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Acoustical Boundary Location through Texture Analysis
of Multibeam Bathymetric Sonar Data

ABSTRACT

Texture analysis is performed on multibeam
sonar signal returns discriminated angularly
by beamforming. A collection of fourteen tex-
ture features are computed via co-occurrence
matrices and data reduction is then performed
using a principal components transformation.
Acoustical boundaries (boundaries between
regions with homogeneous acoustioal proper-
ties) are evident from the features. Results
indicate that seafloor bottom characteristics
can be extracted from these texture features.

SEAFLOOR IMAGERY FROM
MULTIBEAM SONAR DATA

he impetus for generating seafloor acoustic

imagery from multibeam sonar data is that .
more detailed information is available from the
returning pulse than is discernible through sim-
ple computation of a set of bottom depths (de
Moustier, 1986). This is due to the additional
information contained in the signal intensity and
to the typically high hydrophone sampling rates
which provide finer across-track resolutiorn than
is possible through bearmforming. The resulting
imagery displays the response of the seafloor to
the acoustic pulse, which is a combination of the
local topography as well as the bottom composi-
tion. Past efforts have attempted to provide
methods for segmenting acoustic imagery into
geoacoustic provinces via various image texture
processing methods to allow automated classifi-
cation of the seafloor (Reed IV and Hussong,
1989; Bourgeois and Walker, 1991). However,
the process of generating imagery from the raw
beamformed data filters at a low-pass rate and
distorts the image, and full resolution acoustic
imagery is too noisy for successful fine-scale
segmentation. In this work analysis is performed
on the retuming energy, as a function of time,
that has been angularly discriminated by beam-
forming. This approach allows analysis on data
that have not suffered the additional generation
of noise and introduction of smoothing that
occurs when forming an image.

The data used are from the Navy's

Sonar Array Survey System (SASS), and com-
plete navigational information is not available;
we do not have information as to the actual ori-
entation of the sonar array from ping to ping.
Since the data are not fully georeferenced, cach
ping’s swath is processed individually. The
results of the texture feature extraction for each
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ping is then appended, line by line, to form a
multiband texture feature set. Parameters used
for georeferencing can be used later to find
accurate correspondences between seafloor
location and bottom characteristics as comput-
ed from the texture analysis.

MULTIBEAM DATA PROCESSING

System Hardware

Multibeam bathymetric sonar systems
such as SASS, the SeaBeam series, and the
EM100 are capable of collecting data which,
after proper processing, may be used to accu-
rately map the bottom of the ocean. It is possible
to obtain both bathymetry and sidescan-like
images ‘rom the original raw data. Information
about texture of the ocean’s bottom may also be
generated directly from this data.

For the SASS, the sonar energy from
the projector array located on the hull of the sur-
vey ship impinges on the bottom of the ocean as
a narrow beam perpendicular to the ship’s head-
ing. The echo from this swath is received by an
array of hydrophones mounted athwartships
(perpendicular to the projector) under the sur-
vey vessel. The beam width depends on the
angle of arrival to the bottom and increases with
incrr 'sing angle. The unsteered beam width is
0.7°; at 45° it is 0.9°.

Data Processing

Processing starts by reading the raw
data recorded by SASS during a survey mission.
A detailed description of the original data is
given by Bourgeois (1991) and one of the com-
plete processing is given by Kaminsky et al.
(1992). The beamforming process is done next
by performing delay, filtering, and summing
operations through the use of Fourier trans-
forms. This yields an array of return intensi-
ties—an intensity for cach beamformer bin and
each sample time—allowing the retuming ener-
£y to be resolved into angular bins. Each of the
K beamformer bins & correspond to a particular
steering angle &,.

The beamformed data then give us a
time history of the energy received from the A
look directions. This data must be further pro-
cessed to determine the time corresponding to
the center of the beam, 1. The peak of the enve-
lope corresponds to the intersection of the maxi-
mum response axis (MRA) of the steered beam




and the area ensonified. Once the time ¢, has
been determined by one of many methods avail-
able (Kaminsky et al., 1993) the bathymetry of
the area surveyed can be obtained. That is, exact
points (z,y,2) that determine the source’s posi-
tion are obtained from each (¢,, ¢.) pair.

The intensity data produced by the beam-
former may also be used to produce sidescan-
like images that show the backscatter intensity.
One method of forming image pixels is by sum-
ming the total energy returned at a given sample
time. In this way, one port and one starboard
pixel are generated for each sampling instant.
Due to the beamforming process, the image
quality can be improved by discarding the
returning energy in directions not associated
with the dominant pulse for the given sample
time using a spatial/temporal window.

In this paper the energy returned along
each beam is examined as a function of time.
Specifically, the amplitude variations in the
returning pulse for each steered beam are ana-
lyzed. These amplitude variations are descriptive
of the roughness of the seafloor in the region

" illuminated by the acoustic pulse. If this region
is small enough so that the sediment properties
may be considered homogeneous then the
amplitude variations, or signal ‘texture, are
descriptive primarily of the physical roughness
of the seafloor.

Variation in local slope is a large
source of ambiguity in acoustic imagery: drasti-
cally different backscatter intensities are
obtained depending upon the acoustic incident
angle, making automated analysis of this form of
data extremely difficult. The rest of this paper is
devoted to texture feature extraction, manipula-
tion, and its interpretations.

TEXTURE ANALYSIS

Texture is a property of pixel values and their
spatial relationships. It is insufficient to
describe pixel values without considering their
spatial relationships to other pixel values. To
quantitatively analyze textures, we must use
measures that are not only a function of individ-
ual pixel values but also multiple pixel values
and their relative spatial positioning.

There has been a lot of work done on
the analysis of textures. The methods usually fall
into certain categories, for example, co-occur-
rence statistics (Haralick et al., 1973); power
spectrum methods (Lendaris and Stanley, 1970),
use of Markov models (Cross and Jain, 1983;
Manjunath and Chellappa, 1991); structural anal-
ysis (Haralick, 1979); and fractal analysis
(Pentland, 1984).

Conners and Harlow cempare different
texture algorithms and conclude that the co-
occurrence methods (which they refer to as the

Spatial Gray Level Dependence Method) is the
most powerful method because of its ability to
discriminate among a set of textures (Conners
and Harlow, 1980). Mastin et al. used co-occur-
rence methods for SAR (synthetic aperture
radar) imagery of water (Mastin et al., 1985).
Consequently, we decided to use an analysis
based on co-occurrence statistics because of the
performance of the method and also the nature
of the data acquisition (proper georeferencing
information was not available). The data avail-
able to the authors do not allow georeferencing
or even referencing between pings. Therefore,
we only analyze the texture along the one-
dimensional path of each ping.

Co-Occurrence Statistics

A histogram is an estimate of the first
order statistics of an image (or a region). The
normalized histogram is computed as

P(i):A-l(NQ,i=0,l,...2°—l 1)

--whore N(?) is the number of pixels in the image

(region) with intensity value i, N is the total
number of pixels in the image (region), and b is
the number of bits per pixel in the image.

The analog to the histogram for second
order statistics is the co-occurrence matrix. The
co-occurrence matrix is also computed in a
“census” fashion by counting pairs of occur-
rences of pixels values given a certain spatial
relationship for the pair. The normalized co-
occurrence statistics are computed as

P(i,is d, 6 )%'—12),!’1 -5l =D, 6, )

for pairs of pixels at locations x, and x, having
values #, and i,, respectively. The distance me2-
sure D(d,0) states that the spatial relationship of
the pair of pixels is that they are located at a dis-
tance magnitude d apart and at an angle 8 (or
8+7) from each other.

A complete set of co-occurrence statis-
tics would cover all values of d and 6 over a
meaningful range. The values for 8 would vary
between 0 and w using some number of discrete
steps. The values for d would range from / up to
some distance where the correlation between
pixels is still significant.

In practice, several co-occurrence
matrices a. e computed fer several pairs of (d,9).
Figure 1 shows several computed co-occurrence
matrices for a simple example 2 bit/pixel image.

One of the disadvantages of the method
of co-occurrence matrices is the potentially large
amount of data computed for different pairs of
d and 6. Only four of the many possible co-
occurrence matrices are computed in Figure 1.
However, co-occurrence statistics are powerful
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FIGURE 1. Sample co-occurrence calcuiations (Haralick and Shapiro, 1992).
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in that they are invariant to monotonic intensity
transformations (Haralick and Shapiro, 1992).

Texture Features

Texture features can then be computed
from the co-occurrence matrices. Ballard and
Brown (1982) suggest a set of five features, but a
more comprehensive set of 14 features is given
by Haralick et al. (1973). It is often not clear how
these features relate to observable phenomena.
However, they have been demonstrated to be
useful in classifying images. Using the co-occur-
rence statistics, these 14 features are computed
for each beamformer bin. In this application,
only a co-occurrence matrix for d=1 and 0=0 is
computed. We keep 8=0 since the pings are not
georeferenced. The distance d is kept small
since we expect the primitives to be relatively
small. However, we can still compute more sets
of these features for various values of d, but d=1
for initial results.

We wil] follow the notation used in
Haralick et al. (1973):

¢ p(i, j) is the (i, 7)™ entry in the normalized
co-occurrence matrix,

e p (i) is the i% entry in the marginal-probabili-
ty matrix obtained by summing the rows of
co-occurrence matrix,

26 » MTS Journal « Vol 27, No. 1

#(0,2)  #(0,3)
#(1,2)  #(1,3)
#(2,2)  #(2,3)
#(3,2) #(3.3)

N, is the number of gray levels in the image,

p,,(j)=2ﬁvzl p @,

N,
p,.y(l») E 1 2L
2,3, 2N,
p,y(k) E 12 ’.117(117

k= Iz-ﬂ_Ol Ng—l.

Cp@Dk=iy=

* ¢ is 2 small constant to prevent taking the
log of zero.
The features computed are as follows:
1. angular second moment: a measure of
homogeneity of the image,

£e3 iw(z N 3)

=1 =1
2. contrast: a measure of the contrast or
the amount of loml variations present,

So= }; n? IEE Sj p, DL )

1=l =i
3. correlation: a measure of intensity linear
dependencies in the image,
g2 T 0D ka, )

G,0,

where by e O and g, are the means
and standard deviations of p, and p,.




10.

11.

12.

. sum of squares variance: a measure of

the variation in the image,
NI

%
Jo=2, 2 G- )@, ). ®).

i=1 j=1

. inverse difference moment:

N, Ny 1 ]
55 =§§ TeG g PG M

. Sum average:

2Ny

Jo =2, 1P, (D). ®)

1=2

. sum variance:

2N,
= %(i JD2.,(3)- ®
. sum entropy:
2Ny
Jo= —§ Pz (DN0G (D, 0] + €]. 10)
. entropy:

il j=1

Ny Ny
S=-2 3 G, ) loglp(E,5) +€).  (11)

difference variahce:
Ji = variance of p__. (12)

difference entropy:

fu= —ti;p,.y(i) log(p,.,() +€l.  (13)

information measure of correlation 1:
for this and the next feature, HX and
HY are the entropies of p, and p,,
respectively and

Ny Ny
HXY=-3 3 p(i, j) log(p(i, j)+ €),

i=1j=1

N Ny
HXY1=-> > p(i,j) loglp,(Dp,(j) + €}, and

i=1 J=}

Ny N,
HXY2=-5 S p()p,() log(p,(Dp, () + €.

b =1
_ HYX - HYX1
Ji2 = max{AX, AV (14)

13. information measure of correlation 2:

14

f13 = (1 - exp(~2.0(HXY 2 - HX1)])2.(15)

. maximum correlation coefficient:

Jis = (Second largest eigenvalue of @)%, (16)

where,

oo L IEAD
UL J) = I’("-J',P\J- Y
Ek p,(H)p, (k)

These features are computed for each
ping along all 256 bins. Actual processing leaves
off approximately 30 bins on each end since
these represent “near horizontal” directions that
produce no useful return information and are
mostly noise. Also bins with “dropouts” have
been discarded. We know that some pings are
missing and that the ones we have are not neces-
sarily parallel to each other. Due to lack of posi-
tioning data, we display pings (rows in the
image) as if they were parallel to one another.
Thus, the features computed for each ping are
appended to one another forming 14 “texture
feature images” that form the multidimensional

feature set.
4.

DATA REDUCTION

t is difficult to interpret large data sets.

Therefore, if we can reduce the amount of out-
put to the essentially “useful part” of the data,
the reduction will make it easier to manipulate
the data and interpret it.

Data reduction is also performed on
the muiivean Latiyincuicdata-itself - S
(Kaminsky et al., 1992). However, in this case we
are concermned with the reduction cof the output
from the texture analysis.

We have a fourteen-dimensional fea-
ture set that was produced from the texture
analysis. We cannot just indiscriminately throw
away some of the texture features since we do
not know which ones will be useful in the char-
acterization of the seafloor bottom. In order to
pull out only the most useful features, we need
to find the principal components of the feature
space. This will give us a feature space where
each of the new “features” are decorrelated.
Also, the importance of each new feature basi-
cally corresponds to the relative size of its asso-
ciated eigenvalue. So, we now also have a way
of distinguishing those components with the
greatest information content.

Principal Components

The feature space is currently fourteen-
dimensional. We can reduce the dimensionality
of the feature space significantly by first trans-
forming the data into a new feature space (still
of the same dimensionality). This new feature
space should be one in which the data between
the features is uncorrelated and also one in
which most of the “useful information” is con-
tained in just a few of those features. The
Hotelling transform (the discrete formulation of
the Karhunen-Loeve transform) is used in this
case to achieve the principal components of the
feature space. Unlike many other transfunna-
timns, the Hotelling Gansfuinn is data dependent,

The Hotelling transform is computed as
follows (Gonzalez and Woods, 1992): Consider a

MTS Journal » Vol 27, No. 1 * 27




pix

multispectral itnage consisting of 7 bands of size
N x N. We form the column vector

x=lrz,...z,) Qa7

for each pixel in the image. Therefore, each
location in the image is a vector x consisting of
the n pixel values from each of the n bands at
that particular location. There are A2 such vec-
tors in the multispectral image. The mean vector
and covariance matrix of x are defined as

m, = E{x| (18)

and

C, = El(x - m,)(x ~ m,)}. 19}
We can estimate both of these statistics using

o= Ex,‘ 20)

and

15 ,
C, =ﬁzk§ XX, -mm,’. 2D

Once we have calculated these statistics from

the multispectral data, we compute the Hotelling

transform using the equation

y=A(x~m,) (22)

where A is the matrix formed from a sorted set
of eigenvectors of the covariance matrix C,
From this we see two important properties:
1. the transformed data y has zero mean.
That is,

m,=FEly}=0 23)
2. and that the data are decorrelated
Cy=E((y-m)(y-m,)'|=ACA" (29)

which is a diagonal matrix. The matrix A is com-
posed of the eigenvectors of C, and it will thus
diagonalize it. Therefore, the diagonal elements
of the covariance matrix of the transformed data
are nothing more than the set of eigenvalues:

. 1

)\l
A,

h

Assuming that the cigenvalues are sort-
ed from highest to lowest (and the matrix of
eigenvectors is correspondingly sorted), then
the set of principal components as given in (22)
will be sorted so that the first component is the
component with the highest variance, the scc-
ond component is the component with the see-
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ond highest variance, and so on. We can recon-
struct the original set of vectors x using

X=Aly+m, =A'y + m,. (26)

We note that A! = A’ since the matrix
is orthonormal. In any case, suppose we decide
that the principal components associated with
the lowest eigenvalues were of little use. This is
often true since the magnitude of the smaller
eigenvalues are negligible when compared with
the others. Therefore, the images associated
with these lowest eigenvalues have relatively
small variance, that is, there is relatively little
useful information contained in these compo-
nents. We can reduce the dimensionality of the
feature space bty discarding these components.
Suppose we want to keep X of the n compo-
nents, thus reducing our feature space to only K-
dimensional instead of n-dimensional. We can
do this by forming a matrix AK composed of the
K eigenvectors corresponding to the K largest
eigenvalues. We can alter (26) to form approxi-
mations of the original data as

X=A'yy+m. en

The mean square error between x and

K
s =, A, -2 A, 28)
-1 J=1
The Hotelling transform is optimal for
minimizing the quantity e, (Gonzalez and
Woods, 1992).
For the purposes of feature extraction,
we can loosely interpret this method as a2 means
to
L. find a new set of features (the principal
components), such that these features
are decorrelated and have a “measure of -
relative importance” associated with
them, and
2. reduce the dimensionality of the feature
space providing data compression.

RESULTS

F igures 2 through 5 show the first four pnnci-
pal components. The contrast has been
improved so that the characteristics of the fea-
tures are more visible. The horizontal band
across the center of cach feature corresponds to
the nadir and near-nadir (aimost vertical) beam
steering angles. This band represents a uniform
texture which is expected for this region since,
at high incident angles, the acoustic retum is
largely due to specular reflection instead of
backscatter. The returning pulse will typically be
relatively smooth for high angles, and a texture
mcasure of this sort will not reveal interesting




FIGURE 4. Third principal component.
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features until the acoustic return is predomi-
nately non-specular.

It is evident from these features that
there are regicns with similar texture character-
istics. The texture is computed from the

backscatter returns and represents spatial rela-
tionships of the way in which the backscatter
varies along the pings. Thus, regions with sinilar
features represent regions of similar acoustical
backscattering properties. The acoustical

MTS Journal » Vol 27, No. 1 e
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boundaries are the locations of significant tran-
sition between acoustical properties.

Figure 6 (see the outside back cover of
this issue) shows the first principal component
(the one with the most variance) mapped to a
terrain obtained from the bathymetric data. The
center band running through the middle repre-
sents the nadir and near-nadir positions as
explained earlier.

CONCLUSION

he texture analysis provides a description of

the directional backscatter returns using
second order statistical properties and is a use-
ful measure. This is especially usefut even for
non-calibrated systems. Regions of homoge-
neous acoustical properties are brought out
through this texture analysis. Variations in
backscatter are due to changes in bottom types,
surface orientation, and roughness. Due to the
méthod used in this analysis the effect of orien-
tation is reduced and, assuming a small enough
acoustic footprint. the bottom type may be con-

sidered homogeneous-Thus these texturemea-——

sures provide an indication of micro-roughness
(i.e., the small-scale surface roughness that
exists below the resolution of the resolvable
bathymetry).

Clearly, proper georeferencing infor-
mation would improve the results so that a more
accurate classification of the acoustical prd‘per—
ties and the corresponding bottom location
would result. Thus. the texture analysis con-
tributes and plays an important role in seafloor
bottom classification and mapping. In addition,
work is currently being performed at Tulane
University and the Naval Research Laboratory to
classify the acoustical properties using neural
models trained by the texture features.
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