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Abstract 

The highly optimized performance of nature’s creations and biological assemblies has 

inspired the development of their engineered counter parts that can potentially outperform 

conventional systems. In particular, bat wings are populated with air flow hair receptors which 

feedback the information about airflow over their surfaces for enhanced stability and 

maneuverability during their flight. The hairs in the bat wing membrane play a role in the 

maneuverability tasks, especially during low-speed flight. The developments of artificial hair 

sensors (AHS) are inspired by biological hair cells in aerodynamic feedback control designs. 

Current mathematical models for hair receptors are limited by strict simplifying assumptions of 

creeping flow hair Reynolds number on AHS fluid-structure interaction (FSI), which may be 

violated for hair structures integrated on small-scaled Unmanned Aerial Vehicles (UAVs). This 

study motivates by an outstanding need to understand the dynamic response of hair receptors in 

flow regimes relevant to bat-scaled UAVs. The dynamic response of the hair receptor within the 

creeping flow environment is investigated at distinct freestream velocities to extend the 

applicability of AHS to a wider range of low Reynolds number platforms. Therefore, a three-

dimensional FSI model coupled with a finite element model using the computational fluid 

dynamics (CFD) is developed for a hair-structure and multiple hair-structures in the airflow. The 

Navier-Stokes equations including continuity equation are solved numerically for the CFD 

model.  The grid independence of the FSI solution is studied from the simulations of the hair-

structure mesh and flow mesh around the hair sensor. To describe the dynamic response of the 

hair receptors, the natural frequencies and mode shapes of the hair receptors, computed from the 

finite element model, are compared with the excitation frequencies in vacuum. This model is 

described with both the boundary layer effects and effects of inertial forces due to fluid-structure 
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interaction of the hair receptors. For supporting the FSI model, the dynamic response of the hair 

receptor is also validated considering the Euler-Bernoulli beam theory including the steady and 

unsteady airflow. 

 

 

Keywords: Biomimetic Artificial Hair Sensors, Fluid-Structure Interactions, Euler-Bernoulli 

Beam Theory, Unmanned Aerial Vehicles (UAVs), and Creeping Flow 
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Chapter 1 

Introduction 

Many animals receive the information from their hair-like receptors to detect prey or to 

enhance the locomotion that are surrounded by the fluid flows. Biomimetic flow 

sensors/receptors are still in their early stage of development. Further efforts are required to 

unveil the sensing mechanisms from the natural biological systems and to achieve the multi-level 

bio-mimicking of the natural system through the development of their artificial counter parts. In 

particular, bats have airflow hair sensors on their dorsal and ventral wing surfaces which bend 

and twist and produce signals through the hair roots to the skin. This helps to avoid the stall of 

the wings and to increase the agility and maneuverability during their flight. The utility of 

biological hair receptors has motivated the development of artificial hair sensors (AHS) in 

aerodynamic feedback control design systems. GPS, inertia based accelerometers, hot wire, and 

barometers for fluid flow detection may not be good options for small-scaled unmanned aerial 

vehicles (UAVs) due to the weight concern. Therefore, the installation of the AHS on the leading 

edges of the wings of UAVs to improve the aerodynamic control is a possible solution. For such 

applications, the flow phenomena related to aerodynamic forces can be detected through the 

dynamic response of AHS must be understood.  

The present study incorporates the fluid-structure interaction analysis of a hair receptor in 

flow regimes relevant to bat-scaled UAVs. In this work, the development of FSI models for 

single hair receptor and multiple hair receptors is presented. The present analysis is conducted 

within the creeping flow where Reynolds number is less than one. The three-dimensional FSI 
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model will be used to present the velocity, pressure, and deflection contour plots of multiple hair 

receptors in both steady and unsteady flow. This study investigates the possibility of installing 

multiple hair receptors thus the fluid-structure interaction in between them can be discussed.  

The literature is divided into dynamic modeling of hair receptors under the action of fluid 

loading. It is focused on frequency response of cantilever beam type hair receptors oscillated by 

fluid flows. Many computational and numerical analyses of hair sensors vibrating in fluids have 

been reported in the literature. The interaction can take place due to fluid flow which can be 

normal to the neutral axis of a hair receptor.  

1.1. Biomimetic Artificial Hair Sensors and Applications 

The roles of the wing’s hair of bats were studied by Sterbing-D’Angelo et al. [1] in which 

flight experiments were conducted that involved depilation of the hairs and the flight 

performance after depilation. Their results showed that the wing hair removal along the trailing 

edge alone statistically caused the same effects as the depilation of the entire wing. This 

biological understanding motivates engineering questions on the functions of artificial hair 

sensors for the navigation and control designs of small-scaled aircraft like unmanned air 

vehicles. They also quantified the directional sensitivity of the distributed hair receptors which 

suggested specialization of the hair array for the detection of reversed flow over the dorsal wing 

surface. 

Dickenson et al. [2] studied the wing hair receptor arrays for airflow feedback in bats 

which inspired the use of AHS for micro air vehicles (MAVs). Similarly, flow sensitive hair 

arrays found on the bodies of fishes and implicated in their locomotions (Coombs [3] and Liu 
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[4]) inspired the application of AHS to underwater vehicles. In both engineering applications, 

low-Reynolds number regimes challenged vehicle stability, maneuverability or overall efficiency 

through unsteady aerodynamic or hydrodynamic forces. As low-Reynolds number animals (e.g. 

bats and fishes) could use hair receptors as part of a feedback control loop, AHS could play a 

similar role in low-Reynolds number vehicles. For bats, one means of control (actuation) is 

simply changing the shape or kinematics of its wings during flapping flight. According to the 

study conducted by Abdulrahim et al. [5], micro air vehicle actuators included in the typical 

aircraft control surfaces (ailerons, rudders, elevators and flaps) and wing morphing.  

An overview of the wide range of biomimetic sensor technologies and their innovations 

were provided by Stroble et al. [6]. They also introduced the biomimetic sensors with their types, 

their advantages and how they were different from traditional sensors. Bat wing hair receptors 

were used for airflow feedback by Zook [7] and hair receptors were thought to be specialized for 

boundary layer detection. Chada et al. [8] detected the flow structure known as the leading edge 

vortex. Based on boundary layer fluctuations, bats could sense the state of the flow above their 

wings to enhance flight. Numerical studies showed by Dickenson et al. [9] and Dickenson [10] 

involved the mechanical response of hair arrays and provided a time and space accurate 

representation of boundary layer development and flow separation over a cylinder. 

In a separate biological hair sensor study, Joshi et al. [11] studied the response of the 

socket structure in which the hair base sat and encompassed the hair below the skin of the 

cricket; the deformation and stress transfer applied in the design of a highly responsive MEMS 

sensor. The mathematical modeling of the motion of arthropod filiform hairs in oscillating air 

flows were carried out by Humphrey et al. [12]. In this study, numerical models were developed 
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to predict the qualitative aspects of known hair motion in response to air movement in which hair 

motion behavior was analyzed based on the numerical calculations of the equation for 

conservation of hair angular momentum where air oscillated both parallel and normal to the axis 

of the cylinder substrate supporting the hair. 

Numerous active artificial hair sensors had also been developed. Tao et al. [13] provided 

a comprehensive review on bio-inspired hair flow sensors which included the basic sensing 

mechanisms in biological hair flow sensors and the achievements on biomimetic devices to date. 

Maschmann et al. [14] evaluated the comprehensive electromechanical response of aligned 

carbon nanotube (CNT) arrays used as an artificial hair sensor and demonstrated their high 

sensitivity, repeatability, and rapid response time. Yu et al. [15] developed a bio-inspired sensor 

for monitoring turbulent flow which consisted of an array of micro-pillars or nano-pillars. Chen 

et al. [16] characterized the performance of the AHC sensor under oscillatory water flow in 

addition to steady-state water flow and airflow. Tucker et al. [17] presented the highly sensitive 

flow-field measurements of AHC sensor for oscillating flow field down to 0.6 mm/s and steady 

state flow fields detected down to 0.1 mm/s.  

Looking forward to applications of AHS on membrane wing structures, bat scale 

membrane wing research is briefly noted. Moliki and Breuer [18] investigated the deformation 

and oscillatory motion of a membrane at Reynolds numbers 38,416 and 141,500 for the 

applications involving the flight of micro air vehicles and the membrane wings of flying 

mammals such as bats. Rojratsirikul et al. [19] investigated the aerodynamic characteristics of 

two-dimensional membrane airfoil in a wind tunnel at low Reynolds numbers. Miao and Ho [20] 

investigated the effect of chord-wise flexure amplitude on unsteady aerodynamic characteristics 
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for a flapping airfoil under Reynolds numbers 10,000. Mueller and DeLaurier [21] described the 

effects of Reynolds number and aspect ratio on the design and performance of fixed-wing 

vehicles such as UAVs and also discussed the influence of laminar separation aeroelastic 

behavior of flapping wing. Mangalam and Moes [22] observed the critical surface, viscosity-

related aerodynamic phenomena under both steady and unsteady flight conditions. Lee and Lee 

[23] presented a numerical scheme for fluid-structure interaction (FSI) for flexible plate in 

unsteady flows with Reynolds numbers up to 120 in which the Lattice Boltzmann method with 

an immersed boundary technique using a direct forcing scheme was used for the fluid and a finite 

element method with Euler beam elements was used for the flexible plate. 

Many arthropods use filiform hairs as mechanoreceptors to detect air motion. Cummins 

et al. [24, 25] presented a model capable of calculating hair-to-hair coupling in arbitrary 

configurations in which they analyzed the viscosity-mediated coupling at low frequencies to 

investigate the interaction between arthropod filiform hairs in a fluid environment. They found 

that the coupling effects were non-negligible, and likely constrained the operational 

characteristics of the cercal sensory array. Kim et al. [26] presented a micro-machined circular 

type thermal flow sensor capable of the simultaneous detection of both the flow rate and the flow 

direction. Su et al. [27] developed a piezoresistive-type flow sensor with a silicon cantilever 

probe, in which the gas flow was measured by a strain gauge attached to the root of the 

cantilever beam. 

Feathers are equipped with a variety of sensors which are able to detect both position and 

movements. There are hairs-like feathers associated with most feathers which play a special role 

as sensory "hairs". Interestingly the information of these sensors (Necker [28]) was transmitted 
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directly to the cerebellum of the brain which was very important for the control of locomotion. 

Behavioral evidence on the roles of various input sources was summarized by Haskell [29]. 

Sensory sensilla on the wing and other body parts of insects were showed by Pflueger et al. [30], 

to play a role in flight control, as have vibrotactile receptors at the feather base of birds. Cricket 

sensory hairs were highly sensitive to drag-forces exerted on the hair shaft. Dijkstra et al. [31] 

presented the modeling, design, fabrication, and characterization of flow sensors based on the 

wind-receptor hairs of crickets.  

1.2. Numerical Modeling 

To understand the mechanical response of hair structures, FSI studies are investigated 

passive cantilevers in various flow environments. Numerical studies for fluid-structure 

interaction analysis are involved the coupling of fluid and structure. The fluid flow is governed 

by momentum equation and continuity equation. This section is provided a brief literature on the 

numerical methods applied for solving fluid flow problems. 

The optimal hair lengths for detecting changes in laminar boundary layer velocity profile 

agreed with the lengths of bat wing hair receptors were reported by Dickinson [32]. McClain et 

al. [33] studied the response of passive hair elements with aspect ratios representative of 

biological systems attached to surfaces interacting with steady boundary layers. The dynamic 

behavior of a nonlinear beam coupled with a potential flow was studied by Emaiya et al. [34]. In 

the aforementioned paper, suitable energy norms for analyzing the dynamics of the nonlinear 

beam by itself as well as for the fluid-beam coupled problems were developed and corresponding 

stability estimates were proved. Dickinson et al. [35] also proposed a nonlinear viscoelastic 

model of a hair-like structure coupled to an unsteady non-uniform flow environment and showed 
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how arrays of flexible hair-like structures provided a space and time accurate representation of 

near surface flow phenomena through simulations of a flexible hair array in a laminar unsteady 

flow separation over a cylinder.  

When a structure is vibrating in a viscous fluid, the fluid exerts on it a load called hydro-

dynamic force. In case of small amplitude of vibration, Weiss et al. [36] and Tuck [37] found 

that the hydrodynamic force was a function of the amplitude of vibration. A lot of filiform hairs 

function as a sensory system for raider detections and communications in life. The hair was 

affected significantly by boundary-layer flows and was deflected by drag forces acting on the 

hair shaft. Shimozawa [38] concluded that it was high moment of inertia made irresponsive to 

high frequency air motion. Dechant [39] showed that the hair shaft could be deflected and bent 

by a direct contact. The dynamics of hair movement in an oscillating fluid had been modeled 

extensively [40-42] where the filiform hair was assumed as an inverted pendulum with a rigid 

shaft supported by a spring and a damper at the base. 

Byung et al. [43] proposed the flexible beam model for the flow sensory hair to 

investigate the behavior of a flexible filiform hair where the forces acting on the hair were due to 

drag and virtual mass of the surrounding flow. In the latter study, the magnitudes of generalized 

coordinates were compared with their phase diagrams to understand the dynamics of an artificial 

hair-cell sensor. Hossain and Mian [44] investigated the dynamic response of a mini cantilever 

beam by changing the density and viscosity associated with different viscous fluids and then 

experimental results compared with the finite element analysis model for validation. Implications 

for biomimetic flow-sensing MEMS were presented by Steinmann et al. [45]. In their study, the 

boundary layers over small appendages in insects in longitudinal and transverse oscillatory flows 
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were characterized. Motion response of filiform hairs was compared to sinusoidal oscillations in 

air and in water by Devarakonda et al. [46]. Their results concluded that hairs in air were more 

sensitive to changes in hair length regarding resonance frequency whereas hairs in water were 

the more sensitive regarding the amplitude of motion. 

1.3. Euler-Bernoulli Beam Theory 

To investigate the tip deflections of the artificial hair receptors in the laminar boundary 

layer flow, each hair is modeled with an Euler-Bernoulli beam equation coupled to the flow with 

solution data from the Navier-Stokes equations. A brief literature review related to the 

applications of Euler-Bernoulli beam theory is provided in this section.  

The maximum hair tip deflection was assumed to be less than 10% of its length in the 

analysis studied by Dickenson et al. [32]. This ensured that despite hair bending, a small angle 

approximation to the velocity profile incident normal to the undeflected hair was valid. To test 

this assumption, they performed a finite element analysis of a static Euler–Bernoulli beam 

(similar to the work in [2]), 1.0 m from the leading edge of a plate subject to the Blasius 

boundary layer with external flow of 10 m/s, hair length equal to the boundary layer thickness, a 

diameter of 1% of its length (6.2 × 10
−5

 m) and modulus of elasticity of 2.0 GPa (representative 

of nylon). An Euler-Bernoulli beam approach was presented for modeling the deflection of non-

orthogonal wall mounted parts. Dickinson [47] investigated the dynamic response of a carbon 

fiber filament in oscillatory boundary layer flows with quasi-steady nonlinear viscoelastic model 

to better understand their tendencies for vibration. 
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One of the main difficulties in simulating nonlinear structures in dynamic regime is to 

find an integrator sufficiently precise and stable for long simulation periods of time. In the work 

presented by Cao et al. [48, 49], a free cantilever beam was evaluated using Cosserat beam 

element obtained from third order approximation of shape functions. They used the Newmark 

scheme with imposed conservation of mechanical energy integration method suggested by Bathe 

[50]. Badiane et al. [51] presented a finite element model of an apparatus, based on the 

phenomenon of resonance, for measuring the viscosity of Newtonian fluids. The study was based 

on a cantilever beam in a viscous fluid excited by an electromagnetic force. The Bernoulli-Euler 

equation was used to model the beam and to linearize Navier-Stokes equations for the fluid and 

the Maxwell equations were used for the magnetic-structure interaction. The action of the fluid 

on the beam was modeled by hydrodynamic resistance coefficients. A semi numerical model of a 

vibrating beam was obtained and results were used to model the vibrating viscometer. 

The vibrations of nonlinear beam structures have been a subject of great interest in the 

broad field of structural mechanics [52]. There were several classical approaches employed to 

solve the governing nonlinear differential equations to study the nonlinear vibrations including 

perturbation methods [53], form-function approximations [54], finite element methods [55] and 

hybrid approaches [56]. In many of these studies, axial deformation was neglected and the 

average axial force was assumed to be constant over the length of the beam element. However, 

subsequent analysis showed that axial displacements could not be neglected in any nonlinear 

studies [57]. 
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1.4. Natural Frequencies and Mode Shapes 

A change in the cantilever deflection or its natural frequency can be employed to measure 

various parameters of a fluid. Any amount of added mass present on the surface of the cantilever 

would change its deflection and natural frequency. In this section, a brief literature review is 

provided on free vibration analysis of cantilever structures. 

Evensen [58] showed that, for higher modes of vibration, the amplitude-frequency curves 

of a clamped-clamped beam or a clamped-free beam tend to approach that of a simply supported 

beam. The influence of the boundary conditions on the response becomes less pronounced as the 

mode number increases. Lee et al. [59] considered only the first mode of vibration in their 

analysis, while the work of Basak et al. [60], as involving higher harmonics and different mode 

types, represented the most complete work about a full computational approach to the FSI 

problem.  Mode properties and resonance frequencies in a viscous fluid were calculated by Ricci 

[61] through an eigen frequency analysis to avoid the time domain simulation. Da Lozzo et al. 

[62] developed a simple formula for calculating the added mass to be used in estimation of 

natural frequencies of uniform circular cantilever beam partially submerged in water where the 

finite element method was used to analyze the natural frequencies  of the equivalent coupled 

fluid-structure system. Sader et al. [63] performed a theoretical analysis of the frequency 

response of the cantilever beam immersed in a viscous fluid and excited by an arbitrary force. 

The arbitrary force, in this case had been assumed to be thermal, i.e., Brownian motion of the 

molecules of the surrounding fluid. In this model, the undamped modes of cantilever were 

considered and the deflection of the cantilever was assumed to be a sum of these modes where 

each mode is excited by the Brownian motion of fluid particles. They presented numerical results 
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of deflection response of AFM cantilevers in their model. To calculate the eigen frequencies of a 

beam analytically, Van Eysden and Sader [64] published an enhanced model. Previously, Elmer 

and Dreier [65] noted already that the added mass on a submerged cantilever beam was 

frequency dependent, with the highest influence at low frequencies. 

1.5. Computational Modeling 

The interaction of a flexible structure submerged in a fluid gives rise to a variety of 

physical phenomena with applications in many fields of engineering, such as stability and 

response of aircraft wings, flow of blood through arteries, response of bridges and tall buildings 

to winds, vibration of turbine and compressor blades, and vibration of cantilevers in fluid. FSI 

takes place when fluid flow causes deformation of the structure and deformation of the structure 

changes boundary conditions of the fluid flow. The cantilever-based FSI systems include Atomic 

Scope Microscopes, flow sensors, density and viscosity sensors, and the frequency response of 

such systems is an important parameter in order to understand the behavior of such physical 

systems where both fluid and solid domains have to be modeled. There are many applications 

where cantilevers are made to vibrate under the action of fluid flow. 

The fluid-structure interaction appears as a physical phenomenon in engineering [67] 

such as static load, drag, and flow-induced-vibrations (FIV). The oscillation of the flexible 

structure in the fluid environment represents the most typical FSI problem. Zhang et al. [68, 69] 

considered the long and slender cantilever (i.e. l >> w, where l and w were represented the 

cantilever length and width, respectively) so that it was possible to simplify the analysis, 

restricting the attention to the vibration of the cantilever cross-section in a two dimensional fluid 

domain. Such an approach, despite of the advantage of being certainly less time-consuming than 
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a three- dimensional one, becomes less accurate with the increase of mode number or the 

reduction of the beam aspect ratio l/w since, in both cases, fluid flow ceased to possess a genuine 

2D nature.  

G. Rezazadeh et al. [70] performed numerical analysis on electrostatically actuated micro 

beam in an incompressible, inviscid and stationary fluid. He used Lucey and Carpenter’s theory 

[71] to express pressure loading on the cantilever beam in order to find non-dimensional added 

mass. This added mass had been used into Euler-Bernoulli equation to find the frequency 

response of the beam under fluid loading. Wang et al. [72] considered flow-induced vibration of 

cylinders with large aspect ratios. In his model, the structural part was solved by Euler-Bernoulli 

theory using normal modes while fluid forces are calculated by finite element method. Houston 

et al. [73] determined vibration characteristics of atomic force microscope cantilever operating in 

liquid. In his work, the behavior of the cantilever was simulated simultaneously with the time 

dependent flow field. The flow field was solved at each time step from the new cantilever 

velocity. 

A fully coupled simulation of three dimensional problems involving fluid-structure 

interactions is the most accurate way to predict the behavior of high aspect ratio cylinders in 

cross flows. Borges et al. [74] used the combination of the Cosserat theory applied to slender 

beams, and the Immersed Boundary Methodology, which represented the interactions between 

the structural and fluid domains. They described the dynamic behavior of cylindrical structures 

with various levels of bending flexibility subjected to transverse flows characterized by different 

values of the Reynolds number. In FSI, the structural deformation of the structural object 

considered by Cesur and Feymark [75] was highly dependent on the surface forces induced by 
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the flow. In order to validate the prediction of these forces a nondeforming oscillating cylinder in 

a steady flow was chosen as the first FSI benchmark case.  

1.6. Multiple Hair Sensors 

The advent of miniature sensing devices had been quite rapid since micro fabrication 

techniques were developed.  Micro flow sensors, micro cantilevers, micro pumps, micro 

viscosity sensors, micro valves are some of the examples of the micro fluidic devices that 

involve the fluidic structure interaction. MEMS cantilevers are used as sensors, transducers, 

probes, needles, transport mechanisms, resonators, latches, switches and relays. Vashist [76] 

studied the micro cantilevers diverse applications in sensing mechanisms. The response of a 

micro cantilever was utilized to measure many parameters such as flow rate, fluid pressure, 

density, viscosity etc. The deflection of the beams caused change in the cross-sectional area 

further causing change in the resistance of the piezoresistor. The flow velocity and direction 

were calculated by measuring this change in the resistance. Krijnen et al. [77] showed the 

functional acoustic flow sensor arrays based on the mechano-hair sensors found on crickets.  

Several research groups had been working on modeling, fabrication, and optimization of 

biomimetic flow-sensing devices consisting of arrays of many flow sensors including hair-to-hair 

intereactions. MEMS fabrication technology is very practical in the realization of these devices 

for its capabilities of parallel fabrication and integration of flow sensors into large sensor arrays. 

The additional value of this type of arrays is that the flow-sensitive hairs allow measurement of 

flows with high spatial resolution and therefore could facilitate complex flow pattern 

measurements. Several types of biomimetic flow-sensors found in the literature incorporated 
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various transduction mechanisms. These included piezoresistive sensing [78], capacitive sensing 

[79] and switching [80]. 

Bruinink et al. [81] described the successful continuation of the fabrication and design of 

flow-sensor arrays with capacitive sensing for reasons of high intrinsic sensitivity in combination 

with low power dissipation and promising performance.  Casas et al. [82] investigated the 

viscous coupling effects of arrayed cantilevers in the parallel flow system where the flow was in 

the direction defined by the plane of the two hairs. Lewin et al. [83] investigated hair-hair 

interaction between pairs of hairs and quantified the viscous coupling of computational fluid 

dynamics (CFD) model for one or more hairs with a rigid body dynamics model for simulating 

both biological and artificial MEMS-based systems. Fu and Price [84] studied vibration 

responses of cantilevered vertical and horizontal square plates partially and fully submerged in 

fluid. The effect of submerged plate length on the resonant frequencies of plates had been 

investigated in their work. 
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Chapter 2 

Natural Frequency and Mode Shapes of the Hair Receptor 

To understand the fluid-structure interaction problem, it is essential to study the   

vibrations of the flexible structures. Some of the examples of flexible structures are listed below. 

Examples of flexible structures in the dynamic system applications are: 

1. One-dimensional structures: Beams, Strings, and Shafts 

2. Two-dimensional structures: Membranes and Plates 

3. Three-dimensional structures: Shells 

In the present study, biomimetic hair receptors are investigated in order to determine their 

fundamental frequencies and mode shapes similar to the cantilever beam applications to 

understand the fluid-structure interaction problems more efficiently.  

In the absence of any fluid (i.e. in vacuum), without the action of any external force, 

analysis of natural frequencies of a hair receptor can be solved by the Euler-Bernoulli beam 

theory. Natural frequencies are required in order to study the response of microstructures when 

they are excited at its one of their frequencies. This phenomenon is also known as resonance.  

2.1. Assumptions 

In the present study, a set of assumptions are made for the hair receptor in structural 

domain as follows. 
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1. The hair structure has uniform cross-section and the deflection of the hair receptor is 

elastic and linear so that Hooke’s law is valid. 

2. The effect of shear deformation and rotary inertia of the hair receptor are small 

enough to be neglected as compared to the bending deflection 

3. Plane sections of the hair receptor remains plane after deformation. 

4. The plane of symmetry of the hair receptor is also the plane of vibration so that 

rotation and translation are decoupled 

2.2. Euler-Bernoulli Equation of Motion of Hair Receptor 

A beam is a simple structure which has one of its dimensions much larger than the other two. 

Beam theory is defined based on the following assumptions which are also known as Euler-

Bernoulli assumptions [85]. 

1. Cross-sections of the beam do not deform in a significant manner under the application of 

transverse or axial loads and it can be assumed as rigid 

2. During deformation, the cross-section of the beam is assumed to remain planar and 

normal to the deformed axis of the beam 

In the Euler-Bernoulli Beam theory, effects of rotary inertia and shear deformation are 

neglected. When a cantilever beam like hair receptor oscillates freely in a vacuum, the 

characteristics equation or frequency equation gives the natural frequency. From the expression 

of the natural frequencies, they depend only on the geometric and material properties of the hair 

structure. It is to note that, the free vibration equation for the hair receptor is valid for vibration 

in a vacuum which means that, no damping is there or in a medium in which damping is almost 

zero. When the force is removed from a displaced hair receptor, the hair receptor will return to 
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its original shape. However, inertia of the hair receptor will cause the hair to vibrate around that 

initial location. Here the elastic modulus (E), inertia (I), and cross-sectional area (  ) are 

assumed constant along the hair length [86]. 

In this study, cantilever beam application is utilized to understand the FSI analysis of the 

hair receptor which is attached to the flat plate more accurately and efficiently. One of the hair 

receptors end is fabricated to the flat plate at the base and the other end moves freely such that it 

supports the cantilever beam application as shown in Fig. 1. The cylindrical hair receptor is 

assumed to have uniform cross-section that undergoes small deflection for small slope where 

linear elastic region (Hooke’s law) is validated.  

 

Figure 1:  A clamped-free cylindrical (beam) hair receptor 

Euler-Bernoulli equation of motion of beam for the hair receptor in the absence of an 

external force is expressed as [86]  
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Let   √
  

   
, then equation (1) becomes, 

   
        

   
  

        

   
                                                            

The above equation is solved by separation of variables method [87]. Assume that the 

displacement is separated into two parts; one depends on position and another on time as shown 

in the following form. 

                                                 (3) 

where      is a function of shape and independent of time as well as      is a function of time 

and independent of position.  

Substituting Equation (2) into Equation (1),  

   
            

   
  

            

   
   

Dividing the above equation by         , 

  

    
 
      

   
  

 

    

      

   
   

                                              

Since the left side of equation (4) does not change as t varies, the right side must be a 

constant. Similarly, since the right half of the equation (4) does not change as z varies, the left 
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half must be a constant. Because each side is constant, equation (3) is valid and the method of 

separation of variables can be used.  

Let this constant be denoted as   
 . It can be shown that   

  is a real quantity, and that    

are natural frequencies of the hair receptor. 

Equation (4) is written as  

      

   
                                                                     

where    
     

 

  
 

    , is assumed to be in the form of, 

        
      

       
       

                                       

where   ,   ,   , and    are constants.  

Equation (6) can also be expressed in a linear combination of trigonometric equations as 

follows 

                                                  (7) 

where   ,   ,   , and    are constants.  
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2.3. Natural Frequencies of a Hair Receptor 

When a system is given an initial input and then set to vibrate, it is said to be vibrating 

freely. In this case, the system is said to be vibrating at one or more of its natural frequencies. In 

the present model, hair receptor is considered as cantilever beam, free at one end and fixed at the 

other end. The fixed end must have zero displacement and zero slope due to clamped boundary 

condition. The free end cannot have a bending moment or shearing force. 

The following boundary conditions are considered for the cantilever hair receptor,   

1. At fixed end, 

The deflection at the base is zero, 

                                                                                      

The slope at the wall is horizontal,   

 
  

  
                                                                                  

2. At free end, 

The bending moment at the free end is zero, 

      

   
                                                                            

The shear force acting at the free end is zero 
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Using the first boundary condition in equation (7), at the fixed end, 

                                                                       (12) 

Applying the second two boundary conditions at the fixed end in equation (7), 

                                                                       (13) 

By using the boundary conditions at the free end and solving to get, 

                                                                     (14) 

                                                                      (15) 

These four boundary conditions produce four equations (12 through 15) with the four 

unknown coefficients   ,   ,   , and   . These can be written as the single vector equation. 

[

                    
                    

       

       
       

        
                  

                    

] [

  

  

  

  

]  [

 
 
 
 

] 

This vector equation can have a nonzero solution for the vector   [        ]  

only if the determinant of the coefficient matrix vanishes. Furthermore, since the coefficient 

matrix is singular, not all of the elements of the vector   can be calculated. 

Setting the determinant above equal to zero yields,      

                      (16) 
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This is the characteristic frequency equation along with the roots for free vibration of a 

cantilever hair receptor in vacuum. This expression is satisfied for an infinite number of choices 

for  , denoted by   .  

 The solution can be visualized by plotting both         and              on the same 

plot. The first three solutions for the cantilever hair receptor are shown in the following Table 1.  

Table 1: The first three eigenvalues of cantilever hair receptor model 

      

1 1.875 

2 4.694 

3 7.855 

For the rest of the modes      , the solutions to the characteristic equation are well 

approximated by [86],  

    
       

 
 

with these values of the weighted frequencies    , the individual modes of vibration are 

calculated.  

The natural frequencies of hair receptor at each mode are calculated by following 

expression. 

       
 √

  

   
    rad/s =      

  
 

  
√

  

     
    Hz                                      (17) 

Using the above relationships, the first three natural frequencies are given as, 
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First natural frequency,             
 

  
√

  

     
                                      (18) 

Second natural frequency,             
 

  
√

  

     
                           (19) 

Third natural frequency,             
 

  
√

  

     
                           (20) 

2.4. Mode Shapes of a Hair Receptor 

Modal analysis is used to study dynamic behavior of the hair structure under vibrational 

frequency. There are a few numerical methods which can be found in the literature used to 

perform model analysis of structures modeled by the Euler-Bernoulli beam theory.  

 By substituting equations (12) and (13) into (15) yields 

  [                ]    [                ]                                  

 Thus, 

    (
                

                
)    

for each  . The fourth coefficient    cannot be determined by this set of equations, because the 

coefficient matrix is singular. Otherwise, each    (where    1, 2, 3, and 4) would be zero. This 

remaining coefficient becomes the arbitrary magnitude of the eigenfunctions. As this constant 

depends on  , denote it by      . Substitution of these values of    in the expression of W    for 

the spatial solution yields the result that the eigenfunctions or mode shapes of the form 
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           *                   (
                

                
) [                  ]+   (22) 

  = 1, 2, 3… 

The first three mode shapes are plotted in Fig. 2 for         and   = 1, 2, 3. 

 

Figure 2: Plot of the first three mode shapes of the clamped–free hair structure 
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Chapter 3 

Fluid-Structure Interaction 

The fluid-structure interaction (FSI) phenomenon is the result of the interaction of 

multiple continuum fields. The fluid (gas or/and liquid) forces act on a neighboring elastic 

structure which is deformed and then it influences the flow of the adhering fluid. Due to the 

deformation of the structure, both the fluid velocity and the fluid domain change. The boundary 

conditions for the fluid and structural models represent the coupling mechanism between the 

fields. However, even though everything looks simple and clear; the accurate and efficient 

solution of FSI problems is still a highly complicated task and an open area of research. The 

computational fluid dynamics (CFD), computational structural dynamics (CSD), finite element 

method (FEM) provide us with specific mathematical models and numerical techniques that can 

be coupled to build a numerical solver for a FSI problem.  

Several finite element simulation programs are available for the investigation of dynamic 

response of structures submerged in a fluid. Common programs suitable for the FSI are 

ABAQUS, ANSYS, and COMSOL. The commercially available finite element analysis package 

ABAQUS 6.12 [88] with CFD capabilities is used to develop the FSI model in this study. All the 

simulations are done in co-simulation engine, which is the FSI solver for Abaqus 6.12. The FSI 

model is a combination of both the CFD model for a fluid domain and the structural model for a 

solid domain. Furthermore, fluid flow is coupled with the FE model using the CFD. 
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3.1. CFD Model 

The CFD models for the fluid domains of single hair receptor and multiple hair receptors 

studies are described below. In both studies, the rectangular enclosure is considered as the fluid 

domain which represents the surrounding air flowing over the hair receptor(s).  

3.1.1. Single Hair Receptor Model 

In a single hair receptor model, one hair receptor is considered as a cantilever structure 

immersed in the velocity driven fluid domain and attached to the flat plate.  

In the CFD model, the fluid domain is chosen such that the inlet, outlet, and far field 

boundaries are far enough from the hair receptor’s surface to avoid any boundary effects. In a 

single hair receptor model, the hair receptor is placed 2.0 mm away from the inlet boundary and 

1.0 mm away from the side and top boundaries while the outlet boundary is placed 2.0 mm away 

from the center point of hair receptor. Thus, the fluid domain size is defined as (4.0 × 2.0 × 2.0) 

mm
3
. The rectangular fluid domain with a single hair receptor [89] in the CFD model is shown in 

Fig. 3. 
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Figure 3: Computational domain for flow around a hair receptor 

3.1.2. Multiple Hair Receptors Model 

In the multiple hair receptors model, six hair receptors are considered as cantilever 

structures which are spaced in equal distances immersed in the velocity driven fluid domain and 

attached to the flat plate. This case is inspired from a multi cantilever study discussed by Paulo et 

al. [90].  

In the CFD model, six hair receptors are placed in equal distance of 1.0 mm and the front 

row hair receptors placed 2.0 mm from the inlet boundary while the outlet boundary is placed 2.0 

mm away from the rear hair ones. Finally, sides and top boundaries are placed 1.0 mm away, 

thus giving a fluid domain size of (6.0 × 3.0 × 2.0) mm
3
. The fluid domain is chosen such that 

the inlet, outlet, and far field boundaries are far enough from the hair receptor’s surface to avoid 

any boundary effects. The rectangular fluid domain with multiple hair receptors in the CFD 

model is shown in Fig. 4.  
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Figure 4: Computational domain for flow around multiple hair receptors 

3.1.3. Fluid Properties  

The fluid is modeled as an incompressible Newtonian fluid.  Air properties at standard 

atmospheric conditions are assigned to the fluid in the CFD model as described in Table 2.  

Table 2: Material properties for the CFD model 

Air Properties 

Density,  , (Kg/m
3
) 1.225 

Dynamic Viscosity,  , 

(Kg/m-sec) 

1.78e–05 

3.1.4. Mesh Generation 

The fluid domain is meshed using C3D8R (eight-node linear brick, reduced integration, 

and hourglass control) and FC3D8 (eight-node linear fluid brick) types of elements. The 

computational meshing of the fluid domain with single hair receptor and multiple hair receptors 

are shown in Figs. 5 and 6, respectively. The mesh is refined near the hair receptors to 
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understand the flow behavior accurately and to resolve flow gradients near the surfaces. For this 

reason, it is meshed with a refined mesh with element size of 0.005 mm, whereas the rest of the 

domain is meshed with an approximate global element size of 0.2 mm by using the datum axis 

cell partition method to implement the mesh around the cylindrical hair receptor as shown in Fig. 

7. However, the mesh used in this case presented here is adequate to show the boundary layer 

development over the flat plate surface. A total of 11,152 nodes with 9,175 elements are used to 

define the fluid domain in the single hair receptor model and 27,647 nodes with 24,210 elements 

are used in the multiple hair receptors model.  

 

Figure 5: Computational meshing of the fluid domain with a single hair receptor 



 

30 
 

 

Figure 6: Computational meshing of the fluid domain with multiple hair receptors 

 

 

Figure 7: Meshing on the surface of the cylinder in fluid domain 
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3.1.5. Boundary Conditions on the Fluid 

For both steady and unsteady flow across a flexible hair receptor, the following boundary 

conditions are applied to the fluid.  

1. Inlet: For study flow, uniform incoming velocity (    ̅       of 0.1 m/s is assumed 

according to the average wind velocity sustained by hair receptors [35]. For unsteady 

flow, a periodic flow velocity of freestream is assumed. The following time-dependent 

velocity is prescribed using an amplitude definition: 

    ̅      ̅         

2. Outlet: An outlet boundary condition is specified with the fluid pressure set to zero 

3. Bottom Surface: A no-slip wall boundary condition is applied at the bottom surface of the 

fluid domain. All velocity components are set equal to zero. The bottom surface of the 

fluid domain is assumed as a flat plate on which hair receptors are mounted 

4. Far-field: The far-field velocity is assumed to be equal to the inlet velocity. This is a 

reasonable choice if the far-field boundaries are far away from the hair receptor top 

surface. And, far-field boundaries are far enough such that the flow behavior doesn’t 

affect the hair receptors 

5. Symmetry: The velocity normal to the symmetry planes is assumed to be zero to 

constrain the out-of-plane flow 

3.1.6. Boundary Conditions on the Mesh 

Appropriate boundary conditions are also required for the mesh deformation solution.  
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1. Mesh Fixed: The mesh is fixed by prescribing zero-valued mesh displacement boundary 

conditions on the inlet, outlet, and the top surfaces   

2. Mesh Symmetry: The mesh motion normal to the symmetry panes is constrained by 

prescribing      on sides of fluid domain 

The following boundary conditions are specified mathematically on the fluid domain as 

shown in Table 3 for both steady and unsteady flow field.  

Table 3: Boundary conditions for the CFD model 

Boundary 

Condition 
Steady Flows Unsteady Flows 

Inflow Velocity       ,     ,      
      [ ̅      ̅        ], 

    ,      

Outflow Pressure P = 0 P = 0 

No-slip Condition      ,     ,           ,     ,      

Symmetry Velocity           

Far-field Velocity       ,     ,      
      [ ̅      ̅        ], 

    ,      

Mesh Fixed       ,     ,           ,     ,      

Mesh Symmetry            
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3.2. Structural Model 

The structural model is described for a single hair receptor and multiple hair receptors as 

follows.  

3.2.1. Single Hair Receptor Model 

In the structural model, the hair receptor is modeled considering a 3-D flexible cylindrical 

cantilever beam. The thickness and length of the hair receptor is considered as 0.01 mm and 1.0 

mm, respectively, thus giving l/d ratio equal to 100. The computational domain for a single hair 

receptor is shown in Fig. 8.  

 

Figure 8: Computational domain of a single hair receptor 

3.2.2. Multiple Hair Receptors Model 

In the structural model, six hair receptors are modeled considering 3-D flexible 

cylindrical cantilever beams. The thickness and length of the hair receptors are considered as 
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0.01 mm and 1.0 mm, respectively, thus giving l/d ratio equal to 100. All the six hair receptors 

are placed at an equal distance of 1.0 mm from each another. The computational domain for the 

multiple hair receptors is shown in Fig. 9.  

 

Figure 9: Computational domain of multiple hair receptors 

3.2.3. Structural Properties 

The material properties for the hair receptors are considered to be linearly elastic which 

allowed us to use the standard modulus of elasticity, density, and Poisson’s ratio as shown in 

Table 4. Therefore, each hair structure is modeled as a viscoelastic cantilever beam with uniform 

diameter and material properties. While this may be consistent with artificial hairs, it is a 

geometric approximation to the tapered bat wing hair receptor as reported by Dickinson [35]. 

 



 

35 
 

Table 4: Materials properties of the structural model 

Polymer Properties 

Density,   , (kg/m
3
) 1000 

Young’s modulus, E, Pa 10
7
 

Poisson ratio,   0.3 

3.2.4. Mesh Generation 

The solid domain is meshed using the first-order hexahedral stress/displacement elements 

(C3D8R eight-node linear brick, reduced integration, and hourglass control type of element) with 

the global element size of 0.005 mm as shown in Fig. 10. The computational mesh generated for 

multiple hair receptors is shown in Fig. 11. A total of 1,809 nodes with 800 elements are used to 

define the hair receptor in the single hair receptor model; and 5,454 nodes with 2,400 elements 

are used in the multiple hair receptors model. 

 

Figure 10: The mesh generated for the hair receptor 
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Figure 11: The mesh generated for multiple hair receptors 

3.2.5. Boundary Conditions on the Hair Receptor 

Since the hair receptor (s) is (are) mounted on the flat plate, the cantilever beam boundary 

conditions are applicable in this study. Therefore, the clamped boundary condition, where all the 

degrees of freedom are fixed, is specified at the root of the hair receptor whereas the other end is 

free to move in the flow field. The boundary conditions for the structural models are presented 

mathematically in Table 5. 

Table 5: Boundary conditions for the structural model 

Boundary 

Condition 
Steady Flows Unsteady Flows 

Clamped Boundary 

     ,     ,     , 

      ,      , 

      

     ,     ,     , 

      ,      , 
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3.3. Fluid–Structure Interaction Analysis 

The fluid-structure interaction (FSI) interface combines fluid flow with solid mechanics 

to capture the interaction between the fluid and the solid surface. Such behavior requires the 

structural and fluid equations to be solved independently and interface loads and boundary 

conditions to be exchanged after a converged increment. The FSI couplings appear on the 

boundaries between the fluid and the solid. The FSI interface uses an Arbitrary Lagrangian-

Eulerian (ALE) method to combine the fluid flow formulated using an Eulerian description and a 

spatial frame with solid mechanics formulated using a Lagrangian description and a material 

(reference) frame. 

In this study, the Abaqus/CFD model is coupled with the Abaqus/Standard structural 

model through the co-simulation engine. For the CFD model, the fluid-structure interface is 

assigned to the extruded cylindrical cavity inside the fluid domain. Similarly, the fluid-structure 

interface is defined on the surface of the hair receptor for the structural model. In single hair 

receptor model, fluid-structure co-simulation boundaries for both the CFD model and the 

structural model are presented in Figs. 12 and 13, respectively. For the FSI simulation, an 

incompressible laminar flow analysis step is selected in the CFD model while a dynamic-implicit 

step is selected in the structural model to determine the displacement of the hair receptor under 

steady and unsteady flow fields. An initial time increment of 0.0001s is used. However, the time 

increment can be changed depending on whether the structural or CFD model dictates the time 

increment size. The built-in time increment strategy is used where the co-simulation coupling 

time is chosen as the minimum of the time increments dictated by the structural and CFD 

models. The total simulation time is chosen to be 2.0 s.  
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In order to perform the FSI analysis, the Abaqus/Standard and Abaqus/CFD jobs need to 

be executed together. A co-simulation is performed where the two solvers exchange information 

at each co-simulation target time. The co-simulation target time is automatically chosen as the 

minimum of the time increments required by the structural and CFD solvers. In order to facilitate 

the co-simulation of the two analyses, the co-execution job procedure is used. A co-simulation 

job creates two analysis jobs and runs them simultaneously. It also automatically provides the 

driver options needed for communication between the two jobs.   

 

Figure 12: Illustration of fluid-structure co-simulation boundary in the fluid domain 
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Figure 13: Illustration of fluid-structure co-simulation boundary in the structural domain 

 

3.4. Solution Procedure 

A fluid-structure interaction in its general form is described by the coupling of the 

equation of motion of the structure and the equation of motion of the fluid. The discretized 

equation of motion [92] of the structure is written as, 

   ̈     ̇                                                                           

where    is the structural mass matrix,    is the structural damping matrix,    is the structural 

stiffness matrix,    the applied load vector, and   the nodal displacement vector where the dot 

denotes the time derivative.  

The prediction of the velocity field as well as the pressure distributions in the fluid model 

requires the solution of the Navier-Stokes equations. The common equations for the fluid are the 

Navier-Stokes equations which are written in the general form [93] as: 

 (
  ⃗ 

  
  ⃗    ⃗ )             ⃗⃗⃗                                                        
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where  ⃗  is the flow velocity vector,   is the time,   is the fluid density,   is the pressure,    is the 

deviatoric stress tensor, and    represents body forces per unit volume acting on the fluid. For the 

full description of the fluid flow, additional information are needed like the equation for the 

conservation of mass, which is written as, 

  

  
   (  ⃗ )                                                                           

For the Navier-Stokes equations in its general form, no solution exists. Assumptions have to 

be made. Thus, the following assumptions are made for the present study.  

1. The physical problem is approximated by using a three-dimensional model in Cartesian 

coordinates  

2. The working fluid behaves like a Newtonian fluid with stokes assumptions 

3. The flow is laminar and viscous 

4. The fluid in contact with the wall is stationary (no-slip condition) 

5. The physical properties of the fluid are assumed to be constant 

Then the Navier-Stokes equations in their general form is reduced to                           

 (
  ⃗ 

  
  ⃗    ⃗ )          ⃗                                                     

where the left side of equation (26) is the inertia force (per volume) which can be divided into 

the unsteady acceleration term 
  ⃗⃗ 

  
 and the convective acceleration term  ⃗    ⃗ . The right side of 

the equation is the divergence of the stress plus other body forces  ⃗⃗⃗  . The divergence of the stress 

is the sum of the pressure gradient     and the viscosity     ⃗  with   as the dynamic viscosity.  
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Also the equation for the conversation of mass is reduced to  

   ⃗                                                                                     

Boundary Conditions 

The closure of any mathematical problem requires well-defined boundary conditions 

therefore the physical meaning of every condition at all different boundaries of the problem is 

considered very carefully and then expressed in an equivalent mathematical formula. At the 

inflow surface the fluid velocity is specified in component form as                    . At the 

top surface far-field velocity condition is specified as                    . At the outflow 

surface an outflow boundary condition is specified by setting the pressure     (the gradients of 

velocities are automatically set to zero for this boundary). On the bottom surface a no-slip 

boundary condition is enforced, given by                   . Finally, the symmetrical 

boundary condition is applied on the lateral surfaces by prescribing     .  

Initial Conditions 

 The velocity,    is set to zero everywhere in the flow domain. Velocity initial conditions 

that satisfy the solvability conditions for the incompressible Navier-Stokes equations are 

obtained by inserting the boundary conditions on the prescribed initial velocity field, followed by 

a projection to a divergence-free subspace. This mass adjustment to the velocity initial conditions 

is necessary to guarantee that the flow problem is well posed.   
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Chapter 4 

Validation of Results 

The results obtained from the FSI model should be validated with the benchmark results. 

The validation studies for structural model, fluid model, and FSI model are discussed in this 

chapter. 

4.1. Validation of Structural Model 

To validate the FE model, natural frequencies from the FE model are compared with 

those from the analytical solution of free vibration of cylindrical hair of length 1.0 mm and 

diameter 0.01 mm with clamped-free boundary condition [93]. 

Table 6: Comparison of natural frequencies of the hair receptor in a vacuum between FE model 

and analytical model 

Natural Frequency, 

Hz 

Analytical 

Model 

FE Model  

(Case-I) 

FE Model  

(Case-II) 

Mesh Size 

=0.001, mm 
% Diff. 

Mesh Size 

=0.0005, mm 
% Diff. 

First Mode 139.83 138.79 0.741 139.66 0.119 

Second Mode 876.34 869.51 0.779 874.94 0.160 

Third Mode 2454.00 2433.40 0.839 2448.50 0.224 

When the mesh size of the computational domain is 0.001 mm, the first three natural 

frequencies of the hair receptor in a vacuum are 138.79 Hz, 869.51 Hz, and 2,433.0 Hz, 

respectively, computed at 423,423 degrees of freedom. But the first three natural frequencies 

from the analytical solution are found to be 139.83 Hz, 876.34 Hz, and 2,454.0 Hz, respectively. 
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The natural frequencies of the hair in a vacuum between FE model and analytical model are 

compared quantitatively and shown in Table 6. When the mesh size of the computational domain 

is 0.0005 mm, the first three natural frequencies of the hair are 139.66 Hz, 874.94 Hz, and 

2,448.5 Hz, respectively, computed at 3,007,503 degrees of freedom. The variation of the first 

three natural frequencies of the hair receptor is shown in Fig. 14.  

 

Figure 14: The variations of the first three natural frequencies of the hair receptor in a vacuum 

The convergence of the natural frequencies of the cylindrical hair with clamped-free 

boundary conditions in a vacuum is studied and it is found that the frequencies converge between 

mesh size 0.001 mm and 0.0005 mm on the order of 1,000,000 degrees of freedom. It is noticed 

that the variations in the frequencies are very small (less than 1.0 %) with mesh size, which 

indicates that the model is converged at the finer mesh.  
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4.1.1. Mode Shapes of Hair Receptors 

First three mode shapes of the hair in a vacuum are shown in Fig. 15. Mode shapes of the 

hair vary with the natural frequency. For higher frequencies, the mode shapes become more 

complex in shape. The total hair receptor motion is complex; each characteristic mode vibrates 

with a different shape and frequency. Mode shapes of the hair shows the location of the 

maximum deflection at the tip of the hair receptor. 

 

Figure 15: First, second, and third mode shapes of the hair receptor in a vacuum 

4.2. Mesh Independence Study for FSI Simulation 

To validate the FSI model, the mesh independence of the CFD model needs to be 

checked. For this, the hair receptor is simulated in the flow then refines the flow mesh without 

the hair to confirm mesh independence of the FSI solution. A case with steady airflow conditions 

and a freestream velocity of 100 mm/s is considered to perform different simulations in which 

the number of nodes of fluid model is varied while the ones from the structural models are kept 
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fixed. The mesh independence solution of the FSI solution is confirmed by selecting a point at 

the tip of hair receptor inside the fluid domain to show that the velocity magnitudes at this point 

converge as the grid is refined.  

The variation of the velocity magnitude at a specific node with respect to the mesh of the 

CFD model is investigated and presented in Fig. 16. Fig. 16 indicates that the results from the 

FSI simulation are mesh independent for mesh grids in the CFD model with approximately 

10,000 nodes or more.  

Figure 16: Mesh independence study for CFD model by monitoring the velocities at the tip of the 

hair receptor inside the fluid domain 
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4.3. Experimental Validation 

The experimental validation of pressure on the cylindrical surface in terms of pressure 

coefficient     is also conducted in this study to understand the flow behavior surrounding the 

cantilever cylinder attached to the flat plate. To do this, pressure coefficient is compared over the 

upper or lower part of the cylinder because it is symmetrical with respect to  -axis. Also because 

of symmetry, the     values on the upper half of the cylinder are equal in magnitudes to the     

values on the lower half of the cylinder. Therefore, the     values are compared with only upper 

half of the cylinder with experimental values at a mid-section of the cylinder length. 

For this validation, a 2–D finite cylinder with the diameter of 0.03 m is studied that was 

used in the experiments by Park and Lee [94]. The freestream uniform inlet velocity is 

considered as 10.0 m/s which give Reynolds number of approximately 2 × 10
4
. The model 

consists of a 2–D cylinder in a rectangular domain as shown in Fig. 17. The inflow boundary is 

located 0.24 m upstream of the cylinder axis, the outflow boundary surface is located 0.72 m 

downstream of the cylinder axis, and the top and bottom surfaces are located 0.24 m away from 

the cylinder axis. The thickness of the cylinder is 0.005 m in the spanwise direction. The flow is 

modeled as three-dimensional but with the one element through the thickness and symmetry 

boundary conditions on the front and back faces to enforce 2–D conditions.  
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Figure 17: Model geometry for flow around the cylinder 

This problem is characterized by boundary layer separation resulting from the adverse 

pressure gradients induced by the cylinder geometry. Over the forward portion of the cylinder, 

the surface pressure decreases from the stagnation point toward the shoulder. In this region, the 

boundary layer develops under a favorable pressure gradient where the net pressure force on a 

fluid element in the direction of the flow is sufficient to overcome the resisting shear force. Thus, 

motion of the element in the flow direction is maintained. However, the surface pressure 

eventually reaches a minimum and then begins increasing toward the rear of the cylinder. Thus, 

the boundary layer in this downstream region experiences an adverse pressure gradient.  Since 

the pressure increases in the flow direction, a fluid element in the boundary layer experiences a 

net pressure force opposite to its direction of motion. At some point, the momentum of the fluid 

element will be sufficient to carry it into regions of increasing pressure. Here, the fluid adjacent 

to the solid surface is brought to rest, and flow separation from the surface occurs. As a result, 

wake is formed behind the cylinder in the low pressure region due to deficient in moment.  
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The    is obtained by dividing the difference between surface pressure     and a 

freestream pressure      by the dynamic pressure [92], i.e.,  

   
       

    
                                                                 

However the pressure is variable along the vertical stagnation line. Therefore, data has 

been rescaled with a variable pressure       such that        for each altitude. The pressure 

distribution from the CFD simulation results are a close agreement with the experimental values 

of Park and Lee [94] as shown in Fig. 18. The theoretical inviscid pressure distribution on a 

circular cylinder is also shown in Fig. 18. It is observed that the peak values almost overlap each 

other. The local minimum pressure is also predicted decently by all simulations, but the 

discrepancy is in the wake of the cylinder near 180 degrees where one can see a gradual increase 

in mean pressure values. This is due to the effect of separated flow and the subsequent failure of 

boundary layer theory. Since the Reynolds number is in the transition region, it develops smaller 

wake and higher pressure on the rear of cylinder.  

The contour and vector plots of the velocity magnitudes as predicted from the CFD 

simulation are shown in Figs. 19 and 20. In Fig 20, the stagnation region at the front of the 

cylinder, and the wide wake region behind the cylinder can be clearly observed with defined 

regions of recirculation. Fig. 21 depicts that the pressure begins to have negative values at angles 

of 30 – 40
0 

approximately, as measured from the front of the cylinder. 
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Figure 18:    distributions around the upper part of the cylinder surface 

 

 

Figure 19: Velocity contours for flow around the cylinder 
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Figure 20: Velocity vectors for flow around the cylinder 

 

 

Figure 21: Pressure contours for flow around the cylinder 
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Chapter 5 

Results and Discussion 

The goal of modeling the hair receptor is to develop a relationship between nearby flow 

that applies surface forces to the hair. Hair receptor deforms due to the distributed load caused by 

the drag pressure of the moving air. This deformation, in turn, affects the flow field. To 

understand the dynamic properties of the hair influenced by the flow behavior, FSI analyses have 

been studied separately for single hair receptor and multiple hair receptors. 

5.1. Single Hair Receptor Study 

The single hair receptor model is evaluated for an exposed hair length of l = 1e–3 m, 

freestream velocity of    = 0.1 m/s and a characteristic diameter of the bat-scaled hair receptor d 

= 1e–5 m. To maintain a consistent boundary layer thickness evolution, the hair is assumed to 

reside 2.0 mm from the leading edge of a flat plate.  

The results given by the co-execution of FSI model are considered at vertical mid-plane 

(x = 0.0 mm, y = 1.0 mm, z = 0.0 mm) to investigate the response of the hair receptor in both 

steady [ .  m s] and unsteady [ .   .       (   ) m s] flow fields. The dynamic implicit method 

is used to perform the structural analysis of the hair receptor. In the unsteady flow, the periodic 

nature of the sinusoidal amplitude assigned to the inlet velocity is reflected on the velocity and 

deflection magnitudes.  In contrast to the steady air flow, the velocity and deflection magnitudes 

are uniform in the flow field. The deflections and velocity magnitudes of the hair receptor at the 

tip for the time of 2.0 s in both steady and unsteady fluid flow field are shown in Figs. 22 and 23, 
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respectively. Initially, slight accelerated flow and higher deflections through fluid domain appear 

due to the effects of high viscous force and boundary layer development.  

The deflection of the hair receptor at the tip is equal (2.544 times to the hair diameter) at 

the time of 0.5 s and 1.0 s for both steady and unsteady flow velocities. For unsteady flow, the 

hair receptor exhibits the maximum tip deflection (2.750 times to the hair diameter) at the time 

of 0.25 s and the minimum tip deflection (2.303 times to the hair diameter) at the time of 0.75 s. 

The flow velocities change similarly with time for both steady and unsteady flows. The presence 

of the fluid viscosity slows down the fluid particles very close to the solid surface and forms a 

thin slow moving fluid layer. The flow velocity is zero at the bottom surface of the 

computational domain and at the surface of the hair receptor to justify the no-slip boundary 

condition.  

The deflection contour plots at four different times, i.e., 0.25 s, 0.5 s, 0.75 s, and 1.0 s are 

shown in Figs. 24 to 27 for steady flow and in Figs. 28 to 31 for unsteady flow to represent time-

dependent results. The flow patterns over a cylindrical hair receptor at the time of 1.0 s are 

shown in Fig. 32 for steady flow and in Fig. 33 for unsteady flow. The pressure distributions 

around the hair receptor at the time of 1.0 s are shown in Fig. 34 for steady flow and in Fig. 35 

for unsteady flow. The pressure starts to increase in the front side of the cylinder and decrease in 

the rear side of the cylinder. 
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Figure 22: Time-varying deflections of the flexible hair receptor at the tip 

 

Figure 23: Time-varying velocity magnitudes of the flexible hair receptor at the tip 
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Figure 24: Deflection contour plot of the flexible hair receptor at the time of 0.25 seconds in 

steady flow 

 

 

Figure 25: Deflection contour plot of the flexible hair receptor at the time of 0.50 seconds in 

steady flow 
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Figure 26: Deflection contour plot of the flexible hair receptor at the time of 0.75 seconds in 

steady flow 

 

 

Figure 27: Deflection contour plot of the flexible hair receptor at the time of 1.0 seconds in 

steady flow 
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Figure 28: Deflection contour plot of the flexible hair receptor at the time of 0.25 seconds in 

unsteady flow 

 

 

Figure 29: Deflection contour plot of the flexible hair receptor at the time of 0.50 seconds in 

unsteady flow 
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Figure 30: Deflection contour plot of the flexible hair receptor at the time of 0.75 seconds in 

unsteady flow 

 

 

Figure 31: Deflection contour plot of the flexible hair receptor at the time of 1.0 seconds in 

unsteady flow 
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Figure 32: Velocity contour plot of the flexible hair receptor at the time of 1.0 seconds in steady 

flow 

 

 

Figure 33: Velocity contour plot of the flexible hair receptor at the time of 1.0 seconds in 

unsteady flow 
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Figure 34: Pressure contour plot of the flexible hair receptor at the time of 1.0 seconds in steady 

flow 

 

 

Figure 35: Pressure contour plot of the flexible hair receptor at the time of 1.0 seconds in 

unsteady flow 
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5.2. Multiple Hair Receptors Study 

One of the objectives of this study is to understand the effect of a hair on its neighbor in 

terms of tip deflections and bending moment at the base due to the interactions of the 

surrounding fluid.  In particular, the boundary layer development over the flat surface, pressure 

variations, and the hair tip deflections associated to the flow are very clear to see. Therefore, the 

approach using MEMS allows us to use the predictions obtained using computational dynamics 

models and to predict the expected effects for natural hairs, taking into account the similarities 

and differences between these artificial hairs and natural hairs. 

Multiple hair receptors model is evaluated for six hairs with lengths of 1.0 mm and the 

diameters of 0.01 mm each. Freestream velocity is considered as 0.1 m/s to keep the flow within 

the creeping flow region is similar to the single hair model. To be consistent with the single hair 

model, front hair receptors are placed at 2.0 mm from the leading edge of a flat plate. Several 

runs are conducted to investigate the approximate distances between the hairs to understand the 

effects of them on its neighbors. At a distances of 1.5 mm or higher, the effect of a hair on its 

neighbor, in terms of tip deflections, becomes negligible. Therefore, in the present study, the 

distance between the hairs is considered as 1.0 mm.  

The results for the multiple hair receptors model given by the FSI analysis are considered 

at the vertical mid plane (x = 0.0 mm, y = 0.0 mm, and z = 1.0 mm). The dynamic implicit 

method is used to perform the structural analysis of six hair receptors. In the steady flow, 

deflections of the front hair receptors are higher than that of rear ones. The deflection magnitude 

of the front hair receptor is found to be 0.0202482 mm whereas the deflection magnitude of the 

rear hair receptors is found to be 0.0201018 mm. Since the hair deflection magnitudes are 
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proportional to fluid velocity, higher deflections are occurred at the increased fluid flow. This is 

due to the effect of the fluid velocity perturbed from the neighbor hair.  

The deflection contour plot of the hair receptors in the steady flow is shown in Fig. 36. 

The flow pattern over hair receptors in the steady flow is shown in Fig. 37. The boundary layer 

developed as the fluid flows over the flat plate. The velocity magnitudes of the fluid adjacent to 

the plate and the hair receptors are zero. The pressure distribution around the hair receptors in the 

steady flow is shown in Fig. 38. The pressure values are higher at the front of the hair receptors 

which represents the stagnation pressure and are lower at the back of the hair receptors which 

indicates the wake region. As the distance increases in the flow direction, pressure values 

decrease.  

 

Figure 36: Deflection contour plot of the multiple hair receptors in steady flow 
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Figure 37: Velocity contour plot of the multiple hair receptors in steady flow 

 

 

Figure 38: Pressure contour plot of the multiple hair receptors in steady flow 

 

  



 

63 
 

Chapter 6 

Conclusions 

The dynamic responses of both single hair receptor and multiple hair receptors are 

studied in terms of the tip deflection and velocity in creeping flow environment. The mode 

shapes and natural frequencies of the hair receptor in a vacuum are calculated from finite 

element analysis. Also, the natural frequencies are evaluated from the analytical solution for free 

vibration and compared with that from finite element analysis. In order to perform this study, a 

three-dimensional fluid-structure interaction (FSI) model is developed for flexible hair-structure 

in the airflow, which couples a FE model with a CFD model. Deflection of the hair receptor at 

the tip and bending moment at the root are calculated at different freestream velocities within the 

creeping flow environment. 

The following conclusions are drawn from this investigation: 

1. Velocity, pressure, and deflection contour plots of the hair receptor are studied 

with the FSI model in both the steady and unsteady flows 

2. The deflection and bending moment of the hair receptor increase with freestream 

velocity.  The total drag force acting on the hair structure increases with the 

velocity of the flow which is used to calculate the value of the shear stress at the 

root of the hair receptor. Since the drag force is directly proportional to the square 

of the velocity, the deflections and bending moment of the hair receptors increase 

with flow velocity  
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3. The natural frequencies of the hair receptor in a vacuum from finite element 

model and that from analytical solution are in good agreement. However, the 

higher the frequency, the more the deviation (although small in magnitude) 

between finite element and analytical results. This is due to more vibration occurs 

at higher modes within a small length of the hair element compared to lower 

modes. Since the mesh density is same for each mode shape, the deviation 

between finite element and analytical solution increases 

4. The effects of both boundary layer and viscous forces are described from the FSI 

of the hair receptor. Due to the no-slip boundary condition applied on the bottom 

surface of the flow domain which acts as a flat plate, velocity of the fluid adhering 

to the plate becomes zero. The viscous forces retard the motion of the fluid in a 

thin layer near the bottom surface. The velocity of the fluid increases from zero to 

its freestream velocities where there are no viscous forces applicable 

5. The deflection and velocity near the tip of the hair receptor are uniform for the 

steady flow but vary periodically due to the harmonic unsteady flow. After 

reaching the steady state, uniform behavior of the fluid is reflected in the steady 

flow as it is assigned to inlet velocity and the periodic behavior of the fluid is 

reflected in the unsteady flow as the sinusoidal amplitude is assigned to the 

incoming velocity 

6. The mesh independence of the CFD model is studied to validate the FSI solution. 

As grid size is refined, the fluid properties in terms of velocity at the selected 

points on the fluid domain become very close in their magnitudes which confirms 

the convergence of the solution 
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7. The interaction among multiple hair receptors is investigated. Deflection of the 

front hair receptor is higher than that of the rear hair receptor. The tip deflection is 

affected by the wake development behind the hair receptors which results low 

drag forces acted on the rear ones 

 

In the future, the following studies are recommended for this research. 

1. Conduct the FSI analysis for an airfoil with artificial hair receptors at different 

angle of attacks 

2. Study the flow behavior of multiple hair receptors by comparing the 

computational distance between the artificial hair receptors with the physical 

distance between the bat hair flow receptors 

3. Investigate the dynamic response of the hair receptor by considering the effects of 

vortex shedding formed behind the hair receptor 

4. Study the effects of three-dimensional fluid flow over the hair receptor in order to 

investigate the dynamic characteristics within the creeping flow regime 

5. Investigate the dynamic response of the hair receptor outside the creeping flow 

assumption to extend the applicability of wider range of low-Reynolds number 

platforms 
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