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Abstract 
We derive an expression for the input complex impedance of a Sallen-Key second-order low-pass filter of unity gain as 

a function of the natural frequency ,o quality factor Q  and the ratio of the resistors of the filter. From this expression, 

it is shown that the filter behaves like a single capacitor for low frequencies and as a single resistor at high frequencies. 

Furthermore, the minimum input impedance magnitude is found without using calculus. We discovered that the 

minimum input impedance magnitude is inversely proportional to Q  and can be substantially less than its high-

frequency value.  Approximations to the minimum input impedance and the frequency at which it occurs are also 

provided. Additionally, PSpice simulations are presented which verify the theoretical derivations.  

 
Keywords: Sallen-Key low-pass filter, Minimum without calculus, Input impedance. 

 

Resumen 
Derivamos una expresión para la impedancia de entrada compleja de un filtro Sallen-Key de paso bajo de segundo 

orden en función de la frecuencia natural ,o  el factor de calidad Q , y el cociente de los resistores del filtro. 

Comenzando con esta expresión, mostramos que el filtro se comporta como un sólo capacitor para frecuencias bajas y 

como un sólo resistor para altas frecuencias. Es más, encontramos la magnitud de la impedancia mínima sin usar 

cálculo. Descubrimos que la magnitud de la impedancia mínima es inversamente proporcional a Q  y puede ser 

significativamente menor que a frecuencias altas. Proveemos aproximaciones para la impedancia de entrada mínima y 

para la frecuencia a la que ocurre. Presentamos también simulaciones en PSpice que verifican las derivaciones 

teoréticas. 

 

Palabras Clave: Filtro Sallen-Key de paso bajo, Mínimo sin cálculo, Impedancia de entrada. 

 

PACS: 84.30.Vn, 02.90.+p, 01.40.Ha and 01.40.Fk.                                                                               ISSN 1870-9095 

 

 

 

I. INTRODUCTION  
 

Fig. 1 shows the circuit diagram of an active second-order 

unity-gain Sallen-Key low-pass filter, which is widely used 

in electronics. One important parameter of such a filter is its 

transfer function, which has been widely studied and which 

relates its output voltage to its input voltage. Another 

important parameter is its input impedance. Unfortunately, 

very little has been written about this input impedance, 

even though designers need to know its minimum value to 

ensure that the filter does not load down the source or a 

previous stage. Inspection of Fig. 1 would suggest to the 

naive designer that the minimum input impedance is 1R  as 

it is in series with the rest of the circuit. Unfortunately, this 

is not the case: the input impedance can be very much 

lower than 1R
 

as we show below. Indeed, the authors’ 

recent design of a second-order unity-gain Sallen-Key filter 

failed to achieve its design criteria because the filter did not 

interface well with its source, as we initially used the naive 

assumption given above. This experience prompted us to 

fully investigate the input impedance and its minimum 

value. Furthermore, we find the minimum value of the input 

impedance without using calculus, which should be of 

benefit to the student who has not yet had the opportunity to 

study math at this level. In this paper, we report our 

theoretical findings, which are also verified by PSpice 

simulations. (PSpice is a popular electrical and electronic 

circuits simulation software package that is widely used by 

electrical engineers and some physicists. The latest demo 

version can be freely obtained from [1]). 
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FIGURE 1. Circuit diagram of second-order unity-gain Sallen-

Key low-pass filter. 

 

 
II. TRANSFER FUNCTION FOR THE SALLEN-

KEY LPF OF FIGURE 1 
 

In this section, the transfer function for the circuit of Fig. 1 

will be given, so that the key parameters such as natural 

frequency o  
and quality factor Q  can be defined. Indeed, 

it is straightforward to show, as demonstrated in the 

Appendix, that the transfer function is given by Eq. (9) of 

[2] (remembering that the gain of the op-amp is unity as it 

is in a voltage follower configuration), i.e.,  

  

 2
1 2 1 2 1 2 2

1
,

1

out

in

V

V s R R C C R R C s


  
           (1) 

 

where ,s i with 1i    and   (rad/sec) is the angular 

frequency of the applied sine-wave.  

 (The reader should be aware that Fig. 5 of [2] differs 

from our Fig. 1: C1 and C2 are interchanged. This means 

that Eq. (9) of [2] will also require that C1 and C2 be 

interchanged in Eq. (1). Many authors, e.g., [3], also use 

our Fig. 1, rather than Fig. 5 of [2]). 

 The denominator of Eq. (1) can be written as 

 

 1 2 22
1 2 1 2 1 2 1 2

1 2 1 2
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1
1,
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       (2) 

 

where the natural frequency is 1 2 1 21/o R R C C 
 
and ,Q  

the quality factor of the filter, is 
 

1 2 1 2

1 2 2

.
R R C C

R R C
  

 

 

III. INPUT IMPEDANCE FOR THE SALLEN-

KEY LPF OF FIGURE 1 
 

As we show in the Appendix, the normalized complex input 

impedance 1( ) /Z s R  for the circuit of Fig. 1 is given by  
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where 1

21 2

1

1
0 1.

1

R
k

RR R

R

   




  

Note that the input impedance depends upon the ratio of the 

resistors, 2 1/r R R : in order to have low sensitivity filters, 

this ratio should be unity (i.e.,  
1

1 1/ 2k r


   ) as 

pointed out in [4]. Nevertheless, for various reasons, 

designers might not heed to this choice of k :hence, we will 

give results for general k  values. 

    Interestingly, Eq. (3) becomes unity for large frequencies 

  ,
 
i.e., the input impedance looks simply as 1,R

and the phase is 0 .o
 On the other hand, for low frequencies 

(as 
 
approaches zero), Eq. (3) becomes, approximately, 

1 ,
o

k s

Q 

 
 
   

i.e., the input impedance looks like a capacitor 

whose value is given by 1
1

.e
o

k
C

QR
  Using the 

expressions for ,o  Q  and k just given, it is clear that 

1 2.eC C  Hence, for low frequencies, the magnitude of the 

input impedance is just the reactance of this capacitor, i.e., 

1

1 2

1 1
,o

e

QR

C C k



  
   and the phase approaches 90o . 

 

A. Magnitude of the Input Impedance 

 

From Eq. (3), the magnitude of the normalized impedance 

becomes 
2

21

/ 1( )
,

p ip QZ s

R k
p ip

Q

  


 

                      (4) 

where / op  
 
is the normalized frequency. 
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 Actually, it will be more convenient to work with the 

magnitude squared of the normalized impedance. Hence, 

Eq. (4) becomes 
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              (5) 

 

Furthermore, Eq. (5) can be rewritten as  

 
2 2

2
1

( ) 1
,

Z s x Ax

R x Bx

 



                      (6) 

where 
2 2, 2 1/x p A Q   

 
and 

2

.
k

B
Q

 
  
 

  

 

Taking the square root of Eq. (6) allows us to make a plot 

of the normalized impedance in dB (i.e., 20log Z(s) / R
1( )

 
as a function of the normalized frequency, as shown in Fig. 

2 for 0.5k   and various Q  values. Also shown are 

straight-line plots of the reactance of the equivalent 

capacitor 1 2 ,eC C  confirming our earlier statement that 

the magnitude of the input impedance for low frequencies is 

simply the reactance of 2.C  Clearly, Fig. 2 also verifies the 

high-frequency value of the input impedance noted earlier. 

 
FIGURE 2. Magnitude of the normalized input impedance (in dB) 

as a function of the normalized frequency for 0.5.k   The 

straight-lines are plots of the reactance (in dB) of 1 2.eC C   

 

 

B. Phase of the Input Impedance 

 

The phase of the input impedance is easily found from Eq. 

(3) to be  

 
1 1

2
tan 90 tan .

1

op Qp

kQ p
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           (7) 

 For 1,p   the phase becomes 1tan
Q

k
   
   

   

and for 

1,p 
 
Eq. (7) can be written as 

         

 
1 1

2
90 tan tan .

1

o p Qp

kQ p
  

 
         

 

          (8) 

Note from Eq. (7) that for 
 
and from Eq. 

(8) that as ,  0.  
 
These facts are also confirmed 

by a plot of Eq. (7) and Eq. (8) shown in Fig. 3.  

 
FIGURE 3. Phase of input impedance (deg) as a function of the 

normalized frequency for k = 0.5.   

 

 

Clearly, Fig. 3 verifies the low-frequency and high-

frequency values of the phase of the complex input 

impedance noted earlier. 

 

 

IV. FINDING THE MINIMUM INPUT 

IMPEDANCE MAGNITUDE WITHOUT 

CALCULUS 

 
Now that the normalized input impedance has been found, 

it can be shown how its minimum value can be found 

without calculus.  

  Using long division, Eq. (6) can be written as a proper 

rational function, i.e., 
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Clearly, for Eq. (9) to be a minimum, 
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 Let   1.y A B x  
 
Hence,   

 

 
 

   

2

2
.

2 1

y A B
Zm

y B A B y B A B




       

     (10) 

 

Fortunately, it is straightforward to find the maximum value 

of Eq. (10) without using calculus. Indeed, the method we 

used in a previous paper [5] will be utilized here as well. To 

begin, first divide the numerator and denominator of Eq. 

(10) by y  to get  
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Clearly, Eq. (11) is maximized when 

 
2

1 B A B
y

y
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 
 
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is minimized, i.e., made to be zero, 

so that  1 .y B A B    

 Recall that 
1y

x
A B




  
and  

22 / .ox p     Hence, 

the frequency at which Zm is a maximum and Eq. (9) is a 

minimum is given by 
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A B
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                    (12) 

 

Notice that when  1 ,y B A B   the maximum value 

of Eq. (11) becomes 
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Hence, from Eq. (9), the minimum value of the input 

impedance becomes 
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 Recall that 
22 1/A Q   and 

2
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k

B
Q
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Hence, the 

normalized frequency at which the minimum input 

impedance occurs is, from Eq. (12),  
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and, from Eq. (14), the normalized minimum input 

impedance magnitude is 
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  (16) 

 

To illustrate how the normalized minimum frequency 

depends upon the quality factor of the filter, Eq. (15) is 

plotted in Fig. 4 for three values of .k  

 
FIGURE 4. Normalized minimum frequency as a function of the 

quality factor of the filter. 
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input impedance magnitude. For 
21

,
2

k
Q


  the input 

impedance decreases monotonically from infinity to 1R  as 

the frequency increases from zero to infinity. This is 

illustrated in Fig. 5 for 0.5.k   

 Notice from Fig. 5 that if there is a minimum, then there 

is also a frequency at which the normalized impedance is 

unity. From Eq. (6), this frequency is determined to be 
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FIGURE 5. Normalized impedance as a function of the 

normalized frequency, for 0.5,k   for Q
 
values on either side of  

 2

min 1 / 2 3 / 8 0.6124.Q k   
 
In order for a minimum 

impedance to exist, .minQ Q  

 

 

Note also, from Eqs. (17) and (15), that unity
 
behaves as a 

lower bound on min .  

 

A. Approximations to the Minimum Frequency 
 

Using the first line of Eq. (15) and the fact that 

 
  21

1 1
2

r r r
z rz z


   

 
for small z [6], it is 

straightforward to show that for large ,Q  

 min

2

1
1 ,
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


                                  (18)  

or more accurately, as obtained with Matlab’s Taylor 

function operating on Eq. (15): 

 
2

min

2 4

1 8 3
1 .

4 32o

k

Q Q





 
                           (19) 

 

Also, for large  4 2 2 2 2
,  2 1 .Q Q k Q k Q     Hence, Eq. 

(15) becomes 
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By the way, comparing Eq. (17) with Eq. (20) reveals that 

 

min 2 .unity                        (21) 

 

A plot of the percentage error, 100 (1-Aproximate 

Value/True Value), of Eq. (18) is shown in Fig. 6, where it 

is clearly seen that the percentage error depends upon the 

value of ,k for small values of ;Q however, as Q increases 

this dependence becomes smaller and smaller.  

 
FIGURE 6. Percentage error of Eq. (18) approximation to the 

minimum frequency for various values of .k  

 

 
FIGURE 7. Percentage error of Eq. (19) approximation to the 

minimum frequency for various values of .k  
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On the other hand, the percentage error of Eq. (19), shown 

in Fig. 7, depends upon k only in a minor way. 

Surprisingly, Eq. (18) is more accurate than Eq. (19) for 

some Q and k values, e.g., .7Q 
 
and 0.75.k   

 Nonetheless, Eq. (19) is clearly more accurate than Eq. 

(18) for Q
 

greater than 1.25 approximately, for all k

values studied here.  

 Furthermore, recall that Eq. (20) was derived assuming 

large ;Q  hence, it is somewhat surprising that the 

percentage error is quite good for all Q values, as shown in 

Fig. 8.  

 

 
FIGURE 8. Percentage error of Eq. (20) approximation to the 

minimum frequency for various values of .k  

 

 

B. Approximations to the Minimum Input Impedance 

 

Working with the second line of Eq. (16), it is 

straightforward to obtain the following approximation to 

the normalized minimum input impedance magnitude for 

large :Q   

 

1

min
( ) ,

R
Z s

Q
                               (22) 

 

or more accurately (as found with Matlab software): 

 
2

1

min 2

4 1
( ) 1 .

8

R k
Z s

Q Q

 
   

 
                   (23) 

 

A plot of the percentage error of Eq. (22) is shown in Fig. 9, 

where it is clearly seen that the percentage error depends 

upon the value of .k  However, as Q
 

increases the 

percentage error decreases for all values of .k  

 
FIGURE 9. Percentage error of Eq. (22) approximation to the 

minimum magnitude of the impedance for various values of .k  

 

 

Plotting the percentage error of Eq. (23) in Fig. 10 shows 

that it provides a more accurate estimation for the minimum 

input impedance than Eq. (22) does. 

 
FIGURE 10. Percentage error of Eq. (23) approximation to the 

minimum magnitude of the impedance for various values of .k  

 

 

From Fig. 2, it is apparent that the minimum input 

impedance occurs approximately when 1,p   for large Q

values. Hence, substituting 1p   into Eq. (5) gives 

 

    1min 2 2

1
( ) .Z s R

Q k



                       (24) 

 

The percentage error for Eq. (24), shown in Fig. 11, is 

clearly much better than that of Eq. (22) and is more easily 

derived than Eq. (23).  
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FIGURE 11. Percentage error of Eq. (24) approximation to the 

minimum magnitude of the impedance for various values of .k  

 
 

 

Surprisingly, by trial and error, we found that Eq. (24) can 

be improved significantly by simply adding a constant in its 

denominator to get 

 

1min 2 2

1
( ) .

.34
Z s R

Q k


 
           (25) 

 

As shown in Fig. 12, the percentage of error for the 

approximation of Eq. (25) is less than 6.2%  for all Q

values. The constant was chosen so that the positive and 

negative peak percentage errors are approximately the same 

magnitude for 0.25 0.75.k   If k  values outside this 

range are used, the constant will have to be modified for 

best results.  

 

 
FIGURE 12. Percentage error of Eq. (25) approximation to the 

minimum magnitude of the impedance for various values of .k  

 

 

 

V. PSPICE SIMULATIONS 
 

In order to verify the theoretical derivations, we performed 

PSpice simulations of the filter in Fig. 1. For all the 

simulations, we set 1000o 
 
rad/s or 159.15of 

 
Hz, 

1,Q   0.5k   and 1 1000 .R    

 

A. Design of the Filter 

 

To simulate the filter, we must select values for the 

capacitors.  

 Recall that  2 1 11 /R rR k R k    and that

1 2 1 21/o R R C C  ; hence, 2 1000 ,R  
 
and 

 

1 1 2

1
.

1
o

k
R C C

k

 
 

 
 

                             (26) 

 

Also, recall that 
 

1 2 1 2

1 2 2

;
R R C C

Q
R R C




 

therefore,  

 

 
1 1 2

1

2
1 1 2

1

1 .
1

k
R C C

k C
Q k k

Ck
R R C

k

 
 
 

  
   

   
  

        (27) 

 

Solving Eq. (26) and Eq. (27) simultaneously gives 

1 2C F  and 2 0.5 .C F   

 Furthermore, recall that 1
1

.e
o

k
C

QR


 

Using Eq. (26) 

and Eq. (27), it is straightforward to show that 1 2 ,eC C as 

we claimed earlier.  

 

B. Verification of the Design of the Filter 

 

The first thing we want to do with our simulations is to 

verify that our design has met our specifications for o  and 

.Q
 
To do this, we find the maximum gain of the filter, 

 
max

T  , by plotting the magnitude response of the 

simulated filter, as shown in Fig. 13.  From this graph, it is 

clear that the maximum gain is 1.2496 dB or 1.1547. 

 However, from Eq. (12) of [5], 

  2

max
/ 1 1/ (4 ) 1.1547;T Q Q     hence, the 

simulated  
2 4 21.1547 1.1547 1.1547

1.0000.
2

Q
 

   

 Also, from Fig. 13, the frequency at which the 

maximum gain occurs is found to be max 2 112.695 
 

708.08
 
rad/s. Hence, the simulated natural frequency is  
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 
1

2
max max/ 1 2 2 1001.4o Q  



   
 

rad/s. (See 

Eq. (11) of [5]). 

 Clearly, the parameters of the simulation match the 

theoretical design quite well. 

 

C. Verification of the Magnitude of the Input Impedance 

 

PSpice measures the magnitude of the input impedance by 

dividing inV
 

by 1( ),I R
 

the current through 1.R  

Furthermore, the PSpice command 1( / ( ))indB V I R
 

measures  20log ,Z
 

i.e., the magnitude of the input 

impedance in dB, a plot of which is shown in Fig. 14. Also 

shown in this figure is the straight-line plot of the reactance 

of the equivalent capacitor for low-frequencies, which is 
6

2

1 10
20log 20log .

C f 

  
     

   

 

 Clearly, the simulated plot coincides with the reactance 

straight-line at low frequencies, as expected. Furthermore, 

the simulated plot shows that the magnitude of the input 

impedance approaches 60 dB or 1000 , as expected for 

high-frequencies.  

 Additionally, from Eq. (17), the theoretical value of 

0.8 894.427unity o   rad/s or 142.35 Hz. From Fig. 

14, PSpice simulates this as 142.21 Hz or 893.51 rad/s. 

 

 

 

                   
FIGURE 13. Simulated magnitude response (dB) of the filter. 

 

                   
FIGURE 14. Simulated magnitude (dB) of the input impedance of the filter. The straight-line is the reactance of the equivalent capacitor at low-

frequencies, i.e., the reactance of 2.C  

            Frequency 

10Hz 30Hz 100Hz 300Hz 1.0KHz 
DB(V(Vin)/I(R1)) DB(1e6/pi/ Frequency) 

50 

55 

60 

65 

70 

75 

80 

85 

90 

95 

(142.20700,60.00815) (208.73132,58.19879) 

            Frequency 

10Hz 30Hz 100Hz 300Hz 1.0KHz 
DB(V(Vout)) 

-32 

-28 

-24 

-20 

-16 

-12 

-8 

-4 

0 

4 
(112.695,1.2496) 
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 Also, from Fig. 14, min 208.731f   Hz or

min 1311.50 
 
rad/s. The theoretical value for this is given 

by Eq. (15), i.e., 
1 21 / 4

2 1000 1310.16
5


 rad/s or 

given approximately by Eq. (20), i.e., 8/5 1264.91

rad/s.  

 Furthermore, from Fig. 14, the minimum magnitude of 

the input impedance is 58.1988 dB or 812.718 .  On the 

other hand, Eq. (16) gives the theoretical value for this as  

 

 

2
5

254
1000 1 1000 1

37 8 211 5 1 5
2 2 1

4 4 4 4

 
 
 

  
   

     
   

  

812.776 .   Alternatively, Eq. (25) gives the approximate 

value of 
1

1000
1.34 0.25

793.052 .   

 

 

 

 

 

      
 

FIGURE 15. Simulated phase response (deg) of the input complex impedance of the filter. 

 

 

 
D. Verification of the Phase of the Input Impedance 
 

The PSpice command 1( / ( ))inP V I R
 
measures the phase of 

the input impedance in degrees, a plot of which is shown in 

Fig. 15. As can be seen, the phase becomes 90o at low-

frequencies and 0o
at high frequencies, as expected. 

Furthermore, recall (from Eq. (7) with p =1)  that the 

theoretical phase at the natural frequency

(1000/(2 ) 159.155 
 

Hz) is given by  1tan /Q k  
 

1tan (2) 63.4349 .o   
 

On the other hand, the PSpice 

simulation gives a phase shift of -63.4826
o 

at a frequency of 

159.046 Hz and a phase shift of -63.2836
o
 at a frequency of 

159.392 Hz. Therefore, interpolating between these two 

points gives a PSpice simulated value of −63.4199
o
 at the 

natural frequency.
 
 

 

E. Summary of Theoretical-PSpice Comparison 

 

 

For convenience, the theoretical and PSpice results given 

above are summarized in Table I. As can be seen, there is 

excellent agreement between the two. 
 

 

TABLE I. Summary Theoretical-PSpice comparison. 

   

Item Theoretical Value PSpice Value 

o  1000 rad/s 1001.4 rad/s 

Q 1 1.000 

unity  894.427 rad/s 893.532 rad/s 

min  1310.16 rad/s 1311.16 rad/s 

Phase at o  -63.4349o -63.4199o 

Min. Input 

Impedance 
812.776   812.718 .  

 

            Frequency 

1.0Hz 3.0Hz 10Hz 30Hz 100Hz 300Hz 1.0KHz 3.0KHz 10KHz 
P(V(Vin)/I(R1)) 

-120d 

-100d 

-80d 

-60d 

-40d 

-20d 

-0d 

(159.39189,-63.28358) 

(159.04628,-63.48259) 
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VI. CONCLUSIONS 
 

We have derived an expression for the input complex 

impedance for the second-order unity-gain Sallen-Key low-

pass filter, which is given in Eq. (3). From this expression, 

we have shown that the input complex impedance is 1R  for 

high-frequencies, whereas for low-frequencies it is simply 

 
1

2 .i C


 
Furthermore, we have found the minimum of the 

magnitude of the input impedance without calculus, as given 

in Eq. (16) and its approximations in Eq. (22)-Eq. (25). We 

have also discovered an expression for min , as given in Eq. 

(15) and its approximations in Eq. (18)-Eq. (20). Finally, we 

provided PSpice simulations which verified the theoretical 

results. 

    In future work, we intend to study the input impedance for 

arbitrary gain Sallen-Key low-pass and high-pass filters.   
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APPENDIX 
 

In this appendix, we derive Eqs. (1) and (3).  

 Let ( )inI s  be the current through the source 1V  1( )I s  be 

the current through 1C , from top to bottom, and 2 ( )I s  be 

the current through 2R  from left to right. Looking at the 

node marked with voltage 2V (s)  
 
we obtain: 

 

 2 2 2
2

2 2
2

2

V (s) sC V (s)
I (s)= = ,

1 sC R +1
R +

sC

                  (A1) 

 

and 

 

 2
1 2 1

1

( ) ( )
( ) ( ) ( ) .

1
out

out

V s V s
I s V s V s sC

sC


         (A2) 

 
Noticing that the voltage across 2C  is ( )outV s

 
because the 

input to a voltage follower is equal to its output voltage, and 

using voltage division, we obtain: 

 

 2

2

2

2

1

( ) ( ),
1out

sC
V s V s

R
sC





                      (A3) 

or 

 

  2 2 2 outV (s)= sC R +1 V (s).                    (A4) 

 

Using (A4) in (A1) and (A2) gives, respectively: 

 

 
2 2
( ) ( ),

out
I s sC V s                            (A5) 

 

and 

 

 

 2 2
1

1

2
1 2 2

1 ( ) ( )
( )

1

( ).

out out

out

sC R V s V s
I s

sC

s C C R V s

 




            (A6) 

 

Using KCL, 

 

 
 

in 1 2

1 22 out

I (s) = I (s)+ I (s)

        = sC sC R +1 V .
                  (A7) 

 

Writing the loop equation for the leftmost loop using KVL, 

we obtain: 

 

 in in 1 2 2

2

1
V (s)= I (s)R + I (s) R + .

sC

 
 
 

             (A8) 

 

Finally, using (A7) and (A5) in (A8), we get the expression 

relating the output voltage to the input voltage: 

 

 

 

2 1 2 1 2 2

2

2 1 1 2 2 2

1
( ) 1 ( ) ( )

( ) 1 1 .

in out out

out

V s sC sC R R V s sC R V s
sC

V s sC R sC R sC R

   

   

 
 
 

  

   (A9) 
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Eq. (A9) can clearly be written as the transfer function 

shown in Eq. (1). 

 In order to find the input complex impedance, we simply 

divide the input voltage by the input current, using (A9) and 

(A7), to get: 

 
 

 

 

2

1 2 1 2 2 1 2

2 1 2

2

1 2 1 2 2 1 2

2

1 2 2 2

( )
( )

( )

( ) 1

1 ( )

1
.

in

in

out

out

V s
Z s

I s

V s s R R C C sC R R

sC sC R V s

s R R C C sC R R

s C C R sC



    




  




       (A10) 

 

Finally, dividing by 
1R  we obtain the normalized complex 

impedance of Eq. (3). 
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