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ABSTRACT 
 

This dissertation consists of two essays. First essay investigates the implications of researcher data 

requirement on the risk-adjusted returns of firms. Using the monthly CRSP data from 1925 to 

2013, we present evidence that firms which survive longer have higher average returns and lower 

standard deviation of annualized returns than the firms which do not. I further demonstrate that 

there is a positive relation between firms’ survival and average performance. In order to account 

for the positive correlation between survival and average performance, I model the relation of 

survival and pricing errors using a Farlie-Gumbel-Morgenstern joint distribution function and fit 

resulting the moment conditions to the data. Our results show that even a low correlation between 

firm survival time and pricing errors can lead to a much higher correlation between the survival 

time and average pricing errors. Failure to adjust for this data selection biases can result in 

over/under estimates of abnormal returns by 5.73 % in studies that require at least five years of 

returns data. 

Second essay examines diversification benefits of commodity futures portfolios in the light of the 

rapid increase in investor participation in commodity futures market since 2000. Many actively 

managed portfolios outperform traditional buy and hold portfolios for the sample period from 

January, 1986 to October, 2013. The evidence documented through traditional intersection test and 

stochastic discount factor based spanning test indicates that financializaiton has reduced 

segmentation of commodity market with equity and bond market and has increased the riskiness 

of investing in commodity futures markets. However, diversifying property of commodity 

portfolios have not disappeared despite the increased correlation between commodity portfolios 

returns and equity index returns. 

 
 
 

JEL Classification: G1; G12; G13; G14 
Keywords: Survival Bias; Non-Survival Bias; Data Selection Bias, Commodity Futures; 
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CHAPTER 1 

Selection Biases and Long-Run Abnormal Returns 

 

1. Introduction 

Most empirical finance studies use a set of historical equity returns data. Almost every 

asset pricing model tests involves selecting a set of returns data.  Researchers construct their 

sample by including firms which meet their selection criteria and excluding those firms that do 

not. For example, if the firms do not survive long enough to have a sufficient number of 

observations for estimation purposes, they are excluded from the sample. Similarly, firms that 

existed at the start of a study, but were delisted for various reasons before the study period begins 

are also excluded from the sample. Such data conditioning can introduce a survivor bias in 

performance measures because the characteristics of the firms that are included in the sample differ 

systematically from those of the firms which are dropped from the sample. Failing to adjust for 

survival related biases can lead to a significant distortion in the benchmark used for performance 

measurement. Benchmarking errors are more serious in longer horizons as these errors accumulate. 

 Specifically, I argue that ex-post sampling introduces bias in the measures of risk-adjusted 

returns. These biases could be survivorship bias, non-survivorship bias or truncation bias. Many 

empirical studies can be subject to the biases I discuss in this study, but I focus on long run 

performance studies because the performance measures used to detect the long-term impact of 

corporate events are generally subject to these biases1.  

Beginning with Fama, Fisher, Jensen and Roll (1969) and followed by Ritter (1991),  

Ikenberry, Lakonishok and Vermaelen (1995) , Kothari and Warner (1997),  Rau and Vermaelen 

(1998), and others, CARs were historically used to examine long term returns following major 

corporate events. Under the CARs approach, abnormal returns are calculated each month relative 

to a benchmark and then aggregated over three to five year time periods. The benchmark return 

could use a portfolio such as CRSP equally weighted index or expected returns calculated using a 

                                                            
1 Kothari and Warner (1997), Barber and Lyon (1997), Lyon, Barber, and Tsai (1999), Mitchell and Stafford (2000), 
Brav (2000), and Kolari and Pynnone (2010) address other issues encountered in performing long-run event studies 
and propose some remedies. 
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well-known factor model. The parameters of the benchmark model are estimated using 24 months 

of time series data prior to an individual announcement date. The estimated parameters are then 

used to form model predictions and matched with event firm actual returns during the event period. 

The CARs approach requires at least five and up to eight years of continuous returns data to 

evaluate long term performance. If there is a relationship between firm survival and performance 

then having multi-year data requirement, such as in long term CARs studies, can impart a serious 

bias in performance measurement.  

CARs suffer from the “bad model problem”, as coined by Fama (1998). A bad model 

produces a spurious abnormal average monthly return or alpha, which eventually becomes 

statistically significant in cumulative monthly abnormal returns. If the parameter estimates of the 

benchmark model are biased, cumulating monthly abnormal returns over time also makes 

estimates of long-term abnormal returns biased.  

The correlation between survivorship and average performance is one potential source of 

bad model problems.  In CARs studies the firms that comprise the benchmark, on average, do not 

survive as long as the ones under study.  This mortality mismatch between benchmark and event 

firms affects performance measurement --causing an upward bias in alphas.  

Following the work of Ikenberry, Lakonishok and Vermaelen (1995), Barber and Lyon 

(1997) and Lyon, Barber, and Tsai (1999), the matched-firm buy-and-hold technique to measuring 

abnormal returns has become the popularly used technique. In this method, buy and hold abnormal 

returns are calculated as the difference between buy-and-hold returns of event firms and a set of 

control firms. Most existing studies use a carefully constructed matched reference portfolio as the 

benchmark to avoid known biases and access statistical significance with a bootstrapping 

procedure (see Bessembinder and Zhang (2013) and references therein for a review of this 

methodology). Matched firms are usually selected based on firm characteristics such as industry, 

size, and book-to-market ratio. Events and matched firms are held in a portfolio for a period of 

three to five years or until delisting date; whichever comes first. If a matched firm for an event 

firm is delisted, a new firm is drawn from the original list of candidates.  

The matched-firm buy-and-hold abnormal return measuring technique imparts a bias on 

long-run performance estimates if the performance of both the event and control firms are affected 
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by survival time. In the buy-and-hold technique, event firms must have a minimum of three years 

of post-event stock returns to calculate abnormal returns. Matched firms are selected at the end of 

the year prior to the event firm’s year based on the size and book-to-market, and included for a 

holding period of three to five years. The difference between these two portfolios is often regarded 

as abnormal or unexpected return. The abnormal return may be driven by performance of event 

firms or control firms. The proportion of surviving verses non-surviving firms in each of these 

portfolios can influence measured abnormal returns. Previously methodologies do not directly 

account for bias caused by survival. This problem is potentially more severe with riskier firms 

(i.e., firms with small market capitalization and high book-to-market) because these firms are less 

likely to survive long enough to be included in the sample of long-run studies as pointed out by 

Kothari, Sabino and Zach (2004).   

An alternative methodology to the buy-and-hold matched firm approach is the calendar-

time portfolio approach. Loughran and Ritter (1995), Brav and Gompers (1997), Brav, Geczy and 

Gompers (2000), among other, have used the calendar-time portfolio approach and Fama (1998) 

favors this approach. It focuses on the mean abnormal time series returns to portfolios of event 

firms. For each calendar month, event firms’ portfolio returns are computed as the equally 

weighted average return of all firms that have experienced the same event within the previous three 

to five years. Portfolios are rebalanced monthly and drop all firms that reach the end of the long-

horizon study period and add all firms that have just experienced the event. Monthly excess returns 

of the event portfolio are regressed on the risk factors and the intercept is used as a measure of the 

average monthly abnormal return. The choice of risk factors is guided by theory. 

Although the calendar time portfolio approach is less susceptible to data selection biases, 

it is not bias free. For instance, suppose the post event period is five years. For each calendar 

month, a portfolio is constructed comprising all firms that experienced the event within the last 

five years. Events firms are tracked up to five years or up to the delisting date following the event. 

Each month, new firms are added and some firms are deleted. Hence, the proportion of non-

surviving firms and young firms in the monthly portfolio is time varying. If the majority of months 

in the period under study is dominated by either young firms or non-surviving firms then the results 

obtained from the calendar time portfolio approach are biased, and sometimes very odd as 

documented in Ritter and Welch (2003). This feature of the multifactor regression based tests of 
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abnormal returns provides some background as to why the long-run event studies’ results are 

sensitive to the exact time period chosen2.  

 The long-run over-performance or under-performance reported in past event studies may 

be subject to biases from data requirements and sample period selection. Neglecting these biases 

produces misleading results in long-horizon event studies whether the abnormal returns are 

measured using CARs, BHARs or Jensen’s alpha approach. Hence, the evidence of significant 

abnormal returns reported in the literature might be the result of benchmarking errors rather than 

a failure of a particular asset pricing model.  

 To examine the implications of data requirement biases on the calculation of long-run 

abnormal returns, I analyze in detail the performance of firms which meet the data requirement 

criteria and firms which do not meet the data selection criteria. I analyze two samples constructed 

from the Center for Research into Securities Prices (CRSP) database. The first sample consists all 

firms which have at least 24 months of continuous returns in the CRSP database over the period 

December 1925 to December 2013. Further, I also examine performance characteristics of firms 

by splitting the first sample into end of sample period survivors and non-survivors (active and non-

active firms). To see whether there is any data truncation bias, I form second sample consisting of 

all firms which have at least 24 months of returns in the CRSP data base over the period December 

1972 to December 2013.  From the first sample, I split firms into firms which meet data selection 

criteria and firms that do not meet selection criteria and then, I examine the performance and other 

characteristics of data for these two groups. 

In my empirical analysis, I show that the firms which meet data requirement have higher 

risk-adjusted annualized average returns and lower standard deviation of annualized returns than 

the firms that do not meet data requirement. The difference in average performance also depends 

on the calculation method applied. For example, the annualized CAPM alpha and its standard 

deviation for firms that survive more than five years are 4.15 percent and 19.72 respectively, 

whereas the same measures for firms that do not survive through five years are -9.61 and 48.30, 

                                                            
2 Boehme and Sorescu (2002) show that the positive post dividend price drift documented by Mitchaely, Thaler and 
Womack (1995) is confined to the period from 1964 to 1998 and there is no evidence of any abnormal price drift for 
the period prior to 1964. Ritter and Welch (2002) document that the long-run underperformance of IPOs  is sensitive 
to the time period examined. Similarly, Fu and Huang (2014) argue that the long-run abnormal returns following 
both repurchases and seasoned equity offerings disappear for the events in the most recent decade.  
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respectively. The annualized three factor alpha and its standard deviation for firms not surviving 

more than five years are -6.23 percent and 52.66 respectively but the same measures are 2.22 

percent and 21.84 for firms surviving beyond five years.  

The analysis of the data also shows that survivors have positive risk adjusted returns from 

the beginning of their birth time but non-survivors have negative risk-adjusted returns. The average 

performance of non-survivors is consistent with the IPO under performance literature. The IPO 

underperformance is not true for survivors. This finding clearly has implication on IPO literature.  

In addition, when I examined whether survival is correlated with risk-adjusted performance 

measures, I estimate parameters of Cox proportional hazard model of firm survival using full 

sample and sub-sample data. The results indicate that performance is correlated with survival no 

matter which asset pricing model is used. Further, I find the correlation between survival and 

average returns is decreasing for surviving firms and increasing for non-surviving firms. I observe 

similar characteristics of the data as I require survival over longer future periods. This phenomenon 

is pronounced in sub-sample as well.  

To examine the relationship between survival and average pricing errors, I develop a 

general framework for modelling pricing errors and survival time using the Farlie-Gumbel-

Morgenstern (FGM) bivariate distribution of Morgenstern (1956), Farlie (1960) and Gumbel 

(1958). I then compute conditional moments and apply them to the data to estimate the relationship 

between survival and pricing errors and conditional expectations and the variance of average 

pricing errors, given survival time.  

In my framework, I assume average pricing errors follow normal distribution and survival 

time, defined as the number of months from birth (which occurs when I observe returns in CRSP) 

to death (which occurs when CRSP stops reporting returns), follows an exponential distribution. I 

use the FGM distribution to model the joint occurrence of survival and average pricing errors and 

assume that the birth variable is exponentially distributed and independent of average pricing 

errors. By allowing the birth variable to be independent of average pricing errors I can concentrate 

on the conditional expectation and dependence properties between survival and average pricing 

errors. Interestingly, I find a very high correlation between birth and survival. To address this issue, 

I model birth as a convex combination of survival time and another exponentially distributed 

variable.  



6 
 

Given this setup, I achieve two main findings. First, despite a low correlation between 

pricing errors and survival time, the correlation between average pricing errors and survival can 

be very high. Using my model, I show that pricing errors and survival time have statistically 

significant low correlation (less than 2 percent) but the correlation between average pricing error 

and survival time can go up to 14 percent depending on how the data is selected. Further, the 

correlation is determined by the conditional variance of average pricing errors and covariance 

between survival and pricing errors. Therefore, to have consistently high correlation, either the 

variance of the average pricing errors has to be consistently high or conditional covariance between 

survival and pricing errors has to be high or both. Second, I derive a conditional expectation of 

average pricing errors which links the average pricing errors to the survival time. When this 

expectation to the CRSP data, it shows that the average pricing errors for a given survival time 

increase as the survival time increases. The survival adjusted average risk adjusted returns is 

always statistically insignificant.  My results have important implications for long-run 

performance studies and market efficiency because these studies often require long history of 

returns series.  

While the intuition as to why survival and the average pricing errors may be correlated is 

not readily apparent, I postulate that survival time captures certain specific characteristics of a 

company. One of the main reason is the market discipline in which market rewards those firms 

which experience positive abnormal returns even when real return is negative and punishes those 

firms which experience negative returns when true return is positive. Further, firms that perform 

poorly are less likely to survive longer. Another reason is that survival time confirms stability in 

business relations, captures differences in the life cycle of a company and controls for differences 

in the life cycle of a firm. As one would expect firm riskiness may decline with firm age as argued 

by Faccio, Marchica and Mura (2011) as firms with a longer life span should be able to generate 

internal financing funds. These factors help older firms realize higher risk-adjusted returns. 

Therefore, the including only firms that survive in a sample leads to a positive risk-return 

relationship.  

The rest of the paper is organized as follows. Section II provides review of related 

literature. Section III examines the data and provides a comparative analysis of surviving and non-

surviving firms in terms of risk-adjusted returns and correlation between survival and average 
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pricing errors. Section IV discusses the general framework for modelling the joint behavior of 

survival and average pricing errors. Section V presents the results from the estimates of my non-

linear conditional moments. Finally, section VI summarizes the main findings and implications of 

the study.   

2. Literature Review 

 Many past studies which have used long-term security prices discuss about the biases that I study 

here. They include Ball and Watts (1979), Banz and Breen (1986),  Brown, Goetzmann and Ross 

(1995), Kothari and Warner (1997), Barber and Lyon (1997), Li and Xu (2002) and Linnainmaa 

(2013).  Ball and Watts (1979) examine the time series behavior of earning per share for three 

samples of firms: two samples without any survival requirement and one sample with at least 50 

years of survival requirement.  They compare the characteristics of the earning per share for these 

samples. They find no significant difference in the results for these samples and conclude that the 

effects of survival requirement on different statistics are minimal. 

Banz and Breen (1986) evaluate the impact of the ex-post selection bias on the returns of 

the portfolio. They formed two portfolios on the basis of size and earnings yield using a partially 

complete COMPUSTAT data base and the unbiased data base which is “the sequentially collected 

COMPUSTAT file”. They find significant difference in these portfolio returns. They also show 

that the differences in the portfolio returns could be due to survivorship bias.   

One of the influential papers that argue that there could be serious survival bias in the long 

horizon event studies is Brown, Goetzmann and Ross (1995). They examine the implication of the 

data requirement on measures used to study long-term market behavior. They provide some 

analysis of the consequences of survival for studies in long-term stock market returns and event 

studies.  They argue that survival criteria related to whether a firm survived can give the 

appurtenance of abnormal returns around events. They point out biases induced by survival 

conditioning in the study of cross-sectional cumulative excess return measures that are commonly 

used in the context of event studies.  

Kothari and Warner (1997) is one of the early papers to examine survival related biases in 

reference to long run abnormal returns. They argue that minimum data requirement impose 

detectable biases in the mean abnormal returns and the standard deviation of returns for long-
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horizon studies. In their calculation, three year CARS is 40.8 percent with no prior data 

requirement and 45.1 percent with four years of data requirement. Similarly, the BHAR increases 

from 48.8 percent to 53.7 percent as the prior data availability is increased from zero to four years. 

Their results strongly suggest that conditioning a sample on prior data availability is associated 

with higher future mean returns. They also point out that failing to address survival biases in long-

horizon tests can potentially affect the specification of test statistics.  

 In a similar study, Linnainmaa (2013) argues that researchers’ effort to correct for 

survivorship bias effects introduces a bias in the opposite direction which he calls “reverse 

survivorship bias” and defines it as the gap between the expected alpha and in-sample alpha 

estimate. 

 On the contrary, Li and Xu (2002) argue that the survival problem in the current literature 

are probably exaggerated.  In their modelling framework, they derive a mathematical relationship 

between the ex-ante survival probability and the average survival bias and show that to have high 

survival bias, the probability of market survival over the long-run has to be extremely small.  But 

existing historical evidence shows high rate of survival. Therefore, survival bias should not have 

any impact on the U.S. equity premium.  

 Most of the studies reviewed in this section talk about the data selection, survival and non-

survival related biases in different contexts. However, none of these studies examine the presence 

of ex post data conditioning biases and implications of such biases for calculating risk adjusted 

returns using CRSP data base. In this study, I try to fill this gap in the literature by examining 

return patterns of survivors and non-survivors in the CRSP data base and pointing out how 

statistics used to detect long-term abnormal returns might be affected. My work complements 

previous research that suggests caution in interpreting the evidence of long-horizon price 

performance for methodological reasons. For example, Kothari and Warner (1997), Barber and 

Lyon (1997), Brav and Gompers (1997), Brav et al. (1998), Fama (1998) and others question the 

economic significance of the evidence of long-horizon studies. 
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3. Survival and Performance Analysis 

3.1 Data and performance measurement 

The initial dataset consists of monthly returns on common equity (share codes 10 or 11) of 

21,630 firms from the CRSP  database spanning December 1925 to December 2013, excluding 

utilities companies and firms whose real stock price (in 2000 dollars) drops below $5 during its 

database life. To be in the sample, a firm must have be in CRSP and be traded in major exchanges 

(Exchange Code <5).  The initial dataset reduces to 18,876 firms after I require at least 24 months 

of consecutive non-missing returns to compute rolling alphas. The risk free rate, , and risk factors 

MKT, SML, HML, and MOM are obtained from Kenneth R. French’s website.  

In the framework of this paper, I define firm birth and survival times using firms’ listing 

and/or delisting dates in the CRSP database. The firms birth date, b, is defined as the first date 

listed in the CRSP database. The firm born earlier gets higher value for b as compared to firms 

born in the latter dates. The birth dates are used for selecting censored, non-censored, and sub-

samples. Similarly, firm survival time, s, is defined as the number of months between listing and 

delisting dates in the CRSP database. For censored firms, survival time is unknown, and therefore, 

I use the end date of the sample as delisting date to define the survival variable.  If a firm has 

missing returns between two periods that have returns, it is still considered as one firm.  

 I examine the relationship between survival/non-survival and average pricing errors for 

firms in six different samples. The first sample is the entire CRSP database over the full sample 

period. I argue that I may loose some information when I ignore the fact that end of sample period 

surviving firms and non-surviving firms may systematically behave differently. The parameter 

estimates will also be bias because ignoring right-censored firms is ignoring firms which have the 

propensity to be greater than a given value. In this case, the expectation of my estimator is smaller 

than the real value of surviving time. In order to account for this survival and non-survival biases, 

I split the first sample into censored and non-censored data. The censored sample includes all those 

firms which are still alive at the end of sample period whereas the non-censored sample includes 

all those firms that are already dead by the end of the sample period. Further, CRSP expanded its 

coverage in July 1962 by including stocks traded on the American Stock Exchange, and in 

December 1972 by adding NASDAQ traded stocks. To account for the beginning of the CRSP 
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Nasdaq period and data truncation bias, I also examine a sub-sample of my entire CRSP data 

covering the period December 1972 to December 2013. In addition, I study the censored and non-

censored sample of firms from this sub-sample.  

I denote the return during period t on firm i by  and the number of time periods as T. I 

use beta pricing models to describe the return generating process. More specifically, individual 

firm level performance is measured as average pricing error computed from three standard 

benchmarks:3 the Jensen (1968) CAPM, 

  , (1)

the Fama and French (1993) 3-factor model, 

  , (2)

and the Carhart (1997) four factor model, 

  . (3)

These models are designed to capture the relation between returns and risk factors used to measure 

exposures to unknown state variables. If the factor exposures capture all variation in expected 

returns, the intercepts in models (1) through (3) are zero for all securities and portfolios. The 

intercepts in (1) through (3) are referred as pricing errors and they measure the deviation of excess 

returns from what the corresponding returns should be according to the given pricing model. For 

each firm, I compute the average of pricing errors obtained from a rolling regression and use it as 

a measure of performance.  

The average firm alphas are calculated in two steps. First, I calculate 24-month rolling 

window alphas for each firm by running a rolling time series regression for models (1), (2), and 

(3). A full 24-months of returns is required for each estimate.  Second, individual firm alphas are 

computed from each model by averaging its rolling alphas, 
∑ ∗

∗ , 1,3,4 , where ∗

24 is the length of the estimation window and  is the firm survival time adjusted for any missing 

observations. Cross-sectional average alphas are calculated as equally-weighted individual firm 

level alphas estimated from the models above. The cross-sectional mean for firms surviving s 

                                                            
3 Firm and time subscripts  are omitted for clarity.  
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months, denoted as E α|s , is calculated as equally weighted alphas of all firms that survive s 

months, i.e. E α|s ∑ α N⁄ . 

To study the effects and characteristics of survival and non-survival biases, I classify firms 

in each sample into survivors and non-survivors and condition on survival time. The survivors 

given k (the minimum number of months required for firms to have returns to be included in the 

sample) include all firms that survive beyond k months. The average performance for k months 

survivors is calculated by averaging alphas of the firms that live beyond k months, E |s k

∑ α N⁄ 	where	s k. Correspondingly, non-survivors given k months include all the firms that 

survive at most k months. Their cross-sectional mean alpha for k months non-survivors ( 

E |s k ) is calculated as the equally-weighted average of alphas from firms that survive at 

most s months i. e. 	E |s k 		 ∑ α N⁄ 	where	s k. I compute these conditional 

averages for survivors and non-survivors as I increase the value of k. 
In addition to average performance, I also examine the Pearson correlation and rank 

correlation between survival time and alphas and standard deviation of alphas for survivors and 

non-survivors. The Pearson correlation coefficient is computed as Cov α , s / Var α 	Var s 	, 

where  for survivors, and  for non-survivors. Similarly, the rank correlation coefficient 

is computed using the same formula using ranks instead of real values of  α 	and	s. Finally, the 

cross-sectional standard deviation of risk-adjusted returns is calculated as usual for survivors (s > 

k) and non-survivors (s ≤ k).  

 I begin the presentation of my results with summary statistics. Table I presents summary 

statistics and correlation between survival and average pricing errors as well as correlation between 

survival and birth time for different samples. Pcorr and Scorr refers to Pearson correlation and 

Spearman’s rank correlation. The results in Table I shows that the end of sample period surviving 

firms have higher average risk adjusted returns than firms that do not survive at the end of sample 

period. Inactive firms also referred as the end of the sample non-survivors have negative risk 

adjusted mean returns irrespective of model used. Further, I find a higher correlation between 

CAPM alphas and survival compared to the correlation between survival and alphas computed  
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Table 1 

Descriptive Statistics and Correlation between Survival and Mean Pricing Errors 

This table reports summary statistics from different samples. Pcorr and Scorr refers to Pearson and 
Spearman correlation coefficients between survival and average pricing errors. Panel A shows 
results for whole period sample which consists of 18876 firms that have at least two years of prior 
data requirement over the period December 1925 to December 2013. Panel B and Panel C presents 
the end of sample surviving firma and the end of the sample non-surviving firms. Panel D reports 
results for sub-sample which consists of 17,596 firms with at least two years of prior data 
requirement over the sample period December 1972 to December 2013. Panel E and Panel F 
displays results for sample of firms that are censored and non-censored respectively. Mean returns 
are annualized in all panels. 
 

 Mean t-Stat Sdtdev Min Max Pcorr Scorr 
Panel A: Full Sample (18876 Firms)     

Ret 13.4422 27.3046 0.0564 -0.9231 1.3000 0.0441 0.0044 
CAPM 1.0666 5.0043 0.0244 -0.1833 0.2224 0.1147 0.1471 
FF3F 0.3259 1.4133 0.0264 -0.1831 0.3899 0.0677 0.0981 
FF4F 0.4958 2.1288 0.0267 -0.1906 0.4020 0.0663 0.0961 
Survival 167.85 151.36 152.36 26 1057 1 1 
Birth 374.5564 239.7445 214.6464 25 1056 0.5911 0.4574 

Panel B: Active Firms in Full Sample  (3208 Firms)    
Ret 20.3879 42.8347 0.0225 -0.1264 0.6037 -0.0778 -0.0448 
CAPM 6.6866 21.4786 0.0147 -0.0975 0.2072 0.0527 0.0496 
FF3F 6.2401 18.5877 0.0158 -0.1174 0.2460 0.0101 0.0112 
FF4F 5.8931 17.8534 0.0156 -0.1227 0.2018 0.0206 0.0394 
Survival 257.76 75.13 194.32 26 1057 1 1 
Birth 256.7703 74.8412 194.3216 25 1056 0.9999 0.9999 
Panel C: Inactive Firms in Full Sample  (15668 Firms)    

Ret 12.0201 20.5683 0.0610 -0.9231 1.3000 0.0482 0.0092 
CAPM -0.0841 -0.3396 0.0258 -0.1833 0.2224 0.1087 0.1389 
FF3F -0.8850 -3.2999 0.0280 -0.1831 0.3899 0.0563 0.0776 
FF4F -0.6093 -2.2446 0.0283 -0.1906 0.4020 0.0554 0.0765 
Survival 149.44 138.50 135.06 26 1043 1 1 
Birth 398.6729 236.9473 210.6065 31 1056 0.6389 0.5239 
Panel D: Subsample  (17596 Firms) 
Ret 15.1222 28.3619 0.0589 -0.9231 1.3000 0.0547 0.0433 
CAPM 1.3413 5.9014 0.0251 -0.1833 0.2224 0.1227 0.1675 
FF3F 0.4017 1.6306 0.0272 -0.1831 0.3899 0.0643 0.1005 
FF4F 0.5328 2.1465 0.0274 -0.1906 0.4020 0.0657 0.1008 
Survival 166.45 145.18 152.08 26 1057 1 1 
Birth 343.1942 254.5816 178.8215 25 1056 0.6825 0.4952 
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Table IContinued 

Pane E: Active Firms in Sub-sample  (3208 Firms)    
Ret 20.5510 43.1820 0.0225 -0.1264 0.6037 -0.0660 -0.0212 
CAPM 6.6778 21.4284 0.0147 -0.0975 0.2072 0.0495 0.0486 
FF3F 6.2046 18.4665 0.0159 -0.1174 0.2460 0.0040 0.0063 
FF4F 5.8714 17.7783 0.0156 -0.1227 0.2018 0.0170 0.0363 
Survival 257.76 75.13 194.32 26 1057 1 1 
Birth 256.7703 74.8412 194.3216 25 1056 0.9999 0.9990 
Panel F: Inactive Firms in Sub-sample  (14388 Firms)    
Ret 13.9117 21.6374 0.0643 -0.9231 1.3000 0.0647 0.0607 
CAPM 0.1514 0.5647 0.0268 -0.1833 0.2224 0.1213 0.1657 
FF3F -0.8921 -3.0687 0.0291 -0.1831 0.3899 0.0525 0.0807 
FF4F -0.6575 -2.2396 0.0293 -0.1906 0.4020 0.0547 0.0815 
Survival 146.09 132.11 132.64 26 1043 1 1 
Birth 362.4636 256.8485 169.2729 31 1056 0.7320 0.5648 

 

from three and four factor models.  Furthermore, I observe a very high correlation between firm 

survival and arrival time. 

3.2 Firm births, deaths and survival analysis 

In Figure 1, I plot the number of firms born, the number of firms died and the total number 

of existing firms in the CRSP data base on a yearly basis. I observe a low number of firm births 

and deaths prior to December 1972 because the original CRSP file contained only stocks from the 

New York Stock Exchange (NYSE). I see from the figure that the number of birth and deaths in 

each year varies substantially over time after 1974 and the number of firm deaths exceeds number 

of firm births since 1997. Firms may die for various reasons such as a split, merger, liquidation, or 

dropped but I do not differentiate among these causes of death. My analysis shows that the major 

cause of death is mergers and acquisitions followed by dropped delisting for various reasons. In 

my sample, about 42.28 percent of delisting is due to mergers and acquisitions and 34.63 percent 

is due to dropped delisting.  
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Figure 1. Number of Firms, Firm Births and Deaths in CRSP by Year.   The figure illustrates 
number of firms, number of firm births and deaths in CRSP database by year. Y-axis on the left 
represents number of births and deaths and the y-axis on the right represents number of firms in 
the CRSP database. The solid line represents number of firms in the CRSP, the line with strikes 
represents number of firm births and dotted line represents number of firm deaths. The two 
spikes in the line with strikes correspond to 1962 and 1972 when CRSP expanded its database 
by adding stocks traded on American Stock Exchange and NASDAQ respectively.  

 

Figure 2 provides information about the number of firms and cumulative percentage of 

survivors and non-survivors given survival time. It also presents the exponential curve fitted to the 

survival data. The vertical lines represent the number of firms surviving T years. For instance, 

there are 1,480 firms that survive five years. The solid line is the exponential curve fitted to the 

actual survival data. The dotted line depicts the percent of firms that do not survive beyond T years 

and the line with the stars shows the percent of firms that survive more than T years. For instance, 

approximately 13 percent of firms do not live beyond two years and approximately 87 percent of 

firms live more than two years. The percent of survivors decreases to 67.53 percent by year five 

and 43.06 percent by year ten. Similarly, the number of non-survivors increases to 32.47 percent 

and 56.94 percent by years five and ten respectively. Overall, the plots of the cumulative 

percentage of survivors and non-survivors depict the impact of the minimum data requirement on 

the numbers of firms surviving or non-surviving. 
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Figure 2. Illustrating Survival of the Firms and Plot of Exponential PDF to the Data.   The 
figure illustrates the survival and non-survival rate of firms in the CRSP data base and the plot 
of the exponential probability density function of the data. The vertical bars shows number of 
firms surviving corresponding number of months. The solid line shows the exponential 
probability density function fitted to the data. The dotted line shows percent of firms that survive 
less than or equal to T years. Similarly, the line with star plots percent of firms that survive 
beyond T years. 

 

 

3.3 Survival and performance 

In this section, I look at the influence of increasingly longer period data requirements on 

firm performance in the context of the overall dataset and a dataset truncated to include only firms 

living after December 1972. I choose my sub-sample period beginning in December 1972 because 

CRSP’s data coverage expanded its coverage to include domestic common stocks traded on the 

NASDAQ stock market at that time. Both of these datasets are bifurcated into non-active firms for 

which mortality date is known and active firms for which mortality date is not known.   
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  Table II reports the average performance of firms from entire dataset grouped by their 

survival time for my overall sample.  The mean returns of firms which live over shorter periods 

are clearly below those of the firms that live over longer periods. In terms of risk-adjusted 

performance, almost all average alphas are negative and significantly different from zero for firms 

that survive six or less than six years. In contrast, the average alphas for firms that live beyond six 

years are all positive and statistically significant. This might be because poorly performing firms 

drop out of the sample and well performing firms continue to live longer.  

Another important feature of the data is that increasing average returns for a given s starts 

to decline after a certain number of years. Such return patterns give of a humped shape average 

return curve, increasing up to twenty years and then dropping. The end of the sample survivors, or 

active firms, have slightly different return patters than the others. They have higher average returns 

than those with similar survival times. I do not see increasing average returns for firms as I require 

firms to survive longer period in the sample of firms that survive to end of the sample period. 

Table III and Figure 5 report risk adjusted returns for firms in different samples selected 

based on data requirement. As I can see in the Figure 5 that the average risk-adjusted returns for 

firms that meet data requirement and for firms which do not meet data requirement increases as 

the survival time increases across all models and all samples. Non-surviving firms always 

underperform surviving firms and experience negative risk-adjusted returns. The significantly 

different from zero negative average returns indicate that the performance preceding the delisting 

of a firm is overwhelmingly bad. In contrast, firms in the survival group have positive risk-adjusted 

average returns irrespective of survival time. The overall risk-adjusted mean return is negative up 

to six years and positive thereafter.  

In order to provide further insights into the performance of the firms that meet minimum 

data requirement and the firms that do not meet the data requirement, I examine performance of 

firms splitting them in different groups as in Table III. Panel A in Table II reports risk adjusted 

averages for firms in entire sample. Similarly, Panel B and Panel C in Table II show risk adjusted 

averages for active firms and non-active firms respectively. Averages for the firms which meet 

data requirements are presented in column 2 to column 5 in each panel and averages for firms 

which do not meet are shown in columns 7 to 10 in each panel. 
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Table II 

Average Performance Based on Survival Time 

This table reports cross-sectional average of average pricing errors given the survival time. The sample includes all the 18876 firms that 
have at least 24 months of continuous returns in the CRSP database over the period 1926 to 2013. Firm survival time is presented in 
years under the column heading Years.  CAPM, FF and FF4 refer to the averages of alphas estimated using the CAPM, the three factor 
model and four factor model. I repost t-statistics under the column heading t-Stat for testing the null hypothesis that the corresponding 
average is equal to zero. Panel A shows the results from full sample, Panel B from censored sample and Panel C from non-censored 
sample. 

 

 All Firms  Active Firms  Non-active Firms 
Years CAPM FF4F N  CAPM FF4F N  CAPM FF4F N 

2.5 -14.97* -10.12* 380  10.43 18.23** 31  -17.23* -12.64* 349 
3 -12.91* -6.07* 821  -3.79 -2.09 58  -13.60* -6.37* 763 
4 -10.46* -6.90* 1564  -9.02** -4.18 116  -10.58* -7.11* 1448 
5 -5.46* -2.76** 1465  -13.06* -9.71** 71  -5.08* -2.41** 1394 
6 -2.25** -2.08** 1311  7.53** 7.50** 52  -2.65* -2.48** 1259 
7 0.77 0.41 1209  4.94** 3.11 140  0.22 0.05 1069 
8 3.06* 1.62 1040  8.92* 6.97* 136  2.18** 0.81 904 
9 3.17* 0.97 855  6.27* 3.83** 122  2.65* 0.49 733 
10 3.20* 1.02 868  2.07 1.02 128  3.40* 1.02 740 

12.5 7.16* 3.25* 325  5.86* 4.94** 32  7.30* 3.07* 293 
15 5.93* 3.66* 575  10.08* 8.41* 127  4.76* 2.31* 448 
20 6.14* 4.25* 328  9.42* 9.31* 89  4.92* 2.37** 239 
25 6.33* 3.39* 200  9.82* 9.32* 27  5.79* 2.47* 173 
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Table III 

Cross-sectional Average of Mean Pricing Errors for Survivors and Non-survivors  

This table reports cross-sectional mean of average firm alphas conditional on a firm surviving time. The data in this table are for the 
period December 1925 to December 2013. Firm alphas are estimated using the CAPM, the three-factor and the four-factor model in 
rolling time-series regression setting. A firm that disappears during year T is assigned into the year T “Do not meet data requirement” 
pool of firms; firms still alive beyond year T are assigned into the year T “Meet data requirement” pool. The first column reports firm’s 
survival time and RET refers to risk unadjusted returns. The columns in this table reports annualized average alphas for firms that either 
survive (columns (3) to (5) ) or do not survive (columns (7) to (9)) based on the CAPM, the three factor model and the four factor-model 
respectively through the Tth year of their lives, conditional on survival time. N refers to the total number of firms in each sample. 

 

Panel A: All Firms  
Firm Meet data requirement Do not meet data requirement 
Age RET CAPM FF3F FF4F N  RET CAPM FF3F FF4f N 
2.5 13.69* 1.40* 0.57** 0.71* 18496  1.32 -14.97* -11.51* -10.12* 380
3 14.07* 2.06* 0.94* 1.03* 17675  4.22 -13.56* -8.69* -7.35* 1201
4 15.07* 3.28* 1.75* 1.80* 16111  3.97 -11.81* -8.00* -7.10* 2765
5 16.02* 4.15* 2.22* 2.25* 14646  4.51** -9.61* -6.23* -5.59* 4230
6 16.63* 4.78* 2.67* 2.68* 13335  5.78* -7.87* -5.30* -4.76* 5541
7 16.90* 5.18* 2.91* 2.91* 12126  7.23* -6.32* -4.31* -3.84* 6750
8 17.05* 5.38* 3.01* 3.03* 11086  8.31* -5.07* -3.49* -3.11* 7790
9 17.14* 5.56* 3.15* 3.20* 10231  9.07* -4.26* -3.02* -2.71* 8645
10 17.38* 5.78* 3.32* 3.40* 9363  9.57* -3.57* -2.62* -2.37* 9513

12.5 17.63* 5.97* 3.68* 3.76* 7634  10.60* -2.26* -1.95* -1.72* 11242
15 17.83* 6.05* 3.92* 4.02* 6154  11.32* -1.34* -1.41* -1.21* 12722
20 17.97* 5.73* 3.42* 3.61* 4490  12.03* -0.39 -0.64** -0.47* 14386
25 17.83* 5.52* 3.12* 3.36* 3213  12.54* 0.15 -0.25 -0.09* 15663
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Panel B: Non-active Firms  
Firm Meet data requirement Do not meet data requirement 
Age RET CAPM FF3F FF4F N  RET CAPM FF3F FF4f N 
2.5 12.41* 0.31 -0.60** -0.34 15319  -4.96 -17.23* -13.52* -12.64* 349
3 12.91* 1.04* -0.22 -0.02 14556  0.37 -14.74* -9.64* -8.34* 1112
4 14.17* 2.32* 0.59* 0.77* 13108  1.01 -12.39* -8.45* -7.65* 2560
5 15.27* 3.20* 0.96* 1.14* 11714  2.39 -9.81* -6.35* -5.80* 3954
6 15.99* 3.90* 1.40* 1.58* 10455  4.05** -8.08* -5.47* -5.00* 5213
7 16.40* 4.32* 1.59* 1.75* 9386  5.48* -6.67* -4.58* -4.14* 6282
8 16.66* 4.55* 1.68* 1.85* 8482  6.54* -5.56* -3.91* -3.52* 7186
9 16.70* 4.73* 1.79* 1.98* 7749  7.44* -4.80* -3.50* -3.14* 7919
10 16.90* 4.87* 1.85* 2.08* 7009  8.07* -4.10* -3.10* -2.79* 8659

12.5 17.07* 4.84* 1.96* 2.21* 5439  9.34* -2.70* -2.40* -2.11* 10229
15 17.22* 4.79* 2.08* 2.37* 4240  10.09* -1.89* -1.98* -1.71* 11428
20 17.35* 4.59* 1.68* 2.02* 3016  10.75* -1.20* -1.50* -1.24* 12652
25 17.29* 4.38* 1.51* 1.85* 2123  11.19* -0.78* -1.26* -1.00* 13545

Panel C: Active Firms  
Firm Meet data requirement Do not meet data requirement 
Age RET CAPM FF3F FF4F N  RET CAPM FF3F FF4f N 
2.5 19.88* 6.65* 6.19* 5.77* 3177  72.10** 10.43 11.04 18.23** 31
3 19.48* 6.84* 6.33* 5.92* 3119  52.33* 1.16 3.13 4.99 89
4 18.98* 7.46* 6.83* 6.31* 3003  40.96* -4.60 -2.37 -0.20 205
5 19.03* 7.95* 7.25* 6.70* 2932  34.86* -6.77* -4.52 -2.65 276
6 18.92* 7.96* 7.25* 6.68* 2880  33.28* -4.51** -2.63 -1.04 328
7 18.64* 8.12* 7.42* 6.86* 2740  30.65* -1.68 -0.68 0.20 468
8 18.31* 8.07* 7.34* 6.86* 2604  29.33* 0.71 1.51 1.73 604
9 18.53* 8.16* 7.42* 7.01* 2482  26.74* 1.64 2.22 2.08 726
10 18.80* 8.49* 7.70* 7.33* 2354  24.78* 1.71 2.23** 1.92 854

12.5 19.03* 8.77* 7.94* 7.59* 2195  23.32* 2.17* 2.55* 2.22** 1013
15 19.19* 8.84* 8.00* 7.69* 1914  22.16* 3.51* 3.64* 3.23* 1294
20 19.24* 8.08* 6.98* 6.84* 1474  21.36* 5.50* 5.61* 5.09* 1734
25 18.88* 7.74* 6.25* 6.28* 1090  21.16* 6.14* 6.23* 5.69* 2118
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Figure 3. Risk-Adjusted Annualized Returns of Survivors and Non-survivors. This figure 
depicts  risk adjusted returns for firms that survive beyond T years (Survivors) and for firms that 
survive less than or equal to T years (non-survivors). capms, ff3fs and ff4fs refer to the average 
of pricing errors for survivors based on the CAPM, Fama and French three factor and Carhart 
four factor models. Similarly, capmns, ff3fns and ff4fns refer to the average of pricing errors for 
non-survivors based on the CAPM, Fama and French three factor and Carhart four factor models.

Results from Table III, I find that average risk-adjusted returns are higher for firms that 

live longer. Therefore, as I add firms with longer survival time, the cross-sectional mean risk 

adjusted returns increases. In other words, performance measures strengthen as I use progressively 

more data for firms surviving longer periods into the future. These results are robust to choice of 

factor models. Further, I find that average risk adjusted returns for active firms is higher than non-

active firms. For instance, annualized mean risk adjusted return based on CAPM model for the 

firms which survive beyond five years is 7.95 percent among active firms and 3.20 percent among 

non-active firms. Similarly, active firms which do not meet data requirement outperform similar 

non-active firms across all data requirement criteria and models chosen. 
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Figure 4. Long Lived Firms’ Performance by Age.  This figure illustrates the average 
performance by age for firms which survive six years or more.  The capm, ff3f and ff4f show 
risk-adjusted average returns based on CAPM model, Fama and French three factor model and 
Carhart four factor mdoel.   

 

 
Figure 5. Short Lived Firms’ Performance by Age.  This figure illustrates the average 
performance by age for firms which survive less than six years.  The capm, ff3f and ff4f show 
risk-adjusted average returns based on CAPM model, Fama and French three factor model and 
Carhart four factor mdoel.   
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Further, firms that live longer have positive performance since the beginning of their life 

and firms with negative performance in their early life tend to die earlier. In order to calculate 

average performance by their age, I split the whole sample of firms into two groups: firms that 

survive six or more than six years and firms which live less than six years.  Then I compute cross 

sectional mean for each group by averaging rolling alphas for a specific survival time. For instance, 

to calculate cross sectional mean for year T, I average of all Tth year alphas of all firms in each 

group. I choose sixth year as a cutoff point because I observe in Table II that firms which survive 

six years or less experience negative risk adjusted returns.  Figure 3 plot cross-sectional mean of 

all firms which survive six or more years in the first twenty-five years of life and Figure 4 cross-

sectional mean of all firms which survive less than six years. As I can see from Figure 3 that firms 

which survive longer period have positive risk adjusted returns since the early period of their life. 

On the contrary, firms that do not survive beyond six years have negative risk adjusted average 

risk returns. Further, mean return based on CAPM alpha has the highest absolute value and mean 

returns based on three and factor models are very similar. For each group, the mean risk-adjusted 

returns is increasing in the early period of firms’ life and it starts to decline after some years. 

This finding clearly has implications on calculation of long-run returns. For instance, IPO 

underperformance phenomenon is clearly not applicable for certain firms which survive over long 

period of time. 

3.4 Cross-sectional variation of performance  

Table IV reports the standard deviation of annualized returns. The standard deviation is 

decreasing for both survivors and non-survivors as survival time increases. This is primarily due 

to the nature of sample construction. The survivors with greater survival requirements are subsets 

of the samples of firms with only two and half years of survival requirement. Therefore, as I require 

firms to survive longer, I systematically exclude smaller and more risky firms. As a result, I 

observe declining standard deviations for firms that survive longer periods into the future.  For the 

same reason, I notice decreasing variability of alphas for non-surviving firms.  
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Table IV 

Standard Deviation of Cross-Sectional Alphas 

This table reports annualized standard deviation of average firm alphas conditional on a firm meet 
or does not meet data requirement.  Firms that meet data requirement include those firms that live 
beyond T years and firms that do not meet data requirement include those firms that live at most 
T years. The first column represents firms’ age. Columns 2 and 6 shows standard deviations of 
firms mean returns for firms that meet data requirement criteria and firms that do not meet data 
requirement criteria. Columns 3 to 5 shows standard deviations of average pricing errors obtained 
from CAPM, Fama and French three factor and Carhart four factor models for survivors. Columns 
7 to 9 presents standard deviation of average pricing errors based on CAPM, Fama and French 
three factor and Carhart four factor models for non-survivors. 

 

Firm Meet data requirement  Do not meet data requirement 
Age RET CAPM FF3F FF4F  RET CAPM FF3F FF4 
2.5 54.43 28.10 30.36 30.60  288.29 62.51 69.92 71.90 
3 42.92 25.93 28.19 28.25  211.52 57.92 63.24 65.45 
4 32.01 22.45 24.38 24.43  158.63 52.18 57.54 58.69 
5 26.81 19.72 21.84 21.88  133.52 48.30 52.66 53.51 
6 23.33 17.66 20.09 20.11  119.14 45.36 49.03 49.76 
7 21.21 16.16 18.52 18.60  109.21 42.94 46.46 47.04 
8 19.12 14.81 17.05 17.17  102.57 41.25 44.66 45.16 
9 17.16 13.80 16.02 16.06  98.01 39.93 43.22 43.72 
10 16.29 13.14 15.36 15.42  93.74 38.57 41.74 42.20 

12.5 14.19 11.88 13.97 14.00  86.75 36.28 39.25 39.67 
15 12.54 10.99 12.95 13.09  81.84 34.58 37.41 37.78 
20 11.24 9.11 10.45 10.51  77.17 33.02 35.77 36.12 
25 11.11 8.79 9.64 9.78  74.05 31.82 34.48 34.82 

 

I also see that the standard deviation of pricing errors for non-surviving firms is larger than 

surviving firms, which indicates that non-surviving firms are generally risker. 

 Overall, the above results indicate that surviving firms differ from non-surviving firms 

across different characteristics. This suggests that results reported in long-horizon studies may be 

erroneous and such studies need additional sensitivity tests before concluding abnormal price 

performance following major events.  
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3.5 Correlation between performance and survival  

To obtain further economic insight into the nature of relationship between survival and 

returns conditional on survival, I also analyze whether survival is correlated with performance 

using Pearson and Spearman’s rank correlations. The results are presented in Table V. I find a 

declining value of the correlation coefficient between firm performance and survival time for the 

firms that meet data requirement and an increasing value of the coefficient for firms that do not 

meet data requirement as minimum number of months for prior data requirement increases for all 

both samples considered. Interestingly, the correlation coefficient goes from positive to negative 

for firms that meet data requirement and from negative to positive for firms that do not meet data 

requirement as the survival time increases. All these correlation coefficients are significantly 

different from zero.  The results are consistent across all samples whether I measure the relation 

between survival and performance using rank correlation or Pearson correlation.  

I also investigate why the correlation coefficient turns negative as I require firms to have 

longer period of prior data. I find that the covariance can be negative without a negative correlation 

between pricing error and survival time. Since the variance of pricing error is function of survival 

time, it increases for samples with increasing values of data requirement but starts to decline after 

certain time.   

3.6 Cox proportional hazards model for firm survival 

 To examine the correlation between firm survival and performance further, I estimate the 

Cox proportional hazard regression model parameters using my data. I estimate the following basic 

form which does not include time-dependent covariates or non-proportional hazards: 

| 	  (4)

where  |  is the expected hazard function for ith firm,  is an arbitrary and 

unspecified baseline hazard function for continuous time T,  is coefficient vector and X is a set 

of explanatory variable which is risk-adjusted returns in my case. The parameters of model (4) are 

estimated using a maximum partial likelihood procedure, based on the conditional probability that 

a firm dies at time t.  
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Table V 

 Correlation between Survival and Average Pricing Errors 

This table presents information about correlation between average pricing errors and firms’ 
survival time. Firms that meet data requirement include those firms that live beyond T years and 
firms that do not meet data requirement include those firms that live at most T years. RET refers 
to the correlation between risk unadjusted firm level mean returns and firms’ survival time. CAPM, 
FF3F and FF4F represent correlation between survival and firms’ average pricing errors obtained 
from CAPM, Fama and French three factor and Carhart four factor models. Censored firms include 
those firms that are still alive at the end of the sample period. Non-censored sample include all 
firms excluding censored firms. Numbers in the brackets represent t-statistics for testing the 
hypothesis that the population correlation coefficient is zero. 

 

Firm  Meet data requirement  Do not meet data requirement 
Age  CAPM FF3F FF4F  CAPM FF3F FF4F 
2.5  0.148* 0.099* 0.097*  0.003 -0.007 -0.005 
3  0.144* 0.102* 0.101*  -0.030 -0.019 -0.015 
4  0.114* 0.084* 0.085*  0.005 -0.011 -0.011 
5  0.084* 0.073* 0.076*  0.041* 0.027 0.024 
6  0.057* 0.061* 0.065*  0.069* 0.037* 0.032* 
7  0.028* 0.049* 0.053*  0.092* 0.051* 0.046* 
8  0.013 0.044* 0.049*  0.113* 0.064* 0.058* 
9  -0.001 0.036* 0.038*  0.123* 0.068* 0.060* 
10  -0.031* 0.018 0.021**  0.127* 0.070* 0.062* 

12.5  -0.072* -0.031* -0.023**  0.145* 0.076* 0.069* 
15  -0.120* -0.097* -0.082*  0.155* 0.084* 0.078* 
20  -0.140* -0.107* -0.092*  0.166* 0.103* 0.097* 
25  -0.160* -0.118* -0.112*  0.167* 0.109* 0.103* 

 

 How sensitive firm survival is on performance is typically based on comparisons of hazard 

ratios. Given estimates of the regression parameters in the model (4), the hazard ratio if risk-

adjusted return is incremented by one unit is given by 

	 	  
(5)

 Using the equation (5), I interpret 100*(HR-1) as the percentage change in the hazard rate with a 

1-unit change in the risk-adjusted return.  
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Table VI 

Parameter Estimates and Hazard Ratios for Cox Proportional Hazard Model of Firm 
Survival 

This table presents maximum likelihood parameter estimates and hazard ratios for Cox 
proportional hazard model of firm survival. Full and sub-sample periods refer to December 1925 
to December 2013 and December 1972 to December 2013, respectively. The full sample consists 
of  18,876 observations and the sub-sample has 17,596 observations.  The CAPM, FF3F and FF4F 
refer to  risk-adjusted returns estimated using the CAPM, the Fama and French three factor model, 
and the Carhart four factor model.  Panel A  reports regression estimates using entire period alpha 
estimates. Panel B reports regression estimates using sub-sample alpha estimates. The generalized 
R2 is computed as 1 exp	 likelihood	ratio sample	size⁄ . Alpha estimates are multiplied 
by 100.  

 

Panel A: Current alphas as covariates: full period   
Predictor Hazard ratio Estimates  Std. error Chi-square Generalized R2

CAPM 0.827 -0.190 0.005 1399.253 0.023 
FF3F 0.883 -0.125 0.005 609.992 0.24 
FF4F 0.889 -0.118 0.005 550.301 0.286 

      
Panel B: Current alphas as covariate-subsample   

Predictor Hazard ratio Estimates  Std. error Chi-square Generalized R2
CAPM 0.831 -0.185 0.005 1344.527 0.165 
FF3F 0.894 -0.112 0.005 513.552 0.462 
FF4F 0.896 -0.110 0.005 490.752 0.470 

 

Table V presents the maximum likelihood parameter estimates and the hazard ratios. The Cox 

regression estimates are similar across all asset pricing in both panels. As seen from the table that 

the probability a firm disappears decreases significantly as the firm’s alpha estimate increases. The 

hazard ratio of 0.827 in Panel A for CAPM alpha suggests that one additional unit increases in 

risk-adjusted return would lower firm’s mortality by about 17.3 percent; this suggests very strong 

relationship between survival and performance.  Results in the Table VI also indicate that Carhart 

four factor model alphas have the post predictive power of firm disappearances as measured by 

the generalized R2. Overall, the Cox regression estimates indicate that, no matter which asset 

pricing model I choose, performance correlates significantly with firm survival.  
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4. Measuring Relation Between Survival and Performance and Their 

Conditional Expectations 

I assume that pricing errors () and survival times (s) are not independent and the mean value 

of the pricing error depends on survival time. Therefore, the relationship between conditional 

expectation of the pricing error and the fixed value of survival time is of special interest. Moreover, 

the dependence properties between the pricing error and survival time is also very important. In 

the regression of pricing errors on survival time, I choose the Farlie-Gumbel-Morgenstern (FGM) 

bivariate distribution of Morgenstern (1956), Farlie (1960) and Gumbel (1958). It provides a very 

simple and direct method of constructing a bivariate distribution given its marginal distributions 

and the correlation between the variates. I choose FGM distribution for its simplicity and 

applicability when the association between variables is relatively low. The details of the derivation 

of conditional probabilities and moments are presented in Appendix A.  

The FGM bivariate distribution has a joint cumulative distribution function of the form 

, 1 	 1 1 || 1   (4)

 

where ,  is the joint cumulative distribution function of  and s, and   and  are 

arbitrary distribution functions on random variates and s with the degree of association α. Lai 

(1978) shows that the parameter  is directly proportional to the correlation coefficient.  For 

absolutely continuous marginal distributions, I need || 1.  It is easy to verify that  and s are 

positively quadrant dependent if 0. 

I assume that each firm’s alpha or pricing error is drawn from a normal distribution with 

mean  and variance 2 . It is denoted as ~ ,  with its density function denoted by  . 

Further, I assume that survival time is exponentially distributed. It is denoted as  ~exp	    with 

its density function denoted by .  As shown in the Appendix B, under this formulation 

3	 	, where  is correlation structure in FGM distribution.  Correlation modeled under the 

distribution is limited to , but it provides a simple closed form distribution linking random 
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variables of dissimilar distributions. From equation (4), the density function , 	 can be 

explicitly written as 

,
,

	
3 2 Erf

√2
√2

 

(5)

where the error function (Erf) of x is defined as 
√

.   

Generally, I assume that firm birth month and survival rates are independent. But I observe 

in the CRSP data base that these two variables are highly correlated (rank correlation between 

these two variable is 0.46 over the full period sample, 0.99 in the censored full period sample and 

0.52 in the non-censored full period sample). Therefore, I assume the birth variable to be a convex 

combination of the survival rate and another exponentially distributed random variable u with 

mean 1⁄ . Therefore, 	 1 	 . Assuming s and u are independent and 

	 	 1⁄ , joint probability  density function of s and t with change of limits can be 

written as  

 ,

	

1
 

(6)

Now, the joint density function of the average pricing error, survival rate and birth rates, , , , 

becomes  

, , , 	 ,  (7)

Equation (7) is used to calculate conditional moments of the average pricing error. From equation 

(7) the conditional density function of  , given 	and	 , is  

| ,
3 2 Erf

√2
√2

 

(8)
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The FGM distribution has the advantage property that the variables can be separated as in equation 

(5). Given this, the conditional expectation of  given s and t, denoted by | ,  is obtained 

directly from equation (8) as  

| , | , 		 | ,
6

√

1
2

 
(9)

The conditional expectation increases for 0 and decreases for 0 with increasing values of 

s. The framework for modelling survival and pricing errors described by equations (4) and (9) 

matches the observed distribution of the average pricing errors- average pricing errors are low for 

firms that disappear early on, and increase monotonically as firms live longer.   

 To calculate the variance of the pricing errors, I need the expectation of the squared pricing 

errors, which can be calculated as: 

 | , 		 | ,
6

√
2 1  

(10)

 

Given the expectation of the pricing error in equation (9) and the squared pricing errors in 

equation (10), the conditional variance, | , , of  can be computed as 

| ,  | , | ,
6

√
0.5  

(11) 

The conditional variance also matches the volatility of the distribution of estimated alphas. Further, 

the conditional covariance, , |   as a function of s is  

, | 	 E | , |  (12) 

Since the restrictions are on the survival and arrival times and not on the distribution of , I use 

equations (9),  (11), and (12) to compute the conditional expectation, variance, and covariance of 

the average pricing errors respectively. Explicitly,  

| ... |  ,  (13)
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| ... | 	 ,  (14)

, | ... , |  ,  (15)

 

In calculating the conditional expectation of the survival and birth time, I can simply use the 

bivariate distribution of s and t because the effect of the normal variate simply integrates out. 

Therefore, the conditional expectation of survival time, birth time, and the covariance between 

survival and arrival times can be computed as  

|… 	 | 	  (16)

|… 	 | 	  (17)

, |… |… |…  (18)

 

The moments in equation (13) and equation (14) are the mean and standard deviation of 

the estimated alpha distribution. The moment in equation (15) is the conditional covariance 

between survival and average pricing errors. This moment condition is a consistent estimator of 

the correlation coefficient. The moments in equations (16) and  (17) are the expectations of my 

exponentially distributed survival time and arrival time. The moment in equation (18) is the 

conditional covariance between arrival and survival time. In addition to these conditional 

expectations, I have percent survived, percent censored, and percent non-censored. Thus, I have a 

total of seven moment conditions.  I use these seven moment conditions to identify six structural 

parameters ( , , , , ,) for each information set. 

The parameters of my system of equations are estimated by using the conditional moment 

approach to generalized methods of moments (GMM) estimation technique. GMM, established by 

Hansen (1982), is quite useful for estimation of nonlinear equation systems. The main advantage 

of the GMM estimator is that it provides efficient estimates of parameters in the presence of 

heteroscedastic errors and when the form of the heteroscedasticity is unknown.  If I let Z be a 

random vector that includes both endogenous and explanatory variables, and ,  be a vector 

of conditional moment functions, the conditional moment estimation principle rests on the 

assumption that the probability distribution of Z satisfies the following conditional moment 

restrictions 
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, | 0 (19)

where  denotes the unknown parameter vector ( , , , , ,) and X is a vector of conditioning 

variables or instruments. If I denote the matrix of instruments by A(X), then a vector of 

unconditional moment functions  ,  can be obtained from the product 

, A X  ,  (20)

By applying the law of iterated expectations and using equation (19), equation (20) can be 

evaluated such that the true parameter vector satisfies the following condition 

 , 0 (21)

The orthogonality conditions defined in equation (21) can be used for the estimation of the 

unknown parameter vector  . The GMM estimator  of unknown parameter vector  is defined 

as the vector minimizing the objective function  

	 min  , ′  ,  (22)

where  is a five-by-one vector of the parameters of interest, and W is an arbitrary positive-definite 

weighting matrix. I utilize the inverse of the estimated covariance of moments as a weighting 

matrix. I use Hansen’s J-statistic as a specification test to examine whether the data are consistent 

with the model.  

5. Estimation Results 

The results of the six parameters estimates from the moment conditions are presented in Table 

VII.  Panel A and Panel B report the estimated results for full dataset and sub-sample respectively. 

In both panels, the first parameter, ,  measures the correlation between survival time and average 

pricing errors. The second and third parameters,   (the scale parameter) and  (the location 

parameter), describe the shape of the distribution of alphas. The fourth and fifth parameters,  and 

 describe the hazard rates of survival time and the other exponential variable used to model birth 

rates. The last parameter,  measures what proportion of the birth time is being explained by the 

survival time.    

Panel A in Table VII presents parameter estimates using entire data set. Columns (2) to (5) 

of Panel A in Table VII reports results for raw returns, alphas from CAPM, three factor and four 

factor models respectively and without censoring. Similarly, columns (6) to (9) of Panel A in Table 
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VII show parameter estimates with censoring and using raw returns, alphas from CAPM, three 

factor and four factor model. When the parameters of the model are fitted to raw return data, I find 

annualized mean return returns of 12.41 percent without censoring and 12.51 percent with 

censoring. But, the estimates of the mean of the distribution of average pricing errors show that 

the survival-adjusted mean return is statistically insignificant. This finding does not depend on the 

asset pricing model used to compute risk-adjusted returns.  This result is very much consistent 

with assumption of the model and efficient market hypothesis.   

The volatility of the distribution of average pricing error is similar for the CAPM, Fama 

and French three factor, and Carhart four factor alphas with and without censoring. All estimates 

are statistically significant.  

One of the major focuses of this paper is to look at the relationship between pricing errors 

and survival times. The estimates of the  in Table VII, show that the average pricing errors and 

survival times always have a positive and statistically significant relation for all performance 

measures. However, the absolute value of the parameter is very low. For instance, the relation 

between the pricing error based on CAPM model and survival time is 1.93 percent and between 

the pricing error based on four factor model and survival time is 1.10 percent. I get similar results 

with and without censoring.  

The finding of low correlation between pricing error and survival time is consistent with 

my assumptions of the model and it has important implication on the relationship between average 

pricing error and survival time. Even if there is low correlation, such as less than two percent, 

between survival and pricing error, the correlation between average pricing error and survival can 

go up to 14.8 percent or can go down to -16.7 percent based on requirement for survival. As the 

results in Table V indicate that the correlation between average pricing error and survival time is 

always higher than 2 percent and statistically significant.    

The estimates of the parameter  are significant and very similar across all samples and for 

all measures of performance. The estimates of are also all significant. The parameter  sheds 

some light on the relationship between survival time and birth rates. There is a stronger relationship 

between survival time and birth rate for end of the sample surviving firms than non-survivors. 
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Table VII 

Estimates of the Conditional Moments: Full Sample 

This table presents the parameter estimates of my model. I estimate the model parameters using 
moments and conditional moments computed from survival time, arrival time, mean firm level 
returns and alphas generated from CAPM, Fama and French three factor and Carhart four factor 
models. The five parameters of my model are the mean and variance of the distribution of average 
pricing errors,  and 2 ; the correlation coefficient between firms’ survival time and their average 
pricing errors, ; and the hazard rate parameters  and  for survival and birth variables. These 
parameters are estimated using Generalized Methods of Moments (GMM) estimation technique. 
The estimates of  are annualized in this table.  Panel A reports parameter estimates for entire 
dataset, and Panel B show estimates for sub-sample.  The entire sample includes all firms that have 
at least 24 months of continuous returns over the period December 1925 to December 2013. The 
total number of firms included in this sample is 18876. The sub-sample consists of 17,596 firms 
which have at least 24 months of returns data over the period December 1972 to December 2013. 
The estimate of the model parameters using each model are presented under its name. t-Statistics 
are reported parentheses.  
 

Panel A: Full Sample         

  Without Censoring With Censoring 

Parameter  RET CAPM FF3F FF4F  RET CAPM FF3F FF4F 

  0.0073 0.0193 0.0113 0.0110  0.0074 0.0195 0.0114 0.0111 

  (6.84) (20.04) (11.68) (11.36)  (6.83) (20.00) (11.65) (11.33) 

  0.4859 0.2074 0.2268 0.2292  0.4855 0.2075 0.2268 0.2292 

  (33.51) (92.02) (70.04) (64.63)  (33.45) (92.30) (70.08) (64.65) 

  12.4176 -0.0888 -0.4116 -0.2328  12.5184 0.0252 -0.3384 -0.1620 

  (19.66) (-0.33) (-1.44) (-0.81)  (20.27) (0.09) (-1.21) (-0.57) 

  0.0070 0.0070 0.0070 0.0070  0.0066 0.0066 0.0066 0.0066 

  (120.98) (120.98) (120.98) (120.98)  (118.14) (118.14) (118.14) (118.14)

  na na na na  0.0011 0.0011 0.0011 0.0011 

       (53.12) (53.12) (53.12) (53.12) 

  na na na na  0.7110 0.7110 0.7110 0.7110 

      (128.21) (128.21) (128.21) (128.21)
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Table VII  Continued 

 

Panel B: Sub-Sample      

  Without Censoring   With Censoring   

Parameter  RET CAPM FF3F FF4F RET CAPM FF3F FF4F 

  0.0092 0.0212 0.0109 0.0112  0.0097 0.0224 0.0115 0.0118 

  (7.98) (20.23) (10.48) (10.67)  (7.98) (20.17) (10.43) (10.63) 

  0.5015 0.2125 0.2335 0.2353  0.5010 0.2125 0.2335 0.2353 

  (33.66) (90.85) (69.61) 63.92)  (33.58) (91.06) (69.60) (63.90) 

  13.2288 -0.2100 -0.4920 -0.3876  13.1352 -0.3024 -0.5424 -0.4404 

  (18.58) (-0.71) (-1.54 (-1.21)  (18.24) (-1.01) (-1.67) (-1.35) 

  0.0074 0.0074 0.0074 0.0074  0.0072 0.0072 0.0072 0.0072 

  (111.14) (111.14) (111.14) (111.14)  (119.25) (119.25) (119.25) (119.25)

  0.0004 0.0004 0.0004 0.0004  0.0001 0.0001 0.0001 0.0001 

  (25.18) (25.18) (25.18) (25.18)  (2.33) (2.33) (2.33) (2.33) 

  0.6870 0.6870 0.6870 0.6870  0.3794 0.3794 0.3794 0.3794 

  (48.83) (48.83) (48.83) (48.83)  (16.02) (16.02) (16.02) (16.02) 

 

To account for the effect of truncation, I ran the analysis on both the entire dataset and its 

subsample covering the period 1972 to 2013. The estimated parameters of the model using the 

subsample data is presented in Panel B of Table VIII. A comparison between the estimates from 

the entire sample and sub-period shows that the parameter estimates are very similar. The estimate 

of  based on risk-unadjusted returns is positive and statistically significant for both with censoring 

and without censoring. Similarly, estimates of  based on risk-adjusted returns are all statistically 

insignificant. Estimates of  are similar across all models whether the estimates are based on with 

censoring and without censoring. Likewise, there is a positive correlation between survival time 

and pricing errors and the absolute value of correlation coefficients is less than 2 percent.  Taken 

together, these conditional moment estimates indicate that survival adjusted-returns are 

statistically significant. These returns depend on data selection and also on the choice of model 

used to compute risk-adjusted returns. Additionally, I find that the average pricing errors and 

survival rates have a positive and statistically significant relation.  
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Figure 6. Average Risk-Adjusted Returns Conditional on Survival and Conditional 
Expectation Given Survival Time. This figure shows average performance of firms in the 
entire sample by their age. The  Avg a|s, Capm   and Avg a|s, FF4F   represent cross-sectional 
average of risk-adjusted returns of firms from CAPM, and Carhart four factor model, 
respectively. Similarly, he solid line represents the regression curve (conditional expectation of 
average pricing error given survival time) fitted to the data. The  E a|s, Capm   and E a|s, FF4F  
denotes regression line fitted to CAPM alphas and FF4F alphas.    

Figure 6 depicts how well the model is fitted to the data. In figure 6, I plot cross-sectional 

mean pricing errors computed from CAPM and four factor models along with regression lines 

fitted to alpha distribution obtained from each of these models. My model fits well to the data. It 

explains 39.66 percent of the CAPM alphas and 47.17 percent of the four factor alphas. My model 

shows that short-lived firms have negative alphas whereas long-lived firms have positive alphas 

implying that long-lived firms outperform short-lived firms. 
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Figure 7. Average Pricing Errors and Conditional Expectation. This figure plots the average 
pricing errors computed from CAPM model and expected pricing errors for active firms, non-
active firms and all firms conditional on data requirement. Active firms include 3208 end of 
sample surviving firms, non-active firms include 15668 end of sample non-surviving and all 
firms include both types of firms. Dots represent cross-sectional averages for samples obtained 
by increasing minimum survival time. The solid lines represent expectation of average pricing 
errors given survival time. 

 

Figure 7 shows mean pricing errors computed from CAPM model and average pricing 

errors computed from my model for active, non-active and all firms. The samples are selected 

based on whether firms have k number of months of continuous returns or not. Avg α|s k  refers 

to cross-sectional sample mean for firms that live beyond k number of months and Avg α|s k  

represents cross-sectional mean for firms that live at most k number of months. From figure 7 we 

can see that use of my model can help to correct for survival bias. For instance, the difference in 

average performance between the non-active firms which live at most five years and all firms 

which live beyond five years is 14.49 percent per year based on data but it is 8.76 based on my 
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model. Thus, the use of my model helps us to correct the discrepancy of performance by 5.73 

percent. Further, Figure 1 shows that use of my model help to correct for survivorship and non-

survivorship bias. Generally, the use of alpha distribution for measuring abnormal returns for firms 

which survive less than five years under-estimates average alphas and over estimates average 

alphas for firms that survive more than five years. By using my model, both of these estimates can 

be corrected. 

 

6. Conclusions 

 Survival or non-survival has serious potential effects on empirical financial research that 

use historical data. I analyze return characteristics of different samples of firms conditional on 

survival time and look at the relationship between firms’ survival and average pricing errors. I 

measure firm performance using average pricing errors and document that short-lived firms 

underperform long-lived firms both in terms of riskiness and risk-adjusted returns. In the CRSP 

data base, cross-sectional average performance of firms that survive long time period (more than 

six years) begins to increase as I exclude firms which survive short period (less than six years). 

Similarly, average performance of firms which survive only short period starts to increase as I start 

to add surviving firms into the sample. The main finding from the analysis of the performance of 

long-lived firms and short lived firms is that short-lived firms significantly under-perform long 

lived firms. Further, active firms or end of sample period surviving firms out-perform non-active 

or end of sample period non-surviving firms. 

The firms which perform badly in early period of their life are likely to drop out of the data 

base. Likewise, the firms which survive long period of time, beyond six years, experience positive 

risk-adjusted returns from the first listing date in CRSP data base. The positive risk adjusted return 

pattern of long time surviving firms is against the well documented long-run underperformance of 

IPOs. I observe underperformance of IPOs only if firms which survive less than six years are 

included in the sample. If I exclude all the firms which survive less than six years, the average 

performance of surviving firms is positive and statistically significant.  

 One of the main findings of this paper is that I show a positive and statistically significant 

correlation between survival and average pricing errors. To examine the relation between survival 

and average pricing errors, I develop a model using the bivariate FGM distribution function and 
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fit its moment conditions to the sample data. I find that, survival-adjusted mean returns are no 

different from zero for both samples. The estimates are very similar with and without censoring.   

I also find a very low correlation between pricing errors and survival time but very high 

correlation between average pricing errors and firm survival time. Using my model, I show that 

even a low correlation between firms’ survival time and pricing errors can result in high correlation 

between average pricing errors and survival time. 

My result may have been influenced by the equal weighting scheme for aggregating 

individual firm returns to cross-sectional average returns. My results may change if I evaluate 

average performance of firms using a value weighted average because non-survivors are generally 

smaller and their value is overemphasized with equal-weighting. Also, as I find a positive relation 

between survival and performance, value-weighting could be more appropriate to reflect firm 

performance.   

The findings of this paper have implications for tests of market efficiency. One of the 

popular tests of market efficiency is to examine post-event price performance following some kind 

of major corporate event. These studies often report persistence of positive or negative abnormal 

returns by comparing performance of events experiencing firms against event non-experiencing 

firms. These studies never consider survival time in making reference portfolios. As I have shown 

in this paper, the performance characteristics of long-lived firms and shot-lived firms are different. 

If these differences are not accounted properly in calculating abnormal returns, it can lead to 

significant distortions in the performance figures reported in the long-run event studies.   

Additionally, cross-sectional regression tests of market efficiency could also be affected by 

survival and non-survival biases examined in this paper.  

The findings of the paper also has implication for portfolio management. I can utilize the 

return characteristics of young and old active firms to form portfolio. Since young firms 

underperform old firms, I can make long-short portfolio to generate higher returns. 

It is difficult to precisely assess the effect of survival or non-survival bias on the results of 

past studies that exclude firms that do not survive a specific number of years. It is always 

suggestive to report proportion of survival and non-survival and the potential effect if the non-

survivors would have been included in the sample. Furthermore, I also observe differences 
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between the performance measures that depend on the choice of asset pricing model. Choosing the 

appropriate model can help to reduce the survival and non-survival biases in empirical studies. In 

addition, attention must also be given to matching firms based on survival time while comparing 

returns of event and controlling firms.  
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CHAPTER 2 

The Impact of Financialization on the Benefits of Incorporating 

Commodity Futures in Actively Managed Portfolios 

 

1. Introduction 

Over years, investors have viewed commodities as a separate asset class that can offer 

high returns, provides diversification benefits and protects against inflation. Early studies by 

Bodie and Rosansky (1980) and Fama and French (1987) both document that investors can 

reduce their risk without having to sacrifice returns by simply adding commodities to a portfolio 

of stocks. Similarly, Bessembinder (1992) and Roon et al. (2000) showed that commodity 

provided risk premium for idiosyncratic commodity price risk. Studies by Gorton and 

Rouwenhorst (2006) and Erb and Harvey (2006) provided some evidence of low correlation 

between equity and commodity and equity like returns of tactical commodity portfolios. The 

Standard portfolio choice theory also states that adding an alternative asset that has low 

correlation with traditional assets to the investor’s investment universe would reduce the risk of 

the portfolio. 

However, recent studies, such as Irwin and Sanders (2011), Singleton (2013), Tang and 

Xiong (2012), Silvennoinen and Thorp (2013), and Henderson et al. (2012) examine different 

aspects of the “financialization” of the commodity futures market—that is, how increased 

investors’ participation via large flows from speculators and other market participants have 

impacted the price dynamics of investing in commodity futures. In general, these and related 

papers find higher correlations among individual commodity futures returns as well as between 

commodity futures returns and more traditional asset returns, in particular equities.  

I also collected 29 commodity futures prices, volume, open interests and total money 

invested in the commodity index. The results are presented in Table 1. The results in the Table 1 

show that there has been tremendous growth in open interest, volume of commodity futures 

traded and in the correlation between commodity and equity markets since 2000. This could be 

the result of financial innovation such as introduction of commodity index products and 
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commodity based exchange traded funds which reduced the transaction costs and eased the 

access to commodity futures markets. All these changes has made the commodity market more 

liquid, more risky and less segmented with the equity market.   

 In this paper, I examine the impact of increased investors’ participation in commodity 

market on the return performance and diversification benefits of six buy-and-hold and twenty-

seven tactical portfolios of commodity futures given the large inflow of capital to the commodity 

market after 2000. Traditionally, only those people who were directly or indirectly involved in 

commodity production or consumption were participating in commodity futures market in order 

to limit the risk of losing commodity prices change. Changes in the commodity futures market in 

the last decade provided a low cost vehicle for investors to include commodities as part of a 

well-diversified portfolios. At the same time, I experience weak stock market performance and a 

boom in the commodity. All these factors encouraged other people such as institutional investors 

and large traders who have no interest in the workings of the underlying market to participate in 

the commodity futures markets. As a results, there was a significant increase of capital in 

commodity futures market invested by institutional investors and large traders. The increased 

investors participation in both equity and commodity futures market may have an integrating 

effect reducing segmentation and equating prices of risks or increased exposure of futures 

markets to other financial markets. Therefore, it is question of interest to all to ask whether 

financialization has impacted benefits of investing in commodity futures markets.  

 In order to address the question, I form six traditional buy-and-hold portfolios and 27 

tactical portfolios and examine their return characteristics and diversification benefits when 

combined with other traditional assets for my whole sample period (January 1986 to October 

2013) and two sub-sample periods (January 1986 to December 2000 and January 2001 to 

October 2013).1 The buy and hold portfolios include five buy-and-hold sector-based portfolios 

(e.g. foods and fibers, grains and oilseeds, livestock, energy, and precious metals) as well as one 

equally-weighted portfolio which encompasses all of the aforementioned sectors. These buy-and-

hold portfolios serve as a benchmark in which to compare my other strategies against. The sub-

sample analysis affords us the ability to more accurately evaluate the evolution of the 

                                                            
1 The literature on commodity futures lacks a complete consensus on when the financialization period began; 
however, there is a general agreement that it occurred in the early 2000’s. Given this, I analyze individual trading 
volumes of commodity futures and find January 2001 to be a reasonable estimate in which to split the full sample. 
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diversification benefits of commodity futures given the financialization of the commodities 

market. To a lesser extent, the sub-samples allow us to observe any changes in potential return 

benefits from the various commodity portfolio strategies employed. 

In an effort to dig deeper into the potential tactical opportunities of commodity futures I 

exploit information based on basis, net speculation, mathematical, momentum and term structure 

signals to create twenty-seven commodity portfolios. The three basis portfolios are utilized based 

on the findings of Gorton et al. (2013) and the three net speculation portfolios follow the idea 

from Bessembinder (1992) and DeRoon et al. (2000). Similarly, nine momentum portfolios are 

constructed as outlined in Miffre and Rallis (2007) and nine term structure signals portfolios are 

based on DeGroot et al. (2014). Finally, three mathematical portfolios utilize mathematical 

techniques to maximize the risk-return tradeoff at periodic intervals (see Markowitz (1952) for 

mean-variance optimization technique, Konno and Yamazaki (1991) for mean absolute deviation 

optimization technique and Rockafellar and Uryasev (2000) for conditional value at risk 

optimization method). 

In order to examine the diversification benefits of commodity portfolios, I combine my 

various buy-and-hold and tactical commodity futures portfolios with four different kinds of 

investor portfolios (i.e. benchmark portfolios) and evaluate whether addition of commodity 

portfolio to benchmark portfolio provides diversification benefits. I utilize the stochastic discount 

factor (SDF) based spanning tests to examine the diversification properties of the benchmark and 

commodity portfolios. I utilize two US domestic portfolios to examine the diversification 

characteristics of commodity futures in the US markets. The first benchmark is a buy-and-hold 

portfolio consisting of CRSP value-weighted market index returns, comprised of all 

NYSE/AMEX/NASDAQ stocks, and the Barclays Capital US Aggregate Bond Index returns.2 

The second benchmark is an actively managed equity portfolio based on the Fama-French 

monthly size and momentum factors. The other two benchmark portfolios I employ examine the 

diversification characteristics of commodity futures in an international context. In the 

international setting, the first benchmark employed is a buy-and-hold portfolio of seven 

countries’ equity index-level returns. The second international benchmark is an actively managed 

                                                            
2 The Barclays Capital US Aggregate Bond Index is a commonly used benchmark by both passive and active 
investors to measure the portfolio performance of the US dollar-denominated investment grade fixed-rate taxable 
bond market. 
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equity portfolio comprised of 23 countries’ index-level returns based on the Fama-French 

monthly size and momentum factors. Similar to the examination of portfolio returns, I evaluate 

the diversification results over the full and sub-sample periods for both the US domestic and 

international benchmark portfolios.  

The main results of this paper can be summarized as follows. First, many of the tactical 

portfolios outperform buy and hold portfolios. Information obtained from basis, hedging 

pressure, momentum and term structures is useful in making well-performing portfolios. But, 

purely mathematical technique which use past returns to maximize risk-return tradeoff is not 

very usual.  Second, increased capital flows to the commodity market has no impact on the risk 

adjusted returns pattern of commodity futures portfolios. Risk unadjusted returns of commodity 

portfolios seem much higher in the second half as compared to the first half. This is just opposite 

of what I expect with financialization. However, change in alpha tests indicate that no change in 

risk adjusted alpha is significant.  

Third, despite the increased correlation between commodity and equity returns as a result 

of financialization of commodity markets, diversification benefits of commodity portfolios have 

largely remained unchanged except for international buy and hold reference portfolio. For 

investors who hold international buy and hold equity portfolio, commodity portfolios do not 

provide diversification benefits in the second half of the sample period for the most cases. I 

argue that financialization may have increased exposure of futures markets to equity market as 

reflected by change in beta coefficients and dynamic correlation coefficients, diversification 

benefits of including commodity portfolios in the traditional portfolio has not disappeared. 

Finally, there is general change in the portfolio frontier after 2000, regardless of reference assets. 

But, I have not examined the whether the change in portfolio frontiers are economically 

meaningful. 

The remainder of this paper is organized as follows. In section 2, I provide brief review 

of literature. Section 3 discusses my dataset and the creation of the commodity futures return 

series. Section 4 explains the construction of the various buy-and-hold and tactical commodity 

futures portfolios, and provides an analysis of the various portfolio returns. Section 5 discusses 

the methodology used to evaluate if adding portfolios of commodity futures to an investor’s 
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overall portfolio, whether that be a US domestic or international portfolio, provides any 

diversification benefits, as well as summarizes the empirical findings. Section 6 offers 

concluding remarks. 

2. Review of Literature 

In this section, I briefly review two strands of commodity futures literature:  the first one 

looks at diversification benefits of commodity futures portfolios and the second looks at return 

characteristics of commodity futures/futures portfolios.  

The early studies that access the diversification benefits of commodities include Bodie 

and Rosansky (1980), Fama and French (1987) and Anson (1999). Bodie and Rosansky (1980) 

and Fama and French (1987) document that investors can reduce their risk without having to 

sacrifice returns by simply adding commodities to a portfolio of stocks. Similarly, for the period 

studied 1974-1997, Anson (1999) demonstrate that an investment in commodities futures index 

offers diversification benefits for long-term investors.  

More recent papers that examine the diversification potential of commodities are Scherer 

and He (2008), Galvani and Plourde (2010), Conover et al. (2010), Daskalaki and Skiadopoulos 

(2011), Belousova and Dorfleitner (2012) and Huang and Zhong (2013). Scherer and He (2008) 

point out the strategic value of commodities by showing improved risk return trade-off when 

commodities are added to a portfolio of U.S. bonds and equities. Conover et al. (2010) show that 

adding commodity futures to an equity portfolio substantially reduces the risk of the portfolio 

and a significant diversification benefit is driven no matter what equity investment style is 

employed. Daskalaki and Skiadopoulos (2011) examine diversification benefits of commodities 

under in-sample and out of sample setting. They find that commodities are beneficial only to 

non-mean-variance investors under in-sample setting and commodity futures are non-beneficial 

to all types of investors under the out-of-sample setting.  

Similarly, Belousova and Dorfleitner (2012) show that the diversification contribution of 

individual commodities varies greatly (among the different sectors), particularly during bull and 

bear markets, but that commodities, overall, are valuable diversification tools. These studies 

provide an interesting analysis of commodity futures as diversification tools; however, they do 
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not explicitly examine how the diversification properties of commodities have evolved over the 

last decade and a half in the face of an era characterized by a substantial increase in investor 

participation in the commodity futures market.  

The studies that provide evidence of higher returns for tactical portfolios of commodity 

futures include Gorton and Rouwenhorst (2006), Erb and Harvey (2006), Miffre and Raillis 

(2007), Shen et al. (2007), Szakmary et al. (2010), Asness et al. (2013) and DeGroot et al. 

(2014). In their seminal paper, Gorton and Rouwenhorst measure the characteristics of a basket 

of 36 commodity futures over the period 1959-2004. They observe that the basket of futures 

offers the same return and risk premiums as equities, is negatively correlated with equity and 

bond returns, and acts as a hedge against both expected and unexpected inflation. In a follow-up 

study, Erb and Harvey (2006) bolster the findings of Gorton and Rouwenhorst, but poignantly 

note that, “[historically] the average annualized excess return of the average individual 

commodity future has been approximately zero and that commodity futures returns have been 

largely uncorrelated with one another. However, the annualized excess return of a rebalanced 

portfolio of commodity futures can be ‘equity-like.’” 

Studies by Miffre and Rallis (2007) and Asness et al. (2013) document highly significant 

positive returns for different rank and holding periods of up to 12 months (i.e. momentum 

profits). In particular, Asness et al. (2013) report returns of 0.7% for low return momentum 

portfolios and 13.1% for high return momentum portfolios. Miffre and Rallis (2007) identify 13 

profitable momentum strategies in the commodity futures markets which generate an average 

return of 9.38% per year by tactically allocating wealth towards the best performing commodities 

and away from the worst performing ones. Moreover, Fuertes et al. (2010) and DeGroot et al. 

(2014) propose novel tactical strategies which incorporate term structure information (in addition 

to momentum strategies in some cases) to reap large returns. Fuertes et al. (2010) report 

annualized alphas of 10.14% and 12.66% for momentum and term structure strategies 

individually. However, a double-sort strategy which exploits both components generates a return 

of approximately 21.02%. 

Although the previous literature has addressed the diversification properties and return 

characteristics of commodities and commodity portfolios, no recent work (to the best of my 
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knowledge) has contemporaneously evaluated these properties of commodities given the 

changing market landscape. In this paper, I try to fill this gap.  

3.  Data and Commodity Futures Return Construction 

 The futures prices of the 29 commodity futures used in this study are all obtained from 

the Commodity Research Bureau (CRB). I extract price series information from January 1, 1986 

to October 31, 2013.3 The breakdown of the commodities by sector is as follows: six are from 

foods and fibers, nine are from grains and oilseeds, four are from livestock, five are from energy, 

and five are from precious metals. Table 1 in appendix B provides a detailed list of the individual 

commodity futures, their respective sectors, exchange, and start date of the prices. 

 In order to construct the futures return series I follow the procedure outlined by Miffre 

and Rallis (2007) whereby, for each particular commodity, I roll the daily futures prices of the 

nearby contract over to the next-nearby contract one month prior to the maturity of the nearby 

contract. This procedure is done for entire dataset of commodity futures to generate the 

continuous series of futures prices. I denote daily price of futures expiring in T period by F ,  .  

I compute the daily return series , for each commodity future, by taking the log difference of 

the daily futures prices on two consecutive trading days (r Log F , Log F , . To 

facilitate my analysis I convert the daily returns into a monthly series. Specifically, following the 

work of Asness et al. (2013) and Moskowitz et al. (2012) I compound the daily returns into a 

cumulative monthly returns, ∑ , where eom refers to end of the month. These return 

series are then used to create and evaluate the various types of commodity portfolios. 

 The equity return data used to construct the buy-and-hold US domestic reference 

portfolio is extracted from CRSP. The equity returns are based on a value-weighted index of all 

NYSE/AMEX/NASDAQ stocks. The bond index return data used in both the buy-and-hold US 

domestic reference portfolio and buy-and-hold international reference portfolio is obtained from 

Bloomberg. The bond index returns are those calculated by Barclays Capital. The equity return 

data used to compute the buy-and-hold international portfolio is also extracted from Bloomberg.  

                                                            
3 The sample period is selected based on data availability. This particular time frame allows for the most commodity 
futures to be used which possess continuous return and net speculation data. 
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The portfolio includes the index returns of seven developed countries: Australia, Canada, 

France, Germany, Japan, the UK, and the US. The return data for the actively managed US 

domestic equity and actively managed international equity portfolios, based on the Fama-French 

monthly size and momentum factors, are taken from Ken French’s website.4 The international 

portfolio includes the returns of 23 countries from four regions: Australia, Austria, Belgium, 

Canada, Denmark, Finland, France, Germany, Greece, Hong Kong, Ireland, Italy, Japan, 

Netherlands, New Zealand, Norway, Portugal, Singapore, Spain, Switzerland, Sweden, the UK 

and the US. 

4.  Commodity Futures Portfolio Returns Performance 

4.1. Portfolio construction 

 Following the construction of the futures return series I create 33 different portfolios of 

commodity futures based on style and performance. Six of the portfolios consist of a buy-and-

hold strategy. Equally weighted monthly rebalanced portfolio returns series  by averaging 

monthly return series, i.e. ∑ ⁄ . Five of those six portfolios are equally-weighted 

commodity sectors—foods and fibers, grains and oilseeds, livestock, energy, and precious 

metals—which represent the commodity futures specific to that group. The remaining portfolio 

is an equally-weighted composite of the five aforementioned commodity sectors. The sector-

based portfolios help to unveil the heterogeneous nature of how commodity futures returns 

behave. The sector-based portfolios highlight the fact that each commodity underlying the 

futures contract, and each sector for that matter, have very unique characteristics in relation to 

diversification and risk management. This potentially makes some commodity futures groups 

better diversification tools than others and/or more profitable investment strategies than others. 

The remaining 27 portfolios are tactical portfolios which are actively rebalanced, 24 of these are 

rebalanced on a monthly basis, while the three net speculation portfolios are uniquely rebalanced 

on a weekly frequency and then compounded to a monthly horizon to facilitate further analysis.5 

                                                            
4 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html  
5 Speculation data is reported on a Tuesday-Tuesday basis to the US Commodity Futures Trading Commission 
(CFTC), and made publically available the following Friday on their website. 
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The choice of monthly rebalancing (i.e. monthly holding periods) is dictated by the fact that both 

the momentum and term structure strategies are most profitable at this particular horizon.6  

 The nine momentum portfolios are formed as follows: at the end of (L) months (i.e. the 

look-back period) all commodities in the sample are ranked in descending order based on the 

past (L) month’s average return. The commodity futures in the top 33% are assigned to a “High” 

return portfolio, the commodity futures in the middle 33% are assigned to a “Med” return 

portfolio, and those commodity futures in the bottom 33% are assigned to a “Low” return 

portfolio. The portfolios are then held for (H) months (i.e. the holding period). I analyze and 

report results for 1, 3, and 12 month look-back periods in combination with one month holding 

periods. Following the approach of Asness et al. (2013), Miffre and Rallis (2007), Shen et al. 

(2007), and Jegadeesh and Titman (1993, 2001), I evaluate the performance of the High, Med, 

and Low portfolios over the (H) subsequent months without a time period lag following the 

ranking (i.e. look-back) period. To reduce the effect of non-synchronous trading and the bid-ask 

bounce, Jegadeesh and Titman (1993) suggest measuring returns on the portfolios of futures two 

months after the initial ranking period (L). However, Asness et al. (2013) report that in case of 

commodity futures whether one lags the ranking period or not, it does not significantly alter the 

results. Therefore, following Asness et al. (2013) I do not measure portfolio returns with a lag 

following the ranking period. I derive a single time-series of monthly returns for each actively 

managed trading strategy in this manner. 

 The nine term structure portfolios follow an alternative formulation to that of DeGroot et 

al. (2014). These strategies, as originally motivated by Erb and Harvey (2006) and Gorton and 

Rouwenhorst (2006), seek to exploit the term structure of commodity futures prices. The term 

structure measures stem from the work of Samuelson (1965) who argues that the volatility of 

futures returns decreases as the maturity of contracts increases. Thus, the prices of the front 

contracts react most heavily to supply, demand, and news shocks, while prices further along the 

curve are influenced significantly less. Furthermore, as noted by DeGroot et al. (2014), even 

contracts on the same commodity with different maturities can exhibit large differences in 

returns and risks. Hence, non-front contracts which are further down the futures curve may 

                                                            
6 Fuertes et al. (2010) document similar findings. I examine momentum and term structure portfolios with look-back 
periods of 1, 3, and 12 months and holding periods of 1, 3, and 12 months. 
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behave differently and represent different investment opportunities. I calculate the term structure 

measures as follows: 
 

_ 		 1

where F  is the futures price of the nearby contract i at time t and F  is the futures price of the 

other nearby contract j at time t. The construction of the commodity portfolios based on the term 

structure is similar to the procedure for the return momentum portfolios. For each individual 

commodity I utilize equation (1), at various contract horizons, to obtain a daily difference series. 

Then to facilitate my analysis I average the daily series into a monthly one, whereby the series is 

then sorted in descending order and the commodity futures in the top 33% are assigned to a 

“High” term structure (TS) portfolio, the commodity futures in the middle 33% are assigned to a 

“Med” TS portfolio, and those commodity futures in the bottom 33% are assigned to a “Low” TS 

portfolio. The portfolios are then held for one (H) month and rebalanced. For each of the 

portfolios the returns for the month, t+1, are calculated using equal weights for all the futures 

contracts contained within their respective portfolio. This process is repeated to obtain a 

continuous time series of returns for the portfolios based on term structure. 

 The remaining nine portfolios are created from tactical strategies based on commodity 

futures basis, net speculation, and maximization of the Sharpe Ratios (i.e. the mathematical 

portfolios), respectively. Specifically, I analyze three portfolios sorted on the futures basis (spot 

price - futures price) of the commodities in the sample. I rank the commodity futures in 

descending order based on the past one month’s basis, similar to the procedure for the 

momentum and term structure portfolios, and then form the portfolios. The commodity futures in 

the top 33% are assigned to a “High” basis portfolio, the commodity futures in the middle 33% 

are assigned to a “Med” basis portfolio, and those commodity futures in the bottom 33% are 

assigned to a “Low” basis portfolio. As with the previous portfolios the basis portfolios are also 

rebalanced monthly. More formally, the basis portfolios are constructed as follows: at the end of 

each month, t, I calculate the basis for each of the 29 commodity futures. Following Gorton et al. 

(2013), the basis for each commodity, i, is calculated as: 

1
365

 
2
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where F is the price of nearest futures contract, F  is the price of the next-nearby futures  

contract, and D  and D  are the number of days before the futures contracts F  and F  expire, 

respectively. For each of the portfolios the returns for the month, t+1, are calculated using equal 

weights for all the futures contracts contained within their respective portfolio. This process is 

repeated to obtain a continuous time series of returns for the portfolios based on basis. 

 In order to construct portfolios based on net speculators’ positions I utilize the position of 

trader’s data given in the US Commodity Futures Trading Commission’s (CFTC’s) weekly 

reports. For each commodity futures contract, i, I compute the variable h , , which is based on the 

aggregated weekly positions of non-commercial hedgers in all traded markets at time t, and is 

given as: 

	h ,
agg.		short	hedge	positions agg. long hedge positions

total	number of hedge positions
 

(3)

 

Following my prior procedure, each week, t, I rank the commodity futures in descending order 

based on the past one month’s net speculation positions (h , ) and again divide them into three 

groups. The commodity futures in the top 33% are assigned to a “High” net speculation 

portfolio, the commodity futures in the middle 33% are assigned to a “Med” net speculation 

portfolio, and those commodity futures in the bottom 33% are assigned to a “Low” net 

speculation portfolio. The portfolio returns for week, t+1, are calculated using equal weights for 

all the futures contracts contained within the respective portfolio. Since the CFTC hedging data 

is only available on a weekly occurrence, I first calculate the portfolio returns by rebalancing via 

a weekly frequency, and then convert these weekly returns into monthly returns by compounding 

them into a cumulative index. 

 Finally, the mathematical portfolios which utilize the concept of portfolio optimization 

include Markowitz’s (1952) mean variance portfolio, a conditional value at risk portfolio, and a 

mean absolute deviation portfolio. These portfolios are motivated by practices in the financial 

industry  and utilize mathematical constructs to “optimize” an investor’s risk-return tradeoff. The 

mean-variance portfolio of Markowitz (1952) uses the variance of portfolio returns as the risk 

proxy. I use the past 250 daily returns of the commodity futures and obtain weights, for each 
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commodity in the sample, which maximize the Sharp Ratio. Formally, the maximization problem 

is defined as: 

		 								 . . 1 1		 	   (4)

where, μ is the mean return of the commodity futures, 	is the variance of the commodity 

returns, and ω are the portfolio weights. The weights obtained by maximizing the Sharpe Ratio 

using the past 250 daily returns are used to invest for the next one month period. The mean-

variance portfolio is rebalanced monthly. The conditional value-at-risk (CVaR) portfolio 

measures risk under portfolio optimization as in Rockafellar and Uryasev (2000, 2002). In this 

approach, I use the conditional value-at-risk (CVaR) of the portfolio returns as the risk proxy 

instead of variance of the portfolio returns as in equation (4). The conditional value-at-risk for a 

portfolio is defined as: 

1
1

, 	
,

 

 

(5)

where,  is the probability level, f x, r  is the loss function for a portfolio x and asset returns r, 

p(r) is the probability density function for asset returns r, and VaR  is the value-at-risk of 

portfolio x at probability level . To construct the CVaR portfolio returns series, I compute the 

weights that maximize the ratio of the mean portfolio return to the CVaR using the past 250 daily 

returns of commodity futures, and then use these weights to invest for the next one month period. 

The CVaR portfolio is rebalanced monthly. Lastly, the mean-absolute-deviation (MAD) portfolio 

utilizes the optimization technique of Konno and Yamazaki (1991). The MAD portfolio 

optimization is similar to the mean-variance technique of Markowitz (1952). However, I utilize 

Konno and Yamazaki’s (1991) redefined risk measure called MAD, which is given as: 

		
1

̅  
(6)

 

where, T is the length of time horizon, n is the total number of commodities, r  is the return on 

the ith commodity over the time horizon, t, where, t 1, 2, …T, r̅  is the mean of ith commodity 

return, and ω  are the portfolio weights. In order to obtain the MAD portfolio return series, I 
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replace the risk proxy in equation (4) by equation (6), and then solve equation (4) using the past 

250 daily returns of commodity futures to obtain the appropriate weights. These weights are then 

used to allocate funds to invest for the next one month period. The MAD portfolio is similarly 

rebalanced on a monthly frequency. 

4.2.  Buy-and-hold and actively rebalanced commodity portfolio performance 

 Figure 1 provides a snapshot of the average annualized futures returns performance of 

selected portfolios.  It shows that buy and hold portfolio returns are more concentrated around 

zero compared to other actively managed portfolio. Further, actively managed portfolios are 

riskier than buy and hold portfolios. Among all portfolios, portfolios formed based on hedging 

and basis information have negative returns less often than other portfolios. 

Table 1 presents return pattern of the buy-and-hold and actively managed commodity 

portfolios. I report the results for both the full sample period and two sub-sample periods, along 

with the P-values, standard deviations, and Sharpe Ratios of each respective portfolio examined. 

Panel A summarizes the returns of the futures portfolios formed using traditional buy-and-hold 

strategies. Over the full sample period (January 1986 to October 2013) the energy sector has the 

highest annualized mean return of all five groups at 14.32%, this is followed by the precious 

metals sector with an average return of 8.63%. Upon examining the two sub-sample periods an 

interesting feature emerges, the average returns of the buy-and-hold portfolios, in general, tend to 

be higher in the second period (January 2001 to October 2013) when compared to the first period 

(January 1986 to December 2000). Furthermore, the average annualized return performance of 

most buy-and-hold portfolios over the first sub-sample sample period are not significantly 

different from zero at conventional significance levels of 10%, whereas in the second sub-sample 

period this trend is reversed. The overall results of the first sub-sample period are largely 

consistent with Erb and Harvey (2006) who find that the average annualized excess return of the 

average individual commodity future over the period 1982-2004 has been approximately zero. 

However, findings over the second sub-sample period seem to tell a much different story. 
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Figure 1. Return Distributions. This figure plots the return distributions of selected commodity 
portfolios. EWport refers to equally weighted portfolio of commodity futures, and Basis, 
Hedging, Momentum and Term Structure refer to commodity portfolios formed based on 
information on basis, hedging, momentum and term structure signals. 

 

Panels B, C, and D display the performance of the tactical basis, speculation, and 

mathematical portfolios, respectively. Over the full sample period the High basis portfolio 

generates the largest annualized mean return of all portfolios at 17.92%. The sub-sample analysis 

shows that much of the large return over the full sample period is due to the tremendous 

performance of the portfolio in the second sub-sample period with a mean return of 22.51%. In 

general, the other two basis portfolios seem to earn a return commensurate with the more 

traditional buy-and-hold commodity portfolios. The average return of the High speculation 

portfolio over the full sample period (14.26%) also ranks it as one of the top performing 

portfolios. Interestingly, an examination of the sub-sample periods shows that the High 

speculation portfolio significantly outperforms the Low and Med portfolios by a wide margin in  
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Table 1   
Return Performance of Commodity Portfolios 

  Period: 01/31/1986 to 
10/31/2013 

Period: 01/31/1986 to 
12/31/2000 

Period: 01/31/2001 to 
10/31/2013 

Portfolios  Mean P-val SD SR Mean P-val SD SR Mean P-val SD SR 
Panel A: Buy-and-Hold  
Foods & Fibers  6.49 0.04 0.57 0.11 3.13 0.39 0.47 0.07 10.14 0.06 0.66 0.15 
Grains & Oilseeds  7.73 0.04 0.67 0.12 5.03 0.25 0.57 0.09 10.68 0.09 0.77 0.14 
Livestock  6.09 0.08 0.62 0.10 6.37 0.22 0.67 0.10 5.79 0.20 0.56 0.10 
Energy  14.32 0.02 1.05 0.14 14.37 0.07 1.02 0.14 14.26 0.11 1.09 0.13 
P. Metals  8.63 0.01 0.63 0.14  5.98 0.11 0.48 0.13  11.52 0.06 0.77 0.15 
Ewport  8.49 0.00 0.42 0.20  6.57 0.00 0.30 0.22  10.58 0.01 0.52 0.20 
Panel B: Basis   
Lowbasis  7.83 0.01 0.50 0.16 6.61 0.04 0.41 0.16 9.17 0.05 0.58 0.16 
Medbasis  10.61 0.00 0.47 0.22 8.98 0.00 0.33 0.27 12.39 0.01 0.59 0.21 
Highbasis  17.92 0.00 0.89 0.20 13.70 0.01 0.67 0.21 22.51 0.01 1.08 0.21 
Panel C: 
Speculation 

  

Lowspec  11.71 0.00 0.50 0.23 5.59 0.06 0.38 0.15 18.38 0.00 0.60 0.31 
Medspec  9.02 0.00 0.56 0.16 8.39 0.03 0.50 0.17 9.71 0.05 0.61 0.16 
Highspec  14.26 0.01 0.98 0.15 14.36 0.02 0.77 0.19 14.14 0.14 1.18 0.12 
Panel D: Mathematical   
Portmv  1.97 0.50 0.53 0.04 -0.89 0.79 0.43 -0.02 5.09 0.31 0.62 0.08 
Portcvar  0.11 0.97 0.51 0.00 -1.23 0.69 0.41 -0.03 1.58 0.74 0.60 0.03 
Portmad  1.57 0.60 0.53 0.03 -0.90 0.79 0.44 -0.02 4.27 0.39 0.62 0.07 
 

  



57 
 

Table 1 (Cont.)   
 

  Period: 01/31/1986 to 
10/31/2013 

Period: 01/31/1986 to 
12/31/2000 

Period: 01/31/2001 to 
10/31/2013 

Portfolios  Mean P-val SD SR Mean P-val SD SR Mean P-val SD SR 
Panel E: Momentum   
LowL1H1  12.92 0.00 0.52 0.25 9.95 0.01 0.46 0.21 16.15 0.00 0.58 0.28 
MedL1H1  7.49 0.01 0.50 0.15 3.36 0.24 0.37 0.09 11.99 0.02 0.61 0.20 
HighL1H1  12.70 0.01 0.91 0.14 10.23 0.05 0.66 0.15 15.40 0.09 1.12 0.14 
LowL3H1  11.88 0.00 0.51 0.23 9.72 0.00 0.41 0.24 14.23 0.00 0.60 0.24 
MedL3H1  6.39 0.02 0.48 0.13 2.79 0.31 0.35 0.08 10.31 0.03 0.58 0.18 
HighL3H1  13.84 0.01 0.91 0.15 10.53 0.05 0.68 0.16 17.45 0.05 1.12 0.16 
LowL12H1  11.06 0.00 0.50 0.22 6.92 0.03 0.41 0.17 15.57 0.00 0.58 0.27 
MedL12H1  8.59 0.04 0.74 0.12 8.33 0.14 0.73 0.11 8.86 0.15 0.76 0.12 
HighL12H1  14.66 0.01 0.94 0.16 13.44 0.02 0.72 0.19 15.99 0.08 1.13 0.14 
Panel F: Term Structure   
LowTS1_2  15.81 0.00 0.49 0.32 15.22 0.00 0.42 0.36 16.46 0.00 0.56 0.29 
MedTS1_2  9.95 0.00 0.49 0.20 8.89 0.00 0.37 0.24 11.09 0.02 0.59 0.19 
HighTS1_2  9.75 0.06 0.91 0.11 4.88 0.35 0.67 0.07 15.07 0.10 1.11 0.14 
LowTS1_3  13.07 0.00 0.50 0.26 12.73 0.00 0.45 0.28 13.43 0.00 0.56 0.24 
MedTS1_3  9.28 0.00 0.47 0.20 7.72 0.00 0.33 0.23 10.98 0.02 0.59 0.19 
HighTS1_3  12.93 0.01 0.90 0.14 7.39 0.15 0.65 0.11 18.98 0.04 1.11 0.17 
LowTS1_4  11.50 0.00 0.51 0.22 8.63 0.01 0.45 0.19 14.62 0.00 0.57 0.26 
MedTS1_4  8.52 0.00 0.46 0.19 8.84 0.00 0.35 0.25 8.18 0.07 0.55 0.15 
HighTS1_4  14.41 0.00 0.91 0.16 10.47 0.05 0.69 0.15 18.70 0.04 1.10 0.17 
 
This table provides the return performance of the various styles of commodity futures portfolios over the full sample period (January 
31, 1986 to October 13, 2013) and two sub-sample periods (January 31, 1986 to December 31, 2000 and January 1, 2001 to October 
31, 2013). “Mean” represents the average annualized return of the commodity portfolio in percent, “P-val” is the P-value based on 
two-tailed significance tests for testing the hypothesis of whether the mean return is equal to zero, “SD” is the standard deviation of 
the portfolio, and “SR” is the Sharpe Ratio. 
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the first period, but in the second period the Low speculation portfolio average return surpasses 

that of the High by an average margin of about 4.00%. Finally, the mathematical portfolios, 

which are based on the financial theory of maximizing portfolio Sharpe Ratios using commodity 

weights, consistently yield the worst return performance of all commodity portfolios considered. 

In fact, all returns for the portfolios in Panel D are always statistically insignificant. 

 Panel E presents the return performance of the tactical momentum portfolios where I 

consider three different look-back periods and a one month holding period. For instance, the first 

portfolio of panel E, LowL1H1, represents the annualized mean return of an equally-weighted 

portfolio holding the lowest return futures—the bottom 33% of commodity futures when sorted 

on past returns—based on a one month return look-back period (L) and one month holding 

period (H). All other momentum portfolios follow a similar interpretation. Over the whole 

sample period the annualized mean return of the HighL12H1 portfolio (14.66%) outperforms all 

other momentum portfolios examined. The next highest momentum portfolio return strategy is 

the HighL3H1 portfolio with a mean return of 13.84%. I find that the High momentum 

portfolios, in general, tend to outperform their similar Low momentum portfolio counterparts. 

An analysis of the sub-sample periods yields similar conclusions. The HighL1H1 and Low1H1 

portfolios present a minor exception to this finding with very similar returns of 12.70% and 

12.92%, respectively. Prior work by Miffre and Rallis (2007) and Asness et al. (2013) similarly 

find higher return performance for the High (recent winner) momentum groups. 

 Panel F presents the return performance of the tactical term structure portfolios where I 

consider three different horizons. For instance, the first portfolio of Panel F, LowTS1_2, 

represents the annualized mean return of an equally-weighted portfolio holding the smallest 

differenced futures contracts—the bottom 33% of commodity futures when sorted on the 

difference between nearby and next-nearby contracts—based on a one month look-back period 

and one month holding period. All other term structure portfolios follow a similar interpretation. 

Over the whole sample period the annualized mean return of the LowTS1_2 portfolio (15.81%) 

outperforms all other term structure portfolios examined. The next highest term structure 

portfolio return strategy is the HighTS1_4 portfolio with a mean return of 14.41%. The results of 

the term structure portfolios are a bit more varied than those observed in the momentum section. 

The Low TS portfolios formed on the difference between the nearby contracts and the contracts 
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at the shorter horizons (i.e. next-nearby and next-next-nearby) display the highest return 

performance amongst their Med and High counterparts. However, this finding is not true of the 

longer horizon difference contracts (TS1_4) where the High TS portfolio return performance is 

superior. Sub-sample analysis of the return performance yields consistent findings for the 

LowTS1_2 and HighTS1_4 portfolios. Contrastingly, the LowTS1_3 portfolio maintains the 

high return performance (12.73%) over the first sub-sample period, but the HighTS1_3 portfolio 

obtains the highest return performance over the second sub-period (18.98%). Overall, these 

findings are in line with the argument of DeGroot et al. (2014) that contracts on the same 

commodity with different maturities can exhibit large differences in returns and risks. 

 Focusing solely on buy-and-hold strategies, investment in the energy sector offers by far 

the greatest return potential. Energy sector investment is commensurate with many of the high 

performing tactical strategies based on speculation, momentum, and term structure over the full 

sample period. Regarding the tactical strategies, I see that the average annualized returns formed 

on basis tend to outpace all other tactical (and buy-and-hold) strategies over the full sample 

period. Looking at the latter sub-sample period, which is characterized by the financialization of 

the commodity market, the High basis portfolio again offers the highest return strategy, followed 

by the Low speculation portfolio, and strategies based on High momentum and High term 

structure. 

4.3.  Risk-adjusted commodity portfolio performance 

 The results in Table 1 provide a broad summary of the return performance of both buy-

and-hold and various styles of tactical commodity portfolios. Moreover, it provides an analysis 

of how the returns of such strategies have evolved over time, with a particular emphasis on the 

last decade. This change is interesting given the prominent strand of literature which documents 

the financialization of the unique asset class over the last decade. Tang and Xiong (2012) 

highlight the impact of this change by recognizing the unique characteristics of the commodity 

futures market that precipitated the rapid growth of the commodity index investment. Prior to the 

early 2000’s commodity prices largely provided a risk premium for idiosyncratic price risk (see 

Bessembinder, 1992; DeRoon et al., 2000) and had little or no correlation with more traditional 

asset markets. These features bear a sharp contrast to the price dynamics of typical financial 
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assets which are well-known for solely carrying a premium for systematic risk and generally are 

highly correlated with each other. The fundamental process of financialization resulted in an 

increase of the correlations among the returns of the different types of futures and an increase in 

the correlations between more traditional assets, thus altering the pricing dynamics of the 

commodity futures. I posit that the changes in futures returns in the latter sub-sample period are a 

reflection of this process. In order to more comprehensively evaluate the impact of 

financialization on the futures returns in the commodities market I utilize risk-adjusted measures 

of performance. As such, I calculate risk-adjusted returns for the different portfolios of 

commodity futures using the regression model of the following form: 

 

∗  (7)

 

where, R  is a commodity portfolio return time series,  is an indicator variable such that  is 0 

for period 1986 to 2000 and 1 otherwise,  is returns on CRSP value-weighted market index, 

 is Barclays Capital monthly bond index return series and  u  is a series disturbance terms. 

The risk-adjusted return results from the model in (7) are presented in Table 4. 

The most interesting feature of Table 2 is that 32 of the 33 coefficients on the indicator 

variable which measure whether change in risk adjusted alpha is significant or not are not 

significant. On the other hand, the coefficient on the interaction term between the indicator 

variable and stock returns is significant for 32 portfolios. The coefficient on the interaction term 

measures the exposure of commodity market to the equity market. This results in the Table 4 

show that commodity market has been more integrated with equity market but there is no impact 

of increased financial flows to the risk adjusted return pattern of the commodity portfolios.   

Another interesting results of the Table 2 is that 18 portfolios out of 33 have significantly 

different form zero risk adjusted returns. All mathematical portfolios have negative but 

insignificant risk adjusted returns. The High basis and High speculation portfolios both maintain 

significant risk-adjusted returns. All High momentum portfolios outperform other momentum 

portfolios. Similarly, the Low TS portfolios have significant risk-adjusted returns. In some cases, 

the Med TS portfolios are significant but the returns are lower than those of the Low TS  
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Table 2   
Risk-Adjusted Return Performance of Commodity Portfolios  

        
Portfolios   P-val  P-val  P-val 

Panel A: Buy-and-Hold  
Foods & Fibers  3.6728 0.3150 4.8636 0.4309 0.4369 0.0003 
Grains & Oilseeds  3.8136 0.3914 4.2153 0.5729 0.3654 0.0112 
Livestock  5.9380 0.2577 1.2804 0.8533 -0.0353 0.8094 
Energy  15.9576 0.0460 -3.7821 0.7474 0.7015 0.0061 
P. Metals  5.9474 0.1099 3.9226 0.5755 0.5273 0.0003  
Ewport  6.5154 0.0060 2.4512 0.5964 0.4145 0.0004  
Panel B: Basis         
Lowbasis  6.1685 0.0547 0.7803 0.8854 0.3902 0.0010 
Medbasis  9.3683 0.0004 1.3923 0.7909 0.4776 0.0001 
Highbasis  14.0225 0.0077 6.0003 0.5486 0.8217 0.0011 
Panel C: Speculation         
Lowspec  6.1568 0.0379 10.7371 0.0498 0.4617 0.0001 
Medspec  8.9292 0.0196 -2.0944 0.7257 0.5126 0.0000 
Highspec  14.2798 0.0152 -5.4193 0.6125 0.8761 0.0000 
Panel D: Mathematical         
Portmv  -2.0948 0.5269 5.1827 0.3804 0.2751 0.0271 
Portcvar  -1.7050 0.5799 2.0298 0.7156 0.2892 0.0110 
Portmad  -1.9463 0.5652 3.8661 0.5122 0.3404 0.0054 
Panel E: Momentum          
LowL1H1  9.9276 0.0054 6.5256 0.2491 0.2435 0.0507 
MedL1H1  2.9696 0.3092 6.0601 0.2838 0.4905 0.0032 
HighL1H1  10.1623 0.0648 0.1720 0.9867 0.9773 0.0002 
LowL3H1  9.1877 0.0049 3.5983 0.5140 0.3554 0.0038 
MedL3H1  2.8480 0.3023 5.9882 0.2825 0.3470 0.0343 
HighL3H1  10.9699 0.0485 3.2173 0.7574 0.8554 0.0013 
LowL12H1  7.5322 0.0148 6.7221 0.2157 0.4112 0.0008 
MedL12H1  8.7839 0.1493 -0.9754 0.9069 0.4753 0.0094 
HighL12H1  12.6970 0.0236 -0.1131 0.9914 0.8009 0.0013 
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Table 2 (Cont.)   
  

        
Portfolios   P-val  P-val  P-val 

Panel F: Term Structure         
LowTS1_2  14.8198 0.0000 -0.3019 0.9555 0.3661 0.0025 
MedTS1_2  9.2724 0.0018 0.5250 0.9227 0.4037 0.0003 
HighTS1_2  5.1589 0.3337 7.1289 0.4838 0.8466 0.0007 
LowTS1_3  12.8208 0.0004 -0.9840 0.8582 0.3941 0.0007 
MedTS1_3  7.4934 0.0037 1.9507 0.7093 0.3519 0.0016 
HighTS1_3  7.1468 0.1647 8.6624 0.3936 0.8121 0.0017 
LowTS1_4  9.0111 0.0115 4.3053 0.4448 0.4082 0.0009 
MedTS1_4  8.9462 0.0011 -2.0555 0.6826 0.3259 0.0014 
HighTS1_4  10.0176 0.0645 5.1985 0.6086 0.7880 0.0021 
 

This table provides estimates form the following regression equation: 

	 	 ∗ , 

where CRSP value-weighted index, 	Barclays Capital monthly bond index	returns, 
Index =1 if date>=2000, and zero otherwise. Annualized value of  is presented in the 

table.  “P-val” refers to the P-value based on two-tailed significance tests for testing the 
hypothesis of whether the estimated coefficients are zeros. 

 

portfolios. Thus, for a relatively small subset of my overall commodity portfolios, a 

tactical strategy based on, High basis, High speculation, High momentum, and Low term 

structure can be a profitable return tactic in an era characterized by financialization. 

 Taken together, the results of Table 1 and 2 support the idea that the increase in equity-

commodity comovement has subsequently changed the price dynamics of commodity futures. 

The contrast in returns and risk-adjusted alphas, as shown by the two sub-sample periods, lends 

credence to the argument that commodity markets were more segmented from outside financial 

markets prior to 2001. In the era characterized by the financialization of the commodity markets 

the ability of many types of buy-and-hold and tactical portfolios to earn higher returns (and risk-

adjusted returns) has largely been diminished for many portfolios. 
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5.  Diversification Benefits of Commodity Futures 

 Tables 1 and 2 evaluate the return performance of both buy-and-hold and tactical 

commodity portfolios. However, one of the overriding reasons investors include commodity 

futures in their portfolio is for the diversification benefits as documented in prior literature. Yet, 

given the changing landscape of the commodity futures market via financialization, do 

commodity portfolios provide diversification benefits today? Furthermore, how have these 

diversification benefits performed over recent economic recession periods when they were 

desired most? 

5.1. Testing methodology 

 To examine the diversification properties of my commodity futures portfolios, I use the 

stochastic discount factor (SDF) frontier based spanning test7 introduced by Hansen and 

Jagannathan (1991), and later developed by DeSantis (1995), Bekaert and Urias (1996), and 

Maroney and Protopapadakis (2002). The spanning test help us to determine whether a set of 

new assets improve the investment opportunity set relative to a benchmark asset. In this 

approach, I construct a frontier of benchmark assets and ascertain whether that benchmark 

remains unchanged after increasing the number of assets in the portfolio. If the two frontiers 

coincide then there is spanning. In this case, there is no diversification benefit from adding new 

assets to the benchmark asset. However, if adding a new set of assets leads to a significant shift 

of the frontier, relative to the frontier of benchmark assets, then there is no spanning. In this case, 

the new set of assets provides diversification benefits. 

For expositional purpose, I let R R , R  represent returns on n q risky 

assets at time t, where R  and R  represent returns on p benchmark assets and returns on the q 

test assets, respectively. Further, I let m  be the investor’s marginal rate of substitution or 

discount factor. The main question I try to address here is how the region of the admissible 

discount factors changes when a group of test assets are added to the benchmark set of securities. 

Under the assumption that there are no transaction costs and the Law of One Price holds, the 

general unconditional asset pricing model can be written as:   

                                                            
7 DeRon and Nijiman (2001) provide a comprehensive survey of this literature. 
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1  (8)

Hansen and Jagannathan (1991) show that the linear projection of m  onto the set of returns 

being priced has the minimum variance which satisfies equation (8), this means the lower bound 

of the discount factor that satisfies equation (8) is as follows: 

		  (9)

where,  is the error of the regression. Substituting the value of m  from equation (9) into 

equation (8) I get the following: 

																																																															 1 0																																																 10  

Equation (10) can be used to examine whether or not a subset of the assets in	R  price all of the 

assets in R .  In order to implement the tests based on the SDF frontier, DeSantis (1995) 

proposes pre-specifying two values of risk-free rates, and . Then I can specify the 

following system of orthogonality conditions for the spanning test: 

 

	 ,				 0 

	 ,				 0  
 

where, 	
,

, ,    j= 1, 2 

  and  

 

(11) 

 

Since there are n assets, there are 2	n orthogonality conditions. The system is just identified 

without restrictions and is linear with coefficients , , , . Spanning implies 2q 

overidentifying conditions that state there is no need to include test assets in the construction of 

the SDFs:	 , 0 . Under the null hypothesis of spanning, the Hansen J-Statistic (Hansen, 

1982; Hansen and Singleton, 1982) can be used to evaluate the over-identifying conditions 

implied by spanning. It has an asymptotic chi-square distribution with 2 n  degree of freedom.  

 

 Figure 2 helps us to understand testing methodology. From Figure 1 we see that there is 

shift in portfolio frontier as we add commodity portfolio to bench mark assets. The spanning 

tests help us to detect whether the shift in the portfolio frontier is statistically significant or not. 
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Figure 2. Efficient Portfolio Frontiers with and without Commodity Portfolio Returns. E&BR 
refers to CRSP value weighted stock index and Barclays Capital monthly bond index returns. 
BHCPR stands for buy and hold commodity portfolio returns and DCPR means dynamic 
commodity portfolio returns. Solid line represents the portfolio frontier of portfolio that includes 
returns on equity and bond only. The dotted line is the portfolio frontier of the portfolio that 
consists of returns on equity, bond and five sectoral commodity portfolios. The line with the dash 
shows the plot of the efficient frontier of the portfolio that consists of returns on equity, bond, 
commodity portfolios formed based on basis, hedging, momentum and term structure. 
 

In order to examine the impact of financialization, I split the sample in two parts: pre 

2000 era and post 2000 era. I modify the spanning test framework to capture the before and after 

2000 shits in frontiers as: 

	 ,				 | 0 

	 	 ,				 | 0  

where,  | 	
	

	
,  

 

(12)
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	 	    and |  

 

The new coefficients are , ,  ,  .  is an indicator variable that is zero before 2000 

and one therefore after. The covariances of returns and the SDFs are now allowed to change to fit 
an additional set of average returns.   

5.2.  Spanning test results 

 The following sections report the results of the spanning tests using the US domestic buy-

and-hold, US actively managed, international buy-and-hold, and international actively managed 

portfolios as benchmark assets. The work of Bekaert and Urias (1996) show that the power of the 

spanning tests is extremely sensitive to the number of benchmark assets; therefore, I limit the 

number of assets in each case. I sequentially test whether adding portfolio of commodity futures 

to the benchmark asset provide any diversification benefits. I utilize all buy-and-hold and tactical 

commodity portfolios examined in Tables 1 and 2.  

5.2.1.  US domestic buy-and-hold benchmark portfolio 

 Table 3 presents the spanning test results using a US domestic buy-and-hold portfolio, 

which consists of the CRSP value-weighted market index returns and the Barclays Capital US 

Aggregate Bond Index returns, as the benchmark asset. Each column provides J-stat P-values of 

the spanning test from adding the portfolio of commodity futures to the benchmark portfolio.  

The second column reports the J-stat p-values for testing the hypothesis that reference assets 

span the test asset for the whole period. These are the p-values obtained from placing restriction 

on equation (11) that  0. These tests are unconditional in the sense that the SDFs in 

equation (11) use the unconditional moments of my data. Results for the whole sample period 

show that the null hypothesis of spanning is rejected at the (more stringent) significance level of 

5% for almost all commodity portfolios.8 This means that investors can improve their investment 

diversification opportunities by adding the respective portfolio of commodities to the benchmark 

asset. 

                                                            
8 Based on prior literature, I follow both Maroney and Protopapadakis (2002) and Errunza et al. (1999) who 
predominately use significance levels of 5% when evaluating spanning test results. 
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The column 3 to column 6 presents J-stat p-values for spanning tests that focus on 

restrictions on equation (12). Restrictions on equation (12) allow for a change in the mean 

variance frontier after 2000. The restrictions  0 put on equation (12) examine the 

contribution of commodity portfolios to frontiers conditional on sub-periods. Results indicate 

that all other commodity portfolios except Grains and Oilseeds, Energy and MedL12H1 are 

important to both frontiers. This means that only for the buy-and-hold grains and oilseeds 

commodity portfolio, Energy portfolio and the dynamic MedL12H1 portfolio do I fail to reject 

the null hypothesis, implying that the portfolio provides no diversification benefits when 

combined with the benchmark asset. 

Columns 4 and column 5 test the hypothesis that whether commodity provides 

diversification benefit in pre-2000 period 0 and post-2000 period  0 . All 

commodity portfolios provide diversification benefit before 2000.  However, evaluating the 

spanning test results over the second half of the sample period reveals that ten out of 33 

commodity portfolios no longer provide any diversification benefits. Specifically, out of all buy-

and-hold portfolios considered, only half of the portfolios provide any diversification benefit. If I 

turn my attention to the tactical commodity portfolios I find that 26 out of 33 portfolios continue 

to provide diversification benefits for the US domestic buy-and-hold benchmark. It is very 

interesting that  seven of the 33 commodity portfolios considered do not provide any 

diversification benefits in the post-2000 era, whereas in the prior 14 years all commodity 

portfolios provided diversification benefits. Hence, in the decade notably marked by a dramatic 

increase in commodity market participants, resulting in increasing equity-commodity return 

correlations, I document that the salient diversification feature which characterized the 

commodity market has otherwise been weakened for both buy-and-hold and tactical portfolios of 

commodities when combined with a traditional buy-and-hold portfolio of US equities and bonds. 

The last column in Table 3 reports J-stat p-values that examine coefficients for a general change 

in frontier after 2000  0 . Results indicate that frontiers defined in the second sub-period 

are indeed different. 
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Table 3   
Diversification Properties of Commodity Portfolios: US Domestic Buy-and-Hold Reference Portfolio 

  Restrictions on equation    
  Unconditional Pre- vs Post 

Period 
Pre-

Period 
Post-

Period 
Difference in 

Frontiers 
Portfolios        

Panel A: Buy-and-Hold  
Foods & Fibers  0.000 0.000 0.000 0.029 0.002 
Grains & Oilseeds  0.031 0.102 0.033 0.069 0.004 
Livestock  0.000 0.000 0.000 0.776 0.054 
Energy  0.030 0.056 0.030 0.684 0.031 
P. Metals  0.000 0.000 0.000 0.002 0.000  
Ewport  0.000 0.000 0.000 0.002 0.000  
Panel B: Basis    
Lowbasis  0.002 0.000 0.000 0.043 0.001 
Medbasis  0.000 0.000 0.000 0.002 0.000 
Highbasis  0.000 0.000 0.000 0.032 0.001 
Panel C: 
Speculation 

   

Lowspec  0.000 0.000 0.000 0.000 0.000 
Medspec  0.006 0.002 0.001 0.096 0.006 
Highspec  0.004 0.026 0.009 0.045 0.002 
Panel D: Mathematical    
Portmv  0.001 0.000 0.000 0.002 0.000 
Portcvar  0.000 0.000 0.000 0.009 0.000 
Portmad  0.001 0.000 0.000 0.001 0.000 
Panel E: Momentum     
LowL1H1  0.000 0.000 0.000 0.067 0.010 
MedL1H1  0.000 0.000 0.000 0.002 0.000 
HighL1H1  0.002 0.007 0.003 0.022 0.000 
LowL3H1  0.000 0.000 0.000 0.013 0.001 
MedL3H1  0.000 0.000 0.000 0.025 0.000 
HighL3H1  0.003 0.000 0.000 0.055 0.001 
LowL12H1  0.000 0.000 0.000 0.011 0.001 
MedL12H1  0.027 0.063 0.046 0.625 0.035 
HighL12H1  0.001 0.001 0.001 0.074 0.001 

 

  

0  0 0  0  0 
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Table 3 (Cont.)   
 

  Restrictions on equation    
  Unconditional Pre- vs Post 

Period 
Pre-

Period 
Post-

Period 
Difference in 

Frontiers 
Portfolios        

Panel F: Term Structure    
LowTS1_2  0.000 0.000 0.000 0.108 0.003 
MedTS1_2  0.000 0.000 0.000 0.006 0.001 
HighTS1_2  0.004 0.000 0.000 0.014 0.001 
LowTS1_3  0.000 0.000 0.000 0.080 0.002 
MedTS1_3  0.000 0.000 0.000 0.001 0.000 
HighTS1_3  0.002 0.000 0.000 0.017 0.001 
LowTS1_4  0.000 0.000 0.000 0.043 0.002 
MedTS1_4  0.000 0.000 0.000 0.003 0.001 
HighTS1_4  0.003 0.000 0.000 0.044 0.001 
 

This table presents the spanning test results using a US domestic buy-and-hold portfolio, which 
consists of the CRSP value-weighted market index returns and the Barclays Capital U.S. Aggregate 
Bond Index returns, as the benchmark asset. The reported numbers J-stat p values from tests of the 
restriction on Equation (3). The null hypothesis of all tests is spanning; that is, adding a portfolio of 
commodity futures to the benchmark assets that include "returns on the CRSP value−weighted 
index" and "returns on Barclays Capital monthly bond index"  provides no diversification benefits. 
The restriction qj=0 tests the hypothesis that adding commodity does not change frontier for whole 
period; qj=qj=0 tests the hypothesis that adding commodity does not change frontier conditional 
on sub-periods; qj=0 tests the hypothesis that adding commodity does not change frontier in the 
pre-period; qj=0 tests the hypothesis that adding commodity does not change frontier in the post-
period; and tests pj=0 tests the hypothesis that frontiers are the same in pre- and post- periods. 

 

5.2.2.  US domestic actively managed benchmark portfolio 

I also investigate the potential for diversification benefits using an actively managed 

equity-based portfolio as the benchmark asset. Table 4 presents the spanning test results using a 

US domestic actively managed portfolio, which consists of returns on six US equity portfolios 

formed on the Fama-French monthly size and momentum factors, as the benchmark asset. In all 

cases the various portfolios of commodity futures examined exhibit that commodity portfolios 

always provide diversification benefits irrespective of time period considered. The significance 

of the sub sample period results are stronger than what I document over the same time period in 

Table 3.  

 

0  0 0  0  0 
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Table 4   
Diversification Properties of Commodity Portfolios: US Domestic Actively Managed Reference 

Portfolio 
  Restrictions on equation    
  Unconditional Pre- vs Post 

Period 
Pre-

Period 
Post-

Period 
Difference in 

Frontiers 
Portfolios       

Panel A: Buy-and-
Hold 

 

Foods & Fibers  0.000 0.000 0.000 0.002 0.000 
Grains & 
Oilseeds 

 0.000 0.000 0.000 0.002 0.000 

Livestock  0.000 0.000 0.000 0.217 0.000 
Energy  0.000 0.000 0.000 0.035 0.000 
P. Metals  0.000 0.000 0.000 0.000 0.000  
Ewport  0.000 0.000 0.000 0.000 0.000  
Panel B: Basis    
Lowbasis  0.000 0.000 0.000 0.011 0.000 
Medbasis  0.000 0.000 0.000 0.000 0.000 
Highbasis  0.000 0.000 0.000 0.000 0.000 
Panel C: 
Speculation 

   

Lowspec  0.000 0.000 0.000 0.000 0.000 
Medspec  0.000 0.000 0.000 0.002 0.000 
Highspec  0.000 0.000 0.000 0.000 0.000 
Panel D: 
Mathematical  

  

Portmv  0.000 0.000 0.000 0.008 0.000 
Portcvar  0.000 0.000 0.000 0.007 0.000 
Portmad  0.000 0.000 0.000 0.009 0.000 
Panel E: Momentum    
LowL1H1  0.000 0.000 0.000 0.007 0.000 
MedL1H1  0.000 0.000 0.000 0.000 0.000 
HighL1H1  0.000 0.000 0.000 0.001 0.000 
LowL3H1  0.000 0.000 0.000 0.000 0.000 
MedL3H1  0.000 0.000 0.000 0.003 0.000 
HighL3H1  0.000 0.000 0.000 0.000 0.000 
LowL12H1  0.000 0.000 0.000 0.001 0.000 
MedL12H1  0.000 0.000 0.000 0.235 0.000 
HighL12H1  0.000 0.000 0.000 0.004 0.000 
 

 

0  0 0  0  0 
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Table 4 (Cont.)  
 

  Restrictions on equation    
  Unconditional Pre- vs Post 

Period 
Pre-

Period 
Post-

Period 
Difference in 

Frontiers 
Portfolios       

Panel F: Term Structure     
LowTS1_2  0.000 0.000 0.000 0.053 0.000 
MedTS1_2  0.000 0.000 0.000 0.000 0.000 
HighTS1_2  0.000 0.000 0.000 0.000 0.000 
LowTS1_3  0.000 0.000 0.000 0.047 0.000 
MedTS1_3  0.000 0.000 0.000 0.000 0.000 
HighTS1_3  0.000 0.000 0.000 0.000 0.000 
LowTS1_4  0.000 0.000 0.000 0.027 0.000 
MedTS1_4  0.000 0.000 0.000 0.000 0.000 
HighTS1_4  0.000 0.000 0.000 0.000 0.000 

 
This table presents the spanning test results using a US domestic buy-and-hold portfolio, 
which consists of returns on six US equity portfolios formed on the Fama-French 
monthly size and momentum factors, as the benchmark asset.  The reported numbers J-
stat p values from tests of the restriction on Equation (3). The null hypothesis of all tests 
is spanning; that is, adding a portfolio of commodity futures to the benchmark assets that 
include "returns on the CRSP value−weighted index" and "returns on Barclays Capital 
monthly bond index"  provides no diversification benefits. The restriction qj=0 tests the 
hypothesis that adding commodity does not change frontier for whole period; qj=qj=0 
tests the hypothesis that adding commodity does not change frontier conditional on sub-
periods; qj=0 tests the hypothesis that adding commodity does not change frontier in the 
pre-period; qj=0 tests the hypothesis that adding commodity does not change frontier in 
the post-period; and tests pj=0 tests the hypothesis that frontiers are the same in pre- 
and post- periods. 

 

However, in contrast to that of Table 3, I find that over both sub-sample periods the 

significance of the results are much more strongly preserved. Only the buy-and-hold Livestock 

sector portfolio and a couple of tactical portfolios (i.e. MedL12H1 and LowTS1_2) in the latter 

half of the sample period provide no additional diversification benefits when added to the 

actively managed benchmark asset. 

The differing results of Tables 3 and 4 may be explained by the additional risk inherent in 

the frequently rebalanced equity portfolios based on size and momentum factors when compared 

to the traditional buy-and-hold portfolios. When the actively managed risky portfolio is  

0  0 0  0  0 
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Table 5  
Diversification Properties of Commodity Portfolios: International Buy-and-Hold Reference 

Portfolio 
 Restrictions on equation    
 Unconditional Pre- vs Post 

Period 
Pre-

Period 
Post-

Period 
Difference in 

Frontiers 
Portfolios      

Panel A: Buy-and-
Hold 

 

Foods & Fibers 0.001 0.006 0.003 0.159 0.001 
Grains & Oilseeds 0.000 0.000 0.000 0.371 0.000 
Livestock 0.000 0.001 0.027 0.315 0.001 
Energy 0.000 0.004 0.031 0.022 0.000 
P. Metals 0.000 0.062 0.055 0.206 0.002  
Ewport 0.000 0.000 0.000 0.007 0.000  
Panel B: Basis   
Lowbasis 0.000 0.000 0.000 0.123 0.000 
Medbasis 0.000 0.000 0.000 0.000 0.000 
Highbasis 0.000 0.000 0.002 0.119 0.001 
Panel C: Speculation   
Lowspec 0.000 0.000 0.000 0.078 0.000 
Medspec 0.000 0.001 0.000 0.068 0.000 
Highspec 0.000 0.001 0.005 0.008 0.000 
Panel D: Mathematical    
Portmv 0.002 0.055 0.012 0.155 0.001 
Portcvar 0.001 0.008 0.001 0.143 0.001 
Portmad 0.003 0.075 0.015 0.303 0.001 
Panel E: 
Momentum  

  

LowL1H1 0.000 0.000 0.001 0.665 0.002 
MedL1H1 0.000 0.000 0.001 0.013 0.000 
HighL1H1 0.000 0.005 0.015 0.029 0.000 
LowL3H1 0.000 0.000 0.000 0.336 0.001 
MedL3H1 0.001 0.002 0.001 0.025 0.001 
HighL3H1 0.000 0.003 0.034 0.068 0.001 
LowL12H1 0.000 0.000 0.000 0.086 0.000 
MedL12H1 0.001 0.023 0.007 0.797 0.001 
HighL12H1 0.000 0.003 0.010 0.074 0.001 
 

  

0  0 0  0  0
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Table 5 (Cont.)  
 

 Restrictions on equation    
 Unconditional Pre- vs Post 

Period 
Pre-

Period 
Post-

Period 
Difference in 

Frontiers 
Portfolios      

Panel F: Term Structure    
LowTS1_2  0.000 0.000 0.000 0.102 0.000 
MedTS1_2  0.000 0.000 0.000 0.000 0.000 
HighTS1_2  0.000 0.043 0.244 0.240 0.003 
LowTS1_3  0.000 0.000 0.000 0.137 0.000 
MedTS1_3  0.000 0.000 0.000 0.000 0.000 
HighTS1_3  0.000 0.007 0.093 0.273 0.001 
LowTS1_4  0.000 0.000 0.000 0.043 0.000 
MedTS1_4  0.000 0.000 0.000 0.009 0.000 
HighTS1_4  0.000 0.009 0.035 0.276 0.001 
 

This table presents the spanning test results using an international buy-and-hold portfolio, which 
consists of returns on seven developed nation’s equity indices and the Barclays Capital U.S. 
Aggregate Bond Index returns, as the benchmark asset. These nations include: Australia, Canada, 
France, Germany, Japan, the UK, and the US. This table presents the spanning test results using 
a US domestic buy-and-hold portfolio, which consists of returns on six US equity portfolios 
formed on the Fama-French monthly size and momentum factors, as the benchmark asset.  The 
reported numbers J-stat p values from tests of the restriction on Equation (3). The null hypothesis 
of all tests is spanning; that is, adding a portfolio of commodity futures to the benchmark assets 
that include "returns on the CRSP value−weighted index" and "returns on Barclays Capital 
monthly bond index" provides no diversification benefits. The restriction qj=0 tests the 
hypothesis that adding commodity does not change frontier for whole period; qj=qj=0 tests the 
hypothesis that adding commodity does not change frontier conditional on sub-periods; qj=0 
tests the hypothesis that adding commodity does not change frontier in the pre-period; qj=0 tests 
the hypothesis that adding commodity does not change frontier in the post-period; and tests pj=0 
tests the hypothesis that frontiers are the same in pre- and post- periods. 
 

augmented with different styles of commodity portfolios risk is subsequently reduced. 

Overall, the diversification findings observed over all sample periods are strongly consistent and 

show that if an investor is willing to take on the additional risk of an actively managed 

benchmark portfolio, the majority of commodity portfolios in both a buy-and-hold and tactical 

setting can provide substantial diversification benefits. 

 

 

0  0 0  0  0
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5.2.3.  International buy-and-hold benchmark portfolio 

 The results of Tables 3 and 4 solely focus on the US domestic case as the benchmark 

asset. However, commodities are global products and investors who seek diversification 

opportunities generally hold securities from numerous different nations and not just the US, thus 

it seems rather intuitive to investigate the diversification properties of commodities on an 

international stage as well. Table 5 presents the spanning test results using an international buy-

and-hold portfolio, which consists of returns on seven developed nation’s equity indices and the 

Barclays Capital US Aggregate Bond Index returns, as the benchmark asset. The interpretation 

of results follows exactly from the prior sections. The full sample results of Table 5 show very 

similar results when compared to the US domestic case. However, all of the buy-and-hold and 

tactical portfolios now become highly significant under the international benchmark portfolio. 

This result is of particular merit since it is the tactical portfolios which generally provide greater 

return potential. 

  An examination of the two sub-sample periods shows a somewhat trend to what was 

observed in Table 3, but with much weaker diversification benefits preserved in the latter sub-

sample period. Over the first half of the full sample period the vast majority of commodity 

portfolios provide exceptional diversification benefits when combined with a buy-and-hold 

international portfolio of equities and bonds, just as in the US domestic case. However, over the 

latter half of the sample period the spanning test results show that numerous commodity 

portfolios do not provide same form of diversification. While it is readily apparent that several 

commodity portfolios have lost their power as diversification tools in moving from the first sub-

sample period to the second, the overall findings bear a sharp contrast to what was observed in 

the US domestic analysis. The latter sub-sample results are somewhat mixed, particularly when 

compared to the US domestic case, but overall findings suggest international diversification 

opportunities in the post-2000 era using commodity portfolios have been diminished. Hence, 

while the diversification properties of commodity portfolios have been substantially reduced in 

the last decade for an international buy-and-hold portfolio of equities and bonds, just as in the 

buy-and-hold US domestic case, it seems to be to a much more degree. Nonetheless, this 

evidence points towards the financialization of the commodity market as weakening (to varying 

degrees) the diversification opportunities for all types of buy-and-hold investors. 
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5.2.4.  International actively managed benchmark portfolio 

Table 6 presents the spanning test results using an international actively managed 

portfolio, which consists of returns on six international equity portfolios formed on the Fama-

French monthly size and momentum factors from 23 developed nation’s equity indices, as the 

benchmark asset. Interestingly, the full sample results are the same when compared to the US 

domestic case in Table 4. All commodity portfolios are significant diversifiers when combined 

with dynamic international portfolio. However, in moving to the sub-sample analysis the results 

are strikingly similar to those of Table 4. Virtually all commodity portfolios provide substantial 

diversification benefits in the first period, but in the second period several of these portfolios lose 

their significance. It seems that the addition of commodity portfolios to an actively managed 

benchmark asset, whether it be a US or international portfolio, offers the same diversification 

opportunities. 

Comparing the international actively managed benchmark results to the international buy-

and-hold benchmark findings shows only marginal diversification gains for the actively managed 

reference portfolio. Specifically, only two more of the buy-and-hold commodity portfolios and 

the whole subset of mathematical portfolios become significant for post-2000 period in Table 6 

versus the results of Table 4. The tactical portfolio provide stronger diversification benefits when 

combined with dynamic international portfolio as compared to buy and hold international 

portfolio. This is particularly interesting given the strong contrast between the results of the US 

domestic buy-and-hold and actively managed reference portfolios. Thus, in the international 

portfolio setting the diversification gains from using an actively managed benchmark portfolio 

versus a traditional buy-and-hold approach provides much stronger diversification gains to the 

investor. 
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Table 6  
Diversification Properties of Commodity Portfolios: International Actively Managed Reference 

Portfolio 
  Restrictions on equation    
  Unconditional Pre- vs Post 

Period 
Pre-

Period 
Post-

Period 
Difference in 

Frontiers 
Portfolios       

Panel A: Buy-and-Hold 
Foods & Fibers  0.000 0.000 0.000 0.000 0.001 
Grains & Oilseeds  0.000 0.000 0.000 0.000 0.000 
Livestock  0.000 0.000 0.000 0.436 0.011 
Energy  0.001 0.203 0.080 0.619 0.003 
P. Metals  0.000 0.000 0.000 0.002 0.001  
Ewport  0.000 0.000 0.000 0.000 0.000  
Panel B: Basis   
Lowbasis  0.000 0.000 0.000 0.014 0.001 
Medbasis  0.000 0.000 0.000 0.000 0.000 
Highbasis  0.002 0.035 0.011 0.035 0.002 
Panel C: Speculation  
Lowspec  0.000 0.000 0.000 0.000 0.000 
Medspec  0.000 0.000 0.000 0.041 0.001 
Highspec  0.000 0.015 0.003 0.010 0.000 
Panel D: Mathematical   
Portmv  0.000 0.000 0.000 0.039 0.004 
Portcvar  0.000 0.000 0.000 0.020 0.002 
Portmad  0.000 0.000 0.000 0.042 0.004 
Panel E: Momentum   
LowL1H1  0.000 0.000 0.000 0.122 0.001 
MedL1H1  0.000 0.000 0.000 0.000 0.000 
HighL1H1  0.000 0.000 0.000 0.001 0.000 
LowL3H1  0.000 0.000 0.000 0.004 0.000 
MedL3H1  0.000 0.000 0.000 0.000 0.000 
HighL3H1  0.006 0.059 0.012 0.030 0.003 
LowL12H1  0.000 0.000 0.000 0.000 0.000 
MedL12H1  0.000 0.000 0.001 0.199 0.002 
HighL12H1  0.005 0.041 0.007 0.051 0.002 
 

  

0  0 0  0  0
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Table 6 (Cont.)  
 

  Restrictions on equation    
  Unconditional Pre- vs Post 

Period 
Pre-

Period 
Post-

Period 
Difference in 

Frontiers 
Portfolios       

Panel F: Term Structure   
LowTS1_2  0.000 0.000 0.000 0.117 0.002 
MedTS1_2  0.000 0.000 0.000 0.000 0.000 
HighTS1_2  0.001 0.010 0.002 0.004 0.001 
LowTS1_3  0.000 0.000 0.000 0.096 0.001 
MedTS1_3  0.000 0.000 0.000 0.000 0.000 
HighTS1_3  0.003 0.026 0.006 0.012 0.002 
LowTS1_4  0.000 0.000 0.000 0.027 0.000 
MedTS1_4  0.000 0.000 0.000 0.000 0.000 
HighTS1_4  0.004 0.090 0.027 0.055 0.002 
 
This table presents the spanning test results using an international actively managed portfolio, 
which consists of returns on six international equity portfolios formed on the Fama-French 
monthly size and momentum factors from 23 developed nation’s equity indices, as the 
benchmark asset. The nations include: Australia, Austria, Belgium, Canada, Denmark, Finland, 
France, Germany, Greece, Hong Kong, Ireland, Italy, Japan, Netherlands, New Zealand, 
Norway, Portugal, Singapore, Spain, Switzerland, Sweden, the UK, and the US.  The reported 
numbers J-stat p values from tests of the restriction on Equation (3). The null hypothesis of all 
tests is spanning; that is, adding a portfolio of commodity futures to the benchmark assets that 
include "returns on the CRSP value−weighted index" and "returns on Barclays Capital monthly 
bond index"  provides no diversification benefits. The restriction qj=0 tests the hypothesis that 
adding commodity does not change frontier for whole period; qj=qj=0 tests the hypothesis that 
adding commodity does not change frontier conditional on sub-periods; qj=0 tests the 
hypothesis that adding commodity does not change frontier in the pre-period; qj=0 tests the 
hypothesis that adding commodity does not change frontier in the post-period; and tests pj=0 
tests the hypothesis that frontiers are the same in pre- and post- periods. 

 

6.  Concluding Remarks 

 This paper examines the impact of surge in investments in commodity futures on the risk 

adjusted returns and diversification benefits of commodity portfolios. Many recent studies which 

examine the effects of the financialization of the commodity futures market argue that the highly 

touted benefits, such as “equity-like” returns and diversification properties, may be eroding due 

to the increasing co-movement between commodity futures and traditional assets like equity and 

bonds. Given these suppositions, I form six buy and hold and twenty-seven tactical commodity 

0  0 0  0  0



78 
 

portfolios and examine returns properties and diversifying characteristics of these portfolios over 

the full sample and sub-samples.  
 

 Of all the portfolios considered, buy and hold Energy sector portfolio, High basis 

portfolio, High speculation portfolio, the High momentum and Low term structure tactical 

portfolios generally exhibit higher risk adjusted returns. Although many commodity portfolios 

seemingly exhibit higher risk unadjusted returns in the post-2000 era, there is no significant 

change in the average performance of commodity portfolios after accounting for risk. Analysis of 

my subsample show that there is a general change in the beta coefficient of equity return 

indicating that commodity market has been more exposed in the latter sample period.  

  

 Furthermore, I implement stochastic discount factor based spanning test to access 

whether financialization has impacted the diversification benefits of commodity portfolios when 

combined with portfolio of traditional assets. I test each commodity portfolio against four bench 

marks: one domestic and one international buy and hold traditional portfolios, and one domestic 

and one international dynamic traditional portfolios. For the overall sample period, I find the 

evidence that commodity portfolios provide significant diversification benefit regardless of 

portfolio tested against any reference assets. Further, commodity portfolios provide similar 

diversification benefits for most part.  
 

 Analysis of diversification benefits in the sub-sample period provide dissimilar results 

when commodity portfolios are combined with buy and hold reference portfolios and with 

dynamic reference portfolio. The diversifying ability of commodity portfolio gets weaker in the 

second half period when buy and hold reference portfolio is considered. But, results are pretty 

much remains the same both in the pre-2000 period and post-2000 period when dynamic 

reference portfolio is considered. My tests also reveals that the two sub-period frontiers are 

different.  
 

 Overall, evidence suggests that commodity market has been more integrated with the 

equity market but risk adjusted returns pattern has not changed much and diversification of 

incorporating commodity portfolio into traditional portfolio has not disappeared. Changes in 

stock market betas suggest that maintaining portfolio composition over long time horizons is 

sub-optimal as asset correlations invariably change in the light of market condition. Further, 
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diversification tests based on long samples can lead to incorrect inferences. My method allows 

for a one-time change in asset correlations and shows the importance of permitting time 

variation. Incorporating richer asset correlation dynamics in the context of my model could be a 

topic of further research. 
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APPENDICES 

Appendix A 

1.  Derivation of conditional expectation 

In this appendix, I derive the moments characterizing the joint behavior of firm 

performance and firm survival accounting for sample selection biases arising from ways in which 

researchers truncate datasets and from the censoring that inevitably occurs in a finite dataset.   

In my general modelling framework, I model the entry and survival of firms from a dataset 

using two exponentially distributed variates t and s, where t determines when firms are born into 

a dataset and s determines on how long firms survive.  I then examine the restriction on these 

random variables when a researcher requires firms in her dataset to have continuous return 

histories, selects a sub-sample of data with continuous return histories, and conducts cross-

sectional analysis in a sub-sample with a continuous return history requirement.  As the censoring 

of survival time is always a feature of the data that contains a current set of firms, I consider 

censoring effects with my data truncation criterion. Therefore, I examine six information sets 

related to entire dataset, sub-sample and their censored and non-censored samples.  In the 

following sections, I introduce notations and conditional probabilities and moments that I use in 

this paper. 

1.1  Notations 

For expositional purposes and to develop my model, I define the following variables.  Let 

s, t and  be three random variables representing firm’s survival time, firm’s birth data and average 

pricing errors such that 		 ~  	 with probability density function (PDF) 	 					and 

cumulative distribution function (CDF) 1 	  ~  	with 	PDF 	 	 	 	 

and 	CDF 	 1 	 	and ~ ,  with 	PDF  1
2

1
2	

2

 and CDF

 1 erf
√

, where	
√

. 

I also need some additional notations to make different samples. I introduce  as  data 

length, D as  mortality month,  as first month of in a sub-sample,  as sub-sample length, ∗ as 

the minimum number of months required for estimating rolling alphas and k as the minimum 

number of months a researcher requires a firm to survive to be included in the sample.  
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Now I can define different samples with different restrictions in terms of these notations. 

My first sample is a simple ∗ months  continuous returns requirement in the entire dataset, 
∗, ∗ . The second and third samples include censored and non-censored firms form the 

first sample. For censored firms, the mortality date is not observed because they survive to the end 

of the dataset, i.e.  		 		  and for the non-censored firms 	 .  The 

information criteria for second and third samples can be denoted as  ∗,
∗	 	and	 ∗, 	 ∗ 	 	.  

In order to examine truncation bias, I also examine sub-sample of my entire dataset. For 

firms to be included in the sub-sample, it must have at least 	 ∗ months of data after the start of the 

sample, ∗		 ∗ or 	 ∗ or , where	
∗ 0. Therefore, the information criteria for my sub-sample is  ∗

, ∗	 . Again, for censored sub-sample,  and non-censored sub-sample . Their 

selection criteria should be  ∗, ∗	  and  , ∗  

respectively.  

1.2  Distribution preliminaries 

The survival and arrival of firms into a dataset would not be important to pricing unless 

pricing errors were correlated with firm entry or survival time. Therefore, I allow for correlation 

between pricing errors,  and survival times, s but assume pricing errors are uncorrelated to birth 

dates t.  Assuming that the joint behavior of average pricing errors and survival can be 

characterized by Farlie-Gumbel-Morgenstern type bivariate distribution function, the joint 

cumulative distribution functions in terms of above notation can be written as 

, 1 3  1 1  (A.1)

where  measures the degree of association between survival and average pricing errors. 

Therefore, the joint probability density function of survival and pricing errors can be written as  

, 	
,

		
	 3 2 Erf

√2
√2

	 

 

A.2
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I find high positive correlation between survival and birth variables in the CRSP data base. 

To address this issue, I assume birth and survival variables are not independent. Therefore, I model 

birth rate as a convex combination of survival rate and another independent exponentially 

distributed random variable  such that ~ 	with 	PDF 	 			 and 	

1 	 . Then, the joint PDF of s and u is . Since I assume 	 	

1 	 , the joint PDF s and t can be written as  

 ,

	

1
 

A.3

Hence, the joint density function for pricing errors, survival and birth times is 

, , , 	 ,  A.4

 

1.3 Conditional Probabilities, Expectations and Variance 

Given the joint PDF in equation (A.4), the conditional probabilities for given different 

information sets can be computed as  

… 	 , , 	  ,  
A.5

because the effect of normal variate simply integrates out. Equation (A.5) is used to calculate 

conditional probabilities for given information sets. The results are presented in Table A1.  

Since the restrictions are on the survival and arrival times and not the distribution of pricing 

errors,  the conditional moments for the mean and variance of pricing errors can be computed 

without setting limits on survival and arrival time.  The expectation of pricing errors leaving the 

limits on s and t indefinite and the information set generic is, 

|…
1
…

1 3 1 2 1 2  , 	 	 

and distributing the integral w.r.t.   I get, 

|…
1
…

 , 	 3 1 2 2 	  
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The integrands in this expression are standard (i.e., equal to the mean:) except for the term 

	 	 	 
√

, which involves the cumulative normal distribution and whose 

derivation is shown in Appendix B.  After evaluating the integrals the expectation becomes, 

|…
1
…

	 ,  3
√

1 2  A.6

Equation (A.6) is used with six information sets to calculate conditional expectation and the results 

are presented in Table A4. 

 In calculating the variance of pricing errors, I need the expectation of squared pricing errors 

which is,  

|…
1
…

1 3 1 2 1 2  , 	 	 

 

Distributing the integral w.r.t.   I get the expression, 

|…  

1
…

	 , 	 2	 3 1 2 2 	 	  

where the first two integrands are standard (i.e., equal to ) and the solution to the  third 

integrand, 

√

, shown in Appendix B again involves the 

cumulative normal distribution.  After evaluating integrals, a similar expression to that of the 

mean is given, 

|…
1
…

 , 6

√

1 2  A.7 

Using the equations (A.6) and (A.7) I can compute the variance as 

|…
1
…

	 , 2 6

√

1
2

2

 
A.8

which is of the form used with the six information sets to calculate conditional variance shown in 

Table A4. 
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 In calculating conditional survival time, the effect of the normal variate simply integrates 

out leaving the joint pdf of birth date and survival time.  To show this, consider expected survival 

time: 

|…
1
…

1 3 1 2 1 2  , 	 	 

Distributing the integrals w.r.t.   gives, 

|…  

1
…

	 , 3 1 2 2 	  

 

where the first two integrands are equal to one and the non-standard term is 

.    The result,  

|…
1
…

 , 	 
A.9

demonstrates that the conditional expected survival time does not depend on pricing errors, 

because pricing errors are unrestricted and the Morgenstern distribution has constant marginal. 

Equation (A.9) with different information sets is used to calculate conditional expectation of 

survival and arrival time.  

1.4 Conditional Covariance 

The conditional covariance between the pricing error and survival time, denoted by 

, |…  is defined as  

, |… |… |…  A.10 

 

Similarly, the conditional covariance between the survival and arrival time, denoted by 

, |… , is defined as  

, |… |… |…  A.11 
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The equation (A.10) and (A.11) with different information criteria are used to calculate conditional 

covariance between pricing error and survival and between survival and birth rate. The results are 

presented in Table A.3 and Table A.5. 

Table A. Probabilities, expectations and moment conditions  
 
A1. Conditional Survival (s) and Birth Time (t) Probabilities and Limits by sample type  
Sample Without censored 

Survival 
Non-Censored survival

t  
 

Censored survival 
,  

Data requirement Ω  Ω ,  Ω ,  

	  
  

Ω ,
 

 , ∞  , ∞  , /  
 n.a. , ∞  , ∞  

Data and start Ω  Ω ,  Ω ,  
date selection 

, 
 

Ω 	 Ω ,  1 Ω , Ω ,  

 , ∞  , ∞  , /  
 	,  ,  , ∞  

 
A2. Orthogonality conditions without censoring 
Data requirement only 
 Ω s k  

Data requirement and sub-sample 
 Ω s&t k, t s a  

Ω  |  Ω |  

Ω  |Ω  Ω |Ω  

Ω  | |  Ω | |  

Ω  |  Ω |  

  Ω |Ω ,  

  Ω |Ω ,  

Conditions Jointly Estimated Conditions Jointly Estimated 

Ω 0, 1,4  Ω 0, 1,6  

Parameters: , , ,  Parameters: { , , , , ,  
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A3. Orthogonality conditions with censored survival, [	 ,  and restrictions Ω or Ω  

Non-censored survival , 0 Censored survival  , 1 

Ω ,  |  Ω , |Ω ,  

Ω ,  |Ω ,  Ω , |Ω ,  

Ω ,  |s |  Ω ,
|Ω ,

|Ω ,  

Ω ,  |  Ω , |Ω , -	 , |Ω ,  

Ω ,  |Ω , ,  Ω , |Ω ,  

Ω ,  |Ω , ,  Ω , |Ω , |Ω ,  

Conditions Jointly Estimated   

Ω , 1 Ω , 0, 1,6 , for each 0, or 1  

Parameters estimated: , , , , ,  

 

Table B. Expression for expectations 
 

B.1         Survival Time 
|Ω  1⁄  
Ω ,  Ω ,

1
 

 
|Ω  1 2 1 1

1 2

2 2

1

 

|Ω  1
 

Ω ,  Ω ,  
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B.2           Arrival time 

Ω ,  
1 1

 

|Ω ,  	 1
1

 

Ω , ,  s
1
1  

Ω ,  

1
 

 
 

  

|Ω ,  
1

1
1

 

Ω , ,  s 1
1 a

1
 

Ω ,  

3 2

2 2 3

2
 

 

Ω ,  a
a

1
	 Ω ,  

|Ω  
 

p Ω

1 1

as as 2

 

 
B.3           Conditional expectations and variance of pricing errors 

|  . 5  

|  .5  
|Ω  .5A 1  

Ω ,  
1
2 2

 



90 
 

 
Ω ,  

. 5 , where 

2 2
Ω 2 2 2 1

 

|Ω   

Ω ,  
1
2 Ω , 2 2

2 1  

Ω ,  Ω ,  

|Ω  1
1
4

 

Ω ,  
1
4

1 4
2

1
3

 

  
 

B.4     Covariance between arrival time and pricing errors 

, |Ω , = 

Ω ,

Ω ,

2 2 4 2 1

Ω 4 2 2 1
 

 
, |Ω ,  , |Ω ,  

 

Variance adjustment factor  
1 3 3⁄ , where 1  
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2.  Derivation of non-standard integrals 

In this Appendix I show the derivations of the non-standard integrals used in computing 

expectations in Appendix A which are, 	 , 	 	 , and 

 	 	 . First is useful to rewrite the normal distribution function in terms of an error 

function:  

1
2

1 erf
√2

 

Next change variables 
√
,

√
 in the distribution function and density to get, 

2√
	 1  

    

The new variable has 0	 	 .  The integrals that aid in computations are: 

	
√
2
erf √  

erf 	
√
4
erf 0 

	 erf 	
erf	 √2

2√2
	

	erf	
2

1

√2
 

	 erf 	
1
8
√ 	erf 4 erf

2	

√
0 

    

II.1 Solution for 	      

	 	
2√

	 1
2√ 2√

	 	
1
2
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2.2 Solution for 	 	  

	 	 	 √2
2√

1  

2√
	

√2

2√
	 	 	

2√
	

√2

2√
	 	 erf 	  

2 2√
 

 

2.3 Solution for 	 	  

2	 	 2√2	 	 	  

 	 	 2	 	 2√2	 	 	
2√

	 1 	  

2 2
2	 	

2√
erf

2√
erf 2√2	 	 	

2√
erf 	  

2 2
2	

2√
	 erf 	

2√
	 erf 	

√2	 	

√
	 	 erf 	  

1
2
	

	

√
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Appendix B 

 

 

 

Figure 1. Correlation between equity and commodity. This figure plots the correlation 
between equally weighted commodity index returns and CRSP value weighted stock index 
returns over time. The dotted line represents 24 months rolling correlation and the solid line 
shows the dynamic conditional correlation. 
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Table 1 
Sample of Commodity Futures 

Sector Exchange 
Symbol 

Commodity Exchange Futures Start Date 

 CC Cocoa ICE July, 1959 
 KC Coffee ICE August, 1972 

Foods & Fibers JO Orange Juice ICE February, 1967 
 SB Sugar #11 ICE January, 1961 

 CT Cotton ICE July, 1964 
 LB Lumber CME October, 1969 

 WA Barley WCE May, 1989 
 WC Canola WCE September, 1974 
 C_ Corn #2 CBOT July, 1959 
 O_ Oats CBOT July, 1959 

Grains & 
Oilseeds 

RR Rough Rice #2 CBOT August, 1986 

 S_ Soybeans CBOT July, 1959 
 SM Soybean Meal CBOT July, 1959 
 BO Soybean Oil CBOT July, 1959 
 W_ Wheat CBOT July, 1959 

 FC Feeder Cattle CME November, 1971 
Livestock LC Live Cattle CME November, 1964 

 LH Lean Hogs CME February, 1966 
 PB Pork Bellies CME September, 1961 
 CL Crude Oil NYMEX March, 1983 
 HO Heating Oil #2 NYMEX December, 1984 

Energy HU Unleaded Gas NYMEX November, 1978 
 NG Natural Gas NYMEX April,1990 

 PN Propane NYMEX August, 1987 
 HG Copper NYMEX July, 1959 
 GC Gold NYMEX December, 1974 

Precious Metals PA Palladium NYMEX January, 1977 
 PL Platinum NYMEX March, 1968 
 SI Silver NYMEX June, 1963 

This table provides the individual commodity futures examined, the respective sectors to 
which the commodity futures belong, as well as futures exchange information and start 
dates. 

 

  



95 
 

Table 2         
Commodity Futures Market Over Time 

  Sectors 
Descriptions Periods Foods 

& 
Fibers 

Grains 
& 

Oilseeds

Livestock Energy Precious 
Metals 

All 
Sectors 

Combined
Volume (in 
‘000) 

1986-
2000 

45 155 26 148 65 439 

2001-
2013 

128 483 64 564 176 1414 

 Percent 
Higher 

1.82 2.13 1.47 2.82 1.7 2.23 

        
Open Interest  
(in ‘000) 

1986-
2000 

309 703 133 525 322 1992 

2001-
2013 

944 2186 395 1485 602 5612 

 Percent 
Higher 

2.06 2.11 1.98 1.83 0.87 1.82 

        
Correlation 
Between Equity 
and Commodity 

1986-
2000 

0.0581 0.1303 0.07 -
0.0434 

0.0432 0.0851 

2001-
2013 

0.2825 0.2989 0.0723 0.2468 0.3552 0.3608 

 Percent 
Higher 

3.86 1.29 0.03 6.68 7.22 3.24 

        
Total index 
investment 

 $13b 
in 

2003 

255.7b in April 2011  (All 
time high) 

197.5b in October, 
2013 

This table reports what has happened the volume, open interest and correlation between 
commodity market and equity in each sector and combined commodity market. 
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