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ABSTRACT 

Facies and stratigraphic architecture right at the transition from marine to non-marine environments is 

poorly documented.  In the Cretaceous outcrops of Utah, Star Point and Blackhawk Formations are well 

studied.  The nature of spatio-temporal transition of these two Formations, in the deposition-strike 

orientation, remains undocumented.  This study characterizes facies and stratigraphic complexity at the 

transition of the two Formations that crop out in depositional-strike orientation in the Wasatch Plateau. 

Data from outcrop including photomosiacs and measured sections demonstrate this complexity at a 

range of scales. The Star Point constitutes a shoreface environment.  The Blackhawk constitutes a 

coastal-fluvial environment. 

In the northern part of study area, the transition from marine to continental strata is expressed by 

intertonguing succession. The dip-oriented outcrops show pinch-outs of two parasequences into 

coastal-plain deposits.  This complexity decreases southward, the southern outcrops show a simple 

transition.  At least two sequence boundaries are correlated across the outcrop belt. 

 

 

 

 

 

 

 

 

 

 

Keywords: Sequence Stratigraphy, Star Point Formation, Blackhawk Formation, Wasatch Plateau, 

marginal marine deposits, depositional strike variability, sequence boundary, Sedimentology, 

Stratigraphy
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INTRODUCTION 

 

 In the stratigraphic record, transition of shallow-marine to coastal plain depositional 

environment is generally thought of as a smooth transition without much complexity.  Usually it is 

described as a gradual upward transition from marine to non-marine settings with a small number of 

sub-environments.  However, by focusing on the sub-environments in the marginal-marine strata, this 

study set out to document that this transition from shallow marine to coastal plain can be rather very 

complex stratigraphically. 

 

 In the Wasatch Plateau (Fig. 1A), Utah, upward transition of the Cretaceous shallow-marine 

Star Point Formation to coastal-plain Blackhawk Formation has been poorly documented, compared to 

the neighboring Book Cilffs.  This study investigates the complex intertonguing of the coastal plain and 

shallow-marine environments in outcrops along the north-eastern Wasatch Plateau.   

 

 In outcrops, including the famous Book Cliffs (Fig.1A), regional sequence stratigraphic 

framework is normally described in dip-oriented sections (Taylor and Lovell, 1995; Van Wagoner, 1995; 

Howell and Flint, 2003; Yoshida et. al, 1998).   This study gives a rare insight of this framework as it 

varies along depositional-strike.  Particularly the sequence boundaries identified in this study gives a 

spatial, strike oriented perspective of an incised valley with its associated interfluves. 
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Figure 1: The present study focuses on the north-eastern Wasatch Plateau (A), contagious with the famous Book 

Cliffs.  Note the locations of the studied outcrop “windows”.  The studied interval is the transition of the Star 

Point Formation into the Blackhawk Formation (red box in B).  This interval is described by the intertonguing of 

the marine Star Point Sandstones with the non-marine Blackhawk Formation (C).  (modified from Hampson et 

al., 2011) 

 

 Fluvial incision eroding top of marine sandbody may not always be the result of a sea level 

fall.  In one particular outcrop, a fluvial incision into a upper marine sandstone is likely the result of a 

backwater effect (Chow, 1959; Parker, 2008).  The backwater effect is a hydrodynamic event that is seen 

in modern environments, such as the Mississippi River (Nittrouer et. al, 2011).   The backwater effect 

can create multiple incisions, and give a false sense of a drop in sea level in the rock record.  However, 

there has been no documented backwater effect in the rock record to date.  The example presented 

here could be the first recorded event in the outcrop.  

  

 The objectives of this paper are: (1) to identify and investigate the depositional environments 

at the transition interval between the Star Point and Blackhawk Formations, in documenting complex 
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land-ocean interactions in the Cretaceous Interior Seaway, (2) characterize sequence stratgraphic 

framework in a depositional strike orientation, and (3) give a new approach into interpreting fluvial 

incision, one not based on sea level fall, but an autogenic backwater effect. 
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Regional Geology and Study Area 

 

 During the late Cretaceous, central North America was covered by a north-south trending, 

epicontinental sea knows as the Western Interior Seaway (Kauffman and Caldwell, 1993). The modern 

Wasatch Plateau, of eastern Utah was located parallel to the western coastline of the Interior Seaway 

during the Campanian Age (Fig. 2), thus preserving the sedimentary strata along depositional strike.  The 

eight study sites (outcrop “windows”), are located in the north-eastern half of the Wasatch Plateau (Fig. 

1A).  

 

Figure 2: Cretaceous paleogeography of the Western Interior Seaway during the Campanian Age (~80 Ma ago).  
During this time the Star Point and Blackhawk Formations were deposited in a retro-arc foreland basin.  Deltas 
and barriers islands were forming along the western shoreline and were sourced from the Sevier Orogenic belt 

in the west.  (modified from Ron Blakely) 
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 The studied late Cretaceous succession focuses on the transition of the upper Star Point and 

lower Blackhawk Formations, both of which belongs to the Mesaverde Group (Young, 1955; Cole et al., 

1997). The Mesaverde Group was deposited in the seaway, as its shoreline repeatedly advanced and 

retreated resulting in a complex intertonguing of marine and non-marine strata (Henry and Finn, 2009).  

These deposits were sourced from the uplifted Sevier Orogeny to the west (Willis, 2000; Kaufmann and 

Caldwell, 1993).  Rocks within the Wasatch Plateau normally have a dip of about two degrees to the 

northwest (Lamarre and Burns, 1997).  Canyons were carved into the Wasatch Plateau as a result of 

erosion, exposing the Mesaverde Group and providing excellent windows outcrop options within the 

strata of our research. 

 

 The Star Point sandstone tongues (Fig. 1B), which have been interpreted to contain a number 

of parasequences (Hampson et al., 2011; Dubiel et al., 2000; Holman, 2001), overlie and intertongue the 

offshore deposits of the Machos Shale (Clark, 1928; Spieker, 1931). The Star Point Sandstone mostly 

consists of five parasequences that are predominantly linear to moderately lobate, wave dominated 

shorelines that define an overall concave-landward shoreline trajectory.   Two of the five parasequences 

contain strong lobate river-dominated delta-front deposits that locally occur (Hampson et al., 2011).  

The majority of the Star Point sand bodies are overlaid by extensive coal zones of the Lower Blackhawk 

Formation.  The coal flora indicates a climate of warm temperate to subtropical (Parker, 1976). 

 

 The Blackhawk Formation (Fig. 1B) constitutes an overall coastal-fluvial environment 

(Spieker, 1931), which was deposited behind the western shoreline of the seaway, landward of the Star 

Point deposits.  The Blackhawk has been observed to contain more abundant, thicker and extensive 

channelized sandbodies as the Formation becomes younger (Marley et al., 1979). There are currently no 
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documented sequence stratigraphic boundaries in the non-marine Blackhawk Formation in the Wasatch 

Plateau.   
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Methodology and Dataset 

 

 The Mesaverde Group crops out continuously along the eastern edge of the Wasatch Plateau 

for a distance of 100 kilometers (Hampson, 2011).   The north-eastern portion of the Wasatch Plateau’s 

cliff face is sub parallel to the regional depositonal strike of the western paleo-shoreline of the seaway 

(Flores et al., 1984; Dubiel et al., 2000; Hampson et al., 2011).  A series of canyons cut into the outcrop 

belts of the Mesaverde Group in this portion of the Wasatch Plateau.   Eight of these canyons served as 

ideal study locations to capture the complexity of the transitional zone of the Star Point and the 

Blackhawk Formation at a range of scales (facies, outcrop and regional).  The sandstone exposures have 

mostly high visibility along the outcrop belt.  However, the dominating mudstones tend to be covered by 

scree, which may be vegetated.  In panoramic it is generally easy to distinguish the scree covered 

mudstone strata compared to the more resilient sandstone architecture.  

 

 In this study, detailed lithologs were measured at all eight outcrop “windows” through the 

top of the Star Point and the overlying lower Blackhawk Formations.  These lithologs contain bed 

thicknesses, sedimentary structures, grain size variations, ichnology, bioturbation index, and 

paleocurrents.  The bioturbation index (BI) of Taylor and Goldring (1993) is used to measure the degree 

of bioturbation in the sediments, and represented as BI log alongside lihologs as shown by Gani et al. 

(2008).  All lithologs were hung from the top of the Star Point Formation, using the Axel Anderson-

Cottonwood-Spring Canyon coal zone as the datum to create a regional sequence stratigraphic 

framework. Numerous photos were also taken to illustrate key facies stratigraphic features.  
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 Several photomosaics of the outcrops were generated to conduct facies architectural and 

sequence stratigraphic analysis.  The method of facies architectural analysis (Jackson, 1975; Allen, 1983) 

was used to show the complexity of the transitional zone at the outcrop scale.  The facies architectural 

analysis also allowed for characterizing the intermediate-scale depositional complexities.  
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RESULTS 

 

Facies Associations and Depositional Environments 

 Eight facies associations, each representing a particular sub-environment of deposition, were 

recognized at the Wasatch Plateau outcrops.  The identified facies associations are offshore marine, 

lower shoreface, upper shoreface, fluvial channel, tidal channel, swamp, coastal/flood plain, and bay 

that are summarized in Table 1.  In combination, these associations are interpreted to represent two 

major depositional settings, marginal-marine and terrestrial coastal plain.  By studying various sub-

environments of the marginal-marine strata in the Wasatch Plateau, this study reveals that the 

transition from shallow marine to coastal plain can be rather very complex.   Importantly, this 

intertonguing transition contains incised channels, sequence boundaries, and abrupt, up-dip pinch outs 

of shallow-marine sandbodies (i.e. parasequences) into coastal plain mudstones, something that can 

serve as an analog for a lesser-known type of stratigraphic hydrocarbon trap. 

 

 Offshore Marine Facies Association (Fig. 3-A): These deposits consist mainly of mudstones 

with interbeds of very fine- to fine-grained, hummocky cross-stratified sandstones.  The sandstone bed 

thickness ranges from 10 cm to 50 cm. A lower unit with Cruziana ichnofacies and a BI ranging from 3 to 

5 was identified.  The ichnogenera includes Siphonichnus, Terebellina, and Helminthopsis.  An upper unit 

of mixed Cruziana and Skolithos ichnofacies with a BI ranging from 3 to 5 was identified.  The 

ichnogenera includes Terebellina, Helminthopsis, Palaephycus tubularis, Ophiomorpha, and Gyrochorte.     
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Table 1: Facies association along with their descriptions and ichnology of the study interval that comprises the transitional zone between the Star Point and 
the Blackhawk Formations.
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 This facies association is interpreted to indicate an offshore marine environment, with a 

shallowing-upward trend.    The majority of the deposits being mudstones with Cruziana ichnofacies 

indicate relatively low-energy conditions that are consistent with offshore marine environments below 

fair-weather wave base (Dott and Bourgeois, 1982).  The hummocky cross-stratified sandstone beds 

indicate occasional storm events (Dott and Bourgeois, 1982).  Storm beds are common in the offshore 

marine environments because strong storms have the ability to carry some of the shoreface sands to 

offshore and deposit them (Hamblin and Walker, 1979).     

 

 Lower Shoreface Facies Association (Fig. 3-B): These strata consist almost entirely of fine-

grained sandstone beds with thickness ranging from a few cm up to 1 m.  There is an upward-transition 

from hummocky cross-stratified sandstones to swaley to planar-laminated sandstones.   Wave-ripples 

are preserved at some bed tops.  Bioturbated, wavy mudstone beds were observed locally .  A mixed 

Cruziana and Skolithos ichnofacies with a BI ranging from 3 to 4 were identified.  The ichnogenera 

include Palaeophycus heberti, Skolithos, Ophiomorpha, Paleophycus tubularis, Chrondrites, Terebellina, 

Asterosoma, and Thalassinoides.   

 

 Based on sedimentary structures and trace fossil assemblages, this facies association is 

interpreted as a lower shoreface deposit.  The majority of the deposits being sandstones indicate a high-

energy environment with persistent wave interaction.  The upward-transition from hummocky to swaley 

to planar-laminated sandstones indicates the lower shoreface environment becoming more proximal 

stratigraphically upward, as the storm- and fair-weather waves having stronger interaction with the sea 

floor with decreasing water depth (Wright et al., 1979).  The wave-ripples at the top of the beds indicate 
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marine environment above fair-weather wave base. The mixed Cruziana and Skolithos ichnofacies also 

indicate a lower shoreface environment (Pemberton et al., 1992). 

 

 Upper Shoreface Facies Association (Fig. 3-C): This facies association consists mostly of fine- 

to lower coarse-grained sandstone beds, ranging in thicknesses from 5 cm to 3 m.  Dominant 

sedimentary structure is trough cross-stratification, mostly unidirectional but some are bipolar.  Primary 

paleocurrent directions of these dunes range from 72 to 93 degrees.  A Skolithos ichnofacies with a BI 

ranging from 0 to 3 is identified.  The ichnogenera includes Ophiomorpha  and Skolithos.   

 

 Based on sedimentary structures and trace fossil assemblage, this environment is interpreted 

as an upper shoreface.  Paleocurrents of the dunes probably indicate that, locally, dominant longshore 

current was towards the northeast.  The coarser grain size of the sandstones and the lack of mudstones 

indicate a very high energy environment seaward and closer to the beach (Harms et al., 1975).  The 

Skolithos ichnofacies and the low BI also indicate a very high energy environment such as an upper 

shoreface (Gani et al., 2008). 

 

 Tidal Channel Facies Association (Fig. 3-D): This facies association consists of inclined 

heterolithic strata of mudstones and very fine-grained sandstones.  The sandstones strata contain 

current ripples and rare dune-scale cross stratification.  Some double mud drapes are also present. The 

BI ranges from 0 to 2.  The ichnogenera includes Skolithos, Teredolities, Planolites, and Thalassinoides.   
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 This succession is interpreted as tidal channel deposits.  The inclined heterolithic strata 

indicate a migrating tidal channel (Thomas et al., 1987), where  mudstones were deposited during times 

of no tidal change (i.e. slackwater periods) and the sandstones were deposited when the tides were 

moving in and out.  Double mud drapes also suggest a tidal influence in the environment. Moreover, 

presence of marine trace fossils indicates that the channel was influenced by marine processes. 

 

 Bay Facies Association (Fig. 3-E): These deposits consist of mostly mudstones interbedded 

with thin, very fine-grained sandstone beds with erosional bases.  Symmetrical wave-ripples are present 

in the sandstone beds, which range in thickness from a few cm to 30 cm. A mixed Cruziana and Skolithos 

ichnofacies with a BI ranging from 0 to 4 was observed.  The ichnogenera includes Terebellina, 

Palaeophycus heberti, and Thalassinoides. 

 

 Restricted trace-fossil suite with non-uniform trend of BI log (Gani et al., 2008), and the 

presence of wave ripples but the lack of hummocky cross-stratification indicate a relatively shallow and 

protected marine environment such as a bay environment (Coleman, 1966; Dalrymple et al., 1992). 

Predominance of mudstones suggests a relatively low energy environment.  However, the presence of 

thin, erosional sandstone beds with wave ripples indicates occasional stronger wave conditions affecting 

the bay floor.  

 

 Swamp Facies Association (Fig. 3-F): The succession consists of highly carbonaceous 

mudstones and coals.  Multiple coal beds are present with thicknesses ranging from 20 cm to 3 m.  The 
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coals are bright and shiny, and easily fractured.  Some leaf impressions and root traces are present.  The 

BI ranges from 0-1.  Some Teredolities and rare vertebrate burrows are present locally in the coal beds. 

 This facies association is interpreted to deposit in swamps.  Carbonaceous mudstones and 

coals are indicator of massive amounts of vegetation growth, which are commonly present in swampy 

environments near the coasts (Cobb and Cecil, 1993).  

 

 Coastal Plain / Flood Plain Facies Association (Fig. 3-G & 3-H):  This facies association 

consists primarily of mudstone and siltstone deposits with subordinate, thinly bedded sandstones.   

Locally, the mudstone and siltstone deposits can contain carbonaceous material and palaeosols..  The 

deposits are rarely bioturbated with unidentifiable organism.  Paleosols were identified at the Rilda 

Canyon outcrop with a thickness of up to 5.9 m.  The massive appearing palaesol deposit lacks any facies 

structures and reacted with hydrochloric acid.   

 This succession indicates a coastal/flood plain deposits, based on the fact that  paleosols and 

encase fluvial channel sandstones.  The carbonaceous material is interpreted as vegetation growth on 

the floodplain.  The mature calcareous palaeosols represent a major hiatus in deposition (Sheldon and 

Tabor, 2009). 

 

 Fluvial Channel Facies Association (Fig. 3-I): These deposits consist of channelized, very fine- 

to medium-grained sandstones, which show erosional U-shaped bases overlain by scattered mud clasts, 

and sharp upper contacts underlain by current ripple cross-lamination.  Trough cross-stratification and 

convolute structures are also present.  Internally, the sandstones show low-angle accretion surfaces, 
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dipping roughly 90 degrees away from the dips of the dune-scale cross-bedding.  There are no 

identifiable burrows in this facies association, therefore, the overall BI is 0.  

This facies association is interpreted to indicate a fluvial channel deposits.  Erosional U-

shaped bases indicate fluvial channel cutting into underlying substrates (Miall, 1983).  Low-angle 

accretion surface indicates lateral migration of meandering channels (Bernard et al., 1970), whereas 

dune-scale cross-stratification and current ripples indicate unidirectional current flow typical of a fluvial 

channel.  Convolute structures indicate rapid deposition, and dewatering after deposition of overlying 

bed.   
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Figure 3: Representative facies photos of the Star Point and Blackhawk Formations in the north-eastern Wasatch 
Plateau.  A) Offshore mudstones with thin bedded hummocky cross strata of the Star Point Formation (hammer 

is circled for scale).  B) Lower shoreface deposits with hummocky and swaley cross strata.  Note the intense 
Ophiomorphitric burrowing.  C) Dune cross-stratification of the upper shoreface deposits.  Note the lack of trace 
fossils locally.  D) Inclined heterolithic strata interpreted as a tidal channel deposit that are sandwiched between 

a coal seam (lower) and a erosionally-based (interpreted as incised valley) fluvial channel deposit (upper).  E) 
Alternating layers of carbonaceous mudstones and sandstones with wave ripples that are interpreted to deposit 

in bay environments.  A coal seam caps this bay succession.  F) Coal seams and carbonaceous mudstones, 
representing a swamp environment.  G) Paleosol developed within flood plain mudstones.  H)  A pair of fluvial 

channel deposits encased in coastal plain mudstones in the Blackhawk Formation.   
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Overall Depositional Pattern 

 In the study area, eight different depositional environments appear and reappear both 

temporally and spatially.  Coarsening-upward offshore and shoreface strata indicate a typical regressive 

shoreline.  These shallow-marine deposits are then overlain by strata of coastal plain environments, 

such as swamps, tidal and fluvial channels, and bays.  The southern part of the study area (e.g., Trail 

Mountain Mine) represents a rather smooth upward transition from marine to non-marine strata (Figs. 

4A, 5).  However, the northern section of the study area, Wattis Road outcrop (Figs. 4B, 6), appears 

more complex with many depositional sub-environments, barrier island complex, fluvial incision into 

marine sandstone, and up-dip pinchouts of marine sandbodies.  The rise of relative sea-level brings back 

marine environments that overlie coastal plain environments.  At the Wattis Road study area, final 

regression of the sea is accompanied by the development of a fluvial channel with multiple incisions, 

eroding into upper shoreface deposits, with associated fluvial channels and coastal plain strata.  

Notably, abrupt, up-dip pinch outs of the two uppermost marine sandbodies within coastal plain 

mudstones are distinctly developed in the Wattis Road section (Fig. 6).    
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Figure 4: A) The Trail Mountain Mine litholog illustrating a smooth and gradual upward transition from marine 
to non-marine strata.  B) The Wattis Road Litholog documenting a rather complex upward transition from 

marine to non-marine strata.  C) General legend for litholog, facies architecture, correlation panel, and diagrams 
for this paper. 
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Figure 5: Trail Mountain Mine outcrop photomosaic (upper) and its corresponding facies and stratigraphic architecture (below).  This location shows a 
simple upward transition from marine to non-marine strata.  However, the fluvial channel architecture is more complex in this southern outcrop compared 
to its northern counterparts (Fig. 6).  For legend, see Fig. 4C.  
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Figure 6: (upper) Photomosaic and (lower) corresponding facies and sequence stratigraphic framework of the outcrop at Wattis Road section, showing a 
complex lateral and upward transition from marine to non-marine strata.  Note the up-dip pinchouts of the two uppermost marine sandbodies into the 
coastal plain mudstones.  For legend, see Fig. 4C. 
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 The transitional complexity decreases toward the south from the Wattis Road outcrop, but 

the fluvial complexity increases.  The southern part of the study area contains more complex fluvial 

architecture:  multi-story channels and channel belt complexes.  At the Burma, Des Bee Dove Mine, 

Wilberg, and Trail Mountain Mine, fluvial channels appear to be incising into the surrounding coastal 

plain strata and depositing a multi-story incised valley fill (Fig. 7). 

 

Sequence Stratigraphic Framework 

 The sequence stratigraphic framework of the Star Point and Blackhawk Formations is 

emphasizing different bounding surfaces (Fig. 7).  For the Star Point Formation that is dominated with 

marine facies, marine flooding surfaces were used to identify sequence stratigraphic units like 

parasequences.  Inside parasequences, a lower order surface known as intra-parasequence minor 

flooding surface (Hampson, 2000), can be identified (Fig. 7).  These surfaces were picked based upon the 

subtle yet abrupt fining of marine sandstones across these surfaces within an overall coarsening upward 

trend.   

 The Blackhawk Formation, being terrestrial in nature, is relatively challenging for establishing 

a sequence stratigraphic framework.  Here particular attention was paid to distinguish incised-valley fills 

from regular channel deposits, identify paleosols, and correlate coal layers. Incisal bases of the thick and 

complex multi-storey sandbodies are interpreted as incised valley floors at several stratigraphic 

positions.  At the Rilda section, a mature calcareous palesol is present at the interfluve area.  At the Trail 

Mountain Mine outcrop, the yougest incised valley fill appears to be the thickest. The Wasatch Plateau 

also gives a unique view into the variation of the sequence boundary along a strike orientation.   
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Figure 7: Along depositional-strike sequence stratigraphic correlation panel of the study area.  The upper sequence boundary cuts through the Blind Canyon 
Coal zone, whereas the lower sequence boundary erodes into the marine sandstone of the Star Point Formation.  For legend see Fig. 4C.  
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 Incised valley fills have been interpreted in the lower Blackhawk Formation based on the 

criteria of Zaitlin et al. (1994).    Four important features have been indentified in this regard:  (1) there 

are deep and widespread incisions at the base of these channelized deposits;  (2) the multi-storey 

channel fill thickens laterally upward, indicating an upward increase in accommodation space;  (3) the 

multi-storey channelized sandbodies are far larger than neighboring channelized sandbodies outside of 

the valley;  (4) the interfluves contain well-developed mature paleosols.  The floors of these incised 

valleys, along with their correlative interfluve surfaces, represent sequence boundaries generated dut to 

relative sea-level fall. 

Backwater Effect 

 Not all prominent fluvial incision can be interpreted as a fall in base level and therefore a 

sequence boundary.  At the Wattis Road outcrop, a fluvial channel was identified eroding down into the 

marine sandstone (Fig. 8A).  Evidence associated with this fluvial channel points to a different 

mechanism for incision, rather than a sea-level fall.  Interesting clues such as the multiple erosional 

surfaces (Fig. 8B), marine influences when wave propagates upstream, and likely downstream 

continuation of this channel where it is filled with mudstones (Fig. 8C) were observed.  This evidence 

suggests that the incision seen at the base of this channel is likely linked to a backwater effect at the 

river mouth (Parker et al., 2008; Petter, 2010). 

 The back water effect is created when waves propagate upstream of a river, causing a 

deposition of sand size sediments (Fig. 8D).  When the waves subside, a rush of water erodes into the 

substrate causing a prominent erosional scar.  This happens in a repeated fashion and can be caused by 

non-base level controls such as tides and storms.  The backwater effect also initiates a restriction in bed 

load transportation, resulting in finer sands and muds being the only sediments transported  
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Figure 8: Prominent fluvial incision eroding the top of the uppermost marine sandstone at the Wattis Road 
outcrop (A) uninterpreted photo; B) interpreted facies architecture).  Note the multiple erosional surfaces at the 
base of the channel incision.  This incision is interpreted as backwater effect at the mouth of the river.  For 
legend see Fig. 4C.  C) Mud-filled fluvial channel down dip and at the same stratgraphic level of the sand-filled 
channel of Fig. A (outlined in red dotted line).  This mud-filled channel is another indication for backwater effect.  
The downstream portion of the channel will be mostly mud deposition due to the sand deposition upstream.  
The backwater cycle (D): A normal river profile (upper); deposition of led load occurs as the wave propagates 
upstream (middle); when the surface wave recedes, incision will occur as a hydraulic jump is created (lower).    
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downstream.  This type of effect has not been documented in the sedimentary rock record; 

nevertheless, it has been recorded in the modern environment.  For example, the Mississippi River’s 

south-west pass has the backwater effect due to a micro-tidal control (Nittrouer et. al, 2011). 

 The appearance of multiple erosional scars at the channel base indicates a repeated 

erosional event.  The tidal range of the Western Interior Seaway is micro-tidal (Ericksen and Slingerland, 

1990), which is enough to create a backwater effect resulting in a discontinued bedload transport.    
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DISCUSSION 

 

Transitional Complexity 

 Although down-dip pinch-outs of marine sandbodies (parasequences) are better known, 

their up-dip fate is less understood.  A significant stratigraphic feature of the Wattis Road outcrop is the 

abrupt, up-dip pinch out of marine sandbodies within coastal plain mudstones (Fig. 6).  A feature like 

this is difficult to pin down in subsurface studies involving wireline logs and cores.  Therefore, large-scale 

outcrop windows like the one in the Wattis Road are suitable to investigate the nature of this up-dip 

pinchout.  These up-dip pinch outs of shallow-marine sandbodies, which have inherited basinward 

depositional dip, are significant because of the potential for trapping hydrocarbons at the up-dip 

termination of the sandbodies.  Encasing coastal plain mudstones can act as seals.  Hydrocarbon could 

migrate up the marine sandbodies and accumulate where sandbodies abruptly pinches out into the 

mudstones. Knowledge of this complex facies transition in the Wattis Road in a marginal-marine setting 

can assist in predicting this type of stratigraphic traps in the subsurface.   

Strike Variability of the Sequence Stratigraphy 

 The Western Interior Seaway has been studied extensively in the depositional dip orientation 

(Taylor and Lovell, 1995; Van Wagoner, 1995; Howell and Flint, 2003; Yoshida et. al, 1998), like many 

other outcrops of the world that are used in sequence stratigraphic studies.  However this study gives a 

unique perspective of sequence startigraphic framework along depositional strike.  A correlation panel 

has been constructed using lithologs of each outcrop window to demonstrate the strike variation of 

sequence stratigraphic scenario (Fig. 7).  Only the uppermost marine snadbody of the Star Point 

Formation was focused in this study.  This sandbody represents a parasequence in the Mancos Shale.  
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However, there are other straigraphic boundaries that can be correlated inside this parasequence 

throughout the study area.   There are subtle yet abrupt decrease in grain size within the overall upward 

coarsening trend of this parasequnce that likely indicate small fluctuations of sea level. These 

boundaries are interpreted as intra-parasequence marine flooding surfaces. 

 

 A pair of sequence boundaries can be correlated from across the studied outcrop belt.  The 

Wilberg, Des Bee Dove and Burma Road locations have distinct multi-storey channels that incise into the 

coastal plain mudstones.  These channels are unlike of other simpler fluvial channel sandbodies gernally 

described in the lower Blackhawk Formation (Marley et. al, 1979; Adam and Bhattacharya, 2005).  

Similar sized incised valley fills have been described in the Book Cliffs further to the east (Adams and 

Bhattacharya, 2005).  

 

 Several sequence boundaries have been observed in the Blackhawk Formation, providing a 

unique perspective of their along strike variability (Fig. 7).  Regional persistent coal zones were used as 

useful marker beds.  At the Des Bee Dove outcrop, the upper sequence boundary erodes out the 

underlying Blind Canyon coal zone.  This indicates a pronounced incision at the base of the incised 

valley.  At the Burma outcrop, the lower sequence boundary erodes into the marine sandstone, again 

indicating major incision.  At the Rilda location, the correlative interfluve of the upper sequence 

boundary is represented as thick, mature paleosols.  At the Trail Mountain Mine outcrop, the upper 

sequence boundary is interpreted as being eroded out by a multi-storey fluvial channel.  However, not 

enough data were gathered about this multi-storey fluvial complex to convincingly identify its base as 

another sequence boundary.   
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 One notable observation in the lateral transition from south to north is that the Blind Canyon 

coal zone likely merges laterally with a marine flooding surface at the Wattis Road outcrop.  This 

indicates, in general, that coal zones and marine flooding surfaces are likely equivalent surfaces resulting 

from base-level rise.  Therefore in non-marine strata, coal can be used to identify flooding events.  

 

Paleogeography 

 Summarizing the results of this study, a paleogeographic scenario of the north-eastern 

Wasatch Plateau during the Companian can be interpreted.  Two paleogeographic models can be 

created, one during a highstand systems tract (HST) and another during a lowstand systems tract (LST) 

(Fig. 9).   

 

 During the HST the western shoreline of the Western Interior Seaway had a normal 

prograding profile.  The shoreline was keeping pace with sea-level rise, due to the high sediment supply 

being sourced from the Sevier Orogeny (Willis, 2000; Kaufmann and Caldwell, 1993).  The coals, which 

developed oonn coastal plain, is interpreted to indicate heavily vegetated swamps just landward of the 

shoreline. Shoreline towards the north had bay environments.  Inclined heterolithic strata also indicates 

that tidal channels were present in the northern section, where the tidal range of the seaway is 

understood to be at a micro-tidal range (Ericksen and Slingerland, 1990). However, the primary fluvial 

channels were meandering throughout the coastal plain during the HST. 
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Figure 9: Paleogeography of the study area during the Campanian (~80 Ma ago).  Left map is during highstand 
systems tract, when coastal plain is dominated by fluvial channels.  The coast is featured with tidal channels, 
fluvial deltas, and likely barrier islands.  Whereas the right map represents lowstand systems tract with the 
formation of incised valleys.  Multiple incised valleys are developed along strike during the base level fall, 
separated by interfluves. 

 

 An abrupt change appears to happen at the seway when there was a drop in sea-level.  The 

study area begins to dry up and the LST developed pushing the shoreline basinward.  Fluvial incision 

created incised valleys as sea-level began to drop, resulting in less meandering channel and more 

complex valley fills in the Blackhawk Formation.  Outside of the incised valleys, the coastal became 

relatively stable.  This allows for soils to develop on the topographic highs, such as the paleosols seen at 

Rilda Canyon.     
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Back Water vs. Sea-Level Drop 

 This study highlights that not every incised channels in the rock record indicate a drop in sea-

level.  At the mouth of a river, backwater effect can create conditions for localized channel incision.  The 

outcrop example of backwater incision presented here will allow others to have a different perspective 

for interpreting channel incision.  Key indicators to look for could be the multiple erosional scars at the 

base, along with a lack of coarse grains in the downstream deposits.  Since there has been no published 

documentation of the backwater effect in the rock record, the Wattis Road outcrop may provide the 

first example of this kind. 
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CONCLUSION 

 

 The upward transition from marine to coastal plain strata has been commonly described as a 

rather smooth, gradual transition at the north-eastern Wasatch Plateau’s study locations.  However, the 

Wattis Road outcrop (northern part of the study area) has a complex spatio-temporal transition from 

shallow-marine environment to coastal/fluvial environment.  Eight distinct depositional environments 

were identified as part of this stratigraphic transition between shallow-marine Star Point Formation and 

coastal-plain Blackhawk Formation. This study demonstrates that the marine and non-marine strata are 

likely more complexly intertongued in the sedimentary record than what has been depicted in general.  

The stratigraphy of the Wattis Road outcrops documents the high-frequency sea-level fluctuations of 

the Western Interior Seaway during the late Cretaceous that generated sequence stratigraphic 

complexity.  This study also documents abrupt, landward pinch-outs of shallow-marine sandbodies 

within coastal plain mudstones, a least-understood aspect of shoreline sedimentology.  These pinch-

outs can serve as excellent stratigraphic traps of hydrocarbons. 

 

 This study also presents a unique aspect of the sequence boundaries along depositional 

strike.  The sequence boundaries are correlated in a strike direction to incised valley floors and their 

associated interfluves.  It demonstrates that during a base level fall, incision can occur in restricted 

regions around the interfluves.  As the base level rises and stabilizes, flooded swamps may exist, 

producing coal marker beds.  One of the coal layers can be laterally correlated to a marine flooding 

surface.  The marine aspect of sequence stratigraphy of the Star Point Formation allowed for intra-

parasequence surfaces (minor flooding surfaces) to be identified and correlated throughout the study 
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area.  The sequence stratigraphic framework of the study area helps confirm the high frequency sea-

level fluctuations of the WIS during the late Cretaceous that generated stratigraphic complexity.   

 Moreover, this study introduces the possibility of interpreting incisions due to the backwater 

effects and not sea-level fall.  This is one of the first times this mechanism for incision has been recorded 

in the rock record.  Although further research is essential to accurately identify the backwater effect in 

the rock recorded, it is important to evaluat the possibility of autogenic backwater effect in generating 

fluvial incision so not to incorrectly interpret sea-level fall for every incision .   
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Appendix 

 

Appendix Figure 1: (upper) Photomosaic and (lower) corresponding facies and sequence stratigraphic diagram of the outcrop at Hiawatha Road, showing a 

simple and gradual upward transition from marine to non-marine strata.  This location is interpreted as one of the interfluves.  For legend, see Fig. 4C.   
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Appendix Figure 2: (upper) Photomosaic and (lower) corresponding facies and sequence stratigraphic diagram of the outcrop at Burma Road section, 

showing a slightly complex upward transition from marine to non-marine strata.  The lower sequence boundary erodes into the upper marine sandbody 

(Appendix Figure 3).  Note that fluvial channels are clustered above the incised valley.  For legend, see Fig. 4C. 
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Appendix Figure 3: (left) Photo and (right) corresponding facies and sequence stratigraphic diagram of the lower incised valley fill at the Burma Road 

outcrop.  The incised valley erodes into the Spring Canyon Member.   Note the marine sandstone’s bedding surfaces are truncated by the incised valley.  

The incised valleys that were observed in this study outcrops have an average relief of 7-9 meters whereas the average thickness of the non-incised fluvial 

channels is 3-5 meters. 
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Appendix Figure 4: (upper) Photomosaic and (lower) corresponding facies and sequence stratigraphic diagram of the outcrop at Rilda Canyon section.  Note 
the presence of distinct paleosol layer that demarkets a sequence boundary.  For legend, see Fig. 4C. 



42 
 

 

Appendix Figure 5:  (upper) Photomosaic and (lower) corresponding facies and sequence stratigraphic diagram of the outcrop at Des Bee Dove Mine 
section, showing a simple and gradual upward transition from marine to non-marine strata.  However, this is the most northern outcrop where the fluvial 

sandbody architecture starts to become more complex southward.  The green line indicates a normal fault at this location.  For legend, see Fig. 4C. 
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Appendix Figure 6: (upper) Photomosaic and (lower) corresponding facies and sequence stratigraphic diagram of the outcrop at Wilberg Mine section, 
showing the gradual upward transition from marine to non-marine strata.  Note the presence of two complex channel belts forming.  These are interpreted 

as incised valley fills demarketing two sequence boundaries.  For legend, see Fig. 4C. 
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Appendix Figure 7:  A coal mining core was examined to reveal the details of the transitional zone from marine 
to non-marine strata.  This core was teken between Trail Mountain Mine and the Wilberg Mine locations.  For 

legend, see Fig. 4C.  This litholog shows a simple upward transition from marine to non-marine strata. 
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Appendix Figure 8:  Inclined heterolithic stratification (IHS) is used to describe the sand and mud beds that are regularly repeating and being deposited as 
couplets in tidal point bar environments.  At the Wattis Road outcrop (A), laterally extensive IHS was visible above the Axel Anderson-Cottonwood-Spring 

Canyon Coal Seam. In figure B, the bedding diagram shows the complex stratal geometry of the IHS.  Another IHS deposit was identified at the Wilberg 
Mine outcrop (C). In figure D, the grain size of this IHS variation is documented, both vertically and laterally. Note that at the down-dip side of each inclined 

bed, grain size is coarser that gradually becomes finer laterally upwards.  The process of the meandering-river helical flow is responsible for this lateral 
grain size variation shown that is described in a cross section view in figure E. 
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