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Abstract

Underwater video is used by marine biologists to observe, identify, and quantify living

marine resources. Video sequences are typically analyzed manually, which is a time con-

suming and laborious process. Automating this process will significantly save time and cost.

This work proposes a technique for automatic fish classification in underwater video. The

steps involved are background subtracting, fish region tracking and classification using fea-

tures. The background processing is used to separate moving objects from their surrounding

environment. Tracking associates multiple views of the same fish in consecutive frames. This

step is especially important since recognizing and classifying one or a few of the views as a

species of interest may allow labeling the sequence as that particular species. Shape features

are extracted using Fourier descriptors from each object and are presented to nearest neighbor

classifier for classification. Finally, the nearest neighbor classifier results are combined using

a probabilistic-like framework to classify an entire sequence.

The majority of the existing pattern matching techniques focus on affine invariance, mainly

because rotation, scale, translation and shear are common image transformations. However, in

some situations, other transformations may be modeled as a small deformation on top of an

affine transformation. The proposed algorithm complements the existing Fourier transform-

based pattern matching methods in such a situation. First, the spatial domain pattern is decom-

posed into non-overlapping concentric circular rings with centers at the middle of the pattern.

The Fourier transforms of the rings are computed, and are then mapped to polar domain. The

algorithm assumes that the individual rings are rotated with respect to each other. The variable

angles of rotation provide information about the directional features of the pattern. This angle

of rotation is determined starting from the Fourier transform of the outermost ring and moving

inwards to the innermost ring. Two different approaches, one using dynamic programming

algorithm and second using a greedy algorithm, are used to determine the directional features

of the pattern.

Keywords: Pattern Recognition and Matching, Background Segmentation, Object Tracking,

Nearest Neighbor Classifier, Affine Invariance, Dynamic Programming, Greedy Algorithm.
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1 Introduction

1.1 General

Pattern recognition and matching find numerous applications in the fields of image processing

and computer vision [1]. Pattern recognition assigns an object of unknown classification to a par-

ticular class based on some similarity measure. Learning methods in pattern recognition can be

divided into two types, namely, supervised learning and unsupervised learning. Supervised learn-

ing algorithms can be categorized into: classification algorithms and regression algorithms. In

classification algorithms, the classifier is trained using the features extracted from each class. This

is called the training phase. After having been trained, the classifier accepts the test inputs and

assigns labels to them according to the training data. Some of the examples of classification tech-

niques include neural networks, support vector machines, and nearest neighbor algorithms. Unlike

supervised learning, the unsupervised learning techniques assign the test input to one of the several

clusters without assigning a label to the test input. Some of the unsupervised learning techniques

include k-means clustering, self-organizing maps, Gaussian mixture models, and Hidden Markov

models.

In contrast to pattern recognition, pattern matching attempts to perform exact matching. The ob-

jective of pattern matching is to find a target pattern in the source image. Pattern matching can be

divided into: template matching and feature matching [2]. Template matching is applied directly

to pixel intensities. Template-based methods are usually employed when the goal is to match an

entire pattern with a source image. A brute-force way to match two patterns is by computing

the cross correlation between the source image and all geometrically transformed versions of the

target pattern. The target pattern may be rotated, scaled, shifted or sheared. Thus geometrically

transformed versions of the target are to be considered.

Let an image s(x,y) of size (m1,m2) be the source image and t(x,y) of size (n1,n2) be the target
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pattern. The normalized cross correlation (NCC) between the source image, s, and the target

pattern, t, is given by Eq. (1).

γ(u,v) =
∑x,y(s(x,y)− s̄u,v)(t(x−u,y− v)− t̄)√

∑x,y(s(x,y)− s̄u,v)2 ∑x,y(t(x−u,y− v)− t̄)2
(1)

where

s̄u,v =
1

n1n2

n1+u−1

∑
x=u

n2+v−1

∑
y=v

s(x,y) (2)

t̄ =
1

n1n2

n1

∑
x=1

n2

∑
y=1

t(x,y) (3)

In Eq. (1), t̄ is the mean of all pixel intensities in target pattern, and s̄u,v is mean intensity of the

source image in the correlation window (u,v) given by Eq. (2). It can be observed from Eq. (1)

that the correlation is performed by sliding the target pattern around the source image. However,

NCC is computationally expensive and time consuming.

On the other hand, feature-based matching uses local features, such as edges, corners, lines, curves,

extracted from pattern to perform matching. Usually, feature-based matching techniques use a

combination of different features to build feature vectors. The feature vectors of the source image

are built by taking all geometrically transformed versions of the source image. To perform the

matching, the feature vector of the target pattern are compared with the feature vectors of the

source image. Feature-based matching is computationally efficient when compared to the template

based matching as the only the feature vectors are used for matching.

1.2 Objective of this work

In this work, pattern recognition is used for fish classification in underwater video sequences using

supervised classification. The images are gray scale images, obtained from the Gulf of Mexico.

2



The five species of fish used in this work are Red Grouper, Yellowtail Snapper, White Grunt,

Queen Angelfish and Queen Triggerfish. These five species are chosen because of their importance

to the Gulf of Mexico ecosystem. Moreover, the features of these species, such as their shapes,

make them good candidates to test the performance of the proposed classification system. The

underwater video frames are provided by the National Oceanic and Atmospheric Administration,

National Marine Fisheries Service in Mississippi, USA.

The second part of this dissertation deals with pattern matching. Although, this work does not

attempt to implement a complete pattern matching, an algorithm to complement existing affine

estimation algorithms is proposed. Existing algorithms assume that the source and target pattern

are associated by an affine transformation. Therefore, several affine transformed variations of

the target image can be computed. If the affine parameters can be estimated, then the similarity

between two patterns can be determined. However, sometimes, the patterns are not rigid but are

deformed to some degree. In such cases, the proposed algorithm can be used to assist in determing

the affine parameters, which are then used to perform pattern matching.

The rest of the dissertation is organized as follows. Chapter 2 presents some background informa-

tion regarding the preprocessing steps to extract fish regions from their surrounding environment,

and fish feature extraction using Gabor filters. Moreover, some information about affine transfor-

mation, and some of the existing Fourier transform based methods for affine parameter estimation

is presented. Chapter 3 presents the proposed classification system to track and classify five species

of fish. Finally, Chapter 4 presents the proposed Fourier transform-based pattern matching algo-

rithm.
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2 Background

This chapter is divided into two parts: first some background regarding automated classification of

fish in underwater video, followed by affine transformation-based pattern matching. The first part

presents detailed descriptions of steps to separate the fish regions from their surrounding environ-

ment. In addition, two species, namely Red Grouper and Yellowtail Snapper, used in this work

have features that are specific to their species. To extract these features, Gabor filtering is used.

The second part present the concepts of affine transform and a few existing Fourier transform-based

algorithms to estimate the affine parameters.

2.1 Automated Classification of Fish in Underwater Video

Marine biologists use underwater videos sequences to identify and quantify fish, and to study

fish behavior and migration patterns. Typically, these videos are analyzed by experts manually.

However, manual analysis is a tedious process and consumes many hours to analyze one video.

Automating this process, at least partially, will significantly save the time and labor required to

analyze the videos. The majority of the previous research has been performed on classifying fish

taken out of water [3]-[6] or in human controlled environments, such as in fish tanks with adequate

lighting [7]. Moreover, some techniques can classify only one or two species of fish. This section

presents brief descriptions of some existing fish classification techniques.

A deformable template matching algorithm used for aligning the test images with training im-

ages is presented in [8]. The aligned test images are classified using 2D texture features for two

species, namely, Striped Trumpeter and Western Butterfish. A classification rate of above 80% is

reported for about 300 test images. However, extracting texture features from fish in underwater

videos might not be always possible due to poor lighting. A edge detection-based algorithm using

Sobel and Gabor filters is proposed to classify Portugese Shark, Rough Sagre Shark and Smooth

Dog Shark in [9]. In [10], Scythe Butterfly fish is classified using a 16 stage Haar classifier with
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83 features. Another classification system to detect, track, and classify Rathbunaster Californi-

cus from video sequences consisting of Rathbunaster Californicus, Parasticopus Leukothete and

sometimes Flatfish and Rockfish is proposed in [11]. The algorithm uses feature vectors, based on

local jets [12] and modeled as a mixture of Gaussians, are classified using Bayesian classifier with

a classification rate of 90%.

A fish classification system to classify Acanthuridae and Scaridae in videos obtained using a mov-

ing camera is proposed in [13]. The algorithm extracts fish using edge detection and performs

classification using Zernike moments. As the camera is moving, the background is not constant. It

is assumed that either water, in blue color, or the coral, in non-blue color, will be the background

against which the fish are present. Therefore, the histogram templates for water and coral are com-

puted from a few manually selected frames. Background of a frame is extracted by dividing the

frame into smaller blocks and by comparing its histogram with the two histogram templates and

choosing the closest histogram. Classification of fish in videos obtained using a moving camera is

an interesting problem. However, the proposed method is a slow process requiring an average of

60 min to analyze a 12 min video sequence.

Other algorithms have attempted to classify more than one or two species of fish. A fish classifi-

cation technique using shape features, such as fin shapes and their locations, tail shape and body

shape and length is presented in [14]. A database of 22 images for 9 species is used. However,

the test images are also built from 22 images in database. Each fish is classified by calculating

the distance of its feature vector from the feature vectors of the 22 images in the database. A

similar classification algorithm proposed in [15] extracts features using Scale-Invariant Feature

Transform (SIFT) and Principal Component Analysis (PCA). The algorithm performs clustering

using Artificial Immune Network (AIN) and Adaptive Radius Immune Algorithm (ARIA). Finally,

classification is carried out using the nearest neighbor classifier. Two separate cases, dead fish and

live fish, are considered for classification. To classify dead fish, a database of 162 prototypes of 6

species is created by rotating them. On the other hand, for live fish, the images are acquired at a
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fish ladder. For this case, 4 species are considered with 12 prototypes for each species. The images

in database are divided into sets, one set is used as training data while the other set is used as testing

data. The authors report an overall classification rate of 92%. However, the algorithm does not

perform any background subtraction. In addition, only single fish are considered for classification

at a time.

In [16], a fish classification system using texture features and shape features is proposed. A 320

image database of 10 species of fish is created using affine transformations of the original fish.

The technique extracted trajectories of fish motion to study their behavior and detect any unusual

behavior. A classification rate of above 90% for 10 species is reported. However, the algorithm was

tested for only 10 test images per species. A disadvantage of the works proposed in [5, 14, 15, 16]

is that the number fish images are limited. Moreover, the test images are created by rotating or

applying affine transformed versions of images in database. In other words, since the test images

are artificially generated from training images, the classification performance of these systems is

expected to be high.

The following sections 2.1.1 and 2.1.2 present a detailed description of background processing and

species-specific feature extraction using Gabor filters.

2.1.1 Background Processing

Background subtraction is used to distinguish the objects of interest from their surrounding envi-

ronment. Background subtraction is an important step in image processing and computer vision,

such as in object detection [17], [18], gesture estimation [19], video survelliance [17], [18]. The

main steps involved are computation of the background image from multiple frames, subtraction

of the background image from the current frame, and thresholding of the background-subtracted

frame [20].
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First, to calculate the background image, L consecutive frames, Fl , l = 1, ...,L, are considered. As

the contrast in all the frames does not remain constant, the contrast of all frames is adjusted to that

of the first frame, F1. The background image can be computed by averaging the pixel intensities in

L frames. The average of pixels is affected by the extreme pixel intensities, which are caused due

to noise or when a fish enters the frame. However, the median is not affected by such fluctuation

in pixel intensities. Contrast adjustment is achieved by multiplying all pixels in Fl with MFl/MF1 .

From here onwards, the term frame and the notation Fl refer to the contrast-adjusted frames.

To reduce memory resources, the background image is calculated by dividing the set of L frames in

groups of N frames, such that MN = L. For each group of N frames, a partial background image,

Bm(x,y), m = 1, ...,M, where (x,y) are the horizontal and vertical image coordinates, is calculated

as shown in Eq. (4), i.e., a pixel at location (x,y) in Bm(x,y) is computed as the median value of

pixels at (x,y) in all M frames. Finally, the background image is calculated as the median image

of the M partial background images as shown in Eq. (5).

Bm(x,y) = med
l
(Fl(x,y)),∀(x,y) (4)

B(x,y) = med
m

(Bm(x,y)),∀(x,y) (5)

The next step is to subtract each frame from background image, B(x,y). A variance-like measure,

S2(x,y), is calculated for each pixel as shown below. It can be observed that S2(x,y) is equivalent

to the sample variance of pixels at location (x,y) in L frames if the if the median is replaced by the

average.

S2
m(x,y) = med

l
((Fl(x,y)−B(x,y))2),∀(x,y) (6)

S2(x,y) = med
m

(Sm(x,y)),∀(x,y) (7)
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(a) (b) (c)

Figure 1: Background processing steps: (a) Background image, (b) An original frame, (c) Thresh-

olded frame

Finally, the background-subtracted frames a thresholded using a user-defined threshold parameter,

T . The threshold T determines the pixels that are different from the background pixels. More

specifically, if |Fl(x,y)−B(x,y)| > S(x,y)T , Fl(x,y) is considered to be associated with a fish.

Thresholding results in binary images, where ”white” correspond to the fish and ”black” region

corresponds to background. Lastly, to merge regions that are closely located, region growing is

used. Regions smaller than a certain number of pixels are considered to be noise and are eliminated.

The remaining white regions are the potential fish regions.

2.1.2 Feature Extraction using Gabor Filters

Gabor filters (GF) are linear filters widely used for edge detection, texture segmentation and feature

extraction [22]. A GF is a complex sinusoid modulated by a Gaussian as shown in Fig. 2. Eq.

(8) represents a spatial GF, where A is a constant, F is the spatial frequency, σ2
x and σ2

y are the

horizontal and vertical standard deviations. A GF oriented vertically exhibits a strong response for

horizontal details but smooths vertical details. Similarly, a GF oriented horizontally emphasizes

vertical details and smooths horizontal details.

h(x,y) = Ae(−x2/2σ2
x−y2/2σ2

y)e2π jFxr (8)
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(a) (b) (c)

Figure 2: 1D Gabor filter: (a) Sine wave (b) Gaussian function (c) Gabor filter

In [21], Gabor filters are used to extract specific features from EM and OC. EM has a light colored

vertical stripe along its caudal fin whereas OC has a yellow colored horizontal stripe extending

along its body until the anterior end of its head. The GF is scaled proportional to the area of the

fish being tested. In other words, the standard deviation of the filter is adjusted according to the

size of the fish, i.e., σ2
x = σ2

y = α(Area), where α is a user defined constant, Area is the size of the

fish.

Stripe Detection for Epinephelus Morio (Red Grouper):

Epinephelus Morio (EM) has a bright stripe on its tail, a feature that is specific to its species. To

detect this feature, the fish is separated from its surroundings by multiplying the original gray scale

image with its thresholded image as shown in Fig. 4. Horizontal edges in Fig. 4(c) are detected

by filtering the image with vertical GF to obtain Ihor(x,y) as shown in Fig. 5(a). Similarly, the

vertical edges are detected by filtering Fig. 4(c) with horizontal GF to obtain Iver(x,y) as shown

in Fig. 5(b). The image ratio, Ir(x,y) = Ihor(x,y)/Iver(x,y), is used to emphasize the stripe as

shown in Fig. 5(c). The intensity difference between the fish region and the background causes

vertical stripe-like edges around fish. In order to eliminate the effect of vertical stripe-like edges in

Ihor(x,y) (Fig. 5(a)), a zone of pixels with width equal to 3σx around the fish outline are set equal

to zero. The resulting image is shown in Fig. 5(d).

In order to emphasize the presence of vertical stripes, a moving average (MA) filter fMA(y), of size

9



(a)

(b)

Figure 3: 2D Gabor filters with σx = σy = 4 oriented (a) Vertically (b) Horizontally

(a) (b) (c)

Figure 4: E. Morio pre-processing steps: (a) Original image (b) Thresholded image (c) Isolated

fish region

W × 1 is applied on IEM
r (x,y). The maximum value per column, mIr(x), is computed for EM as

follows:

mEM
Ir

(x) = max
y

( fMA(y)∗ Ir(x,y)) (9)
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(a) (b) (c)

(d)

Figure 5: (a) Vertical Gabor filtering (b) Horizontal Gabor filtering (c) Stripe detection (d) Maxi-

mum value along columns

where ”∗” represents the convolution operation. The maximum value of mIr(x), namely mEM
Irmax =

max
x

(mEM
Ir

(x)), quantifies the presence of a stripe in the fish region.

Stripe Detection for Ocyurus Chrysurus (Yellowtail Snapper):

A similar approach is followed to detect the horizontal stripe along the body of Ocyurus Chrysurus(

OC). Fig. 6 presents the results for preprocessing steps while Fig. 7 presents the results of GF to

detect stripe. However, the ratio image is computed as Ir(x,y) = Iver(x,y)/Ihor(x,y), and an MA

filter of size 1×W ′ is applied along the rows of Ir(x,y). The maximum value for each row is

computed as:

mOC
Ir

(y) = max
x

( fMA(x)∗ Ir(x,y)) (10)

Sometimes, the fish is oriented at an angle with respect to the x-axis. To detect the stripe in such

cases, Ir(x,y) is rotated by different angles, and the largest mOC
Irmax is considered.
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(a) (b) (c)

Figure 6: O.Chrysurus pre-processing steps: (a) Original image (b) Thresholded image (c) Isolated

fish region

(a) (b) (c)

(d)

Figure 7: (a) Horizontal Gabor filtering (b) Vertical Gabor filtering (c) Stripe detection (d) Maxi-

mum intensity along rows

2.2 Affine Transformation

This section presents the concepts of affine transformation and a few previously proposed Fourier

transform (FT) based algorithms to estimate affine transform between a source and a target pattern.

By estimating the affine parameters, the similarity between two patterns can be determined.

Affine transformation is a geometric transformation that maps the pixels of input image to new

locations in the target image while preserving the collinearity of the points and the distance ra-

tions. Affine transformation is a linear combination of translation, rotation, scaling and shearing

operations. The standard affine transformation operator, At , is defined in Eq.(11), where L and t

respectively represent the linear and translational parts of At .
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At

x

y

=

L11 L12

L21 L22


x

y

+
t1

t2

 (11)

2.2.1 Affine Transform Estimation

Affine transform parameters can be determined using a brute-force search of 6-D space and by

calculating error, est as shown in Eq. (12), for all possible linear and translational changes, between

the target block, ft , and the source block, fs. However, brute force approach is computationally

expensive and time consuming.

est = | ft(u)−T ( fs(u))| (12)

Among the other methods that attempt to estimate the affine parameters, FT-based methods seem

to provide a good alternative. Fourier transform decomposes the geometric transform, At , defined

in Eq. (11), into a linear part, L, which affects only the magnitude spectrum and a translational

part, t, which affects only the phase gradient of the Fourier transform. The affine theorem [23]

states that given the linear relation, L, between the Fourier transforms of the source block, Fs(u),

and the target block, Ft(u), there also exists a linear relationship (L−1)T in spatial domain. In other

words, given

Ft(u) = AtFs(u) (13)

then

Ft(u) =
1

detAt
eituT
|F((A−1

t )T fs(u))| (14)

The translational part, t, of At can be estimated using the shift theorem, which states that a trans-

lational change in spatial domain is transformed to phase change in frequency domain. The trans-

lational part, t, can be determined by finding the location at which the correlation between Fs(u)
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and Ft(u) is maximum.

t = argmax
x,y
{F−1[

Fs(u)F∗t (u)
|Fs(u)||F∗t (u)|

]} (15)

The remaining part of this subsection presents a few existing FT-based algorithms to estimate the

linear part, L, of the affine transformation At whereas the translation part is determined using the

Shift theorem described above.

2.2.2 Least Square-Based Estimation

Least square-based estimation of affine parameters, estimates the Fourier power spectrum with a

Gaussian Mixture Model (GMM) using Levenberg-Marquardt (LM). The algorithm estimates the

affine parameters using LM [24], [25]. A Gaussian mixture model is a probability density function

represented as a weighted sum of N constituent Gaussian densities as shown in Eq. (16).

GMM(u|λ) =
N

∑
j=1

w jG(u|µ j,σ j) (16)

where u is a data vector, w j are the weights, µ j is the mean vector, σ j is the covariance matrix

of component Gaussian densities denoted by G(u|µ j,σ j) and λ is collective representation of the

Gaussian parameters σ j, w j and µ j.

The magnitude spectrum, is modeled as a two-dimensional N component Gaussian mixture model

with Gaussians centered about the origin, i.e, µ j = 0, of the spectrum. The Gaussian parameters are

estimated using LM by minimizing the squared error between the GMM and magnitude spectrum

of the source block, Fs(u), as shown in Eq. (17). Each Gaussian component G j represents a

distinctive directional energy cluster. LM is a conjugate gradient descent method that requires the

gradient with respect to the fitting parameters. Therefore, a set of partial derivates of the covariance
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matrix of the GMM are calculated using Eq. (18) and Eq. (19).

∑
u
(G j(u)−|Fs(u)|)2 (17)

∂G j(u)
∂wm

=
G j(u)

wm
(18)

∂G j(u)
∂σ
−1
m

=
G j(u)uuT

2
(19)

Similarly, the LM algorithm searches for the linear transformation, L, by minimizing the squared

error between the GMM of the source block spectrum and the spectrum target block as shown in

Eq. (20). Although least-square optimization approach is simple, its computational requirement is

large and is likely to be trapped in local minima.

∑
u
(L(G j(u))−|Ft(u)|)2 (20)

∂G j(L(u))
∂L

=−G j(L(u))
N

∑
m

σ
−1LuuT (21)

2.2.3 Phase Correlation-Based Estimation

A phase correlation-based technique to estimate rotation, scaling and translation parameters is pro-

posed in [26]. Rotation and scale can be efficiently estimated using the Fourier-Mellin estimation

by using phase-correlation relationship. The magnitude spectrum is translation invariant, i.e., any

translation change is reflected in phase gradient of the Fourier transform. Moreover, a rotation of

source block, fs(u), rotates its magnitude spectrum, |Fs(u)|, by same angle and scaling of fs(u)

by σ scales |Fs(u)| by factor of σ−1 as in Eq. (23). By converting the image to polar coordinates,

(θ,r), rotation is converted to translation along angular, θ, axis. In addition, by converting the

radial axis to logarithmic scale, scaling is reduced to translation along radial axis.
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As mentioned earlier, using polar-logarithmic representation, both image rotation and scaling can

be reduced to translation as shown in the Eq. (25), where θ0 is the rotation angle, σ is the scaling

factor, and x0 and y0 are translations along x and y directions. Although this method accurately

computes scaling, rotation and translation, it fails to estimate shear deformation.

ft(x,y) = fs[σ(xcosθ0 + ysinθ0)− x0,σ(−xsinθ0 + ycosθ0)− y0] (22)

Ft(m,n) = e− j2πφ
σ
−2|Fs[(mcosθ0 +nsinθ0)/σ,(−msinθ0 +ncosθ0)/σ]| (23)

|Ft(θ,r)|= σ
−2|Fs(θ−θ0,r/σ)| (24)

|Ft(θ,r)|= σ
−2|Fs(θ−θ0, logr− logσ)| (25)

Ft(v,w) = σ
−2e− j2π(v logσ+wθ0)Fs(v,w) (26)

2.2.4 Spectral Alignment-Based Estimation

A Spectral alignment-based method assuming the presence of double energy clusters in the Fourier

spectrum is proposed in [25]. An illustration of double energy clusters in spectrum is shown in

Fig. (8). By identifying the centroids of each energy clusters, the affine transformation between

two blocks can be solved for using Eq. (29). The two representative centroids are identified

by performing angular variance analysis to find the angles, θ1 and θ2, for which the sum of the

variances, σ2(θ1,θ2), is minimum.

σ
2(θ1,θ2) =

1
Eθ

∑
uεα(θ1,θ2)

|F(u)|.||u−µ(θ)||2 (27)

µ(θ) =
1

Eθ
∑

uεα(θ1,θ2)

|F(u)|u (28)

where F(u) is the Fourier spectrum, α(θ1,θ2) represents the coordinates of the half plane subdivision
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Figure 8: Double energy clusters

defined by the angles θ1 and θ2, Eθ is the sum of energy in the half plane, µ is the representative

centroid of the corresponding subdivision. The linear part, L, can be directly computed by aligning

the centroids of the segments of source block, (µsx,µsy), and target block, (µtx,µty). The affine

parameters can be easily computed by aligning the centroids. However, this method fails if the

spectrum does not contain double energy clusters.

L11 L12

L21 L22

=

[
µT

tx µT
ty

][
µT

sx µT
sy

]−1

(29)

2.2.5 Fourier Slice-Based Estimation

A Fourier slice-based affine parameter estimation method is proposed in [27]. Fourier slice at an

angle θ is calculated using the Radon projection, p(θ), which is the 1-D integral of a function,

f (x,y), along angle θ as shown in Eq. (30) [28]. Projection Slice theorem, which states that the

Fourier transform of Radon projection at angle θ is a slice of Fourier spectrum, F(u,v) through the

origin at angle θ, is used to calculate the Fourier slices as shown in Eq. (31).

pθ(r) =
∫

θ

f (x,y)dl (30)
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Fθ(k) =
N−1

∑
n=0

pθ(r)e−i2πkn/N (31)

For every Fourier slice, a 1-D Gaussian window, centered on the DC component is computed using

Eq. (32), where σ represents the deviation of Fourier coefficients in a slice, and N is the number

of Fourier coefficients. Every Gaussian window is weighted as per Eq. (34).

G(x) =
1

σ
√

2π
e−

x2

2σ2 (32)

σ =

√√√√ 2
N

N/2

∑
i
(xi)2 (33)

wθ =
∑r |FC(x,y)|δ(xcosθ+ ysinθ)Gθ(r)

∑θ ∑r |FC(x,y)|δ(xcosθ+ ysinθ)Gθ(r)
(34)

The next step is to find two representative Gaussians. The two Gaussians with highest weights

corresponding to the significant directional features are determined using Eq. (35). First, each

polar bin is populated with Gaussian components. In each bin, the Gaussians with highest weight

(> 0.1), are selected. The two Gaussians with highest weights are selected as the representative

slices. The bins containing Gaussians with very small weights do not correspond to any significant

features. Therefore, such bins are treated as empty bins.

Bi = {G j|
(2i−1)π

2k
+θ(GM)< θ(G j)≤

(2i+1)π
2k

+θ(GM)} (35)

In Eq. (35), the parameter k is set to 3/8 times the size of image as proposed in [27], l is the number

of gaussians, (0 ≤ j ≤ l), (0 ≤ i ≤ k− 1), θ(G j) is the direction of gaussian component, G j and

GM is the gaussian component with highest weight, wθ. Finally, the coordinates of the centroids of

the two representative slices are computed, mapped to rectangular coordinate system and used to

calculate the linear part, L, of affine transform using Eq. (29). As mentioned earlier, this algorithm
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is based on Radon projection, which computes the integral of a function along a straight line at an

angle, θ. Therefore, the technique fails when the high intensities of Fourier transform do not fall

on straight lines.
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3 Automated Classification of Fish in Underwater Video

This work proposes a classification system to automatically track and classify fish in underwater

video sequences. The system can identify and classify five species, namely Epinephelus Morio

(EM), Ocyurus Chrysurus (OC), Balistes Vetula (BV), Holacanthus Ciliaris (HC) and Haemulon

Plumierii (HP), found frequently in the Gulf of Mexico. Their common names are respectively Red

Grouper, Yellowtail Snapper, Queen Triggerfish, Queen Angelfish and White Grunt. Chapter 2.1.1

presented a detailed description of background subtraction and thresholding, as well as feature

extraction using Gabor filters. This chapter presents tracking, which associates multiple views of a

fish in consecutive frame, feature extraction using Fourier descriptors to describe the shape, which

are then presented to a classifier for classification. Lastly, a probabilistic-like framework to classify

an entire sequence using the combination of the shape based classification results and Gabor filter

results is presented.

3.1 Tracking

Tracking is used to detect the path of a fish from the point it enters until the point it exits the

camera’s field of view. Thus, providing information about a fish from multiple frames. The white

regions obtained after thresholding the background-subtracted image are the potential fish regions.

An example is shown in Fig. 1, where white regions represent the potential fish regions.

Tracking is useful especially when one single view of a fish is not suitable for classification. For

example, when a fish is swimming towards the camera, it is difficult even for a human expert to

identify the species. In such cases, it is assumed that fish will eventually turn providing a side view

to the camera lens. Thus as the fish is tracked from frame to frame, it is expected to provide at

least one good view for classification. Moreover, as the number of good views of a fish increases,

the classification confidence of the proposed system increases.
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In this work, Kalman filter is used for tracking fish by assuming a constant velocity model [29, 30].

The state vector has information about the fish center, (cx,cy), the coordinates of the top left and

bottom right points, (btx,bty) and (bbx,bby), of the rectangular bounding box enclosing the fish

region, and the velocity of the center (vx,vy). Therefore, the state vector of the fish in the l− th

frame is sl = [c(l)x ,c(l)y ,v(l)x ,v(l)y ,bt(l)x ,bt(l)y ,bb(l)x ,bb(l)y ]T . The bounding box endpoints are chosen

since the size of the bounding box is associated to the size of the fish area. A separate Kalman

filter is assigned to each fish region, which are tracked simultaneously.

The Kalman filter operations can be divided into two stages: prediction and correction. During the

prediction stage, the filter obtains the a priori estimate for the current state, ŝ−l , using the previous

state estimate, sl−1, as shown in Eq. (37). The vector of observations, zl , shown in Eq. (38)

includes the same variables as the state. However, the variables in zl are determined directly from

the image data. The first time a fish region enters the camera’s field of view, its state variables are

initialized to the real observations, zl , except the velocities which are set equal to zero. The state

transition matrix, A, relates the previous state, sl−1, with the present state, sl .

In order to associate the i-th fish region in frame Fl−1, namely R(l−1)
i , to one of the regions in frame

Fl , namely R(l)
j , j = 1, ..,J, the Euclidean distances, Ei j, between the estimates of the center coordi-

nates of region R(l−1)
i that are obtained from state estimate ŝ−l of R(l−1)

i and the center coordinates

determined from observations zl of all R(l)
j are computed as shown in Eq. (36). The R(l)

j associated

to the smallest distance, Emin, is associated to R(l−1)
i only if Emin and the size difference of the two

regions are each smaller than user-defined thresholds. Otherwise, it is assumed that either a region

splitting or a merging has occurred, and a new Kalman filter is assigned to track the new region.

Ei j =

√
(c(l−1)

ix − cl
jx)

2 +(c(l−1)
iy − cl

jy)
2 (36)

During the correction stage, the filter corrects ŝ−l using the respective zl to obtain the a posteriori

estimate, ŝl . The estimate ŝl is used as ŝl−1 in the next frame. The measurement matrix, H, in Eq.
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Figure 9: Tracking a fish in consecutive frames

(38) associates state predictions with observations, zl , and K is the Kalman gain.

ŝ−l = Aŝl−1 (37)

ŝl = ŝ−l +Kl(zl−Hŝ−l ) (38)

As the fish regions are tracked, they are classified on-the-fly using the nearest neighbor classifier

presented in section 3.3. An example of tracking a fish from the frame it enters camera’s point

of view untill it exists is presented in Fig. 2. In this example, the top leftmost image shows the

fish as detected for the first time. The black and white image to its right is the corresponding

thresholded image obtained after background subtraction. Moving from left to right, and then

from top to bottom, pairs of images show the same fish and its corresponding thresholded image

as seen in consecutive frames. The identification of the bounding box enclosing the fish, as well

as the association of the fish region from one frame to the next are performed automatically by the

algorithm.

In some cases, background processing is unable to detect a fish using the original threshold, T ,
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although the fish is still present in the frame. As a result, the Kalman filter fails to track the fish. In

this situation, it is assumed that the fish is present in the same area. In an attempt to separate such

fish from background, variable-thresholds are used for background subtraction. More specifically,

a threshold, T2 > T , is first applied. This threshold is decreased until the fish region is detected

or until a specified minimum threshold, Tn < T is reached. The search is performed in the region

enclosed by the predicted bounding box specified by the coordinates, (btx,bty) and (bbx,bby),

obtained from Eq.(37). If a region is detected, it is associated with the sequence and is tracked

in the next frame. However, this region is not classified. If the missing fish is not found for 5

consecutive frames, it is assumed that the fish has exited the camera’s field of view. Therefore, the

Kalman filter associated with the fish is terminated. If the same fish is found again in the frame, it

is assigned a new Kalman filter and is tracked as a new fish.

3.2 Micro Feature Extraction

This section describes the shape features extracted from fish that are used to classify fish. The micro

features consists of Fourier descriptors, representing the shape of a fish, and features specific to

species EM and OC described in Section 2.1.2.

3.2.1 Fourier Descriptors

Fourier descriptors (FD) represent an object in the frequency domain [31, 32, 33, 34]. The FDs

of a shape are computed using the coordinates of its boundary points. Consider an P-point outline

with (xp, yp) as the horizontal and vertical coordinates of the pth point, and cp = xp + iyp, as the

complex representation of the point coordinates. The FDs are calculated as shown in Eq. (39).

D(k) =
P−1

∑
p=0

cpe− j2πpk/P,k = 0, ...,P−1 (39)
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The FDs of a fish region are calculated using all points on the boundary. The lower- and higher-

frequency descriptors represent, respectively, the general shape and the finer details of the shape.

As fish regions tend to have relatively smooth edges, the significantly high-frequency FDs can be

ignored. Moreover, by ignoring the FD phases, the absolute FD values, |D(k)|, are made invariant

to rotation of fish.

To make the FDs invariant to fish size, the FDs magnitudes are normalized using the average of

D(1) and D(P−1). As fish tend to have relatively smooth boundary, only the FDs corresponding

to lower frequencies, i.e., for k = 1, ...,40 and k = P−40, ...,P−1, are used in this work. The FDs

corresponding to EM, HP, OC, BV and HC are shown in Fig. (10).

3.3 Classification

This section presents the Nearest Neighbor classifier (NNC) used to classify the feature vectors

consisting of absolute normalized FD values. Based on the NNC algorithm, feature vectors with

known classification (exemplars) are used to represent each of C classes. The FDs of the EM, HP,

OC, HC and BV shown in Fig. (10) are used as the exemplars. The distance measure between a

feature vector with unknown classification and each of the exemplars is used to classify the feature

vector, and therefore its associated object, to one of the classes [35]. The q-th exemplar of the

c-th class is defined as Dc,q, where c = 1, ...,C, and q = 1, ...,Q. In this work, the total number of

classes, C = 5, for EM, HP, OC and BV the number of exemplars, Q = 3 whereas Q = 4 for HC.

As mentioned earlier, to classify the feature vector, a weighted Euclidean distance is used to mea-

sure the distance between the unknown classification and exemplars. The square of the distance is

defined as shown in Eq. (40). The weight, wc, is the average square Euclidean distance between c-

th class, Dc, and a few FD vectors extracted from subjectively ”good” views of fish that are known

to belong to class c. Essentially, wc is the sample variance associated with the multivariate feature
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(a) (b)

(c) (d)

(e)

Figure 10: Templates and FDs (a) E. Morio (b) H. Plumieri (c) O. Chrysurus (d) B. Vetula (e) H.

Ciliaris

distribution of class c, assuming that the covariance matrix of such distribution is diagonal with all

diagonal elements equal to wc. A fish region with corresponding vector Dt is temporarily assigned
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to the class c of minimum dist2(Dc,Dt).

dist2(Dc,q,Dt) =
1

wc
(Dc,q−Dt)

T (Dc,q−Dt) (40)

(a)

(b) (c)

!

(d) (e)

Figure 11: Microfeature classification results (a) E. Morio (b) B. Vetula (c) O.Chrysurus (d) H.

Plumieri (e) H. Ciliaris

Three different thresholds, T h1, T h2, T h3 are used for the distance given by Eq. (40). The three

thresholds are chosen to be T h1 = 0.56, T h2 = 0.59 and T h3 = 0.62. If the distance, dist2(Dc,q,Dt)
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Figure 12: NNC results for pose unsuitable for classification

is greater than the highest threshold T h3, the region is labelled as ’Not Fish’. Fig. 11 presents

examples of classification for EM, BV, OC, HP and HC sequences. In every sequence, the top

left most image is the fish as detected for the first time and the binary image to its right is its

corresponding image obtained after background subtraction. Moving from left to right, the pairs

of gray scale and binary images represent the same fish in consecutive frames. The labels in the

figures indicate the threshold which was satisfied for classification. For example, in Fig. (11(c)),

the label ’OC Th1’ indicates that the fish has been classified as OC according to its shape based

on threshold T h1.When NNC does not classify a region as one of the five classes, the region is

labelled as ’Not Fish’, which implies that the region does not correspond to a fish or at least not to

a fish of interest in this work. Moreover, the fish regions, which are present at the borders of the

frame are also labelled as ’Not Fish’ as they are usually incomplete and therefore are not suitable

for classification.

As mentioned earlier, in addition to FDs, the species-specific features, mEM
Irmax and mOC

Irmax, are also

extracted for every region as described in section 2.1.2. Section 3.5 describes how NNC results

and mEM
Irmax and mOC

Irmax are combined together to classify an entire sequence.

3.4 Adaptive Region Segmentation using NNC and Morphological Opera-

tions

An adaptive region segmentation approach is used for the regions that are labelled as ’Not Fish’

by the NNC classifier, i.e., only the fish which are not classified by NNC are subjected to adaptive
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morphing operations and background thresholds. As mentioned earlier, the background subtracted

images are subjected to dilation, erosion and region filling operations to remove noise and merge

closely located regions of the same fish. However, sometimes the shapes extracted using the orig-

inal threshold T are not suitable for NNC classification. Therefore, an adaptive approach using

variable background thresholds and morphological operations is used to determine the shapes of

the final region.

In addition to the original threshold used for background subtraction, T, two additional thresholds,

T’ and T” are applied to the frame portion from where the region was extracted using T. The two

thresholds are lower than original threshold, i.e., T ′ < T ′′ < T . As T’ and T” are lower than T, it is

expected that a larger number of pixels will be assigned to the fish region. Hence, the size of the

bounding box is increased so that when thresholds T’ and T” are applied, the region remains inside

the bounding box. If thresholding using T’ and T” produces multiple regions within the bounding

box, only the largest region is considered.

In this step, three different morphological operations are used. First, dilation and erosion are ap-

plied along the directions 0◦, 45◦, 90◦ and 145◦. Second, dilation and erosion are applied along 0◦

and 90◦ directions. Third, no dilation and erosion are applied. However, region filling is applied

for all three cases. The combination of three different thresholds for background subtraction and

morphological operations, produces a total of nine different shapes. Fig. (13) presents an example

of adaptive morphing and thresholding on HC. It can be observed that only Fig. 13(b) produces a

HC good shape. Next, all shapes are presented to NNC classifier, and the shape which produces

the smallest dist2(Dc,Dt) is finally selected. In Fig. 13, first, second and third rows respectively

correspond to threshold T , T ′ and T ”. Similarly, first column corresponds to morphological oper-

ations along 0◦, 45◦, 90◦ and 145◦, the second column corresponds to morphological operations

along 0◦ and 90◦ and finally, no morphological operations are applied for the third column.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 13: Multiple morphing operations: Each row corresponds to different threshold while each

column corresponds to different morphological operation

3.5 Macrofeatures and Macrofeature Classification

This section presents a probabilistic-like approach to classify an fish entire sequence. As the

Kalman filter tracks a fish from frame to frame, the microfeatures, FDs and species-specific fea-

tures, are used to classify a region in a single frame whereas the macrofeatures are used to classify

an entire fish sequence.

The macrofeature vector is built by assigning probabilities to each NNC result in a fish sequence.

Specifically, the NNC is labels a region according to the relation between the distance, dist2(Dc,Dt),

and the three thresholds T h1, T h2 and T h3. If FD vector, D̂, of a region, satisfies threshold T h1,

it is more likely that D̂ corresponds to a species than if T h2 is satisfied. Therefore, a probability

quantifying the likelihood of D̂ is assigned depending on the threshold that is satisfied; a higher

probability is assigned to the smallest threshold. The thresholds T h1, T h2 and T h3 are respectively

assigned the values of 0.6, 0.3 and 0.1. However, if no threshold is satisfied, a zero probability is

assigned. Similarly, species-specific features are assigned a probability of 0.2 if mEM
Irmax ≥ 1.2 and
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mOC
Irmax≥ 0.1. However, if a stripe is not detected, a zero probability is assigned. The thresholds and

probabilities are user-defined and are chosen by observing the sequences in which the exemplars

are included.

A final aggregate of all the probabilities is calculated using Eq. (41) for sequence of length n

wherej = HP, EM, OC, HC and BV, indicates the species, Pj(Ai) represents the probability that i-th

region, Ai is associated with j-th species and Pj(Ai) represents the probability that i-th region, Ai is

not associated with j-th species.

Pj(
n⋃

i=1

Ai) = 1−
n

∏
i=1

Pj(Ai) (41)

As mentioned in section 3.3, the microfeature set consisting of FDs, mEM
Irmax and mOC

Irmax, are ex-

tracted for all regions. However, the aggregate probabilities for species HP, HC and BV is deter-

mined from Pj(Ai) = PFD
j (Ai), where PFD

j (Ai) is probability assigned to the NNC classification

of FDs. For species EM and OC, Pj(Ai) = PFD
j (Ai)PSS

j (Ai), where PSS
j (Ai) indicates the proba-

bility assigned to species-specific features according to mEM
Irmax and mOC

Irmax. It has to be mentioned

that although all regions are filtered using GF, while calculating the aggregate probabilities, the

algorithm only assigns PSS
j (Ai) to PEM if mEM

Irmax > 1.2 and to POC if mOC
Irmax > 0.1.

In Eq. (41), Pj(
n⋃

i=1
Ai) is calculated for all five species separately. The highest Pj(

n⋃
i=1

Ai) defines

the final classification of the entire sequence. For example, consider the sequence shown in Fig.

11(a). NNC classifies the fish once as ‘HP Th 2’, ‘EM Th 2’ and ‘EM Th 3’, and six times as

’EM Th 1’ . The probability of this sequence being EM is PEM(
⋃n

i=1 Ai) = 0.9998 and H. Plumieri

is PHP(
⋃n

i=1 Ai) = 0.3 where as PBC(
⋃n

i=1 Ai) = 0, PAF(
⋃n

i=1 Ai) = 0, POC(
⋃n

i=1 Ai) = 0. Hence,

although fish in individual frames are classified as different species, using macrofeatures, this

sequence is classified as EM.
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3.6 Results and Analysis

This section presents performance evaluation results for the proposed classification system. A

total of 4163 frames consisting of fish were tested. An average of 3.34 fish regions were found in

each frame. Out of 4163 frames, about 1400 frames consist of OC, EM, BV, HC and HP. All fish

regions within a frame are automatically identified and segmented out of the overall frame. In all

the experiments, the Kalman filter covariance matrices for process noise and measurement noise

are assumed to be diagonal and their values are respectively set equal to 0.05 and 0.9.

A. Macrofeature Classification Results

Table 1 presents evaluations results including the sequences corresponding to fish that are at the

edges of frame, fish with low resolution and fish with view or pose, which is unsuitable for clas-

sification. A few examples of such fish are shown in Fig. 17-20. It can be noted that it would be

difficult even for an human expert to classify fish with unsuitable view or with only some part of

its body in camera’s view. According to Table 1, the classification rate of the proposed system is

72.25%.

In Table 1, the 19% misclassification of EM is either due to fish pose, i.e., the view of fish is not

suitable for classification or because the fish is at the edges of the frame. Fig. 17 presents examples

in which EM is facing the camera. All the 19% misclassified HC belong to a same fish that faces

the camera as shown in Fig. 16(e). An example of BV swimming down is shown in Fig. 19(a).

Here BV looks like a OC and is thus misclassified as OC using T h2. Fig. 19(b) presents BV

example with low resolution. Out of the 33% of HP that are misclassified, majority of the fish have

very low resolution, thus resulting in poor segmentation of fish from its background and as a result

are misclassified by NNC. However, if these problematic cases were eliminated, the performance

of the proposed system improves significantly as shown in Table 2.

Table 3 shows results for 1st classification and the combined results for 1st or 2nd classifications,
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Table 1: Performance Evaluation

Species
Number of ap-

pearences

Classified correct

(%)
Misclassified (%) Not classified (%)

E. Morio 295 72% 19% 9%

O. Chrysurus 120 100% 0% 0%

H. Ciliaris 299 68% 19% 13%

B. Vetula 167 78% 14% 8%

H. Plumieri 286 63% 33% 4%

Table 2: Performance Evaluation Excluding the Problematic Cases

Species
Number of ap-

pearances

Classified correct

(%)
Misclassified (%) Not classified (%)

E. Morio 269 79% 21% 0%

O. Chrysurus 120 100% 0% 0%

H. Ciliaris 243 84% 0% 16%

B. Vetula 144 94% 0% 6%

H. Plumieri 286 70% 28% 2%

obtained using macrofeatures. When Pj(
⋃n

i=1 Ai) are calculated, a sequence is classified as a par-

ticular species j if the highest macrofeature, Pj(
⋃n

i=1 Ai), corresponds to species j. Sometimes, the

second highest macrofeature, Pj′(
⋃n

i=1 Ai), such that j′ 6= j, also aids in classification. It is possible

that j’ might actually correspond to the correct species.

Table 4 presents the total of number of sequences found in test frames for each species. It has to

be mentioned here that object merging and splitting are not addressed in the tracking part of the

proposed classification system. For example, when an object splits into two or more fish regions,

the Kalman filter does not associate these fish back to their original tracks before they merged.
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Table 3: Performance evaluation using first or second classifications

Species
Number of

appearances
Classified correct Not classified

1st CR 1st or 2nd CR 1st CR 1st or 2nd CR

E. Morio 269 79% 100% 0% 0%

O. Chrysurus 120 100% 100% 0% 0%

H. Ciliaris 243 84% 84% 16% 16%

B. Vetula 144 94% 94% 6% 6%

H. Plumieri 286 70% 88% 2% 2%

Hence, they are tracked as new sequences. However, the number of sequences in Table 4 are

obtained by associating such merge or split sequences manually. In Table 4, second and third

columns indicate respectively 1st and 2nd classification results.

All 5 EM sequences are identified correctly as EM in 1st classification whereas 1 sequence is

classified as OC and 1 sequence has been classified as BV in 2nd classification. For a sequence

with 1st classification EM, PEM(
⋃n

i=1 Ai)> Pj(
⋃n

i=1 Ai) where j = HP, OC, HC, BV. For example,

consider the sequence shown in Fig. 11(d). In this sequence, fish is classified 4 times as HP,

PHP(
⋃7

i=1 Ai) = 0.9216, once as EM, PEM(
⋃7

i=1 Ai) = 0.6, and once as ‘OC’, POC(
⋃7

i=1 Ai) = 0.3,

i.e., PHP(
⋃7

i=1 Ai) > PEM(
⋃7

i=1 Ai) > POC(
⋃7

i=1 Ai). Therefore, for this sequence 1st classification

is HP and 2nd classification is EM.

Fig. 14 presents cases in which the pose of EM is not suitable for NNC classification, i.e., using

Fourier descriptors of shape. However, in these cases, the vertical stripe on its tail aids in classifi-

cation. For the sequence shown in Fig. 14(a), mEM
Irmax ≥ 1.2, thus this fish is classified as EM with

PEM(
⋃n

i=1 Ai) = 0.9313. In Fig. 14(b), although the NNC result for one frame is EM using T h3,

the vertical stripe on its tail is detected making PEM(
⋃n

i=1 Ai) = 0.424 for this sequence. Moreover,

the fish in this sequence is not misclassified as any of the other species. Therefore, this sequence
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Table 4: Macro Feature Result In Terms of Sequences

Species No. of sequences
Sequences classified in

first classification

Sequences classified in

second classification

E. Morio 5 5 EM 1 OC, 1 BV

O. Chrysurus 14 14 OC 2 EM, 1 HP

H. Ciliaris 14 10 HC, 1 EM
1 BV, 1 OC, 1 as both BV

and HP

B. Vetula 5
3 BV, 1 OC, 1 as both HP

and BV
1 HC

H. Plumieri 25
15 HP, 4 EM, 5 OC, 1 as

both HP and EM

2 HP, 6 EM, 1 as both HP

and EM

can be classified as EM.

B. False Alarms

Table 5 presents the false alarms detected. Majority of the false alarms detected occur because

the fish shape resembles the shapes of exemplars and due to presence of a stripes as shown in

Fig. 15 and 16. A few examples of false alarms, based on the shapes, are presented in Fig. 15.

It can be observed the fish in Fig. 15(b) and Fig. 15(c) is a Grouper. However, it is not EM.

It is misclassified as EM as its shape is similar to that of EM. The Grouper in Fig. 15(d) is

misclassified as HP because the shape of its tail resembles the shape of HP’s tail. On the other

hand, the Calamus Calamus in Fig. 15(f), 15(g) and 15(h) are respectively misclassified as OC,

EM and HP. The Shark in Fig. 15(e) is misclassified as OC as its shape resembles to that of an OC.

However, in low resolution images as shown in example shown in Fig. 15(j), it is difficult even for

a human expert to identify the fish correctly.

Next, a few examples of false alarms caused due to detection of stripe are presented in Fig. 16. In
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(a)

(b)

Figure 14: Classification using species-specific features

Table 5: False Alarms

Total number of all fish de-

tected in 4163 frames
Number of false alarms False alarms (%)

13898 580 4.2%

the examples shown in Fig. 16(a) and 16(b), the camera light creates a bright spot on fish, thus,

detecting a vertical stripe mEM
Irmax ≥ 1.2. Although, the NNC classifier does not classify fish in Fig.

16(b) as one of the species of interest, it is labelled as EM due to detection of a vertical stripe.

Fig. 16(e) presents an example of HC that is swimming towards the camera. In this case, the NNC

does not classify it as a fish, but its fins appear as a vertical stripe making mEM
Irmax ≥ 1.2. Thus this

fish is misclassified as an EM with PEM(Ai) = 0.2. Similarly, horizontal stripes are detected in

fish examples shown in Fig. 16(c) and 16(d). The fish in Fig. 16(c) is labelled as EM by NNC.
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OC Th1

(a)

EM Th3

(b)

EM Th1

(c)
HP Th3

(d)

OC

(e)

OC Th1

(f)

!

(g)

HP Th1

(h)

BV

(i)
EM Th1

(j)

Figure 15: False alarms

EM Th1

(a)

Not Fish

(b)

EM Th3

(c)

Not Fish

(d)

Not Fish

(e)

Figure 16: False alarms caused due to detection of stripe

However, a horizontal stripe is detected at the edge of its body. The fish shown in Fig. 16(d) has

dark stripes along its anterior and posterior, which lead to detection of vertical stripes mOC
Irmax ≥ 0.1.

C. Other Cases
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Not Fish

(a)

Not Fish

(b)

Not Fish

(c)
Not Fish

(d)

Figure 17: Classification results for EM with poses unsuitable for classification

Consider the examples shown in Fig. 17, in which the fish faces camera. In such cases, the fish can-

not be classified until it turns to side, thus providing a good view for classification. The fish shown

in Fig. 17(a)-17(c) eventually turns providing a good side view for classification. However, for

most of the frames in this sequence, the fish faces the camera and its mouth is detected as a horizon-

tal stripe. Therefore, when macrofeature vectors are computed, the POC(
⋃n

i=1 Ai)> PEM(
⋃n

i=1 Ai),

thus this sequence is classified as OC.

Although HC has never been misclassified, a high percentage of HC are not classified. An example

is shown in Fig. 18. However, 16% of frames have not been classified due to poor resolution

which leads to poor segmentation of fish from background. The adaptive segmentation presented

in section 3.4 improves segmentation of fish as shown in Fig. 13. Another example of HC being

misclassified is shown in in Fig. 16(e). This fish is misclassified as EM because the white stripe

on its fins is detected by Gabor filters.

An example of BV swimming down is shown in Fig. 19(a). Here BV looks like a OC and is
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Figure 18: H. Ciliaris low resolution frames

OC Th1

(a)

HP Th3

(b)

Figure 19: BV Misclassification: (a) B. Vetula swimming vertically down (b) Low resolution frame

EM Th2

(a)

OC Th1

(b)

Figure 20: HP Misclassification: (a) HP misclassified as EM (b) HP misclassified as OC

thus misclassified as OC using T h1. Fig. 19(b) presents BV example with low resolution. In this

sequence, BV is classified once as BV using T h3 and once misclassified as HP using T Hh3.

High percentage of HP misclassification can be explained using Fig. 20. The overall shape of HP’s

body resembles that of EM with an exception of its tail. When the details of HP tail are lost due to

improper segmentation or due to low resolution, HP is misclassified as EM. In addition, HP has a

blurred stripe along its body. Sometimes, the intensity of this stripe is ≥ 0.1. In such cases, HP is

misclassified as OC. It can be noted that HP is misclassified only as one of the two species, namely,

EM and OC, because its shape resembles to the shapes of EM and OC.
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3.7 Sensitivity Evaluation to the Threshold Variations

This section presents the sensitivity analysis of the proposed classification system to variations in

the NNC classification thresholds T h1, T h2 and T h3. It can be observed from the tables presented

in this section that any variations in the thresholds T h1, T h2 and T h3 do not result in significant

change in the classification performance of the system.

3.7.1 Results for 2nd set of thresholds

The following tables present the classification results for thresholds T h1 = 0.54, T h2 = 0.57 and

T h3 = 0.6. The results shown in the tables include all the cases, i.e., including the sequences in

which fish is the edges of frames and the sequences with view or pose that is unsuitable for classifi-

cation. From the tables it can be observed that classification rate for HC has dropped significantly.

In addition, the number of false alarms has dropped to 3.1%.

Table 6: Performance Evaluation

Species
Number of ap-

pearances

Classified correct

(%)
Misclassified (%) Not classified (%)

E. Morio 295 72% 19% 9%

O. Chrysurus 120 100% 0% 0%

H. Ciliaris 299 55% 27% 18%

B. Vetula 167 78% 14% 8%

H. Plumieri 286 63% 33% 4%
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Table 7: Macro Feature Result In Terms of Sequences

Species No. of sequences
Sequences classified in

first classification

Sequences classified in

second classification

E. Morio 5 5 EM 1 OC, 1 BV

O. Chrysurus 14 14 OC 2 EM

H. Ciliaris 14 7 HC, 1 EM, 1 BV 1 BV, 1 OC

B. Vetula 5
3 BV, 1 OC, 1 as both BV

and HP
-

H. Plumieri 25
15 HP, 4 EM, 5 OC, 1 as

both HP and EM

2 HP, 6 EM, 1 as both HP

and EM

Table 8: False Alarms

Total number of all fish de-

tected in 4163 frames
Number of false alarms False alarms (%)

13898 431 3.1%

3.7.2 Results for 3rd set of thresholds

The following tables present the classification results for thresholds T h1 = 0.58, T h2 = 0.61 and

T h3 = 0.64. Similar to the results presented for the previous set of thresholds, the results shown in

the tables include the sequences in which fish is the edges of frames and the sequences with view

or pose that is unsuitable for classification. From the tables it can be observed that the number of

false alarms has increased to 5.7%. In addition, classification rate for HC has increased. On the

other hand, the classification rate for EM, OC, HP and BV did not change.
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Table 9: Performance Evaluation

Species
Number of ap-

pearances

Classified correct

(%)
Misclassified (%) Not classified (%)

E. Morio 295 72% 19% 9%

O. Chrysurus 120 100% 0% 0%

H. Ciliaris 299 72% 25% 3%

B. Vetula 167 78% 14% 8%

H. Plumieri 286 62% 34% 4%

Table 10: Macro Feature Result In Terms of Sequences

Species No. of sequences
Sequences classified in

first classification

Sequences classified in

second classification

E. Morio 5 5 EM 1 OC, 2 BV

O. Chrysurus 14 14 OC 2 EM, 1 HP, 1 BV

H. Ciliaris 14
10 HC, 1 as both HC and

BV, 3 BV
1 EM, 1 OC

B. Vetula 5
3 BV, 1 OC, 1 as both BV

and HP
1 HC

H. Plumieri 25
14 HP, 5 EM, 5 OC, 1 as

both HP and EM

2 HP, 7 EM, 1 as both HP

and EM

Table 11: False Alarms

Total number of all fish de-

tected in 4163 frames
Number of false alarms False alarms (%)

13898 792 5.7%

3.8 Conclusions

This work proposes an automatic classification system to identify five species of fish in underwater

video, which are obtained from uncontrolled environment. The five species of fish used in this work41



are Red Grouper, Yellowtail Snapper, White Grunt, Queen Angelfish, and Queen Triggerfish. The

steps involved to perform recognition of fish species are background processing, object tracking

and classification. An existing temporal median filtering-based background subtraction method

is used to separate the fish regions from their surroundings. To associate the fish in multiple

frames, Kalman filter-based object tracking is applied. Every non-background object is tracked

from frame to frame until it exits the camera’s field of view. Nearest neighbor classifier is used to

label the Fourier descriptors of the object with unknown classification. Finally, macrofeature based

classification using a probabilistic-like framework to classify an entire sequence is proposed. One

of the advantages of macrofeature classification is it is independent of the length of the sequence.

The classification rate of the proposed system is 72.25% for thresholds T h1 = 0.56, T h2 = 0.59

and T h3 = 0.62. The performance of the proposed system has been evaluated for two addition sets

of thresholds.
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4 Fourier Transform based Pattern Matching

Pattern matching is a tool used extensively in image processing [36], [37] and computer vision [38].

The majority of the existing pattern matching techniques assume that the target and source images

are related by a purely affine transformation. However, sometimes the target pattern can be trans-

formed by a small deformation in addition to affine transformation. In such cases, the FT-based

techniques presented in section 2.2 fail to determine the affine parameters. The algorithm presented

in this chapter aims to complement the existing FT-based affine transform estimation techniques

when an additional deformation, which rotates a pattern by different angles with respect to the pat-

tern’s center, is present in the pattern. The algorithm uses two approaches to determine the angles

of rotation. The first approach is using dynamic programming and the second approach is using

a greedy algorithm. The following sections present the concepts of dynamic programming and

greedy algorithm, proposed FT-based pattern matching algorithm. Finally, results and conclusions

of the proposed algorithm are presented.

4.1 Dynamic Programming

Dynamic programming is a discrete recursive optimization technique which divides a problem into

smaller subproblems [39]. Dynamic programming has been used to solve various in image pro-

cessing [40]-[45], such as, deformable object matching [40], [41], curve detection [42]-[44], image

segmentation [44]. Each subproblem is called a stage. Solving each subproblem results in a local

optimal solution. Dynamic programming arrives at the global optimal solution by sequentially

solving each sub-problem, moving from one stage to the next stage until all stages are covered.

Each stage is associated with states. A transition from one state in a stage to a state in the next

stage is associated with a weight, called the reward. Dynamic programming is performed either by

moving from initial stage to the final stage, called forward induction, or by moving from final stage

to the initial stage, called backward induction. The following equations represent recursive formu-
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lae for forward induction and backward induction to compute the maximum cost, where sn is the

current stage, cn(sn) is the cost associated with the current state and pn−1(sn−1) and pn+1(sn+1)

represent the maximum cost for the stages completed. However, in this work, reward is associated

with choosing a state. Therefore, from here on, cost is replaced with term reward.

pn(sn) = max{pn−1(sn−1)+ cn(sn)} (42)

pn(sn) = max{pn+1(sn+1)+ cn(sn)} (43)

4.2 Greedy Algorithm

A greedy algorithm is an optimization technique that solves a problem by choosing locally optimal

solutions. Similar to dynamic programming, a greedy algorithm divides a problem to sub-problems

and finds the local optimum solutions for each sub-problem. The global solution is determined by

solving each sub-problem moving from the initial stage to the final stage. However, as the algo-

rithm chooses the solution that appears to be the optimum solution locally, it does not necessarily

lead to a globally optimum solution [46]. Eq. (44) presents an example of formula to compute the

maximum reward, where sn is the current stage, cn(s jn) is the reward for choosing the j-th state

associated with the current stage.

pn(sn) = pn−1(sn−1)+max{cn(s jn)} (44)

Fig. 21 presents an example of a greedy algorithm to find the maximum sum. As mentioned, the

greedy algorithm picks the solution that gives the immediate optimal solution. The path chosen

by the greedy algorithm is shown with dark gray arrows. However, it can observed that the path

leading to maximum sum is given by black arrows.
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Figure 21: Greedy algorithm

4.3 Proposed Method

This section presents the proposed Fourier transform-based pattern matching algorithm. As men-

tioned earlier, the Fourier transform-based pattern matching techniques presented in section 2.2

assume that the source and target patterns are related by an affine transformation. However, some-

times a small deformation in addition to affine transform may be present in the target pattern. For

example, if Fig. 22 represents an original pattern, previously discussed FT-based algorithms cannot

clearly identify the directional features.

The proposed method aims to identify one or two major directional features, called as path, in a

pattern. In patterns similar to Fig. 22, it can be assumed that the pattern is rotated by a different

angle with respect to the distance from center of the pattern. Therefore, a path is a sequence of

distance-dependent angles of rotation, {φn,n = 0,1,2, ....,N}, where φn is the angle of rotation at a

distance rn from the center of the pattern. The algorithm starts by decomposing the spatial domain

image, f (x) of size S×S, into N non-overlapping circular rings, fn(x), where n = 0,1,2, ....,N, as

shown in Eq. (45). Radius of each circle is given by Eq. (46), where (mx,my) are the coordinates of

pattern center, rmax = S/2. The centers of the circular rings is at the middle of the original image.
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Original Image First Circular Ring Second Circular Ring Third Circular Ring

Fourth Circular Ring Fifth Circular Ring Sixth Circular Ring Seventh Circular Ring

Figure 22: An original pattern

An example of an image decomposed into non overlapping circular rings is presented in Fig. 23.

fn(x) =


f (x) (n−1)rmax ≤ rx,y < nrmax

0 otherwise
(45)

rx,y =
√

(x−mx)2 +(y−my)2 (46)

Next, the FTs of the N rings, Fn(u) =F{fn(x)}, are the computed and are mapped to polar domain

using the nearest neighbor interpolation. In polar domain, only the angles [0◦,179◦] are considered

as the directional features are symmetric, i.e., angles [180◦,359◦] provide the same information as

the angles angles [0◦,179◦]. After mapping the FTs of the circular rings into polar domain, the

next step is to determine the directional features of the pattern. For this two approaches, namely,

dynamic programming and greedy algorithm, are used. In this work, each ring is associated with

a stage while each angle in polar domain is associated with a state. In both approaches, backward

induction is applied, i.e., starting from the outermost ring, N-th ring, the algorithm moves inwards

towards the innermost ring, i.e., the first ring.

The objective function for the dynamic programming-based approach is given by Eq. (48). The
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Original Image First Circular Ring Second Circular Ring Third Circular Ring

Fourth Circular Ring Fifth Circular Ring Sixth Circular Ring Seventh Circular Ring

(a)

Original Image First Circular Ring Second Circular Ring Third Circular Ring

Fourth Circular Ring Fifth Circular Ring Sixth Circular Ring Seventh Circular Ring

(b)

Figure 23: Decomposition of original image into circular rings

reward, cn(sn) associated with choosing state sn is given by Eq. (47), i.e., the reward of choosing an

angle sn is the sum of the FT magnitudes at sn, where Fn(r,sn) represents the FTs in polar domain;

a higher reward indicates a stronger directional component along the angle sn.

cn(sn) =
rmax

∑
r=0
|Fn(r,sn)| (47)

The total reward, pn, associated with choosing a state is given by Eq. (48), where pn+1 represents

the total reward associated with (n+1)th stage and cn(sn) is the reward associated with the current

state sn given by Eq. (47). As the proposed algorithm aims to find the two paths associated with

the highest sum of magnitudes of FTs, the dynamic programming algorithm picks the angle that

gives the maximum total reward.

pn(sn) = max
sn+1
{pn+1(sn+1)+ cn(sn)} (48)
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Figure 24: Path computation

In Eq. (48), for each state sn+1 = [sn−ψ,sn+ψ], i.e., for each angle in the n-th ring, the algorithm

search for angles [sn−ψ,sn +ψ] in the (n+ 1)-th ring. The angle ψ is a user-defined parameter

and defines the maximum search angle as the algorithm moves from (n+ 1)-th ring to n-th ring.

Finally, backtracking is applied on sn to find the two paths corresponding to the two maximum

sums of magnitudes of FTs. A constraint, θ is used so as to avoid overlapping of the first and

second paths, so that the second path always stays from the first path by angle θ.

The objective function for greedy algorithm-based approach is given in Eq. (49). It can be observed

from Eq. (48), the dynamic programming finds the two paths by assuming that the summation of

the magnitudes of FTs of individual rings is equal to the result obtained by adding the complex-

valued FTs of individual rings. However, the dynamic programming approaches ignores the phase

information. As the greedy algorithm computes the summation of complex-valued FTs, the phase

information of the FTs is retained. In addition, the greedy algorithm adds the absolute value of
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FTs only after reaching the final stage, n = 1.

sn+1 = argmax
s′n+1

{∑
r
|Pn+1(r,s′n+1)+Fn(r,sn)|} (49)

Pn(r,sn) = Pn+1(r,sn+1)+Fn(r,sn) (50)

subject to sn+1 = [sn−ψ,sn +ψ], where ψ is a user-defined search angle.

To associate Eq. (48) with Eq. (44), it can be mentioned that the reward cn(s jn) is equivalent

to ∑r |Pn+1(r,s′n+1)+Fn(r,sn)|. This algorithms falls in the greedy algorithm category because

maximizing ∑r |Pn+1(r,s′n+1)+Fn(r,sn)| in one step does not imply that the final sum, considering

all stages, is globally optimum. For example, consider three complex numbers, a = 1+ 2 j, b =

3−2 j and c =−4−0 j. Then, a+b = 4 and a+b+c = 0. Addition of a and b results in a positive

number. However, the sum of all three numbers results in 0. It can observed from the example that

addition of complex numbers does not necessarily lead to maximum sum. Similarly, the proposed

greedy algorithm-based approach adds the complex-valued FTs. Therefore, this approach may not

always lead to global optimum solution.

4.4 Results

This section presents simulation results for the proposed FT-based pattern matching algorithm.

The three user-defined parameters, expected maximum change in angle as the algorithm moves

from (n+ 1)-th ring to n-th ring, ψ = 40◦, the minimum angle to avoid overlapping of the first

and second paths in backtracking algorithm , θ = 70◦ and the number of circular rings into which

the original pattern is decomposed is N = 7. Fig. 25(a) and Fig. 25(c) are the original patterns

whereas Fig. 25(b) and Fig. 25(d) are the images obtained after applying deformation on the

original patterns. The white and black lines on the patterns represent the two paths detected. The

direction of the line segment between two consecutive dots on the paths provides the direction of
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Figure 25: Results of the proposed algorithm using greedy algorithm

rotation, φn, of the rings.

An example of the proposed algorithm using dynamic programming is shown in Fig. 26(c). It can

be observed that the dynamic programming fails to detect the directional features whereas in Fig.

26(b), the greedy algorithm correctly detects the directions in same pattern.

Another example is presented in Fig. 27, where single path is detected using greedy algorithm.

From the FT of the example shown in Fig. 27(a), it can be observed that the major direction of this

pattern cannot be determined without decomposing it into rings.
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Figure 26: Results of the proposed algorithm using: (a), (b) Greedy algorithm (c) Dynamic pro-

gramming

!

(a)

!

(b)

Figure 27: Results of the proposed algorithm (a) Pattern and path detected using greedy algorithm

(b) Zoomed in version of Fourier transform magnitude of the pattern

4.5 Conclusions and Future Work

A Fourier transform-based technique has been proposed to detect directional features in patterns

which have deformed by a warp-like transformation. The algorithm complements the existing

FT-based techniques to estimate the affine parameters. Two different approaches are studied in

this work. The first approach uses dynamic programming, while the second uses a greedy algo-

rithm. The dynamic programming-based approach computes the paths by assuming that the sum
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of magnitudes of FTs of the individual concentric circular rings is equal to the FT of the original

images, thus ignoring the phase information in FTs. On the other hand, the greedy algorithm-

based approach uses the complex-valued FTs to compute the paths. The purpose of this work is

not to compare dynamic programming itself with the greedy algorithm. Such a comparison is not

appropriate since the objective functions used in the two approaches are different. However, one

can compare the performances of the two techniques overall. Further experimentation is required

to confirm that the dynamic programming does not detect the directional features for the objective

function used in this work.

Future work includes extending the proposed algorithm to other types of deformations and auto-

matically determine the user defined parameters. These include the number of circular rings into

which the original image is to be decomposed, N, the search angle as the algorithm moves from

one ring to the next ring, ψ, and finally, the separation angle used in backtracking algorithm, θ.
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