to several sites subject to frequent inundation. 

The workshop created a step-by-step process to help workshop attendees visualize the 

issues and define courses of action for challenging topics addressed by Broward County 

government personnel, the South Florida Water Management District, the US Army 

Corps of Engineers and the U.S. Geological Survey. To ground workshop discussions to 

a foreseeable future two decades from now, participants were asked to read, in advance, a 

hypothetical future scenario (Danchuk, Nichols and Wright, 2015) that involved sea level 

rise, changed demographics and increased storminess along with optimistic developments 

in modeling, community collaboration and communication with government officials.  

The hypothetical 2035 scenario was driven in part by climate change predictions (e.g., 

from the National Center for Atmospheric Research) and in part by statistical projections 

of future demographics and economics. The aim was not to actually solve a problem but 

rather to explore how to collaborate and consider the methodologies and processes that 

would be needed.    
 

 Discussions during the Broward County workshop focused on four major 

challenge questions: Challenge 1: Roles of Universities in Resilience Planning and 

Emergency Response/Preparation; Challenge 2: Community Resilience in Dania Beach; 
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Challenge 3: Allocating resources/ redistributing functions across county community; 

Challenge 4: Water Resource Contamination (linking hydrodynamic and hydrologic 

models).  With regard to Challenge 1, it was concluded that one prominent role should be 

to facilitate information sharing and the development of a knowledge base. Other 

important roles include technical review of contingency and disaster plans, research and 

education on disasters and policy, extension and outreach, and integrating university 

resources with agency capabilities. University-government collaborations, would 

contribute solutions to Challenges 1, 2 and 3 in several ways including development of 

planning data bases, providing a testbed for model assessment and comparisons, coupling 

social and physical models, identifying information gaps and providing High 

Performance Computing (HPC) resources for applying advanced, large domain numerical 

models including complex systems models.  

 

 Participants at the workshops concluded that as the coastal science community 

goes forward toward the creation of a Consortium for Coastal Resilience (or similar 

entity), there needs to be a clear focus on the nature of the connections and methods we 

hope to foster. Based on the outcome of the presentations and ensuing discussions at the 

two workshops, there was clear agreement that before a meaningful collaborative 

program could be launched, several fundamental questions needed to be addressed via a 

literature review. First, was to agree on a widely acceptable definition, or set of 

definitions, of resilience applicable to complex coastal systems. Following this, the steps 

in program initiation, an inventory of currently applied predictive models, needs for 

essential cyber support, and the target beneficiaries need to be considered.  In what 

follows, we consider current thinking and strategies for promoting collaboration to 

enhance coastal resilience. We do this by way of a review of recent literature on coastal 

resilience and related matters, including integration of natural and social sciences and 

trans-disciplinary collaboration. 

 

3. Defining Resilience as it Relates to Coastal Systems 

 

 “Resilience is the capacity of a system, be it an individual, a forest, a city or an 

economy to deal with change and continue to develop” (Stockholm Resilience Centre, 

2014; www.stockholmresilience.su.se).   According to a recent National Academies 

report on disaster resilience (National Academies, 2012), “Resilience is the ability to 

prepare and plan for, absorb, recover from, and more successfully adapt to adverse 

events.” Resilience involves the ability to adapt to constantly changing environmental, 

economic, and social stressors. It does not imply constancy, stasis or resistance to change. 

It is the capacity to change and adapt continually yet remain viable. Humans and nature 

are interdependent and, through collaboration, natural and social scientists, and 

stakeholders can improve coastal resilience. According to the Stockholm Resilience 

Centre, “Resilience thinking embraces learning, diversity and above all the belief that 

humans and nature are strongly coupled to the point that they should be conceived as one 

social-ecological system.” Low risk is not necessarily requisite for high resilience but risk 

and resilience should both be considered in planning future mitigation strategies. Coastal 

risk assessment is considered in detail in a recent NRC report (National Research 

Council, 2014a).  Considering the complex interdependence of many factors, community 
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resilience and ecosystem resilience must be considered together, not as separate 

problems. Furthermore, since the built infrastructure and related services are integral 

components of communities, infrastructure resilience must be considered in relation to 

both communities and ecosystems (National Institute of Standards and Technology, 

2015). 

 

 For natural ecosystems, such as wetlands, biodiversity is a source of enhanced 

resilience. Similarly, economic diversity probably results in increased community 

diversity. One well-known vulnerability index considers vulnerability to environmental 

hazards (Cutter, 1996). Arkema et al. (2013) discuss the roles that natural habitats can 

play in enhancing natural resilience of communities. As noted by the National Research 

Council (2006), the loss of coastal wetlands over the decades preceding Hurricane 

Katrina, substantially enhanced the vulnerability of New Orleans to that event. The 

Louisiana Coastal Protection and Restoration Authority (2007) is attempting to address 

this problem.  

 

 The US Army Corps of Engineers (USACE), Engineer Research and 

Development Center (ERDC) is developing a tiered set of coastal resilience metrics that 

integrate engineering, environmental and community resilience (Rosati, Touzinsky, and 

Lillycrop, 2015). Rosati, Touzinsky, and Lillycrop (2015) describe expert elicitation, data 

driven, and tiered methods to quantify resilience.  Expert elicitation is somewhat 

subjective while the data-driven methods rely on a combination of historical data and 

numerical modeling.  The USACE’s approach considers preparation, resistance, 

recovery, and adaptation depending on factors such as need, time, space, and available 

funding. The three-tiered approach includes expert elicitation, field data and simple 

models, and rigorous assessment based on probabilistic analyses (Schultz, McKay, and 

Hales, 2012). An important aspect of any viable long-range resilience program is that it 

must enable continually evolving adaptive management strategies underpinned by 

advanced numerical modeling. The USACE has provided extensive guidance for 

engineering responses to sea level rise including regionally specific estimates of change 

(US Army Corps of Engineers, 2014). 

 

4. Enhancing the Resilience of Vulnerable Communities 

 

 One urgent aspect of effectively intersecting social and natural science in this 

program is to anticipate and plan better for the future impacts of climate change on low-

income communities living in flood-prone areas. The tragedy that unfolded in 2005 when 

Hurricane Katrina made landfall along the Louisiana and Mississippi Gulf Coast, was 

most acute in the flooded low lying and low-income neighborhoods of New Orleans, 

particularly the Ninth Ward. Nearly 2,000 people died and hundreds of thousands were 

displaced. The most severely affected African-American population has still not fully 

recovered ten years later.  Elliott and Pais (2006) have articulated the tragedy of the 

inadequate concerns for the African American community in relief efforts following 

Hurricane Katrina. 
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  As sea levels rise, low-lying vulnerable urban areas throughout the world will be 

more frequently flooded by storms. Wealthy populations will migrate to higher ground 

and the value of these higher elevation properties will escalate.  Low-income families 

will be forced to move into higher density areas or to low-lying, flood-prone areas. 

Frequent street flooding of low-lying neighborhoods can paralyze traffic, sewers can be 

flooded, drinking water may be contaminated and water-borne pathogens may be spread 

throughout neighborhoods. And, as was the case in New Orleans in the days following 

Katrina, extensive inundation of neighborhoods can impede rescue operations following 

disasters.   

 

Model projections can support local government officials in making resilience 

assessments to plan for more effective humanitarian assistance by interagency partners 

and help to identify the most vulnerable communities, environments, and facilities. The 

coastal scientific community must consider what kinds of data, model predictions, 

management policies and governmental investment strategies might prevent future dire 

circumstances similar to those faced by low income residents of New Orleans in 2005. It 

is now possible to predict “street by street” flooding probabilities utilizing detailed 

topographic data (Blumberg et al., 2015) and projected sea level rise as well model 

predictions of future demographics. Human health aspects, such as the feasibility of 

immunizations against water-borne diseases, must also be considered.  What kind of 

protective structures such as sea walls or dikes might help protect low-lying 

neighborhoods if the “triaged” allocation of limited resources is more favorable to low 

income communities?  What are some of the ways that the academic community can 

assist governmental agencies at local, state and federal levels in making long-range plans 

that serve all residents? 

 
 Today, the National Hurricane Center classifies hurricanes on a scale of 1 to 5 

(the Saffir-Simpson scale, which indexes relative wind stress and the potential wind 

damage to structures). However, these levels apply only to wind intensity and likely 

impacts on structures and do not distinguish among the contrasting impacts that these 

storms may have on human communities, ecosystems, water quality or infrastructure 

other than buildings.  For example, a Category 3 hurricane can be devastating to a low 

lying coastal city subject to widespread inundation by storm surge, with a fragile 

transportation infrastructure, a delicate coastal ecosystem and a poor community with low 

societal and economic resilience. The same storm may be but a short-lived nuisance to a 

more affluent community on high ground, surrounded by robust infrastructure and a 

healthy, resilient coastal ecosystem.  In these two cases, the impacts of that Category 3 

storm will be dramatically different.  Similarly, the decadal impacts of alternative climate 

change scenarios will vary with regional and local circumstances.  If community impacts 

were to be gaged on the levels of 1 (low impact) to 5 (severe impact) the storm impact in 

the first case might be level 5 but in the second case the impact might be a less 

catastrophic level 2 or 3.   

 

 Future decisions as to how to triage the distribution of limited mitigation 

resources, post-storm recovery assets and disaster relief should be prioritized on the basis 

of total predicted storm impact, not simply storm intensity and stress on structures. At 
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present, the impacts are assessed after the fact but are not rigorously anticipated in 

advance.  Defining objective and meaningful indices of such impacts must precede the 

eventual application to real time or foreshadowed events.  The Hazus
®
 Program of the 

Federal Emergency Management Agency (FEMA) represents the present “state of the 

art” in estimating potential losses from earthquakes, floods and hurricanes (FEMA, 2009a 

and 2009b). However, many aspects of this program are regionally specific and have not 

been implemented for many coastal communities. Hopefully, in the future, the academic 

community will be able to contribute to Hazus
®
 in meaningful ways via the envisioned 

coastal resilience consortium. Finally, on a positive note and as is explained in the 

forthcoming Section 9 of this document, the widespread advent of smart phones 

combined with “big data” and social media capabilities will allow more effective real 

time decisions as to the deployment of emergency and rescue resources during future 

disasters. 

 

5. The Science of Collaboration 

 

 According to Marinez-Moyano (2006) "Collaboration is a function of the 

recursive interaction of knowledge, engagement, results, perceptions of trust, and 

accumulation of activity over time." If the collaborative program we envision is to be 

successful and persist over a long enough timeframe to make a difference, the 

collaboration strategies and methodologies that we build must be as rigorous as the 

models and understanding they are designed to facilitate. The intent is not only to 

facilitate collaborations within the academic community but, most importantly, between 

universities and federal, state and local governmental agencies. To accomplish this we 

must ensure that a rigorous and broadly embraced protocol is established and followed. 

Collaboration involves much more than simply talking to and helping each other. To be 

effective it must involve mutual acceptance of a common set of goals, critical 

assessments of diverse approaches, iterative updates and incremental improvements to 

understanding and predicting, promotion of new paradigms and effective communication 

with a hierarchy of operational end users. A fairly comprehensive collection of essays on 

collaboration can be found in a book edited by Schuman (2006). 

 

 Rigorous and generally accepted standards are crucial and, in accordance with 

earlier coastal testbed experience, we should adopt the standards of the Open Geospatial 

Consortium (OGC; http://www.OpenGeospatial.org). The OGC is an established 

consensus standards organization and an international consortium of 371 companies, 

government agencies (including NOAA), and universities that develop publicly available 

interface standards. These services make complex spatial information and data services 

accessible, interoperable and useful to multiple applications. An ongoing OGC testbed 

activity is focused on Urban Climate Resilience.  The early SURA Coastal Ocean 

Observing and Predicting Program (SCOOP; Bogden et al. 2007) adhered closely to 

OGC standards and the current SURA-led and NOAA-IOOS funded Coastal and Ocean 

Modeling Testbed (COMT; Luettich et al., 2013) has evolved from that tradition.  

 

 The need for new approaches to facilitating collaborative interdisciplinary 

research and education was highlighted in a recent National Research Council (NRC) 

http://www.opengeospatial.org/
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report on “Convergence” (National Research Council, 2014b). As emphasized in this 

NRC report, “Convergence” is intended to imply integration of knowledge, tools and 

ways of thinking from several disciplines. It is not simply the “patching together” of 

results from one single discipline as an input to another discipline.  Centers and institutes 

are one way to promote collaboration among disciplines and are not as constrained as 

traditional departments. “Enterprise” entities that promote interdisciplinary synergies but 

also are designed to evolve as science and needs change may be better models.  Fischer 

(2012) and Redden (2013) describe the notion of a Center for Research, Education and 

Innovation (CREI) where the “CREI” or “enterprise” can facilitate the inclusion of 

industry and governmental entities along with academics.  This concept is being applied 

by the Skolkovo Institute of Science and Technology (Skoltech), a private university 

outside of Moscow. The enterprises are theme-based and may be virtual as opposed to 

centrally located.  Focus areas for this type of research could include climate change 

drivers and coastal resilience. Enterprise themes can change or adapt as new needs and 

understandings unfold.  

 

 Recent collaborative research projects conducted by investigators from different 

disciplines in the natural sciences have successfully created new conceptual, theoretical, 

methodological, and translational innovations that address complex coastal problems by 

integration. With funding from NOAA’s U.S. Integrated Ocean Observing System 

Program (IOOS
®
), SURA has facilitated strategic collaborations to build and guide the 

Coastal and Ocean Modeling Testbed or COMT (Luettich et al., 2013). The COMT has 

demonstrated considerable success in orchestrating collaboration among more than 20 

universities along with agency representation from NOAA, Navy, EPA and the U.S. 

Army Corp of Engineers. The resulting COMT is now one of 11 official NOAA testbeds. 

The overarching goal of the COMT is to accelerate the transfer of research results to 

improve operational coastal ocean modeling and forecasting skill. SURA has advanced 

the COMT to evaluate the readiness of coastal and marine forecasts of low dissolved 

oxygen, flooding from storm surge, and coastal wave conditions.  However, the COMT 

has not yet been extended to include social science or economic models. The capabilities 

that COMT supports include: 
 Quantitative data on the behavior and implementation requirements of models;  

 An archive of observations, model inputs and model results that can be used for 

testing and evaluating current and future models; 

 Tools that use community standards to enable access, visualization and skill 

assessment of multiple model results; and 

 A research environment where researchers and operational agencies can work 

together on selected modeling applications. 

6. Launching a Collaborative Program: Initial Steps 

 

 Formulating a comprehensive plan for an enduring coastal resilience program can 

begin with determining areas where interdisciplinary synergies can be most readily 

applied, facilitating the infrastructural advances that are needed to accommodate future 

modeling and preparing a research plan for moving forward as a community. The 

scientific community at large can initiate and evolve a network of interdisciplinary 
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scientists and supporting cyber-infrastructure with emphasis on understanding and 

modeling complex coastal systems and communicating the results to operational end 

users.  A key role for the facilitating Consortium will not be to execute models but to 

provide the virtual environment within which modelers and non-modeling scholars from 

different disciplines can interconnect.  Quite simply, coastal systems science must bring 

together different components of the system and integrating them. 

 

 Some crucial steps in this process include the following: 

 

Step 1:  Articulating the interconnections of socio-ecological systems and 

identifying the societal, legal, biophysical and biogeochemical criteria needed to 

model resilience in specific coastal regions. 

 Refine understanding and articulation of interconnections of human 

and natural coastal processes.  

 Advance understanding of the linkages between regional and ocean 

systems and scale-dependent inter-connections among societal, 

biophysical and biogeochemical factors. 

 Develop criteria for assessing changes in ecosystem services and the 

impacts that these changes may have on rural and urban 

socioeconomic systems. 

 Following the International Geosphere Biosphere Programme 

example, develop an analytical framework that is relevant to policy 

and decision-making at different levels and takes account of legal 

issues and constraints. 

Step 2: Identifying the systems science requirements for future coastal risk and 

resilience programs.  

 Catalyze interdisciplinary collaborations. 

 Prioritize coastal threats (by region). 

 Identify well-defined, integrated research questions and the required 

modeling, analysis and visualization products to address these 

questions. 

 Identify and prioritize legal factors that may impact community 

resilience or vulnerability. 

 Assess and refine social resilience indices as they pertain to both urban 

and rural coastal communities. 

 Develop feasible data management structures for trans-disciplinary 

integration and communication.  

Step 3: Creating an accessible and extensible cyber infrastructure for cross-

disciplinary communication and collaboration  

 Identify design criteria for a collaborative web portal for cross-

disciplinary communication. 

 Identify the search tools needed to effectively access existing data sets 

and model outputs. 

 Develop a cyber template(s) to enable social and natural scientists, 

managers and legal scholars to share information in mutually 
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understandable formats (e.g., utilization of NOAA big data for 

decision making). 

 Define the needs for more effective data and model output 

visualization.  

  

7. Anticipating Changes in Coastal Processes and Threats  

 

 Predictive models will necessarily underpin our ability to plan future adaptive 

strategies on decadal time scales. Event-scale forecasts will likely continue to depend on 

operational agencies such as the National Weather Service (NWS) and the National 

Hurricane Center (NHC) but improved tools from the appropriate collaboration-

facilitating consortium can help to make those forecasts more reliable and relevant. At 

both long-range and event time scales, we should expect advances to be made 

progressively not only in modeling specific phenomena such as storm surges and 

demographic shifts but also in linking models and model outputs in ways that highlight 

feedbacks and non-linear connections. These will be complex systems models and the 

modelers will very likely need access to HPC resources. For all of the modeling 

activities, agreed upon sets of standards for the models as well as the observational data 

used to assess the models will be essential.  

 

 7.1 Physical and Ecologic Models 
 The ongoing Coastal and Ocean Modeling Testbed (COMT) has involved a fairly 

comprehensive suite of numerical models for predicting natural coastal phenomena, 

particularly coastal inundation by storm surge and waves as well as estuarine and shelf 

water quality and dissolved oxygen dynamics. The models tested, compared and refined 

during the first three years of COMT (Luettich et al. 2013) are summarized as follows: 

a. Inundation, Surge and Waves- ADCIRC (Dietrich et al. 2010; Luettich et al., 

1992); FVCOM (Chen et al., 2003); SELFE (Zhang and Baptista, 2008); 

SLOSH (Jelesnianski, Chen, and Shaffer 1992); SWAN (Booij, Ris, and 
Holthuijsen, 1999; Zijlema, 2010); WWMII (Roland et al., 2009); 

WAVEWATCHIII (Tolman, 2009). 

b. Shelf Hypoxia- ROMS (Fennel et al., 2011; Haidvogel et al., 2008); FVCOM 

(Chen, Liu, and Beardsley, 2003); NCOM (Ko et al., 2008); HYCOM (Prasad 

and Hogan, 2007); NGOM-POM (Lanerole and Patchen, 2011; Oey, 1996). 

c. Estuarine Hypoxia-Chesapeake Bay ROMS (Scully, 2013; Xu et al., 2012); 

Chesapeake Bay Operational Forecast System (Lanerolle, Patchen, and 

Aikman, 2011); EFDC (Hong and Shen, 2012); CH3D-ICM (Cerco, Kim, and 

Noel, 2010); 1-term DO model (Scully, 2013). 

  

 Inundation, surge and wave models were compared with each other and with 

observational data from Hurricanes Rita and Ike in the Northern Gulf of Mexico during 

years 1-3 of COMT. Two-dimensional and three-dimensional models using both 

structured and unstructured grids were involved. Three unstructured grid models of 

coupled surge-wave effects were: ADCIRC+SWAN, FVCOM+SWAN, and 

SELFE+WWM. These models were run using identical unstructured grids with 424,485 

nodes. Although those models yielded better results than the operational, long-standing 
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two-dimensional SLOSH model used by NOAA for several decades, SLOSH continues 

to be the operational model of choice because it is well accepted, fast and does not 

require HPC resources.  An important lesson to be learned from such results is that as we 

go forward with future collaborations between academia and governmental agencies, we 

must remain sensitive to the ever-present trade off between accuracy, computational 

efficiency and familiarity. 

 

 Notably, Broward County Florida is also using ADCIRC and Delft 3-D together 

with a suite of models for predicting ground water and hydrologic responses to sea level 

variations, “King tides” and rainfall events. Ground water models are particularly 

concerned with salt-water intrusion into the aquifer.  Research focused on the coupling of 

human and natural system processes will help refine our ability to understand how human 

systems affect the natural system and natural systems affect human systems.  This is a 

prominent example of a situation where a diverse team of academic scientists can work 

closely with local government to solve real problems and enhance understanding of the 

complexity of coastal socio/ecological/physical systems.  

 

 7.2 Societal Considerations 

 Existing models of inundation, water quality, coastal erosion, ecosystem 

dynamics and related impacts will be needed in future assessments of resilience. 

However, while physical and ecosystem modelers are predicting natural threats, the 

affected communities are also changing. The ways their economies and cultural behaviors 

evolve changes the community’s risk. Changes in the age of the population and in its 

cultural heritage also change the risk factors.  One challenge to social scientists: help 

predict what socio-economic changes are coming in the next 10-20 years.  As in the case 

of the natural sciences, the past few years have seen significant advances in 

understanding and modeling societal factors and changes that can impact community 

resilience (e.g., Gunderson and Holling, 2002).  Van Zandt et al. (2012) consider 

neighborhood resilience in relation to social vulnerability and housing. Norris et al. 

(2008) offer a treatise on the psychology of community resilience as it impacts disaster 

readiness.  More recently, Cutter, Ash, and Emrich (2014) and Cutter, Burton and Emrich 

(2010) have evolved the concept of Baseline Resilience Indicators for Communities 

(BRIC) as empirical metrics for gaging the resilience of communities to disasters. Berkes 

et al. (2003) offer in depth analyses of social-ecological complexity in assessing 

community resilience. Guillard-Gonçalves et al., (2014) have developed a Social 

Vulnerability Index” (SoVI) which can be readily applied to most regionally specific 

communities.  

  

 7.3 Interdisciplinary Intersections  

 Beyond obvious organizational and governance challenges, effective 

interdisciplinary integration of models will require the convergence of an extensive and 

uncommonly diverse suite of scientific, demographic, economic, legal and cultural data 

and information.  As the program matures, the challenges of “big data” and its 

management will necessitate the provision of sophisticated cyber analytics and services 

to ensure that the information is accessible and understandable to users with a wide range 

of backgrounds. Answers to questions such as: “How will the risk of flooding during an 
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extreme event be exacerbated in various sea level rise scenarios?” will depend on where 

people with different vulnerabilities are living in the future. Recent advances in detailed 

modeling of “street-level” flooding in well-mapped neighborhoods (Blumberg et al., 

2015) can contribute to answering such questions as can similar advances in modeling the 

timing of storm surges in relation to tides (Georgas et al., 2014). Intersecting predictions 

of inundation with patterns of social vulnerability such as that indexed by the “Social 

Vulnerability Index” (SoVI; e.g., Guillard-Gonçalves et al., 2014) would represent a 

valuable contribution to disaster planning. 

 

 The International Geosphere Biosphere Programme (IGBP) has articulated the 

importance of intersecting social and natural sciences and has evolved the “Anthropocene” 

paradigm that considers human and natural earth processes to be interdependent and to 

function and change as a complex system  (Bondre and Gaffney, 2015). The idea of 

complexity is now widely accepted by modelers of dynamic systems involving the non-

linear interdependence of multiple processes (Bar-Yam, 1997; Liu et al., 2007). The 

coupling of societal, biogeophysical, biogeochemical, and ecological processes 

constitutes a prominent example of complexity. Over the next few years, advances in our 

ability to anticipate, plan for and mitigate the impacts of adverse changes in coastal 

processes and coastal communities will increasingly require not only continued 

refinements of natural science and social science models but also on development and 

application of complex systems models (e.g., Janssen, 1998; Nicolis and Prigogine, 1989) 

that account for a hierarchy of interconnections and non-linear feedbacks. To enable such 

transformational advances, the scientific community should begin by assessing: 

 Existing knowledge of human-environment complex system dynamics; 

 The ability to model socio-ecological interactions at different scales; 

 Relevance of existing models and analyses to policies and management 

practices; 

 The potential impact of legal structures on community resilience to hazards; 

 Development and assessment of  “social vulnerability indices;” 

 The applicability of complexity theories to analyzing interconnectedness of 

socio-ecological systems and addressing coastal sustainability. 

 

8. A Cyber Infrastructure to Support a Virtual Modeling Community 

 

 Several researchers (e.g., Plag et al., 2015) have pointed out the need for 

international collaboration and virtual research environments to enable knowledge 

creation in response to societal needs. Cloud computing technologies facilitate the 

creation of cyber-supported “playing fields” where it is easier to work with others.  An 

earlier attempt at establishing such an infrastructure is described by Bogden et al., (2007).  

The infrastructure should link societal benefits to essential variables. There are numerous 

cyber tools and toolkits available to help make linkages, provide visualization, archive 

and retrieve data etc. However, the community needs a tech support network and training 

in how to utilize the tools. The envisioned coastal resilience consortium (or 

“collaboratorium”) should help with these technical services. A cyber-infrastructure 

supported by an independent consortium can provide the playing field for developing, 

validating, communicating, and generally advancing the interdisciplinary collaboration 
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between natural and social sciences for modeling risk and resilience in complex coastal 

systems. The supporting cyber services should include HPC resources for running 

models, a platform for accessing, sharing and archiving data and model outputs as well as 

for accessing and sharing open-source model codes, and a catalogue of and access to 

analysis routines and visualization tools.   
 
 An independent community-shared consortium can help the community to take a 

first step in addressing questions of risk and resilience by facilitating the creation of an 

open-source base of empirical and numerical model data along with a rigorous set of data 

standards and an extensible cyber infrastructure for managing, and accessing the 

necessary information.  This will support a combination of discipline-specific and cross-

disciplinary numerical modeling, coupling the outputs from physical process models with 

ecosystem and socioeconomic models, and statistical analyses of socioeconomic factors 

that might ultimately determine the resilience of communities to expected stressors.  In 

addition, modeling protocols could be extended to enable the potential impacts (positive 

or negative) of engineering approaches or management decisions to be assessed.   Over 

the course of the next few years, it is possible to accommodate most or all of the cyber 

needs.  

 

 As an example, the ongoing COMT, has had significant success in evolving an 

appropriate supporting cyber infrastructure. The primary purpose of the COMT cyber 

infrastructure has been to develop a unified search, access, analysis and visualization 

environment that allows scientists to run and compare different models with each other 

and with observational data (Luettich et al., 2013). Among other things, this has involved 

maintaining a web site, a data archive, providing high-performance computing resources, 

and custom code to perform tasks such as skill assessment and format conversions.  

Researchers have shared algorithms through COMT that are used to reconstruct and 

understand natural hazards such as tropical cyclones and, of course, resulting phenomena 

such as flooding into discrete systems that can be solved by distributed computer 

systems.  This type of community modeling complements observational and descriptive 

research.   

 

9. “Big Data” Modeling of Linked Societal and Cyber Systems  

 

 The emergence of a data intensive society commonly referred to as “big data” 

presents an unparalleled opportunity for significant advances in the understanding and 

modeling of human behavior (Mayer-Schönberger & Cukier, 2013). This new paradigm 

has been famously referred to as the “new oil” that drives the information age society. 

Digital data produced by human activity is exploding at a rate that is estimated to be 

doubling about every two years (EMC Digital Universe, 2014).  Social scientists 

suddenly have available data that was unimaginable a few years ago about human 

communications, mobility, commerce, health, and other important areas of societal life.  

Importantly, this data holds the promise of identifying and developing highly useful 

models of individual and community behaviors that will be able to interface more 

effectively with the modeling efforts from the physical and biological sciences (Bloem, 

Van Doorn, Duivestein, Van Manen, & Van Ommeren, 2012; Kallus, 2014). In order to 
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exploit the potential of this trans-disciplinary approach, social scientists need to form 

teams with data scientists in order to advance their modeling to a level that will make it 

possible to effectively link societal with physical and ecological models.  Alex Pentland 

(2014) at MIT’s Human Dynamics Laboratory is among a growing list of scholars who 

are suggesting such a paradigmatic change that is based on the recognition that a data 

intensive society represents a new reality and that it can be studied in new and powerful 

ways because of the availability of massive amounts of information about the human 

existence.  He lays out a landscape for the study of data driven cities and data driven 

societies that have a new capacity to adapt to emerging challenges including those from 

the physical and biological realms. 

 

 In order to fully appreciate the profound implications that “big data” has for the 

adaptability of human organizations and communities it is useful to consider its 

dimensions and complexities.  While “big data” is often viewed primarily by its massive 

volume, it can also be considered in terms of other dimensions.  For example, “big data” 

is of many different types: traditional, governmental and business datasets, social media, 

data from sensors, digitized commerce data, GIS data, satellite imagery, genetic 

sequencing, monitoring of environmental conditions, mobile data, individually collected 

images, such as smart phone photos, and other sources.  “Big data” is also driving the 

development of technologies to collect, store, and process information.  The rapid growth 

of high performance computing and especially cloud computing, the advent of wearables, 

the internet of us (IoUs) and the internet of things (IoT) are all examples of technologies 

and devices that result in the growth of data.  Finally, the time dimension is also 

important. We are now able to access and utilize data in real or near real time and the 

demand and utility of real time data greatly expands our capacity for data impact.  Much 

of online commerce is operating in real time frameworks.  There also seems to be a 

strong human desire for anticipating the future and the combination of “big data” with 

predictive algorithms is pushing the utilization of data to predict future individual and 

collective behavior.  

 

 There is gathering evidence that data intensity may encourage and enable organic 

and self- organizing responses to extreme situations such as natural disasters and/or 

terrorists events.  In the realm of collective action facing these type of critical events, big 

data has the potential to enhance rapid response and resilience (Colander & Kupers, 

2014), and also have expanded the frontier for multidisciplinary research. Recently, it is 

common to find cases of social media usage to promote community-based response 

during natural disasters such as hurricane Sandy, Japanese Tsunami, or Pakistan 

earthquake, social media became an important aspect of disaster response and community 

resilience (Keim & Noji, 2011; Kongthon, Haruechaiyasak, Pailai, & Kongyoung, 2012; 

Landwehr & Carley, 2014). In similar fashion, “big data” enterprises such as Uber are 

emerging as important self-organizing forces during emergency situations.  Uber was 

utilized during the recent Paris terrorist incident to evacuate individuals from the site of 

the terrorism.  An even more adaptive example is the recent Indian based “Uber-like” 

service Ola that responded to the flooding in Bangladesh by including boats to evacuate 

people during the Bangladesh flooding. 
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  Big data has been utilized by multidisciplinary teams in the recovery process in 

areas affected by natural disasters. A glimpse of this was quite evident in a recent study 

of several million geo-located tweets collected during Hurricane Sandy (Edwards, 

Mohanty, & Fitzpatrick, 2015).  The researchers found that twitter was being used to 

meet needs often provided by first responders and relief agencies.  Twitter users were 

asking for assistance, reporting on others that needed assistance, offering their help 

including equipment and supplies, and organizing groups of individuals to meet and 

assist storm victims.  This was all done from the bottom up without any assistance from 

governmental or other entities (Colander & Kupers, 2014).  The researchers were also 

able to capture thousands of photographs of the storm taken by smart phones that were 

useful in assessing the extent of damage and flooding at specific locations throughout the 

impacted area.  In addition, individuals were reporting on power outages, thereby 

informing their neighbors of the power situation at different locations and providing the 

researchers with a near real-time understanding of the geographic spread of power 

outages.   

      
 10. Broward County Florida: A Microcosm of Coastal Complexity  

 

 Whereas the first workshop focused on universal issues and questions of 

resilience and collaboration, the second workshop in Broward County was more of an 

experiment in how to intersect a diverse academic community with local government 

managers and problem solvers. One of the main reasons for using Broward County as a 

venue was to explore solutions to immediate and emerging threats in a specific 

geographic area with a diverse population and subject to frequent inundation.  Broward 

County covers an area of 3,186 square kilometers and includes the city of Ft. Lauderdale 

and several other smaller cities. It is bounded on the east by the Atlantic Ocean and on 

the west by the Everglades. The present (2015) population of nearly 2 million people is 

expected to increase 18% over the next 20 years and consists of 44% white/non-Hispanic, 

25% Hispanic, 26% African-American and 5% other races. The most vulnerable residents 

include 260,000 people over 65 years old and 202,000 living below the poverty line. 

Statistics were obtained from the Broward County Planning Services Division (2002; 

201 ;   http://bit.ly/1SeRcBE).  

 

 Broward County is especially relevant because of observed rates of sea level 

change coupled with frequent street flooding, salt water intrusion into the aquifer and 

episodic shortages of fresh water to homes. The mean range of the mixed, mainly diurnal 

tide for Broward County is 0.62 m and increases to approximately 1.2 m during “King 

Tides” (NOAA, 2015). The maximum heights of these King Tides are increasing 

annually because of superimposition of other non-tidal effects that contribute to the 

coastal flooding (e.g., Ezer, 2013).  Recurring flooding of streets, historic sites, and 

homes occurs during perigean high tides. Such flooding was prominently active during 

the workshop on October 26, 2015. For Florida as a whole, the rise in mean sea level over 

the past century has been around 21 cm (Maul, 2015), but this rate is likely accelerating 

due the steric effects of warming seas. The US Army Corps of Engineers (2011, 2013) 

estimates that by 2030 sea level will be roughly 18 cm higher than at present while Boon 

and Mitchell (2015) conclude that by 2050 mean sea level in South Florida could be on 



 17 

the order of 50 cm higher. These estimates do not take account of any unexpected glacial 

melting or calving in Antarctica or Greenland.  Regional contributions to non-tidal water 

levels include long-term changes in global mean sea level, atmospheric-pressure and 

wind induced changes, fluctuations in offshore Ekman transport caused by fluctuations in 

Gulf Stream transport intensity (Ezer, 2013; Ezer and Atkinson, 2014), storm surge, 

wave-induced set up, and land sinking. Annual fluctuations in coastal sea level of up to 

one meter are attributed to aperiodic variations in Gulf Stream transport with higher sea 

levels corresponding to times of Gulf Stream slackening. 

 

 A particularly complex aspect of the challenges facing Broward County pertains 

to the interplay of surface hydrology, ground water hydrology, fluctuations in sea levels 

at different time scales and spatial and temporal variations in demand for fresh water by 

county residents. In the years around 1900 the Everglades was roughly twice as large as 

today and provided a much greater volume of fresh water to recharge the Biscayne 

Aquifer that immediately underlies Broward County. Reductions in that recharge have 

allowed the penetration of seawater into the aquifer. Today, the South Florida Water 

Management District maintains a complex engineered system involving levees, drainage 

canals, containment ponds and pumping stations.  This system serves the multiple 

functions of mitigating flooding during heavy rainfall events, ensuring adequate 

distribution of freshwater to local communities and limiting seawater intrusion into the 

aquifer. Future modeling efforts on the part of collaborating teams of university and 

government modelers, decision makers and planners, should involve linking surface 

hydrologic, ground water, ocean inundation and sociologic models to optimize and 

prioritize solutions to this complex suite of problems. This would exemplify one of the 

roles that the envisioned consortium could play.  

   

11. Challenges for the Future 

 

 Beyond the considerations just summarized, some overarching challenges must be 

overcome before the envisioned consortium can mature. There are also other factors that 

should guide the long-term direction of the program.  No simple answers exist for most of 

these concerns but the program needs to encourage solutions to unfold as the program 

evolves. Meeting these challenges will require setting aside many traditional, but very 

constraining, ways of thinking and solving complex problems. But the communal 

benefits of doing this justify abandoning the comfort of “business as usual” and 

reductionist approaches of the past. 

 

  11.1 The Challenges of Trans-disciplinary Collaboration 

 Participants at the SURA coastal resilience workshop in October 2014, agreed 

with the urgency of adopting far-reaching interdisciplinary approaches to modeling future 

risks and resilience of socio-eco-techno-logical systems, as articulated by the IGBP and 

the Stockholm Resilience Centre. The complex interdependence among human 

communities, coastal ecosystems, climate and ocean physics is accepted as axiomatic by 

the vast majority of the scientific community. However, many universities are not up to 

the task of true interdisciplinary research. Part of the problem relates to the accreditation 

system and its discipline-specific standards. This impedes interdisciplinary work at many 
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traditional universities.  Multi-discipline papers with many authors are not really valued 

and young untenured faculty who engage in too much interdisciplinary work may be 

denied tenure. The discipline-based distribution of faculty on campuses is also a 

discouraging factor: social scientists and natural scientists may be based on opposite sides 

of large campuses or even on different campuses of multi campus state universities.  The 

world is likely to be very different in 2050, as will the missions of universities that 

remain relevant. 

 

 11.2 Outreach to Policy Makers, Politicians and the Public 

 As Hurricane Katrina bore down on New Orleans in 2005, numerical models, 

were predicting high storm surges and waves for Coastal Louisiana (via the now 

discontinued OpenIOOS website and NOAA’s NWS; e.g. Bogden et al., 2007). Data 

buoys and integrated observing systems such as Wave-Current-Surge Information System 

for Coastal Louisiana in the Gulf of Mexico verified wave predictions. Those predictions 

were readily accessible in real time on the Internet in the form of color-coded animations 

and numerical data, but they were largely ignored by local, State and Federal leaders as 

well as by many emergency managers. In 2016, long-range scientific projections of 

climate-related phenomena and their impacts continue to be widely denied by many 

politicians and decision makers. Fortunately, in 2012, short-term wind, storm surge and 

wave forecasts were heeded as Super Storm Sandy moved up the U.S. East Coast and 

approached New York Bight and this undoubtedly saved many lives. But substantial 

improvements in communication and trust are still needed. 

 
 The scientific community at large must nurture the enlightenment of politicians 

and decision makers. This may be the largest challenge of all, but the scientific 

community must work diligently to persuade emergency managers and leaders at all 

governmental levels to trust science-based model predictions. This will require careful 

and well articulated, non-jargonized communication over a prolonged period combined 

with clear and repeated demonstrations that numerical models really work and are not a 

hoax. So the question is: How do we do that?  One obvious way is to get to know the 

leaders and gain their trust through regular one on one visits, open forums involving bi-

directional exchanges but not “lectures,” and clear demonstrations of mutual respect 

among academics, local, state and federal government officials and politicians. And, of 

course, patience and persistence are essential.   The envisioned “Coastal Resilience 

Consortium” should be able to greatly broaden the scope of outreach to officials by 

developing an accessible and extensible web site and cyber tool kits that serve clear 

graphical and textual explanations of long-and short-term model results. 

 

 A critical, and commonly overlooked, facet of outreach to enhance resilience 

involves educating the general public, particularly lower income and undereducated 

communities, about hazards and how to respond to them. A few U.S. universities already 

offer programs focused on helping communities become more disaster resilient through 

practical education. A prominent example is the Center for Hazards Assessment, 

Response and Technology (CHART), an applied social science hazards center at the 

University of New Orleans (http://scholarworks.uno.edu/chart). Among other activities 

CHART staff provide risk literacy as a component of more general adult literacy 
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programs. A network of collaborating university-based coastal resilience researchers and 

educators could provide web-accessible resources to other programs that share the goals 

of UNO’s CHART. 

 

 11.3 Identifying and Engaging Potential Beneficiaries  

 The envisioned community effort can directly contribute to NOAA’s stated goal 

of Resilient Coastal Communities and Economies, but will require a thoughtful, and 

possibly lengthy, process involving an uncommonly diverse assemblage of social and 

natural scientists, engineers, legal scholars, health scientists, stakeholders and decision 

makers. For the ongoing COMT program, the target beneficiaries have been operational 

agencies (particularly NOAA) and the main product has been the transfer of 

methodologies and models from research to operations. For the proposed consortium, the 

potential stakeholders may include the State Sea Grant Programs, re-insurers, county 

governments, state governments, health workers, emergency managers, resource 

managers, FEMA, NGOs such as Nature Conservancy and the Sierra Club, educators, the 

general public- and operational agencies (particularly NOAA and USACE).  Although 

the specific needs of each of these stakeholders differ, the universal nature of the most 

urgent questions should enable the facilitating consortium to focus firstly on problems 

that are important to a broad range of beneficiaries. In some cases, however, it may be 

necessary to concentrate on a subset of stakeholders who have a narrow definition of 

“acceptable benefits” that communities actually value.  Risk reduction is one such 

benefit. County and local government agencies charged with planning for future threats 

may be among those most willing to engage with the consortium. 

 

12. The Next Steps 

 

 Over the years ahead, pursuits of this initiative and its evolution to become the 

mature, comprehensive program envisioned in this report will begin with some relatively 

straightforward and inexpensive steps followed eventually by the creation of an 

extensible cyber infrastructure and formal establishment of a distributed network of 

scientists, managers and stakeholders. We should strive to eventually build a 

comprehensive geospatial network and structure that not only supports collaboration 

among modelers and managers but also provides a “Google-style” connective platform 

for the general public in the event of a coastal disaster by utilizing social media to enable 

community-based response during natural disasters. The immediate, and modest, plans 

for the next three years include the following: 

 

 12.1 Future Workshops   
 Future workshops are planned through 2018. Collaborative teams will be 

multidisciplinary and have access to cyber tools to develop courses of action to address 

specific scenarios. During the scenarios, participants will apply research, communication 

and advocacy skills to improve governmental approaches to coastal resilience. Scenario-

based analyses allow participants to estimate the impact of different factors, with the 

intent of getting an objective sense of resilience. Follow-up workshops are expected to 

focus on the following coastal regions: 
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 Middle Atlantic Bight and Chesapeake Bay – Scenarios include environmental 

conditions represented by low-lying barrier islands, low-lying coastal plains, estuaries, 

and cuspate forelands fronted by wide, low gradient continental shelf and subject to rising 

sea levels, tropical and extra-tropical storms, high storm surges and frequent beach 

erosion. Water quality is also an important issue to be characterized. Among the societal 

factors for scenario development are coastal urban and rural communities with a mix of 

affluent and low-income populations. A diverse economic base includes military bases, 

tourism, commercial fisheries, aquaculture, agriculture, universities, technology and 

business. 

 Northern Gulf of Mexico and Mississippi Delta –Representative environmental 

conditions for scenario development include a major deltaic coast which experiences a 

diurnal microtidal regime and relatively low wave energy except during episodic storms 

and hurricanes.  Environmental characterizations includes natural deltaic processes of 

growth and retreat as a result of sediment deposition from the Mississippi river change 

rapidly in response to hurricanes, sea level rise, and reduction of new river sediment 

supply by levees and river mouth jetties.  Sea level rise and engineering works combine 

to reduce the Mississippi river’s flow into certain areas impacting the natural land-

building power of the river.  Increased salt-water intrusion from the Gulf of Mexico into 

freshwater wetlands has negative impacts on freshwater ecosystems. Societal factors for 

scenario development include coastal urban and rural communities with a mix of affluent 

and low-income populations. Louisiana’s economy relies heavily on tourism, recreational 

activities, and the oil and gas industry. A diverse economic base includes military 

installations, tourism, commercial fisheries, aquaculture, agriculture, universities, 

shipping and ports, technology and business. 

 South Atlantic Bight – Natural environmental conditions for a science-based 

scenario include low-lying barrier islands, low-lying coastal plains, estuaries, and tidal 

marshlands subject to a mesotidal regime, rising sea levels, tropical and extra-tropical 

storms, high storm surges and frequent beach erosion. Water quality is also an important 

issue. Coastal urban and rural communities are represented by a mix of affluent and low-

income populations. The scenario distinguishes among a variety of regional 

socioeconomic characteristics where a strong economy relies heavily on tourism, 

recreational activities, and commercial fishing.  A diverse economic base includes 

military training facilities and ports, tourism, commercial fisheries, aquaculture, 

agriculture, universities, shipping and commercial ports, technology and business. 

 

 The future workshops are intended to help make the regional coastal communities 

safer and more resilient to hazards. The workshops will bring together organizations from 

all sectors and foster partnerships for community collaboration. The scenario-driven 

workshops enable natural and social scientists to collaborate across disciplinary 

“boundaries”, share best practices, and adopt resilience measurements that are 

appropriate to their specific coastal realms. The major goals and objectives are to: 

 Reduce the impact of coastal hazards to coastal communities, ecosystems and 

economies. 

 Improve the regional capacity to identify, plan, and respond to natural hazards. 

 Develop better communication, awareness, and understanding of coastal hazards. 
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 Foster community resilience through outreach, education and innovative product 

development. 

 Allow stakeholders to develop a common understanding and best practices to 

identify resilience metrics appropriate for their region. 

 

 12.2  Creating an Advisory Committee 

 Over the long term, the coastal research community should be encouraged (and 

supported) to work together with agencies toward the development of plans or actions 

that improve preparedness, and promote recovery and/or adaptation within multiple 

coastal jurisdictions or locations throughout the United States coastal zones. As one 

forthcoming example of such preparedness plans, The National Institute of Standards and 

Technology (NIST) has recently published a Community Resilience Planning Guide for 

Buildings and Infrastructure Systems (National Institute of Standards and Technology, 

2015). To ensure that the proposed consortium is well-informed, rigorous and objective, a 

Science and Requirements Advisory Committee (SRAC), composed of well-established 

and non-conflicted experts, should be established to provide advisory opinions, analyses, 

data standards and collaborative integration of coastal resilience science and technology 

in different regions of the U.S. The SRAC can lead the evolution of a research plan 

focused on how science could enable the United States' to anticipate and address the 

consequences of changing climates, environments, sea levels and coastal demographics 

and on how separate research teams can strengthen each other through independently-

facilitated collaboration. The trans-disciplinary nature of the SRAC can benefit three 

important issues common to existing resilience programs: (1) prioritizing funding; (2) 

highlighting new approaches to stimulating science, technology, and innovation; and (3) 

communication of data, model output and methodologies among diverse disciplines and 

between academia and operational agencies. This approach also highlights how federal, 

state, and local governments can draw on university resources to prepare, resist, recover, 

and adapt to natural and man-made disturbances.   

 

 12.3 Defining Metrics for Success 

 An initial task of the SRAC should be to work with the scientific community and 

stakeholders to define an appropriate and realistic set of performance metrics by which to 

gage the progress and success of the Consortium and of the workshop series. These 

metrics, and the associated sets of data and model standards, will be critical to the 

acceptance of future model predictions by government officials and the general public 

and will guide the progressive evolution of the Consortium. An important initial metric 

may be to quantify the degree to which a consensus is achieved among participating 

scientists and stakeholders with regard to strategies for moving forward on the decadal 

time scale and how best to integrate across disciplines. Measures of effective 

collaboration may include the production of interdisciplinary, multi-authored white 

papers, publications, proposals and disaster response plans. The extent to which the 

collaborative products are adopted by, or influence, operational agencies is another 

important metric as are improvements in the ability of the scientific community to gain 

the trust of politicians and officials. As the Consortium matures and supports innovative 

modeling and testbed activities, skill assessments of new integrative complexity and 

social science models may be added to the list of metrics. 
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13. Conclusions 

 

 Impermanence and dynamic change have always characterized coastal 

environments and efforts by engineers, managers or officials to enforce stasis are 

destined to fail over the long term. Adaptive strategies that consider all pertinent facets, 

socioeconomic and natural, of the coastal system are preferable but involve far more non-

linear complexity and modeling challenges than do static technological solutions that are 

intended to “resist” rather than adapt. Developing such adaptive strategies is not a trivial 

exercise and must involve an interdisciplinary group of individuals who are able to 

embrace the greater value of community advances over personal ego. Climate change, sea 

level rise, ecosystem evolution, hydrologic changes in river discharge to the coasts and 

changes in the intensity and duration of storms and attendant coastal erosion are likely to 

accelerate the alteration of natural coastal realms over the decades ahead. In concert with 

these natural changes, the socioeconomic environment that underpins human coastal 

communities is also impermanent and dynamic. The interdependence of natural and 

socioeconomic processes in the Anthropocene (Certini and Scalenghe, 2015) is already 

giving rise to suites of highly complex and non-linear feedbacks, many of which are 

counter intuitive. In some cases, the outcomes of these feedbacks may be beneficial, but, 

for the most part, they are detrimental and, sometimes, have the potential for catastrophe 

as we saw in New Orleans when hurricane Katrina made landfall.  

 

 Improved abilities to predict, communicate, mitigate and respond to the outcomes 

of future coastal processes, gradual as well as abrupt, on both long-term and event time 

scales are essential to the welfare of coastal communities and to the sustainability of 

coastal ecosystems and built infrastructures.  As noted in Section 9,  “big data” provides 

humans, organizations, and communities substantial new capacities for innovation and 

change (McKinsey Global Institute, 2011; National Research Council, 2013). We may 

assume that this new “big data” capacity will be a major force in human adaptation to 

changing climate and other environmental conditions.  Research that understands this 

process and links it to our knowledge and understanding of physical and biological 

phenomena is an exciting and potentially fruitful area of research. The distributed virtual 

world of “big data” and HPC resources offers the potential for the scientific community 

to make giant strides in developing these essential abilities. But only as a community that 

embraces the extended brain trust of all relevant disciplines and draws from many 

universities, federal agencies, NGOs and industry. Ideally, this distributed 

“Collaboratorium” should not be confined to U.S. institutions but may include 

international talent willing to participate in an “open source” and “open access” activity 

governed by a rigorous set of data and coding standards and rules of engagement. No 

single agency, university or organization will ever have the breadth or depth of capability 

that exists within the globally distributed scientific community at large.  Similarly, no 

single agency, foundation or industry should be expected to fund the consortium. Instead, 

a competitive, multi-agency model, such as the National Ocean Partnership Program 

(NOPP) should be explored initially but with the hope of growing the effort over time 

through foundation and private sector support. The future must involve the broadest and 

most extensive collaboration possible. The consortium envisioned here should enable, 
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encourage and guide the needed collaboration. And, like the resilient adaptive solutions it 

is intended to facilitate, the program that emerges must be adaptive, fluid and non-rigid. 
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