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 Abstract 

In 2013, the worldwide production of renewable electricity accounted for 22.1% of the 

total energy production with 0.9% coming from solar photovoltaics (PVs). Recently, there has 

been a growing interest for Cu2ZnSnS4 (CZTS) quaternary semiconductor due to the abundance 

and low cost of its precursors. Moreover, this chalcopyrite material has an ideal direct band gap 

around 1.5 eV, high absorption coefficient (α >10
4
 cm

-1
) and high conductivity, making it 

suitable for nanostructured and dye-sensitized solar cell (DSSC) applications. Here, CZTS 

nanoparticles have been synthesized by pulsed laser deposition (PLD) and simultaneously 

deposited in the interstitial space of ZnO nanowire arrays to form bulk heterojunction 3D 

nanostructured solar cells. Secondly, vertically oriented CZTS nanoplates have been synthesized 

by PLD and used as counter electrode in platinum-free dye-sensitized solar cells. These CZTS 

nanostructures proved to be suitable in achieving workable solar cells, which could significantly 

cut down the cell cost and provide environmentally friendly photovoltaic devices. Alternately, 

hybrid organic–inorganic perovskite solar cells have become one of the most attractive 

photovoltaic technologies with easy solution fabrication and high conversion efficiencies. 

However, the devices remain unstable under certain processing and environmental conditions. 

Herein, formamidinium lead tri-halide perovskite (FAPbI3) planar heterojunction solar cells have 

been fabricated under a controlled environment. The fabrication parameters (precursor 

concentration, annealing, etc) and the effect of humidity on the structural, optical, and electrical 

properties of FAPbI3 thin films and devices have been investigated and proved to be critical in 

the processing of efficient devices. Solar cells with conversion efficiency of 16.6% have been 

obtained. Furthermore, in-situ techniques such as in-situ (scanning) transmission electron 

microscopy and in-situ XRD were performed to understand the crystallization and degradation 
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mechanisms of FAPbI3 thin films. The in-situ data were correlated with planar heterojunction 

FAPbI3 devices efficiency data in order to improve the device fabrication process. 

 

Keywords: solar cells, nanomaterials, emerging absorber material, cooper zinc tin sulfur, 

perovskite, synthesis, characterization, in-situ, high efficiency. 
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Chapter 1 Introduction and background 

 

1.1 Renewable energy 

With the energy crisis of the 21
st
 century and a constantly increasing energy demand, a 

sustainable energy production is one of the most important issues for the preservation of our 

planet. Currently, our society relies heavily on the use of fossils fuel (80%) for its energy 

production.
1,2

 However, the power supply acquired from fossil fuel remains low compared to the 

release of carbon dioxide in the atmosphere, which engenders greenhouse effect.
3-5

 In addition to 

the greenhouse effect, fossil fuel resources will also be depleted in the near future because of 

their limited amount.
5,6

 Renewable energies are the key in achieving a sustainable energy 

society. They are generally defined as energy that comes from naturally replenishing resources in 

a human timescale.
7
  

 

Figure 1. 1. Worldwide energy production adapted from REN21’s 2014 report. 
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In 2013, the worldwide production of renewable electricity accounted for 22.1% of the 

total energy production. The renewable electricity was produced from hydropower (16.4%), 

wind (2.9%), bio-power (1.8%), solar photovoltaic (0.7%) and geothermal (0.4%) methods.
8
 

Figure 1.1 is a schematic summarizing the different type of energy  production.
8
 The advantages 

of renewable energies rely on  

(i) their abundance,
7-9

  

(ii) and their presence over wide geographical areas. Other energy sources are 

concentrated in a limited number of countries.
8,9

  

(iii) Renewable energies are clean energy sources, resulting in no contribution to the 

greenhouse effect through environmental pollution.
4,9,10

 

 

1.2 Solar cells 

Among renewable energies, solar energy is of particular interest due to its abundance, 

geographic availability and environmentally friendly nature. Solar cells also known as 

photovoltaic cells are devices that convert the energy from sun light into electrical energy. 

Currently, solar energy production accounts for less than 1% of the total energy production, 

however, photovoltaics market attracted significant investments (53%) for clean energy 

production.
6,8

 The large investment relies on clean and low-cost energy production in solar cells. 

To achieve these goals, an effort needs to be focused on using lower cost and more abundant 

materials, decreasing the overall production cost and increasing the energy pay-back time.
11,12

 So 

far, solar cells have been divided in to four generations:
12

  

(i) The first generation is based on “crystalline silicon” (c-Si).
13-17

 This includes cells 

made of silicon or germanium which are doped with elements such as phosphorus or boron to 
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form pn- junctions. Crystalline silicon semiconducting wafers currently dominate the 

commercial market (15%–21% efficiency), thanks to the absorber material (Silicon) which can 

be integrated into green, efficient, and extremely reliable solar cells. However, this technology 

requires the use of thick and brittle wafers which necessitate expensive manufacturing processes 

making their price comparatively higher to their power output. 
13-17

  

(ii) The second generation of solar cells is based on “thin film technology”
11

 such as 

cadmium telluride (CdTe),
18-24

 copper indium gallium diselenide (CIGS)
25-30

 and hydrogenated 

amorphous silicon (a-Si:H).
31-36

 These types of absorber materials show 10-100 times enhanced 

light absorption compared to c-Si light absorption and thus require less material consumption 

and ultimately decreasing the cost. However, these solar cells have demonstrated low efficiencies 

(12%–15%) due to the complexity of their stoichiometry or sensitivity to moisture and oxygen. 

Further, commercial development will be hindered by the scarcity and toxicity of precursor 

materials such as indium and cadmium. 

(iii) The third generation of solar cells relies on “multi-junction” solar cells.
37-41

 These 

cells demonstrate record efficiency at laboratory scale (46%). However, their development at the 

industrial scale will be limited by their elevated cost and complicated manufacturing process. 

(iv) The fourth generation of solar cells, referred to as “emerging photovoltaics” is built 

on several technologies such as nanostructures instead of bulk material. They include nanocrystal 

solar cells,
42-45

 dye sensitized solar cells,
46-49

 polymer solar cells,
50-54

 inorganic solar cells,
55-59

 

perovskite solar cells,
60-64

 and others. The main advantages are the low cost of the precursor 

materials which can be solution processed for industrial applications, and their environmentally 

friendly composition. However their efficiency remains low compared to the first and second 

generation of solar cell devices.  
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1.2.1 Fundamentals of solar cells 

Most of the solar cells depend on semiconductor material. Upon illumination, electron-

hole pairs are generated in the semiconductor materials. When a load is applied to the device, the 

charge carriers can move and electricity can be produce. General working process of solar cell 

will be discussed below. 

 

1.2.2 Semiconductor materials 

A semiconductor material is defined by its conductivity which value is between that of a 

non-conductive insulator and highly conductive metals either due to the addition of an impurity 

or because of temperature effects.
65,67

 The addition of impurity is referred to as doping with n- 

and p-type semiconductor doping as shown in Figure 1.2.  

 

Figure 1. 2. Schematic of an (a) intrinsic, (b) n-type and (c) p-type semiconductor material. 

Tetravalent silicon (blue balls) was used as a model. The red and green balls represent 

pentavalent and trivalent atoms, respectively. 

 

To illustrate this concept, tetravalent silicon with four bonding sites is used. In the case of 

n-type doping (Figure 1.2b), the silicon crystal is replaced by a pentavalent atom, resulting in an 

electron which cannot form a covalent bond. The electron is then easily removed from the atoms. 
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In the case of p-type doping (Figure 1.2c), silicon is replace by a trivalent atom, leading to a hole 

formation because of the missing electron. This material is considered as an acceptor. When no 

doping is carried out, the semiconductor material is considered “intrinsic”.
67

 

 

1.2.3 pn-junction 

A crystal is defined as an interconnected sequence of unit cells leading to a formation of 

bands.
66

 The conduction and valence bands are the most relevant in semiconductor materials and 

are defined as the highest and lowest band above and below the fermi level, respectively. The 

distance between these two bands is defined as the band gap (Eg) and has values in the energy 

range from 0.5 to 4eV for semiconductor materials. For n-type doping, electrons are the majority 

charge carriers and located mainly in the conduction band while holes are majority carriers for p- 

type materials in the valence band.  The position of the fermi level depends on the nature of the 

semiconductor material. When n- and p-type materials are connected, a pn-junction is formed as 

shown in Figure 1.3.  The Fermi level of each doped materials will align themselves, inducing a 

band bending at the interface between the two materials. 

 

Figure 1. 3. Formation of depletion region by contact between p- and n-type semiconductor 

materials. 
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Upon contact, charge carriers start diffusing electrons toward the p-type and holes toward 

the n-type, thus creating a depletion region at the interface between the two semiconductor 

materials. 

 

1.2.4 pn-junction under bias 

When a bias (forward or reverse) is applied to a pn-junction, the electric field at the 

depletion region is modified. Forward bias refers to a positive voltage applied to the p-type and 

negative voltage to the n-type and vice versa for the reverse bias. With forward bias, the electric 

field applied to the device is opposite and higher than the one in the depletion region.
67

 As a 

consequence, the electric field drops in the depletion region, leading to a reduced barrier for the 

charge carriers to overcome and diffuse from one side to the other as presented in Figure 1.4. 

With reverse bias, the electric field applied to the device is in the same direction as the one in the 

depletion region. As a consequence, the electric field is increased in the depletion region leading 

to a higher barrier for the charge carriers to overcome and thus cannot diffuse from one side to 

the other side of the junction.
67

  

 

Figure 1. 4. Operation mechanism of a pn-junction under applied positive external bias 
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1.2.5 pn-junction under illumination 

A solar cell is a photodiode with a pn-junction. When a photon of sufficient energy 

irradiates the device, an electron-hole pair is created. When absorption occurs next to the 

depletion region, the charge carriers can either drift or diffuse toward the other side of the 

junction. Thus holes move toward the anode, and electrons toward the cathode. If the holes and 

electrons reach the depletion region, photocurrent will be produced.
65

  

 

1.2.6 Key photovoltaic parameters 

Solar cells are generally characterized by current-density versus voltage (JV) plots in dark 

and under illuminated environments. The key photovoltaic parameters (Figure 1.5) are defined 

by the short circuit current (Jsc), the open circuit voltage (Voc), the maximum power point (Pm), 

the fill factor (FF) and the efficiency (ƞ).
67-69

 Jsc is the current going through the solar cell when 

the applied voltage is equal to zero. It corresponds to the intercept of the JV curve with the y- 

axis. Voc is the voltage going through the device when the measured current is equal to zero. It 

corresponds to the maximum voltage produced by the device and is located at the intercept of the 

JV curve with the x- axis. Pm is defined as the maximum power produced by the solar cell, where 

the current (Im) and voltage (Vm) value are both maximized. It is represented by the maximum 

square area under the JV curve (blue dashed area in Figure 1.5). The FF determines the 

maximum power from a solar cell. The FF is defined as the available power at Pm in the solar 

cell. It is calculated by dividing Pm by the product of the Jsc and Voc. Graphically; the FF is 

represented by the “squareness” of the curve. Finally, the efficiency of a solar cell represents the 

percentage of energy absorbed by the cell converted into electrical energy. It is calculated by 

dividing the power coming out of the cell by the power going in (Pin). 
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Figure 1. 5. Typical current-density versus voltage curve under illumination. The key 

photovoltaic parameters (Jsc, Voc, Pm) are shown on the plot. 

 

1.3 Emerging photovoltaic materials 

The fourth generation of solar cells relies on emerging materials. These materials are 

called emerging due to their advantageous properties such as broad light absorption over the 

whole solar spectrum, while having environmentally friendly composition or abundant and low 

cost precursor materials used for their synthesis. Among these emerging technologies, CZTS and 

perovskite materials are of broad interest. On one hand, CZTS offers access to low cost and 

abundant materials with tunable optical properties due to its quaternary composition. On the 

other hand, perovskite absorber material relies on easy solution process, which require extremely 

small amount of materials for high efficiency devices. The two materials will be discussed in 

greater details below. 
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1.3.1 Cu2ZnSnS4 absorber materials 

Cu2ZnSnS4 often abbreviated as CZTS is a p-type and environmentally friendly 

semiconductor absorber material with abundant and low cost precursor materials. It has two 

principals structures: the stannite type (I4̅2m) and the kesterite type (I4̅).
70

 The two structures are 

defined by a 1x1x2 tetragonal expansion of the zinc blende where only the arrangement between 

the copper and zinc atoms differ.
57,70-74

 Moreover, CZTS (I2-II-IV-VI4) has an ideal direct band 

gap around 1.5 eV and high absorption coefficient (α >10
4
 cm

-1
).

58,59,74-77
 CZTS crystals were 

reported for the first time in 1967 by Nistche et al.
72

 The iodine vapor transfer method was used 

to grow single crystals of the type A2
I
B

II
C

IV
X4 (where A = Cu; B = Zn, Cd, Fe, Mn, Ni; C = Si, 

Ge, Sn and X = S, Se). Two decades later, Ito and Nakazawa fabricated a stannite type CZTS 

thin film semiconductor on heated glass substrates using atom beam sputtering. The films 

demonstrated a direct optical band gap of 1.45 eV and a large absorption coefficient (α >10
4
 cm

-

1
) in the visible wavelength range.

78
 Figure 1.6 shows the typical construction for a CZTS thin 

film device. The solar cell relies on the stacking of several metallic and semiconducting layers.  

 

Figure 1. 6. Schematic of a typical CZTS thin film device with the standard configuration of 

glass-molybdenum/CZTS/cadmium sulfide/intrinsic zinc oxide/indium tin oxide. 
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From bottom to top, the device contains molybdenum on glass (Mo, ~1µm), CZTS (0.6-2 

µm), cadmium sulfide (CdS, 20-70nm), intrinsic zinc oxide (i-ZnO, 100-150nm) and indium tin 

oxide (ITO, ~200 nm). In this configuration, the light is irradiated from the top of the device, 

where CZTS (p-type) is the absorber material forming a pn-junction with i-ZnO (n-type). CdS 

acts as a buffer layer between the p- and n-type materials to enhance the band alignment in the 

pn-junction and limit recombination mechanisms. Mo and ITO are the respective bottom and top 

charge carriers collection electrodes. Following this work, CZTS has been synthesized using 

various physical and chemical techniques. The best cell efficiencies for each technique are 

summarized in Table 1.1.  

 

Table 1. 1. Summary of best CZTS solar cell efficiency synthesized using vacuum and non-

vacuum based techniques. The * denotes the devices which have been selenized, and thus 

reflects CZTSSe solar cell efficiencies. 

 

 

Among the physical techniques, vacuum-based deposition processes such as e-beam 

evaporation,
 79-81

 thermal evaporation,
 82-85

 radio-frequency (RF) magnetron sputtering,
 86-88

 and 
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pulsed laser deposition (PLD)
89-94

 were widely used to fabricate thin film devices. Another 

approach was to use chemical techniques such as electrodeposition of CZTS thin film,
 95

 spin 

coating
96

 or blade coating
71

 of inks synthesized by hot injection,
 71,75,76,97,98 

solvothermal
99-102

 and 

hydrothermal methods.
103-106

The advantages in using chemical approaches rely on tunable 

optical and electrical properties of the nanocrystals by varying their composition and size. 

However, CZTS is not limited to spherical shape nanoparticles. A wide range of morphologies 

has been investigated such has nanorods,
107

 nanowires,
108-110

 nanotubes,
109

 nanoplates,
91,111,112

 

nanoprism,
113 

microspheres,
111,114-116

 
 
and quantum dots,

98,117,118
 etc. Currently, Mitzi et Al. at 

IBM holds the record for selenized thin film CZTS solar cell with efficiency up to 12% by 

vacuum deposition techniques.
58

 

 

1.3.2 Perovskite absorber materials 

Perovskites are naturally occurring minerals with ABX3 structure such as calcium titanate 

(CaTiO3), which were first discovered in 1839 by G. Rose.
119

 Three dimensional organic-

inorganic hybrid perovskites with ideal Pm3m cubic structure
3
 were synthesized by replacing an 

inorganic cation (A, cesium) with methyl ammonium (MA = CH3NH3
+
) or formamidinium (FA 

= CH(NH2)2
+ 

) cations, conferring semiconducting properties to these new materials.
120

 Further, a 

wide variety of compositions is possible, where B cations can be Pb or Sn and the halide (X) can 

be any of F, Cl, Br, or I, conferring highly tunable properties to perovskite absorber material. 

Both MA and FA-based perovskite possess good optical and electrical properties with ideal 

direct band gaps at 1.55 and 1.47 eV and an absorption edge at 800 and 850 nm, 

respectively.
119,121-124

 This allows them to absorb photons in both the visible and near-infrared 

solar spectrum.  The first perovskite solar cell (PSC) was fabricated in 2009 by Kojima et al.
125
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Unfortunately, the devices were unstable and demonstrated poor performance. The breakthrough 

for PSCs came in 2012, where devices with efficiencies higher than 10% were reached.
126-129

 The 

reason of this success was based on the use of solid-state planar heterojunction architecture 

rather than using liquid electrolyte in a sensitized configuration. Over the last 3 years, the interest 

of PSCs using MA and FA precursors grew, due to unprecedented record efficiencies in a short 

time span.
12

 

Figure 1.7 shows the typical architecture for a planar heterojunction perovskite solar cell. 

The solar cell relies on stacking of several metallic, organic and semiconducting layers. From 

bottom to top, the device contains fluorine-doped tin oxide on glass (FTO, ~1µm), compact 

titanium dioxide (c-TiO2, 20-50 nm), perovskite (200-600 nm), hole transporting material (HTM, 

100 nm), and silver (Ag, 100-150 nm).  

 

Figure 1. 7. Schematic of a typical perovskite planar heterojnunction device with the standard 

configuration of glass-FTO/ c-TiO2/perovskite/hole transporting material/silver. 

 

In this configuration, the light is irradiated from the top of the device, where the 

perovskite is the absorber material and can form and electron-hole pair. c-TiO2 acts as a blocking 

layer to avoid recombination of the charger carriers and the HTM is used to collect the holes 

which are diffusing upon illumination. FTO and Ag are the electrons and holes collecting 

electrodes, respectively. Perovskite absorber materials have been synthesized by a vast range of 
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physical and chemical techniques which are summarized in Table 1.2. Among them vacuum 

evaporation techniques such as co-evaporation of the precursor materials was proposed,
130 

however physical techniques are not suitable for evaporation of organic materials and future 

mass production.
131

  

 

Table 1. 2. Summary of best perovskite solar cell efficiencies synthesized using vacuum and 

non-vacuum based techniques. Only published power conversion efficiency data are recorded in 

this table. 

 

 

Two-step dipping (TSD),
132,133

 vapor-assisted solution process (VASP),
134

 aerosol-

assisted chemical vapor deposition (AACVD),
135

 two-step sequential solution deposition,
136

 fast 

deposition crystallization (FDC),
137

spray deposition,
138

  spin coating,
123,139-141

 and solvent 

engineering techniques
62

 are among the most popular method to fabricate high quality perovskite 

absorber material thin films. Note that the efficiencies recorded in Table 1.2 mostly reflect data 

published on MA-based solar cells. Besides, the scientific community is still debating on which 

fabrication method would be the more consistent for standard thin film production.  
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In 2014, Eperon et al. published the first report on planar heterojunction formamidinium 

lead trihalide solar cells. Planar heterojunction solar cells were fabricated using single precursor 

spin-coating route, and demonstrated efficiencies up to 14.2%. This breakthrough rendered 

formamidinium as viable candidate for PSCs.
122

 Currently, the record efficiency for planar 

heterjunction solar cell based on formamidinium lead triiodide is 20.1%,
12

 confirming the 

importance of studying FA-based solar cells. 

 

1.4 Overview of this dissertation 

The work presented in this thesis is divided into two parts: Chapters 2 and 3 focus on the 

integration of CZTS absorber material into nanostructured and dye-sensitized solar cells, 

whereas Chapters 4, 5 and 6 will focus on fabrication and characterization of planar 

heterojunction perovskite solar cells. A short abstract for each chapter is given below. 

Chapter 2 will focus on nanostructured solar cells. CZTS chalcopyrite semiconductor 

materials were integrated with the zinc oxide (ZnO) nanowire arrays to form 3D nanostrucutured 

solar cells. Different synthetic techniques for CZTS and ZnO will be discussed. Morphological, 

crystallographic, electrical and optical characterization of CZTS and ZnO semiconductor 

materials will be presented and their integration in solar devices will be discussed.  

In Chapter 3, ligand-free vertically aligned Cu2ZnSnS4 nanoplates were directly 

synthesized on fluorine doped tin oxide substrate using the pulsed laser deposition (PLD) 

method, forming a nanoplate array. The array follows a two-step growth process by first forming 

a Cu2ZnSnS4 thin film ( 100 nm), followed by vertical nanoplate formation. The nanoplates are 

about 20 nm thick and 300 nm high with a petal-like shape. Furthermore, the nanoplate array was 

integrated in a dye sensitized solar cell as a counter electrode with a power conversion efficiency 

of 3.65%. This is comparable to that of a conventional sputtered Pt counter electrode (3.33%) 
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and higher than that fabricated with a “classical” Cu2ZnSnS4 thin film (2.83%). The Cu2ZnSnS4 

nanoplate array is proved to be suitable for counter electrode fabrication in achieving Pt-free dye 

sensitized solar cells, which could significantly decrease the cell cost and provide 

environmentally friendly photovoltaic devices. 

Chapter 4 will report on fabrication parameters of the structural, optical, and electrical 

properties of formamidinium lead halide perovskite, (prepared by a solvent engineering method) 

and the device characteristics of planar FAPbI3 solar cells. The fabrication parameters (the 

concentration of the precursor solution, the solvent engineering techniques and the annealing 

time and temperature) strongly affect the perovskite film’s morphology, and optical properties. 

Small variation in the refined parameters (0.7M solution concentration, 170˚C, 10 min 

annealing) strongly impact the final device’s efficiency. Devices up to 12% efficiency were 

fabricated using controlled parameters. 

Chapter 5 will report on the effect of humidity on the structural, optical, and electrical 

properties of formamidinium lead halide perovskite, (prepared by a solvent engineering method) 

and the device’s characteristics of planar FAPbI3 solar cells. The relative humidity affects the 

perovskite film morphology, which changes from a uniformly covered FAPbI3 film at low 

relative humidity (e.g., ~2%) to an inhomogeneous film consisting of many voids (or pinholes) at 

high humidity (30%–40%). This morphological deterioration with increasing humidity is also 

accompanied by a reduction of the film crystallinity, decay of optical property, and shorter 

carrier lifetime. The device based on a planar FAPbI3 film shows the best conversion efficiency 

of 16.6% (with a stabilized output efficiency of 16.4%) at a low humidity (~2%). 

Chapter 6 is an in-situ observation of the synthesis process inside the electron 

microscope, which can provide the necessary structure-property basis for controlling the 
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properties of perovskite solar-cells. Direct observations of the structure and chemistry of 

formamidinium lead-triiodide films over relevant spatial, time, and temperature scales were used 

to identify key perovskite formation and degradation mechanisms. Optimized processing 

protocols were then developed from the in-situ study, resulting in the fabrication of devices with 

conversion efficiencies up to 16.1%. 
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Chapter 2 Bulk heterojunction formation between Zinc Oxide nanowire array and 

Cu2ZnSnS4 nanoparticles for 3-Dimensional nanostructured solar cells*  

 

2.1 Introduction 

With 1.3 billion people without access to electricity and a perpetual energy demand, it is 

critical to find low cost, reliable and clean ways to produce energy. In 2013, the worldwide 

production of renewable electricity accounted for 22.1% of the total energy production. The 

renewable electricity was produced from hydropower (16.4%), wind (2.9%), bio-power (1.8%), 

solar photovoltaic (0.7%) and geothermal (0.4%). Despite this extremely low production from 

solar power, photovoltaics are the renewable energy which generates the highest investment 

(53%) for clean energy production.
1
 Therefore, the demand for highly efficient photovoltaics, 

which relies on green and abundant materials keep increasing. 
1,2

 The major goal for 

commercialization of photovoltaic cells is to significantly increase the energy conversion 

efficiency while cutting down the cost. To reach this goal, engineering nanostructured materials 

to achieve high efficiency is very crucial. Nanostructure based solar cells are ideal candidates for 

fulfilling this perpetual demand.
3-7

  

1D radial nanostructures compared to planar demonstrate the advantages of optimal light 

absorption,
4,5,8-12

 enhanced charge carrier collection efficiency,
7,13-15

 and smaller recombination 

loss of minority carriers at the interfaces,
7,13,16-18

 thus enhancing the solar cell 

efficiency.
2,4,5,8,10,12-17,19-22

 However, nanostructure based solar cells have not reach yet the power 

conversion efficiencies achieved for planar solar cells. 
21,23

  

*This chapter was adapted from: Wozny, S.; Wang, K.; Alkurd, N.; Zhou, W., Heterojunction 

Formation between Zinc Oxide Nanowires and Cu2ZnSnS4 Nanoparticles For Inorganic 3D Solar 

Cell Applications Proc. 42th IEEE PVSC 2015, 2015 
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Recently, there has been a growing interest for Cu2ZnSnS4 (CZTS) quaternary 

semiconductor due to the abundance and low cost of its precursors. Moreover, this chalcopyrite 

material has an ideal direct band gap around 1.5 eV, 
24

 high absorption coefficient 
25

 (α >10
4
 cm

-

1
) and high conductivity

26
 that makes it suitable for nanostructure solar cells applications. CZTS 

has been synthesized by several methods over recent years,
27

 such as sputtering, 
28, 29

 

evaporation,
28

 pulse laser deposition,
 26,31, 32

 and synthesis of nanocrystals inks,
29-33

 etc.
33-38

 The 

synthetic methods, however, are limited to the formation of thin film structure so far, which 

generated the excessive loss of minority carriers in the semiconductor layers through the 

junction.
23

  

Three dimensional (3D) nanostructures demonstrated new structures and physics for 

limiting the recombination at the interfaces, thus enhancing the solar cell efficiency. 
18,21,23,39

 

Since the conversion efficiency is mainly controlled by the composition of the nanocrystals, the 

structure of the device, and the morphology of CZTS; a three-dimensional (3D) nano-junction is 

a potential solution to this issue due to the reduced lateral travel distance for the minority carriers 

which would decrease the defect trapping problem.
21

 Ultimately, an extremely thin p-type 

absorber layer (CZTS) and an n-type nanostructure (ZnO Nanowires) could potentially increase 

the charge collection efficiency of the device through the lateral junction while maintaining a 

complete light absorption due to multiple absorption paths.  

In this work, CZTS nanocrystals (p-type) were synthesized by hot injection method or 

pulsed laser deposition technique (PLD), and deposited in the interstitial space of pre-fabricated 

zinc oxide (ZnO) nanowires array to form a 3D heterojunction device. A pn-junction was 

successfully created, as well as workable devices, demonstrating the potential of CZTS as an 

inorganic 3D bulk heterojunction for solar cell applications. 
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2.2    Experimental 

2.2.1 Synthesis of CZTS 

2.2.1.1    Synthesis of CZTS nanocrystal ink by hot injection method 

The synthesis of CZTS nanocrystals was performed following Guo et al., method  with 

slight modifications.
32

 The hot injection synthetic process is summarized in Figure 2.1. Briefly, 

copper II acethylacetonate (0.48 mmol), tin IV acetate (0.25 mmol) and zinc acetate (0.27 mmol) 

were added to 16 mL of oleylamine which was degassed using three times the freeze thaw 

method.  

 

Figure 2. 1. Schematic summarizing the hot injection process for the synthesis of CZTS 

nanocrystals. 
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The mixture was heated to 150 ˚C under vacuum and subsequently degassed and purged 

for 30 min. In a 20 mL scintillation vial, elemental sulfur (1 mmol) was sonicated in 4 mL of 

oleylamine at 60 ˚C until complete dissolution of the sulfur. When the metal precursor solution 

reached 160 ˚C, 3 mL of the sulfur-oleylamine solution were rapidly injected. The metal 

precursor was then heated to 225 ˚C and kept at this temperature for 30 min under nitrogen 

atmosphere. The reaction was cooled to room temperature by removing the heating mantle and 

small amounts of toluene were added to avoid aggregation and solidification of the nanocrystals. 

Toluene and isopropyl alcohol (IPA) were used, respectively to precipitate and redisperse the 

nanocrystals. The solution was then centrifuged, and the washing process was repeated 3 times. 

The nanocrystals were dried under vacuum and redispersed in hexanethiol to form stable black 

ink.   

 

2.2.1.2     Synthesis of CZTS by pulse laser deposition 

A custom made PLD system (Figure 2.2) was used for CZTS deposition. A Nd:YAG 

pulsed laser with a wavelength of 1064 nm and a repetition rate of 10 Hz was focused on a 

sintered CZTS target placed inside a 1 inch quartz tube connected to a vacuum pump. The CZTS 

target was prepared by mixing stoichiometric amount of Cu2S, ZnS and SnS2 (1:1:1) powder, 

which was pressed into a pellet of 10 mm diameter and 3-5 mm thickness. The pellet was sealed 

in an evacuated quartz tube and annealed for 20 h at 750˚C with a heating and cooling ramp of 2 

˚C/min.
40

 Before deposition, the target was polished to achieve a smooth and uniform surface. 

The substrate was then cleaned and placed in front of the target and the tube was flushed with Ar 

and evacuated several times before pumped down to 800 mTorr. The quartz tube was heated to 

450˚C, and the target was ablated for 3 hours at 27 mJ/cm
2
, followed by 15 min at 32 mJ/cm

2
. 
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The target was then annealed for 10 min at 450˚C and naturally cooled to room temperature for 

future experiments. 

 

Figure 2. 2. Schematic of the custom made pulsed laser deposition system 

 

2.2.2 Synthesis of ZnO nanowire array 

Glass substrates were ordered from VWR, and conventionally washed. A 100 nm seed 

layer of Aluminum-ZnO (AZO) was RF sputtered (60W) on the clean glass and annealed at 

450˚C for 1 h. Further, ZnO nanowires were hydrothermally grown using slight modification 

from the conventional growth method.
41

 Zinc nitrate hexahydrate (25 mM), 

hexamethylenetetramine (HMT) (25 mM) and polyethyleneimine (PEI) (5mM) solution in DI 

water were mixed together and heated up to 90˚C. A substrate was immersed in the solution for 

10 hours. The solution was replaced with fresh one every two hours to maintain a constant 

growth rate. The substrate was then lightly sonicated to remove artifact from the growth solution, 

washed with DI water and annealed at 450 ˚C for 1 h.   Figure 2.3 summarizes the synthetic 

process for the growth of vertically aligned ZnO nanowires.  
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Figure 2. 3.Schematic summarizing the hydrothermal method for the synthesis of 3D nanowire 

array 

 

2.2.3 Device fabrication 

For a 3D device (Figure 2.4), a thin film (̴ 100 nm) of AZO was coated by RF magnetron 

sputtering on soda lime glass substrate. Zinc oxide nanowires (5 µm, n-type) were grown on the 

AZO film, and further embedded by either dropping CZTS nanocrystals ink (200 mg/mL) on the 

nanowires or by PLD technique. For the second technique, a custom made PLD system was used 

for filling ZnO nanowires interstitial space with CZTS. A Nd:YAG pulsed laser with a 

wavelength of 1064 nm and a repetition rate of 10 Hz was focused on a sintered CZTS target 

placed inside a 1 inch quartz tube connected to a vacuum pump. The substrate was placed in 

front of the target and heated to 450˚C. The target was initially ablated for 3 hours at 27 mJ/cm
2
, 

followed by 15 min at 32 mJ/cm
2
. Finally, a top electrode of Molybdenum (Mo) was RF 
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sputtered using a bilayer process on the surface of the absorber material to complete the device. 

First the chamber was evacuated to a base pressure of 5x10
-6

 Torr, which was then increased to 

10 mTorr using Ar partial pressure. 5 nm of Mo (100W) were initially sputtered at 10 mTorr, 

followed by 1 µm of Mo at 2 mTorr to achieve a low sheet resistance film.  

 

Figure 2. 4. Schematic summarizing the device fabrication process 

2.2.4 Material characterizations 

A Carl Zeiss 1530 VP field emission scanning electron microscope (FESEM) and a 

Tecnai G2 20 transmission electron microscope (TEM) equipped with EDS were used to 

characterize the morphology of the synthesized nanostructures. The crystallinity and purity of the 

samples were examined by X-ray diffraction (XRD) using a Philips X-ray diffractometer 

equipped with graphite-monochromated Cu Kα radiation at λ = 1.541 Å, and a confocal Raman 

microscope (DXR Thermo Scientific). The photocurrent−voltage (JV) characteristic of 
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CZTS/ZnO 3D nanostructured solar cells were measured with a Newport solar cell simulator 

(Model 9119X) equipped with a 150 W Xenon lamp under simulated AM 1.5G illumination 

(light irradiation of 100 mW.cm
-2

).  

 

2.3     Results and discussion 

2.3.1 Working principle 

In this 3D nanostructure solar cell design, we use an “inverse’ configuration compare to 

the classical 2D thin film device. The inverse structure relies on the use of nanowire array (ZnO), 

which can potentially reduce the charge recombination at the interfaces between the p- and n-

type materials due to the reduced lateral travel distance for the minority carriers, which would 

decrease the defect trapping problem and thus increase the solar cell efficiency. Additionally, the 

use of a nano-junction between ZnO and CZTS would potentially increase the pn-junction 

surface area while decreasing the amount of material needed for the fabrication of the device, 

which ultimately would provide devices with increased efficiency at a lower cost. 

 

2.3.2 CZTS nanocrystals 

One of the limitations concerning the growth of kesterite CZTS nanocrystals is the lack 

of thermodynamic studies. In addition, the characterization   of   the    samples   is   not   

straightforward due to the similar crystallographic structures between CZTS and some spurious 

phases, such as ZnS, CuxS, SnS2, which degrade the quality of the final absorber layer.   The 

CZTS nanocrystals were characterized by several means in order to substantiate the purity of the 

kesterite structure. Figure 2.5a represents a characteristic XRD for CZTS nanocrystals which is 

confirmed by the presence of the major diffraction peaks (112), (200), (220), and (312) of the  
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Figure 2. 5. (a) X-Ray diffraction pattern and (b) Raman spectrum of CZTS sample; (c) Low 

Magnification TEM image and (d) HRTEM of CZTS nanocrystals. (e) EDS Mapping of a CZTS 

nanoparticle.  
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CZTS kesterite structure. These results are in good agreement with the value reported in the 

literature,
 30-32 

as well as the Powder Diffraction File 26-0575 of the International Center for 

Diffraction Data. Additionally, the single-phase nature of the sample was further confirmed by 

Raman spectrum. As shown in Figure 2.5b, the characteristic peak of a pure CZTS phase, 

centered at 338 cm-1 was observed. The nanocrystals were further characterized by transmission 

electron microscopy (TEM). Figure 2.5c shows a typical low magnification TEM image of well 

dispersed and quasi uniform CZTS nanoparticles with a diameter in the range of 7~15 nm. A 

high resolution electron microscopy (HREM) image of a single CZTS nanocrystal also reveals 

the inter-planar d112 spacing of 3.1Å, further confirming the nature of the nanocrystals as CZTS 

(Figure 2.5d). An energy dispersive x-ray (EDX) mapping of an individual CZTS nanoparticle 

(Figure 2.5e) demonstrates the repartition of the elements is uniformly distributed in the 

nanocrystal.  As a result, it is apparent to conclude that the as-synthesized nanocrystals are pure 

CZTS, which can be used for further device fabrication. 

 

2.3.3 ZnO nanowires 

The n-type part of the junction is engineered by ZnO nanowires on an AZO seed layer.  

This transparent conducting oxide layer, with an n
+
- type conductivity, allows the wavelength to 

be transmitted to the p-type absorber layer. The conductive behavior of the seed layer is strongly 

correlated to its number of oxygen vacancies, percentage of Aluminum doping, and its thickness. 

A 100 nm seed layer is thick enough to provide a good conductivity, but thin enough to maintain 

a good transparency.
42, 43 

Moreover; this thickness is optimum to provide a solid growth site for 

the ZnO nanowires (a wide band gap semiconductor (3.37 eV at RT) with wurtzite structure.  
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It is colorless and clear in the near UV.
44

 Figure 2.6a is a top-view FESEM image of the 

AZO seed layer after annealing. The thin film shows a uniform and smooth surface which grain 

size about 15 to 50nm. The ZnO nanowires were synthesized on the AZO/soda lime glass. 

Initially, Zn(NO3)2 and HMT were mixed with DI water. The reactions occurred following 

equation (1) and (2). Zn(NO3)2 and HTM were reacted and hydrated, providing respectively Zn
2+

 

and OH
− 

to the solution. 

(CH2)6N4 + H2O 
∆
→ 4NH3 (g) + 6HCHO(g) (1) 

NH3 + H2O → NH4+ + OH
−
 (2) 

When the precursor solution was further heated, Zn
2+

 reacted easily with OH
−
 to form 

more soluble Zn(OH)2 complexes (equation (3)), which were decomposed to form ZnO 

nanostructures (equation (4)).  

Zn
2+ 

 + 2OH- ↔ Zn(OH)2(s) (3) 

Zn(OH)2 ↔ ZnO(s) + H2O (4)  

 

 

Figure 2. 6. (a) FESEM image of the AZO seed layer deposited by RF magnetron sputtering, (b) 

Large area FESEM image of ZnO nanowire array grown by hydrothermal method on the AZO 

seed layer, the inset shows a higher magnification image of the same nanowires exhibiting a 

diameter around 80~200 nm, and (c) is the cross sectional image of the ZnO nanowires with a 

length about 5µm. 
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The concentration of ZnO increased until super-saturation, where ZnO crystal nuclei 

were formed and led to the growth of the nanowires.45 Figure 2.6b shows a typical low-

magnification FESEM image of as-synthesized large-area ZnO nanowire array. Most ZnO 

nanowires exhibit tapered morphologies and diameters that are in the range of 80~300 nm, as 

shown in the inset of Figure 2.6b.  The cross sectional FESEM images of the ZnO nanowire 

array, as shown in Figure 2.6c, demonstrates a successful c-oriented growth with length ~5 μm.  

 

2.3.4 Formation of pn-junction  

2.3.4.1      Formation of pn-junction using CZTS nanocrystal ink 

However, controlling the density of the ZnO nanowires arrays synthesized by 

hydrothermal route seems to be difficult because of no effective way to control the growth of 

seed layer. As a consequence, fully filling the nanocrystal ink among the nanowires became 

difficult by using conventional solution method, such as dropping the ink onto the nanowire 

array, immersing the nanowires inside the ink, spin coating, etc. 

Figure 2.7a shows a top view FESEM image of ZnO nanowires filled with CZTS 

nanocrystals by drop coating method. The top view reveals the tip of the nanowires seems well 

embedded in the ink, however, they were barely coated at their roots from cross-sectional view 

(Figure 2.7b). However, solution method is still considered as a fast and low cost method for 

large scale PV device fabrication. Therefore, it is necessary to find a way to effectively space the 

ZnO nanowires to accommodate the CZTS nanocrystals filling. It has been reported that e-beam 

nanolithography (EBNL) is a very effective way to generate patterns for directing growth of ZnO 

nanowire array.
46,47

 In our experiment, EBNL was employed to make a PMMA mask on top of 

the ZnO seed layer. Figure 2.7c is a FESEM image of the mask pattern fabricated using EBNL. 
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After patterning, hydrothermal growth was performed, as shown in Figure 2.7d and e. The 

nanowires were well spaced with cactus-like growth, providing enough space for CZTS 

nanocrystals to be filled. Figure 2.7f is the top view micrograph of ZnO nanowire array half-

filled with CZTS nanocrystals, showing ZnO nanowire roots have been fully covered, compared 

to the one without EBNL patterning.  

 

 

Figure 2. 7. (a) top view and (b) cross-sectional FESEM image of ZnO nanowires filled with 

CZTS nanocrystals by drop coating method, (c) FESEM top view image of ITO substrate 

patterned by e-beam nanolitography,  (d) low magnification FESEM image of hydrothermally 

grown ZnO nanowires using PMMA mask. (e) and (f) FESEM top view image of the ZnO 

nanowires before and after being filled with CZTS nanocrystals  
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Using this way, we are able to control the spacing of the nanowire as well as the quality 

of the filling for large scale device fabrication in the future. But the drawback for this method is 

one has to spend long time for EBNL patterning, especially for large scale patterning. The 

preliminary device was workable with measured conversion efficiency of 0.004% though it is 

low. 

 

2.3.4.2     Formation of pn-junction using PLD method 

Alternatively, the coating can be done more efficiently using PLD method to fill dense 

ZnO nanowires. The pulse of laser allowed the diffusion of CZTS nanocrystals in small and 

confined spaces. In Figure 2.8b, a dense ZnO nanowires array was successfully coated with 

CZTS nanocrystals after the deposition (27 mJ/cm
2
) for 3 hrs.  

 

  

Figure 2. 8. FESEM image of CZTS coating by PLD on ZnO nanowires array at different time 

and power of deposition: a. bare ZnO nanowires; b. 3h at 27 mJ/cm
2
; c. 5 min at 32 mJ/cm

2
 ; d. 

10 min at 32 mJ/cm
2
 ; e. and f. 15 min at 32 mJ/cm

2 
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From the image, it can be seen that the surface of the nanowires were well coated with a 

rough surface. By extending the deposition time and power (15 min at 32 mJ/cm
2
), the CZTS 

coating became thicker and smoother as shown in a top view FESEM image in Figure 2.8c-e. 

Figure 2.8c, d and e are FESEM images of the nanowires after 5, 10 and 15 min of deposition at 

higher energy.  The cross sectional microscopy image on Figure 2.8f confirms that the space 

between the nanowires is nearly fully filled, forming a thick and flat film for the further 

deposition of Molybdenum ohmic contact by RF sputtering. 

However, ink methods are still preferable as fast and low cost methods for large scale PV 

device fabrication. Therefore, it is necessary to find a way to effectively space the ZnO 

nanowires to accommodate the CZTS nanocrystal filling.  

 

2.3.4.3     Device assembly 

A Molybdenum (Mo) metal electrode was RF sputtered on the surface of the device 

following a bilayer process.
48

 First the chamber was evacuated to a base pressure of 5x10
-6

 Torr, 

which was then increased to 10 mTorr using Argon partial pressure. Once the plasma was stable, 

Mo (100W) was sputtered on the absorber layer for 2 min in order to form an adhesion layer, and 

then the pressure in the chamber was gradually changed to reach a low pressure state (2 mTorr) 

to achieve a low sheet resistance film with a final thickness of 1µm. The bilayer sputtering 

process revealed to be critical, to avoid peeling off of the Mo metallic electrode. Figure 2.9a is 

top view and (b) cross section FESEM image of Mo metal electrode. The Mo film exhibit a 

rough surface with texture around 100 nm. The XRD spectrum in Figure 2.9c shows the high 

crystallinity of the Mo electrode. 

 



40 
 

2.3.4.4     Device characterization 

The device characterization was performed by measurements of current density-voltage (JV) 

curves under dark and simulated sun light. The JV curves measured under sun-light were 

collected under 100 mW.cm
−2

 (AM1.5) simulated solar irradiation. The power conversion 

efficiency of a typical CZTS/ZnO nanostructured solar cells can reach up to 0.4%. Although, the 

devices are workable, the low photovoltaic parameters are attributed to the preliminary structure 

of the nanostructured devices where the efficiency of the device is strongly affected by the 

property, spacing and length of the nanowires, the quality of the coating layer and contacts, and a 

buffer layer (absence) between pn-junction. These issues are currently being investigated in 

order to obtain higher efficiency devices. 

 

 

Figure 2. 9. (a) Top view and (b) cross section FESEM image of Mo metal electrode, and (c) 

XRD spectrum of the Mo electrode. 
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2.4    Conclusions 

A 3D architecture using CZTS nanocrystals and ZnO nanowire arrays for inorganic 

heterojunction solar cell applications was proposed. The use of a 3D nano-junction would 

potentially reduce the charge carrier recombination at the interfaces in the device, and the 

amount of material needed while increasing the device efficiency. Here, CZTS nanocrystals were 

synthesized by pulsed laser deposition method and simultaneously used to fill the interstitial 

space of previously synthesized ZnO nanowires array. The PLD method proved to be an 

excellent technique to coat the nanowires. Further, the characterization of the CZTS nanocrystals 

proved the purity of the semiconductor. The device, however, has low conversion efficiency due 

to a preliminary structure. Solutions such as a CdS buffer layer to enhance the pn-junction, an 

optimization of the absorber layer in the device are expected to significantly improve the device 

efficiency.  
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Chapter 3 Synthesis of CZTS nanoplate array for dye-sensitized solar cell 

applications* 

 

3.1 Introduction 

Dye sensitized solar cells (DSSCs) have been developed into one of the most attractive 

third generation photovoltaic devices, with easy fabrication and relatively high conversion 

efficiency.
1
 A typical DSSC is composed of three parts: a dye-sensitized semiconductor 

photoanode, an electrolyte, and a counter-electrode. So far, titanium dioxide (TiO2) 

nanostructured photoanodes are the most promising semiconductor materials in DSSCs to 

promote electrons from the ground state to an excited state, in the dyes,
2-4

 and then transfer them 

to the conduction band of the photoanodes. Different dyes have been investigated to absorb 

broader bands to improve the light absorption.
5-8

 High electrocatalytic activity for efficient 

reduction of the charge carriers in the electrolyte is also indispensable,
9,10

 which requires a high 

quality counter electrode with a good electronic conduction. Generally, platinum (Pt) is used as a 

counter electrode, where electrons from the external circuit are collected and catalyse the 

reduction of the redox electrolyte.
11

  However, catalytic materials with low cost, low toxicity and 

environmental abundance are always highly favoured to replace Pt (scarce and expensive) 

despite its high conductivity and good electrocatalytic activity. 

In the past several years, considerable efforts have been made to replace this precious metal by 

using abundant and low cost materials.
12

 Previous studies have reported the use of various 

materials as possible candidates for non-platinum-based counter-electrodes. 

 *This chapter was adapted from: Wozny, S.; Wang, K.; Zhou, W., Cu2ZnSnS4 nanoplate arrays 

synthesized by pulsed laser deposition with high catalytic activity as counter electrodes for dye-

sensitized solar cell applications J. Mater. Chem. A, 2013, 1, 15517-15523 
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 For instance, carbon materials (graphene, graphite, carbon nanotubes, active carbon, 

etc.)
13-18

 were chosen for their high surface area and low cost. Conductive polymers (poly(3,4- 

ethylenedioxythiophene) (PEDOT), polypyrrole (PPy), polyaniline (PANI), etc.)
19-23

 were 

studied for their stability and high catalytic activity. Other inorganic materials (nitrides, carbides, 

oxides, Cu2S, PbS, CuInS2, etc.) 
22,24-30

 were also investigated for their abundance and diversity, 

including quaternary chalcogenide Cu2ZnSnS4 (CZTS).  

CZTS was first found as a p-type semiconductor with suitable properties for solar cell 

applications.
31-34

 The advantages of this quaternary semiconductor are its earth-abundance and 

ideal direct band gap of  ̴ 1.5 eV and its high absorption coefficient (  > 1 x 10
-4

 cm
-1

),
35

 enabling 

a wide range of applications, such as light absorber material for thin film photovoltaics,
32,33

 

thermoelectric material,
34

 etc. Recently, Xin et al. spin-coated CZTS nanocrystal ink to form a 

thin film directly on fluorine doped tin oxide (FTO) glass
36

 as an efficient counter-electrode for 

DSSC photocathode and the thin film exhibited both high electrocatalytic activity comparable to 

Pt and  efficient reduction of I3
- 
in the electrolyte. Following this work,  porous CZTS thin film,

37
 

and porous
38

 and hierarchical
39

 CZTS microspheres were also employed to fabricate efficient 

counter-electrodes, further confirming the high catalytic activity of CZTS as a counter electrode 

obtained by Xin et al. However, most of the above materials rely on wet chemistry syntheses and 

inevitable post-treatments, such as washing, annealing, etc., to remove the excessive ligands, 

which are time consuming and may affect the final performance of the CZTS DSSC counter-

electrodes.  

To overcome this barrier, we have used a physical method to synthesized CZTS 

nanostructures. Pulsed laser deposition (PLD) technique was used to grow vertically oriented 

CZTS nanoplate array directly on FTO glass substrate by a simple one step synthesis. 
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The two-dimensional (2D) vertical nanoplates showed uniform morphology and provide 

a larger interfacial contact area compared to a compact thin film of the same dimension. In 

addition, the interfacial contact between the electrolyte and the counter-electrode is enhanced so 

that the charge transfer to the electrolyte is greatly improved. DSSCs were fabricated using this 

nanoplate array as counter electrode and showed comparable efficiency to that made of the 

sputtered Pt counter-electrode.  

 

3.2   Experimental 

3.2.1 Synthesis of CZTS nanoplate by PLD 

Vertically aligned CZTS nanoplate arrays were directly grown on a clean FTO glass 

substrate by ablating a CZTS target with a neodymium-doped yttrium aluminium garnet 

(Nd:YAG) laser in a horizontal tube furnace.
40

  Figure 3.1 is a schematic of the homemade PLD 

system. It consists of a Nd:YAG laser focused through a focus lens on a target, located inside a 

one inch diameter quartz tube. In this design, the substrate was placed in front of the target inside 

the quartz tube, which was connected to a vacuum pump in order to control the atmosphere 

during the ablation process. 

The CZTS target was fabricated by solid-state reaction
41

. Cu2S, ZnS, SnS2 and S powders 

were mixed at mol ratio of 0.95:1.05:1:0.02 and were cold pressed to form a 1 cm diameter 

target. The target was then sealed in an inert quartz tube and annealed at 750°C for 24h. The 

pellet’s surface was polished to ensure and smooth surface before the ablation process. 

A small hole was drilled in the glass of the FTO substrate in order to later inject the 

electrolyte, and the substrate was cleaned in ethanol. The FTO substrate was placed in front of the 

CZTS target inside the tube (Figure 3.1). 



48 
 

The laser wavelength, energy density, and pulse frequency were fixed at 1064 nm, 31.5 

mJ/cm
2
, and 10 Hz, respectively. Prior to the laser deposition, the tube was pumped down to 600 

mTorr, and flushed with formic gas three times to remove residual oxygen. The system was 

heated and maintained at 285°C during the ablation process. After about a 17 min deposition, the 

furnace was naturally cooled down to room temperature.   

 

 

Figure 3. 1. Schematic of the custom made pulsed laser deposition system 

 

3.2.2 Synthesis of CZTS thin film by PLD 

CZTS thin films were directly grown on a clean FTO glass substrate by a similar 

procedure to the one of the CZTS nanoplate array fabrication. The same experimental set-up 

previously described in Figure 3.1 was used. The CZTS nanoplate array procedure was slightly 

modify in order to get a compact thin film. Energy density and synthetic temperature are the key 

parameters for the formation of CZTS nanostructures. The laser wavelength, energy density, and 

pulse frequency were adjusted to 1064 nm, 34.0 mJ/cm
2
, and 10 Hz, respectively. The FTO 

substrate was placed in front of the target, heated and maintained at 450°C. After about a 10 min 

deposition, the furnace was naturally cooled down to room temperature. The synthetic 
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parameters for the growth of CZTS nanoplate array and compact thin film are summarized in 

Table 3.1. 

 

Table 3. 1. Synthetic parameters for the growth of CZTS films 

Parameters Nanoplate array Compact thin film 

Laser wavelength (nm) 1064 1064 

Energy density (mJ/cm
2
) 31.5 34.0 

Pulse frequency (Hz) 10 10 

Pressure (mTorr) 600 600 

Growth temperature (°C) 285 450 

Growth time (min) 17 10 

 

3.2.3 Device Fabrication 

For a fair comparison, all the DSSCs were fabricated with TiO2 photoanode materials relying on 

a standardized fabrication process.  A schematic of the device fabrication process is displayed in 

Figure 3.2.  A commercial solution of TiO2 (Solaronix) was spin-coated on a clean FTO glass, 

baked for 10 in at 150 °C and immediately annealed for 30 min at 500 °C. The photoanodes were 

then sensitized in a 0.3 mM cis-diisothiocyanato-bis(2,2ʼ-bipyridyl-

4,4ʼ(dicarboxylato)ruthenium(II)bis(tetrabutyl-ammonium) ethanolic solution (N 719, Solaronix) 

for 24 h at room temperature. The cell was assembled with a 75 μm spacer (Surlyn) and 

backfilled with an iodine electrolyte (acetonitrile, DMPII (1mM), LiI (0.1M), I2 (0.12 M), and 

terbutylpyridine (0.5 M)). 
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Figure 3. 2. Schematic of DSSC fabrication process 

 

3.2.4 Material characterization 

The crystallinity and purity of the samples were examined by X-ray diffraction (XRD) 

using a Philips X-ray diffractometer equipped with graphite-monochromated Cu Kα radiation at 

λ = 1.541 Å, and a confocal Raman microscope (DXR Thermo Scientific). Carl Zeiss 1530 VP 

field emission scanning electron microscope (FESEM) was used to characterize the morphology 

of the synthesized nanostructures. The detailed nanostructures were investigated using JEOL 

2010 transmission electron microscopy (TEM). The elemental mapping of the nanoplates and 

high resolution imaging was carried out using FEI Tecnai F30 TEM equipped with Oxford 

electron dispersive spectroscopy (EDS). The elemental composition was further characterized by 
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X-ray photoelectron spectroscopy (XPS) (Perkin-Elmer Phi 560 XPS/Auger System). A Newport 

solar cell simulator (Model 9119X) equipped with a 150 W Xenon lamp (light irradiation of 100 

mW/cm
2
) was employed to measure the JV curves of the devices. Electrochemical impedance 

was measured on a Gamry potentiostat (Series G™ 300), with the frequency range of 0.1 Hz ~ 

100 kHz and a perturbation amplitude of 10 mV. 

 

3.3 Results and discussion 

3.3.1 Nanoplate array characterization 

The nanoplate array grown by PLD is shown in the FESEM image in Figure 3.3. Figure 

3.3a presents a large area of vertically aligned nanoplates, uniformly distributed over an area of    

1 cm × 1 cm FTO glass substrate. Nanoplates with a petal-like shape and about 20 nm thickness 

are clearly seen in a zoom-in image, as shown in Figure 3.3b. In our growth, it was found that 

nanoplates were always grown out from a seed layer formed during the first 5 min ablation of the 

target, on the surface of the FTO glass (Figure 3.3c). The seed layer consists of CZTS 

nanocrystalline clustered grains with inhomogeneous sizes ranging from 300-700 nm, as shown 

in the inset in Figure 3c. Figure 3d is a TEM image of the grains found in the seed layer. The 

nanocrystal size varies from 20 to 50 nm and shows inhomogeneous morphologies. The structure 

of the nanoplates was further investigated by TEM (Figure 3.4). A top view image of a cluster of 

CZTS nanoplates, peeled off from the seed layer, can be clearly seen in Figure 3.4a, confirming 

that the thickness (̴ 20 nm) of the nanoplates is the same as observed by FESEM. A side view of 

two nanoplates lying on top of a carbon TEM grid (Figure 3.4b) reveals the height of the  
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Figure 3. 3. (a) and (b) show FESEM images of vertically aligned CZTS nanoplate array at low 

and high magnifications, (c) FESEM image of the granular CZTS thin film acting as a seed layer 

for the growth of the nanoplates, the inset shows a zoom-in image of the film, and (d) TEM 

image of a cluster of CZTS nanocrystals with a size of about 20-50 nm, which act as the seed 

layer for the growth of the CZTS nanoplate array. 

 

nanoplates is about 300 nm. The selected area electron diffraction (SAED) pattern of the 

nanoplates, correspond to the polycrystalline CZTS kesterite structure (simulated with the 

PCED2.0 program)
42

 with the presence of the major diffraction rings  (112), (200), (220), and 

(312), is indexed in Figure 3.4c, which are in good agreement with those  reported  in the 

literature.
43

 No apparent additional phases were observed, which will be further confirmed by  
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Figure 3. 4. (a) Top view TEM image of a cluster of CZTS nanoplates array, (b) Side view TEM 

image of two single CZTS nanoplates lying on the carbon film of the TEM grid, (c) Selected area 

diffraction pattern (SADP) of CZTS nanoplate with a polycrystalline structure, (d) High 

resolution TEM image of a nanoplate showing different grain sizes and orientations, and (e) 

STEM image of nanoplates, (f) Cu, (g) Zn, (h) Sn, and (i) S elemental EDS mappings of CZTS 

nanoplates highlighted in the rectangular area in (e). 
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XRD and Raman data later on. A high resolution electron microscopy image (HREM) (Figure 

3.4d) of the nanoplate also shows the feature of polycrystalline nanocrystals, where the (112) 

lattice fringes can be clearly observed. The CZTS nanocrystals present inhomogeneous size 

distributions with diameters ranging from several to tens of nanometers. Figure 3.4e is a 

scanning transmission electron microscopy (STEM) image of an additional cross-sectional view 

of a cluster of CZTS nanoplates grown out from the seed film. EDS mappings were performed in 

the rectangular area highlighted in Figure 3.4e, revealing the coexistence of copper, zinc, tin and 

sulfur in the nanoplates, as shown in Figure 3.4f-i, respectively. It appears that all the elements 

are homogeneously distributed over the whole area of the nanoplates. By quantitatively 

analysing the EDS data collected from different locations on the nanoplates, the elemental 

composition of CZTS nanoplates was calculated to be Cu1.62Zn1.33Sn1.31S3.74, showing a Cu 

deficient and Zn rich CZTS kesterite phase. 

The XRD was also employed in structural analysis.  As shown in Figure 3.5a, the XRD 

data of a pure FTO substrate (lower) and the CZTS nanoplate array, prepared on a FTO glass 

substrate (upper), are presented. Besides the FTO peaks from the substrate, the other peaks, 

denoted by stars, can be clearly indexed as (112), (220), (312), and (008), planes of CZTS 

kesterite pure phase  (JCPDS No. 26-0575), which correspond with those reported by others.
44

 

Raman spectrum in Figure 3.5b further authenticates the nature of the kesterite phase with a 

single peak at 331cm
-1

, consistent with previously published results (331-338 cm
-1

).
39,45-47 

No 

impurity peaks were observed both in XRD and Raman spectrum, confirming the high purity of 

the CZTS nanoplates. 
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Figure 3. 5. (a) Powder XRD pattern  of FTO glass susbtrate (lower) and CZTS nanoplate array 

(upper), which clearly shows (112), (220), (312), and (008) characteristic peaks of CZTS 

kesterite phase and (b) Raman scattering analysis of the nanoplates with a single peak at 331   

cm
-1

, consistent with a pure kesterite phase. 

 

Moreover, XPS was used to verify the oxidation states of the four elements in the CZTS 

nanoplate sample by characterizing the Cu 2p, Zn 2p, Sn 3d, and S 2p core levels. In the Cu 2p 

spectrum (Figure 3.6a), there are two peaks located at 952.02 and 932.28 eV, respectively, with a 

separation of 19.74 eV, indicating the presence of Cu
+
. Zn 2p core level spectrum clearly shows 

that two peaks appear at 1045.12 and 1022.11 eV with a characteristic peak separation of 23.01 

eV (Figure 3.6b), revealing the formation of Zn
2+

. In the Sn 3d core level (Figure 3.6c), two 

peaks are found at 494.51 and 486.15 eV, respectively, corresponding to Sn
4+ 

oxidation state 

with a characteristic binding energy of 8.36 eV. Finally, two peaks at 162.60 eV and 161.42 eV 

with a peak separation of 1.14 eV, in the S 2p spectrum (Figure 3.6d), are also seen, which is in 

good agreement with the values reported for S.
39

  

 



56 
 

 

Figure 3. 6. High-resolution XPS analysis of the four constituent elements of the vertically 

oriented CZTS nanoplates: (a) copper 2p, (b) zinc 2p, (c) tin 3d, and (d) sulfur 2p in good 

agreement with the literature. 

 

3.3.2 Influence of growth parameters 

In our study, a two-step growth, namely seed layer growth and vertically aligned 

nanoplate formation, was observed.  During the first 5 min of  PLD  ablation,  a  thin  seed  layer  

of  CZTS  nanocrystalline clustered grains with sizes between 300 and 700 nm were formed. The 
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granular thin film, composed of 20-50 nm nanocrystals (Figure 3.3d), acts as seed layer for 

initiating the perpendicular nanoplate growth. 

In our experiments, several synthesis parameters had been changed to study the nanoplate 

formation. First, when the temperature was varied from 150°C to 350°C, no dramatic change of 

the vertically aligned nanoplate growth was observed. The pressure of the growth was also tuned 

from 600 mTorr to 1400 mTorr and proved to be a critical parameter for the vertical alignment 

and growth of the nanoplates array. At 600 mTorr, the nanoplates exhibit a vertical and uniform 

growth from the seed layer over a large area (Figure 3.7a), however, when the pressure is change 

to 1000 mTorr the nanoplates have a tendency to lose their alignment and growth in a coral-like 

shape at random positions in the array (Figure 3.7b).  

 

 Figure 3. 7. (a) FESEM image of the vertically aligned CZTS nanoplate array synthesized by 

PLD at 600 mTorr, (b) FESEM image of the nanoplate array synthesised at 1000 mTorr. The 

nanoplates tend to lose their alignment and growth in a coral-like shape at random positions in 

the array, and (c) FESEM image of the nanoplate synthesized at 1400 mTorr, in which the 

growth of the nanoplates is irregular and suppressed. 

 

Further changing the pressure to 1400 mTorr resulted in sparse and irregular growth of 

the nanoplates. As observed in Figure 3.7c, only few nanoplates are able to grow on the substrate 

and present random orientation. Additionally, it was found that the laser beam energy was a very 
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sensitive parameter for the nanoplate growth and the nanoplates were only formed in the energy 

range between 30 to 32 mJ/cm
2
. Thus far, we haven’t fully understood why the perpendicular 

nanoplate formation was initiated after the CZTS granular seed layer thickness reached a certain 

value ( ̴ 100 nm). However, we believe, first, the CZTS seed layer thickness and morphology are 

critical for the nanoplate formation, and, second, the beam energy associated with producing the 

ablation plume to a specific partial pressure inside the tube determines if the beam can initiate 

this vertical nanoplate growth. 

 

3.3.3 CZTS thin film characterization 

For comparison purpose, a CZTS film (̴ 0.5 μm) similar to the height of nanoplate array 

was also prepared by increasing the laser energy to 34 mJ/cm
2
 and temperature to 450°C. The 

FESEM images of top and plane views of the CZTS thin film (Figure 3.8a and b) reveal a 

uniform surface and homogeneous thickness of the thin film with inhomogeneous grain sizes. No 

cracks or voids are visible on the top view and cross-sectional images. In addition, EDS was 

performed on the sample (Figure 3.8c) and confirm the presence of Cu, Zn, Sn and S. The XRD 

was also employed in structural analysis in Figure 3.9a.  

The XRD data of a standard CZTS sample (lower) and the CZTS thin film prepared on a 

FTO glass substrate (upper) are presented. The major diffraction peaks for CZTS can be clearly 

indexed as (112), (200), (220), (312), (224) and (008) planes of CZTS kesterite pure phase 

(JCPDS No. 26-0575), which correspond with those reported previously and by others.
44

 The 

CZTS thin film do not show the presence of the FTO peaks on the XRD data due to the overall 

thickness of the film which is higher than the penetration depth of the x-rays. The nature of the 

kesterite phase was further authenticated with Raman spectroscopy. Figure 3.9b shows a single 
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CZTS characteristic peak at 333cm
-1

, consistent with previously published results (331-338 cm
-

1
).

39,45-47
 As for the nanoplate array, no impurity peaks were observed both in XRD and Raman 

spectrum, confirming the high purity of the CZTS thin film.  

 

 

Figure 3. 8. (a) Top view FESEM image, (b) Cross sectional FESEM image of the CZTS thin 

film synthesized by pulsed laser deposition (34mJ/cm
-2

, 450°C) with a similar height as the 

nanoplates (about 〜0.5 μm), and (c) EDS spectrum of CZTS thin film. 
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Figure 3. 9. (a) Powder XRD data of the CZTS thin film, which clearly shows (112), (220), 

(312), and (008) characteristic peaks of CZTS kesterite phase, compared to CZTS reference 

spectrum JCPDS No. 26-0575 (lower spectrum),  and (b) Raman spectrum of the same CZTS 

thin film with a single peak at 333cm
-1

, consistent with a pure kesterite phase. 

 

3.3.4 Device characterization and performance 

To estimate the photovoltaic performance and electrocatalytic activity of the CZTS 

nanoplate films versus Pt counter electrodes, DSSC devices were fabricated. For comparison 

purpose, a CZTS film (̴ 0.5 μm) similar to the height of nanoplate array was also prepared. 

Figure 3.10 shows the current density-voltage (JV) performances of three typical DSSCs; and 

their characteristic parameters are summarized in Table 3.2.  The cell based on the CZTS 

nanoplate array counter electrode presents the best efficiency (3.65%) with a short current 

density of 10.27 mA·cm
-2

 and a fill factor of 0.55, which is slightly higher than the cell 

fabricated with a standard Pt counter electrode, with an efficiency and short circuit density of 

3.33% and 8.72 mA·cm
-2

, respectively.  
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Figure 3. 10. Photocurrent–voltage characteristics of DSSCs containing the same photoanode of 

TiO2 nanospheres and various counter electrodes of Pt/FTO, CZTS nanoplates/FTO, and CZTS 

thin film/FTO. 

 

When the CZTS film (0.5 µm) was employed and measured, the efficiency of the cell 

only reached to 2.83%.  The higher efficiency using the CZTS nanoplate film might be attributed 

to the ligand free PLD synthesis as well as the large surface area of vertically aligned nanoplates, 

which provides more catalytic cycles for the reduction of the redox couple in the electrolyte.  

The effect of the photo-activity of CZTS is not believed to influence the short-circuit current of 

the device for the reason mentioned above, further the sensitized TiO2 and the electrolyte absorb 

most of the incident light, and only a very small portion could potentially reach CZTS and 

contribute to the reduction of the electrolyte, which would not be reflected by such a large 

increase in the efficiency of the DSSCs. However its effect cannot be totally rule out. As for the 

CZTS thin film solar cell, the lower efficiency might be resulted from less surface area compared 
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to the nanoplate array, which didn’t significantly improve the efficiency as the thickness 

increased. 

 

Table 3. 2. Summary of Current density-voltage (JV) performances of three typical DSSCs; and 

their impedance parameters. 

Counter  

Electrode 

Jsc                 

(mA cm
-2

) 

Voc    

(V) 

FF η       

(%) 

Rs      

(Ω) 

Rct 

(Ω) 

CZTS thin film 6.66 0.65 0.53 2.83 18.27 14.44 

CZTS nanoplate array 10.27 0.68 0.55 3.65 18.01 3.96 

Sputtered Pt 8.72 0.69 0.54 3.33 15.70 5.38 

 

Electrochemical impedance spectroscopy (EIS) experiments were carried out to further 

characterize the electrocatalytic activity of the various counter electrodes. A dummy cell with a 

symmetric sandwich-like (CE/electrolyte/CE) configuration for each type of counter-electrodes 

was adopted in order to acquire Nyquist plots. An impedance measurement was obtained by 

applying a fixed DC current to a device while scanning the frequency at a multitude of values 

over several decades (from 0.1 Hz to 100  kHz). Nyquiest  plots  were  fitted  with  an  equivalent 

circuit (Figure 3.11) where Rs represents the series resistance, Rct the charge transfer resistance, 

Zw the Nernst diffusion impedance, and CPE the constant phase angle element at the 

electrolyte/counter electrode interface. Rs is defined by the high frequency intercept on the real 

axis (Z’axis). The semi-circle in the high and low frequencies represent the Rct value and the 

CPE at the electrolyte/counter electrode interface, and Nernst diffusion impedance of the 
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triiodide/iodide couple in the electrolyte, respectively. All the electrochemical impedance data 

were extracted using Gamry Echem Analyst software and summarized in Table 3.2. 

 

 

Figure 3. 11. Nyquist plots of solar cells containing symmetric cells of Pt/FTO, CZTS 

nanoplates/FTO, and CZTS thin film/FTO. 

 

The large and similar Rs value for the CZTS thin film (18.27Ω) and CZTS nanoplate array 

(18.01Ω) counter electrodes can be attributed to the poorer conductivity of CZTS compared to 

metallic Pt (15.70 Ω). The higher Rct value for the CZTS thin film cell (14.44 Ω) might be 

caused by less catalytic sites compared to the nanoplate array. The Rct for CZTS nanoplate array 

(3.96Ω)   is in the same range as Pt (5.38Ω)  , but smaller, implying that the reduction of the 

electrolyte at the interface is faster than that for Pt, further proving that this three-dimensional 

nanoplate array is a good candidate for Pt free counter electrode fabrication in DSSCs. 
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3.4 Conclusions 

In summary, we have synthesized ligand free and vertically aligned CZTS nanoplates 

directly on FTO glass substrate by a one-step PLD method. The formation process of the 

nanoplates was controlled by a two-step growth, where a seed layer was first formed directly on 

the surface of the substrate, followed by the nanoplate array growth. The nanoplate arrays were 

used as counter electrodes in DSSCs, demonstrating higher electrocatalytic activity and 

efficiency comparable to those of Pt counter electrodes, which opens the possibilities of 

developing low cost and environmentally friendly counter electrode for DSSCs.  
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Chapter 4 Fabrication and characterization of high efficiency formamidinum lead 

triiodide perovskite solar cells 

 

4.1 Introduction 

Perovskite is the name given to any compound with ABX3 structure where “A” and “B” 

are two cations of various size (A being larger than B) and X is the anion which is bonding them 

together. Perovskites are naturally occurring minerals, such as calcium titanate (CaTiO3), which 

were first discovered in 1839 by G. Rose.
1
 In 1893, lead and tin halides (such as CsPbX3 with X 

= Cl, Br or I) were chemically engineered and, only several years later, crystallographically 

characterized as perovskite materials.
2
 Three dimensional organic-inorganic hybrid perovskites 

were synthesized by replacing cesium by methyl ammonium (MA = CH3NH3
+
) or 

formamidinium (FA = CH(NH2)2
+
 ) cations, conferring semiconducting properties to these new 

materials.
3
 They both possess good optical and electrical properties with ideal direct band gaps at 

1.55 and 1.47 eV and an absorption edge at 800 and 850 nm, respectively,
4-8

 which allow them to 

absorb photons in both the visible and near-infrared solar spectrum. Further, organic-inorganic 

halide perovskites demonstrate very interesting properties since they can act as an electron 

transporter, as well as a hole conductor material.
7,9-13

 These dual charge transport properties 

make these new kinds of perovskites extremely interesting for solar cell applications. The first 

perovskite solar cell (PSC) was fabricated in 2009 by Kojima et al.
14

 It was based on a liquid 

electrolyte dye-sensitized solar cell architecture where MAPbI3 was used as a sensitizer for the 

metal oxide photoanode. The device demonstrated poor performance due to dissolution of the 

halides in the electrolyte. The breakthrough for PSCs came in 2012, when solid-state planar 

heterojunction architecture was employed; suppressing the need for liquid electrolyte, and 
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devices could reach efficiencies higher than 10%.
11,15-17

 Over the last 3 years, the infatuation for 

PSCs using MA precursors grew bigger. Efficiencies up to 20.1% were obtained by solvent 

engineering techniques, which marked a fivefold increase in efficiency in just three years.
18

 

However, to date, experimental work based on FA solar cells was limited to few 

publications.
5,15,19-25

  In 2014, Eperon et al. published the first report on planar heterojunction 

formamidinium lead trihalide solar cells.  In this work, formamidinium was used to narrow the 

bandgap, and extend the absorption edge by tuning the halide ratio between Bromine and Iodine.   

Planar heterojunction solar cells were fabricated using single precursor spin-coating route, and 

demonstrated efficiencies up to 14.2%. This breakthrough rendered formamidinium cations as a 

viable candidate for PSCs.
5
 Despite remarkably high efficiencies obtained within the last three 

years, PSCs remain as highly unstable without careful fabrication control.
7,13,26-28

 It has been 

shown that PSCs degrade under high temperature due to the decomposition of organic cations 

and the formation of PbI2.
 26-28

 Very few stability studies
26-28

 have been done, and the reasons of 

the decomposition of the perovskite layer remain uncertain. In order for these devices to meet the 

minimum useful lifetime required for commercialization, it is necessary to understand the 

underlying cause of their instability by meticulous monitoring of their fabrication condition. 

In this chapter, we examine the effect of precursor concentration, solvent engineering 

technique, and annealing temperature and time on the structural, optical, and electrical properties 

of FAPbI3 thin films.  

All these variables strongly impact the morphological and optical properties of FAPbI3 

and the performances of completed devices. A systematic study of these parameters allowed us 

to refine the fabrication parameters in order to obtain high perovskite solar cell efficiency up to 

12.1%. 



70 
 

4.2    Experimental 

4.2.1 Synthesis of precursors solution for device fabrication  

4.2.1.1    Formamidinium iodide (FAI) 

All solvents and reagents were of analytical grade and used as received. In a typical 

preparation, 25.20g of formamidinium acetate (Aldrich) was added to 250 mL methanol in a 500 

mL Erlenmeyer flask that was immersed in a salt/ice bath. 48 mL hydriodic acid (Aldrich, 57 wt 

% in water, stabilized) was added dropwise at first, then more rapidly. The reaction was left 

stirring for approximately 2 h at room temperature, and most of the methanol was evaporated on 

a rotary evaporator. Diethyl ether was added to precipitate the product which was collected by 

vacuum filtration. The initial yield was 17.3 g (42% yield). It was recrystallized three times from 

ethanol and dried in a vacuum oven overnight, yielding white crystalline needles of FAI that 

were immediately transferred into a glovebox for storage. The synthetic process for the 

fabrication of Formamidinium iodide (FAI) is summarized in Figure 4.1.  

 

4.2.1.2   Formamidinium lead triiodide (FAPbI3) 

A 0.7M perovskite solution was prepared from stoichiometric amounts of lead iodide 

(PbI2) and FAI in anhydrous N, N’-dimethylformamide (DMF, Sigma Aldrich). The solution was 

vortexed for 30 min to dissolve PbI2 and FAI powders in DMF, leading to a clear, bright yellow 

solution. Finally, the solution was filtered twice using a PTFE 0.45 µm syringe filter to remove 

any undissolved starting materials. 
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Figure 4. 1. Schematic summarizing the synthetic process of formamidinium iodide (FAI) 

precursor. 

 

4.2.1.3     2’,7,7’-tetrakis(N,N-dip-methoxyphenylamine)-9,9’-spirobifluorene solution 

(Spiro-OMeTAD) 

2’,7,7’-tetrakis(N,N-dip-methoxyphenylamine)-9,9’-spirobifluorene solution abbreviated 

as Spiro-OMeTAD was prepared by adding 80 mg of spiro-OMeTAD, 30μl of 

bis(trifluoromethane)sulfonimide lithium salt stocking solution (500 mg Li-TFSI in 1 ml 
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acetonitrile), and 30μl of 4-tert-butylpyridine (TBP) in 1 ml chlorobenzene. The solution was 

vortexed for 30 min and used immediately. 

 

1.2.1 Substrate preparation 

A 1x1 inch Fluorine-doped SnO2-coated transparent conducting glass (FTO/Glass) 

substrate was patterned using a 2M HCl solution and Zinc powder.
29

 A c-TiO2  compact blocking 

layer was spray coated on the hot FTO glass (450°C) using 0.2 M solution of Ti(IV) bis(ethyl 

acetoacetate)-diisopropoxide in  1-butanol. The spraying process was repeated for 12 cycles, and 

the substrate was subsequently annealed at 450 °C for 1 hour.
11

 

 

4.2.2 Device fabrication 

The devices were fabricated on a bench top using of solvent engineering method. Figure 

4.2 summarizes the fabrication process of the perovskite solar cell. Briefly, 100µl of perovskite 

solution was deposited onto the c-TiO2/FTO by spin coating.
30

 The substrate was spun at 500 

rpm for 3 sec to remove excess solution. Rotation was then increased to 3500 rpm and 1 drop of 

toluene was added to precipitate the perovskite from the solvent exactly 2 seconds before the end 

of the second spin coating step. The films were dried at 5000 rpm for 30 sec. The substrate was 

subsequently annealed on a hot plate. The film was cooled for 1 min, before spin coating the 

spiro-OMeTAD solution on the warm substrate for 30 seconds at 4000 rpm. Finally, silver 

electrodes were thermally evaporated to evaluate the performance of the device. 
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Figure 4. 2. Schematic summarizing the fabrication process of the FAPbI3 perovskite solar cell, 

where the transparent conductive glass substrate is initially cleaned (step 1), patterned (step 2), 

and spray coated with a compact layer of titanium dioxide (step 3). The perovskite precursor 

solution is then spin coated and annealed (step 4), followed by the spin coating of the hole 

transporting material (step 5). Finally, metal electrodes are thermally evaporated (step 6). 
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4.3. Results and discussion 

4.3.1 Influence of toluene addition on solvent engineering technique 

A solvent-engineering technique was used for the fabrication of highly uniform and dense 

perovskite thin film. This technique has a great potential toward the fabrication of fully solution-

processed perovskite solar cells. The planar structure of the device requires having a highly 

uniform and compact absorber layer to enhance the charge collection in the device and provide 

good interface with the c-TiO2 and the hole transporting material, respectively. The method 

consists of three spin coating stages. First, the precursor solution (FAI and PbI2) is uniformly 

deposited on the entire surface of the substrate, and the spin-coater is accelerated to a low 

rotational speed to remove the excess of solution on the substrate. Second, the rotational speed is 

increased and maintained at a specific value for several seconds. During this second phase, a 

drop of solvent is added in order to precipitate the perovskite precursors out of the solvent 

(DMF). Toluene is a great candidate for the precipitation procedure as it does not dissolve the 

perovskite precursors and is miscible with DMF. Finally, the rotational speed is increased to a 

high value in order to evaporate the residual DMF and fully dry the perovskite precursors as a 

dense and highly uniform layer. By further annealing the thin film, a pure and highly crystalline 

FAPbI3 phase can be obtained. Figure 4.3 is a picture of FAPbI3 thin films prepared by a solvent 

engineering technique using toluene. A 3-step spin coating process is used. The substrate is 

initially spun at 500 rpm for 3 s to remove excess solution. Rotation is then increased to 3500 

rpm for 11 s and 1 drop of toluene is added to precipitate the perovskite from the solvent about 

1−4 s before the end of the second spin coating step. Finally, the films are dried at 5000 rpm for 

30 s. The toluene addition parameters revealed to be critical to obtain a high quality film. In 

Figure 3 a, b, and c, the toluene is added after 8s, 9s and 10s after the beginning of the second 
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step, respectively. When the toluene is added too early (8s) or too late (10s), the film is cloudy 

and seems rough. However, when the toluene is added at 9s, the precursors are frozen on the 

substrate in a highly uniform and transparent layer. 

 

Figure 4. 3. Picture of FAPbI3 thin films prepared by solvent engineering technique.  The 

toluene drop was added at (a) 8 s, (b) 9 s, and (c) 10 s after the beginning of step 2. 

 

Developing a high-quality perovskite thin film with uniform and dense coverage is 

critical to achieving good performance and reliable studies on charge-carrier dynamics in 

perovskite solar cells. The properties of the perovskite thin film depend strongly on the 

processing conditions. To understand the role of toluene on the perovskite film quality, we 

examined the film morphology, and optical absorbance of the FAPbI3 thin films prepared under 

different toluene addition time from 8s to 10s during the second spin coating step (total duration : 

11s). 

 

4.3.1.1 Morphological characterization 

Figure 4.4 shows the field-emission scanning electron microscope (FESEM) images of 

perovskite films prepared at various addition times, approximately from 8s to 10s. The films 

prepared at 8s/11s (Figures 4.4a–b) do not indicate the presence of a uniform film on c-

TiO2/FTO/Glass substrate. The grains are arranged in a needle-like structure connected from 
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several central nucleation point. These structure are growing on the top of the film, and exibit 

high surface roughness , with broad grain size distibution and micrometer size pinholes. Figures 

4.4c–d (9s/11s) show a highly uniform and compact perovskite thin film and do not indicate the 

presence of any pinholes on c-TiO2/FTO/Glass substrate.  

 

 

Figure 4. 4. Top-view FESEM images of perovskite thin films prepared at different toluene 

addition time. (a) and (b), (c) and (d), and (e) and (f)  are low and high magnification image of 

the perovskite film prepared at 8s/11s, 9s/11s and 10s/11s toluene addition time, respectively.  
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Furthermore, the grain sizes for these films remain similar with a mixture of smaller and 

larger grains with diameters between 200 and 800 nm. When the addition time is increased to 

10s/11s (Figure 4.4e-f), the film loose its uniformity and pinholes with sizes ranging from 50 to 

500 nm start to form on the film surface, covering about 17% of the surface area.  

 

4.3.1.2   Optical characterization 

Figure 4.5 shows the ultraviolet-visible (UV-Vis) absorption spectra of the FAPbI3 thin 

films prepared under various toluene deposition time. Films exhibit a broad absorption over the 

whole visible and near-infrared spectrum with an absorption onset near 840 nm, which is 

consistent with the reported optical bandgap of about 1.47 eV for the FA-based perovskite.
5,15 

In 

each case, the absorption increases rapidly with decreasing wavelength. However, there are 

major changes when the toluene is added at 8s and 10s  

 

 

Figure 4. 5. UV−Vis absorption spectra of FAPbI3 films prepared as a function of toluene 

addition during the solvent engineering process: 8s/11s (black), 9s/11s (red), and 10s/11s (blue). 
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In contrast to the 9s addition; there is a significant increase in the baseline of the 

absorption spectrum, indicating enhanced light scattering, which we associate with the formation 

of pinholes. These results are consistent with the morphological changes observed in FESEM, as 

shown in Figure 4.4.  It is also noteworthy that the features of the absorption spectrum at lower 

wavelength change significantly compared to films prepared at 9s, showing a degradation of the 

optical absorbance of the perovskite film.   

From the morphological and optical observations, we proposed formation mechanisms 

for the deposition of the perovskite thin film as a function of addition time of toluene. Upon early 

addition of the precipitation solvent, some DMF remains trapped with the FAI and PbI2 

precursor materials. When the DMF evaporates during the drying phase, it leaves behind 

pinholes and a rough surface. At 9s/11s toluene addition, the right amount of DMF is already 

evaporated, but the film is not yet fully dried, allowing the precursors to be frozen in a dense and 

uniform film. Upon late addition of the precipitation solvent, the precursor solution already 

started drying on the patterned substrate and it is too late for freezing the precursor in a compact 

and uniform film. 

 

4.3.2 Influence of precursor solution concentration on device performance 

To fabricate efficient solar cells, the active layer of the light harvester must be thick 

enough to absorb sufficient incident light and thin enough to avoid recombination of charge 

carrier at the interfaces. Fortunately, the high absorption coefficient of FAPbI3 allows the use of 

very thin layers to absorb light over the entire visible and ultraviolet range. To understand the 

effect of precursor concentration on the perovskite thin film, we performed morphological and 

optical characterization.  
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4.3.2.1     Morphological characterization 

Figure 4.6 shows the FESEM images of perovskite films prepared at various precursor 

concentrations, ranging from 0.5M to 0.9M. The films prepared at each concentration (0.5M-

0.9M) display uniform and compact perovskite thin film morphology, without the presence of 

pinholes, on c-TiO2/FTO/Glass substrate. However, the films show different grain arrangement. 

For the lowest concentration (Figure 4.6a), the grains show inhomogeneous grain size 

distribution ranging from 50 to 400 nm. Further, small perovskite particles with a size of about 

100 nm are located on the top of the films, providing higher surface roughness.  When 0.7M 

concentration is used (Figure 4.6b), the grain size distribution becomes narrower (ranging from 

150 to 400 nm) and the film exhibits a very smooth surface.  

 

  

Figure 4. 6. Top-view FESEM images of perovskite thin films prepared at different precursor 

concentration: (a) 0.5M, (b) 0.7M, and (c) 0.9M.  

 

When the highest concentration is used (Figure 4.6c), the grain size further increase 

between 200 and 500nm. However, it is important to notice that micrometer size cracks are 

forming in the film, leading to enhance charge carrier recombination in the final device.  
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4.3.2.2 Optical characterization 

Figure 4.7 shows the UV-Vis absorption spectra of the FAPbI3 thin films prepared under 

various precursor solution concentrations. Films exhibit a broad absorption over the whole 

visible and near-infrared spectrum with an absorption onset near 840 nm, which is consistent 

with the reported optical bandgap of about 1.47 eV for the FA-based perovskite.
5,15  

 

 

Figure 4. 7. UV−Vis absorption spectra of FAPbI3 films prepared as a function of precursor 

solution concentration: 0.5M (black), 0.7M (red), and 0.9M (blue). 

 

In each case, the absorption increases rapidly with decreasing wavelength. However, 

there are major changes when the concentration is increased/decreased from the standard 0.7M 

value. When 0.5M is used, the absorption is significantly decreased due to a reduced amount of 

absorber material (thin film thickness below 200 nm) which leads to lower device efficiencies 

due to lower absorption of incoming light, as discussed later on. When the concentration is raised 
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to 0.9M, there is a significant increase in the baseline of the absorption spectrum, indicating the 

presence of a thicker film (about 500 nm) and enhanced light scattering, which we associate with 

the formation of micrometer-size cracks. These results are consistent with the morphological 

changes observed in FESEM, as shown in Figure 4.6.   

 

4.3.2.3 Photovoltaic performances  

Consistent with the optical and microscopic observation, FA-based PSCs were fabricated 

to link the observed microstructure differences with device performance. Table 4.1 compares the 

effect of the precursor solution concentration on the photocurrent density-voltage (JV) curves of 

FA-based devices. Device measurements were conducted under 100 mW.cm
−2

 (AM1.5) 

simulated solar irradiation. At 0.5M, JV curve shows that the device can reach efficiencies up to 

9.12%. In correlation with the FESEM and UV-vis observation, it is clear that the devices are 

workable. Yet, the device performances remain lower due to a smaller film thickness which 

results in limited light collection in the device. However, when the concentration is increased to 

0.7M, an improvement can be seen in the JV curves both from the Jsc, Voc and Fill Factor (FF), 

leading to efficiencies of 12.1%. 

When the concentration is further increased to 0.9M, the degradation of FAPbI3 

photovoltaic performance is observed. This is strongly correlated to higher thickness of the film, 

as well as the micrometer cracks previously observed in Figure 4.6d in FESEM. These 

morphological changes lead to higher recombination of charge carriers, which is directly linked 

to the lower Jsc, Voc, and Fill Factor values. 
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Table 4. 1.Photovoltaic parameters of FAPbI3 perovskite solar cells fabricated as a function of 

precursor concentration ranging from 0.5M to 0.9M. 

Device 

concentration 

Jsc 

(mA.cm
-2

) 

Voc 

(V) 

FF 

(%) 

Ƞ 

(%) 

0.5M 17.70 0.89 58.12 9.12 

0.7M 23.43 0.91 56.83 12.1 

0.9M 22.71 0.82 46.19 8.60 

 

4.3.3 General annealing conditions 

4.3.3.1   Influence of annealing temperature on device performance 

4.3.3.1.1 Morphological characterization 

To fabricate efficient solar cells, the active layer of the light harvester must be as 

crystalline as possible to absorb sufficient incident light. Generally, formamidinium iodide and 

lead iodide precursors are mixed at equimolar ratio in DMF. When the temperature is raised, the 

precursors can react to form the formamidinium lead triiodide absorber material. During our 

experiments, we noticed that FAPbI3 perovskite compound is highly sensitive to the annealing 

temperature and that a small change can significantly impact the final device’s photovoltaic 

properties. Surprisingly, we did not observe any morphological changes by FESEM for films 

prepared at temperature ranging from 160 ˚C to 180 ˚C. We further performed optical 

characterization of thin films by UV-vis spectroscopy.  

 

4.3.3.1.2 Optical characterization 

Figure 4.8 shows the absorption spectrums for FAPbI3 thin films annealed at 160˚C 

(black), 170˚C (red) and 180˚C (blue) for 10 min. It is noteworthy that the films exhibit the same 
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absorption profile with a broad absorption over the whole visible and near-infrared spectrum and 

an absorption onset near 840 nm, which is consistent with the morphological observations. 

 

 

Figure 4. 8. UV−Vis absorption spectra of FAPbI3 films annealed for 10 min as a function of 

annealing temperature. The data are shown for film annealed at temperature of 160˚C (black), 

170˚C (red) and 180˚C (blue).  

 

4.3.3.1.3 Photovoltaic performances  

Consistent with the optical and microscopic observation, FA-based PSCs were fabricated 

to link the observed microstructure differences with device performance. Table 4.2 compares the 

effect of annealing temperature on the JV curves of FA-based devices. Device measurements 

were conducted under 100 mW.cm
−2

 (AM1.5) simulated solar irradiation. Photovoltaic 

parameters reveal that the performance of the device is strongly influenced by the annealing 

temperature; a change of ± 10 ºC will impact the short circuit current and fill factor significantly. 
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The open circuit voltage will not significantly be dependent on the temperature change. So far, 

there is no clear explanation for the tremendous effect of annealing temperature on the 

photovoltaic properties. Morphological and optical analysis did not help to understand the 

underlying cause of degraded devices performance. 

 

Table 4. 2. Photovoltaic parameters of FAPbI3 perovskite solar cells fabricated as a function of 

annealing temperature, ranging from 160˚C. 

Annealing 

Temperature (˚C) 

Jsc 

(mA.cm
-2

) 

Voc 

(V) 

FF 

(%) 

Ƞ 

(%) 

160˚C 18.87 0.86 36.77 6.00 

170˚C 23.43 0.91 56.83 12.1 

180˚C
 

20.94 0.86 45.59 8.21 

 

4.3.3.2   Influence of annealing time on device performance 

In addition to its sensitivity to annealing temperatures, formamidinium lead triiodide 

perovskite material is extremely versatile as a function of annealing time due to its organic-

inorganic nature. It is expected that, when the film is deposited on a hot plate calibrated at 170˚C, 

both precursors will react to form the perovskite material. However, when the material is 

annealed for an extended period of time, a decomposition mechanism will be initiated due to the 

dissociation between the organic (FAI) and inorganic (PbI2) part of the perovskite. To verify this 

hypothesis, we performed morphological and optical studies of FAPbI3 perovskite thin film 

annealed at 170˚C as a function of time.  
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4.3.3.2.1 Morphological characterization 

Figure 4.9 shows the FESEM images of perovskite films annealed at 170˚C for various 

time, ranging from 0 min to 10min. The films prepared at each annealing time exhibit uniform 

and compact perovskite thin film, without the presence of pinholes, on c-TiO2/FTO/Glass 

substrate.  

 

 

Figure 4. 9. Top-view FESEM images of perovskite thin films annealed at 170˚C for different 

annealing time: (a) no annealing, (b) 1 min annealing, (c) 2 min annealing and (d) 10 min 

annealing. 

 

However, the films show different grain size. For the as-prepared film (Figure 4.9a), the 

crystallization of the precursor materials into perovskite has not been initiated. Small grains with 
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homogeneous size distribution ranging from 50 to 150 nm are deposited in a dense precursor 

layer. When the film is annealed for one minute (Figure 4.9b), the film exhibits a similar 

morphology to the non-annealed one, however the average grain increased, with a broaden grain 

size distribution ranging from 50 to 250 nm. After 2 min annealing (Figure 4.9c), the FAPbI3 

perovskite is fully crystallized and the morphology of the film will not evolve anymore with 

increased annealing time (Figure 4.9d). 

 

4.3.3.2.2 Optical characterization 

These results are further confirmed in Figure 4.10, by UV-Vis absorption spectrum of the 

FAPbI3 thin films prepared under various annealing time for a constant temperature of 170˚C. 

For 0 min and 1 min annealing time, a strong PbI2 absorption peak at 380 nm is observed  

 

 

Figure 4. 10. UV−Vis absorption spectra of FAPbI3 films prepared at 170 ºC as a function of 

annealing time. The spectrums are recorded from no annealing to 20 min annealing time.  
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In addition, the intensity of the PbI2 peak decreases with increasing annealing time, leading to the 

formation of crystalline perovskite after 2 min annealing, confirming the FESEM results shown 

in Figure 4.9c. After 3 min annealing time, the optical properties of FAPbI3 do not significantly 

change, as the UV-vis data remain similar. This is further confirming the FESEM results shown 

in Figure 4.9d, where no morphological change were noted after increased the annealing time to 

10 min. After 20 min annealing, there is a slight decrease in the absorption spectrum, showing 

that the degradation of the perovskite absorber material has been initiated. 
 

 

4.3.3.2.3 Photovoltaic performances  

JV data have been compiled as a function of annealing time for devices prepared at 170 

ºC. The results are presented in Table 4.3. For 5 min annealing, JV curve shows that the device 

can reach efficiencies up to 8.05%. However, despite the morphological and optical observation, 

it is clear that PbI2 and FAI are not yet fully crystallized into FAPbI3, leading to a reduced 

efficiency due to an unfinished crystallization process. However, when the time is increased to 

10 min, an improvement can be seen in the JV curves both from the Jsc, Voc and Fill Factor (FF), 

leading to efficiencies of 12.1%.  

When the time is further increased to 15 min and 20 min, the degradation of the FAPbI3 

perovskite is initiated. This is probably due to dissociation between PbI2 and the organic 

material. This degradation leads to loss in key device parameters: Jsc, Voc and Fill Factor which 

directly impacts the efficiencies of the PSCs. Furthermore, when the time is increased to 25 min, 

the device is fully degraded and efficiency fall down to 1.5%. 
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Table 4. 3. Photovoltaic parameters of FAPbI3 perovskite solar cells fabricated as a function of 

annealing time, ranging from 5 min to 25 min. 

Annealing Time 

(min) 

Jsc 

(mA.cm
-2

) 

Voc 

(V) 

FF 

(%) 

Ƞ 

(%) 

5 min 19.16 0.82 51.25 8.05 

10 min 23.43 0.91 56.83 12.1 

15 min 18.16 0.91 54.54 8.9 

20 min 15.52 0.84 49.01 7.48 

25 min 6.99 0.56 38.38 1.5 

 

4.3.4 Refined fabrication parameters for high efficiency FAPbI3 solar cell 

From the previous studies, we were able to determine optimum fabrication parameters in 

order to maximize the photovoltaic parameters and ultimately the efficiency of the final 

perovskite solar cell. Figure 4.11 is a summary of the optimized parameters for the fabrication 

process.  

 

 

Figure 4. 11. Summary of the optimized fabrication parameters for the processing of highly 

efficient formamidinium lead triiodide perovskite solar cell. 
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For the best device, 0.7M precursor solution was used for the solvent engineering method 

and a drop of toluene was added at exactly 2 s before the end of the second spin coating step in 

order to obtain a compact and highly uniform perovskite thin film. The annealing of the film was 

carried out on a hot plate calibrated at 170ºC for 10 min. 

 

4.4 Conclusions 

In summary, we have fabricated FAPbI3 planar heterojunction solar cells with a 

Glass/FTO/c-TiO2/FAPbI3/Spiro-OMeTAD/Ag construction by a solvent engineering method 

under controlled fabrication conditions. In this approach, the precursor solution concentration 

revealed to be critical to obtain the adequate perovskite absorber thin film thickness. The 0.7M 

concentration was the best, as the film was thick enough to absorb incoming light over the whole 

solar spectrum and thin enough to limit the recombination mechanisms of the charge carriers due 

to lateral travel distance. Another step was to study the effect of toluene addition during the 

solvent engineering process. A timely control of the solvent addition (9s/11s) was necessary to 

ensure the “freezing” of the precursor materials in a compact and uniform fashion. Finally, the 

annealing time and temperature were evaluated and revealed to highly impact the solar cells 

efficiency. For each investigated parameters, we observed that the film morphology, optical, and 

electrical properties of FAPbI3 differ significantly. Highly uniform and crystalline films were 

achieved at 170ºC annealing temperature for 10 min. As the annealing process was varied, 

FAPbI3 films became inhomogeneous with the presence of voids, and the crystalline and optical 

properties were degraded. This deterioration of the films led to lower device efficiencies, mainly 

due to a loss in the Jsc, Voc, and FF.  
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Chapter 5 Effect of controlled humidity on high-performance formamidinium lead 

triiodide planar heterojunction solar cells* 

 

5.1 Introduction 

Over the last several years, hybrid organic–inorganic perovskite solar cells have become 

one of the most attractive photovoltaic technologies, with easy solution fabrication and high 

conversion efficiencies.
1-4

 Perovskite has an ABX3 structure where “A” and “B” are cations of 

various size and X is the anion.
1,2,5,6

 Adjusting A, B, and/or X with different elements can 

significantly change the material and optoelectronic properties of perovskites.
6-10

 Methyl 

ammonium (MA) cation in the A site is so far the most explored perovskite composition in the 

past few years.
1,2,10-13

  Despite the rapid progress for MA-based perovskite absorbers (e.g., 

MAPbI3), their optical bandgaps are generally larger than 1.55 eV. Replacing MA with 

formamidinium (FA or CH(NH2)2
+
) represents one direction to reduce the bandgap toward a 

more ideal range.
4,7,14-18

 For example, FAPbI3 is reported to have a bandgap of about 1.47 

eV.
7,15,19

 Thus, replacing MAPbI3 with FAPbI3 should, in theory, lead to >10% gain in the 

photocurrent density. However, to date, experimental work based on FA-perovskite solar cells 

had been limited to only a few publications, including pure FAPbI3
16,18,20,21

, and perovskites with 

either mixed halides
7,13,17,22

 or mixed organic cations.
23,24

 It is noteworthy that a recent study 

shows that a bilayer structure of FAPbI3 followed by a thin layer of MAPbI3 enhances light 

absorption of pure FAPbI3,
15

 whereas another study illustrates that compositional engineering 

*This chapter was adapted from: Wozny, S.; M.; Nardes, A.; Mercado, C.; Ferrere, S,; O 

Reese, M.; Zhou, W., Zhu, K.; A Controlled Humidity Study on the Formation of Higher 

Efficiency Formamidinium Lead Triiodide-Based Solar Cells Chem. Mater., DOI: 

10.1021/acs.chemmater.5b016912015 
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by mixing 85% of FAPbI3 with 15% of MAPbBr3 can lead to >18% devices.
4
 In addition, FA-

based devices could have higher stability than MA-based cells.
23

 These reports illustrate the 

potential and importance of studying FA-based solar cells for future perovskite solar cell 

applications. 

Among various environmental factors, moisture has received increasing attention due to 

its reported impact on perovskites, including material properties and device characteristics (e.g., 

efficiency and stability). Most of such studies were conducted with MA-based perovskites. It has 

been reported previously for MA-based perovskite that the relative humidity is detrimental to the 

device performance.
8,25

 Kamat et al.
25

 reported that pure MAPbI3 perovskite gets hydrated 

[(CH3NH3)4PbI6.2H2O] under a humid environment in the dark and it forms PbI2 under a humid 

environment in light.
25,26

 The crystallographic deterioration is mainly responsible for the 

degraded device performance. However, another study showed that a moderate moisture level 

(~35% relative humidity) can enhance the recrystallization of perovskites during the normal film 

formation process and thus result in a high-quality perovskite film and solar cell performance 

using MA-based perovskites.
27

 Despite various effects reported for MA-based perovskite, the 

roles of moisture/humidity on FA-based perovskites has not been fully studied.  

In this chapter, we examine the effect of relative humidity during film preparation on the 

structural, optical, and electrical properties of FAPbI3 thin films. Moisture strongly impacts the 

morphological, crystalline, and optical properties of FAPbI3, and the performances of final 

devices. Using the low-humidity environment, the best efficiency obtained for a planar FAPbI3 

perovskite solar cell is 16.6% (under one-sun illumination) with stabilized maximum power 

output corresponding to an efficiency of 16.4%. The device performance decreases with 

increasing environmental humidity level. This loss in efficiency is mainly attributed to the 
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deterioration of the films upon humidity exposure, leading to a lower fill factor, lower 

recombination resistance, and shorter carrier lifetime. 

 

5.2    Experimental 

5.2.1 Synthesis of precursors solution for device fabrication 

5.2.1.1    Formamidinium lead triiodide 

All solvents and reagents were of analytical grade and used as received.  Lead Iodide 

(PbI2, 99.999%) was purchased from Alfa Aesar. Formamidinium iodide (FAI) was purchased 

from Lumtec. Anhydrous N,N’-dimethylformamide (DMF) and toluene were purchased from 

Sigma Aldrich. A 0.7M perovskite solution was prepared from stoichiometric amount of lead 

iodide (PbI2) and FAI in DMF. The solution was vortexed for 30 min to dissolve PbI2 and FAI 

powders in DMF, leading to a clear bright yellow solution. Finally the solution was filtered twice 

to remove any undissolved starting materials. 

 

5.2.1.2  2’,7,7’-tetrakis(N,N-dip-methoxyphenylamine)-9,9’-spirobifluorene solution  

2’,7,7’-tetrakis(N,N-dip-methoxyphenylamine)-9,9’-spirobifluorene solution abbreviated 

as Spiro-OMeTAD was prepared by adding 80 mg of spiro-OMeTAD, 30μl of 

bis(trifluoromethane)sulfonimide lithium salt stocking solution (500 mg Li-TFSI in 1 ml 

acetonitrile), and , 30μl of 4-tert-butylpyridine (TBP) in 1 ml chlorobenzene. The solution was 

vortexed for 30 min and used immediately. 

 

5.2.2 Substrate preparation 

A 1x1 inch Fluorine-doped SnO2-coated transparent conducting glass (FTO/Glass) 

substrate was patterned using a 2M HCl solution and Zinc powder.
9
 A c-TiO2  compact blocking 
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layer was spray coated on the hot FTO glass (450°C) using 0.2 M solution of Ti(IV) bis(ethyl 

acetoacetate)-diisopropoxide in  1-butanol. The spraying process was repeated for 12 cycles and 

the substrate was subsequently annealed at 450 °C for 1 hour.
10 

 

5.2.3 Device fabrication 

The devices were fabricated in a dry box where the humid environment was regulated by 

adjusting air and vapor water flows simultaneously.   The humidity was measured by a digital 

hygrometer (±4% R.H.). The substrates and precursor solutions were exposed to control humid 

environment (inside the dry box) until the RH% stabilized to a certain value, typically 20 min 

prior to any deposition. Figure 5.1 summarizes the fabrication process of perovskite solar cell.  

 

Figure 5. 1. Schematic summarizing the fabrication process of the FAPbI3 perovskite solar cell. 
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Briefly, 100µl of perovskite solution was deposited onto the c-TiO2/FTO by spin 

coating.
3
  The substrate was spun at 500 rpm for 3 sec to remove excess solution. Rotation was 

then increased to 3500 rpm and 1 drop of toluene was added to precipitate the perovskite from 

the solvent exactly 2 seconds before the end of the second spin coating step. The films were 

dried at 5000 rpm for 30 sec.  

 

5.3    Results and discussion 

5.3.1 FAPbI3 solar cell design and working process 

Figure 5.2a shows a schematic of a typical FAPbI3 planar heterojunction solar cell. The 

substrate was subsequently annealed at 170°C for 10 min on a hot plate. The film was cooled for 

1 min, before spin coating the spiro-OMeTAD solution on the warm substrate for 30 seconds at 

4000 rpm. Finally, silver electrodes were thermally evaporated to evaluate the performance of 

the device. A diagram of the band alignment is represented in Figure 5.1b. Upon illumination, 

FAPbI3 absorbs the light, and electron-hole pairs are generated:  electrons are injected into the 

conduction band of the TiO2 blocking layer and FTO/glass, whereas holes are transferred to the 

highest occupied molecular orbital (HOMO) of the Spiro-OMeTAD and collected by the Ag 

metal electrodes.
28 

 

5.3.2 FAPbI3 thin film  

Developing a high-quality perovskite thin film with uniform and dense coverage is 

critical to achieving good performance and reliable studies on charge-carrier dynamics in 

perovskite solar cells. The properties of the perovskite thin film depend strongly on the  
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Figure 5. 2. (a) Schematic illustration of a planar heterojunction perovskite solar cell. The device 

has a Glass/FTO/c-TiO2/Perovskite/Spiro-OMeTAD/Ag structure. (b) Energy-level diagram and 

charge transfer in TiO2-based perovskite solar cell. 

 

processing conditions (e.g., precursor composition, spin-coating speed, and processing 

environment).To understand the role of humidity on the perovskite film quality, we examined the 

film morphology, optical absorbance, and phase purity of the FAPbI3 thin films prepared under 

different relative humidity (R.H.) ranging from 2% to 40% R.H. at room temperature.  

 

5.3.2.1    Morphological characterization 

Figure 5.3 shows the field-emission scanning electron microscope (FESEM) images of 

perovskite films prepared at various relative humidities, approximately from 2% to 40% R.H. 

The films prepared from 2% to 20% R.H. (Figures 5.2a–c) do not indicate the presence of any 

pinholes on c-TiO2/FTO/Glass substrate. Furthermore, the grain sizes for these films remain 
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similar with a mixture of smaller and larger grains with diameters between 200 and 800 nm. 

When the relative humidity is increased to 30% (Figure 5.2d), pinholes with sizes ranging from 

50 to 500 nm start to form on the film surface, covering about 13% of the surface area. When the 

humidity is further increased to 40% (Figure 5.2e), the coverage of the absorber material 

decreases to about 75% with the size of pinholes ranging between 200 nm and 1 µm. However, it 

is interesting to note that grain size at high humidity level increases substantially to a range of 

about 0.5 to 1.8 µm.  

 

 

Figure 5. 3. Top-view FESEM images of perovskite thin films prepared at various relative 

humidities: (a) 2% R.H., (b) 8% R.H., (c) 20% R.H., (d) 30% R.H., and (e) 40% R.H. 

 

Figure 5.4 shows the field-emission scanning electron microscope (FESEM) images of 

perovskite films prepared at 170 ˚C with various annealing time, from 0 min (no annealing) to 10 
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min. Figure 5.4a shows the presence of pinholes  without annealing. The humidity, in 

conjunction with spin coating results in partially covered films.  The annealing process slightly 

reduces the pinhole size since while the grains become larger with increasing time. 

 

Figure 5. 4. Top-view FESEM images of perovskite thin films prepared at various annealing 

time: (a) 0min, (b) 0.5min, (c) 2min, (d) 3min, and (e) 6min and (f) 10min. 

 

5.3.2.2    Crystallographic characterization 

Figure 5.5 compares the X-ray diffraction (XRD) patterns of FAPbI3 thin films spin-

coated on the FTO/Glass substrate covered with a compact layer of TiO2, which has the same 

architecture as the one used for the device fabrication. These films were prepared under relative 

humidities as indicated. At each humidity level, a pure FAPbI3 trigonal phase (P3m1) is 

observed, which is confirmed by the presence of the main diffraction peaks (111), (120), (021), 
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(222), (231), (030), (240), and (333) at 13.9°, 19.7°, 24.2°, 28.1°, 31.4°, 33.7°, 40.2°, and 42.7°, 

respectively, which is in good agreement with literature.
18

 It is interesting to note that (111) 

peaks near 14° show the strongest intensity at 2% R.H. With increasing humidity, the (111) 

peaks decreases in intensity. This observation may suggest a loss of the crystallinity of 

perovskites with higher humidity content, and larger disordered regions between grains. 

However, it is important to note that despite the high relative humidity used to fabricate the films 

and the morphological changes observed (Figure 5.3), there is no recrystallization of the FAPbI3 

films into PbI2 or (CH3NH3)4PbI6.2H2O as mentioned in a previous MAPbI3 report.
25

 

 

Figure 5. 5. XRD patterns of FTO/Glass (black), FAPbI3 films prepared at various relative 

humidities: 2% (red), 8% (blue), 20% (turquoise), 30% (pink), and 40% R.H. (gold). 
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5.3.2.3    Optical properties 

Figure 5.6a shows the ultraviolet-visible (UV-Vis) absorption spectra of the FAPbI3 thin 

films prepared under various humidity levels as indicated. Films exhibit a broad absorption over 

the whole visible and near-infrared spectrum with an absorption onset near 840 nm, which is 

consistent with the reported optical bandgap of about 1.47 eV for the FA-based perovskite.
7,15 

The absorption increases rapidly with decreasing wavelength. There is essentially no change 

when the relative humidity level increases from 2% to 8%. Further increasing R.H. to 20% 

slightly lowers the absorption at wavelength below 700 nm, which agrees with the decrease in 

the XRD peak intensity, as shown in Figure 5.6. But it is noteworthy that the differences in the 

absorption spectra of films prepared under 2%–20% R.H. are relatively small, which is 

consistent with their similar film morphologies (Figure 5.3). In contrast, when the humidity level 

is further increased to 30%, there is a significant increase in the baseline of the absorption 

spectrum, indicating enhanced light scattering, which we associate with the formation of 

pinholes. When the film is prepared under 40% R.H., the baseline absorption increases, but also, 

the features of the absorption spectrum at lower wavelength change significantly compared to 

films prepared under lower humidity level, showing a degradation of the optical absorbance of 

the perovskite film.  Figure 5.6b shows the direct band gap extrapolation using Tauc plots for 

FAPbI3 films fabricated and annealed at different humidities ranging from 2% to 40%. The band 

gap value slightly decreases from 1.51 eV at 2% R.H. to 1.47 eV at 40% R.H. 
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Figure 5. 6. (a) UV−Vis absorption spectra of FAPbI3 films prepared at various relative 

humidities: 2% (red), 8% (blue), 20% (turquoise), 30% (pink), and 40% R.H. (gold), and (b) 

Direct band gap extrapolation using Tauc plots for FAPbI3 films fabricated and annealed at 

different humidities ranging from 2% to 40%. The band gap value slightly decreases from 1.51 

eV at 2% R.H. to 1.47 eV at 40% R.H. 

 

5.3.3 FAPbI3 device characterization 

5.3.3.1    Photocurrent density-voltage  

Figure 5.7 compares the effect of relative humidity on the photocurrent density-voltage 

(JV) curves of devices based on FAPbI3 films prepared under various R.H. ranging from 2% to 

40%. The measurements were conducted under 100 mW.cm
−2

 (AM1.5) simulated solar 

irradiation. The power conversion efficiency of a typical FA-based solar cell (Figure 5.7a) can 

reach up to 15.2%, with standard deviation of 1.2% under 2% R.H with a short-circuit current of 
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22.18 mA.cm
-2

, an open-circuit voltage of 1.04 V, and a fill factor of 0.69. These good 

photovoltaic parameters are attributed to the high crystallinity of the pure FAPbI3 phase, as well 

as the smooth film surface without the presence of pinholes, due to our improved solvent 

engineering technique, high temperature, and short annealing time. However, the device 

efficiencies gradually decrease from 15.5% (2% R.H.) to 9.0% (40% R.H.). The differences in 

efficiency are attributed to decreasing Voc, as well as fill factor, as the R.H. increases. The drop 

in Voc is attributed to increased recombination of the charge carriers in FAPbI3 due to a loss in 

the crystallinity of the compound, as previously observed in the XRD data (Figure 5.4). 

 

Figure 5. 7. (a) Photocurrent density−voltage (J–V) characteristics of planar perovskite solar 

cells based on FAPbI3 films prepared under various relative humidity levels as indicated. 

Measurements were done under 100 mW/cm
2
 AM 1.5 irradiation. (b) Statistical data for the 

photovoltaic parameters (i.e., short-circuit photocurrent density Jsc, open-circuit voltage Voc, fill 

factor FF, and power conversion efficiency PCE) for planar perovskite solar cells based on 

FAPbI3 prepared under various relative humidity levels. 
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In addition, the partial coverage (pinholes) of the perovskite thin film fabricated at higher 

humidity may lead to direct contact between hole transporting material (HTM) HTM  and TiO2 

contact layers, forming internal shunts that lead to lower Voc value. The details of the 

photovoltaic parameters are listed in Table 5.1. In-depth characterization of several devices was 

performed to test the reproducibility and accuracy of the devices. At each relative humidity, 16 

devices were examined and the statistical data for the photovoltaic parameters (Jsc, Voc, FF, and 

PCE) are compared in Figure 5.7b. The data showed reproducible results with relatively low 

standard deviations, confirming that our modified solvent engineering technique is reliable for 

production of standard devices. 

 

Table 5. 1. Photovoltaic parameters of FAPbI3 perovskite solar cells fabricated at various 

relative humidities from 2% to 40%. 

Relative 

Humidity (%) 

Jsc 

(mA.cm
-2

) 

Voc 

(V) 
Fill Factor 

Efficiency 

(%) 

2% 22.18 1.04 0.69 15.5 

8% 21.89 0.99 0.67 14.4 

20% 21.76 0.97 0.65 13.6 

30% 20.39 0.93 0.59 11.1 

40% 18.88 0.92 0.52 9.0 

 

5.3.3.2    External quantum efficiency 

Figure 5.8 shows the external quantum efficiency (EQE) spectrum of a typical device 

prepared under 8% R.H. The EQE spectrum shows the average external quantum efficiency of 
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about 85% between 400 and 600 nm. EQE starts decreasing to 75% until 700 nm and exhibits a 

characteristic FAPbI3 absorption edge at about 840 nm. The integrated photocurrent density from 

EQE spectra (~21 mA.cm
-2

) matches well with the Jsc value obtained from the JV measurements.  

 

Figure 5. 8. Integrated incident photon to current efficiency (IPCE) data for a standard FAPbI3 

planar heterojunction device. 

 

5.3.3.3    Champion device 

Figure 5.9a shows forward and reverse JV curves of the best device based on FAPbI3 

films prepared under 2% R.H. Scan direction tests were performed to evaluate the JV hysteresis. 

Under the reverse scan (from open circuit to short circuit), the device delivers a power 

conversion efficiency of 16.6% with a Jsc of 21.43 mA.cm
-2

, Voc of 1.11 V, and FF of 0.70. The 

values for the Jsc and Voc were almost identical between the reverse and forward (from short 

circuit to open circuit) scans with some hysteresis mainly in the fill factor, leading to a PCE of 
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14.3% under the forward scan. To verify the efficiency, Figure 5.9b shows the time-dependent 

photocurrent density (J) and PCE output measure for >300 s at the maximum power point. The J 

and PCE reach a steady state of 20 mA.cm
-2

 and 16.4 %, respectively, and agree well with the JV 

curve obtained from the reverse scan. 

 

  

Figure 5. 9. (a) Forward and reverse J–V curves (one-sun illumination) of the best planar 

perovskite solar cells based on FAPbI3 films prepared under 2% R.H. (b) Steady-state PCE and 

photocurrent density at maximum power point as a function of time. 

 

5.3.3.4 Impedance spectroscopy 

Impedance spectroscopy is used to study the effect of R.H. on the charge-carrier 

recombination resistance (Rrec) as a function of the applied bias in the relevant voltage range (0 

to 1 V) using a standard impedance model for perovskite solar cells.
29,30

 Figure 5.10a shows the 

typical Nyquist plots of complex resistance at three different bias voltages. The impedance 

spectra for all three bias voltages are dominated by a large semicircle at low frequencies. This 

large semicircle is often attributed to the charge recombination process within the perovskite 
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solar cells. Figure 5.10b compares the effect of R.H. on Rrec as a function of applied bias 

voltages. At each R.H. level, Rrec is strongly dependent on the applied bias voltage, following 

approximately an exponential decrease with voltage at the relatively high voltage range (>0.4 V). 

When compared at a constant bias voltage (e.g., 0.8 V), Rrec shows minimum change when the 

R.H. level is increased from 2% to 8%, and then decreases by 1–2 orders of magnitude with 

increasing R.H. level. This trend of Rrec change is consistent with the changes of the device 

characteristics (Figures 5.7), which can be correlated to the exposure of the substrate without 

FAPbI3 coverage at high R.H. levels. The existence of pinholes or voids likely creates defect 

sites causing the reduction in Voc as well as FF.  

 

 

Figure 5. 10. (a) Nyquist plots of complex resistance at three different bias voltages, and (b) 

effect of relative humidity on the recombination resistance (Rrec) as a function of voltage for 

planar FAPbI3 perovskite solar cells. 
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5.3.3.5 Time-resolved photoluminescence 

These results are also consistent with the time-resolved photoluminescence (TRPL) 

measurement Figure 5.11 shows results from the TRPL study conducted for estimating the 

photo-generated carrier lifetimes in the FAPbI3 perovskite thin film prepared at low R.H. (~2%) 

are substantially longer than those prepared at relatively high R.H. (~20%).  

 

Figure 5. 11.TRPL measurements showing lifetimes for the FAPbI3 films prepared at 2 and 20% 

R.H. The curves were fitted to biexponential model.[4] For the 2% R.H. film, τ1 is 103 ns 

(75.8%) and τ2 is 522 ns (24.2%). For the 20% R.H. film, τ1 is 64.5 ns (83.8%), with a τ2 of 

~352 ns (16.2%). 

 

The TRPL curves were fitted to biexponential model. In general, the interpretation is that 

the fastest time constant (τ1) is associated with grain boundary/surface recombination whereas 
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the slower time constant (τ2) can indicate a lower bound for the bulk lifetime. Although the 

change in humidity did not show any major morphological changes, the change in lifetimes is 

substantial. For the 2%R.H. films, τ1 is 103 ns and τ2 is 522 ns. For the 40%R.H. films, τ1 is 

64.5 ns, with a τ2 of ~522 ns. When τ1 is much smaller than τ2, one can estimate the surface 

recombination velocity (SRV) using the expression SRV=1/(α τ1), where α is the absorption 

coefficient.
35, 36

 Using an absorption value of about 1.5×10
5
 cm

-1
 (at 500 nm), we estimate a SRV 

of about 350 cm s
-1

, which is substantially smaller than the conventional polycrystalline thin-film 

semiconductor absorbers (e.g., 10
4
–10

5
 cm s

-1
 for CdTe

35
). This indicates that films prepared at 

lower humidity maintain the preservation of the photo-generated carriers for a significantly 

longer duration before recombination. 

 

5.4    Conclusions 

In summary, we have fabricated FAPbI3 planar heterojunction solar cells by a solvent 

engineering method under controlled humidity environments. In this approach, the relative 

humidity was controlled between about 2% and 40%, to evaluate the effect of moisture on 

FAPbI3 thin films and device properties. The film morphology, crystallinity, and optical and 

electrical properties of FAPbI3 differ significantly, depending on the relative humidity levels. 

Highly uniform and crystalline films were achieved for low relative humidity (2%), leading to 

16.6%-efficiency devices with stabilized output at about 16.4%. As the humidity increases, 

FAPbI3 films become inhomogeneous with the presence of voids, and the crystalline and optical 

properties are degraded. This deterioration of the films leads to lower device efficiencies (8.6% 

efficiency at 40% R.H.), mainly due to a loss in the Voc and FF. The loss in Voc with increasing 

humidity was consistent with the presence of the voids in the films, decrease in the 
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recombination resistance, and shorter carrier lifetimes. Our results indicate that moisture plays a 

crucial role during the fabrication of formamidinium-based perovskite solar cell. Low-humidity 

content leads to highest-efficiency devices, whereas increased humidity gradually degrades the 

properties of FAPbI3 and the efficiencies of final devices. 
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Chapter 6 In-situ investigation of the role of temperature on the formation of 

higher efficiency perovskite solar cells* 

 

6.1 Introduction 

The development and implementation of new photovoltaic (PV) materials are intertwined 

with major technological achievements in energy and semiconductor device fabrication.
1-3

 

Today’s photovoltaics and portable electronic devices have similar requirements for energy: they 

must be highly efficient (> 15 %), have a large capacity for long-term manufacturing, extended 

for long lifetimes, and be environmentally friendly.
2-7

 Perovskite-based solar cells (PSCs) are 

attractive PV materials due to their impressive properties as light harvesters, high device 

efficiencies, and low-cost, industry-scalable processing.
2-11

 However, the materials basis needed 

to underpin the dynamical processes that occur during processing and their subsequent device 

applications is currently limited in the literature.
9,12-16

 Fundamental studies are urgently needed 

to understand the relationships between the microstructural modification and resulting properties 

as a function of the processing environment. 

Perovskite-based solar cells performance would greatly benefit from direct observation of 

the synthesis process, especially as the range of perovskite-based materials expands and various 

Edisonian recipes are devised for fabrication.
6,17,18

 Insights into the mechanisms for perovskite 

formation from the inorganic and organic components are still generally lacking. 
6,17

 It has been 

widely reported that PSCs performance varies with time, temperature, humidity, and synthetic 

conditions.
14,19-21

  

*This chapter was adapted from: Wozny, S.; Aguiar, J.; Holesinger, T.; Aoki, T.; Patel, 

M.; Yang, M.; Zhou, W.; Zhu, K.; and Al-Jassim, M.; In-situ investigation of the role of 

temperature on the formation of higher efficiency perovskite solar cells Submitted 
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Hence, there is a tremendous need for research on the fundamental formation 

mechanisms and environmental influences regarding these new PV materials. Understanding the 

related phase and structural equilibria is required to minimize the physical, electrical, and 

chemical barriers to higher efficiencies across several cell processes in the community.
15,18,20,22-27

  

To address these challenges,
28

 we undertook an in-situ growth study using (scanning) 

transmission electron microscopy (S/TEM) for direct observation of the synthesis and formation 

pathways associated with FAPbI3 (FA-based perovskite). Thin perovskite films were fabricated 

from FAI/PbI2 precursors solution on titania-coated Si3N4 chips that were placed in a specialized 

in-situ gas S/TEM hot stage that allowed for gas flow around the specimen at atmospheric 

pressures.
29

 We specifically show that (i) optimal processing and annealing of FAPbI3 at 175° C 

measured inside the in-situ gas cell is directly related to the mobility and subsequent 

intergranular diffusion of lead at grain boundaries, and (ii) about this temperature a partially 

reversible process occurs involving the exchange of lead at grain boundaries. We also show that 

(iii) beyond 175° C, coarse particle nucleation and growth into individual nanometer precipitates 

occurs. These meta-stable precipitates are pinned at grain boundaries and grain boundary related 

triple junctions, they can only be partially reincorporated into the material following a longer 

anneal at 175° C. Furthermore there is direct evidence (iv) of the adsorption of hydrogen at the 

interface regions, owing to the idea that there is a direct ionic exchange of presumably OH
-
, H

+ 
, 

and FA
+
 ions under thermal cycling. This potentially leads to hydrolysis that compromises the 

structural integrity of the trigonal perovskite framework. Taken together, this works identifies 

key aspects associated with the FAPbI3 formation process and the structure-property links 

between measured device performance and PSCs process history leading to improvements upon 

the current state of FA-based PSCs. 
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6.2 Experimental 

In this study, the in-situ S/TEM approach has been used to directly visualize the stages of 

crystallization, nucleation, and growth of FAPbI3 using the commercially available 

Hummingbird Scientific in-situ gas system.  

 

6.2.1 In-situ gas experiment design 

The in-situ gas cell is comprised of a silicon microchip and silicon nitride viewing 

membrane that forms a viewing port. A Schematic of the experimental design is shown in Figure 

6.1. The cross-section of the differentially pumped cell in Figure 6.1a depicts how the electron 

beam interacts through the silicon nitride (SixNy) windows and how elastically scattered 

electrons are collected for bright field (BF) and annular dark field (ADF) atomic contrast STEM 

imaging with nearly a 1.4 Å probe. For our experiments, 25 nm thick silicon nitride windows 

were used. Silicon nitride (Si3N4) microchip spacers and standard windows were both prepared 

first by spray coating compact titania on the hot SiN microchips (450°C) using 0.2 M solution of 

Ti(IV) bis(ethyl acetoacetate)-diisopropoxide in  1-butanol and subsequently annealed in air at 

450 °C for 1 hour (Figure 6.1c1). Following the annealing, a 30 minutes ultraviolet (UV) 

treatment was performed to roughen the active surface hour (Figure 6.1c2). A 0.7M perovskite 

solution was prepared from stoichiometric amount of lead iodide (PbI2) and FAI in DMF and 

immediately deposited on the surface of the microchip with the help of a micropipette hour 

(Figure 6.1c3). Optical imaging confirmed that the presence of perovskite suspended over the 

hole was intact with no visible ruptures or cracks. This approach was quite effective, with more 

than 80% of dropping attempts yielding perovskite solution after SEM and optical inspection. 

The silicon nitride spacer chip thereby was made up of the following layering: 
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perovskite/compact titania/amorphous silicon nitride. The treated chip was then placed into the 

Hummingbird Scientific in-situ heated gas holder shown in Figure 6.1b. A calibrated silicon 

heating chip with a ±3º C certainty was then placed face-to-face with the treated silicon nitride 

spacer. Once positioned into the holder, the system was sealed using O-ring seals, a cover plate, 

 

 

Figure 6. 1. Schematic of the experimental design: a) Schematic of the  heated in-situ gas cell 

used for the controlled temperature study of FA-based PSCs inside with heating capability from 

50°C to 225°C while flowing inert argon gas, b) Schematic of the gas flow holder, and (c) 

schematic of the step by step sealing of the silicon nitride microchips. 

 

retention clip, and then secured with a single setscrew. The system was then leak checked to 

ensure high vacuum could be attained using a dry pump vacuum station. Following leak testing, 
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argon gas was also delivered to the system to check the vacuum seals under pressure. The system 

was then placed in a transmission electron microscope. Before observation, argon gas was 

delivered to the gas cell using hard metallic tubing to deliver and flush the cell for 30 min prior 

to heating and transmission electron microscopy. During this time the cell was checked for leaks. 

The in-situ S/TEM conditions were then chosen to generate a comparative study to fabricating 

PSCs based solar cells. Inert argon gas was then continually flowed until observation and initial 

heating. During observation, inert argon gas was continually flowed at 0.1 cm
3
 min

-1
 and the 

temperature was allowed to be ramped and held at various temperatures between 50 ºC and 225 

ºC. 

 

6.2.2 Analytical materials characterization and transmission electron microscopy 

6.2.2.1 In-situ (scanning) transmission electron microscopy 

Simultaneously with the in-situ heating gas experiments, bright field (BF), annular dark 

field (ADF), selected area electron diffraction (SAED), and transmission electron micrographs 

were recorded using a Cs aberration-corrected FEI Titan S/TEM operated at 300 kV with a 4350 

V extraction voltage and FEI Tecnai at 300 kV. Prior to observation the specialized in- situ gas 

holder was initially purged and filled internally. Observation of the material was performed 

while flowing argon gas (0.1 cm
3
 min

-1
). The ADF and BF STEM images were collected on the 

Cs aberration-corrected FEI Titan S/TEM operated at 300 kV using a Fischione model 3000 high 

angle annular dark field STEM detector and the BF STEM images were acquired using Gatan 

GIF camera using Gatan Digital Micrograph software. The following imaging conditions were 

used for ADF STEM imaging: 40kx magnification, -0.050 um defocus, 70 mm final probe 

forming condenser aperature, 100 mm nominal camera length, roughly 1.6 Å probe diameter, 86 
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pA probe current, 42.9 mrad convergence semi-angle and 55–330 mrad inner and outer 

collection semi-angle, an image size of 2048 x 2048 pixels, 871 pm x 871 pm pixel size, sample 

1.78 µm x 1.78 µm area, 1 μs pixel dwell time, and with a 5.64 s frame time was used. Images 

were time stamped and recorded initially, and then stacked to form movie-like snapshots. 

 

6.2.2.2 In-situ transmission electron microscopy for selected area electron diffraction 

Polycrystalline diffraction ring patterns were collected using the same temperature 

profiles used for the in-situ scanning transmission electron microscopy. The nominal 

magnification was kept above 20 kx and 330 mm camera length on LaB6 equipped FEI Tecnai.  

 

6.2.2.3 Low accelerating voltage scanning transmission electron microscopy 

Energy filtered aberration corrected high resolution STEM imaging was performed using 

monochromated Nion Ultra STEM equipped with a cold-field emission gun as the electron 

source and capable of spherical aberration correction of the third and fifth order aberrations. The 

STEM was operated at 60 kV and less than 10 pA beam current, which is below the knock-off 

damage of most carbon-based materials, including graphene. Low (BF), medium (MAADF), and 

high angle annular dark field (HAADF) STEM 1024 x 1024 pixel images were acquired with a 

convergence of 30 mrad and a collection semi-angle of 50-200 mrad with a 64 us dwell time to 

sample a 20 nm x 20 nm area. Multiple raw images were collected, cross correlated, and summed 

over a period of 5 mins to minimize beam dose. Prior to STEM, the perovskite specimens were 

annealed at 170ºC for 10 mins and then placed in a dedicated double tilt that was baked under 

vacuum at 160ºC for 8 hours.  
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6.2.3 High resolution valence electron energy loss spectroscopy 

All valence electron energy loss spectra (VEELS) were taken in Scanning Transmission 

Electron Microscopy (STEM) mode. Ångström sized probes were used with Full-Width Half-

Maxima (FWHM) of the ZLP ranging nearly 20 meV for 1s spectrum acquisitions. The 

microscope used for this study was specifically chosen to capture the valence nature of 

perovskite materials. The cold Field Emission Gun (FEG) of the Nion UltraSTEM was operated 

at 60 kV and 40 kV acceleration voltages with a 30 mrad probe convergence and 45 mrad 

collection angle at 60 kV. These conditions provide the best native energy spread of nearly 10-20 

meV, based on the zero-loss peak FWHM, measured with 0.02 eV/pixel dispersion through a 

large solid acceptance angle into the spectrometer which was obtained with a reduced extraction 

voltage resulting in a probe current of about 8 pA. For imaging, a 30mrad convergence semi 

angle and 30 mrad /15mrad (lawless) EELS collection angles was used. VEELS collection was 

performed with a 12mrad convergence semi angle and 15mrad EELS collection angle. 

Gentle beam conditions and multiple frame acquisition were performed following the 

routines and discussions in the open literature
30-32

. Beam focusing was further checked to assure 

proper alignment into the spectrometer aperture opening. Spectra were then analyzed and 

processed to subtract residual background associated with sampling on a silicon nitride substrate. 

To perform the subtraction, several raw silicon nitride, vacuum zero loss, and dark count 

reference VEELS profiles were collected at the same time of collection. The scaled zero-loss 

peak subtraction routine outlined in Aguiar et al. was then applied to resolve subtracted spectra 

profiles
33

. Subtraction of the silicon nitride signal was then performed via the same technique, 

where the silicon nitride VEELS subtracted profiles where fit against collected perovskite 

VEELS profiles.  
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6.2.4 Chemical spectral imaging 

Complementary, composite spectral imaging using STEM-based energy dispersive x-ray 

spectroscopy was performed on an as-completed perovskite film in planar view on silicon 

nitride. To resolve the final chemistry, the perovskite sample was loaded on a single tilt low 

background holder and placed in the aberration corrected FEI Titan operated and a significant 

monochromated defocus was used to reduce the beam current. A host of composite chemical 

images, where then performed including both line and two-dimensional line scans.  

 

6.2.5 In-Situ X-Ray diffraction 

Due to the hygroscopic nature of the as-synthesized FAPbI3 it was difficult to identify the 

phases evolved during the synthesis process. Thus, in-situ high temperature XRD was performed 

using an Anton Parr HTK 1200N oven heated stage mounted on the Panalytical Empyrean XRD 

system.  The high temperature stage is mounted on a z-stage to allow for automatic sample 

height adjustment during the high temperature cycle in order to account for the thermal 

expansion of the material. Thin film of precursors (FAI/PbI2) deposited on a compact 

titania/FTO Glass substrate were mounted on an Al2O3 sample holder and heated from room 

temperature (25C) to 225C in air with a heating rate of 30C/min. XRD measurements were 

performed in conventional 2- configuration since the films were thick enough to prevent the 

x-rays from interacting with the substrate. The measurements were performed using Cu-Kα x-

rays and an incident beam configuration that comprised of an elliptical focusing mirror with a 

1/16 divergence slit, a beam mask of 4mm and 0.04 soller slits. The diffracted x-rays were 

detected using a position sensitive PIXcel
3D

 detector in a linear 1D scanning mode capable of 

simultaneously collecting data over 3.35 region. The data was collected in the 2 range of 10 
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to 70 with a step size of 0.013 and a step time of 48.2 sec/step which resulted in a total 

collection time of 15 min for these XRD patterns. In order to study the dynamical evolution of 

phases in the film, XRD data was also collected with very short step times of 18.9 sec/step, 

which resulted in a total collection time of 6 min for these XRD patterns. 

 

6.2.6 Device fabrication and characterization 

Parallel to the in-situ studies perovskite solar cell devices were prepared by spray coating 

c-TiO2 compact blocking layer on a pre-patterned 1x1 inch Fluorine-doped SnO2-coated 

transparent conducting glass (FTO/Glass) substrate. 
10

 The perovskite thin films were spin coated 

from a 0. 7M solution of lead iodide (PbI2) and formamidinium (FAI) in N,N’-

dimethylformamide (DMF). The substrate was subsequently annealed with temperatures ranging 

from 150ºC to 225ºC for 10 min.
21

 The film was cooled for 1 min, before spin coating the 

2,2’,7,7’-tetrakis(N,N-dip-methoxyphenylamine)-9,9’-spirobifluorene (spiro-OMeTAD) solution 

on the warm substrate for 30 seconds at 4000 rpm. Finally, silver electrodes were thermally 

evaporated to evaluate the performance of the device.
21

 The photocurrent−voltage (J−V) 

characteristic of FAPbI3 perovskite solar cells were measured with a Keithley 2400 source meter 

connected to a Oriel Sol3A class AAA solar simulator under simulated AM 1.5G illumination 

(light irradiation of 100 mW.cm
-2

). Impedance spectroscopy (IS) on the PSCs was carried out 

using a PARSTAT 2273 workstation (Princeton Applied Research) with the frequency range of 

0.1 Hz−100 kHz and the modulation amplitude of 10 mV. The IS spectra were analyzed using 

ZView 2.9c software (Scribner Associates).  
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6.3 Results  

6.3.1 In-situ observation of PSC formation 

We performed in-situ high-resolution transmission electron microscopy under both 

imaging and diffraction conditions to track the effects of thermal processing on the structure and 

morphology associated with FA-based PSCs. Our in-situ heating experiments are focused around 

175ºC based on literature reports of this temperature figuring prominently in device fabrication.  

We then work with three successive excursions from this base temperature to examine, and in 

some cases, exaggerate the effects of higher temperatures on structure. The effects of thermal 

cycling on the FAPbI3 thin film are shown in Figure 6.2 where the series of S/TEM plan-view 

images, provides snapshots of the microstructure at specific temperatures and times consistent 

with the temperature profile from 50°C to 225°C, while purified inert argon gas was flowing at 

0.5 cm
3
/min. as shown in Figure 6.3. Note that the current in-situ holder setup does not allow for 

controlled ramp rates and temperature changes occur within a few seconds. Within each S/TEM 

image, the contrast is directly related to the atomic number of the material, where the bright 

contrasted regions consist of lead-containing rich regions while the darker regions are FAI 

precursor or FAPbI3 perovskite. Sequential changes in the distribution of the lead-containing 

species are resolved by observing the differences in image contrast. Starting at room temperature 

(25°C, Figure 6.2a), the material is polycrystalline and FAPbI3 has not yet formed. Raising the 

temperature to 50°C (Figure 6.2b) and then 150°C (Figure 6.2c), with 10 minutes dwells at each 

temperatures, we observe a slight coarsening of the grain morphology. The initial material is  
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Figure 6. 2. To resolve the evolving microstructure and evolution of FAPbI3 we performed a 

controlled temperature study of FA-based PSC inside a heated in-situ gas cell from 50°C to 

225°C while flowing inert argon gas. To track the microstructure atomic contrast STEM plane-

view imaging was performed over a specific temperature profile which is shown in Figure 6.3.  
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Figure 6. 3. shows the specific temperature profile used to resolve the evolving microstructure of 

FAPbI3 inside a heated in-situ gas cell from 50°C to 225°C while flowing inert argon gas.  

 

converted into FAPbI3 between these temperatures based diffraction data. On raising the 

temperature to 175°C (Figure 6.2d), we observe the start of lead iodide (PbI2) segregation to the 

boundaries. A further increase in temperature to 200°C (Figure 6.2e), results in the distinct 

formation of lead-containing particles along the boundaries. Dropping the temperature to 175°C 

(Figure 6.2f) allows then for lead to reincorporate into the perovskite grain boundaries. The 

observed improvement in uniformity along the grain boundaries is based on comparing the initial 

image contrast starting at 25°C against the increasing outlining grain contrast observed in 

subsequent images. At this point from the perspective of device performance (see below), the 

grain morphology is the most uniform following the sequential drop to 175°C. However for the 

purposes of this study, we carried out the in-situ experiment further, to demonstrate the partial 

reversibility and segregation of the lead-containing species. Sequentially raising the temperature 

again from 175°C, to 200°C (Figure 6.2g) and finally to 225 °C (Figure 6.2h), we observe 

additional, larger lead containing particles at grain boundaries. At this point, a subsequent drop 
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and anneal at 175 °C for 10 minutes (Figure 6.2i), shows a gradual decrease, but incomplete 

reduction in the size of these large particles. The formation / dissolution of the lead-containing 

particles is only reversible up to a point. After this second anneal at 175 °C, we again increased 

the temperature to 200°C (Figure 6.2j) followed by 225°C (Figure 6.2k) to further demonstrate 

that the lead-containing species is still mobile and even more relatively large and stable lead-

containing particles have formed. Completing the experiment, the temperature of the cell was 

dropped to 50°C (Figure 6.2l) locking in the high temperature microstructure. 

Figure 6.4 is a complementary structural timeline focused on the formation of FAPbI3 by 

collecting selected area electron diffraction (SAED) and performing a background subtracted 

azimuthal integration as discussed in detail by Gammer et al.
34

 The series tracks the phase 

evolution as function of increasing temperature under the same heated inert gas environmental 

conditions. The finite time needed to collect an x-ray diffraction pattern does add some difficulty 

in tracking the microstructural changes during sampling of the controlled in-situ growth. 

However we are able to make the following observations: 

 (i) By 160 °C, the FAI and PbI2 are crystallized into perovskite, at which point the peaks 

identified as PbI2, silicon nitride, or perovskite are indeed the precursor material.  

(ii) Beyond 160 °C, there is a shift in the profiles towards lower d-spacing. 

(iii) At the elevated temperatures, the profiles continue without significant alternation, until 

eventually at 225 °C we observe a significant presence of the (012) (2.58 Å) peak related to 

corresponding PbI2 phase. We believe beyond 175 °C, the lead iodide starts to segregate out, as 

observed in Figure 6.2. Together these consecutive snapshots form the basis of our study on the 

evolution on FA-based PSCs using S/TEM and complementary SAED. 
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Figure 6. 4.a) To resolve the evolving microstructure and evolution of FAPbI3 we performed a 

controlled temperature study of FA-based PSC inside a heated in-situ gas cell from 50°C to 

225°C while flowing inert argon gas. Consistent with in-situ STEM imaging, we performed a 

series of repeated experiments, including collecting selected area electron diffraction (SAED) 

polycrystalline ring patterns in nanodiffraction mode for the same experimental conditions. The 

result is a temperature resolve azimuthal projected line profile based on collecting polycrystalline 

ring patterns, subtracting the background, and projecting onto a 2-dimensional angular resolved 

plot. The profiles are further indexed against the colored lines representing crystallographic 

lattice spacings corresponding to PbI2 (blue), the perovskite (black) and the Si3N4 (red) 

microchip. These series of results track the structure and chemistry of the formation of FA-based 

perovskite material forming the basis of our study. 
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6.3.2 Detailed Structure and Composition of Polycrystalline FAPbI3 PSC Annealed at 

175°C 

Figure 6.5 is a static image of the as-grown polycrystalline and 175°C annealed 

perovskite material. Under the high-resolution kinematic conditions, the interplay between 

atomic structure and chemistry is elucidated through a high resolution point-resolved valence 

electron energy loss spectroscopy (VEELS) scan traversing a grain boundary. Figure 6.5a is the 

raw normalized VEELS spectral scan that characterizes the low loss region of the electron 

energy-loss spectrum (0-35 eV), where features due to optical modes, valence band transitions, 

OH
-
, and H

+
 ions can be detected.

35-37
 The projected VEELS STEM-based spectral scan is the 

result of a horizontally summed and averaged 2-dimensional image over the grain boundary 

indicated in Figure 6.5b (STEM Images). The bright grain has been oriented close to a 

neighboring zone-axes. To further help identify the individual spectral features the linescan we 

followed a modified linear-least squares routine to subtract both the zero-loss and background 

VEELS signal associated with the silicon nitride substrate as discussed in detail elsewhere by 

Aguiar et al.
33

 Following this background subtraction, we identify three specific electronic 

energy loss regimes for comparison of the signals from the grain interior and boundary regions. 

Figure 5c is a comparison of the VEELS spectra from the collected grain interior and boundary 

regions extending from 0 eV to 35 eV. This residual spectral comparison contains the band-edge 

onset associated with PbI2 at roughly 2.36 eV, the OH
-
 spectral feature at 6.2 eV, discussed in 

detail by Bradley et al. 
38

, and the hydrogen 1s and lead ionization thresholds. In addition, the 

elemental bonding state differences are also resolved within their corresponding spectral shapes 

and characters. From lower to higher energy loss we will now discuss each of the spectral  

 



128 
 

 

Figure 6. 5. Tracking in-situ studies, static imaging of an representative as-grown perovskite 

device material anneal at 175°C for 10 minutes was imaged with higher resolution aberration 

corrected gentle STEM and (a) profiled across a grain with point resolved energy filtered valence 

electronic energy loss spectroscopy (VEELS) spectral imaging at 60 kV. b) Under these imaging 

conditions, a highly polycrystalline sample was thereby oriented to a nearly kinematic condition 

and high resolution VEELS (HR-VEELS) line profiling was performed near and at a grain 

boundary. c) Following analyses of the collected raw VEELS profiles was processed to subtract 

the residual background from the supporting silicon nitride substrate, resolving and comparing 

the presence of carbon, hydrogen, OH-, and lead between the perovskite grain interior and 

boundary region. d) Higher resolution aloof beam VEELS confirms PbI2 as an identified 

segregated species, as well as perovskite, in line with the in-situ observations. 
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features in detail. Figure 6.5d is a higher resolution aloof comparison of the valence structure 

between 0 eV and 4.5 eV. It clearly identifies both the subtle yet sharp band-edge onset at 2.36 

eV associated with PbI2 and the onset of the valence band of perovskite at roughly 1.4 eV based 

on extending fit to VEEL spectra, with a significant broadening up to band-edge onset of PbI2.  

Each of these spectra were acquired under aloof beam conditions at 40 kV, where the energy 

resolution is measured to be 10 meV or better
39

.  The band gap associated with perovskite has 

been measured reported to be roughly 1.5 eV with UV, however looking closer in these reports 

there is significant edge tailing to lower energy, which is consistent with the current aloof beam 

VEELS profiles 
21

.  

Nearby at roughly 6.2 eV, we also resolve the presence of the hydroxyl group (OH
-
) 

segregated to the boundary region. The OH
- 

spectral feature is broadened, which would be 

expected from a multiple bonding state configuration. At slightly higher energy loss we can 

compare the resolved HK
1s

 ionization edge profiles which show a narrower peak within the 

perovskite domain compared to the boundary. The difference in hydrogenic profile can be 

attributed to the presence of a strong singlet bonding state within the perovskite interior. Given 

the electronic open shell configuration of hydrogen and presumed differences in atomic ordering 

at the boundary, several free-surfaces like bonding configurations are possible including the 

effects discussed associated the broadened OH
- 

profile and shift in the HK
1s

 ionization edge 

profile. The third region of interest resolved in Figure 6.5 extends from 17 eV to 30 eV and 

contains a comparison of the bonding state associated with lead between the grain interior and 

boundary. At the boundary, we resolve the presence of both the PbO5 and PbO4 ionization edges, 

which suggests a split bonding state, presumably due to the presence of oxygen. The spectra 

from the grain interior of the perovskite shows only the PbO5 ionization edge, suggesting a singlet 
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bonding state with neighboring iodine. The singlet peak is expected, where the lead is 

coordinated in tetrahedron with iodine within FAPbI3. Hence, the results from the VEELS 

profiling clearly show the differences in the chemical nature of the polycrystalline perovskite. 

These differences between the grain boundary and grain interiors provide a mechanistic view of 

how the material equilibrates as a polycrystal as discussed at length below. 

Figure 6.6 is a resultant composite STEM-based EDS chemical images of our annealed 

PSC films. The chemical imaging provides a final snapshot of one of our reacted and annealed 

perovskite thin-films. This material is a planar view perspective of a thick textured perovskite 

film grown on compact titania and silicon nitride microchip.  

 

 

Figure 6. 6. a) Complementary, use of STEM-based EDS imaging and (b-d) chemical imaging 

provides a final snapshot of one of our annealed perovskite thin-films. From our post-chemical 

analyses we are able to qualitatively image b) C-K, c) N-K, d) I-L, and e) Pb-M x-ray lines, 

where quantitatively it is difficult to detect individual grains due to the mixed morphology of the 

as grown thick annealed perovskite layer, as mentioned previously. 
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The white and dark contrast corresponds to a final convolution of the deposited thick film 

texture (where HAADF is also sensitive to mass thickness variation) as well as the presence of 

perovskite and PbI2. From our post-chemical analyses we are able to qualitatively image b) C-K, 

c) N-K, d) I-L, and e) Pb-M x-ray lines, where quantitatively it is difficult to detect individual 

grains due to the mixed morphology of the as grown thick annealed perovskite layer, as 

mentioned previously. Cross-sectional TEM imaging is also not possible. 

 

6.3.3 Optimized device processing and performance 

FA-based PSCs were fabricated and optimized based on the observed microstructural 

development from in-situ work. Figure 6.7 compares the effect of temperature on the 

photocurrent density-voltage (JV) curves of FA-based devices. Device measurements were 

conducted under 100 mW.cm
−2

 (AM1.5) simulated solar irradiation. Figure 6.7a are the 

measured JV curves of FA-based devices prepared with annealing temperatures of 150 °C, 

175 °C, 200 °C, and 225 °C, respectively.   

In addition, the impedance measurements are shown in Figures 6.7b and 6.7c, as a 

function of the applied bias on the charge-carrier recombination resistance (Rrec). Based on the 

device measurements, we clearly observe a trend where the properties are optimized for the 

device annealed device at 175 °C. It clearly shows the highest efficiency, current, and voltage 

suggesting a uniform crystallization of the FA-based perovskite material confirmed in Figure 6.8 

through in-situ high temperature XRD. 

Upon increasing the temperature to 150C the precursors react to form the FAPbI3 

perovskite phase. A phase separated PbI2 phase is then observed at 175C, which  



132 
 

 

Figure 6. 7. a) Photocurrent density−voltage (J–V) characteristics of planar perovskite solar cells 

based on FAPbI3 films prepared at various annealing temperature as indicated. Measurements 

were done under 100 mW/cm
2
 AM 1.5 irradiation. b) Typical Nyquist plots of complex 

resistance at three different bias voltages. c) Effect of annealing temperature on the 

recombination resistance (Rrec) as a function of voltage for planar FAPbI3 perovskite solar cells. 

c) Time measurements. 
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increases with increasing temperature. No evidence for the segregation of PbI2 was observed at 

temperatures below 175C. 

XRD patterns were collected at temperatures of 25, 50, 150, 160, 175, 200 and 225C. 

However for the purpose of simplicity, XRD patterns in Figure 6.8 are shown only for 25, 150, 

175 and 200C. The XRD data collected at 25C shows peaks originating only from the 

precursor 

 

Figure 6. 8. In-situ grazing incidence high resolution XRD confirms the material microstructure 

for the generated devices as function of temperature starting with the precursor material. The 

perovskite peaks are labeled and the p label identifies precursor peaks at 26.45°, 33.64°, and 

51.41°. 
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The PbI2 phase can be indexed to a CaCl2 type crystal structure belonging to the R-3m 

space group, while the FAPbI3 phase could be indexed to a perovskite phase type crystal 

structure belonging to the P3m1 space group. Remnant precursor peaks labeled as P were also 

observed in the XRD pattern collected at 150 C, similar to that observed in the TEM 

measurements. 

 

6.4 Discussion 

Our characterization of perovskite polycrystalline samples has revealed three interesting 

and surprising features. First, the preference for a 175˚C annealing temperature suggested in the 

literature is directly connected to the resultant polycrystalline microstructure, where a lead-

containing species is concentrated at the boundaries and the FAPbI3 perovskite is within the 

grain interiors. Second, with a change in temperature beyond 175ºC the lead-containing species 

is mobile leading to the eventual nucleation and growth of lead-containing particles that degrade 

the performance of the device. Third, the presence of elemental uniformity concentrated at grain 

boundaries is thereby the preferred device morphology. We suggest this is the preferred 

configuration to enhance grain-boundary mediated charge transport. Here, we will discuss the 

possible origins for these specific behaviors and their implications on overall cell performance, 

transport, and suggest a tailored growth strategy to improve upon the device efficiency 

associated FA-based PSCs. 

 

6.4.1 Effect of temperature and annealing time 

The FAPbI3 films are comprised of various differently oriented domains, making up a 

polycrystalline material with varying grain sizes ranging from micron to nanometer size. One of 
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the key observations from the experimental studies is that we (i) show that superior processing of 

FAPbI3 annealing at 175° C is directly related to the mobility and segregation of lead at 

boundaries. JV curves reveal that the device performances are strongly correlated and influenced 

by the annealing temperature; where a change of ± 10 ºC will impact both the short circuit 

current (Jsc) and open circuit voltage (Voc) significantly. For a 10 minute standard annealing 

time, we measured the device characteristics as a function of temperature and report the results in 

Table 6.1. At 150°C, the JV curve shows that the device can reach efficiencies up to 12.6%. In 

correlation with the S/TEM observation, it is clear that PbI2 and FAI are not yet fully crystallized 

into FAPbI3, leading to a reduced efficiency due to an unfinished crystallization process. 

However, when the temperature is increased to 175°C, an improvement can be seen in the JV 

curves both from the Jsc, Voc and Fill Factor (FF), leading to efficiencies of 16.1%. When the 

temperature is further increased to 200°C and 225°C, the degradation of the FAPbI3 perovskite is 

initiated. This is strongly correlated to the microscopy, where PbI2 start migrating toward the 

grain boundaries to form points of nucleation till subsequent particle growth and coarsening into 

individual nanometer precipitates. This degradation leads to loss in key device parameters: Jsc, 

Voc and Fill Factor which directly impacts the efficiencies of the PSCs. Furthermore, in Figure 

6.3 we highlighted a repeated temperature sequence, where the temperature was stepped in a 

repeated sequence (from 175 ºC, 200 ºC, 175 ºC, to 200 ºC) in Figure 6.2 and we observed PbI2 

precipitation in, along, and out of the boundaries. (ii) Based on this leading observation, we have 

shown a partially reversible process occurs that involves the exchange of lead at grain 

boundaries, further confirmed in Figure 6.5. Figure 6.4 further resolves formation and 

crystallization of the perovskite material from precursor material as well as the evolving 

presence of PbI2 at temperatures using complementary SAED and in-situ XRD profiling.
34
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Impedance spectroscopy was further used to study the effect of temperature on the 

charge-carrier recombination resistance (Rrec) as a function of the applied bias in the relevant 

voltage range (0 to 1 V) using a standard impedance model for perovskite solar cells.
40

 Figure 

6.7b shows the typical Nyquist plots of complex resistance at three different bias voltages. The 

impedance spectra for all three bias voltages are dominated by a large semicircle at low 

frequencies. 

 

Table 6. 1. Measured device characteristics as a function of annealing temperature for a fixed 

time interval of 10 minutes. 

Temperature 

(ºC) 

Jsc 

(mA/cm
2
) 

Voc 

(V) 

FF 

(%) 

ɳ  

(%) 

150°C 18.9 1.02 65 12.6 

175°C 22.0 1.06 69 16.1 

200°C 20.9 0.99 65 13.5 

225°C 19.3 0.97 63 11.9 

 

This large semicircle is often attributed to the charge recombination process within the 

perovskite solar cells. Figure 6.7c compares the effect of temperature on Rrec as a function of 

applied bias voltages. At each temperature, Rrec is strongly dependent on the applied bias voltage, 

following approximately an exponential decrease with voltage at the relatively high voltage 

range (>0.3 V). When compared at a constant bias voltage (e.g., 0.7 V), Rrec shows minimum 

change when the temperature is increased from 150°C to 175°C, and then decreases by 1–2 
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orders of magnitude with increasing temperature. This trend of Rrec change is consistent with the 

changes of the device characteristics (Figures 6.7a), which can be correlated to the mobility of 

PbI2 in the FAPbI3 grains. The existence of a PbI2 nucleation site or particles at higher 

temperature likely creates defect sites causing the reduction in Voc as well as FF, and departs 

from the uniform phase purity depicted in the in-situ high temperature XRD profile (Figure 6.8). 

 

Table 6. 2. Measured device characteristics as function of annealing time. 175˚C was used as 

annealing temperature. 

Time 

(min) 

Jsc 

(mA/cm
2
) 

Voc 

(V) 

FF 

(%) 

ɳ 

(%) 

5 20.9 1.02 59 12.5 

10 22.0 1.06 69 16.1 

20 21.2 1.02 51 11.0 

40 16.6 0.98 50 8.1 

 

With increasing annealing time, the efficiency of the device escalates to eventually a 

performance plateau. The trend in device efficiency is depicted in Table 6.2. Between 10 to 15 

minutes of total annealing time, our highest efficiency devices are achieved, which is attributable 

to the formation of a highly crystalline and uniform FAPbI3 layer in the device. Furthermore 

cycling annealing time and temperature below 175 °C, leads to presumably the enhancement of 

perovskite crystallinity and leading observation of the gradual redistribution of lead-containing 

species along the grain boundaries, leading to an increase in the efficiency of the device due to 
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the increasing the ability to mobilize generated charge carriers within the grain interiors. Beyond 

175 °C in the one-step process, the efficiency drops presuming because the material dissociates 

and the lead evolves from the grain interiors.  

 

6.4.2 Structure and chemistry of FA-based perovskites 

Revealing the structure and chemistry associated with FA-based perovskites, we 

performed high-resolution microscopy and VEELS. Figure 6.5a is the collected STEM-based 

VEELS profiles collected across a planar grain boundary depicted in Figure 6.5b using gentle 

STEM at 60 kV. Based on the raw collected profiles we resolve the inhomogeneity associated 

within the material, containing FA-based perovskite and PbI2. The corresponding subtracted 

VEELS profiles shown in Figure 6.5c-d reveal the presence H
+
 and OH

-
 ions, with differences in 

the bonding nature associated with lead, and hydrogen between the grain interiors and interface. 

Several scenarios are possible for explaining the measureable differences in the bonding nature 

based on the collected VEELS line profiles. Lead is bonded in the grain interior with iodine in a 

tetrahedral configuration, leading to a final singlet bonding configuration, reported a singlet 

ionization peak. Compared to the boundary, the binding energy associated with lead is 

consequently shifted by nearly 2 eV and there is a measureable difference in the corresponding 

spectral character. A doublet peak associated with lead is also resolved at the boundary. 

Presumably, at the boundary there is a greater degree of hybridization and several possible 

bonding configurations, that lead to a potentially different orbital overlap with the lead 5d 

unoccupied states, as well as the effect of neighboring residual oxygen containing species. The 

relative peak positions in the valence spectrum are also potentially perturbed by the formation of 

other stable molecules (e.g., H-PbI2), which leads to an increase in the binding energy due to 
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charge screening of the interface core. 
41

 Below the lead ionization thresholds (< 20 eV), we 

further verify the presence of PbI2 localized at the boundary by measuring a local band gap of 

2.36 eV in Figure 6.5d, in agreement with reported literature values. 
42,43

  

Concerning measuring hydrogen, the measureable differences in the VEELS spectral 

character is directly associated with several structural and electronic differences. The presence of 

charge screening at the interface compared to the grain interior is known to lead to measureable 

differences in the spectral shape as well differences in the bonding configuration between the 

interface and grain interior. Furthermore, in addition to the several bonding configurations 

associated with hydrogen there is also a given the migration of lead, presumably containing both 

hydrogenated and hydroxide surface terminating species, allowing for an even greater number of 

bonding states to be possible. We thereby attribute the variations in the VEEL spectra to these 

similar effects because, in addition to grain chemistry, the grain boundaries almost certainly 

contain hydrogenated lead, radical ions, and possibly other species (e.g., carbon compounds) that 

migrate into these open surfaces. These effects presumably all contribute to the broadening of the 

hydrogen feature measured at the boundary. Based on these series of defining results, we are able 

to provide a vital fundamental perspective into not only the atomic structure associated with 

annealed FA-based perovskite, but the local chemistry and electronic structure associated with 

the interior morphology of this complex polycrystalline inorganic-organic hybrid material.  

 

6.4.3 Temperature dependent chemical equilibria  

Given the above results, possible scenarios, and explanations, FA-based perovskite 

materials evolve with temperature not only due to the mobility of lead, but the role of hydrogen 

ions. The presence of a lead complex at FAPbI3 grain boundaries results in an altered local 
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electronic environment at interfaces, which is otherwise distinct from the surrounding bulk 

material. At the grain boundaries there is direct evidence of the adsorption of hydrogen and lead, 

owing to the idea: (i) there is a direct exchange of H
+
 and FA

+
 cations under thermal cycling, 

leading to a degradation of the structural integrity of the trigonal perovskite framework, also 

suggested in similar studies.
16,44

  

 

 

Figure 6. 9. In summary, the use of in-situ S/TEM provides the level of detail to resolve the 

detailed mobility of lead to and from PSCs grain boundaries that ultimately degrades the 

measured performance associated with these FAI-based PSC photovoltaics. 

 

In particular, the degree of intermixing between the PbI2 and FA depends significantly on 

the processing conditions. (ii) upon heating, FAPbI3 can dissociate into FA
+
, HI and PbI2 or its 
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ionic version (PbI3
-
, PbI4

-
, PbI6

-
), where ionic lead iodide can be hydrolyzed, reacts with 

neighboring site-specific residual O to form PbI(OH) crystals. However PbI(OH) crystals cannot 

undergo a reversible crystallization process, leading to a permanent degradation of FAPbI3 

domain interior. (iii) The reaction of PbI2 with HI may also lead to the formation of HPbI3 

precursor material (iv) upon cooling, via the FA
 
cation reacting with PbI2 species (HPbI3, PbI3

-
, 

PbI4
-
, PbI6

-
) and recrystallizing the FAPbI3 perovskite. In line with these ideas we have 

summarized in Figure 6.9, the preferred pathway to a higher efficiency FA-based PSC through 

sequential annealing leading to the eventual redistribution of lead and hydrogen for FA-based 

perovskites. In particular, the degree of intermixing between the lead iodide and FA depends 

significantly on the processing conditions. In line with this idea and the main conclusion of our 

study is the influence of temperature on measured device properties is directly linked with the 

microstructure of FA-based PSCs, where the distribution of chemical species importantly affects 

the final measured device efficiency. 

 

6.5 Conclusions 

A systematic experimental investigation of the structure, chemistry, and electro-optical 

properties of polycrystalline FAPbI3 PSCs was reported. The goal was to understand the complex 

relationship between temperature, segregation, valence structure, and carrier kinetics in an 

otherwise complex FA-based polycrystalline PSCs photovoltaic following external heating by 

combining the latest advances in in-situ materials characterization. 

Our results demonstrate that with sufficient heating and annealing temperature, we can 

directly influence the fundamental microstructure and chemistry. The morphology and formation 

process of perovskite films fabricated from FAI/PbI2 precursors on compact titania with in-situ 
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S/TEM show that the superior processing of FAPbI3 annealing at 175° C is directly related to the 

mobility and segregation of lead compounds and related hydrogen species at crucial grain 

boundaries. 

The second important observation is that we can adjust the distribution of lead decorating 

the grain boundary interiors and demonstrate this is as a partially reversible process. We have 

shown at temperature that a partially reversible process occurs involving the exchange of a lead 

containing species at the grain boundaries, which are only partially reversible if they become 

nucleated and coarsened into stable precipitates. In line with these observation is direct evidence 

of the adsorption of hydrogen at these specific interface regions, owing to the idea there is direct 

ionic exchange of presumably OH
-
 , H

+ 
, and FA

+
 ions under thermal cycling, leading to the 

evolution and formation of the PSC framework. 

Based on the culmination of our cross-scale and cross-platform results, we conclude our 

results to support the idea that providing direct snapshots into the mobility of elements making 

up PSCs offers the necessary level of materials insight to directly improve upon the future of 

PSCs to meet future higher efficiency goals. Taken together, this coupled fundamental and 

device study demonstrates the necessary understanding of FAPbI3 crystallization formation 

mechanisms and provides vital links between measured microstructure and device performance 

as function of final annealing temperature to improve upon the current state of FA-based PSCs. 
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Chapter 7 Concluding Remarks 

 

The energy crisis of the 21st century, accentuated by the greenhouse effect, is leading to a 

focus on alternative energies sources to fulfil the perpetual demand for energy. Renewable 

energies, which account so far for 20 % of the worldwide energy production, are viable solutions 

compare to polluting fossil fuel. Among them, solar cells offer the promises of clean, abundant 

and low cost energy production. Currently, the development and implementation of new 

photovoltaic (PV) materials continues to be intertwined with major technological achievements 

in energy and semiconductor device fabrication. Today’s photovoltaics and portable electronic 

devices have similar requirements for energy: where they must be highly efficient (> 15 %), have 

a large capacity for long-term manufacturing, extend for long lifetimes, and be environmentally 

friendly. The current commercial solar cell technologies (1st and 2nd generation), despite high 

power conversion efficiencies and long term stability, suffer from precursor materials scarcity 

and expensive manufacturing processes. The emerging materials studied in this thesis (CZTS and 

Perovskite) may provide a viable alternative to current market technology. 

It was demonstrated that CZTS absorber materials can be synthesized by vacuum (PLD) 

and non-vacuum techniques (hot injection synthesis), with different morphologies (bulk, 

nanocrystals, etc.). The nanostructures were integrated in workable nanostructured and dye-

sensitized solar cells, making CZTS suitable for achieving low cost and environmentally friendly 

photovoltaic devices. 

On another hand, perovskite-based solar cells are attractive photovoltaic materials due to 

their impressive properties as light harvesters, their subsequent high device efficiencies (16.6%), 

and their low-cost industrially scalable process. However, these new materials are extremely 
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sensitive to their processing environment, which can tremendously impact the final device power 

conversion efficiency. Additionally, the long term stability of these new perovskite solar cells is 

hindered by a rapid degradation of the compound under atmospheric pressure in the presence of 

air. The in-situ scanning transmission electron microscope study on the crystallization and 

degradation of the compound provided a deeper understanding of the fundamental 

microstructure, and showed a possible degradation mechanism for formamidinium lead triiodide 

solar cells in the presence of oxygen. Overall, this work gave us a deeper understanding of 

emerging absorber materials, namely perovskite. Ultimately, we conclude that providing 

fundamental study of our absorber materials trough in-situ techniques offers the necessary level 

of materials insight to directly improve upon the device fabrication process to meet future higher 

efficiency goals. 
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