
University of New Orleans University of New Orleans

ScholarWorks@UNO ScholarWorks@UNO

University of New Orleans Theses and
Dissertations Dissertations and Theses

Fall 12-18-2014

Parallel Computing of Particle Filtering Algorithms for Target Parallel Computing of Particle Filtering Algorithms for Target

Tracking Applications Tracking Applications

Jiande Wu
University of New Orleans, jwu3@uno.edu

Follow this and additional works at: https://scholarworks.uno.edu/td

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
Wu, Jiande, "Parallel Computing of Particle Filtering Algorithms for Target Tracking Applications" (2014).
University of New Orleans Theses and Dissertations. 1953.
https://scholarworks.uno.edu/td/1953

This Dissertation-Restricted is protected by copyright and/or related rights. It has been brought to you by
ScholarWorks@UNO with permission from the rights-holder(s). You are free to use this Dissertation-Restricted in
any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you
need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative
Commons license in the record and/or on the work itself.

This Dissertation-Restricted has been accepted for inclusion in University of New Orleans Theses and Dissertations
by an authorized administrator of ScholarWorks@UNO. For more information, please contact
scholarworks@uno.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of New Orleans

https://core.ac.uk/display/216841388?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.uno.edu/
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/etds
https://scholarworks.uno.edu/td?utm_source=scholarworks.uno.edu%2Ftd%2F1953&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarworks.uno.edu%2Ftd%2F1953&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uno.edu/td/1953?utm_source=scholarworks.uno.edu%2Ftd%2F1953&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uno.edu

Parallel Computing of Particle Filtering Algorithms for Target Tracking Applications

A Dissertation

Submitted to the Graduate Faculty of the
University of New Orleans
in partial fulllment of the

requirements for the degree of

Doctor of Philosophy
in

Engineering and Applied Science

by

Jiande Wu

B.S. North China Electric Power University, 1998
M.S. North China Electric Power University, 2005

M.S. University of New Orleans, 2012

December 2014

c© Copyright by Jiande Wu, 2014.
All rights reserved.

ii

Acknowledgements

I would like to express my sincere thanks to lots of people without whom this dissertation

would not have been possible.

To my advisor, Dr. Vesselin Jilkov, who is always a source of knowledge and inspiration

for me.

To Dr. X. Rong Li and Dr. Huimin Chen who also provide me invaluable and insightful

thinking and guidance during my research.

To my committee members, Dr. Shengru Tu and Dr. George Ioup, for their great effort

and help on my dissertation.

To my colleagues and friends, Dr. Zhansheng Duan, Dr. Yu Liu, Dr. Xiaomeng Bian,

Dr. Meiqin Liu, Dr. Ji Zhang, Dr. Yongxin Gao, Ms. Jing Hou, Mr. Haozhan Meng and

Mr. Gang Liu, without whom, my life during the PhD study in UNO would become much

harder. Without these people, I can hardly make this journey. I dedicate this dissertation

to them. Furthermore, I want to thank all the members and staff of the Department of

Electrical Engineering at the University of New Orleans for their service and support.

Last but not least at all, to my parents, my wife, my sister and my children, who con-

tinuously support and encourage me throughout my study and research.

Further, my research was supported in part by Louisiana BoR through grant LEQSF(2009-

12)-RD-A-25, ARO through grant W911NF-08-1-0409, ONR-DEPSCoR through grant N00014-

09-1-1169, and NASA/LEQSF (2013-15) through grant NNX13A29A.

iii

Contents

Abstract . vi
List of Figures . viii
List of Tables . ix

1 Introduction 1

2 Background of Related Work 5
2.1 Particle Filtering . 5

2.1.1 Models . 5
2.1.2 Bayesian Recursive Filter . 6
2.1.3 Basic Particle Filter (PF) . 7
2.1.4 Resampling Algorithms Review . 8
2.1.5 Parallel Resampling . 10

2.2 Particle Flow Filtering . 12
2.2.1 Gaussian Exact Particle Flow Algorithm 13

2.3 Characterization of Parallel Algorithms . 14
2.3.1 Parallel Algorithms’ Performance Measures 15

3 Parallel Filtering & Tracking Algorithms for Computer Cluster 18
3.1 Attributes of Computer Cluster . 19

3.1.1 Message Passing and Communication 19
3.2 Generic Parallel PF Algorithms for Computer Cluster 20

3.2.1 Parallelization & Implementation for Computer Cluster 20
3.2.2 Case Study I: Space Object Tracking 22
3.2.3 Case Study II: Ground Multitarget Tracking using Image Sensor . . . 32

3.3 Improved PF Algorithm for Computer Cluster 47
3.3.1 Particle Transfer Algorithm (PTA) for Load Balancing 47
3.3.2 PTA Implementation & Simulation – Case Study II 49

3.4 Summary . 50

4 Parallel Filtering & Tracking Algorithms for Graphic Processing Unit 53
4.1 GPU & CUDA Computing . 53
4.2 PF & PFF GPU Implementation . 56

4.2.1 Parallel PF . 57
4.2.2 Parallel PFF . 58

4.3 Target Tracking Applications . 60

iv

4.3.1 Case Study II: Ground Multitarget Tracking using GPU 60
4.3.2 Case Study III: PF vs. PFF on GPU for High Dimensional Problem . 66

4.4 Improved Algorithm for GPU PF . 76
4.4.1 Simulations – Case Study II . 78
4.4.2 Case Study IV: UAV-MultiSensor Target Tracking using GPU PF &

PFF . 80
4.5 Summary . 85

5 Implementation of Parallel Filtering Algorithms on FPGA 86
5.1 PF & PFF Algorithms for FPGA . 87

5.1.1 FPGA Implementation of the Particle Filter 88
5.1.2 FPGA Implementation of the Particle Flow Filter 88

5.2 Simulation . 91
5.3 Summary . 94

6 Conclusions and Future Work 95

Bibliography 104

Vita 105

v

Abstract

Particle filtering has been a very popular method to solve nonlinear/non-Gaussian state

estimation problems for more than twenty years. Particle filters (PFs) have found lots of

applications in areas that include nonlinear filtering of noisy signals and data, especially in

target tracking. However, implementation of high dimensional PFs in real-time for large-scale

problems is a very challenging computational task.

Parallel & distributed (P&D) computing is a promising way to deal with the computa-

tional challenges of PF methods. The main goal of this dissertation is to develop, implement

and evaluate computationally efficient PF algorithms for target tracking, and thereby bring

them closer to practical applications. To reach this goal, a number of parallel PF algo-

rithms is designed and implemented using different parallel hardware architectures such as

Computer Cluster, Graphics Processing Unit (GPU), and Field-Programmable Gate Array

(FPGA). Proposed is an improved PF implementation for computer cluster - the Particle

Transfer Algorithm (PTA), which takes advantage of the cluster architecture and outper-

forms significantly existing algorithms. Also, a novel GPU PF algorithm implementation

is designed which is highly efficient for GPU architectures. The proposed algorithm imple-

mentations on different parallel computing environments are applied and tested for target

tracking problems, such as space object tracking, ground multitarget tracking using image

sensor, UAV-multisensor tracking. Comprehensive performance evaluation and comparison

of the algorithms for both tracking and computational capabilities is performed. It is demon-

strated by the obtained simulation results that the proposed implementations help greatly

overcome the computational issues of particle filtering for realistic practical problems.

Keywords: nonlinear filtering, particle filter, particle flow filter, parallel and distributed

computing, GPU, computer cluster, FPGA, target tracking

vi

List of Figures

3.1 Target Trajectory Estimation; Single MC Run; 500 Iterations. 28
3.2 Tracking Performance & Execution Time; 64 Processors; 100 MC Runs. . . . 30
3.3 Execution Time, Speedup & Efficiency; 150K Particles. 33
3.4 Scenarios with 20 Targets (top) and 50 Targets (bottom). 40
3.5 Position TARMSE; 64 Processors; 50 Targets; 100 MC Runs. 41
3.6 Average Execution Time; 64 Processors; 50 Targets; 100 MC Runs. 42
3.7 Execution Time (top) in Log-scale, Speedup (middle), Efficiency (bottom);

50 Targets; 100K Particles. 46
3.8 Execution Time; 64 Processors; 100K Particles. 47
3.9 Unbalanced Stratified Resampling . 48
3.10 Particle Transfer Algorithm (PTA) . 48
3.11 Position TARMSE; 64 Processors; 50 Targets; 100 MC Runs. 49
3.12 Execution Time; 64 Processors. 50
3.13 Execution Time (top) in Log-scale, Speedup (middle), Efficiency (bottom);

50 Targets; 100K Particles. 51

4.1 Nvidia GPU Architecture . 55
4.2 Scenario with 20 Targets. 62
4.3 Relative Times Spent in the Different Steps Using GPU-DR. 63
4.4 Computation Times of CR & DR. 64
4.5 Position TARMSE; 3 Targets; 100 MC Runs. 64
4.6 Average Execution Time; 3 Targets; 100 MC Runs. 65
4.7 Position TARMSE; 20 Targets; 100 MC Runs. 65
4.8 Average Execution Time; 20 Targets; 100 MC Runs. 66
4.9 Dimension-Free Errors . 70
4.10 Time-Averaged Dimension-Free Error (left) & Running Time (right) 72
4.11 One-Step Running Time . 73
4.12 Speedup of PF & PFF . 74
4.13 Speedup of PF vs. PFF . 75
4.14 Parallel Cumulative Sum . 76
4.15 Illustration of the Improved GPU PF . 77
4.16 Computation Times of CR & DR . 79
4.17 Relative Times Spent in the Different Steps Using GPU-DR 79
4.18 Scenario of UAV-Multisensor Tracking . 80
4.19 RMSE & Running Time . 84

vii

4.20 Time Average RMSE vs. Running Time . 84

5.1 FPGA Architecture with four PEs . 87
5.2 FPGA TARMSE . 93
5.3 FPGA Processing Period . 93

viii

List of Tables

2.1 Generic SIS/R PF Algorithm [2] . 8
2.2 Gaussian Exact Particle Flow Algorithm [47] 14

3.1 Execution Times . 31
3.2 Computational Performances; 100K Particles 32
3.3 Execution Time(s); 50 Targets . 43
3.4 Computational Performances; 100K Particles, 50 Targets 44

4.1 Parallel PF Algorithm for GPU . 58
4.2 Parallel PFF Algorithm for GPU . 60
4.3 Hardware Used for the Simulation . 63
4.4 Hardware Used for Design & Simulation . 67
4.5 GPU Blocks’ Specification . 67
4.6 Running Time (s) . 75
4.7 Improved Parallel PF Algorithm for GPU 78

5.1 Parallel PF Algorithm for FPGA . 89

ix

Chapter 1

Introduction

Particle filtering (PF) was originally proposed in [35]. Due to its generality and simplicity,

PF has become a topic of constantly growing interest, development and numerous target

tracking applications, e.g. [75]. Particle filters are a group of posterior density estimation

algorithms that estimate the posterior density of the state-space by directly implementing

the Bayesian filtering approach. This is a recursive algorithm. It consists of two parts:

prediction and update. If the variables are linear and normally distributed the Bayesian

filter becomes equal to the Kalman filter [78]. The Bayesian filter is also used in computer

science for calculating the probabilities of multiple beliefs.

Formally, let {xk}k=1,2, ... be a vector valued discrete-time Markov process with state tran-

sition probability density function (PDF) p(xk|xk−1), and let {zk}k=1,2, ... be another process,

stochastically related to {xk}k=1,2, ... through the likelihood p(zk|xk). xk and zk are the state

and the measurement, respectively, and p(xk|xk−1) and p(zk|xk) represent the state and mea-

surement models. The exact Bayesian recursive filter (BRF) provides the posterior density

1

p(xk|zk) via the following prediction – update scheme [58]:

p(xk−1|zk−1) −→ p(xk|zk−1) −→ p(xk|zk) (1.1)

given the initial state PDF p(x0) and a sequence of measurements zk = {z1, ..., zk}.

PF methods use a set of particles to represent the posterior density. These filtering

methods make no restrictive assumption about the dynamics of the state-space or the density

function. PF methods provide a well-established methodology for generating samples from

the required distribution. The state-space model can be non-linear and the initial state and

noise distributions can take any form.

However, PFs are not practical yet, due to their excessive computational and memory

cost. A natural approach to overcome this prohibitive limitation is to employ parallel &

distributed (P&D) computing. Development of P&D algorithms and architectures that utilize

the spatial and temporal concurrency of PF computations is a possibility to make the PF-

based multiple target tracking, and particle filtering in general, practical. This possibility has

not been much studied so far, even though useful work has been done in this direction, e.g.,

[6, 84, 9, 8, 10, 56]. The most critical and computationally expensive in every implementation

of particle filtering is the resampling. Resampling is in effect discarding of samples that

have small probability and concentrating on samples that are more probable. In parallel

implementations, resampling becomes a bottleneck due to its inherently sequential nature.

Another kind of PFs has been proposed recently - the particle flow filters (PFFs). They

can solve the well known problem of particle degeneracy of the PFs. A flow of each particle

from prior to posterior is governed by a flow equation which in general satisfies a linear

partial differential equation (PDE) with constant coefficients. This PDE is central in this

approach. Its numerical integration, however, is very challenging for real-time computation.

2

This dissertation addresses the computational challenges of PF and PFF. The main goal

is to propose, develop and implement computationally efficient algorithms for particle and

particle flow filters for target tracking, and thereby bring them closer to practical application.

Parallel & distributed [3] computing is a natural way to overcome this challenge. Thus, to

reach this goal, a number of parallel particle and particle flow filter algorithms are designed

and implemented using different parallel hardware architectures, such as computer cluster,

graphics processing unit (GPU), and field-programmable gate array (FPGA).

This dissertation is organized in six chapters. In these chapters, the motivation, contri-

butions and results are described. Throughout the dissertation, performances of particle and

particle flow filters are estimated and filter implementation prototypes are built for target

tracking applications.

Chapter 1 introduces the background, motivation and goal of this research work.

Chapter 2 briefly surveys the related work, including nonlinear density estimation, and

characterization of parallel algorithms and parallel architectures.

Chapter 3 proposes an improved parallel PF algorithm implementation that is more suit-

able for computer cluster architecture. Cluster implementation of target tracking problems

for space object tracking, and for ground multitarget tracking using image sensor is con-

ducted and the performance evaluated. Our algorithm has significant advantage in terms

of computational performances as compared to other parallel PF algorithms. On the other

hand, its tracking performance degradation is not that significant.

Chapter 4 proposes an improved PF resampling algorithm for GPU implementation.

The new algorithm reduces the complexity of realization through addressing common issues

such as decreasing the latency, memory size and memory access. It is tested using ground

multitarget tracking, UAV-multisensor tracking, and a highly dimensional nonlinear density

problem. Our proposed method is significantly superior to the generic filters implementations

3

in both estimation accuracy and computational efficiency. The chapter also develops a

GPU implementation of the exact PFF and shows that it has a superior computational

performance as compared to the PF implementations.

Chapter 5 proposes a particle flow filter implementation on FPGA. A simple non-linear

system, which is typically studied in the context of stochastic system is used as a simulation

model. This chapter also analyzes PF & PFF algorithms performance in FPGA architecture

in terms of computational complexity and potential throughput.

Chapter 6 draws conclusions and discusses future work.

4

Chapter 2

Background of Related Work

2.1 Particle Filtering

2.1.1 Models

Let {xk}k=1,2, ... be a vector valued discrete-time Markov process with state transition prob-

ability density function (PDF) p(xk|xk−1) as given by (2.1a), and let {zk}k=1,2, ... be another

process, stochastically related to {xk}k=1,2, ... through the likelihood p(zk|xk) as given by

(2.1b). xk and zk are the state and the measurement, respectively, and p(xk|xk−1) and

p(zk|xk) are the state and measurement models in terms of probability distributions, i.e.,

xk ∼ p(xx|xk−1) (2.1a)

zk ∼ p(zk|xk) (2.1b)

The initial state distribution is p(x0), i.e., x0 ∼ p(x0).

5

Most often the state and measurement models are given in state-space representation

xk+1 = f(xk, wk) (2.2a)

zk = h(xk, vk) (2.2b)

where f and h are the state and measurement function, and wk and vk denote the process

and measurement noises, respectively. The relationship between (2.1) and (2.2) can be find

in [58].

2.1.2 Bayesian Recursive Filter

The exact Bayesian recursive filter (BRF) provides the posterior density p(xk|zk), given p(x0)

and measurements zk = {z1, ..., zk} through the following recursion [58]:

p(xk|xk−1) zk → p(zk|xk)

↓ ↓

p(xk−1|zk−1) −→ p(xk|zk−1) −→ p(xk|zk)

(Prediction) (Update)

The prediction is given by

p(xk|zk−1) =

∫
Rnx

p(xk|xk−1)p(xk−1|zk−1)dxk−1. (2.3)

The update is given by

p(xk|zk) =
p(zk|xk)p(xk|zk−1)

p(zk|zk−1)
, (2.4)

where p(zk|zk−1) =
∫
Rnx p(zk|xk)p(xk|zk−1)dxk is the normalization constant.

For output from a nonlinear BRF, usually the minimum mean square (MMS) estimate

6

x̂MMS
k and its covariance PMMS

k|k are computed:

x̂MMS
k|k =

∫
xkp(xk|zk)dxk (2.5a)

PMMS
k|k =

∫
(xk − x̂MMS

k)(xk − x̂MMS
k)Tp(xk|zk)dxk. (2.5b)

2.1.3 Basic Particle Filter (PF)

PF methods use a set of particles to represent the posterior density. These filtering methods

use an assumption about the dynamics of the state-space or the density function models (2.2)

or (2.1), respectively. PF methods provide a well-established methodology for generating

samples from the required posterior distribution. The state-space model can be non-linear

and the initial state and noise distributions can take any form.

Generic SIS/R PF Algorithm

In particle filtering the probability density functions (PDFs) are represented approximately

through a set of random samples (particles) and the BRF (1.1) is performed directly on

these samples. Most PFs are based on two principal components [2]: sequential importance

sampling (SIS) and resampling (R) as given in Table 2.1.

The importance distribution π(·) must contain the support of the posterior and is to be

designed. One possibility is to choose π = p(xk| xik−1) [35] which is often referred to as

the sampling importance resampling (SIR) PF, or the bootstrap PF. Many other choices

are possible [30]. Resampling is in effect discarding of samples that have small probability

and concentrating on samples that are more probable. The resampling step is critical in

every implementation of PF because without it the variance of the particles weights quickly

increases leading to inference degradation.

7

Table 2.1: Generic SIS/R PF Algorithm [2]

• Importance Sampling (IS)
– For i = 1, . . . , N̄

Draw a sample (particle): x̄ik ∼ π
(
xk|xik−1, z

k
)

Evaluate importance weights

w̄ik = wik−1

p(zk|xik)p(xik|xik−1)
π(xik|xik−1,z

k)

– For i = 1, . . . , N̄

Normalize importance weights: wik =
w̄ik∑N̄
j=1 w̄

j
k

• Resampling (R)

– Effective sample size estimation: N̂eff = 1∑N
j=1(w

j
k)

2

– If N̂eff < Nth

Sample from
{
x̄jk, w

j
k

}N
j=1

to obtain

a new sample set
{
xik = x̄

ji
k , w

i
k = 1

N

}N
i=1

2.1.4 Resampling Algorithms Review

The resampling step modifies the weighted approximate density to an unweighted density

by deleting particles having low importance weights and by copying particles having high

importance weights. In the particle filter literature [5, 34, 37, 40, 41, 54, 57, 64, 69, 70, 81, 87]

four basic resampling algorithms can be identified [29], as given next.

Multinomial resampling

This approach to resampling is based on an idea of the bootstrap method [31]. It is known as

multinomial resampling since the duplication counts N1, . . . , Nm are by definition distributed

according to the multinomial distribution Mult(n;w1, . . . , wm).

Sampling each x(k) independently from the distribution associated with {x̃(i), w̃(i)}Ni=1

is equivalent to sampling numbers of replicates from a multinomial distribution: M ∼

8

M(·;N, {w̃(i)}Ni=1), which has the probability mass function:

M(n1, . . . , nN ;N, {w̃(i)}Ni=1) =

N !∏N
i=1 ni!

∏N
i=1(w̃(i))ni if

∑N
i=1 ni = N,

0 otherwise.

(2.6)

Stratified Resampling

Stratified resampling, [48] and [32, Section 5.3], is based on ideas used in survey sampling

and consists in pre-partitioning the (0, 1] interval into n disjoint sets,

(0, 1] = (0, 1/n] ∪ · · · ∪ ({n− 1}/n, 1]

Generate N ordered random numbers ũk ∼ U [0, 1), then

uk =
(k − 1) + ũk

N
=
k − 1

N
+

1

N
ũk (2.7)

Systematic Resampling

It was introduced by [11]. Generate one random number ũ ∼ U [0, 1), then

uk =
(k − 1) + ũ

N
=
k − 1

N
+

1

N
ũ (2.8)

and use uk to select x(k) according to multinomial distribution.

Residual Resampling

Residual resampling is introduced by [85], [60]. The idea is to allocate ni = bNw̃(i)c copies of

particle x̃(i) to the new distribution. Then, resampling m = N −∑ni particles from {x̃(i)}

by selecting x̃(i) is proportional to w′(i) = Nw̃(i) − ni using one of the resampling methods

9

described before.

2.1.5 Parallel Resampling

In the generic PF as given in Table 2.1, the sample generation and weight update steps can

be executed out independently for each particle and, thus, implemented in parallel.

Resampling, however, cannot start until all the particles are generated and the value of

the cumulative sum is known. Therefore, the resampling step is not naturally parallelizable

and, thus, is computationally expensive.

Standard resampling methods pose a significant challenge for parallel implementations as

it can only begin when all the weights are computed at the weight computation stage, and the

cumulative sum of the weights is available [77]. This means that any parallel implementation

would start the resampling only after all the weights are computed. This increases the

execution time of the entire PF implementation.

Partial Resampling

The idea of partial resampling [9] is to perform resampling only on particles with large

weights and particles with small weights. Particles with moderate weights are not resampled.

The main advantages of this method are that it is faster because it is done on a subset of

particles and the communication is shorter since a smaller number of particles are replicated

and replaced.

Resampling with Proportional Allocation (RPA), [10]

The algorithm is based on stratified sampling [30] with proportional allocation. The sample

space is partitioned into p groups or strata and each stratum corresponds to a processing unit.

Proportional allocation among strata is used, which means that more samples are drawn from

10

the strata with larger weights. After the weights of the strata are known, the number of

particles that each stratum replicates is calculated at central unit using residual systematic

resampling, and this process is denoted as inter-resampling since it treats the processing units

as single particles. Finally, resampling is performed inside the strata (at each processing unit,

in parallel) which is referred to as intra-resampling. Therefore, the resampling algorithm is

accelerated by using loop transformation, or specifically loop distribution [86], which allows

for having an inner loop that can run in parallel on the processing units (intra-resampling)

with small sequential centralized processing (inter-resampling) at central unit.

Resampling with Nonproportional Allocation (RNA), [10]

This algorithm is a modification of the distributed RPA. RPA requires a complicated scheme

for particle routing and there is a need for an additional global preprocessing step (inter-

resampling) at central unit which introduces an extra delay. These problems can be solved by

using an RNA algorithm. In distributed RNA particle routing is deterministic and planned in

advance by a designer. To achieve this, groups of one or more processing units are formed.

In RPA the number of particles drawn is proportional to the weight of the stratum. On

the other hand, in RNA the number of particles within a group after resampling is fixed

and equal to the number of particles per group. Therefore, full independent resampling is

performed in parallel by each group. More details can be found in [10].

While RPA and RNA were proposed an studied in the context of FPGA, we adopt and

study them for our computer cluster and GPU implementations.

11

2.2 Particle Flow Filtering

Recently a new class of nonlinear filters has been proposed by Fred Daum & Jim Huang—

the particle flow filters (PFFs) [15, 17, 16, 27, 28, 21, 20, 19, 25, 24, 22, 23, 26]. They

can solve the well known problem of particle degeneracy of the PFs (and other, e.g., deter-

ministic sampling methods for density-based nonlinear filtering [59] caused by the pointwise

multiplication of the Bayes rule. The method for samples’ update is deterministic and is

conceptually based on a natural homotopy relating the prior and posterior filter densities

which induces a flow of the samples from the prior density towards a set of samples from the

posterior. A flow of each particle from prior to posterior is governed by a flow equation—an

ordinary differential equation (DE)—which in general satisfies a linear partial DE (PDE)

with constant coefficients. This PDE is central in this approach. If no other constraints

on the flow are imposed, it is underdetermined (except for the scalar state) which can be

exploited to look for solutions with some desirable properties (see e.g., [22]) such as: low

computational complexity for real-time computing; stability of the flow dynamic system;

sufficient accuracy; uniqueness of the solution, and possibly others. Daum & Huang have

already proposed many possible methods and algorithms to solve the PDE and outlined

promising new possibilities for future research in this direction, e.g., [27, 28, 18]. While a

numerical integration of the PDE is challenging for real-time computation, for some special

distributions, e.g. Gaussian and exponential families it is analytically tractable. The explicit

solution for (unnormalized) Gaussian prior and likelihood, referred to as the exact PFF [28]

is straightforward to implement and fast for computation. Simulation results have been

reported by the authors of the PFF method, e.g., [21, 24, 23], showing that PFFs can out-

perform by far other nonlinear filters in computation and accuracy—“roughly seven orders of

magnitude faster than standard particle filters for the same estimation accuracy” [24], and

12

about two orders of magnitude more accurate than EKF and UKF for difficult nonlinear

problems. Another property of the PFFs is that almost all computations are independent

and can be conducted in a parallel/distrubuted manner as opposed to PFs where resampling

is a bottleneck. This makes PFFs even more attractive and promising for P&D computing.

It also motivated us to pursue parallel implementations of PFF and make a quantitative

performance evaluation and comparison with parallel PF algorithms studied by us before

[46, 45, 88].

2.2.1 Gaussian Exact Particle Flow Algorithm

In this dissertation we limit our consideration to the Gaussian Exact PFF [20]. We summarize

one time-step, k − 1 −→ k, of the algorithm in Table 2.2 [47].

First, note that the prior and posterior at each time-step k are also represented through

samples: {x̄ik}
N̄

i=1 and {xik}
N

i=1 , respectively. In Table 2.2 we give the prediction step in terms

of random sampling (as in the bootstap PF) which amounts to passing each particle from

the posterior through the stochastic state dynamic model. However the prediction sampling

need not be random in general—the prior can be approximated by deterministic samples

as well, e.g., based on optimal Dirac mixture approximations [79]. In our implementation

we use random sampling but deterministic sampling for prediction is of further interest for

future implementation.

Second, the computation of the state prediction estimate x̄k, error covariance matrix

P̄k, and linearized measurement model Hk is not explicitly given because it can be done in

different ways, e.g., x̄k and P̄k can be computed as the sample mean an covariance of the

particles and then Hk can be obtained via linearization of the measurement model about x̄k,

or the computation can be done via EKF/UKF equations.

Third, the flow velocity parameters A(λ), b(λ) are common for all particles and, therefore,

13

Table 2.2: Gaussian Exact Particle Flow Algorithm [47]

• Particle Prediction
– For i = 1, . . . , N̄

Draw a predicted particle: x̄ik ∼ p
(
xk|xik−1

)
• Particle Update

– Compute predicted estimate x̄k, its error covariance P ,

and linearized measurement model matrix H

– Compute parameters of flow velocity (exact computation):

A(λ) = −1
2
PH ′ (λHPH ′ +R)−1H

b(λ) = (I + 2λA) [(I + λA)PH ′R−1zk + Ax̄k]

– For i = 1, . . . , N
Solve the particle flow ODE

dx
dλ

= f(x, λ) = A(λ)x+ b(λ)

for λ ∈ [0 1] with initial condition x(0) = x̄ik;

Let xik := x(1).

their computation is given outside the for-loop for solving the ODE in Table 2.2.

2.3 Characterization of Parallel Algorithms

Parallel computer systems have been available for many years. Parallel computing is a

form of computation in which many calculations are carried out simultaneously. Large

problem could often be divided into smaller tasks across multiple processors. Investigating

the performance of parallel computer systems is of great interest. Analyzing the performance

of parallel computer systems means predicting its potential elapsed times for different input

size, processor size and communication network. The results can be used in the design and

implementation of practical applications.

For most parallel algorithms, execution time is of main concern. The other performance

14

measurements in parallel algorithms are more complex. Unlike traditional algorithm com-

plexity analysis, algorithm analysis requires two specifications [44]: characteristics of an

algorithm and characteristics of the architecture. For each algorithm, performance analysis

is to investigate the execution times while we alter algorithmic and computing environment

specifications. Performance analysis of a parallel algorithm-architecture combination can be

used to select the best algorithm-architecture combination for a problem. For a fixed prob-

lem size, it may be used to determine the optimal number of processors to be used and the

maximum possible speedup that can be obtained. The performance analysis can also predict

the impact of changing hardware technology on the performance and thus help design better

parallel architectures for solving various problems.

2.3.1 Parallel Algorithms’ Performance Measures

In sequential program scalability analysis, computing and input/output are the two major

timing factors. For example, a typical fast sort program requires O(n log n) computing steps

and O(n) bytes for input/output when processing an input of size n. Unlike a sequential

program, the key problem is that there are more performance sensitive parameters in parallel

processing than that in sequential programming.

The importance of parallel algorithm analysis has been widely recognized [43, 55, 80].

Scalability metric [42] concerns a list of attributes that are considered important to the

scalability of a parallel computer system. It can help guide parallel program development.

However, it lacks a generic analysis tool. Scalability definition [72] was based on the ratio

of the asymptotic speedup of an algorithm on a real machine to the asymptotic speedup on

an ideal realization on an exclusive read exclusive write parallel random access machine. It

does not include any resource specifications, such as processor and network capacities. The

LogP model [14] tracks the communication overhead by analyzing detailed message passing

15

patterns and latencies. It does not include processing time modeling. Next we describe the

terminology that is used in the rest of the dissertation [53].

Execution Time Tp: The time elapsed from the moment a multiprocessor computation

starts to the moment the last processor finishes execution using p processors.

Speedup S: The ratio of the serial execution time of the serial algorithm (T1) to the

parallel execution time of the chosen algorithm (Tp), i.e., S = T1

Tp
. The speedup characterizes

the scalability of a parallel algorithm. Ideally, the best speedup is linear, i.e., S = p.

Efficiency E: The ratio of speedup (S) to the number of processors (p). Thus, E =

S
p

= Ts
pTp

. The efficiency characterizes how well the processors are utilized. Ideally, it has

values between 0 and 1. Algorithms with linear speedup have efficiency of 1 (the best).

Actually, if a parallel system is used to solve a problem instance of a fixed size, then the

efficiency decreases as p increases. It is a well known that given a parallel architecture and

a problem instance of a fixed size, the speedup of a parallel algorithm does not continue to

increase with increasing number of processors. The speedup tends to saturate or peak at

a certain value. In 1967, Amdahl [1] made the observation that if s is the serial fraction

in an algorithm, then its speedup is bounded by 1
s
, no matter how many processors are

used. For example, if an algorithm runs 10 second using one processor, and some part of the

algorithm which cannot be parallelized takes 1 second to execute, while the remaining part

which can be parallelized takes 9 seconds, then no matter how many processors are used to

parallelized execution of this algorithm, the minimum execution time cannot be less than 1

second. Thus, the speedup is limited to at most 10. This statement, now popularly known

as Amdahl’s law, also known as Amdahl’s argument, has been used to find the maximum

improvement to a parallel system.

Actually, in addition to the serial fraction, the speedup obtained by a parallel system

depends on a number of factors such as the degree of concurrency and overheads due to

16

communication, synchronization, redundant work etc. For a fixed problem size, the speedup

saturates either because the overheads grow with increasing number of processors or because

the number of processors eventually exceeds the degree of concurrency inherent in the algo-

rithm. A number of researchers have analyzed the optimal number of processors required to

minimize parallel execution time for a variety of problems [33, 61, 71, 83].

In our research, we designed algorithms and analyzed their performance on various par-

allel systems for non-lineal filtering problems. The primary measures of parallel performance

we used were execution time, speedup, and efficiency, as defined above.

17

Chapter 3

Parallel Filtering & Tracking

Algorithms for Computer Cluster

Computer clusters emerged as a result of convergence of a number of computing trends

including the availability of low cost microprocessors, high speed networks, and software for

high performance distributed computing. A computer cluster is a group of linked computers

working together closely so that they perform like a single computer [4]. Commonly, the

components of a cluster are connected to each other through fast local area networks (LAN).

As far as the computers are tightly connected they can be viewed as a single system in many

respects. Each node (computer) is used as a server running its own instance of an operating

system.

Clusters are usually deployed to improve performance and availability over that of a

single computer, while typically being much more cost-effective than single computers of

comparable speed or availability. Computer clustering relies on a centralized management

approach which makes the nodes available as orchestrated shared servers. It is distinct from

other approaches such as peer to peer or grid computing which also use many nodes, but

18

with a far more distributed nature.

3.1 Attributes of Computer Cluster

There are some general characteristics of computer cluster. First, it consists of many of the

same or similar type of machines. Second, all machines are connected using fast network

connections. Third, all machines have their own resources such as memory. Fourth, they

must have software such as an Message Passing Interface (MPI) implementation installed to

allow programs to be run across all nodes.

3.1.1 Message Passing and Communication

Two widely used approaches for communication between cluster nodes are the Message

Passing Interface (MPI) and Parallel Virtual Machine (PVM). In our research we used MPI

as a software environment.

MPICH

MPI [67] is a library specification for message-passing, proposed as a standard by a broadly

based committee of vendors, implementors, and users.

MPICH [68] is a freely available, portable implementation of MPI, a standard for message-

passing for distributed-memory applications used in parallel computing. The CH part of the

name was derived from “Chameleon”, which was a portable parallel programming library

developed by William Gropp, one of the founders of MPICH. It is a high-performance and

widely portable implementation of the MPI standard and runs on parallel systems of all

sizes, from multicore nodes to clusters to large supercomputers. Many of the largest systems

on the Top500 list run MPICH. It also provides a vehicle for MPI implementation research

19

and for developing new and better parallel programming environments.

3.2 Generic Parallel PF Algorithms for Computer Clus-

ter

3.2.1 Parallelization & Implementation for Computer Cluster

An apparent property of the SIR algorithm in Table 2.1, from computational point of view,

is that a part of it is naturally parallel. That is, the computation of the algorithm for IS

is independent for each particle, and thus can be conducted in parallel without any com-

munication among the processors. Effective parallelization of the resampling part however

is nontrivial because generation of a single resampled particle requires information from all

particles of the sample set. Thus, in parallel and distributed implementations, resampling

becomes a bottleneck due to its sequential nature and it imposes an increased complexity on

the communications and data traffic between processors. Several parallel/distributed resam-

pling schemes have been already proposed in the literature. In [6] three parallel PFs, referred

to as a global distributed PF (GDPF), a local distributed PF (LDPF), and a compressed dis-

tributed PF (CDPF), respectively. PFs with distributed resampling schemes, referred to as

RPA and RNA have been proposed in [10] for implementation on a field programmable gate

array (FPGA). We implement and study the performance of parallel PFs with centralized

resampling (CR), RPA, and RNA on a computer cluster for two target tracking applications:

space object tracking and ground multitarget tracking using image sensor.

We consider a generic parallel computing environment (such as a Beowulf type computer

cluster [82]) with p processors: a central processor – head node (HN), charged with direct-

ing the computations and communication control, and p − 1 processing nodes (PNs), all

20

interconnected, e.g, through fast local area networks. The HN can also operate as a PN.

Parallel PF with Centralized Resampling

This algorithm is straightforward. HN partition the set of all N particles into p subsets and

sends each subset to a PN. All PNs (in parallel) perform prediction (draw predicted samples

and calculate importance weights), and send the predicted particles (with weights) to HN.

HN performs resampling.

Parallel PF with distributed RPA

The algorithm is based on stratified sampling with proportional allocation [10]. The sample

space is partitioned into p groups or strata and each stratum corresponds to a PN. Propor-

tional allocation among strata is used, which means that more samples are drawn from the

strata with larger weights. After the weights of the strata are known, the number of particles

that each stratum replicates is calculated at HN using residual systematic resampling, and

this process is denoted as inter-resampling since it treats the PNs as single particles. Finally,

resampling is performed inside the strata (at each PN, in parallel) which is referred to as

intra-resampling.

Parallel PF with distributed RNA

This algorithm is a modification of the distributed RPA. RPA requires a complicated scheme

for particle routing and there is a need for an additional global preprocessing step (inter-

resampling) at HN which introduces an extra delay. These problems are solved by using

distributed RNA where particle routing is deterministic and planned in advance by design.

To achieve this, groups of one or more PNs are formed. In RPA the number of particles

drawn is proportional to the weight of the stratum. On the other hand, in RNA the number

21

of particles within a group after resampling is fixed and equal to the number of particles per

group. Therefore, full independent resampling is performed in parallel by each group.

For more details on RPA, and RNA the reader is referred to [10].

3.2.2 Case Study I: Space Object Tracking

The Cluster Implementation

We used a Linux x86 5TF cluster which are Dell-based systems. Each cluster consists of 128

computer nodes, and is capable of 4.77 TFlops peak performance. Each node contains two

Intel dual-core Xeon 64-bit processors operating at a frequency of 2.33 GHz. They run the

Red Hat Enterprise Linux 4 operating system. The program code was written on MPI [36].

Both point-to-point and collective communication are supported.

The first MPI routine called in any MPI program is the initialization routine MPI INIT.

In our implementation the head node (HN) executes function master(), and a processing

node (PN) executes function slave(). A high level pseudo-code of the implemented PPF

with CR, RPA, and RNA, respectively is given below.

PPF with Centralized Resampling

int master() {

generate(); // generate particles

send(); // send particles to PNs

while (iteration <= max_iteration)

receive(); // receive particles & weights from PNs

normalize_weight();

resampling();

22

send(); // send particles to PNs

calculate_sample_mean();

iteration = iteration + 1;

end while }

int slave() {

while (iteration <= max_iteration)

receive(); // receive particles from HN

prediction(); // sampling and weights calculation

send(); // send particles & weights to HN

iteration = iteration + 1;

end while }

PPF with Proportional Allocation

int master() {

generate(); // generate particles

send(); // send particles to PNs

while (iteration <= max_iteration)

receive(); //receive weight from PNs;

inter-resampling();

determine_rout(); // determines a scheme for particle

exchange routing with other PNs

send(); // send the scheme to PNs

receive(); // receive sample mean from PNs

calculate_sample_mean();

iteration = iteration + 1;

23

end while }

int slave() {

receive(); // receive particles from HN

while (iteration <= max_iteration)

prediction();

calculate_weight();

send(); // send weight to HN

receive(); // receive particle exchange routing

intra-resampling;

exchange_particle(); //exchange particles with other slaves

calculate_weight_sum();

send(); // send weight_sum to HN

iteration = iteration + 1;

end while }

PPF with Non-proportional Allocation

int master() {

group(); // group the PNs

generate(); // generate particles

send(); // send particles to each group

while (iteration <= max_iteration)

receive(); // receive weight_sum from groups

calculate_sample_mean();

iteration = iteration + 1;

end while }

24

// Resampling and particle routing are performed inside groups using RPA.

Space Object Tracking Problem

For a benchmark of the parallel implementations we choose a space object tracking problem

introduced in [12]. In this problem the object (target) is a satellite in geostationary orbit

(GEO) and the measurements are provided by sensors onboard of low Earth orbit (LEO)

satellites. The geometry of a typical tracking scenario is illustrated in Fig. 3.1.

Target State Propagation Model

Denote by x(t) the continuous time target state given by

x(t) , [r(t) ṙ(t)]′ = [x(t) y(t) z(t) vx(t) vy(t) vz(t)]
′ ,

where r(t) and ṙ(t) are the position and velocity vectors, respectively. The target dynamics

model is

ẋ = f(t,x(t)) + w(t) (3.1)

where f(t,x) = [vx vy vz − (µ/r3)x − (µ/r3)y − (µ/r3)z]
′
, r =

√
x2 + y2 + z2, µ is the

Earth gravitational constant, and w = [0 0 0 wx wy wz]
′ is a random process noise which

accounts for trajectory perturbations, model inaccuracies, and can serve as a simple model

of some maneuvering.

Let tk denote the kth sampling time, for k = 0, 1 . . ., and xk , x(tk). After discretization,

the approximate model is

xk = fk(xk−1) + wk (3.2)

where fk(xk−1) , xk−1 +
∫ tk
tk−1

f (t,x(t)) dt and wk is zero-mean white Gaussian noise (WGN)

25

with covariance Qk. Then, the corresponding state transition Markov model, needed for

(2.1a), is given by

p (xk|xk−1) = pwk (xk − fk(xk−1)) = N (xk − fk(xk−1); 0, Qk) (3.3)

where N denotes a multivariate Gaussian PDF.

Measurement Model

The most popular sensor onboard a space satellite is the space-based visible (SBV) sensor

which uses visible band electro-optical camera to measure the azimuth and elevation of a

target within the sensor’s field of view. Here, for the purpose of the simulation study, it is

assumed more generally that sensors onboard LEO satellites can provide the following type

of measurements: range, azimuth, and elevation, defined below.

Range: h(i)
r =

√
(x− x(i))

2
+ (y − y(i))

2
+ (z − z(i))

2
(3.4)

Azimuth: h(i)
a = tan−1

(
y − y(i)

x− x(i)

)
(3.5)

Elevation: h(i)
e = tan−1

 z − z(i)√
(x− x(i))

2
+ (y − y(i))

2

 (3.6)

where
(
x(i), y(i), z(i)

)
is the i-th observer location (known), and (x, y, z) is the target location.

The measurement model (with the observer’s index omitted) is given by

zk = hk(xk) + vk (3.7)

where hk(xk) , [hr(xk) ha(xk) he(xk)]
′ and vk is zero-mean WGN with covariance Rk which

models the measurement errors. Then the corresponding likelihood function, needed for

26

(2.1b), is given by

p (zk|xk) = pvk (zk − hk(xk)) = N (zk − hk(xk); 0, Rk) (3.8)

Experiment Setup

The simulated benchmark scenario includes a single LEO observer that tracks a GEO satellite

in non-maneuvering mode of motion. The LEO orbit is nearly circular with a radius of

6600km and its position is assumed to be accurately calibrated by the GPS. The target being

tracked is in a GEO with radius approximately 42164km. Range, azimuth and elevation

measurements of the target are simulated without false alarm or missed detection except

when the line of sight between the observer and the target is blocked by the earth. The

standard deviations of measurement error (matrix Rk) are 0.1km, 2mrad/sec, 2mrad/sec,

for range, azimuth, elevation, respectively. The sensor onboard the observer has a fixed

sampling rate of 0.02Hz. For simplicity, both the observer and the target share the same

orbit plane. The target has white process noise with the magnitude of random acceleration

(matrix Qk) at 0.01m/s2. Fig. 3.1 illustrates the tracking scenario after 500 iterations.

All three filters were initialized by the first measurement with the same initial covariance

matrix. In order to obtain statistically significant evaluation of the performance metrics, 100

Monte Carlo runs were performed for each set of scenario parameters (i.e, different number

of particles, different number of processors, etc.).

27

−2 −1 0 1 2 3 4 5

x 10
4

−5

−4

−3

−2

−1

0

1

2
x 10

4

x [m]

y
 [

m
]

earth

track

estimate

truth

last observation

LEO observer

2σ region

Figure 3.1: Target Trajectory Estimation; Single MC Run; 500 Iterations.

Performance Measures – Tracking performance

The accuracy of state estimation for all filters was measured in terms of time averaged root

mean square error (TARMSE), defined (for both position and velocity), as follows

TARMSEm,n =
1

n−m
n∑

k=m+1

RMSEk (3.9)

where (for position) RMSEk =
(

1
M

∑M
i=1[(x

(i)
k − x̂

(i)
k)2 + (y

(i)
k − ŷ

(i)
k)2 + (z

(i)
k − ẑ

(i)
k)2]

)1/2

,

i = 1, . . . ,M denotes the ith MC run, and [m + 1, n] is the time interval of averaging.

Likewise for velocity. TARMSE is a, commonly used in target tracking, single measure of a

filter accuracy in an interval of “steady-state”, e.g., [m+ 1, n].

28

Performance Measures – Computational Performance

The computational performance of the parallel PFs was measured in terms of the following

measures, commonly used in parallel computing.

Execution time : Tp = Execution time for one iteration using p processors (3.10)

Speedup : Sp =
T1

Tp
=

Execution time for one iteration using 1 processor

Execution time for one iteration using p processors
(3.11)

Efficiency : Ep =
Sp
p

=
Speedup

Number of processors used
(3.12)

The speedup characterizes the scalability of a parallel algorithm. Ideally, the best speedup is

linear, i.e., Sp = p. The efficiency characterizes how well the processors are utilized. Ideally,

it has values between 0 and 1.

Results & Comparative Analysis

Due to space limitation only most representative results are reported in this dissertation.

Fig. 3.2 shows the TARMSE (position and velocity) and execution times of the three

filters using p = 64 processors versus the number of particles used. Similar results (not pre-

sented here) were obtained for different number of processors, e.g., p = 1, 2, 4, 16, 32, 64, 128.

They all indicated (as illustrated in Fig. 3.2, (a) and (b)) that for the RPA and RNA filters

a significant improvement of accuracy is achieved by increasing the number of particles up

to 100K, and for the CR filter – up to 150K. As it appears, for practical purposes, no more

than 100K particles are needed for this tracking problem if RPA or RNA is used, and no

more than 150K – if CR is used, regardless of the number of processors.

Fig. 3.2, (a) and (b), also illustrate that (as expected) the CR is the best in terms

of accuracy (for the same number of particles), followed by RPA. This agrees with the

29

0.5 1 1.5 2

x 10
5

260

270

280

290

300

310

320

330

340

Number of Particles

[m
]

(a) Position TARMSE

Cent

RPA

RNA

0.5 1 1.5 2

x 10
5

13.5

14

14.5

15

15.5

16

16.5

17

Number of Particles

[m
/s

]

(b) Velocity TARMSE

Cent

RPA

RNA

0.5 1 1.5 2

x 10
5

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Number of Particles

[s
e

c
]

(c) Execution Time

Cent

RPA

RNA

Figure 3.2: Tracking Performance & Execution Time; 64 Processors; 100 MC Runs.

30

Table 3.1: Execution Times

Number of Particles
50, 000 100, 000 150, 000 200, 000

p CR RPA RNA CR RPA RNA CR RPA RNA CR RPA RNA

1 0.5554 0.4492 0.3659 1.1165 0.9056 0.7326 1.6794 1.3551 1.0983 2.2455 1.8067 1.4708
2 0.4166 0.3430 0.2815 0.8374 0.6915 0.5636 1.2596 1.0348 0.8449 1.6841 1.3797 1.1314
4 0.2777 0.2368 0.1759 0.5582 0.4775 0.3522 0.8397 0.7145 0.5280 1.1228 0.9526 0.7071
8 0.1157 0.1021 0.0880 0.2326 0.2058 0.1761 0.3499 0.3080 0.2640 0.4678 0.4106 0.3536
16 0.0716 0.0490 0.0416 0.1449 0.0987 0.0831 0.2123 0.1469 0.1243 0.2881 0.1937 0.1665
32 0.0542 0.0268 0.0206 0.1057 0.0515 0.0410 0.1588 0.0740 0.0612 0.2127 0.0979 0.0815
48 0.0462 0.0205 0.0148 0.0923 0.0401 0.0280 0.1395 0.0550 0.0417 0.1865 0.0684 0.0546
64 0.0458 0.0206 0.0119 0.0891 0.0325 0.0219 0.1305 0.0444 0.0318 0.1776 0.0545 0.0420
80 0.0476 0.0197 0.0100 0.0876 0.0299 0.0179 0.1295 0.0385 0.0261 0.1721 0.0474 0.0344
96 0.0473 0.0216 0.0091 0.0877 0.0283 0.0155 0.1313 0.0360 0.0222 0.1746 0.0439 0.0293
112 0.0494 0.0205 0.0085 0.0893 0.0294 0.0142 0.1310 0.0330 0.0197 0.1752 0.0420 0.0254
128 0.0508 0.0260 0.0102 0.0925 0.0311 0.0155 0.1343 0.0336 0.0189 0.1772 0.0404 0.0237
144 0.0528 0.0266 0.0099 0.0954 0.0312 0.0147 0.1351 0.0385 0.0184 0.1834 0.0419 0.0230
160 0.0543 0.0287 0.0095 0.0937 0.0326 0.0138 0.1353 0.0374 0.0178 0.1794 0.0435 0.0223
176 0.0562 0.0308 0.0087 0.0964 0.0338 0.0129 0.1403 0.0395 0.0164 0.1810 0.0406 0.0207

understanding that the CR has the best utilization of particles because it implements the

resampling exactly , and the RPA is less approximate than RNA. The differences in accuracy

are (somewhat surprisingly) considerable. Quantitatively (based on all simulations with

150K particles), the CR filter is about 10% more accurate than the RPA filter, and the

RPA filter itself is about 6% more accurate than the RNA filter. On the other hand, Fig.

3.2, (c) shows the execution time – the “price” paid to achieve the accuracies shown in

Fig. 3.2, (a) and (b). Now the order of performance is reversed with the CR filter being

significantly slower than the two other filters. Quantitatively (based on all simulations with

150K particles), the CR filter is more than 3 times slower than the RPA filter, and the RPA

filter is about 40% slower than the RNA.

The rest of the presented results concern the parallel computational performances. Table

3.1 provides the obtained execution times of each filter for a wide range of number of proces-

sors p and number of particles N . Fig. 3.3 shows the execution time, speedup, and efficiency

for all algorithms with 150K particles versus the number of processors. Table 3.2 provides

the computational performances of each filter with 150K particles. First, based on all results,

it is observed that the CR PPF has a quite poor scalability and efficiency. Practically, its

31

Table 3.2: Computational Performances; 100K Particles

p = 1 2 4 8 16 32 64 96 128 176

Tp 1.1165 0.8374 0.5582 0.2326 0.1449 0.1057 0.0891 0.0877 0.0925 0.0964
Cent SP 1.0000 1.3333 2.0000 4.8000 7.7053 10.5650 12.5320 12.7365 12.0673 11.5843

Ep 1.0000 0.6667 0.5000 0.6000 0.4816 0.3302 0.1958 0.1327 0.0943 0.0658
Tp 0.9030 0.6895 0.4761 0.2052 0.0977 0.0486 0.0302 0.0281 0.0315 0.0334

RPA SP 1.0000 1.3095 1.8966 4.4000 9.2376 18.5841 29.8918 32.1571 28.6954 27.0579
Ep 1.0000 0.6548 0.4741 0.5500 0.5774 0.5808 0.4671 0.3350 0.2242 0.1537
Tp 0.7326 0.5636 0.3522 0.1761 0.0831 0.0410 0.0219 0.0155 0.0155 0.0129

RNA SP 1.0000 1.3000 2.0800 4.1600 8.8178 17.8831 33.3961 47.3319 47.3918 56.6979
Ep 1.0000 0.6500 0.5200 0.5200 0.5511 0.5588 0.5218 0.4930 0.3702 0.3221

speedup remains constant for p ≥ 50. Evidently, using CR PPF on more than 50 processors

is of almost no use for this problem – most of the effort will be wasted on communication

and synchronization. Second, the RPA PPF has significantly better parallel performance

than CR. Practically, it provides and effective speedup (good scalability) up to the limit of

about 110 processors with a reasonable (about 40%) efficiency within this limit. And, third

the RNA PPF is considerably better than the RPA filter in terms of parallel performance.

Quantitatively, its effective speedup limit (good scalability) is considerably higher – about

170 processors with about 45% efficiency within this limit.

3.2.3 Case Study II: Ground Multitarget Tracking using Image

Sensor

The main objective of this section is design, implementation, and performance evaluation of

parallel multitarget tracking particle filters using a cluster of computers as a parallel comput-

ing environment. The parallel algorithms developed are based on the Joint Multitarget Prob-

ability Density (JMPD) algorithm for multiple target tracking [51, 52, 50, 65, 66, 49]. The

resampling step is critical and computationally expensive in every PF implementation—It

becomes a bottleneck due to its inherently sequential nature. To speed-up the computation,

32

0 20 40 60 80 100 120 140 160 180
10

−2

10
−1

10
0

10
1

Number of Processors

R
u

n
n

in
g

 T
im

e
 [

s
e

c
]

(a) Execution Time

Cent

RPA

RNA

0 20 40 60 80 100 120 140 160 180
0

10

20

30

40

50

60

70

Number of Processors

(b) Speedup

Cent

RPA

RNA

0 20 40 60 80 100 120 140 160 180
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Processors

(c) Efficiency

Cent

RPA

RNA

Figure 3.3: Execution Time, Speedup & Efficiency; 150K Particles.

33

three techniques are implemented and experimented on a cluster for resampling – Central-

ized Resampling (CR), distributed Resampling with Proportional Allocation (RPA) and

distributed Resampling with Nonproportional Allocation (RNA) [10], respectively. Another

issue addressed is the inherent interdependence of the partitioning methods for JMPD track-

ing. Parallel versions of Independent Partition (IP), Coupled Partition (CP) and Adaptive

Partition (AP) are developed and implemented that complete the design of several parallel

PF algorithms for JMPD multitarget tracking.

Comprehensive experimentation by simulation of the algorithms over large-scale multi-

target tracking scenarios (up to 50 targets) is conducted for performance evaluation. An

analysis and comparison is made based on the obtained experimental data. The choice of

the “best” among the six compared parallel particle filters for the considered multitarget

tracking problem, taking into account the tracking and computational performances, im-

poses a complicated trade-off. In this regard, the obtained quantitative experimental results

provide helpful information and guidelines in a practical design.

JMPD Particle Filter

In the JMPD approach to multiple target tracking [51, 52, 50, 65, 66, 49] the uncertainty

about the number of targets present in a surveillance region as well as their individual states

is represented by a single composite PDF. That is, the state of all targets is described by a

meta-target state vector Xk =
(
x1
k, x

2
k, . . . , x

T
k

)
where xik is the state of target i = 1, . . . , T.

The number of targets at time k, Tk ∈ [0, 1, 2, . . . ,∞), is also assumed random. The posterior

34

distribution of interest1 is

p(Xk, Tk|Zk) = p(Xk|Tk, Zk)p(Tk|Zk)

where Zk = {Z1, Z2, . . . , Zk} is the cumulative measurement set of the surveillance region

up to time k, and Zl, l = 1, . . . , k is the measurement set at time l. The model of target

state and number evolution over time is given by p(Xk, Tk|Xk−1, Tk−1) and is referred to as

the kinematic prior. It includes models of target motion, target birth and death, and any

additional prior information on kinematics that may be available, e.g., terrain and road maps.

The measurement model over the surveillance region is given by the likelihood P (Zk|Xk, Tk).

For the purpose of our implementation and performance study we adopt the kinematic

prior and measurement models of [52].

Each target i = 1, . . . , T is assumed to follow a nearly constant velocity motion model

xik = Fxik−1 + wik (3.13)

where x = (x, ẋ, y, ẏ)′ is the state vector, w ∼ N (0, Q) is white process noise with given

covariance, and

F = diag

 1 ∆

0 1

 ,
 1 ∆

0 1

where ∆ is the sampling interval. To account for maneuvers a mode variable can be also

added [66]. The number of target is considered constant and known. Unknown number of

targets using the transitional model of [66] will be included in future work.

It is assumed that a pixelized sensor provides raw (unthresholded) measurements data

1 Note that in this formulation the so-called “mixed labeling” [7] is not addressed. It is assumed that no
track extraction is needed and, consequently, the ordering of xi within X is irrelevant as far as only the
density is of interest. In [52] this assumption is referred to as a symmetry under permutation.

35

from the surveillance region according to the following association-free model [52] used often

for track-before-detect (TBD) problems. A sensor scan at time k consists of the outputs of

M pixels (cells of the region), i.e., Z = {z[1], . . . , z[M]}2 where z[i] is the output of pixel i.

The likelihood P (Z|X,T) is given by

P (Z|X,T) ∝
∏
i∈iX

pn[i](X)(z[i])

p0 (z[i])
(3.14)

where iX is the set of all pixels that couple to X, n[i](X) is the occupation number of pixel

i (number of targets from X that lie in i). The output z of each pixel is assumed to follow

the Rayleigh model

pn(z) =
z

1 + nλ
exp

(
− z2

2 (1 + nλ)

)
, n = 0, 1, 2, . . . (3.15)

where λ denotes the signal-to-noise ratio (SNR).

With the definition of the transitional density p(Xk, Tk|Xk−1, Tk−1) and likelihood P (Zk|Xk, Tk)

the solution to the multitarget tracking problem formally boils down to the BRF (1.1) and

the standard SIS/R PF given above can be applied. However, with large number of target

the computation requirements become prohibitive. The first step to improve the efficiency of

the multitarget PF is to choose an appropriate importance (proposal) distribution for sam-

pling that takes into account the specifics of the multitarget problem. Along with the SIR

algorithm’s Kinematic Prior (KP) proposal π = p(Xk, Tk|X i
k−1, T

i
k−1), where i− particle

index, [52] suggested three more sophisticated schemes for choosing the importance distribu-

tion for multitarget PF, referred to as Independent Partition (IP), Coupled Partition (CP),

and Adaptive Partition (AP) [52]. The second step is to parallelize as much as possible the

resulting multitarget algorithms. In the next section we develop parallel implementation of

2 Time index k is omitted here to lighten notation.

36

these schemes and incorporate them in the parallel structures of the corresponding overall

multitarget parallel algorithms.

JMPD Parallel PF

In the JMPD SIR PF the proposal is just the kinematic prior and the IS step is completely

decoupled with respect to particles {X i}. Consequently, all three versions of the above

generic parallel PF work without any modification. The significantly more efficient proposal

schemes IP, CP, and AP of JMPD PF have intrinsic coupling among particles introduced

by the dependence of the proposal on the current measurement data. By more careful

inspection, however, IP and CP can be parallelized as given next.

Each particle i for Ti targets is X i =
(
xi,1, xi,2, . . . , xi,T

i
k

)
and xi,j is referred to as a

partition j of particle i.

The IS step of the JMPD with IP can be done as follows:

A) For each partition j = 1, . . . , T ik (in parallel)

xijk , w
ij
k = IP

[
{xijk−1, w

ij
k−1}Ni=1, Zk

]
B) For each particle 1 = 1, . . . , N

Importance weights w̃ik = wik−1

p(Zk|Xi
k)

ΠTθ=1w
ij
k

where IP denotes the IP subroutine of [52] which practically implements the SIR algorithm

for each partition. The IS step of the JMPD with CP can be done similarly, except for IP

being replaced by a subroutine CP which practically implements the known auxiliary SIR

particle filter [30] for each partition but only outputs one resampled partition.

The local importance weights wi,jk are data dependent and their inclusion in the calcu-

lation of importance weights w̃ik amounts to improving the proposal π – bias the proposal

towards the optimal importance density π(·, Zk).

37

Part A) can be integrated easily with any of above resampling schemes, CR, RPA, RNA.

In the CR version part B) is naturally computed in HN where all particles are resampled.

In RPA and RNA versions part B) can also be computed at HN at the expense of an extra

communication between HN and all PNs, or it can be computed locally at each PN but

this incurs extra pairwise (node-to-node) communication between all PNs. The latter option

is parallel but not necessarily faster due to the communication overhead. In our cluster

implementation we use the former option – compute B) at HN.

The IP method relies on exact labeling and is only appropriate for well separated (uncou-

pled) targets. the CP is appropriate for closely spaced (coupled) targets but is an expensive

overkill if targets are not close. An adaptive partition (AP) can be achieved by spatial clus-

tering of the individual partitions and applying IP and CP for the groups of independent and

clustered partitions, respectively. In [52] this is achieved by using the K-means clustering

algorithm, however, for many targets its sequential implementation (at the head node) is

computationally prohibitive.

Implementation on Computer Cluster

We used the cluster computer system Poseidon, housed at the University of New Orleans.

Poseidon is a 128-node, 2 dual-core processor Red Hat Enterprise Linux (RHEL) v4 cluster

from Dell with 2.33 GHz Intel Xeon 64bit processors and 4 GB RAM per node. It has 4.772

TFlops peak performance. It is part of the High Performance Computing (HPC) Louisiana

Optical Network Initiative (LONI). More technical and performance details of this cluster

can be found at URL: http://www.hpc.lsu.edu/systems/.

The program code was written on Message Passing Interface (MPI) [36]. MPI is a

language-independent communications protocol used to program parallel computers. Both

point-to-point and collective communication are supported.

38

The first MPI routine called in any MPI program is the initialization routine MPI INIT.

In our implementation the head node (HN) executes function master(), and a processing

node (PN) executes function slave(). A high-level pseudo-code of the implemented PPF

with CR, RPA, and RNA, respectively is the same as in Case Study I.

Experiment Setup

The simulated multiple target tracking examples are based on the ground target tracking

example of [52]. The targets move in a 5000m×5000m surveillance area. They have a nearly

constant velocity motion, according to (3.13) with Q = diag{20, 0.2, 20, 0.2}. The initial

position of each target, for each Cartesian coordinate x and y, is generated randomly from

the uniform distribution U(0, 5000), and the initial velocity of each target is also generated

randomly from the uniform distribution U(−10, 10). The sensor scans a fixed rectangular

region of 50 × 50 pixels, where each pixel represents a 100m×100m area on the ground

plane. The sensor returns Rayleigh-distributed (given by (3.15)) measurements in each pixel,

depending on the number of targets that occupy the pixel according to the measurement

model (3.14). The sensor sampling interval ∆ = 1s. The presented results are for SNR

λ = 15. Scenarios with different number of targets were simulated, i.e., T = 3, 10, 20, 30, 50.

The scenarios with T = 20 and T = 50 are illustrated in Fig. 3.4. The design parameter

R = 200 in the CP algorithm. In order to obtain statistically significant evaluation of the

performance metrics, 100 Monte Carlo runs were performed for each set of scenario and

algorithms parameters (i.e, different number of particles, different number of processors,

different number targets etc.) as described below.

39

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

X Position[m]

Y
 P

o
s
it
io

n
[m

]

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

X Position[m]

Y
 P

o
s
it
io

n
[m

]

Figure 3.4: Scenarios with 20 Targets (top) and 50 Targets (bottom).

40

10
3

10
4

10
5

10
6

200

300

400

500

600

700

800

900

1000

Number of Particles

IP−CR

IP−RPA

IP−RNA

CP−CR

CP−RPA

CP−RNA

Figure 3.5: Position TARMSE; 64 Processors; 50 Targets; 100 MC Runs.

Performance Measures – Tracking performance

The accuracy of state estimation for all filters was measured in terms of time averaged root

mean square error (TARMSE) [46], defined (for both position and velocity) by (3.9), where

(for position)

RMSEk =

(
1

M

M∑
i=1

[(x
(i)
k − x̂

(i)
k)2 + (y

(i)
k − ŷ

(i)
k)2]

)1/2

(3.16)

where i = 1, . . . ,M denotes the ith MC run. Likewise for velocity.

The state estimates for each target needed in (3.16) were obtained through K-means

clustering of all posterior samples, as suggested by [52], and then computing each estimate

as the sample mean of the particles within each cluster.

Performance Measures – Computational Performance

The algorithms’ computational performance was measured in terms of execution time, speedup,

and efficiency, given by (3.10), (3.11), and (3.12), respectively.

41

10
3

10
4

10
5

10
6

0

5

10

15

20

25

30

35

40

Number of Particles

R
u

n
n

in
g

 T
im

e
[s

]

IP−CR

IP−RPA

IP−RNA

CP−CR

CP−RPA

CP−RNA

Figure 3.6: Average Execution Time; 64 Processors; 50 Targets; 100 MC Runs.

Results & Comparative Analysis

Due to space limitation, only the most representative results are reported in this dissertation.

Included are the following six parallel multitarget tracking algorithms:

IP-CR IP-RPA IP-RNA

CP-CR CP-RPA CP-RNA

where IP and CP denote independent and coupled partition, respectively, and CR, RPA

and RNA denote centralized resampling, resampling with proportional allocation and re-

sampling with nonproportional allocation, respectively. More results are presented for the

most difficult 50-target scenario Note that for T = 50 the dimension of the state vector is

200.

Fig. 3.5 shows the position TARMSE and Fig. 3.6 shows the execution times of the six

filters using p = 64 processors versus the number of particles used. Similar results (not pre-

sented here) were obtained for different number of processors, e.g., p = 1, 2, 4, 8, 16, 32, 64, 128,

256. They all indicated (as illustrated in Fig. 3.5) that for all filters using slightly more

than 100K particles is a reasonable choice for practical purposes, regardless of the number

of processors used.

42

Table 3.3: Execution Time(s); 50 Targets

Number of Particles
10, 000 100, 000

p IP-CR IP-RPA IP-RNA CP-CR CP-RPA CP-RNA IP-CR IP-RPA IP-RNA CP-CR CP-RPA CP-RNA

1 0.9921 0.9883 0.9999 20.2018 20.3858 20.2411 9.9831 9.8122 9.9038 203.4868 204.7674 211.2306
2 0.9393 1.1786 1.2232 10.3009 10.3325 10.6168 9.2455 11.4716 11.7845 103.5883 103.2430 108.2115
4 0.5910 0.5894 0.6277 5.1990 5.2394 5.3241 5.9815 5.8952 6.0107 51.8891 51.6296 56.4860
8 0.4273 0.2885 0.2440 2.6219 2.6005 2.6810 4.0835 3.0311 2.5772 26.4441 25.8102 28.4187
16 0.3349 0.1759 0.1575 1.3376 1.3371 1.3784 3.3469 1.6788 1.5255 13.3824 13.1720 14.2625
32 0.2930 0.1057 0.0962 0.6964 0.6754 0.6767 2.8235 0.8976 0.8959 6.9516 6.6127 6.6826
64 0.2691 0.0797 0.0784 0.4093 0.3717 0.3695 2.6662 0.5734 0.5097 3.6776 3.4416 3.4927
128 0.2644 0.0977 0.0929 0.2414 0.2084 0.2021 2.5957 0.4191 0.3565 2.0892 1.8729 1.7946
256 0.3273 0.1313 0.1081 0.1727 0.2102 0.1997 2.5185 0.3913 0.3416 1.3248 1.1068 0.9871

Fig. 3.5 also illustrates that CP-CR is the best in terms of accuracy (for the same number

of particles), followed by CP-RPA and CP-RNA. This agrees with 1) the understanding that

CP is the right partition method to use because the targets are closely spaced and IP is

inadequate, and 2) that CR has better utilization of particles than RPA and RNA because

it implements the resampling exactly as opposed to RPA and RNA which are approximate.

The differences in accuracy are considerable. Quantitatively (based on all simulations with

100K particles), CP-RPA and CP-RNA are about 20% less accurate than CP-CR, and all

IP methods are more than 40% less accurate than CP-CR.

On the other hand, Fig. 3.6 shows the execution time – the “price” paid to achieve the

accuracies shown in Fig. 3.5. Now the order of performance is reversed with IP-RNA and IP-

RPA being significantly faster than all other filters. Quantitatively (based on all simulations

with 100K particles - see Table 3.3), IP-RNA and IP-RPA (which are close in computation)

are about 4.5 times faster than IP-CR and more than 6 times faster than CP-CR, CP-RPA,

CP-RNA which are relatively close in computation time.

The rest of the presented results concern the parallel computational performances. Ta-

ble 3.3 provides the obtained execution times of each filter for a wide range of number of

processors p and number of particles N . Fig. 3.7 shows the execution time, speedup, and

efficiency for all algorithms with 100K particles versus the number of processors. Table 3.4

43

Table 3.4: Computational Performances; 100K Particles, 50 Targets

p = 1 2 4 8 16 32 64 128 256

Tp 9.9831 9.2455 5.9815 4.0835 3.3469 2.8235 2.6662 2.5957 2.5185
IP-CR Sp 1.0000 1.0798 1.6690 2.4447 2.9828 3.5357 3.7443 3.8460 3.9638

Ep 1.0000 0.5399 0.4172 0.3056 0.1864 0.1105 0.0585 0.0300 0.0155
Tp 9.8122 11.4716 5.8952 3.0311 1.6788 0.8976 0.5734 0.4191 0.3913

IP-RPA Sp 1.0000 0.8553 1.6644 3.2372 5.8448 10.9318 17.1135 23.4112 25.0727
Ep 1.0000 0.4277 0.4161 0.4046 0.3653 0.3416 0.2674 0.1829 0.0979
Tp 9.9038 11.7845 6.0107 2.5772 1.5255 0.8959 0.5097 0.3565 0.3416

IP-RNA Sp 1.0000 0.8404 1.6477 3.8428 6.4922 11.0545 19.4294 27.7810 28.9935
Ep 1.0000 0.4202 0.4119 0.4804 0.4058 0.3455 0.3036 0.2170 0.1133
Tp 203.4868 103.5883 51.8891 26.4441 13.3824 6.9516 3.6776 2.0892 1.3248

CP-CR Sp 1.0000 1.9644 3.9216 7.6950 15.2055 29.2720 55.3321 97.3990 153.5968
Ep 1.0000 0.9822 0.9804 0.9619 0.9503 0.9148 0.8646 0.7609 0.6000
Tp 204.7674 103.2430 51.6296 25.8102 13.1720 6.6127 3.4416 1.8729 1.1068

CP-RPA Sp 1.0000 1.9834 3.9661 7.9336 15.5456 30.9657 59.4984 109.3300 185.0159
Ep 1.0000 0.9917 0.9915 0.9917 0.9716 0.9677 0.9297 0.8541 0.7227
Tp 211.2306 108.2115 56.4860 28.4187 14.2625 6.6826 3.4927 1.7946 0.9871

CP-RNA Sp 1.0000 1.9520 3.7395 7.4328 14.8102 31.6091 60.4778 117.7012 213.9824
Ep 1.0000 0.9760 0.9349 0.9291 0.9256 0.9878 0.9450 0.9195 0.8359

provides the computational performances of each filter with 100K particles.

First, based on all results, it is observed that IP-CR has a quite poor scalability and

efficiency. Practically, its execution time remains constant for p ≥ 30. Evidently, IP-CR

PPF on more than 32 processors is of almost no use for this problem – most of the effort

will be wasted on communication and synchronization. Second, IP-RNA and IP-RPA are

better than IP-CR but much worse than all CP algorithms in terms of speedup and efficiency.

For IP-RNA and IP-RPA there is no real use of increasing number of the processors after

p ≥ 64. Third, all CP algorithms have very good speedup and efficiency with a considerable

advantage of CP-RNA (best) and CP-RPA (second best). This advantage increases signifi-

cantly with increasing the number of processors, e.g., CP-RPA becomes more than 15% more

efficient than CP-CR, and CP-RNA becomes more than 25% more efficient than CP-CR.

It becomes clear from the results that within the CP algorithms RNA and RPA can help

reduce considerably the computation of CP-CR if the number of processors p ≥ 128.

44

Finally, Fig. 3.8 provides a comparison of the execution times of the tracking filters as a

function of the number of targets.

Summary

In this case study, six parallel particle filters for multitarget tracking have been designed

and implemented on a cluster of computers. Comprehensive experimentation by simulation

of the algorithms over large-scale multitarget tracking scenarios has been conducted for

performance evaluation, and comparison has been made based on the experimental data.

Overall, the CP-CR algorithm is the best in terms of accuracy at a given number of

particles and its computation time is close to that of CP-RPA and CP-RNA. CP-RNA and

CP-RPA have shown the best computational performance in terms of speedup and efficiency

of the parallelization but they do not reduce the computation time of the CP-CR algorithm

very significantly. This is because most of the computation time in CP-CR is spent on

CP and very little on CR. So, speeding up CR by RPA or RNA with the same number of

processors has a little effect on the overall algorithm.

All IP filters are significantly betters in terms of execution time but they have poorer

scalability and tracking accuracy than the CP algorithms. RPA and RNA help greatly in

reducing the execution time of IP-CR. This is because the resampling is a significant part

of the computation with IP and thus RPA or RNA lead to a dramatic reduction of the

computation time of the overall algorithm.

The choice of the “best” among the six compared parallel particle filters for the con-

sidered multitarget tracking problem, taking into account the tracking and computational

performances, imposes a complicated trade-off. In this regard, the obtained quantitative

experimental results provide helpful information and guidelines in a practical design.

45

0 50 100 150 200 250 300
10

−1

10
0

10
1

10
2

10
3

Number of Processors

R
u
n
n
in

g
 T

im
e
[s

]

IP−CR

IP−RPA

IP−RNA

CP−CR

CP−RPA

CP−RNA

0 50 100 150 200 250 300
0

50

100

150

200

250

Number of Processors

IP−CR

IP−RPA

IP−RNA

CP−CR

CP−RPA

CP−RNA

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Processors

IP−CR

IP−RPA

IP−RNA

CP−CR

CP−RPA

CP−RNA

Figure 3.7: Execution Time (top) in Log-scale, Speedup (middle), Efficiency (bottom); 50
Targets; 100K Particles.

46

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

3.5

4

Number of Targets

R
u
n
n
in

g
 T

im
e
[s

]

IP−CR

IP−RPA

IP−RNA

CP−CR

CP−RPA

CP−RNA

Figure 3.8: Execution Time; 64 Processors; 100K Particles.

3.3 Improved PF Algorithm for Computer Cluster

3.3.1 Particle Transfer Algorithm (PTA) for Load Balancing

Since the nodes of a computer cluster could communicate with each other easily, we propose

to implement an improved algorithm that takes advantage of this capability — the PTA.

The main idea of PTA is to regroup computer nodes based on the weight of each node in

order to achieve a better load balancing. It is similar to the RNA described in section 2.1.5

in that the processing nodes (PNs) are grouped, but the groups are adaptively changing in

contrast to the RNA wherein the groups are fixed. The weight of each PN is calculated as a

sum of the weights of the particles inside the PN, i.e., W =
∑N

i=1w
i. After PN-resampling

at each PN (Fig. 3.9), particles are transmitted from some PNs to other PNs using particle

transfer algorithm to balance the loads of all PNs. PTA runs on each nodes (PNs and HN)

and maintains a list of nodes information which include number of particles each node has.

The list is generated by HN through running inter-resampling algorithm then broadcast the

list to all other nodes. After each node gets the list, then each node executes the PTA

47

algorithm. PTA ensures that all nodes in the cluster have the same list.

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

PN1 PN2 PN6. . .

Figure 3.9: Unbalanced Stratified Resampling

An example of particle transfer is shown in Fig. 3.10. The computer cluster with 8 PNs is

considered, where each PN processes N = 100 particles. After PN-resampling, the number

of particles that each PN will produce is determined and it is 180, 57, 156, 88, 89, 16, 90 and

124 respectively. The PNs are divided in two groups. One group has ordered PNs which

number of particles is greater than 100, the other group has ordered PNs which number

of particles is less than 100. Therefore, PNs 1, 3 and 8 have surpluses of particles. In this

example, PN1 send 80 particles to PN6, PN3 send 43 particles to PN2 and PN8 send 12

particles to PN4. After it, PNs 1, 2 and 4 have 100 particles. Continue to do the processing

with the remained PNs until all PNs have 100 particles.

1N1=180 6 N6=16
80

3N3=156 2 N2=57
43

8N8=124 4 N4=88
12

5 N5=89

7 N7=90

3N3=113 5 N5=89
11

8N8=112 7 N7=90
10

6 N6=96

1 2 4

3N3=102 6 N6=96
2

8N8=102

1 2 4 5 7

8N8=102 6 N6=98
2

1 2 3 4 5 7

Figure 3.10: Particle Transfer Algorithm (PTA)

The main advantage of PTA lies in balancing the PN loads in a distributed resampling

when the resampling is executed concurrently in the PNs instead in the HN. The time for

48

10
3

10
4

10
5

10
6

350

400

450

500

550

600

650

700

750

800

Number of Particles

[m
]

CP−CR

CP−RPA

CP−RNA

CP−PTA

Figure 3.11: Position TARMSE; 64 Processors; 50 Targets; 100 MC Runs.

the resampling procedure in PTA is reduced N/(N/K +K) times, where N is total number

of particles, N/K denote the PN-resampling time, and K is the time for HN-resampling.

It is important to note that HN-resampling requires global communication among the PNs,

whereas PN-resampling is completely local within the PNs. PTA also requires communica-

tion between two PNs. The advantage is that the communication between each pair of PNs

is done concurrently across pairs which helps save on communication time.

3.3.2 PTA Implementation & Simulation – Case Study II

Using again Case Study II (section 3.2.3), Fig. 3.11 shows the position TARMSE and Fig.

3.12 shows the execution times of the four filters using p = 64 processors versus the number

of particles used. Similar results (not presented here) were obtained for different number of

processors, e.g., p = 1, 2, 4, 8, 16, 32, 64, 128, 256.

It is seen from Fig. 3.11 that CP-CR and CP-PTA are the best in terms of accuracy

(for the same number of particles), followed by CP-RPA and CP-RNA. Clearly, this is due

the fact that PTA has better utilization of particles than RPA and RNA which are too

49

10
3

10
4

10
5

10
6

0

5

10

15

20

25

30

35

40

Number of Particles

R
u
n
n
in

g
 T

im
e
[s

]

CP−CR

CP−RPA

CP−RNA

CP−PTA

Figure 3.12: Execution Time; 64 Processors.

approximate.

On the other hand, Fig. 3.12 shows that CP-PTA is significantly faster than all other

filters.

The rest of the presented results concern the parallel computational performances. Fig.

3.13 shows the execution time, speedup, and efficiency for all algorithms with 100K particles

versus the number of processors.

Based on all results, it is observed that CP-CR has a quite poor scalability and efficiency.

CP-PTA is the best of all algorithms in terms of speedup and efficiency. It becomes clear

from the results that in comparison with the CP algorithms, the PTA can help reduce

considerably the computation time and keep the best accuracy.

3.4 Summary

The computation of particle filter algorithm for importance sampling part is independent for

each particle, and thus can be conducted in parallel without any communication among the

50

0 50 100 150 200 250 300

10
0

Number of Processors

R
u
n
n
in

g
 T

im
e
[s

]

CP−CR

CP−RPA

CP−RNA

CP−PTA

0 50 100 150 200 250 300
0

50

100

150

200

250

Number of Processors

CP−CR

CP−RPA

CP−RNA

CP−PTA

0 50 100 150 200 250 300
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of Processors

CP−CR

CP−RPA

CP−RNA

CP−PTA

Figure 3.13: Execution Time (top) in Log-scale, Speedup (middle), Efficiency (bottom); 50
Targets; 100K Particles.

51

processors. Effective parallelization of the resampling part is nontrivial because generation

of a single resampled particle requires information from all particles of the sample set. Thus,

in parallel and distributed implementations, resampling becomes a bottleneck and it imposes

an increased complexity on the communications and data traffic between processors. First,

we implemented group resampling methods such as distributed RPA and RNA. Compared

with central resampling method, the distributed resampling methods have the following

advantages:

• Distributed group resampling is faster because it is done concurrently on subsets of

particles of smaller size.

• Communication time is shorter since less particles are replicated and replaced.

However, group resampling is approximate, so its accuracy is less than that of a central

resampling.

In order to further enhance accuracy and optimize the communication time, we proposed

to use an improved algorithm for load balancing — the PTA. Based on the simulation,

the PTA has shown quite significant advantage in terms of accuracy and computational

performances as compared to other parallel PF algorithms. In the best cases, RPA has

shown to be more than three times faster than CR, RNA – more than nine times faster than

CR, and PTA – more than fifteen times faster than CR. On the other hand, their tracking

performance degradation shown, was not that significant. In the worst cases the estimation

error of RPA has increased up to about 10%, compared to that of CR; and that of RNA –

up to about 17% , compared to that of CR. RNA has shown to be (in the best cases) up

to 2.6 times faster than RPA, with an accuracy degradation (in the worst cases) – up to

7% as compared to RPA. The estimation error of PTA has almost the same with that of

CR. So our improved implementation shows the best performance in terms of accuracy and

computation.

52

Chapter 4

Parallel Filtering & Tracking

Algorithms for Graphic Processing

Unit

4.1 GPU & CUDA Computing

A graphics processing unit (GPU) is a single instruction multiple data (SIMD) parallel

processor intended originally to meet the demands of computationally intensive tasks for real-

time high-resolution 3D-graphics. Nowadays, GPUs are highly parallel multicore systems

that can process very efficiently large blocks of data in parallel [63]. For highly parallelizable

algorithms GPUs are becoming more efficient than the sequential central processing unit

(CPU) [38]. On the other hand, GPUs are easily accessible and inexpensive – most new

personal computers have a GPU card. Hence, GPUs offer an attractive opportunity for

speeding up PFs and PFFs for real-time applications.

A typical GPU is a collection of multiprocessors (MPs) where each of them has several

53

scalar processors (SPs), also referred to as cores [13]. At any given clock cycle, each SP

executes the same program (one or a set of instructions) on different data by following the

single instruction/program multiple data (SIMD/SPMD) models. Each SP has access to

different memory levels. Fig. 4.1 gives a simplified illustration of the architecture of Nvidia

GPU. This type of architecture is ideally suited to data-parallel computation since large

quantities of data can be loaded into shared memory for the cores to process in parallel.

Compute Unified Device Architecture (CUDA) is a parallel computing architecture de-

veloped by Nvidia as a computing engine in GPUs. It allows access to the virtual instruction

set and memory of a GPU’s parallel computational elements. By using CUDA the GPUs

can be used for computation like CPUs.

A detailed description of CUDA is given in [73]. The MP model used in CUDA is called

single-instruction multiple-thread (SIMT). In SIMT, the MP maps each thread to one SP

core, and each thread executes independently with its own instruction address and register

state. The MP creates manages, and executes concurrent threads in hardware with no

scheduling overhead. The threads are logically organized in blocks and grids. A block is

a set of threads, while a grid is a set of blocks. The sizes of the blocks and grids can be

programmatically controlled. To optimize an execution configuration the first parameters

to choose are the grid size (number of blocks per grid) and block size (number of threads

per block). As a general guideline, provided by [73], the primary concern is keeping the

entire GPU busy—the number of blocks in a grid should be larger than the number of

multiprocessors so that all multiprocessors have at least one block to execute, and there

should be multiple active blocks per multiprocessor so that blocks which are not waiting for

thread synchronization can keep the hardware busy.

CUDA devices use several memory spaces, which have different characteristics that reflect

their distinct usages in CUDA applications. These memory spaces include global, local,

54

GPU Device

Device Memory

Multiprocessor N
·
·
·

Multiprocessor 2

Multiprocessor 1

Shared Memory

Block

. . .SProcessor

Registers

SProcessor

Registers

SProcessor

Registers

Instruction
Unit

Figure 4.1: Nvidia GPU Architecture

shared, texture, constant and registers. For example, there is a 16 KB per thread limit

on local memory, a total of 64 KB of constant memory, and a limit of 16 KB of shared

memory, and either 8,192 or 16,384 32-bit registers per multiprocessor. Global, local, and

texture memory have the greatest access latency, followed by constant memory, registers, and

shared memory. Memory optimizations are key for performance. The best way to maximize

bandwidth is to use as much fast-access memory and as little slow-access memory as possible.

There are many important factors for GPU performance such as memory optimizations,

thread and block size. Memory reading from or writing to shared, local, or global memory

takes different time cycles. When accessing local or global memory, there are 400 to 600

clock cycles more than accessing shared memory. Sometimes much of this global memory

accessing time cycles can be hidden by the thread scheduler. Accessing time cycles hiding

depends on the number of active threads per MP, which is implicitly determined by the

55

resource of register and shared memory. When choosing the parameter – the number of

threads per block – the primary concern is keeping the GPU busy. Thus, there should be

multiple active blocks per MP so that blocks which are not waiting for a synchronize signal

can keep the GPU busy.

4.2 PF & PFF GPU Implementation

As discussed in Chapter 2, standard PFs cannot be run efficiently on parallel processors

due to the bottleneck caused by resampling of particles. That is, as seen in Chapter 2,

using M processors to implement a PF would not result in roughly a factor of M speed-

up in computation time because resampling of particles requires all of them be used jointly,

thereby destroying the easy parallelization. Another example is in [45], where using hundreds

of processors results in less than an order of magnitude speedup, even after the resampling

method was modified specifically to address this issue. In contrast, particle flow filter does

not resample particles, and hence it does not suffer from this bottleneck to parallelization,

even though there is a small part of it that is still coupled.

The general idea of implementing both particle algorithms (PF and PFF) on GPU is

to map (dedicate) a thread to a particle and organize the algorithms in terms of groups of

particles, mapped correspondingly to GPU blocks, in order to take advantage of the GPU

architecture. The key is to use the shared memory for fast particle data communication

within each block and avoid/reduce communications between different blocks, as much as

possible.

56

4.2.1 Parallel PF

We implement distributed resampling with nonproportional allocation (RNA) [10]. The idea

is similar to the cluster implementation described in section 3.2.1. Some specific details are

as follows, and in our papers [46, 45, 88].

Distributed RNA is a modification of the distributed resampling with proportional al-

location (RPA) which is essentially based on stratified sampling [30]. The sample space is

partitioned into several strata (groups) and each stratum corresponds to a processing node

(PN)—mapped to a GPU block of threads in our GPU implementation. Proportional al-

location among strata is used, which means that more samples are drawn from the strata

with larger weights. After the weights of the strata are known, the number of particles that

each stratum replicates is calculated at a head processing node (HN)—a dedicated block

of threads in a GPU implementation—using residual systematic resampling, and this pro-

cess is referred to as inter-resampling since it treats the PNs as single particles. Finally,

resampling is performed inside the strata (at each PN, in parallel) which is referred to as

intra-resampling. RPA requires a complicated scheme for particle routing. In the parallel

RNA particle routing is deterministic and planned in advance by the design. The number

of particles within a group after resampling is fixed and equal to the number of particles

per group as opposed to the RPA where this number is random (proportional to the weight

of the stratum). This introduces an extra approximation in the resampling (in statistical

sense) but allows to execute resampling in parallel by each group (GPU block).

In our implementation each group of particles, as defined in RNA, is naturally mapped

into a GPU block as each particle of the group corresponds to a thread of the block. Thus,

in terms of the GPU architecture, the importance sampling is thread-parallel while the

resampling part is only block-parallel, as shown in Table 4.1.

57

Table 4.1: Parallel PF Algorithm for GPU

• Importance Sampling (IS)

– For i = 1, . . . , N (Thread Parallel)

Draw a sample (particle)

xik ∼ π
(
xk| xik−1, zk

)
Evaluate importance weights

wik = wik−1
p(zk| xi

k)p(xi
k| x

i
k−1)

π(xi
k| x

i
k−1, z

k)

– For i = 1, . . . , N (Centralized)

Normalize importance weights:

wik =
wi

k∑N
j=1 w

j
k

• Resampling (R)

Sample from
{
xjk, wjk

}N
j=1

to obtain a new sample set
{
xik = x

ji
k , w

i
k = 1

N

}N
i=1

– Inter Resampling (Centralized)

– Intra Resampling (Block Parallel)

Other important issues arising in the GPU implementation are the cumulative summation

(needed for normalization) and random number generation (needed for IS). The cumulative

sum can in principle be implemented using a multipass scheme similar to that of [38], but

we propose a better way in section 4.4. The CURAND library [74] provides facilities that

focus on the simple and efficient generation of high-quality pseudorandom and quasirandom

numbers. It is used to create several generators at the same time. Each generator has a

separate state and is independent of all other generators.

4.2.2 Parallel PFF

GPU parallelization of PFF is much easier than that of the PF. It is apparent from Table

2.2 that the prediction part and solving the ODE for each particle is independent across

particles and can be executed completely in parallel by mapping a particle to a GPU thread.

58

For computing x̄k, Pk, Hk, and the flow velocity parameters A(λ), b(λ) there are different

options because they are common for all particles. One way is to have them computed

by the CPU (“externally” to the GPU) by a point estimator like EKF/UKF and sent to

each particle. Another way is to collect all predicted particles in the CPU, compute sample

mean x̄k, and based on it, compute Pk, Hk, A(λ), b(λ) and send the results to each particle.

Involvement of the CPU imposes a communication time overhead (due to the need to access

the slow memory), and does not take advantage of the GPU block architecture. That is why,

as in the GPU-PF, we divide all particles in groups and map each group to a GPU block

wherein each particle corresponds to a thread. A predicted estimate x̄k,b is computed for

each block b, as the sample mean of its particles, and based on it, flow velocity parameters

for this block are computed. Thus, even though some extra approximation is incurred, any

communication with the CPU and among different block is avoided. A high level outline is

given in Table 4.2.

In accordance with the limitation of shared memory, the number of particles we include

in each block is specific for each application and is given later in the description of each case

study, respectively. The same block sizes we also use for the GPU-PF implementation.

Note that, except for the small block sample mean part (which is block parallel), this

GPU-PFF implementation is completely (thread) parallel as opposed to the GPU-PF im-

plementation wherein a significant part (the resampling) is only partially (block) parallel.

This clearly gives an explanation to the fact that the implemented GPU-PFF is much faster

than the GPU-PF for the same number of particles, as seen in the Case Study III simulation

results presented in the next section.

59

Table 4.2: Parallel PFF Algorithm for GPU

• Particle Prediction (Thread Parallel)

• Particle Update

– Compute x̄k,b, Pk,b, Hk,b (Block Parallel)

– Compute particle flow ODE (Thread Parallel)

For computing a block x̄k,b we use the sample mean.

Pk,b, Hk,b are computed using the EKF equations.

For numerical computation of the ith particle’s ODE we use the finite difference forward
Euler method:

x[0] = x̄ik

x[l+1] = x[l] + ∆λf
(
x[l], l∆λ

)
(4.1)

xik = x[L]

where l = 0, 1, . . . , L− 1, L > 1 is an integer defining the discretization step ∆λ = 1/L
of the interval [0 1].

4.3 Target Tracking Applications

4.3.1 Case Study II: Ground Multitarget Tracking using GPU

We implement and study the performance of PFs with CPU-CR (Centralized Resampling),

GPU-CR, and GPU-DR (Distributed Resampling) on a computer with GPU for the Case

Study II tracking application, described in section 3.2.3.

CPU-CR

CPU performs prediction (draw predicted samples and calculate importance weights) and

resampling using residual systematic resampling method [30]. This algorithm does not use

GPU. It is implemented just for comparison.

60

GPU-CR

GPU (in parallel) performs prediction and CPU performs resampling.

GPU-DR

Both IS & R are performed in parallel on the GPU. The resampling is as described in

section 4.2.1. After the weights of the block are known, the number of particles that each

block replicates is calculated at CPU using residual systematic resampling (inter resampling).

Finally, resampling is performed inside the block in parallel. Since the current generation of

GPUs has a maximal texture size the number of particles that can be resampled as a single

unit is limited.

Experiment Setup

The parameters of Case Study II (section 3.2.3) that are used in this GPU implementation

are as follows. The targets move in a 5000m× 5000m surveillance area. They have a nearly

constant velocity motion, according to the state model (3.13) with Q = diag{20, 0.2, 20, 0.2}.

The initial position and velocity of each target, for each Cartesian coordinate x and y are

generated randomly from the uniform distributions U(0, 5000) and U(−10, 10), respectively.

The sensor scans a fixed rectangular region of 50× 50 pixels, where each pixel represents a

100m × 100m area on the ground plane. The sensor returns Rayleigh-distributed measure-

ments in each pixel, depending on the number of targets that occupy the pixel according to

the measurement model (3.14). The sensor sampling interval ∆ = 1s and SNR λ = 15.

Scenarios with different number of targets were simulated, i.e., T = 3 and 20 (Fig. 4.2).

The three PFs (CPU-CR, GPU-CR, GPU-DR) were implemented with different number

of particles for each scenario. In order to obtain statistically significant evaluation of the

performance metrics, 100 Monte Carlo runs were performed for each set of scenario and

61

0 1000 2000 3000 4000 5000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

X Position[m]

Y
 P

o
s
it
io

n
[m

]

Figure 4.2: Scenario with 20 Targets.

algorithm parameters.

The hardware used in our experiments is presented in Table 4.3. Note that there are

8 parallel pipelines and the number of particles � number of pipelines. The code for all

implementations is written in C++ and compiled using Visual C++ 2008.

Results & Comparison

Due to space limitation, only the most representative results are reported in this dissertation.

First, Fig. 4.3 shows the computation times spent on different parts of the PF algorithm

in the GPU-DR implementation. The resampling step incurs the highest computational cost.

Quantitatively, resampling is from two to four times more costly (depending on the number

of particles) than importance sampling, and about 2.5 times than generating the estimates.

Second, Fig. 4.4 shows a comparison between the times for resampling only (CR and

DR) with different number of particles. Even though DR is in parallel, the improvement over

62

Table 4.3: Hardware Used for the Simulation

CPU

Model: Intel Core(TM)2 Duo
Clock Rate: 1.40GHz

Memory: 2.0G
Operating System: Windows 7

GPU

Model: NVIDIA GeForce 8400M GS
CUDA Driver: 3.20

Clock Rate: 0.80 GHz
Cores: 2 (MP) x 8 (Cores/MP) = 16 (Cores)

Global Memory: 115M bytes
Constant Memory: 64K bytes

Shared Memory: 16K bytes/block

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

16384 32768 65536 131072

Resampling Weight Update IS

Number of Particles

Ti
m

e
Sp

en
t

Figure 4.3: Relative Times Spent in the Different Steps Using GPU-DR.

CR is not significant because the clock rate of GPU is much lower (almost two times) than

that of the CPU. Also, as the number of particles increases the efficiency of DR decreases

due to the limited pipelines of GPU.

Next, Fig. 4.5 and Fig. 4.6 show the position time-average root-mean square errors

(TARMSE) and execution times of the three PF algorithms for 3 targets, respectively. Fig.

4.7 and Fig. 4.8 are for 20 targets. Fig. 4.5 indicates that, for 3 targets, using slightly

more than 60K particles (in all filters) is a reasonable choice for practical purposes. For

20 targets, Fig. 4.7 indicates that more than 130k particles are needed. These figures also

illustrate that CPU-CR and GPU-CR are better than GPU-DR in terms of accuracy (for

63

0

0.5

1

1.5

2

2.5

3

3.5

16384 32768 65536 131072

cent. R dist. R

R
u

n
n

in
g

 T
im

e
 (

s)

Number of Particles

Figure 4.4: Computation Times of CR & DR.

0 2 4 6 8 10 12 14

x 10
4

540

560

580

600

620

640

660

680

700

720

Number of Particles

[m
]

CPU−cent.R

GPU−cent.R

GPU−dist.R

Figure 4.5: Position TARMSE; 3 Targets; 100 MC Runs.

the same number of particles). This is clear because CR has better utilization of particles

than DR—the former implements the resampling exactly as opposed to the latter which is

approximate.

On the other hand, Fig. 4.6 and Fig. 4.8 show the execution times for one computa-

tional cycle of the tracking filter. Now the order of performance is reversed with CPU-CR

being considerably slower than both GPU-CR and GPU-DR (which are close in computation

times). Quantitatively (based on all simulations with 130K particles), CPU-CR is about 30%

slower than GPU-DR.

64

0 2 4 6 8 10 12 14

x 10
4

0

1

2

3

4

5

6

7

Number of Particles

R
u
n
n
in

g
 T

im
e
[s

]

CPU−cent.R

GPU−cent.R

GPU−dist.R

Figure 4.6: Average Execution Time; 3 Targets; 100 MC Runs.

0 2 4 6 8 10 12 14

x 10
4

650

700

750

800

850

900

Number of Particles

[m
]

CPU−cent.R

GPU−cent.R

GPU−dist.R

Figure 4.7: Position TARMSE; 20 Targets; 100 MC Runs.

The fully centralized algorithm (CPU-CR) is the best in terms of accuracy at a given

number of particles but its computation time is worst. The fully distributed algorithm

(GPU-DR) has shown the best running time but its accuracy is the worst. The partially

distributed algorithm (GPU-CR), for the considered scenarios, has shown a computation time

close to that of the fully distributed (GPU-DR) and accuracy not much worse than that of

the fully centralized (CPU-CR). It appears that, for the considered hardware configuration,

the partially distributed implementation may provide a reasonable tradeoff between filter

65

0 2 4 6 8 10 12 14

x 10
4

0

5

10

15

20

25

30

35

40

Number of Particles

R
u
n
n
in

g
 T

im
e
[s

]

CPU−cent.R

GPU−cent.R

GPU−dist.R

Figure 4.8: Average Execution Time; 20 Targets; 100 MC Runs.

accuracy and computation time as compared to the other two implementations.

4.3.2 Case Study III: PF vs. PFF on GPU for High Dimensional

Problem

The main goal of this section is design, implementation, and performance comparison of par-

allel PFs and PFFs using a computer with GPU as a parallel computing environment. Four

algorithms are implemented and experimented: PF-CPU, PF-GPU, PFF-CPU, PFF-GPU,

respectively. Comprehensive simulation of the algorithms over high-dimensional nonlinear

filtering scenarios (up to 40-dimensional state vectors) is conducted for performance evalua-

tion, and a comparison is made based on the experimental data. The obtained quantitative

experimental results provide helpful information and guidelines in a practical design [47].

The hardware used in our design and simulation (presented later) is described in Table

4.4.

The GPU PF and PFF described in section 4.2 were implemented. The particular config-

uration parameters of our GPU implementation are given in Table 4.5. They were determined

66

Table 4.4: Hardware Used for Design & Simulation

CPU

Model: Intel(R) Core(TM) i5-3210M
Clock Rate: 2.50GHz

Memory: 4.0G
Operating System: Windows 7

GPU

Model: NVS 5400M
CUDA Driver: 5.0

Clock Rate: 0.95 GHz
Cores: 2 (MP) x 48 (Cores/MP) = 96

Registers: 32K bytes/block
Constant Memory: 64K bytes

Shared Memory: 48K bytes/block

Table 4.5: GPU Blocks’ Specification

Num of Particles = 1536 12288 49152 98304 196608 393216 786432 1572864

XDim = 10 Threads/Block = 256 6 48 192 384 768 1536 3072 6144
XDim = 20 Threads/Block = 128 12 96 384 768 1536 3072 6144 12288
XDim = 30 Threads/Block = 96 16 128 512 1024 2048 4096 8192 16384
XDim = 40 Threads/Block = 64 24 192 768 1536 3072 6144 12288 24576

based on the available hardware capability.

Model

We consider nonlinear filtering for the following model with cubic measurement nonlineari-

ties1

xk+1 = Φxk + wk (4.2)

zk =

1 0 0

1 1 0

1 1 1

x3
k,1

x3
k,2

x3
k,3

+ vk (4.3)

1 The target dynamics need not be nonlinear for the purpose of comparison because both nonlinear filters,
PF and PFF, differ only in the measurement update part.

67

where k = 0, 1, . . . is time index, xk = [xk,1 xk,2 . . . , xk,d]
′ is the state vector of dimension d ≥

3, Φ is a positive definite transition matrix that is generated randomly for each scenario in the

simulation, wk ∼ N (0, 0.042Id) and vk ∼ N (0, 1.02I3) are zero-mean Gaussian white process

and measurement noises, respectively, and the initial state vector x0 ∼ N (0.8, 25000Id) is

randomly generated.

Four scenarios with different state dimension (i.e., d = 10, 20, 30, 40), each with different

number of particles as specified in Table 4.5, are simulated.

Algorithms

Implemented are the following four filter algorithms: PFF-CPU, PFF-GPU, PF-CPU and

PF-GPU as described earlier in section 4.2. The hardware used in our experiments is pre-

sented in Table 4.4. The code for all implementations is written in C++ and compiled using

Visual C++ 2008.

Performance Measures

In order to obtain statistically significant evaluation of the performance metrics, R = 50

Monte Carlo (MC) runs are performed for each scenario.

The filters’ estimation accuracy at each time step k is measured in terms of the average

dimension-free error

ek =
1

R

R∑
i=1

e
(r)
k , (4.4)

where

e
(r)
k =

1

d

(
x̂

(r)
k − x

(r)
k

)′ (
x̂

(r)
k − x

(r)
k

)
(4.5)

and x
(r)
k and x̂

(r)
k are the true and estimated state vectors, respectively, in MC run r =

1, 2, . . . , R.

68

The filters’ overall accuracy is measured in terms of the time-averaged error (TAE),

defined as follows

ε[m,n] =
1

n−m+ 1

n∑
k=m

ek (4.6)

where [m,n] is the time interval of averaging. TAE is sometimes used in target tracking as

a single measure of “steady-state” filter accuracy. In the simulation m = 21, n = 50.

The computational performance of all four filters is measured in terms of average running

time per one filter time-step. The computational performance of the parallel GPU filters is

measured in terms of speedup with respect to the corresponding CPU sequential filter, i.e.,

Speedup =
TCPU
TGPU

(4.7)

where TCPU and TGPU denote the average running time of the filter (PF or PFF) on CPU

and GPU, respectively. The speedup characterizes the scalability of a parallel algorithm.

Results

Fig. 4.9 shows the dimension-free error plots of the filters 2 with 10 dimensional state vectors

and 800K particles. It illustrates that PFF-CPU is the best in terms of accuracy (for the

same number of particles), followed by PFF-GPU, PF-CPU and PF-GPU. Very similar

results were obtained for different state vector dimensions (up to 40) and different number

of particles. Based on all results, the GPU versions of both PFF and PF are apparently

less accurate than their corresponding CPU versions. This is because the parallel GPU

versions are actually approximations of the fully centralized CPU versions. For the PF this

approximation is in the resampling step: it is global (uses all particles) in PF-CPU and local

(uses only the particles within a block) in PF-GPU. A similar effect happens with the PFF:

2 EKF’s error plot is shown as a baseline only, and is excluded from further comparison.

69

0 5 10 15 20 25 30 35 40 45 50
10

0

10
5

10
10

10
15

Timestep

D
im

e
n
s
io

n
 F

re
e

 E
rr

o
r

State Dim: 20, Num of Particles: 800K

Pflow−CPU

Pflow−GPU

PF−CPU

PF−GPU

EKF

Figure 4.9: Dimension-Free Errors

the computation of x̄k in PFF-CPU is global (the sample mean of all particles), while the

computation of x̄k,b in PFF-GPU is local and consequently less accurate.

More detailed overall accuracy comparison can be made based on the plots in Fig. 4.10

(left) that show the time-averaged dimension-free errors of the four filters with different

dimensions of the state vector versus the number of particles. The differences in accuracy

are quite significant. In particular, PFF-GPU is several orders of magnitude more accurate

than both PF-GPU and PF-CPU. Of course, PFF-GPU is less accurate than PFF-CPU (for

reasons explained above), but this does not seem significant, given the fact (discussed next)

that the former is much faster than the latter.

The plots in Fig. 4.10 (right) show the average running times—the“prices” paid to achieve

the accuracies shown in the corresponding plots of Fig. 4.10 (left). With the same number

of particles, PFF-CPU is about 1.5-2 times faster than PF-CPU (depending on the number

of particles), and PFF-GPU is about 4-5 times faster than PF-GPU. Table 4.6 is provided

for more accurate comparison. Even though it might seem that PFF-CPU require more

computation time per particle than PF-CPU, it actually appears otherwise. PFF update

70

includes computing A(λ), b(λ) and solving the ODE via (4.1). Computing A, b is common

for all particles and independent from the number of particles (except for x̄k). Therefore, for

large number of particles it has insignificant contribution to the “per particle” computation

time. The main portion of computation time per particle is spent on (4.1) which is a fairly

simple and fast computation for small L. In the simulation L = 10 and the time spent on

(4.1) is up to twice smaller than the time PF spends to draw a resampled particle from a large

set of particles using stratified sampling. PFF with L = 5 and 20 was also run, but L = 10

was chosen as the best tradeoff between accuracy and speed. For L = 20 the computation

times of PFF-CPU and PF-CPU are closer but the advantage of PFF in accuracy increases.

The time results regarding PFF-GPU vs. PF-GPU are not surprising given the fact that

PFF-GPU is almost completely (thread) parallel while the resampling of PF-GPU is only

partially (block) parallel.

Fig. 4.11 illustrates the effect of the state dimension on the running time with different

number of particles of both parallel filters: PF-GPU (left) and PFF-GPU (right).

Fig. 4.12 shows the speedup of PF-GPU (left) and PFF-GPU (right) with different

state dimension and different number of particles. It appears that for both GPU filters the

speedup most often increases with the state dimension (for the same number of particles)

which supports using GPU for highly dimensional problems. On the other hand, the speedup

for both GPU filters does not seem to vary very significantly with the number of particles

(for the same state dimension). Finally, Fig. 4.13 compares the speedup of PF-GPU and

PFF-GPU for different number of particles (for state dimension 40). PF-GPU provides a

speedup of about six times with respect to PF-CPU and PFF-GPU provides a speedup of

about fifteen times with respect to PF-CPU. PFF-GPU outperforms PF-GPU more than

two times in terms of speedup due to its higher level of parallelization.

71

0 2 4 6 8 10 12 14 16

x 10
5

10
3

10
4

10
5

10
6

10
7

10
8

10
9

Number of Particles

T
im

e
 A

v
e
ra

g
e
 D

im
e
n
s
io

n
 F

re
e
 E

rr
o
r

State Dim: 20

Pflow−CPU

Pflow−GPU

PF−CPU

PF−GPU

Number of Particles

O
n
e
 S

te
p
 R

u
n
n
in

g
 T

im
e
 (

s
)

State Dim:20

0 2 4 6 8 10 12 14 16

x 10
5

0

10

20

30

40

50

60

70

80

90

100

110

Pflow−CPU

Pflow−GPU

PF−CPU

PF−GPU

0 2 4 6 8 10 12 14 16

x 10
5

10
4

10
5

10
6

10
7

10
8

10
9

10
10

10
11

Number of Particles

T
im

e
 A

v
e
ra

g
e
 D

im
e
n
s
io

n
 F

re
e
 E

rr
o
r

State Dim: 30

Pflow−CPU

Pflow−GPU

PF−CPU

PF−GPU

Number of Particles

O
n
e
 S

te
p
 R

u
n
n
in

g
 T

im
e
 (

s
)

State Dim:30

0 2 4 6 8 10 12 14 16

x 10
5

0

10

20

30

40

50

60

70

80

90

100

110

Pflow−CPU

Pflow−GPU

PF−CPU

PF−GPU

0 2 4 6 8 10 12 14 16

x 10
5

10
4

10
6

10
8

10
10

10
12

10
14

Number of Particles

T
im

e
 A

v
e
ra

g
e
 D

im
e
n
s
io

n
 F

re
e
 E

rr
o
r

State Dim: 40

Pflow−CPU

Pflow−GPU

PF−CPU

PF−GPU

Number of Particles

O
n
e
 S

te
p
 R

u
n
n
in

g
 T

im
e
 (

s
)

State Dim:40

0 2 4 6 8 10 12 14 16

x 10
5

0

10

20

30

40

50

60

70

80

90

100

110

Pflow−CPU

Pflow−GPU

PF−CPU

PF−GPU

Figure 4.10: Time-Averaged Dimension-Free Error (left) & Running Time (right)

72

0 2 4 6 8 10 12 14 16

x 10
5

0

2

4

6

8

10

12

14

16
PF Filter on GPU

Number of Particles

O
n

e
 S

te
p

 R
u

n
n

in
g

 T
im

e
 (

s
)

XDIM:10

XDIM:20

XDIM:30

XDIM:40

PFlow Filter on GPU

Number of Particles

O
n

e
 S

te
p

 R
u

n
n

in
g

 T
im

e
 (

s
)

0 2 4 6 8 10 12 14 16

x 10
5

0

2

4

6

8

10

12

14

16

XDIM:10

XDIM:20

XDIM:30

XDIM:40

Figure 4.11: One-Step Running Time

73

Number of Particles

S
p
e
e
d
u
p

Particle Filter

1536 12288 49152 98304 196608 393216 786432 1572864

4

6

8

10

12

14

16

18 Dim 10

Dim 20

Dim 30

Dim 40

Number of Particles

S
p
e
e
d
u
p

PFlow Filter

1536 12288 49152 98304 196608 393216 786432 1572864

4

6

8

10

12

14

16

18 Dim 10

Dim 20

Dim 30

Dim 40

Figure 4.12: Speedup of PF & PFF

74

Table 4.6: Running Time (s)

Num of Particles= 1536 12288 49152 98304 196608 393216 786432 1572864

PFF-CPU 0.0099 0.0792 0.3403 0.6682 1.2630 3.1733 5.0851 14.4671
XDim= PFF-GPU 0.0007 0.0054 0.0218 0.0439 0.1000 0.2187 0.4625 1.0493

10 PF-CPU 0.0172 0.1418 0.5856 1.2602 2.5559 4.6397 9.1571 17.8682
PF-GPU 0.0034 0.0281 0.1129 0.2438 0.5337 1.0696 1.7700 5.5668

PFF-CPU 0.0218 0.1760 0.7338 1.5952 2.9421 6.6210 12.4409 24.9088
XDim= PFF-GPU 0.0014 0.0117 0.0469 0.0989 0.2175 0.4928 1.0343 1.7933

20 PF-CPU 0.0382 0.3139 1.2319 2.5249 5.9612 10.6548 28.3821 50.8195
PF-GPU 0.0063 0.0513 0.2023 0.4362 0.9371 1.6812 3.5717 8.8979

PFF-CPU 0.0359 0.2925 1.1410 2.4776 5.4436 9.9433 18.9128 48.8515
XDim= PFF-GPU 0.0023 0.0181 0.0722 0.1464 0.2984 0.6978 1.4003 3.5066

30 PF-CPU 0.0643 0.5213 2.2102 4.2976 8.4932 20.7041 35.0581 83.7303
PF-GPU 0.0092 0.0743 0.3132 0.5864 1.3253 2.9221 6.7780 9.8334

PFF-CPU 0.0520 0.4127 1.7799 3.7476 7.6032 14.2963 26.9597 64.0159
XDim= PFF-GPU 0.0033 0.0272 0.1092 0.2148 0.5102 0.8640 2.0259 4.4173

40 PF-CPU 0.0947 0.7756 3.0457 6.1521 13.2333 26.1284 59.6716 103.0515
PF-GPU 0.0124 0.0996 0.4036 0.8578 1.7792 3.3625 9.2275 15.5961

1536 12288 49152 98304 196608 393216 786432 1572864
0

2

4

6

8

10

12

14

16

18

Number of Particles

S
p
e
e
d
u
p

State Dim: 40

Pflow

PF

Figure 4.13: Speedup of PF vs. PFF

75

c1 = 5 6 4 3 2 1 7 4

+ + + + + + +

c2 = 11 10 7 5 3 8 11

+ + + + + +

c3 = 15 c4 = 18 15 10 13 14

+ + + ++ + + +

c5 = 20 c6 = 21 c7 = 28 c8 = 32

Figure 4.14: Parallel Cumulative Sum

4.4 Improved Algorithm for GPU PF

Based on the following reasons, we designed an improved algorithm implementation for GPU.

• Due to the shared memory, each thread can access all particles’ information easily, so

replicating particles could be parallelized in all threads.

• Cumulative weight sum, which is key for resampling, can be also executed in parallel

in contrast with the generic PPFs (section 4.2.1) where it is done on a single processor.

When implementing cumulative weight sum on a single processor, the time complexity is

O(n) addition operations for an array of length n. This is the minimum number of additions

required. A parallel algorithm is presented by [39]. Fig. 4.14 shows the operation. The time

complexity is O(log n) if enough processors are available. This is fine for small arrays. In our

application, particle filter algorithms use large number of particles, so large arrays are used.

We updated the parallel particle filter algorithm by applying a modified parallel cumulative

weighted sum algorithm, as follows (See Fig. 4.15 for an illustration).

Step 1. Implement importance sampling and weight computation (thread parallel).

76

Step 2. Compute cumulative weights: ck = w1 + w1 + · · ·+ wk (block parallel).

• Compute cumulative weight of each block.

• Write the total weight of each block to another temp block.

• Parallel compute the cumulative weight of the template block, then add to all

elements in their respective blocks to get c1, c2, . . . , cN .

Step 3. Resample to get new particles according to the cumulative weights (thread

parallel).

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12 w13 w14 w15 w16

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16

+ + +

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15 c16

xn
1 xn

2 xn
3 xn

4 xn
5 xn

6 xn
7 xn

8 xn
9 xn

10 xn
11 xn

12 xn
13 xn

14 xn
15 xn

16

1
N

1
N

1
N

1
N

1
N

1
N

1
N

1
N

1
N

1
N

1
N

1
N

1
N

1
N

1
N

1
N

Step 1

Step 2

Step 3

Block 0

Figure 4.15: Illustration of the Improved GPU PF

Note that Step 3 can be done thread parallel because all thread can access all cumulative

sums concurrently.

The updated parallel particle filter algorithm is shown in Table 4.7.

77

Table 4.7: Improved Parallel PF Algorithm for GPU

• Step 1: Importance Sampling (IS)

– For i = 1, . . . , N (Thread Parallel)

Draw a sample (particle)

xik ∼ π
(
xk| xik−1, zk

)
Evaluate importance weights

wik = wik−1
p(zk| xi

k)p(xi
k| x

i
k−1)

π(xi
k| x

i
k−1, z

k)

• Step 2: Cumulative Particle Weights (Block Parallel)

– Parallel execute thread cumulative weight for each block

– Execute block cumulative weight

– Parallel get all cumulative weight

• Step 3: Resampling (R)

– For i = 1, . . . , N (Thread Parallel)

Sample from
{
xjk

}N
j=1

with {cj}Nj=1 to obtain a new sample set
{
xik = x

ji
k , w

i
k = 1

N

}N
i=1

After optimizing the particle filter algorithm, the main bottlenecks left are global memory

access. To better cover the global memory access latency and improve overall efficiency, we

should let each thread do more computation. So we could let each thread processes two

or four particles instead of one particle. Each thread performs a sequential access of four

particles and stores them in registers. This method is more than twice as fast as the code

which only processes one particle each thread.

4.4.1 Simulations – Case Study II

To evaluate and compare the novel GPU PF we used the Case Study II (see section 4.3.1).

The hardware used in our design and simulation is described in Table 4.4. Our efforts to

create a new parallel particle filter algorithm have paid off. Fig 4.16 shows resampling com-

putation time of centralized resampling (cent.R), distributed resampling with RNA (dist.R

78

0

0.5

1

1.5

2

2.5

3

16384 32768 65536 131072

cent. R dist. R (RNA) dist. R (new)

R
e

sa
m

p
lin

g
Ti

m
e

(s
)

Number of Particles

Figure 4.16: Computation Times of CR & DR

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

CPU-CR GPU-DR (RNA) GPU-DR (new)

Resampling Weight Update Predict

Ti
m

e
Sp

en
t

Figure 4.17: Relative Times Spent in the Different Steps Using GPU-DR

(RNA)) and our updated algorithm (dist.R (new)). It is seen that for different number of

particles our updated algorithm has better performance than that of the generic algorithms.

The new algorithm is up to 1.5 times faster than dist.R (RNA). Fig. 4.17 shows relative

times spent in the different steps of three PF algorithms. The resampling step of dist.R

(new) is almost the same computational cost with the step of importance sampling. It is a

significant improvement of the resampling step as compared with cent.R and dist.R (RNA).

79

4.4.2 Case Study IV: UAV-MultiSensor Target Tracking using

GPU PF & PFF

Scenario

The scenario is illustrated in Fig. 4.18.

y

z

x

Target

Sensor 1

Sensor 2
Sensor 3

Figure 4.18: Scenario of UAV-Multisensor Tracking

State Model

The target motion state-space model is given by

xk+1 = Fxk + wk (4.8)

where x = (x, ẋ, y, ẏ, z, ż)′ is the state vector,

80

F =

1 T 0 0 0 0

0 1 0 0 0 0

0 0 1 T 0 0

0 0 0 1 0 0

0 0 0 0 1 T

0 0 0 0 0 1

, (4.9)

wk is a discrete-time white noise sequence, and T is the sampling interval.

Multi-Sensor Measurement Model

The target measurements are modeled by

zk = h(xk) + vk (4.10)

where the target state x and process noise are in the Cartesian coordinates, but measurement

z and its additive noise v are in the sensor coordinates. Let (x, y, z) be the true position

of the target in the Cartesian coordinates. For the case of spherical measurements, we have

z = (r, b, e)′ and h(x) = [r, b, e]′ = [hr, hb, he]
′ with

hr =
√
x2 + y2 + z2 (4.11)

hb = tan−1 y

x
(4.12)

he = tan−1 z√
x2 + y2

(4.13)

In order to use the particle flow method the model (4.10) needs to be linearized. The

most widely used technique for linearizing a nonlinear measurement model in the form of

81

(4.10) is to expand the measurement function h(x) at the predicted state x and ignore all

nonlinear terms:

h(x) ≈ h(x̄) +
∂h

∂x

∣∣∣∣
x=x̄

(x− x̄) (4.14)

This amounts to approximating the nonlinear model (4.10) by the linear model

z = H(x̄)x + g(x) + v (4.15)

where H(x) = ∂h
∂x

∣∣
x=x̄

is the Jacobian of h(x)

H(x) =

x
d

0 y
d

0 z
d

0

− y
x2+y2 0 x

x2+y2 0 0 0

− xz

d2
√
x2+y2

0 − yz

d2
√
x2+y2

0

√
x2+y2

d2 0

x=x̄

(4.16)

and d =
√
x2 + y2 + z2, g(x̄) = h(x̄)−H(x̄)x̄.

For 3 sensors (each sensor know its location pi, i = 1, 2, 3), the linearized measurement

model is
z1

z2

z3

 =

H(x̄− p1)

H(x̄− p2)

H(x̄− p3)

x +

g(x̄− p1)

g(x̄− p2)

g(x̄− p3)

+

v1

v2

v3

 (4.17)

where x̄ is the state prediction.

Parameters

The noise is w ∼ N (0,Q),v ∼ N (0,R). where Q = diag([30, 0.8, 20, 0.6, 25, 0.7]),R =

diag([45, 0.001, 0.001, 45, 0.001, 0.001, 45, 0.001, 0.001]).

Initial state value is x0 = [450, 35, 850, 35, 1350, 35]′.

82

Algorithms

Four algorithms are implemented:

PF-CPU PF-GPU

PFF-CPU PFF-GPU

where CPU, GPU denote whether the algorithm is executed on CPU or GPU, respectively.

Results

Fig. 4.19 shows the position RMSE (top) and the execution times of one step versus the

number of particles used (bottom). It indicates that for the PF algorithms using slightly

more than 100K particles is a reasonable choice for practical purposes, and for the PFF

using more than 300K particles is a reasonable choice. Fig. 4.19 also illustrates that PF

and PFF are better than EKF (given here just for comparison) in terms of accuracy. Fig.

4.19 shows that the running time of the algorithms using GPU is much shorter than their

corresponding algorithms using CPU. It also shows that the running time of PFF algorithms

is shorter than PF algorithms using the same number of particles.

Fig. 4.20 shows the filters errors vs. running time as functions of the number of particles.

It is seen that the proposed PF-GPU is faster than all others for the same level of accuracy.

The next is PFF-GPU, and PF-CPU and PFF-CPU come after that.

Based on all results, it was observed that PF-GPU has a quite good scalability and

efficiency in this case. It becomes clear from the results that within the GPU algorithms

PF-GPU can help reduce considerably the computation time and keep the best accuracy.

It should be reminded that PF-GPU stands for implementation of the improved version,

proposed in section 4.4.

83

0 100 200 300 400 500 600
10

0

10
1

10
2

10
3

Time Step

R
M

S
E

 o
f
 P

o
s
it
io

n

EKF

PF
−
CPU

−
100k

PFF
−
CPU

−
300K

PF
−
GPU

−
100k

PFF
−
GPU

−
300K

0 50 100 150 200 250 300
10

−3

10
−2

10
−1

10
0

10
1

10
2

Number of Partilces (x1K)

R
u

n
n

in
g
 T

im
e
 o

f
O

n
e

 S
te

p
 (

s
e

c
o
n

d
)

PF
−
CPU

PFF
−
CPU

PF
−
GPU

PFF
−
GPU

Figure 4.19: RMSE & Running Time

10
−3

10
−2

10
−1

10
0

10
1

10
2

12

14

16

18

20

22

24

26

Running Time of One Step (second)

T
im

e
 A

v
e

ra
g

e
 R

M
S

E
 o

f
P

o
s
it
io

n

PF
−
CPU

PFF
−
CPU

PF
−
GPU

PFF
−
GPU

Figure 4.20: Time Average RMSE vs. Running Time

84

4.5 Summary

Since GPU has a special architecture, the parallel algorithms are different from the algorithms

for computer cluster. Thus we redesigned the algorithms based on the group resampling idea.

And we also proposed a new PF-GPU algorithm which is very efficient computationally and

accurate for target tracking applications, as shown by the simulation.

Based on all simulation results:

• Using GPU can significantly accelerate particle filters and particle flow filters through

parallelization of the computational algorithms at a tolerable loss of accuracy (as com-

pared to the centralized algorithms using just the CPU).

• For the Case Study III, the parallel particle flow filter implementation is significantly

superior to the generic parallel particle filter implementation in both estimation ac-

curacy and computational efficiency—about six times for the implemented parallel

particle filter and fifteen times for the particle flow filter.

• For the Case Study IV, using the newly proposed PF-GPU implementation is signifi-

cantly superior to the generic PPF and to the PFF implementations in both estimation

accuracy and computational efficiency.

85

Chapter 5

Implementation of Parallel Filtering

Algorithms on FPGA

Field programmable gate arrays (FPGAs) are semiconductor devices that are based around

a matrix of configurable logic blocks (CLBs) connected via programmable interconnections

[90]. An FPGA can be used to solve problems that are computable. The advantage is that

it is sometimes much faster for some applications due to its parallel architecture.

To simplify the design of FPGAs, there exist libraries of predefined circuits which are

called intellectual property (IP) cores. IP cores are reusable circuits.

Implementing both particle algorithms (PF and PFF) on FPGA requires that all particles

be mapped into the multiple processing elements of the FPGA architecture. A processing

elements (PE) compute the generation of a particle and its weight evaluation. Central unit

(CU) computes global estimators and coordinates the PEs. In order to take advantage of

the FPGA architecture, the key is to use the shared memory for fast particle data commu-

nication within each PE and avoid/reduce communications between different PEs, as much

as possible. The particular configuration architecture [62] of our FPGA implementation is

86

PE

PEPE

PE

CU

Figure 5.1: FPGA Architecture with four PEs

shown in Fig. 5.1. It consists of four PEs and one CU. Each PE communicates with the CU,

but there is no communication among PEs. Fig. 5.1 also shows the data links between the

PEs and the CU.

5.1 PF & PFF Algorithms for FPGA

Due to limited size and resources of the FPGA, it is not possible to calculate each particle

in parallel, but sequential calculation using pipeline is a better way. The advantage of this

solution is that all data go through the same calculation process and no additional FPGA

resources are needed when the number of particles is increased. The PEs perform the major

filter computational workload (particle generation, weight evaluation and so on), and the

CU performs global computations and coordinates the PEs activities.

Other important issue arising in the FPGA implementation for both filters is how to

generate random numbers. In our implementation, the random numbers are pre-stored in a

ROM table. They are not generated by the hardware to save FPGA resources. The ROM

table is implemented as a large buffer from the chosen probability distribution. Each use of

the random number shifts the position point of the buffer [76].

87

5.1.1 FPGA Implementation of the Particle Filter

There is a number of publications that concern FPGA particle filters [8, 10]. In our imple-

mentation we followed the RNA method proposed in [10].

Importance sampling, weight calculation and a part of resampling are pipelined. If re-

sampling is implemented in the CU, all the particle weights have to be transferred to CU,

resulting in a large communication cost. We used the distributed RNA method [10] which

can signicantly reduce data communication cost. Distributed RNA is based on stratified

sampling. The sample space is partitioned into several groups and each groups corresponds

to a PE. Nonproportional allocation among group is used. After the weights of the group are

known, the number of particles that each group replicates is calculated at CU—using resid-

ual systematic resampling. Finally, resampling is performed inside the group (at each PE, in

parallel). Each group of particles, as defined in RNA, is mapped into a PE. Thus, in terms

of the FPGA architecture, the importance sampling is PE-parallel while the resampling part

is partially parallel. The details of the algorithm is Table 5.1.

5.1.2 FPGA Implementation of the Particle Flow Filter

FPGA parallelization of PFF is much easier than that of the PF [89]. It is apparent that the

prediction part and solving the ODE for each particle is independent across particles and

can be executed completely in parallel by mapping particles to a PE. For computing x̄k, Pk,

Hk, and the flow velocity parameters A(λ), b(λ) there are different options because they are

common for all particles. One way is to have them computed by the CU (“externally” to the

FPGA) by a point estimator like EKF/UKF and sent to each PE. Another way is to collect

all predicted particles in the CU, compute sample mean x̄k, and based on it, compute Pk, Hk,

A(λ), b(λ) and send the results to each PE. Involvement of the CU imposes a communication

88

Table 5.1: Parallel PF Algorithm for FPGA

• Importance Sampling (IS)

– For i = 1, . . . , N (PE Parallel)

Draw a sample (particle)

xik ∼ p
(
xik| xik−1

)
Evaluate importance weights

wik = wik−1p
(
zk| xik

)
– For i = 1, . . . , N (CU)

Normalize importance weights:

wik =
wi

k∑N
j=1 w

j
k

• Resampling (R) (CU)

Sample from
{
xjk, wjk

}N
j=1

to obtain a new sample set
{
xik = x

ji
k , w

i
k = 1

N

}N
i=1

Compute estimate x̄k (CU)

time overhead. That is why, as in the FPGA-PF, we divide all particles in groups and map

each group to a PE. A predicted estimate x̄k,g is computed for each PE, as the sample mean

of its particles, and based on it, flow velocity parameters for this PE are computed. Thus,

even though some extra approximation is incurred, any communication with the CU and

among different PE is avoided. A high level outline is as follows:

• Particle Prediction (PE Parallel)

• Particle Update (PE Parallel)

– Compute x̄k,g

– Compute particle flow ODE

For computing x̄k,g we use the sample mean.

Pk,g, Hk,g are computed using the EKF equations.

89

For numerical computation of the ith particle’s ODE we use the finite difference forward

Euler method:

x[0] = x̄ik

x[l+1] = x[l] + ∆λf
(
x[l], l∆λ

)
, l = 0, 1, . . . , L− 1 (5.1)

xik = x[L]

where L > 1 is an integer defining the discretization step ∆λ = 1/L of the interval [0 1].

In accordance with the limitation of resource, the number of particles we include in each

PE is given 250, 500, 750 and 1000 for each experiment, respectively. The same particle

numbers we also use for the FPGA-PF implementation.

Note that, except for the PE sample mean part (which is PE parallel), this FPGA-PFF

implementation is completely (PE) parallel as opposed to the FPGA-PF implementation

wherein a significant part (the resampling) is only partially parallel. This clearly gives an

explanation to the fact that the implemented FPGA-PFF is much faster than the FPGA-PF

for the same number of particles, as seen in the simulation results presented in the next

section.

90

5.2 Simulation

Model

We use an example of a one-dimensional non-linear system (typically studied in the context

of stochastic systems) [35]. The model is as follows

xk+1 = 0.5xk + wk (5.2)

zk =
1

20
x2
k + vk (5.3)

where wk and vk are zero mean, Gaussian random variables with variances σ2
w = 10 and

σ2
v = 1, respectively.

Linearizing the nonlinear measurement model needed for the flow filter, we get

zk = H(x̄k)xk + g(x̄k) + vk (5.4)

where H(xk) = xk
10
, g(xk) = −x2

k

20
.

Hardware Used for Simulation

Implemented are the following two filter algorithms: FPGA-PF and FPGA-PFF described

earlier.

The Virtex-5 family provides powerful features in the FPGA market. Using the sec-

ond generation ASMBL (Advanced Silicon Modular Block) column-based architecture, the

Virtex-5 family contains five distinct platforms (sub-families), the most choice offered by any

FPGA family. Each platform contains a different ratio of features to address the needs of

a wide variety of advanced logic designs. XC5VFX30T is based on a 130 nm process. Our

FPGA code was developed in VHDL under Xilinx ISE 12.1i.

91

Performance Measures

In order to obtain statistically significant evaluation of the performance metrics, R = 50

Monte Carlo (MC) runs are performed for each algorithm.

The filters’ estimation accuracy is measured in terms of TARMSE. The computational

performance of all two filters is measured in terms of average running time per one filter

time-step.

Results

We used a P = 4 PE parallel architecture for numerical simulations, where each PE processes

250, 500, 750 and 1000 particles for each experiment, respectively.

Fig. 5.2 shows the TARMSE performance versus number of particles. It illustrates that

FPGA-PF is better in terms of accuracy (for the same number of particles), than FPGA-

PFF. The TARMSE is higher than the Matlab generated numerical results because of the 14

bits fixed-point FPGA implementation. Very similar results were obtained for other different

numbers of particles.

The plots in Fig. 5.3 show the average processing periods of the FPGA implementations.

With the same number of particles, FPGA-PFF takes about 1.1-1.2 times less cycles than

FPGA-PF (depending on the number of particles). There is a simple explanation: FPGA-

PFF update includes computing A(λ), b(λ) and solving the ODE via (5.1). Computing A,

b is common for all particles and independent from the number of particles (except for x̄k).

Therefore, for large number of particles it has insignificant contribution to the “per particle”

computation time. The main portion of computation time per particle is spent on (5.1)

which is a fairly simple and fast computation for small L. In the simulation L = 10 and

the time spent on (5.1) is up to twice smaller than the time PF spends to draw a resampled

92

1000 1500 2000 2500 3000 3500 4000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Particles

T
A

R
M

S
E

PF−4PE

PFF−4PE

PF−Matlab

PFF−Matlab

Figure 5.2: FPGA TARMSE

1000 1500 2000 2500 3000 3500 4000
500

1000

1500

2000

2500

3000

3500

Number of Particles

P
ro

c
e

s
s
in

g
 p

e
ri
o

d
 (

c
y
c
le

s
)

PF−4PE

PFF−4PE

Figure 5.3: FPGA Processing Period

93

particle from a large set of particles using stratified sampling. PFF with L = 5 and 20 was

also run, but L = 10 was chosen as the best tradeoff between accuracy and speed.

5.3 Summary

Overall, the simulation results show that:

• Using FPGA can speedup particle and particle flow filters through parallelization of

the computational algorithms but at a certain loss of accuracy.

• For the considered example, the parallel particle flow filter implementation is supe-

rior to the parallel particle filter implementation in computational efficiency. On the

other hand, the parallel particle filter is better than the parallel particle flow filter in

estimation accuracy.

94

Chapter 6

Conclusions and Future Work

This chapter summarizes the principle ideas and contributions of this dissertation. It gives

a summary of the dissertation and outlines directions for future research.

Particle and particle flow filters are among the latest innovations in the nonlinear filtering

that are applied in many practical problems including target tracking, navigation systems and

robotics. It has been shown that they can outperform traditional filters in complex practical

scenarios, however particle and particle flow filters are computationally very intensive which

is their main drawback in practice.

This dissertation has developed, designed, and built efficient parallel algorithms for parti-

cle and particle flow filters under different hardware architectures (Computer Cluster, GPU

and FPGA), and brought them closer to practical applications. The issues tackled include

reduction of computational complexity, improving scalability of parallel implementation and

reducing memory requirements. This work has resulted in the development and imple-

mentation of parallel algorithms for particle and particle flow filtering. The computational

performance in comparison with the implementation using traditional algorithms has been

significantly improved.

95

The most notable contributions of this dissertation are as follows.

• We proposed an improved PF algorithm which is more suitable for computer cluster

and applied it to realistic target tracking problems — space object tracking and ground

multitarget tracking using image sensor. The new algorithm has shown quite significant

advantage in terms of accuracy and computational performances as compared to other

parallel PF algorithms.

• Based on GPU architecture, we proposed an improved parallel algorithm implementa-

tion which is computationally efficient and accurate for target tracking applications.

The new algorithm reduces the complexity of realization. It has been applied and

tested for ground multitarget tracking, UAV-multisensor tracking, and a highly di-

mensional nonlinear density problem. Our proposed method is significantly superior

to the general filters implementation in both estimation accuracy and computational

efficiency.

• Designed particle flow filter for FPGA. It is the first implementation on FPGA in this

area. We also analyzed its performance on FPGA architecture, in terms of computa-

tional complexity and potential throughput.

The fact that particle and particle flow filters outperform traditional filtering methods

in many complex practical scenarios, coupled with the challenges related to decreasing their

computational complexity and improving real-time performance, makes this work worth-

while.

Future work can be extended. Since the main goal of this dissertation is high speed

implementation of particle filters and particle flow filters, we used several specific architec-

tures. However, these architectures are not universal. Future areas for research include an

investigation of other parallel architectures and exploiting their specific features. Another

96

research direction is to expand the application area with other types of practical problems

that involve high fidelity and fast nonlinear filters for density estimation.

97

Bibliography

[1] Gene M Amdahl. Validity of the single processor approach to achieving large scale
computing capabilities. In Proceedings of the Spring Joint Computer Conference, pages
483–485. ACM, 1967.

[2] Sanjeev Arulampalam, Simon Maskell, Neil Gordon, and Tim Clapp. A tutorial on par-
ticle filters for on-line non-linear/non-Gaussian Bayesian tracking. IEEE Transactions
on Signal Processing, 50:174–188, 2002.

[3] Krste Asanovic, Rastislav Bodik, James Demmel, Tony Keaveny, Kurt Keutzer, John
Kubiatowicz, Nelson Morgan, David Patterson, Koushik Sen, John Wawrzynek, et al. A
view of the parallel computing landscape. Communications of the ACM, 52(10):56–67,
2009.

[4] D.A. Bader and R. Pennington. Cluster computing: applications. The International
Journal of High Performance Computing, 15(2):181–185, May 2001.

[5] Ying Bao, Junfeng Chen, Zhiguo Shi, and Kangsheng Chen. New real-time resampling
algorithm for particle filters. In International Conference on Wireless Communications
& Signal Processing, pages 1–5. IEEE, 2009.

[6] Anwer S Bashi, Vesselin P Jilkov, X Rong Li, and Huimin Chen. Distributed imple-
mentations of particle filters. In Proceedings of the 6th International Conference on
Information Fusion, pages 1164–1171, 2003.

[7] Y. Boers, E. Sviestins, and H. Driessen. Mixed labelling in multitarget particle filtering.
IEEE Transactions on Aerospace and Electronic Systems, 46(2):792–802, April 2010.

[8] Miodrag Bolic. Architectures for efficient implementation of particle filters. PhD thesis,
Stony Brook University, 2004.

[9] Miodrag Bolic, Petar M Djuric, and Sangjin Hong. New resampling algorithms for
particle filters. In IEEE International Conference on Acoustics, Speech, and Signal
Processing, volume 2, 2003.

[10] Miodrag Bolic, Petar M Djuric, and Sangjin Hong. Resampling algorithms and ar-
chitectures for distributed particle filters. IEEE Transactions on Signal Processing,
53(7):2442–2450, 2005.

98

[11] James Carpenter, Peter Clifford, and Paul Fearnhead. Improved particle filter for non-
linear problems. IEE Proceedings-Radar, Sonar and Navigation, 146(1):2–7, 1999.

[12] Huimin Chen, Genshe Chen, Erik Blasch, and Khanh Pham. Comparison of several
space target tracking filters. In SPIE Defense, Security, and Sensing. International
Society for Optics and Photonics, 2009.

[13] Satish Chikkagoudar, Kai Wang, and Mingyao Li. Genie: a software package for gene-
gene interaction analysis in genetic association studies using multiple GPU or CPU
cores. BMC research notes, 4(1):158, 2011.

[14] David E. Culler, Richard Karp, David A. Patterson, Abhijit Sahay, Klaus Erik Schauser,
Eunice Santos, Ramesh Subramonian, and Thorsten von Eicken. Logp: towards a
realistic model of parallel computation. Technical Report UCB/CSD-92-713, EECS
Department, University of California, Berkeley, Dec 1992.

[15] Fred Daum and Jim Huang. Particle flow for nonlinear filters with log-homotopy. In
SPIE Defense and Security Symposium. International Society for Optics and Photonics,
2008.

[16] Fred Daum and Jim Huang. Nonlinear filters with particle flow. In Proc. SPIE Signal
and Data Processing of Small Targets, volume 7445, 2009.

[17] Fred Daum and Jim Huang. Nonlinear filters with particle flow induced by log-
homotopy. In SPIE Defense, Security, and Sensing. International Society for Optics
and Photonics, 2009.

[18] Fred Daum and Jim Huang. Exact particle flow for nonlinear filters: seventeen du-
bious solutions to a first order linear underdetermined PDE. In IEEE 44th Asilomar
Conference on Signals, Systems and Computers, pages 64–71, 2010.

[19] Fred Daum and Jim Huang. A fresh perspective on research for nonlinear filters. In
SPIE Defense, Security, and Sensing. International Society for Optics and Photonics,
2010.

[20] Fred Daum and Jim Huang. Generalized particle flow for nonlinear filters. In SPIE
Defense, Security, and Sensing. International Society for Optics and Photonics, 2010.

[21] Fred Daum and Jim Huang. Numerical experiments for nonlinear filters with exact
particle flow induced by log-homotopy. In Proc. SPIE Signal and Data Processing of
Small Targets, volume 7698, 2010.

[22] Fred Daum and Jim Huang. Angle only tracking with particle flow filters. In SPIE Op-
tical Engineering+ Applications. International Society for Optics and Photonics, 2011.

[23] Fred Daum and Jim Huang. Hollywood log-homotopy: movies of particle flow for
nonlinear filters. In SPIE Defense, Security, and Sensing. International Society for
Optics and Photonics, 2011.

99

[24] Fred Daum and Jim Huang. Particle degeneracy: root cause and solution. In SPIE
Defense, Security, and Sensing. International Society for Optics and Photonics, 2011.

[25] Fred Daum and Jim Huang. Particle flow for nonlinear filters. In IEEE International
Conference on Acoustics, Speech and Signal Processing, pages 5920–5923, 2011.

[26] Fred Daum and Jim Huang. Fourier transform particle flow for nonlinear filters. In
SPIE Defense, Security, and Sensing. International Society for Optics and Photonics,
2013.

[27] Fred Daum, Jim Huang, Misha Krichman, and Talia Kohen. Seventeen dubious methods
to approximate the gradient for nonlinear filters with particle flow. In SPIE Optical
Engineering+ Applications. International Society for Optics and Photonics, 2009.

[28] Fred Daum, Jim Huang, and Arjang Noushin. Exact particle flow for nonlinear filters.
In SPIE Defense, Security, and Sensing. International Society for Optics and Photonics,
2010.

[29] Randal Douc and Olivier Cappé. Comparison of resampling schemes for particle filtering.
In Proceedings of the 4th International Symposium on Image and Signal Processing and
Analysis, pages 64–69. IEEE, 2005.

[30] Arnaud Doucet, Nando Defreitas, and Neil Gordon. Sequential Monte Carlo methods
in practice (statistics for engineering and information science). Springer, 1st edition,
June 2001.

[31] Bradley Efron, Robert Tibshirani, and Robert J. Tibshirani. An introduction to the
bootstrap. Chapman Hall, 1993.

[32] Paul Fearnhead. Sequential Monte Carlo methods in filter theory. PhD thesis, University
of Oxford, 1998.

[33] Horace P Flatt and Ken Kennedy. Performance of parallel processors. Parallel Com-
puting, 12(1):1 – 20, 1989.

[34] Phillip I. Good. Resampling methods: A practical guide to data analysis. Birkhauser,
2006.

[35] Neil J Gordon, David J Salmond, and Adrian FM Smith. Novel approach to
nonlinear/non-Gaussian Bayesian state estimation. In IEE Proceedings F (Radar and
Signal Processing), volume 140, pages 107–113. IET, 1993.

[36] William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI: portable parallel
programming with the message passing interface. MIT Press, 2nd edition, 1999.

[37] Gustaf Hendeby, Jeroen Hol, Rickard Karlsson, and Fredrik Gustafsson. A graphics
processing unit implementation of the particle filter. 2007.

100

[38] Gustaf Hendeby, Rickard Karlsson, and Fredrik Gustafsson. Particle filtering: the need
for speed. EURASIP Journal on Advances in Signal Processing, 2010.

[39] W Daniel Hillis and Guy L Steele Jr. Data parallel algorithms. Communications of the
ACM, 29(12):1170–1183, 1986.

[40] Sangjin Hong, M. Bolic, and P.M. Djuric. An efficient fixed-point implementation of
residual resampling scheme for high-speed particle filters. Signal Processing Letters,
IEEE, 11(5):482 – 485, May 2004.

[41] Sangjin Hong and P.M. Djuric. High-throughput scalable parallel resampling mecha-
nism for effective redistribution of particles. IEEE Transactions on Signal Processing,
54(3):1144 – 1155, 2006.

[42] Kai Hwang and Faye Alaye Briggs. Computer architecture and parallel processing.
McGraw-Hill, 1988.

[43] Kai Hwang and Naresh Jotwani. Advanced computer architecture. Tata Mcgraw Hill
Education Private Limited, 2010.

[44] Leah H Jamieson, Dennis Gannon, and Robert J Douglass. The characteristics of
parallel algorithms. Mit Press, 1987.

[45] Vesselin P Jilkov and Jiande Wu. Implementation and performance of a parallel mul-
titarget tracking particle filter. In Proceedings of the 14th International Conference on
Information Fusion. IEEE, 2011.

[46] Vesselin P Jilkov, Jiande Wu, and Huimin Chen. Parallel particle filter implementa-
tion on cluster computer for satellite tracking application. In Proc. 4th International
Conference on Neural, Parallel & Scientific Computations, 2010.

[47] Vesselin P Jilkov, Jiande Wu, and Huimin Chen. Performance comparison of GPU-
accelerated particle flow and particle filters. In Proceedings of the 16th International
Conference on Information Fusion. IEEE, 2013.

[48] Genshiro Kitagawa. Monte Carlo filter and smoother for non-Gaussian nonlinear state
space models. Journal of computational and graphical statistics, 5(1):1–25, 1996.

[49] Chris Kreucher, Alfred O III Hero, Keith Kastella, and Mark R Morelande. An
information-based approach to sensor management in large dynamic networks. Pro-
ceedings of the IEEE, 95(5):978–999, 2007.

[50] Chris Kreucher, AO Hero, and Keith Kastella. A comparison of task driven and in-
formation driven sensor management for target tracking. In 44th IEEE Conference on
Decision and Control, pages 4004–4009. IEEE, 2005.

[51] Chris Kreucher, Keith Kastella, and Alfred O. Hero III. Tracking multiple targets using
a particle filter representation of the joint multitarget probability density. in Proc. SPIE
Conf. Signal and Data Processing of Small Targets, 5204:258–269, 2003.

101

[52] Chris Kreucher, Keith Kastella, and Alfred O. Hero III. Sensor management using an
active sensing approach. Signal Processing, 85(3):607 – 624, 2005.

[53] V.P. Kumar and A. Gupta. Analyzing scalability of parallel algorithms and architec-
tures. Journal of Parallel and Distributed Computing, 22(3):379 – 391, 1994.

[54] Nosan Kwak, In-Kyu Kim, Heon-Cheol Lee, and Beom-Hee Lee. Analysis of resampling
process for the particle depletion problem in fastslam. In 16th IEEE International
Symposium on Robot and Human interactive Communication, pages 200 –205, 2007.

[55] Lee and R.B. Empirical results on the speedup, efficiency, redundancy and quality of
parallel computations. In Proc. Int. Conf. Parallel Processing, pages 91–96, 1980.

[56] Anthony Lee, Christopher Yau, Michael B Giles, Arnaud Doucet, and Christopher C
Holmes. On the utility of graphics cards to perform massively parallel simulation of
advanced Monte Carlo methods. Journal of computational and graphical statistics,
19(4):769–789, 2009.

[57] Cui-Yun Li and Hong-Bing Ji. A new particle filter with GA-MCMC resampling. In
International Conference on Wavelet Analysis and Pattern Recognition, volume 1, pages
146 –150, 2007.

[58] X Rong Li and Vesselin P Jilkov. A survey of maneuvering target tracking-part VIa:
density-based exact nonlinear filtering. In SPIE Defense, Security, and Sensing. Inter-
national Society for Optics and Photonics, 2010.

[59] X Rong Li and Vesselin P Jilkov. A survey of maneuvering target tracking, part VIc:
approximate nonlinear density filtering in discrete time. In SPIE Defense, Security, and
Sensing. International Society for Optics and Photonics, 2012.

[60] Jun S. Liu and Rong Chen. Sequential Monte Carlo methods for dynamic systems.
Journal of the American Statistical Association, 93(443):1032–1044, 1998.

[61] E. Ma and D.G. Shea. Downward scalability of parallel architectures. Research Report.
IBM T.J. Watson Research Center, 1987.

[62] Clive Maxfield. Programmable logic designline, Xilinx unveil revolutionary 65nm FPGA
architecture: the Virtex-5 family, May 15 2006.

[63] Michael D McCool. Signal processing and general-purpose computing and GPUs [ex-
ploratory DSP]. Signal Processing Magazine, IEEE, 24(3):109–114, 2007.

[64] Joaqúın Mı́guez. Analysis of parallelizable resampling algorithms for particle filtering.
Signal Processing, 87(12):3155–3174, 2007.

[65] Mark R. Morelande, Christopher M. Kreucher, and Keith Kastella. A study of factors
in multiple target tracking with a pixelized sensor. in Proc. SPIE Conf. Signal and
Data Processing of Small Targets, 5913:155–167, 2005.

102

[66] M.R. Morelande, C.M. Kreucher, and K. Kastella. A Bayesian approach to multiple
target detection and tracking. IEEE Transactions on Signal Processing, 55(5):1589
–1604, may. 2007.

[67] MPI Forum. MPI: A message-passing interface standard. Version 2.2, September 4th
2009. available at: http://www.mpi-forum.org (Dec. 2009).

[68] MPICH. High-performance portable MPI, September 4th 2014. available at: http:

//www.mpich.org/ (Sep. 2014).

[69] L. Murray. GPU acceleration of the particle filter: the metropolis resampler. ArXiv
e-prints, February 2012.

[70] L. M. Murray, A. Lee, and P. E. Jacob. Rethinking resampling in the particle filter on
graphics processing units. ArXiv e-prints, January 2013.

[71] David M. Nicol and Frank H. Willard. Problem size, parallel architecture, and optimal
speedup. J. Parallel Distrib. Comput., 5(4):404–420, August 1988.

[72] Daniel Nussbaum and Anant Agarwal. Scalability of parallel machines. Commun. ACM,
34(3):57–61, March 1991.

[73] NVIDIA. NVIDIA CUDA C programming best practices guide. Santa Clara, CA, USA,
2009.

[74] NVIDIA. CUDA CURAND library. Santa Clara, CA, USA, 2010.

[75] Branko Ristic, Sanjeev Arulampalam, and Neil Gordon. Beyond the Kalman filter:
particle filters for tracking applications. Artech House, 2004.

[76] Hartmut F-W Sadrozinski and Jinyuan Wu. Applications of field-programmable gate
arrays in scientific research. CRC Press, 2010.

[77] A.C. Sankaranarayanan, A. Srivastava, and R. Chellappa. Algorithmic and architectural
optimizations for computationally efficient particle filtering. IEEE Transactions on
Image Processing, 17(5):737 –748, May. 2008.

[78] Simo Sarkka. Bayesian filtering and smoothing. Cambridge University Press, 2013.

[79] O.C. Schrempf and U.D. Hanebeck. Recursive prediction of stochastic nonlinear systems
based on optimal dirac mixture approximations. In American Control Conference, pages
1768–1774, July 2007.

[80] J.Y. Shi, M. Taifi, A Pradeep, A Khreishah, and V. Antony. Program scalability analysis
for HPC cloud: Applying Amdahl’s law to NAS benchmarks. In High Performance
Computing, Networking, Storage and Analysis, pages 1215–1225, Nov 2012.

[81] Julian L Simon. Resampling: The new statistics. Duxbury Press, 1997.

103

http://www.mpi-forum.org
http://www.mpich.org/
http://www.mpich.org/

[82] T.L. Sterling. Beowulf cluster computing with Linux. Scientific and Computational
Engineering Series. MIT Press, 2002.

[83] Zhimin Tang and Guo-Jie Li. Optimal granularity of grid iteration problems. In ICPP
(1)’90, pages 111–118, 1990.

[84] V. Teuliere and Olivier Brun. Parallelisation of the particle filtering technique and
application to doppler-bearing tracking of maneuvering sources. Parallel Computing,
29(8):1069 – 1090, 2003.

[85] Darrell Whitley. A genetic algorithm tutorial. Statistics and Computing, 4(2):65–85,
June 1994.

[86] Michael Joseph Wolfe. High performance compilers for parallel computing. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1995.

[87] Gang Wu and Zhenmin Tang. A new resampling strategy about particle filter algorithm
applied in Monte Carlo framework. In 2nd International Conference on Intelligent
Computation Technology and Automation, volume 1, pages 507 –510, 2009.

[88] Jiande Wu and Vesselin P. Jilkov. Parallel multitarget tracking particle filters using
graphics processing unit. In Proceedings of the 44th International IEEE Southeastern
Symposium on System Theory, 2012.

[89] Jiande Wu, Vesselin P. Jilkov, and Dimitrios Charalampidis. Implementation and per-
formance comparison of fpga-accelerated particle flow and particle filters. In SPIE Con-
ference on Signal and Data Processing of Small Targets, San Diego, CA, USA, August
9 - 13, 2015 (Submitted).

[90] Xilinx. Archived from the original, 2014. available at: http://www.xilinx.com/fpga/
index.htm (2014).

104

http://www.xilinx.com/fpga/index.htm
http://www.xilinx.com/fpga/index.htm

Vita

Jiande Wu received the B.S and M.S. degree from North China Electric Power University,

Beijing, China, in 1998 and 2005, respectively, both in Computer Science & Engineering.

He received the M.S. degree from University of New Orleans, New Orleans, USA, in 2012,

in Electrical Engineering. From January 2008 to December 2014, he is a research assistant

in the department of Electrical Engineering, University of New Orleans, New Orleans, USA.

His research interests include parallel processing, nonlinear filtering and target tracking.

105

	Parallel Computing of Particle Filtering Algorithms for Target Tracking Applications
	Recommended Citation

	Abstract
	List of Figures
	List of Tables
	Introduction
	Background of Related Work
	Particle Filtering
	Models
	Bayesian Recursive Filter
	Basic Particle Filter (PF)
	Resampling Algorithms Review
	Parallel Resampling

	Particle Flow Filtering
	Gaussian Exact Particle Flow Algorithm

	Characterization of Parallel Algorithms
	Parallel Algorithms' Performance Measures

	Parallel Filtering & Tracking Algorithms for Computer Cluster
	Attributes of Computer Cluster
	Message Passing and Communication

	Generic Parallel PF Algorithms for Computer Cluster
	Parallelization & Implementation for Computer Cluster
	Case Study I: Space Object Tracking
	Case Study II: Ground Multitarget Tracking using Image Sensor

	Improved PF Algorithm for Computer Cluster
	Particle Transfer Algorithm (PTA) for Load Balancing
	PTA Implementation & Simulation – Case Study II

	Summary

	Parallel Filtering & Tracking Algorithms for Graphic Processing Unit
	GPU & CUDA Computing
	PF & PFF GPU Implementation
	Parallel PF
	Parallel PFF

	Target Tracking Applications
	Case Study II: Ground Multitarget Tracking using GPU
	Case Study III: PF vs. PFF on GPU for High Dimensional Problem

	Improved Algorithm for GPU PF
	Simulations – Case Study II
	Case Study IV: UAV-MultiSensor Target Tracking using GPU PF & PFF

	Summary

	Implementation of Parallel Filtering Algorithms on FPGA
	PF & PFF Algorithms for FPGA
	FPGA Implementation of the Particle Filter
	FPGA Implementation of the Particle Flow Filter

	Simulation
	Summary

	Conclusions and Future Work
	Bibliography
	Vita

