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Abstract

We present some generalized Burgers’ equations for incompressible and isothermal flow of 

viscous non-Newtonian fluids based on the Cross model, the Carreau model, and the 

Power-Law model and some simple assumptions on the flows. We numerically solve the 

traveling wave equations for the Cross model, the Carreau model, the Power-Law model 

by using industrial data. We prove existence and uniqueness of solutions to the traveling 

wave equations of each of the three models. We also provide numerical estimates of the 

shock thickness as well as maximum strain ε11 for each of the fluids.

Key words: Numerical solutions;

Generalized Burgers’ equation;

Non-Newtonian fluid flows;

First-order implicit ODE;

Existence and Uniqueness of Solutions.
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Chapter 1

Introduction

1.1 Newtonian and Non-Newtonian Viscous Fluids

A Newtonian viscous fluid has a linear relation between the shear stress and the strain

rate [37]. A non-Newtonian fluid has a nonlinear wave profile [22]. The viscosity of a

non-Newtonian fluid varies with a different shear rate in the fluid, the container of the

fluid, or even the initial condition of the fluid [22].

Newtonian fluids are ideal cases that are author seldom met in real life [37]. In reality,

most fluids that people study are non-Newtonian fluids like blood, paints, wet mud and

clay, and the majority of colloids [37]. Many non-Newtonian fluids can be modeled with

the following three rheological models: the Cross, the Carreau, and the Power-Law

models.The Cross and Carreau models cover the entire shear rate range[2],[22], and they

can be used for food and beverages [2],[16] and blood flow [2],[29].The Power-Law model

is applicable to many polymers and food fluids[2],[16].

In this thesis, we use industrial data for each type of fluids for numerical simulations.

1.2 The Navier-Stokes Equations

It is well known that the Navier-Stokes equation for viscous planar flows is based on

the following equations[4],[5],[6],[11]


ρ (ut + uux + vuy) = τ11,x + τ12,y − px + f1

ρ (vt + uvx + vvy) = τ21,x + τ22,y − py + f2

ux + vy = 0

(1.1)
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where ~v = (u, v) is the fluid velocity, ρ is the density, τ ,

(
τ11 τ12

τ11 τ22

)
is the stress

tensor, ∇p = (px, py) is the pressure gradient, and ~f = (f1, f2) is the external force.

The strain tensor is ε ,

(
ε11 ε12

ε21 ε22

)
, where ε11 = ux, ε12 = 1

2(uy + vx) = ε21, and

ε22 = vy. For viscous Newtonian fluids, τ = 2µε. For symmetric flow about the x-axis,

the author assumes that u(x, y, t) = u(x, t), then uy = 0, ux + vy = 0 implies that

v = −yux+ constant, ε11 = ux, ε21 = ε12 = 1
2(uy + vx) = 1

2vx = −1
2yuxx, and

ε22 = vy = −ux.

1.3 The Constitutive Equation

In general, the constitutive rheology equation for viscous fluids is given in the following

form

σ̃ = 2η(γ̇)ε̃ (1.2)

where σ̃ is the stress tensor; ε̃ is the strain tensor; and the function η(γ̇), called the

apparent viscosity, is determined experimentally for a variety of important fluids such

as polymer fluids, drilling muds, melted metals, bio-fluids and liquid foods. For planar

flows, the relationship between stress and strain tensors is given in the following form

σ̃ ,

(
τ11 τ12

τ21 τ22

)
= 2η(γ̇)

(
ε11 ε12

ε21 ε22

)
(1.3)

where η is a function of the shear rate γ̇, γ̇ = [2u2
x + 2v2

y + 1
2(uy + vx)2]

1
2 . If 2η = µ

=constant[13], equation (1.1) then reduces toρ (ut + uux) = µuxx − px + f1

ρ (vt + uvx + vvy) = −2µyuxxx − py + f2

(1.4)

In the special case that ν = µ
ρ and the term

(
−px(x,0)

ρ + f1(x,0)
ρ

)
is negligible (as it is

close to zero), the first expression in equation (1.4) is reduced to

ut + uux = νuxx (1.5)

which is the well-known Burgers’ equation for viscous Newtonian fluids[6],[32] that we

regard as the basic assumption in this thesis. It plays a fundamental role in

understanding nonlinear convective behavior of fluids with dissipative viscous behavior.
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The inviscid counterpart of equation (1.5) is

ut + uux = −p2

ρ
+
f

ρ
(1.6)

Equations (1.5) and (1.6) have been studied extensively as a mathematical model to

explain and understand more complicated physical systems like traffic flows, gas

dynamics, and shallow water waves, see, e.g., [8], [9], [12], [14], [15], [18], [19], [20], [21],

[23], and [25] for details.

1.4 Equation of Flow on the x-axis

With the same assumption u(x, y, t) = u(x, t) adopted in deriving (1.3), then

ε11 = ux, ε21 = ε12 = −1
2yuxx, vx = −yuxx.

Substituting these expressions into (1.3), (1.1), and letting y = 0 in the result, then

ρ(ut + uux) = 2(η(γ̇)ux)x − η(γ̇)uxx − px + f1 (1.7)

where |γ̇| = 2|ux| at y = 0.

For the Power-Law fluids, η(γ̇) = µ|γ̇|n−1, we have

ρ(ut + uux) = µ̂(|ux|n−1ux)x − px + f1 (1.8)

where u = u(x, 0, t), µ̂ = µ2(n−1)(2n−1
n ), px = px(x, 0), f1 = f1(x, 0).

The analytic and numerical traveling wave solutions of an equation similar to (1.8)

with the term
(
−px(x,0)

ρ + f1(x,0)
ρ

)
are provided in [5], [6]. Some nonlinear Burgers-type

equations similar to equation (1.8) were studied extensively as a mathematical model

in [1], [3], [17], [32], and [36], where the operator on the right hand side is ν( ux
1+u2x

)x

and ν is a constant.

1.5 Outline of the Thesis

In this thesis, we study the Burgers’ equations of this type derived from the following

three rheological non-Newtonian fluids: the Cross, the Carreau, and the Power Law

flows, and numerically calculates the corresponding traveling wave solutions to these

equations. These three rheology models are widely adopted in chemical engineering,

food processing, and petro-chemical engineering communities , see [16], [23], [24], [26],

[27], [28], [35], and [37] for derivations and applications.

In the following sections, we denote τ11(x, 0, t) by σ and ε11(x, 0, t) = ux(x, 0, t) by ux.

4



The assumption u(x, y, t) = u(x, t) is not realistic in engineering applications and the

resulting Burgers’ equations provide only a partial flow velocity solution u = u(x, 0, t),

i.e., the flow velocity distribution on the x-axis as shown by the velocity plots in

Chapters 3, 4, and 5. For simplicity, we also assume that u(−L, 0, t) = 1 and

u(L, 0, t) = 0, where L ≤ ∞. Understanding the solutions with these simple

assumptions can provide insight into the more complicated flow patterns for these

important fluids. Our numerical solutions and analysis indicate that the traveling wave

solutions for these nonlinear Burgers’ equations are all kink waves with various order

of thickness of transition layers. For illustration and comparison purposes, we have

chosen experimental data from science and engineering literature for certain industrial

fluids as input parameters in the models for numerical evaluations. The resulting

ordinary differential equations (ODEs) in u(ξ), ξ = x− ct from these (PDEs) for

traveling waves are all first order implicit equations, and therefore the MATLAB

built-in ode15i() function is used for the numerical solutions. The use of the ode15i()

function requires the value of uξ(0) which are solved numerically by MATLAB’s

built-in fzero function before the numerical traveling wave solutions are calculated.

The MATLAB codes are provided in the Appendix A. The details of information

about the MATLAB platform that we use for computations are in Appendix B.

Omitting the calculations used to obtain equation (1.8), we simply start with the

Burgers’ equations for each rheology model in the following sections. One of the

purposes of this thesis is to show that there are several Burgers-type equations arising

from studying non-Newtonian fluids which are similar to the one defined by the

operator ν( ux
1+u2x

)x that intrigues mathematicians. In Chapter 2, we derive a general

Burgers’ equation for three non-Newtonian fluids. In Chapters 3, 4, and 5, we solve the

traveling wave equation to the Burgers’ equation with and without the integral term in

equation (3.2), by using an implicit ODE solver named as MATLAB’s built-in ode15i()

function the fluids in the Cross model, the Carreau model, and the Power-Law model

respectively. In Chapter 6, we implement the Peano theorem to prove the existence

and uniqueness of solutions to the 1st-order ODE of the Cross model, the Carreau

model, and the Power-Law model with and without the integral term in equation (3.2).

In Chapter 7, we compute the thickness of transition layers and maximum strain ε11

for three models and compares the differences between the fluids with and without the

integral term in equation (3.2).
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Chapter 2

Derivation of Generalized Burgers’ Equation 
for Some Non-Newtonian Fluids

2.1 Incompressible and Isothermal Viscous Fluids

Here we only consider incompressible, isothermal viscous fluids that satisfy equations

(1.1) and (1.2). In addition, we assume that u(x, y, t) = u(x, t), v(x, 0, t) = 0, and

−px + f1 = 0. Because of these assumptions and the incompressibility equation

ux + vy = 0, we have uy = 0, v = −yux, vx = −yuxx ,

ε21 = ε12 = 1
2(uy + vx) = 1

2vx = −1
2yuxx, and ε22 = vy = −ux. Therefore the shear rate

(1.2) is simplified to

γ̇ =

{
2

[
u2
x + (−ux)2 + 2

(
−1

2
yuxx

)2
]} 1

2

=
(
4u2

x + y2u2
xx

)2
(2.1)

Substituting equation (2.1) into the first equation of (1.1)and applying uy = 0, we get

ρ (ut + uux) = [2η (γ̇)ux]x − [η (γ̇) yuxx]y − px + f1 (2.2)

The right hand side of (2.2) can be rewritten as

2η(γ̇)xux + η(γ̇)uxx − η(γ̇)yyuxx (2.3)

6



Since η(γ̇)x = η′(γ̇)γ̇x = η′(γ̇)
2γ̇ (8uxuxx + 2y2uxxuxxx)

η(γ̇)y = η′(γ̇)γ̇y = η′(γ̇)
γ̇ yu2

xx

(2.4)

Equation (2.2) becomes

ρ (ut + uux) =
η′(γ̇)

γ̇
(8uxuxx + y2uxxuxxx)ux + η(γ̇)uxx −

η′(γ̇)

γ̇
y2u3

xx (2.5)

Letting y = 0, then from (2.2), we have

ρ (ut + uux) = [2η (γ̇)ux]x − η (γ̇)uxx − px (x, 0) + f1 (x, 0) (2.6)

In particular, γ̇ = 2|ux|, and we have

ρ (ut + uux) =
[
4η′(2|ux|)|ux|+ η(2|ux|)

]
uxx − px (x, 0) + f1 (x, 0) (2.7)

where η′(γ̇) = dη(γ̇)
dγ̇ . For the Power-Law rheology model, η(γ̇) = κ̄|γ̇|n−1, (2.7) gives

the Power-Law Burgers’ equation (1.8), which reduces to the classical Burgers’

equation (1.5) when n = 1,κ̄ = κ · 2n−1,and κ = 2µ.

2.2 Three Rheology Models

In the following sections, the Cross model[16]: η(γ̇) = η∞ + η0−η∞
1+κ̄|γ̇|n , the Carreau

model[16]: η(γ̇) = η∞ + (ηo − η∞)
(
1 + κ̄|γ̇|2

)n
2 ,and the Power-Law model[16]:

η(γ̇) = κ̄|γ̇|n−1, are considered and the corresponding traveling wave solutions of (2.6)

for these models are solved numerically.
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Chapter 3

Traveling Wave Solutions of Burgers’ Equation 
based on the Cross Model

3.1 Derivations of Burgers’ Equations for the Cross

Model

In this section, we derive traveling wave solutions to the Burger’s equation for the

Cross model: η(γ̇) = η∞ + η0−η∞
1+κ̄|γ̇|n . By using (2.6), we have

ρ(ut + uux) = (2η̄(ux)ux)x − η̄(ux)uxx

η̄(ux) = η∞ + η0−η∞
1+κ̄|ux|n , κ̄ = (2κ)n

(3.1)

where we read and calculate the value of κ from reference [2] as in section (3.2).

Letting u(x, t) = u(x− ct) = u(ξ) for some constant c. Letting u′(ξ) = du
dξ , then

ux = u′, ut = −cu′. Rewriting equation (3.1) in the traveling wave coordinate ξ to yield

− ρcu′ + ρuu′ = (2η̄(u′)u′)′ − (

∫ u′

0
η̄(s)ds)′ (3.2)

Applying the following boundary conditions to equation (3.1) to getu(−∞) = ul, u
′(−∞) = 0

u(∞) = ur, u
′(∞) = 0

(3.3)
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where ur and ul are positive constants. Integrating equation (3.2) to give

2η̄(u′)u′ −
∫ u′

0
η̄(s)ds = ρ

(
u2

2
− cu

)
+ c1 (3.4)

Applying boundary conditions (3.3) to equation (3.4)c1 = ρulur2

c = ul+ur
2

(3.5)

Substituting equation (3.5) into equation (3.4)

2η̄(u′)u′ −
∫ u′

0
η̄(s)ds = ρ

(
u2

2
− ul + ur

2
u

)
+ ρ

ulur
2

2η̄(u′)u′ −
∫ u′

0
η̄(s)ds =

ρ

2

[
u2 − (ul + ur)u+ ulur

]
2η̄(u′)u′ −

∫ u′

0
η̄(s)ds =

ρ

2
(u− ul) (u− ur) (3.6)

3.2 Fluid 1 of the Cross Model

Applying the Cross model to equation (3.6). It’s a first order implicit ODE that we

consider as F (u′, u, ξ) = 0. Applying the ode15i() function in MATLAB to solve

equation (3.6) numerically. We name fluid 1 of the Cross model as the fluid in the

seventh row under Cross section in Table 1 in [2]. We read the following statistics

ρ = 26, ηo = 7.03, η∞ = 8.46× 10−3, n = 0.969, and κ = 0.195 from [2].

Equation (3.6) then becomes,

u2

2
− 1

2
u =

[
0.000650769 +

0.540118

1 + 0.401552|u′|0.969

]
u′

−
∫ u′

0

(
0.000325385 +

0.270059

1 + 0.401552|s|0.969

)
ds

u2

2
− 1

2
u =

[
0.000325385 +

0.540118

1 + 0.401552|u′|0.969

]
u′

+

∫ u′

0

(
−0.270059

1 + 0.401552|s|0.969

)
ds

(3.7)

We find a numerical solution for fluid 1 with integral term of the Cross model as the

following.
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Applying the following boundary conditionsul = 1

ur = 0

and taking initial condition as

u(0) =
ul + ur

2
=

1 + 0

2
=

1

2
(3.8)

Substituting equation (3.8) into equation (3.7)

−1

8
=

[
0.000325385 +

0.540118

1 + 0.401552|u′(0)|0.969

]
u′(0)

+

∫ u′(0)

0

(
−0.270059

1 + 0.401552|s|0.969

)
ds

(3.9)

Since u′(0) < 0, |u′(0)| = −u′(0),

−1

8
=

{
0.000325385 +

0.540118

1 + 0.401552 [−u′ (0)]0.969

}
u′ (0)

+

∫ u′(0)

0

{
−0.270059

1 + 0.401552(−s)0.969

}
ds

{
0.000325385 +

0.540118

1 + 0.401552 [−u′ (0)]0.969

}
u′ (0)

+

∫ u′(0)

0

{
−0.270059

1 + 0.401552(−s)0.969

}
ds+

1

8
= 0

(3.10)

Assuming x = −u′(0) and giving the following definition

f(x) = −0.000325385x− 0.540118x

1 + 0.401552x0.969

+

∫ −x
0

−0.270059

1 + 0.401552 (−s)0.969ds+
1

8

(3.11)

For the integral term,substituting y = −s, then ds = −dy. When s = 0, y = 0; and

when s = −x, y = x. The integral term becomes
∫ x

0

(
0.270059

1+0.401552y0.969

)
dy. Applying

Taylor series expansion to the definite integral at y = 1 (and confirmed by [33]) to

produce ∫ x

0

(
0.270059

1 + 0.401552y0.969

)
dy = 0.192686(x− 1)− 0.026747 (x− 1)2

+0.00522679 (x− 1)3 − 0.0012171 (x− 1)4 + 0.0032857 (x− 1)5 + 0.226205
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Therefore, equation (3.11) becomes

f(x) = −0.000325385x− 0.540118x

1 + 0.401552x0.969
+ 0.192686(x− 1)

−0.026747 (x− 1)2 + 0.00522679 (x− 1)3 − 0.0012171 (x− 1)4

+0.0032857 (x− 1)5 + 0.351206

Applying the fzero function in MATLAB[29] to solve f(x) = 0 to give x = 0.671428.

3.2.1 Plots for Fluid 1 of the Cross Model with the Integral Term

So, for fluid 1 with integral term in the Cross model, u(0) = 1
2 ,u′(0) = −0.671428.

Applying the ode15i() function in MATLAB to plot the wave profile[7]
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Figure 3.1: Wave Profile u(x) for the Cross Model with the Integral Term.

We plot u′(x) as the following
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Figure 3.2: u′(x) for the Cross Model with the Integral Term.

We plot velocity vectors as the following
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Figure 3.3: Velocity Vectors for the Cross Model with the Integral Term.

3.2.2 Plots for Fluid 1 of the Cross Model without the Integral Term

For fluid 1 without the integral term in the Cross model, equation (3.7) is reduced to

u2

2
− 1

2
u =

[
0.000325385 +

0.540118

1 + 0.401552|u′|0.969

]
u′
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with u(0) = 1
2 ,u′(0) = −0.256085.

Applying the ode15i() function in MATLAB to plot the wave profile[7]
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Figure 3.4: Wave Profile u(x) for the Cross Model without the Integral Term.

We plot u′(x) as the following
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Figure 3.5: u′(x) for the Cross Model without the Integral Term.
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We plot velocity vectors as the following
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Figure 3.6: Velocity Vectors for the Cross Model without the Integral Term.
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Chapter 4

Traveling Wave Solutions of Burgers’ Equation 
based on the Carreau Model

4.1 Burgers’ Equation for the Carreau Model

The Burgers’ equation for the Carreau model isρ(ut + uux) = (2η̄(ux)ux)x − η̄(ux)uxx

η̄ =
[
η∞ + (ηo − η∞)

(
1 + K̄|ux|2

)n
2

]
, κ̄ = 4κ2

(4.1)

Applying the following boundary conditions to equation (4.1)u(−∞) = ul, u
′(−∞) = 0

u(∞) = ur, u
′(∞) = 0

(4.2)

where ur and ul are positive constants.

4.2 Fluid A of the Carreau Model

We name fluid A of the Carreau model as the fluid in the first row under Carreau

section in table 1 in [2].

For fluid A of the Carreau model, we read and calculate the following statistics

η0 = 0.0209, η∞ = 0.00249, n = 1.61, κ = 0.576, and ρ = 2.74 from [2].
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The procedure in Chapter 3 shall apply mutatis mutandis, then we have

u2

2
− 1

2
u =

[
0.000908759 + 0.150737

(
1 + 1.327104

∣∣u′∣∣)2]0.305
u′

+

∫ u′

0

[
−0.0.0753686 (1 + 1.327104 |s|)2

]0.305
ds

(4.3)

with u(0) = 1
2 , u
′(0) = −1.073771. Note: we discard u′(0) = 3.140661 because it

contradicts with the fact that u′(0) < 0; and we discard the u′(0) = −6.509337 because

it will not make the ode15i() function converge. The Power series expansion of the

integral term in equation (4.3) is confirmed by [34].

4.2.1 Plots for Fluid A of the Carreau Model with the Integral Term

Applying the ode15i() function in MATLAB to plot the wave profile[7]
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Figure 4.1: Wave Profile u(x) for the Carreau Model with the Integral Term.

We plot u′(x) as the following
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Figure 4.2: u′(x) for the Carreau Model with the Integral Term.

We plot velocity vectors as the following

-1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Figure 4.3: Velocity Vectors for the Carreau Model with the Integral Term.

4.2.2 Plots for Fluid A of the Carreau Model without the Integral

Term

For fluid A without the integral term in the Carreau model,equation (4.3) is reduced to

u2

2
− 1

2
u =

[
0.000908759 + 0.150737

(
1 + 1.327104

∣∣u′∣∣)2]0.305
u′
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with u(0) = 1
2 ,u′(0) = −0.706521.

Apply the ode15i() function to plot the wave profile[7]
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Figure 4.4: Wave Profile u(x) for the Carreau Model without the Integral Term.

We plot u′(x) as the following
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Figure 4.5: u′(x) for the Carreau Model without the Integral Term.
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We plot velocity vectors as the following
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Figure 4.6: Velocity Vectors for the Carreau Model without the Integral Term.
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Chapter 5

Traveling Wave Solutions of Burgers’ Equation 
based on the Power-Law Model

5.1 Burgers’ Equation for the Power-Law Model

The Burgers equation for the Power-Law model isρ(ut + uux) = (2η̄(ux)ux)x − η̄(ux)uxx

η (ux) = κ̄ |ux|n−1 , κ̄ = κ · 2n−1
(5.1)

Applying the following boundary conditions to equation (3.10),u(−∞) = ul, u(−∞) = 0

u(∞) = ur, u(∞) = 0
(5.2)

where ur and ul are positive constants.

5.2 Fluid Mayonnaise of the Power-Law Model

Selecting fluid mayonnaise of the Power-Law rheology model in Table 10.4 from [26].

We then read and calculate the following statistics for mayonnaise of the Power-Law

model at 25 ◦C, κ = 6.4,and n = 0.55 from [26].The density of mayonnaise of the

Power-Law model can be calculated as the average of densities of light and traditional
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mayonnaises as in [31], i.e., ρ = 955.

The procedure in Chapter 3 shall apply mutatis mutandis,then we have

u2

2
− u

2
= 0.00981167

∣∣u′∣∣−0.45
u′ − 0.00490584

∫ u′

0
|s|−0.45 ds (5.3)

with u(0) = 1
2 , u
′(0) = −7995.484568. Note: there is no need to apply the Power series

expansion to the integral term of the Power-Law model because we do the integration

directly.

5.2.1 Plots for Fluid 1 of the Power-Law Model with the Integral

Term

Applying the ode15i() function in MATLAB to plot the wave profile[7]
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Figure 5.1: Wave Profile u(x) for the Power-Law Model with the Integral Term.

We plot u′(x) as the following
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Figure 5.2: u′(x) for the Power-Law Model with the Integral Term.

We plot velocity vectors as the following
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Figure 5.3: Velocity Vectors for the Power-Law Model with the Integral Term.

5.2.2 Plots for Fluid 1 of the Power-Law Model without the Integral

Term

If without the integral term, equation (5.3) is reduced to

u2

2
− u

2
= −0.00981167

∣∣u′∣∣0.55
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with u(0) = 1
2 ,u′(0) = −102.186775.

Applying the ode15i() to plot the wave profile[7]
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Figure 5.4: Wave Profile u(x) for the Power-Law Model without the Integral Term.

We plot u′(x) as the following
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Figure 5.5: u′(x) for the Power-Law Model without the Integral Term.

23



We plot velocity vectors as the following
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Figure 5.6: Velocity Vectors for the Power-Law Model without the Integral Term.
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Chapter 6

Existence and Uniqueness of Solutions to the 
Traveling Wave Equations

6.1 Existence and Uniqueness of Solutions

The equations (3.2), (3.3), (4.1), (4.2), (5.1), and (5.2) can be written in the following

form

F (u′(ξ), u(ξ), ξ) =

∫ u′(ξ)

0
η(s)ds− 2η(u′(ξ))u′(ξ) + au2(ξ) + bu(ξ) + c (6.1)

where η(u′(ξ)) is the apparent viscosity of the fluids and a = ρ
2 , b = −ρul+ur2 , c = ulur

2

are the constants.

If without the integral term, equation (6.1) is reduced to

F (u′(ξ), u(ξ), ξ) = −2η(u′(ξ))u′(ξ) + au2(ξ) + bu(ξ) + c (6.2)

where η(u′(ξ)) is the apparent viscosity of the fluids and a = ρ
2 , b = −ρul+ur2 , c = ulur

2

are the constants. According to the Peano theorem in the implicit case[10, pp.28-31],

and Uniqueness in the implicit case[10, pp. 44-47] in Murray and Miller’s book on

existence theorem on ODE, we need to prove the followings:

(1)F (u′(ξ), u(ξ), ξ) of the three real variables u′(ξ), u(ξ), ξ is defined and continuous on

an open region U of 3-dimensional Euclidean space. Here, U is determined by the

domain of the function.

(2) ∂F∂u′ exists and is continuous on U .

(3)∂F∂u exists and is continuous on U .
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(4)there exists a set of values ((u′ (0) , u (0) , ξ (0))) in U such that

F (u′(ξ), u(ξ), ξ) = 0

and

J =
∂F

∂u′
6= 0

at this point.

Additionally, ∂F
∂ξ = 0 is satisfied automatically for three models. So, in the following

sections, we only consider u′ and u in F .

6.2 Existence and Uniqueness of Solutions for the Cross

Model with the Integral Term

Substituting second expression of (3.1) into equation (kumquat) to produce

F (u′, u) =

∫ u′

0

(
η∞ +

η0 − η∞
1 + κ̄ |s|n

)
ds− 2

(
η∞ +

η0 − η∞
1 + κ̄ |u′|n

)
+
ρ

2
u2

−ρ (ul + ur)

2
u+

ulur
2

(6.3)

Rearranging terms in equation (6.3)) to give

F (u′, u) =

∫ u′

0

(
η0 − η∞
1 + κ̄ |s|n

)
ds−

[
η∞ +

2 (η0 − η∞)

1 + κ̄ |u′|n
]
u′ +

ρ

2
u2

−ρ (ul + ur)

2
u+

ulur
2

(6.4)

6.2.1 Continuity of ∂F
∂u′

Since u′ < 0, taking partial derivative of equation (6.4) with respect to u′ gives

∂F (u′, u)

∂u′
=

η0 − η∞
1 + κ̄ |u′|n

− η∞ − 2 (η0 − η∞)

[
(1 + κ̄ |u′|n)− u′ · n · κ̄ |u′|n−1 · (−1)

(1 + κ̄ |u′|n)2

]

Since −u′ = |u′|,

∂F

∂u′
=
−η∞ (1 + κ̄ |u′|n)

2 − (η0 − η∞) (1 + κ̄ |u′|n) + 2n (η0 − η∞) κ̄ |u′|n

(1 + κ̄ |u′|n)2 (6.5)
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Plugging the statistics for fluid 1 from Chapter 3 into equation (6.5),

∂F

∂u′
=
−0.00136412 |u′|1.938 + 2.637909 |u′|0.969 − 7.03(

1 + 0.401552 |u′|0.969
)2 (6.6)

At the point (u′ (0) , u (0)) =
(
−0.671429, 1

2 , 0
)
, equation (6.6) becomes

∂F

∂u′
(
u′ (0) , u (0) , 0

)
= −3.713258 6= 0

6.2.2 Continuity of ∂F
∂u

Taking partial derivative of equation (6.4) with respect to u gives

∂F

∂u
= 26u− 13 (6.7)

At the point (u′ (0) , u (0)) =
(
−0.671429, 1

2

)
, equation (6.7) becomes

∂F

∂u

(
u′ (0) , u (0) , 0

)
= 0

6.3 Existence and Uniqueness of Solutions for the Cross

Model without the Integral Term

Substituting second expression of (3.1) into equation (6.2) to produce

F (u′, u) = −2

[
η∞ +

η0 − η∞
1 + κ̄ |u′|n

]
u′ +

ρ

2
u2 − ρ (ul + ur)

2
u+

ulur
2

(6.8)

6.3.1 Continuity of ∂F
∂u′

Since u′ < 0, taking partial derivative of equation (6.8) with respect to u′ gives

∂F (u′, u)

∂u′
= −2η∞ − 2 (η0 − η∞)

[
(1 + κ̄ |u′|n)− u′nκ̄ |u′|n−1 (−1)

(1 + κ̄ |u′|n)2

]

Since −u′ = |u′|,

∂F (u′, u)

∂u′
= −2η∞ − 2 (η0 − η∞)

[
1 + (1− n) κ̄ |u′|n

(1 + κ̄ |u′|n)2

]
(6.9)
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Plugging the statistics for fluid 1 from Chapter 3 into equation (6.9),

∂F (u′, u)

∂u′
=
−0.00272825 |u′|1.938 − 0.0577977 |u′|0.969 − 14.06(

1 + 0.401552 |u′|0.969
)2 (6.10)

Since |u′| > 0, ∂F
∂u′ < 0. So, ∂F

∂u′ 6= 0.

At the point (u′ (0) , u (0)) =
(
−0.256085, 1

2) , equation (6.10) becomes

∂F

∂u′
(
u′ (0) , u (0) , 0

)
= −11.4806 6= 0

6.3.2 Continuity of ∂F
∂u

Taking partial derivative of equation (6.8) with respect to u gives

∂F

∂u
= ρu− ρ (ul + ur)

2
(6.11)

For the chosen fluid 1 in Chapter 3, ρ = 26, ul = 1, and ur = 0,then the equation

(6.11) becomes,
∂F

∂u
= 26u− 13 (6.12)

At the point (u′ (0) , u (0)) =
(
−0.256085, 1

2) , equation (6.12) becomes

∂F

∂u

(
u′ (0) , u (0) , 0

)
= 0

6.4 Existence and Uniqueness of Solutions for the

Carreau Model with the Integral Term

Substituting the second expression from equation (4.1) into equation (6.1) to yield

F (u′, u) =

∫ u′

0

[
η∞ + (η0 − η∞)

(
1 + κ̄ |s|2

)n−1
2

]
ds

−2

[
η∞ + (η0 − η∞)

(
1 + κ̄

∣∣u′∣∣2)n−1
2

]
u′ +

ρ

2
u2 − ρ (ul + ur)

2
u+

ulur
2

(6.13)

Rearranging terms in equation (6.13) to give

F
(
u′, u

)
=

∫ u′

0

[
(η0 − η∞)

(
1 + κ̄ |s|2

)n−1
2

]
ds

−
[
η∞ + 2 (η0 − η∞)

(
1 + κ̄

∣∣u′∣∣2)n−1
2

]
u′ +

ρ

2
u2 − ρ (ul + ur)

2
u+

ulur
2

(6.14)
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6.4.1 Continuity of ∂F
∂u′

Since u′ < 0, taking partial derivative of equation (6.14) with respect to u′ gives

∂F

∂u′
= (η0 − η∞)

(
1 + κ̄

∣∣u′∣∣2)n−1
2 − η∞

−2 (η0 − η∞)

[(
1 + κ̄

∣∣u′∣∣2)n−1
2

+ u′ ·
(
n− 1

2

)(
1 + κ̄

∣∣u′∣∣2)n−3
2 · 2κ̄

∣∣u′∣∣ · (−1)

] (6.15)

∂F

∂u′
=
−η∞

(
1 + κ̄ |u′|2

) 3−n
2 − (η0 − η∞)

(
1 + κ̄ |u′|2

)
− (n− 1) κ̄ |u′|2(

1 + κ̄ |u′|2
) 3−n

2

(6.16)

Plugging the statistics for the chosen fluid A from Chapter 4 into equation (6.16),

∂F

∂u′
=
−0.00249

(
1 + 1.327104 |u′|2

)0.695
− 0.20651− 1.083593 |u′|2(

1 + 1.327104 |u′|2
)0.695 (6.17)

At the point (u′(0), u(0)) = (−1.073711, 1
2), equation (6.17) becomes

∂F

∂u′
(u′(0), u(0), 0) = −0.766183 6= 0

6.4.2 Continuity of ∂F
∂u

Taking partial derivative of equation (6.14) with respect to u gives

∂F

∂u
= ρu− ρ (ul + ur)

2
(6.18)

Plugging the statistics for the chosen fluid A from Chapter 4 into equation (6.18) to

give
∂F

∂u
= 2.74u− 1.37 (6.19)

At the point (u′(0), u(0)) = (−1.073711, 1
2), equation (6.19) becomes

∂F

∂u
(u′(0), u(0), 0) = 0
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6.5 Existence and Uniqueness of Solutions for the

Carreau Model without the Integral Term

Substituting the second expression from equation (4.1) into equation (6.2) to yield

F (u, u) = −2

[
η∞ + (η0 − η∞)

(
1 + κ̄

∣∣u′∣∣2)n−1
2

]
u′ +

ρ

2
u2

−ρ (ul + ur)

2
u+

ulur
2

(6.20)

6.5.1 Continuity of ∂F
∂u′

Since u′ < 0, taking partial derivative of equation (6.20 with respect to u′ gives

∂F (u′, u)

∂u′
= −2η∞−2 (η0 − η∞)

[(
1 + κ̄

∣∣u′∣∣2)n−1
2

+ u′
(
n− 1

2

)(
1 + κ̄

∣∣u′∣∣2)n−3
2 · 2κ̄

∣∣u′∣∣ (−1)

]
Since −u′ = |u′|,

∂F (u′, u)

∂u′
= −2η∞ − 2 (η0 − η∞) ·[(

1 + κ̄
∣∣u′∣∣2)n−1

2
+ (n− 1) κ̄

∣∣u′∣∣2 (1 + κ̄
∣∣u′∣∣2)n−3

2

] (6.21)

Plugging the statistics for the chosen fluid A from Chapter 4 into equation (6.21),

∂F (u′, u)

∂u′
=
−0.882473 |u′|2 − 0.00498

(
1 + 1.327104 |u′|2

)0.695
− 0.41302(

1 + 1.327104 |u′|2
)0.695 (6.22)

Since |u′| > 0, ∂F
∂u′ is always negative.So, ∂F

∂u′ 6= 0.

At the point (u′(0), u(0)) = (−0.706521, 1
2), equation (6.22) becomes

∂F

∂u′
(u′(0), u(0), 0) = −0.00498 6= 0

6.5.2 Continuity of ∂F
∂u

Taking partial derivative of equation (6.20) with respect to u gives

∂F

∂u
= ρu− ρ (ul + ur)

2
(6.23)
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For the chosen fluid A in Chapter 4, ρ = 2.74, ul = 1, and ur = 0,then equation (6.23)

becomes
∂F

∂u
= 2.74u− 1.37 (6.24)

At the point (u′(0), u(0)) = (−0.706521, 1
2), equation (6.24) becomes

∂F

∂u
(u′(0), u(0), 0) = 0

6.6 Existence and Uniqueness of Solutions for the

Power-Law Model with the Integral Term

Substituting the second expression from equation (5.1) into equation (6.1) to give

F (u′, u) =

∫ u′)

0
κ̄ |s|n−1 ds− 2

[
κ̄
∣∣u′∣∣n−1

]
u′ +

ρ

2
u2

−ρ (ul + ur)

2
u+

ulur
2

(6.25)

6.6.1 Continuity of ∂F
∂u′

Since (u′)n is undefined when u′ < 0, taking partial derivative of equation (6.25) with

respect to u′ gives

∂F (u′, u)

∂u′
=
κ̄

n

(
−n
∣∣u′∣∣n−1

)
− 2κ̄

[
− (n− 1)

∣∣u′∣∣n−2
u′ +

∣∣u′∣∣n−1
]

Since −u′ = |u′|,
∂F (u′, u)

∂u′
= κ̄

∣∣u′∣∣n−1
(−1 + 2n) (6.26)

For the chosen fluid mayonnaise from Chapter 5, κ̄ = 0.00490584, n = 0.55, so

equation (6.26) becomes

∂F (u′, u)

∂u′
= 0.00490584

∣∣u′∣∣−0.45
(0.10)

∂F (u′, u)

∂u′
= 0.000490584

∣∣u′∣∣−0.45 6= 0 (6.27)

At the point (u′(0), u(0)) = (−7995.484568, 1
2), equation (6.27) becomes

∂F

∂u′
(u′(0), u(0), 0) = 0.0000085987

31



6.6.2 Continuity of ∂F
∂u

Taking partial derivative of equation (6.25) with respect to u gives

∂F

∂u
= ρu− ρ (ul + ur)

2
(6.28)

For the chosen fluid mayonnaise in Chapter 5, ρ = 955, ul = 1, and ur = 0,

∂F

∂u
= 955u− 477.5 (6.29)

At the point (u′(0), u(0)) = (−7995.484568, 1
2), equation (6.29) becomes

∂F

∂u
(u′(0), u(0), 0) = 0

6.7 Existence and Uniqueness of Solutions for the

Power-Law Model without the Integral Term

Substituting the second expression from equation (5.1) into equation (6.2) to give

F (u, u) = −2
[
κ̄
∣∣u′∣∣n−1

]
u′ +

ρ

2
u2 − ρ (ul + ur)

2
u+

ulur
2

(6.30)

6.7.1 Continuity of ∂F
∂u′

Since u′ < 0, taking partial derivative of equation (6.30) with respect to u′ gives

∂F (u′, u)

∂u′
= −2κ̄

[
(n− 1)

∣∣u′∣∣n−2
(−1)u′ +

∣∣u′∣∣n−1
]

Since −u′ = |u′|,
∂F (u′, u)

∂u′
= −2κ̄

[
(n− 1)

∣∣u′∣∣n−1
+
∣∣u′∣∣n−1

]
∂F (u′, u)

∂u′
= −2nκ̄

∣∣u′∣∣n−1
(6.31)

Plugging the statistics for the chosen fluid mayonnaise from Chapter 5 into equation

(6.31),
∂F (u′, u)

∂u′
=
−5.153581

|u′|0.45 (6.32)
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Since |u′| > 0, ∂F
∂u′ is always negative. So, ∂F

∂u′ 6= 0.

At the point (u′(0), u(0)) = (−102.186775, 1
2),equation (6.32) becomes

∂F

∂u′
(u′(0), u(0), 0) = −0.642512

6.7.2 Continuity of ∂F
∂u

Taking partial derivative of equation (6.30) with respect to u gives

∂F

∂u
= ρu− ρ (ul + ur)

2
(6.33)

For the chosen fluid mayonnaise in Chapter 5, ρ = 955, ul = 1, and ur = 0,then

equation (6.33) becomes
∂F

∂u
= 955u− 477.5 (6.34)

At the point (u′(0), u(0)) = (−102.186775, 1
2),equation (6.34) becomes

∂F

∂u
(u′(0), u(0), 0) = 0

6.8 Theorem on Existence and Uniqueness of Solutions

for all Three Models

Theorem 6.1. There exists a unique solution to each of the equations in sections

(6.2)-(6.7) by the Peano theorem.

33



Chapter 7

The Order of Thickness of the Transition Layers

7.1 Derivations and Formulas

The transition layer thickness or shock thickness of the kink waves and the associated

solitons can be computed by using the first order derivative du
dξ |ξ=0 for the three

industrial fluids and comparisons are made as indicated by the tables 7.1, 7.2, and 7.3

[5],[6]. We make three tables based on the the numerical solutions of the three

industrial fluids as the following

We use δ to denote the thickness of the transition layer[5],[6]. We apply the Taylor

series expansion to yield [5],[6]

ul − ur ≈ u(−δ
2

)− u(
δ

2
) = −δ du

dξ
(0) + 0(δ2)

Therefore, we have δ = −ul−ur
u′(0) = − 1

u′(0) . For each of the three fluids, the maximum

strain ε11 is calculated. These maximum strain ε11 occurs at center of the kink wave

and the center of the soliton.

7.2 Tables and Discussion

We assign the value with the integral term as a reference in the calculations of relative

error and percent error.
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Table 7.1: Shock Thickness and Maximum Strain ε11 for Fluid 1 of the Cross Model

Name of Fluid Value of u′(0) Thickness Maximum Strain ε11

Fluid 1 with the integral term -0.671429 1.48936 -6.15670

Fluid 1 without the integral term -0.256085 3.90495 -2.97648

Relative error 0.415344 2.41559 3.18022

Percent error -61.8597% 162.1898% -51.6546%

Table 7.2: Shock Thickness and Maximum Strain ε11 for the Fluid A of the Carreau
Model

Name of Fluid Value of u′(0) Thickness Maximum Strain ε11

Fluid A with the Integral Term -1.07377 0.931297 -0.845399

Fluid A without the Integral Term -0.706521 1.41539 -0.436619

Relative error 0.367249 0.484093 0.40878

Percent error -34.2018% 51.9805% -48.3535%

Table 7.3: Shock Thickness and Maximum Strain ε11 for the Fluid Mayonnaise of the
Power-Law Model

Name of Fluid Value of u′(0) Thickness Maximum Strain ε11

Mayonnaise with the Integral Term -7995.485 0.000125071 -961.275

Mayonnaise without the Integral Term -102.187 0.00978600 -87.3876

Relative error 7893.298 0.00966093 873.887

Percent error -98.7219% 7724.36% -90.9092%

Since the Burgers’ equation comes with by assuming the shear stress τ12 = 0 which is

not realistic in modeling real fluid flows, we did not assume the shear stress τ12 = 0 in

the derivations of traveling wave equations with the integral term in equation (3.2).

The differences are significant as indicated by tables 7.1, 7.2, and 7.3.
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Chapter 8

Conclusion

In this thesis, generalized Burgers’ equations for some common non-Newtonian fluid flows 
are derived from the general the Navier-Stokes equations under planer symmetry and 
incompressibility conditions. Traveling wave solution of these equations are obtained 
numerically for several commonly encountered fluids with industrial rheological data. 
Profiles of the transition layers of the traveling waves are demonstrated. A first-order 
approximation of the thickness of the transition layer or thickness of the shocks are also 
computed numerically. The first-order implicit integral differential equation is 
numerically solved by the MATLAB built-in ode15i() function. Existence and uniqueness 
of the solutions to each of the three traveling wave equations for the three non-Newtonian 
fluid models are proved by using the Peano Theorems for implicit first order ODEs. It is 
demonstrated that the velocity are kink waves while the strains are solitons through 
numerical solutions.
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Appendix A

MATLAB Codes

A.1 MATLAB Codes for fluid 1 of the Cross Model with

the Integral Term

The M-file for fluid 1 of the Cross model with the integral term to find x for f(x) = 0

by using the fzero function is named as

cross_integral_term_fezro.m

and the codes are

function y=f(x)

y=( -0.000325385 -0.540118/(1+0.401552*(x^0.969)))*x+0.192686*(x-1)

-0.026747*(x -1)^2+0.00522679*(x -1)^3 -0.0012171*(x-1)^4

+0.00032857*(x -1)^5+0.351505;

The u′(0) = −x found in the fzero function becomes an input in the ode15i() function.

The M-fiel for the ode15i() function for the Cross model with the integral term to plot

the wave profile u(x) is named as

cross_model_integral_term_code.m

and the codes are

f1=@(t,u,ud )[(0.000325385+(0.540118/((1+0.401552*( abs(ud )^0.969)))))* ud

-0.192686*( ud +1) -0.026747*( ud +1)^2 -0.00522679*( ud +1)^3 -0.0012171*( ud+1)^4

-0.00032857*( ud +1)^5+0.226205 -0.5*(u^2)+0.5*u];

u0 =[0.5]; ud0 =[ -0.671429]; u0F =[1]; ud0F =[];

[u0 ,ud0]=decic(f1 ,0,u0 ,u0F ,ud0 ,ud0F);

r1=ode15i(f1 ,[0,8],u0 ,ud0);

r2=ode15i(f1 ,[0,-8],u0,ud0);

plot(r1.x,r1.y,’b’,r2.x,r2.y,’b’);

grid
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Then we modify the codes above a bit and click on the ”RUN” button to display the

value of r1 in MATLAB’s command window as the following

f1=@(t,u,ud )[(0.000325385+(0.540118/((1+0.401552*( abs(ud )^0.969)))))* ud

-0.192686*( ud +1) -0.026747*( ud +1)^2 -0.00522679*( ud +1)^3 -0.0012171*( ud+1)^4

-0.00032857*( ud +1)^5+0.226205 -0.5*(u^2)+0.5*u];

u0 =[0.5]; ud0 =[ -0.671429]; u0F =[1]; ud0F =[];

[u0 ,ud0]=decic(f1 ,0,u0 ,u0F ,ud0 ,ud0F);

r1=ode15i(f1 ,[0,8],u0 ,ud0)

In MATLAB’s command window, we enter x1 = r1.x to display the values of x1, enter

y1 = r1.x to display the values of y1, and enter u1 = r.y1 to display the values of u1.

The similar operations on r2 shall apply mutatis mutandis. We record the values of x1

and x2 as the values of x, record values of y1 and y2 as values of y, and record the

values of u1 and u2 as the values of u. Next, we apply the following codes in

MATLAB’s command window to find the values of u′(x)

ud=fzero(@(ud) [(0.000325385+(0.540118/((1+0.401552*( abs(ud )^0.969)))))* ud

-0.192686*( ud +1) -0.026747*( ud +1)^2 -0.00522679*( ud +1)^3 -0.0012171*( ud+1)^4

-0.00032857*( ud +1)^5+0.226205 -0.5*(u^2)+0.5*u],0.5)

by replacing varible u by a value of u from the recorded data, for instance, 0.4874 and

press the ”Enter” button to get u′(0.4874). We continue the computations until we get

all values of u′. If a negative value of u′ occurs, we can simply change the initial guess

at the end of ud expression from 0.5 to −0.5 and press the ”Enter” button. If the

result does not converge, we can simply change the initial guess at the end of ud

expression to a smaller value, for instance, 0.05, and press the ”Enter” button. We use

the values of u′ for the plots of u′(x) and velocity vectors. Similar operations for

finding values of u and u′ shall apply mutatis mutandis for the other fluids.

The M-file for u′(x) of the Cross model with the integral term is named as

cross_integral_term_ud.m

and the codes are

x=[ -8.0000 -7.1928 -6.3928 -5.5928 -4.7928 -4.2946 -3.7963 -3.2980

-2.9566 -2.6152 -2.4445 -2.2738 -2.1030 -1.9323 -1.7426 -1.5442

-1.3236 -1.2134 -1.1031 -0.9928 -0.8826 -0.7601 -0.6239 -0.4727

-0.3970 -0.3214 -0.2458 -0.2080 -0.1702 -0.1323 -0.0945 -0.0567

-0.0189 0 0.0189 0.0567 0.0945 0.1323 0.1702 0.2080 0.2458 0.2836

0.3592 0.4273 0.4954 0.5634 0.6115 0.6996 0.7676 0.8357 0.9038

0.9718 1.1079 1.2441 1.3802 1.5027 1.6252 1.7478 1.8703 1.9928

2.1153 2.2378 2.3603 2.4829 2.6054 2.7279 2.8504 2.9729 3.2180

3.4218 3.6052 3.7684 3.9316 4.0949 4.2581 4.4213 4.5845 4.7477

4.9110 5.0742 5.2374 5.4006 5.5639 5.7271 5.8903 6.0535 6.2168

6.5106 6.8044 7.0982 7.6858 8.0000];

ud=[0 0 0 -0.002 -0.002 -0.0004 -0.0007 -0.0022 -0.0040 -0.0074

-0.0103 -0.0144 -0.0199 -0.0277 -0.0395 -0.0570 -0.0864 -0.1067
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-0.1319 -0.1626 -0.2003 -0.2520 -0.3229 -0.4187 -0.4715 -0.5253

-0.5769 -0.6004 -0.6215 -0.6394 -0.6535 -0.6633 -0.6684 -0.6690

-0.6684 -0.6633 -0.6535 -0.6394 -0.6215 -0.6004 -0.5769 -0.5517

-0.4983 -0.4498 -0.4030 -0.3592 -0.3189 -0.2822 -0.2494 -0.2202

-0.1942 -0.1712 -0.1328 -0.1030 -0.0799 -0.0635 -0.0507 -0.0403

-0.0321 -0.0256 -0.0205 -0.0162 -0.0129 -0.0103 -0.0083 -0.0066

-0.0053 -0.0042 -0.0028 -0.0018 -0.0013 -0.0009 -0.0007 -0.0005

-0.0004 -0.0004 -0.0002 -0.0002 -0.0002 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000];

figure

plot(x,ud,’b’)

grid

The M-file for the velocity vectors of the Cross model with the integral term is named

as

cross_model_integral_term_quiver.m

and the codes are

x=[ -8.0000 -4.7928 -2.1030 -0.9928 0 0.9718 2.1153 2.9729

4.7477 8.0000];

y=[ -8.0000 -4.7928 -2.1030 -0.9928 0 0.9718 2.1153 2.9729

4.7477 8.0000];

u=[1 0.9999 0.9892 0.9125 0.5000 0.0921 0.0111 0.0023 0.0001 0.0000;

1 0.9999 0.9892 0.9125 0.5000 0.0921 0.0111 0.0023 0.0001 0.0000;

1 0.9999 0.9892 0.9125 0.5000 0.0921 0.0111 0.0023 0.0001 0.0000;

1 0.9999 0.9892 0.9125 0.5000 0.0921 0.0111 0.0023 0.0001 0.0000;

1 0.9999 0.9892 0.9125 0.5000 0.0921 0.0111 0.0023 0.0001 0.0000;

1 0.9999 0.9892 0.9125 0.5000 0.0921 0.0111 0.0023 0.0001 0.0000;

1 0.9999 0.9892 0.9125 0.5000 0.0921 0.0111 0.0023 0.0001 0.0000;

1 0.9999 0.9892 0.9125 0.5000 0.0921 0.0111 0.0023 0.0001 0.0000;

1 0.9999 0.9892 0.9125 0.5000 0.0921 0.0111 0.0023 0.0001 0.0000;

1 0.9999 0.9892 0.9125 0.5000 0.0921 0.0111 0.0023 0.0001 0.0000];

v=[0 -0.0016 -0.1592 -1.3008 -5.352 -1.3696 -0.164 -0.0336 -0.0016

0; 0 -0.0009586 -0.09538 -0.7793 -3.2064 -0.8205 -0.09825 -0.02013

-0.0009586 0;0 -0.0004206 -0.04185 -0.3419 -1.4069 -0.3600 -0.04311

-0.008833 -0.0004206 0;0 -0.0001986 -0.01976 -0.1614 -0.6642 -0.1700

-0.02035 -0.004170 -0.0001986 0;0 0 0 0 0 0 0 0 0 0; 0 0.0001944

0.01934 0.1580 0.6501 0.1664 0.01992 0.004082 0.0001944 0; 0 0.0004231

0.04209 0.3439 1.4151 0.3621 0.04336 0.008884 0.0004231 0; 0 0.0005946

0.05916 0.4834 1.9889 0.5090 0.06094 0.01249 0.0005946 0; 0 0.0009495

0.09448 0.7720 3.1762 0.8128 0.09733 0.01994 0.0009495 0; 0 0.0016 0.

1592 1.3008 5.352 1.3696 0.164 0.0336 0.0016 0];

figure

quiver(x,y,u,v,’b’)

grid
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A.2 MATLAB Codes for Fluid 1 of the Cross Model

without the Integral Term

The M-file for fluid 1 of the Cross model without the integral term to find x for

f(x) = 0 by using the fzero function is named as

cross_fluid_1_fzero.m

and the codes are

function y=f(x)

y=( -0.000325385 -0.540118/(1+0.401552*(x^0.969)))*x+0.125;

The u′(0) = −x found in the fzero function becomes an input in the ode15i() function.

The M -file for the ode15i() function for the Cross model without the integral term to

plot the wave profile u(x) is named as

cross_mode_code.m

and the codes are

f1=@(t,u,ud )[(0.000325385+(0.540118/((1+0.401552*( abs(ud )^0.969)))))* ud

-0.5*(u^2)+0.5*u];

u0 =[0.5]; ud0 =[ -0.256085]; u0F =[1]; ud0F =[];

[u0 ,ud0]=decic(f1 ,0,u0 ,u0F ,ud0 ,ud0F);

r1=ode15i(f1 ,[0,8],u0 ,ud0);

r2=ode15i(f1 ,[0,-8],u0,ud0);

plot(r1.x,r1.y,’b’,r2.x,r2.y,’b’);

grid

The M-file for codes for u′(x) of the Cross model without the integral term is named as

cross_ud.m

and the codes are

x=[ -8.0000 -7.4902 -6.9285 -6.3667 -5.8050 -5.2432 -4.6815 -4.1197

-3.4874 -2.8552 -2.5390 -2.2229 -1.9067 -1.5906 -1.2744 -1.1163

-0.9583 -0.8002 -0.6421 -0.4445 -0.3458 -0.2470 -0.1482 -0.0494 0

0.0494 0.1482 0.2470 0.3458 0.4445 0.5669 0.6893 0.8116 0.9340 1.0563

1.1787 1.4234 1.6436 1.8639 2.0841 2.3044 2.5246 2.7449 2.9651 3.1854

3.4056 3.6258 4.0663 4.3769 4.6875 4.9981 5.3087 5.6193 5.9298 6.2404

6.5510 6.8616 7.1722 7.4828 7.7934 8.0000];

ud=[ -0.0006 -0.0009 -0.0016 -0.0025 -0.0041 -0.0065 -0.0105 -0.0169

-0.0291 -0.0502 -0.0657 -0.0852 -0.1091 -0.1372 -0.1683 -0.1843 -0.2000

-0.2149 -0.2284 -0.2422 -0.2475 -0.2517 -0.2545 -0.2559 -0.2561 -0.2559

-0.2545 -0.2517 -0.2475 -0.2422 -0.2340 -0.2245 -0.2138 -0.2022 -0.1902

-0.1778 -0.1532 -0.1321 -0.1126 -0.0953 -0.0800 -0.0668 -0.0555 -0.0459

-0.0379 -0.0312 -0.0257 -0.0173 -0.0130 -0.0098 -0.0074 -0.0055 -0.0042

-0.0031 -0.0023 -0.0018 -0.0013 -0.0010 -0.0007 -0.0006 -0.0005];
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figure

plot(x,ud,’b’)

grid

The M-file for codes for the velocity vectors of the Cross model without the integral

term is named as

cross_model_quiver.m

and the codes are

x=[ -8.0000 -4.6815 -2.2229 -1.1163 0 0.5669 1.0563 2.3044 4.9981

8.0000];

y=[ -8.0000 -4.6815 -2.2229 -1.1163 0 0.5669 1.0563 2.3044 4.9981

8.0000];

u=[0.9994 0.9886 0.9015 0.7553 0.5000 0.3598 0.2556 0.0920 0.0080

0.0005; 0.9994 0.9886 0.9015 0.7553 0.5000 0.3598 0.2556 0.0920 0.0080

0.0005; 0.9994 0.9886 0.9015 0.7553 0.5000 0.3598 0.2556 0.0920 0.0080

0.0005; 0.9994 0.9886 0.9015 0.7553 0.5000 0.3598 0.2556 0.0920 0.0080

0.0005; 0.9994 0.9886 0.9015 0.7553 0.5000 0.3598 0.2556 0.0920 0.0080

0.0005; 0.9994 0.9886 0.9015 0.7553 0.5000 0.3598 0.2556 0.0920 0.0080

0.0005; 0.9994 0.9886 0.9015 0.7553 0.5000 0.3598 0.2556 0.0920 0.0080

0.0005; 0.9994 0.9886 0.9015 0.7553 0.5000 0.3598 0.2556 0.0920 0.0080

0.0005; 0.9994 0.9886 0.9015 0.7553 0.5000 0.3598 0.2556 0.0920 0.0080

0.0005; 0.9994 0.9886 0.9015 0.7553 0.5000 0.3598 0.2556 0.0920 0.0080

0.0005];

v=[ -0.0048 -0.084 -0.6816 -1.4744 -2.0488 -1.872 -1.5216 -0.64 -0.0592

-0.004; -0.002809 -0.04916 -0.3989 -0.8628 -1.1989 -1.0955 -0.8904

-0.3745 -0.03464 -0.002341; -0.001334 -0.02334 -0.1894 -0.4097 -0.5693

-0.5202 -0.4228 -0.1778 -0.01645 -0.001111; -0.0006698 -0.01172

-0.09511 -0.2057 -0.2859 -0.2612 -0.2123 -0.08930 -0.008261

-0.0005582; 0 0 0 0 0 0 0 0 0 0; 0.0003401 0.005952 0.04830 0.1045

0.1452 0.1327 0.1078 0.04535 0.004195 0.002835; 0.0006338 0.01109

0.09000 0.1947 0.2705 0.2472 0.2009 0.08450 0.007817

0.0005282; 0.001383 0.02420 0.1963 0.4247 0.5902 0.5392 0.4383 0.1844

0.01705 0.001152; 0.002999 0.05248 0.4258 0.9211 1.2800 1.1696 0.9506

0.3998 0.03699 0.002499; 0.0048 0.084 0.6816 1.4744 2.0488 1.872 1.5216

0.64 0.0592 0.004];

figure

quiver(x,y,u,v,’b’)

grid

A.3 MATLAB Codes for Fluid 1 of the Carreau Model

with the Integral Term

The M-file for fluid A of the Carreau model with the integral term to find x for

f(x) = 0 by using the fzero function is named as
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carreau_fluid_A_integral_term_fzero.m

and the codes are

function y=f(x)

function y=f(x)

y=( -0.000908759 -0.150737*((1+1.327104*(x^2))^(0.305)))*x+0.0975145*(x-1)

+0.01696*(x -1)^2+0.00117207*(x -1)^3 -0.0011952*(x -1)^4+0.000595404*(x-1)^5

+0.208517;

The u′(0) = −x found in the fzero function becomes an input in the ode15i() function.

The M-file for the ode15i() function for the Carreau model with integral term to plot

the wave profile u(x) is named as

carreau_integral_term_fluid_A_fzero.m

and the codes are

f1=@(t,u,ud )[(0.000908759+0.150737*((1+1.327104*( abs(ud ))^2)^(0.305)))* ud

-0.0975145*( ud +1)+0.01696*( ud +1)^2 -0.00117207*( ud +1)^3 -0.0011952*( ud+1)^4

-0.000595404*( ud +1)^5+0.0835172 -0.5*(u^2)+0.5*u];

u0 =[0.5]; ud0 =[ - -1.073771]; u0F =[1]; ud0F =[];

[u0 ,ud0]=decic(f1 ,0,u0 ,u0F ,ud0 ,ud0F);

r1=ode15i(f1 ,[0,3],u0 ,ud0);

r2=ode15i(f1 ,[0,-3],u0,ud0);

plot(r1.x,r1.y,’b’,r2.x,r2.y,’b’);

grid

The M-file for u′(x) of the Carreau model with the integral term is named as

carreau_integral_term_ud.m

and the codes are

x=[ -3.0000 -2.6745 -2.3745 -2.0745 -1.7745 -1.5718 -1.3691 -1.2564

-1.1438 -1.0312 -0.9044 -0.7634 -0.6929 -0.6225 -0.5441 -0.4658

-0.3875 -0.3092 -0.2701 -0.2309 -0.1918 -0.1526 -0.1233 -0.0940

-0.0647 -0.0353 -0.0118 0 0.0118 0.0353 0.0625 0.0897 0.1169 0.1441

0.1712 0.1984 0.2256 0.2528 0.3071 0.3615 0.4158 0.4702 0.5101

0.5501 0.5900 0.6300 0.6699 0.7098 0.7498 0.7897 0.8297 0.8696

0.9096 0.9495 0.9895 1.0294 1.0653 1.1013 1.1337 1.1660 1.1984

1.2307 1.2656 1.3005 1.3354 1.3703 1.4052 1.4750 1.5341 1.5868

1.6395 1.6921 1.7622 1.8322 1.9022 1.9722 2.0422 2.1123 2.1823

2.3223 2.4419 2.5614 2.6810 2.9200 3.0000];

ud=[0 0 0 0 0 0 0 -0.0026 -0.0104 -0.0234 -0.0471 -0.1099 -0.1670

-0.2474 -0.3644 -0.5023 -0.6494 -0.7885 -0.8516 -0.9083 -0.9579

-0.9994 -1.0249 -1.0451 -1.0601 -1.0697 -1.0733 -1.0738 -1.0733

-1.0697 -1.0610 -1.0476 -1.0298 -1.0073 -0.9806 -0.9498 -0.9152

-0.8769 -0.7915 -0.6965 -0.5960 -0.4945 -0.4216 -0.3522 -0.2908

-0.2355 -0.1885 -0.1493 -0.1173 -0.0913 -0.0713 -0.0554 -0.0427

-0.0330 -0.0259 -0.0201 -0.0156 -0.0123 -0.0098 -0.0085 -0.0065
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-0.0052 -0.0046 -0.0033 -0.0026 -0.0020 -0.0020 -0.0013 -0.0007

-0.0007 -0.0007 0 0 0 0 0 0 0 0 0 0 0 0 0 0];

figure

plot(x,ud,’b’)

grid

The M-file for the velocity vectors of the Carreau model with the integral term is

named as

carreau_model_integral_term_quiver.m

and the codes are

x=[ -1.3691 -0.6929 -0.3092 -0.1526 0 0.3071 0.6300 1.3005 1.5868 1.9722];

y=[ -1.3691 -0.6929 -0.3092 -0.1526 0 0.3071 0.6300 1.3005 1.5868 1.9722];

u=[1.0000 0.9732 0.8004 0.6592 0.5000 0.2010 0.0389 0.0005 0.0001

0.0000; 1.0000 0.9732 0.8004 0.6592 0.5000 0.2010 0.0389 0.0005

0.0001 0.0000; 1.0000 0.9732 0.8004 0.6592 0.5000 0.2010 0.0389

0.0005 0.0001 0.0000; 1.0000 0.9732 0.8004 0.6592 0.5000 0.2010

0.0389 0.0005 0.0001 0.0000;1.0000 0.9732 0.8004 0.6592 0.5000

0.2010 0.0389 0.0005 0.0001 0.0000;1.0000 0.9732 0.8004 0.6592

0.5000 0.2010 0.0389 0.0005 0.0001 0.0000; 1.0000 0.9732 0.8004

0.6592 0.5000 0.2010 0.0389 0.0005 0.0001 0.0000; 1.0000 0.9732

0.8004 0.6592 0.5000 0.2010 0.0389 0.0005 0.0001 0.0000; 1.0000

0.9732 0.8004 0.6592 0.5000 0.2010 0.0389 0.0005 0.0001 0.0000; 1.0000

0.9732 0.8004 0.6592 0.5000 0.2010 0.0389 0.0005 0.0001 0.0000];

v=[0 -0.2286 -1.0795 -1.3683 -1.4701 -1.0836 -0.3224 -0.004518

-0.0009584 0; 0 -0.1157 -0.5464 -0.6925 -0.7440 -0.5484 -0.1632

-0.002287 -0.0004850 0; 0 -0.05164 -0.2438 -0.3090 -0.3320 -0.2447

-0.07282 -0.001020 -0.0002164 0; 0 -0.02548 -0.1203 -0.1525 -0.1639

-0.1208 -0.03594 -0.0005036 -0.0001068 0; 0 0 0 0 0 0 0 0 0 0; 0 0.05129

0.2421 0.3069 0.3298 0.2431 0.07232 0.001013 0.002150 0; 0 0.1052 0.4968

0.6296 0.6765 0.4986 0.1484 0.002079 0.000441 0; 0 0.2172 1.0254 1.2997

1.3965 1.0293 0.3063 0.004292 0.0009104 0; 0 0.2650 1.2512 1.5858 1.7039

1.2560 0.3737 0.005236 0.001111 0; 0 0.3294 1.5551 1.9710 2.1177 1.5610

0.4645 0.006508 0.001381 0];

figure

quiver(x,y,u,v,’b’)

grid

A.4 MATLAB Codes for Fluid A of the Carreau Model

without the Integral Term

The M-file for fluid A of the Carreau model without the integral term to find x for

f(x) = 0 by using the fzero function is named as

carreau_fluid_A_fzero
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and the codes are

function y=f(x)

y=( -0.000908759 -0.150737*((1+1.327104*(x^2))^(0.305)))*x+0.125;

The u′(0) = −x found in the fzero function becomes an input in the ode15i() function.

The M-file for the ode15i() function for the Carreau model without integral term to

plot the wave profile u(x) is names as

carreau_model_integral_term.m

and the codes are

f1=@(t,u,ud )[(0.000908759+0.150737*((1+1.327104*( abs(ud ))^2)^(0.305)))* ud

-0.5*(u^2)+0.5*u];

u0 =[0.5]; ud0 =[ -0.706521]; u0F =[1]; ud0F =[];

[u0 ,ud0]=decic(f1 ,0,u0 ,u0F ,ud0 ,ud0F);

r1=ode15i(f1 ,[0,3],u0 ,ud0);

r2=ode15i(f1 ,[0,-3],u0,ud0);

plot(r1.x,r1.y,’b’,r2.x,r2.y,’b’);

grid

The M-file for codes for u′(x) of the Carreau model without the integral term is named

as

carreau_ud.m

and the codes are

x=[ -3.0000 -2.8890 -2.5890 -2.2890 -2.1380 -1.9871 -1.8361 -1.6852

-1.5343 -1.3833 -1.2324 -1.0815 -0.9762 -0.8709 -0.7656 -0.6603

-0.5550 -0.4834 -0.4118 -0.3402 -0.2686 -0.1969 -0.1253 -0.0895

-0.0537 -0.0179 0 0.0179 0.0537 0.0895 0.1253 0.1611 0.2088 0.2564

0.3040 0.3516 0.4469 0.5326 0.6183 0.7041 0.7812 0.8507 0.9201

0.9896 1.0590 1.1297 1.2005 1.2712 1.3349 1.3985 1.4622 1.5259

1.5895 1.6532 1.7169 1.7805 1.8442 1.9079 1.9715 2.0352 2.0988

2.1625 2.2262 2.2898 2.3574 2.4182 2.4790 2.5398 2.6006 2.6614

2.7222 2.7830 2.8439 2.9047 2.9655 3.0000];

ud=[0 0 -0.0010 -0.0023 -0.0036 -0.0059 -0.0099 -0.0164 -0.0271

-0.0442 -0.0708 -0.1120 -0.1528 -0.2047 -0.2692 -0.3447 -0.4267

-0.4828 -0.5368 -0.5863 -0.6293 -0.6640 -0.6890 -0.6975 -0.7033

-0.7062 -0.7065 -0.7062 -0.7033 -0.6975 -0.6890 -0.6777 -0.6588

-0.6356 -0.6086 -0.5794 -0.5101 -0.4435 -0.3761 -0.3119 -0.2587

-0.2160 -0.1785 -0.1464 -0.1192 -0.0962 -0.0774 -0.0620 -0.0506

-0.0413 -0.0336 -0.0275 -0.0223 -0.0180 -0.0148 -0.0118 -0.0099

-0.0079 -0.0063 -0.0053 -0.0043 -0.0033 -0.0026 -0.0023 -0.0016

-0.0013 -0.0013 -0.0010 -0.0007 -0.0007 -0.0007 -0.0003 -0.0003

-0.0003 -0.0003 -0.0003];

figure

plot(x,ud,’b’)

grid
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The M-file for the velocity vectors of the Carreau model without the integral term is

named as

carreau_model_quiver.m

and the codes are

x=[ -1.9871 -1.0815 -0.5550 -0.2686 0 0.5326 1.0590 2.2262 2.6006

3.0000];

y=[ -1.9871 -1.0815 -0.5550 -0.2686 0 0.5326 1.0590 2.2262 2.6006

3.0000];

u=[0.9982 0.9646 0.8344 0.6818 0.5000 0.1749 0.0378 0.0008 0.0002

0.0001; 0.9982 0.9646 0.8344 0.6818 0.5000 0.1749 0.0378 0.0008

0.0002 0.0001; 0.9982 0.9646 0.8344 0.6818 0.5000 0.1749 0.0378

0.0008 0.0002 0.0001; 0.9982 0.9646 0.8344 0.6818 0.5000 0.1749

0.0378 0.0008 0.0002 0.0001; 0.9982 0.9646 0.8344 0.6818 0.5000

0.1749 0.0378 0.0008 0.0002 0.0001; 0.9982 0.9646 0.8344 0.6818

0.5000 0.1749 0.0378 0.0008 0.0002 0.0001; 0.9982 0.9646 0.8344

0.6818 0.5000 0.1749 0.0378 0.0008 0.0002 0.0001; 0.9982 0.9646

0.8344 0.6818 0.5000 0.1749 0.0378 0.0008 0.0002 0.0001; 0.9982

0.9646 0.8344 0.6818 0.5000 0.1749 0.0378 0.0008 0.0002 0.0001; 0.9982

0.9646 0.8344 0.6818 0.5000 0.1749 0.0378 0.0008 0.0002 0.0001];

v=[ -0.01172 -0.2226 -0.8479 -1.2505 -1.4039 -0.8813 -0.2369 -0.005166

-0.001391 -0.0005961; -0.006381 -0.1211 -0.4615 -0.6806 -0.7641 -0.4796

-0.1289 -0.002812 -0.0007571 -0.0003245; -0.003275 -0.06216 -0.2368

-0.3493 -0.3921 -0.2461 -0.06616 -0.001443 -0.0003885

-0.0001665; -0.001585 -0.03008 -0.1146 -0.1690 -0.1898 -0.1191

-0.03202 -0.0006984 -0.0001880 -0.00008058; 0 0 0 0 0 0 0

0 0 0; 0.003142 0.05965 0.2273 0.3352 0.3763 0.2362 0.06349

0.001385 0.0003728 0.0001598; 0.006248 0.1186 0.4519 0.6664

0.7482 0.4697 0.1262 0.002753 0.0007413 0.0003177; 0.01313 0.2493

0.9499 1.4009 1.5728 0.9873 0.2654 0.005788 0.001558 0.0006679; 0.01534

0.2913 1.1097 1.6366 1.8373 1.1534 0.3100 0.006762 0.001820

0.0007802; 0.0177 0.336 1.2801 1.8879 2.1195 1.3305 0.3576 0.0078

0.0021 0.0009];

figure

quiver(x,y,u,v,’b’)

grid

A.5 MATLAB Codes for Fluid Mayonnaise of the

Power-Law Model with the Integral Term

The M-file for fluid mayonnaise of the Power-Law model with the integral term to find

x for f(x) = 0 by using the fzero function is named as

power_law_mayonnaise_integral_term_fzero.m

and the codes are

45



function y=f(x)

y= -0.000891960*(x^0.55)+0.125;

The u′(0) = −x found in the fzero function becomes an input in the ode15i() function.

The M-file for the ode15i() function for the Power-Law model with integral term to

plot the wave profile u(x) is named as

power_law_model_integral_term_code.m

and the codes are

f1=@(t,u,ud )[ -0.000891960*( abs(ud )^(0.55)) -0.5*(u^2)+0.5*u];

u0 =[0.5]; ud0 =[ -7995.484568]; u0F =[1]; ud0F =[];

[u0 ,ud0]=decic(f1 ,0,u0 ,u0F ,ud0 ,ud0F);

r1=ode15i(f1 ,[0 ,0.0025] ,u0 ,ud0);

r2=ode15i(f1 ,[0 , -0.0025] ,u0,ud0);

plot(r1.x,r1.y,’b’,r2.x,r2.y,’b’);

grid

The M-file for u′(x) of the Power-Law model with the integral term is named as

power_law_integral_term_ud.m

and the codes are

x=[ -0.00250000 -0.00230473 -0.00205473 -0.00180473 -0.00155473

-0.00135150 -0.00114827 -0.000945046 -0.000843432 -0.000741818

-0.000640204 -0.000527299 -0.000470847 -0.000414394 -0.000357942

-0.000329716 -0.000301490 -0.000273264 -0.000245038 -0.000213675

-0.000194135 -0.000174596 -0.000155056 -0.000135516 -0.000115976

-0.000105121 -0.0000942655 -0.0000834101 -0.0000725547

-0.0000616992 -0.0000490430 -0.0000427149 -0.0000363867

-0.0000300586 -0.0000237305 -0.0000205664 -0.0000174023

-0.0000142383 -0.0000110742 -0.00000791016 -0.00000474610

-0.00000158203 0 0.00000158203 0.00000474610 0.00000791016

0.0000107578 0.0000133207 0.0000156273 0.0000177033 0.0000195716

0.0000214399 0.0000231215 0.0000248030 0.0000263163 0.0000278297

0.0000291917 0.0000305537 0.0000319158 0.0000332778 0.0000346398

0.0000360019 0.0000387259 0.0000414500 0.0000468981 0.0000523462

0.0000577943 0.0000626976 0.0000676008 0.0000725041 0.0000774074

0.0000831060 0.0000888046 0.0000945032 0.000100202 0.000107594

0.000114987 0.000122380 0.000129772 0.000137165 0.000144557

0.000151950 0.000165257 0.000177233 0.000189209 0.000201185

0.000213161 0.000225137 0.000237642 0.000250146 0.000262651

0.000275156 0.000287660 0.000300165 0.000325175 0.000350184

0.000375193 0.000400203 0.000425212 0.000450222 0.000475231

0.000500240 0.000525250 0.000550259 0.000575269 0.000600278

0.000645295 0.000690312 0.000735329 0.000780346 0.000825363

0.000870380 0.000915400 0.000960413 0.00100543 0.00105045 0.00114048

0.00122098 0.00130148 0.00138198 0.00146248 0.00154298 0.00162348

0.00170398 0.00178449 0.00186499 0.00197261 0.00208023 0.00218785

0.00229548 0.00240310 0.00250000];
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ud =[ -0.601221 -0.704480 -0.909760 -1.25282 -1.76409 -2.45379 -3.74990

-5.87134 -7.68406 -10.3654 -14.6221 -24.4231 -32.7142 -45.8444

-66.2407 -80.8612 -100.588 -127.200 -164.573 -227.100 -281.579

-356.066 -462.877 -619.163 -856.454 -1043.26 -1288.38 -1611.61

-2046.50 -2639.64 -3589.38 -4183.14 -4853.76 -5579.15 -6319.04

-6675.22 -7009.65 -7311.29 -7569.03 -7771.60 -7913.15 -7986.20

-7995.48 -7986.20 -7913.15 -7771.60 -7591.21 -7391.50 -7186.03

-6983.77 -6790.24 -6790.24 -6401.88 -6211.93 -6037.83 -5863.90

-5706.04 -5549.75 -5394.29 -5238.33 -5083.77 -4930.95 -4632.87

-4346.68 -3814.37 -3340.95 -2925.00 -2598.73 -2313.40 -2064.33

-1846.22 -1627.78 -1441.09 -1281.21 -1143.57 -992.375 -866.363

-760.957 -672.189 -596.810 -532.364 -477.041 -395.968 -338.556

-292.255 -254.349 -223.059 -196.830 -173.793 -154.374 -137.885

-123.790 -111.657 -101.135 -83.9159 -70.5794 -60.0769 -51.6717

-44.8530 -39.2490 -34.5952 -30.6957 -27.4045 -24.6045 -22.1927

-20.1057 -17.0085 -14.5609 -12.5973 -10.9950 -9.67387 -8.56609

-7.62889 -6.83144 -6.14920 -5.56129 -4.61719 -3.94340 -3.40891

-2.97286 -2.61333 -2.31353 -2.06119 -1.84658 -1.66267 -1.50370

-1.32367 -1.17336 -1.04676 -0.93906 -0.846762 -0.774456];

figure

plot(x,ud,’b’)

grid

The M-file for the velocity vectors of the Power-Law model with the integral term is

named as

power_law_model_integral_term_quiver.m

and the codes are

x=[ -0.002500 -0.001555 -0.0002733 -0.00004904 0 0.00002632 0.00006270

0.0001446 0.0003002 0.0006453 0.001382 0.002500];

y=[ -0.002500 -0.001555 -0.0002733 -0.00004904 0 0.00002632 0.00006270

0.0001446 0.0003002 0.0006453 0.001382 0.002500];

u=[0.9987 0.9976 0.9737 0.8378 0.5000 0.3108 0.1605 0.05993 0.02313

0.008550 0.003259 0.001552; 0.9987 0.9976 0.9737 0.8378 0.5000 0.3108

0.1605 0.05993 0.02313 0.008550 0.003259 0.001552; 0.9987 0.9976 0.9737

0.8378 0.5000 0.3108 0.1605 0.05993 0.02313 0.008550 0.003259

0.001552; 0.9987 0.9976 0.9737 0.8378 0.5000 0.3108 0.1605 0.05993

0.02313 0.008550 0.003259 0.001552; 0.9987 0.9976 0.9737 0.8378

0.5000 0.3108 0.1605 0.05993 0.02313 0.008550 0.003259 0.001552; 0.9987

0.9976 0.9737 0.8378 0.5000 0.3108 0.1605 0.05993 0.02313 0.008550

0.003259 0.001552; 0.9987 0.9976 0.9737 0.8378 0.5000 0.3108 0.1605

0.05993 0.02313 0.008550 0.003259 0.001552; 0.9987 0.9976 0.9737 0.8378

0.5000 0.3108 0.1605 0.05993 0.02313 0.008550 0.003259 0.001552; 0.9987

0.9976 0.9737 0.8378 0.5000 0.3108 0.1605 0.05993 0.02313 0.008550

0.003259 0.001552; 0.9987 0.9976 0.9737 0.8378 0.5000 0.3108 0.1605

0.05993 0.02313 0.008550 0.003259 0.001552; 0.9987 0.9976 0.9737 0.8378

0.5000 0.3108 0.1605 0.05993 0.02313 0.008550 0.003259 0.001552; 0.9987

0.9976 0.9737 0.8378 0.5000 0.3108 0.1605 0.05993 0.02313 0.008550

0.003259 0.001552];

v=[ -0.001503 -0.004410 -0.318 -6.5991 -19.9887 -15.0946 -6.4968

-1.3309 -0.2528 -0.04252 -0.007432 -0.001936; -0.0009347 -0.002743
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-0.1978 -4.1039 -12.4308 -9.3872 -4.0403 -0.8277 -0.1572 -0.02644

-0.004622 -0.001204; -0.0001643 -0.0004821 -0.03476 -0.7213 -2.1849

-1.6499 -0.7101 -0.1455 -0.02764 -0.004648 -0.0008124

-0.0002116; -0.00002949 -0.00008652 -0.006238 -0.1295 -0.3921

-0.2961 -0.1274 -0.02611 -0.004960 -0.0008341 -0.0001458

-0.00003798; 0 0 0 0 0 0 0 0 0 0 0 0; 0.00001609 0.00004642 0.003347

0.06947 0.2104 0.1589 0.06839 0.01401 0.002661 0.0004476 0.00007823

0.00002038; 0.00003770 0.0001106 0.007975 0.1655 0.5013 0.3786 0.1629

0.03338 0.006341 0.001066 0.0001864 0.00004856; 0.00008691 0.0002550

0.01839 0.3816 1.1558 0.8728 0.3757 0.07696 0.01462 0.002459

0.0004297 0.0001120; 0.0001805 0.0005295 0.03818 0.7923 2.4000 1.8123

0.7800 0.1598 0.03036 0.005105 0.0008923 0.0002325; 0.0003880 0.001138

0.08208 1.7033 5.1594 3.8962 1.6769 0.3435 0.06526 0.01098

0.001918 0.0004998; 0.0008309 0.002438 0.1758 3.6479 11.0496 8.3442

3.5914 0.7357 0.1398 0.02351 0.004108 0.001070; 0.001503 0.004410

0.318 6.5991 19.9887 15.0946 6.4968 1.3309 0.2528 0.04252

0.007432 0.001936];

figure

quiver(x,y,u,v,’b’)

grid

A.6 MATLAB Codes for Fluid Mayonnaise of the

Power-Law Model without the Integral Term

The M-file for fluid mayonnaise of the Power-Law model without the integral term to

find x for f(x) = 0 by using the fzero function is named as

power_law_mayonnaise_fzero.m

and the codes are

function y=f(x)

y= -0.00981167*(x^0.55)+0.125;

The u′(0) = −x found in the fzero function becomes an input in the ode15i() function.

The M-file for the ode15i() function for the Power-Law model without integral term to

plot the wave profile u(x) is named as

power_law_model_code.m

and the codes are

f1=@(t,u,ud )[ -0.00981167*( abs(ud )^(0.55)) -0.5*(u^2)+0.5*u];

u0 =[0.5]; ud0 =[ -102.186775]; u0F =[1]; ud0F =[];

[u0 ,ud0]=decic(f1 ,0,u0 ,u0F ,ud0 ,ud0F);

r1=ode15i(f1 ,[0 ,0.15] ,u0,ud0);

r2=ode15i(f1 ,[0,-0.15],u0 ,ud0);
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plot(r1.x,r1.y,’b’,r2.x,r2.y,’b’);

grid

The M-file for u′(x) of the Power-Law model without the integral term is named as

power_law_ud.m

and the codes are

x=[ -0.1000 -0.0939 -0.0839 -0.739 -0.0660 -0.0580 -0.0501 -0.0413

-0.0368 -0.0324 -0.0280 -0.0258 -0.0236 -0.0214 -0.0192 -0.0167 -0.0152

-0.0137 -0.0121 -0.0106 -0.0091 -0.0082 -0.0074 -0.0065 -0.0057 -0.0048

-0.0038 -0.0033 -0.0028 -0.0024 -0.0019 -0.0016 -0.0014 -0.0011 -0.0009

-0.0006 -0.0004 -0.0001 0 0.0001 0.0004 0.0006 0.0008 0.0010 0.0012

0.0014 0.0015 0.0017 0.0018 0.0019 0.0021 0.0022 0.0023 0.0024 0.0025

0.0026 0.0027 0.0028 0.0030 0.0032 0.0037 0.0041 0.0045 0.0049 0.0053

0.0057 0.0061 0.0065 0.0069 0.0074 0.0078 0.0084 0.0090 0.0096 0.0102

0.0107 0.0113 0.0119 0.0129 0.0139 0.0148 0.0157 0.0167 0.0176 0.0186

0.0196 0.0206 0.0215 0.0225 0.0235 0.0254 0.0274 0.0294 0.0313 0.0333

0.0352 0.0372 0.0391 0.0411 0.0431 0.0450 0.0470 0.0505 0.0540 0.0575

0.0611 0.0646 0.0681 0.0716 0.0751 0.0787 0.0822 0.0892 0.0955 0.1000];

ud=[ -0.0368 -0.0432 -0.0551 -0.0738 -0.0980 -0.1325 -0.1885 -0.3147

-0.4182 -0.5827 -0.8434 -1.0337 -1.2893 -1.6225 -2.1075 -2.9024 -3.5985

-4.5502 -5.9133 -7.9117 -10.9473 -13.3362 -16.4646 -20.6028 -26.1590

-33.7313 -45.8887 -53.4753 -62.0281 -71.2970 -80.7630 -85.3129

-89.5900 -93.4356 -96.7319 -99.3298 -101.1330 -102.0688 -102.1868

-102.0688 -101.1330 -99.3298 -97.0158 -94.4692 -91.8398 -89.2549

-86.7795 -84.2240 -81.8234 -79.3949 -77.1560 -74.9390 -72.9156

-70.9212 -68.9367 -66.9400 -64.9639 -63.0137 -59.2103 -55.5643

-48.7601 -42.6990 -37.3803 -33.2185 -29.5611 -26.3931 -23.5854

-20.7966 -18.4214 -16.3866 -14.6236 -12.6826 -11.0618 -9.7360 -8.5958

-7.6276 -6.7985 -6.1978 -5.0582 -4.3203 -3.7356 -3.2574 -2.8471 -2.5116

-2.2218 -1.9754 -1.7670 -1.5791 -1.4311 -1.2893 -1.0700 -0.9021 -0.7704

-0.6625 -0.5757 -0.5008 -0.4429 -0.3941 -0.3478 -0.3147 -0.2831 -0.2579

-0.2197 -0.1842 -0.1594 -0.1400 -0.1253 -0.1079 -0.0980 -0.0886 -0.0795

-0.0709 -0.0602 -0.0502 -0.0455];

figure

plot(x,ud,’b’)

grid

The M-file for the velocity vectors of the Power-Law model without the integral term is

named as

power_law_model_quiver.m

and the codes are

x=[ -0.1000 -0.0214 -0.0048 0 0.0021 0.0049 0.0113 0.0235

0.0505 0.1000];

y=[ -0.1000 -0.0214 -0.0048 0 0.0021 0.0049 0.0113 0.0235

0.0505 0.1000];

u=[0.9968 0.9737 0.8378 0.5000 0.3108 0.1605 0.0599 0.0231 0.0086
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0.0036; 0.9968 0.9737 0.8378 0.5000 0.3108 0.1605 0.0599 0.0231 0.0086

0.0036; 0.9968 0.9737 0.8378 0.5000 0.3108 0.1605 0.0599 0.0231 0.0086

0.0036; 0.9968 0.9737 0.8378 0.5000 0.3108 0.1605 0.0599 0.0231 0.0086

0.0036; 0.9968 0.9737 0.8378 0.5000 0.3108 0.1605 0.0599 0.0231 0.0086

0.0036; 0.9968 0.9737 0.8378 0.5000 0.3108 0.1605 0.0599 0.0231 0.0086

0.0036; 0.9968 0.9737 0.8378 0.5000 0.3108 0.1605 0.0599 0.0231 0.0086

0.0036; 0.9968 0.9737 0.8378 0.5000 0.3108 0.1605 0.0599 0.0231 0.0086

0.0036; 0.9968 0.9737 0.8378 0.5000 0.3108 0.1605 0.0599 0.0231 0.0086

0.0036; 0.9968 0.9737 0.8378 0.5000 0.3108 0.1605 0.0599 0.0231 0.0086

0.0036];

v=[ -0.00368 -0.1623 -3.3731 -10.2187 -7.7156 -3.3214 -0.6799 -0.1289

-0.02197 -0.00455; -0.0007875 -0.03472 -0.7218 -2.1868 -1.6511 -0.7108

-0.1455 -0.02759 -0.004702 -0.0009737; -0.0001766 -0.007788 -0.1619

-0.4905 -0.3703 -0.1594 -0.03263 -0.006189 -0.001055 -0.0002184; 0 0 0

0 0 0 0 0 0 0; 0.00007728 0.003407 0.07084 0.2146 0.1620 0.06975

0.01428 0.002708 0.0004614 0.00009555; 0.0001803 0.007950 0.1653

0.5007 0.3781 0.1627 0.03331 0.006318 0.001077 0.0002230; 0.0004158

0.01833 0.3912 1.1547 0.8719 0.3753 0.07682 0.01457 0.002483

0.0005142; 0.0008648 0.03813 0.7927 2.4014 1.8132 0.7805 0.1598

0.03030 0.005163 0.001069; 0.001858 0.08194 1.7034 5.1604 3.8964

1.6773 0.3433 0.06511 0.01109 0.002298; 0.00368 0.1623 3.3731

10.2187 7.7156 3.3214 0.6799 0.1289 0.02197 0.00455];

figure

quiver(x,y,u,v,’b’)

grid
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Appendix B

MATLAB Information

The details about the MATLAB platform that we use for computations are

R2015a (8.5.0.197613)

64-bit (Win64)

License Number: 168486

The University of New Orleans

New Orleans, LA 70148

The United States of America
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