
University of New Orleans University of New Orleans

ScholarWorks@UNO ScholarWorks@UNO

University of New Orleans Theses and
Dissertations Dissertations and Theses

Summer 8-13-2014

Analysis and Detection of Heap-based Malwares Using Analysis and Detection of Heap-based Malwares Using

Introspection in a Virtualized Environment Introspection in a Virtualized Environment

Salman Javaid
Computer Sciences, sjavaid@uno.edu

Follow this and additional works at: https://scholarworks.uno.edu/td

 Part of the Computer and Systems Architecture Commons

Recommended Citation Recommended Citation
Javaid, Salman, "Analysis and Detection of Heap-based Malwares Using Introspection in a Virtualized
Environment" (2014). University of New Orleans Theses and Dissertations. 1875.
https://scholarworks.uno.edu/td/1875

This Thesis is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with
permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright
and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-
holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the
work itself.

This Thesis has been accepted for inclusion in University of New Orleans Theses and Dissertations by an
authorized administrator of ScholarWorks@UNO. For more information, please contact scholarworks@uno.edu.

https://scholarworks.uno.edu/
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/etds
https://scholarworks.uno.edu/td?utm_source=scholarworks.uno.edu%2Ftd%2F1875&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=scholarworks.uno.edu%2Ftd%2F1875&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uno.edu/td/1875?utm_source=scholarworks.uno.edu%2Ftd%2F1875&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uno.edu

Analysis and Detection of Heap-based Malwares Using Introspection in a Virtualized
Environment

A Thesis

Submitted to the Graduate Faculty of the
University of New Orleans
in partial ful�llment of the

requirements for the degree of

Master of Science
in

Computer Sciences
with Concentration in
Information Assurance

by

Salman Javaid

B.S. Punjab University Lahore Pakistan, 1999
M.S. National University of Science and Technology Islamabad Pakistan, 2004

August 2014

c© 2014, Salman Javaid

ii

Funding

This work was supported in part by the NSF grant, CNS #1016807

iii

Acknowledgements

I would like to thank my parents, without whom my life would not be possible. I would like

to thank my brother for guiding me throughout my education. I would also like to thank

my adviser and my thesis committee :-

• Dr. Golden Richard, III � Adviser

• Dr. Vassil Roussev

• Dr. Irfan Ahmed

And �nally, I thank the members of my research group because every graduate student

needs to do so.

iv

To my parents.

v

Contents

List of Tables . ix

List of Figures . x

Abstract . xi

1 Introduction 1

1.1 Heap Spraying . 2

1.1.1 Heap Spray Techniques . 2

1.1.2 Just In Time (JIT) Spraying . 5

1.1.3 Heap Feng Shui . 6

1.2 Operating System based Security . 7

1.2.1 Data Execution Prevention (DEP) 8

1.2.2 Address Space Layout Randomization (ASLR) 8

1.2.3 Status of DEP and ASLR in Third Party Applications 10

1.3 Virtual Machine Architecture . 10

1.3.1 Virtual Machine Monitor . 10

1.3.2 VMM Implementation . 12

1.3.3 Virtual Machine Introspection . 13

1.3.4 LibVMI . 13

1.4 Contributions . 16

1.5 Organization . 17

1.6 Bibliographic Attributions . 17

vi

2 Related Work 18

2.1 Miscellaneous Work . 18

2.1.1 Heap Inspector . 19

2.1.2 JSAND . 19

2.1.3 BuBBles . 19

2.2 Nozzle . 20

2.3 Zozzle . 22

2.4 Rozzle . 23

3 Heap-base Malware Detection 25

3.1 Introduction to Atomizer . 25

3.2 Atomizer Architecture . 26

3.3 Atomizer Implementation . 28

3.3.1 Process Information Extraction . 29

3.3.2 Heap Extractor . 30

3.3.3 Swapped Heap Page Extractor . 30

3.3.4 Heap Analysis Module . 32

3.4 Atomizer Evaluation . 32

3.4.1 Experimental Settings . 32

3.4.2 Malware Detection . 33

3.4.3 Experimental Performance Analysis 34

3.4.4 Conclusion . 35

4 Conclusion 37

Bibliography 40

Vita 45

vii

List of Tables

1.1 DEP and ASLR Deployment Status (May 2008) Source [59] 9

1.2 DEP and ASLR Deployment Status (June 2010) Source [59] 9

viii

List of Figures

1.1 Typical Heap Spray . 3

1.2 Typical Heap Spray Code . 3

1.3 Architecture of two basic types of Virtual Machine Monitors 11

1.4 Virtual Machine Introspection . 14

2.1 Basic Nozzle Architecture . 21

3.1 Atomizer Architecture . 27

3.2 CPU Performance (CPU usage in Dom0) . 36

ix

Abstract

Malware detection and analysis is a major part of computer security. There is an arm

race between security experts and malware developers to develop various techniques to secure

computer systems and to �nd ways to circumvent these security methods. In recent years

process heap-based attacks have increased signi�cantly. These attacks exploit the system

under attack via the heap, typically by using a heap spraying attack. The main drawback

with existing techniques is that they either consume too many resources or are complicated

to implement. Our work in this thesis focuses on new methods which o�oads process heap

analysis for guest Virtual Machines (VM) to the privileged domain using Virtual Machine

Introspection (VMI) in a Cloud environment. VMI provides us with a seamless, non-intrusive

and invisible (to malwares) way of observing the memory and state of VMs without raising

red �ags for the malwares.

Key Words: Introspection, Cloud Computing, Malware Analysis, Virtual Machines,

XEN, LibVMI, Kernel.

x

Chapter 1

Introduction

In this chapter we will discuss the motivations behind this research. The primary incentive

behind this research was to ameliorate the spread of heap spray which has reached to an

epidemic proportion. Heap sprays are mostly used to evade various security mechanisms

being deployed out there, especially at operating system (OS) and hardware level. Most

exploits use some sort of venerability in the application or the OS to revert or overwrite

some pointers. Controlling these overwritten pointers is much di�cult now, as many se-

curity mechanism like DEP and ASLR are being deployed. Heap spray is being used by

malware developer as a landing platform for various vulnerabilities especially in commonly

used applications like Web Browsers and PDF viewers to bypass these security measures and

increasing the probability of the malwares to work.

In the Section 1.1, we are going to discuss how heap sprays have become an important

tool in a malware developer. In Section 1.3, we are going to describe various development

libraries and platforms that we have used in our research to develop various tools that detect

and analyze heap-based malwares and various other type of kernel level malwares and �nally

in Section 1.4, we list the various contributions we have made in this thesis.

1

1.1 Heap Spraying

The goal of any attack is to get the targeted computer to run exploit code supplied by the

attacker. To achieve this, two things must happen:

1. The code must end up on the computer.

2. The computer must run that code.

Attackers achieve these goals by using various method and techniques. The earliest type

of memory exploit took advantage of bu�er-stack over�ows. Attackers found ways to over-

write a bu�er on the stack and used that vulnerability to change or insert program code

to make the program jump to instructions provided by the attacker. Stack-over�ow attacks

diminished in e�ectiveness as programming languages evolved to prevent bu�er over�ows.

Memory exploits then focused on heap-based over�ows, in which, instead of placing instruc-

tions on the stack, attackers found ways to insert them into the program's heap. Nowadays,

heap-based exploits are more di�cult to achieve. Operating systems such as Windows Vista

and on-wards use a technique called Address-based Layout Randomization(ASLR) [65] in

which the base address of the code, the heap, and the stack change each time the program

runs. This prevents attackers from reliably predicting target addresses for code locations,

and if there is one copy of the exploit code in a large heap, it's akin to �nding the proverbial

needle in a haystack.

1.1.1 Heap Spray Techniques

Heap spraying circumvents these challenges by allocating, or "spraying," multiple copies of

exploit code to increase the odds of �nding a copy in the heap. The attacker can allocate

hundreds of thousands of copies of exploit code into the heap. All that's needed is for one

random program jump to land on one copy of such code, and a successful attack begins.

Figure 1.1 illustrates a common method of implementing a heap-spraying attack using

JavaScript. Heap spraying requires a memory corruption exploit, as in this example, where

2

0x0d0d0d

Method M1

Method M1

Heap Spray Area

Object of type T vtable of type T

Figure 1.1: Typical Heap Spray

1 <SCRIPT language=" text / j a v a s c r i p t ">
2
3 sh e l l c o d e = unescape ("%u4343%u4343% . . . ") ;
4
5 oneblock = unescape ("%u0D0D%u0D0D") ;
6
7 var f u l l b l o c k = oneblock ;
8
9 while (f u l l b l o c k . l ength < 0x40000) {
10 f u l l b l o c k += f u l l b l o c k ;
11 }
12
13 prayContainer = new Array () ;
14
15 for (i =0; i <1000; i++) {
16 sprayContainer [i] = f u l l b l o c k + sh e l l c o d e ;
17 }
18
19 </SCRIPT>

Figure 1.2: Typical Heap Spray Code

3

an attacker has corrupted a vtable method (M1) pointer to point to an incorrect address

of their choosing. At the same time, we assume that the attacker has been able, through

entirely legal methods, to allocate objects with contents of their choosing on the heap. Heap

spraying relies on then populating the heap with a large number of objects containing the

attacker's code, assigning the vtable exploit to jump to an arbitrary address in the heap, and

relying on luck that the jump will land inside one of their objects. To increase the likelihood

that the attack will succeed, attackers usually structure their objects to contain an initial

NOP sled (indicated in white) followed by the code that implements the exploit (commonly

referred to as shellcode, indicated with shading). Any jump that lands in the NOP sled will

eventually transfer control to the shellcode.

Increasing the size of the NOP sled and the number of sprayed objects increases the

probability that the attack will be successful. Heap spraying requires that the attacker

control the contents of the heap in the process they are attacking.There are numerous ways

to accomplish this goal, including providing data (such as a document or image) that when

read into memory creates objects with the desired properties. An easier approach is to take

advantage of scripting languages to allocate these objects directly. Browsers are particularly

vulnerable to heap spraying because JavaScript embedded in a web page authored by the

attacker greatly simpli�es such attacks. The example shown in Figure 1.2 shows a basic

script how to achieve this. While we are only showing the JavaScript portion of the page, this

payload would be typically embedded within an HTML page on the web. Once a victim visits

the page, the JavaScript payload is automatically executed. Line 3 allocates the shellcode

into a string, while lines 4 to 9 of the JavaScript code are responsible for setting up the

spraying NOP sled. Lines 13 to 15 create JavaScript objects each of which is the result of

combining the sled with the shellcode. It is quite typical for published exploits to contain a

long sled (256 KB in this case). Similarly, to increase the e�ectiveness of the attack, a large

number of JavaScript objects are allocated on the heap, 1,000 in this case.

4

1.1.2 Just In Time (JIT) Spraying

One of the newest and most popular exploitation techniques to bypass both ASLR and DEP

security protections is JIT memory spraying. There are two general reasons why JIT spraying

is a very useful exploitation method. Firstly, the code generated by the JIT compiler is stored

in memory marked as executable. This should be obvious because otherwise JIT compiler

would be unable to work correctly on systems shipped with the DEP feature. Evidently, if

the attacker's code is generated by JIT engine it will also reside in the executable area. In

other words, DEP is not involved in the protection of code emitted by the JIT compiler. This

is a very useful method since the memory was not marked as executable in prior approaches

like normal heap spraying. The second reason JIT spraying is powerful is that attacker's

code location can be predicted correctly [35] so at this point ASLR is also no longer a big

threat for the attacker.

Just-In-Time compilation converts code at runtime; typically from bytecode into ma-

chine code. By doing this, an interpreted program's performance greatly improves. The

JIT spraying method "forces" the JIT compiler to produce a lot of executable pages with

embedded attacker's code. In order to write the code to speci�c location, the JIT compiler

must �rst mark the destination memory as writable. Since multiple generated code chunks

may reside on the same memory page, the JIT compiler marks the entire page as RWX

(ReadableWritable-Executable). These permissions are necessary because a di�erent chunk

of memory residing on the same page may be executed asynchronously (for example by a dif-

ferent thread), resulting in access violation if the requested memory page was not executable

at that moment. After the code is written the compiler marks the destination region as RX -

readable and executable not writable anymore. In order to force the JIT compiler to generate

code that includes shellcode data, attackers must make use of ActionScript operators.

Even though ActionScript consists of multiple operators like: arithmetic, arithmetic com-

pound assignment, bitwise etc. only one appears to be used in the currently known shell-

codes. When it comes to ActionScript operators, only XOR appears to produce desirable

5

results. For example, with the XOR operator, the attacker controls four bytes of every single

instruction. In other cases the expression arguments do not provide precise and predictable

control over the emitted code blocks. By supplying di�erent arguments to the expression

it is possible to change the contents of speci�ed blocks and make them more dependable

on attacker's arguments, but the XOR operator appears to be the best option for shellcode

usage and that is probably why every known JIT shellcode makes use of this operator. Once

the attacker is able to spray controlled executable instructions into the heap, the rest of the

exploitation process goes the standard route. The main idea here is to spray the memory

with instructions that include attacker's payload and then be able to transfer the execution

there (like for example be able to point the instruction pointer (EIP) to the address of xor

eax, IMM32 operand).

1.1.3 Heap Feng Shui

The exploitation of heap corruption vulnerabilities on the Windows platform has become

increasingly more di�cult since the introduction of XP SP2. Heap protection features such

as safe unlinking and heap cookies have been successful in stopping most generic heap ex-

ploitation techniques. Methods for bypassing the heap protection exist, but they require a

great degree of control over the allocation patterns of the vulnerable application.

Heap Feng Shui [68] introduces a new technique for precise manipulation of the browser

heap layout using speci�c sequences of JavaScript allocations. It uses JavaScript library

HeapLib with functions for setting up the heap in a controlled state before triggering a heap

corruption bug. This allows malware developers to exploit very di�cult heap corruption vul-

nerabilities with great reliability and precision.There are three main components of Internet

Explorer that allocate memory typically corrupted by browser heap vulnerabilities.

• The �rst one is the MSHTML.DLL library, responsible for managing memory for

HTML elements on the currently displayed page. It allocates memory during the

initial rendering of the page, and during any subsequent DHTML manipulations. The

6

memory is allocated from the default process heap and is freed when a page is closed

or HTML elements are destroyed.

• The second component that manages memory is the JavaScript engine in JSCRIPT.DLL.

Memory for new JavaScript objects is allocated from a dedicated JavaScript heap,

with the exception of strings, which are allocated from the default process heap.

Unreferenced objects are destroyed by the garbage collector, which runs when the

total memory consumption or the number of objects exceed a certain threshold. The

garbage collector can also be triggered explicitly by calling the CollectGarbage()

function.

• The �nal component in most browser exploits is the ActiveX control that causes heap

corruption. Some ActiveX controls use a dedicated heap, but most allocate and corrupt

memory on the default process heap.

An important observation is that all three components of Internet Explorer use the

same default process heap. This means that allocating and freeing memory with JavaScript

changes the layout of the heap used by MSHTML and ActiveX controls, and a heap corrup-

tion bug in an ActiveX control can be used to overwrite memory allocated by the other two

browser components.

1.2 Operating System based Security

Techniques have been developed to counter against the heap spray attacks. Heap protection

features such as safe un-linking and heap cookies have been successful in stopping most

generic heap exploitation techniques. Methods for bypassing the heap protection exist [68],

but they require a great degree of control over the allocation patterns of the vulnerable

application. We are going to discuss some techniques against heap spray in the Chapter 2.

Two major security development that are becoming very popular recently are Address-based

Layout Randomization (ASLR) and Data Execution Prevention (DEP) [5].

7

1.2.1 Data Execution Prevention (DEP)

Bu�er over�ow attacks, in which an attacker forces a program or component to store mali-

cious code in an area of memory not intended for it, are some of the most common exploits

seen today. DEP is a Windows feature that enables the system to mark one or more pages

of memory as non-executable. Marking memory regions as non-executable means that code

cannot be run from that region of memory, which makes it harder for exploits involving

bu�er overruns to succeed.

DEP was introduced in Windows XP SP2 and has been included in all subsequent re-

leases of Windows desktop and server operating systems [18]. For application compatibility

reasons, DEP is "opt-in" in Windows XP, Windows Vista, and Windows 7. DEP protects

the operating system and core system �les by default, but application developers or IT ad-

ministrators must speci�cally con�gure other programs to take advantage of DEP. DEP is

"opt-out" in Windows Server operating systems, meaning that DEP is enabled by default

for all programs unless speci�cally disabled for a program.

1.2.2 Address Space Layout Randomization (ASLR)

In older versions of Windows (Windows XP and below), core processes tended to be loaded

into predictable memory locations upon system start up. Some exploits work by targeting

memory locations known to be associated with particular processes. ASLR randomizes the

memory locations used by system �les and other programs, making it much harder for an

attacker to correctly guess the location of a given process. The combination of ASLR and

DEP creates a fairly formidable barrier for attackers to overcome in order to achieve reliable

code execution when exploiting vulnerabilities.

ASLR was introduced in Windows Vista [65] and has been included in all subsequent

releases of Windows. As with DEP, ASLR is only enabled by default for core operating

system binaries and applications that are explicitly con�gured to use it via a new linker

switch.

8

Table 1.1: DEP and ASLR Deployment Status (May 2008) Source [59]

Application DEP (Win 7) DEP (Win XP) Full ASLR

Flash Player N/A N/A NO
Sun Java JRE NO NO NO
Adobe Reader YES NO NO
Mozilla Firefox NO NO NO
Apple Quicktime NO NO NO
VLC Media Player NO NO NO

Apple iTunes NO NO NO
Google Chrome N/A N/A N/A
Shockwave Player N/A N/A NO
OpenO�ce.org NO NO NO
Google Picasa NO NO NO
Foxit Reader NO NO NO

Opera NO NO NO
Winamp NO NO NO
RealPlayer NO NO NO
Apple Safari NO NO NO

Table 1.2: DEP and ASLR Deployment Status (June 2010) Source [59]

Application DEP (Win 7) DEP (Win XP) Full ASLR

Flash Player N/A N/A YES
Sun Java JRE NO NO NO
Adobe Reader YES YES NO
Mozilla Firefox YES YES NO
Apple Quicktime NO NO NO
VLC Media Player NO NO NO

Apple iTunes YES NO NO
Google Chrome YES YES YES
Shockwave Player N/A N/A NO
OpenO�ce.org NO NO NO
Google Picasa NO NO NO
Foxit Reader NO NO NO

Opera YES YES NO
Winamp NO NO NO
RealPlayer NO NO NO
Apple Safari YES YES NO

9

1.2.3 Status of DEP and ASLR in Third Party Applications

The importance of DEP and ASLR can be judged by the fact that processor makers like

Intel [14] and AMD [3] have adopted their processors to support them directly [59]. Various

Operating Systems (OS) also adopted them slowly and now newest version of most of the

major OS's out there support them in one way or another [59]. Third party applications

were rather slow to adopt them. Table 1.1 and Table 1.2 show the pace of adaption of

DEP and ASLR from 2008 to 2010 [59]. It shows that most of the major applications out

there are still slow to adopt these security methods and still are vulnerable to the various

malwares that were hindered by the these security methods. This tell us that it is really

important for the security experts to develop various tools that look for malwares that

exploit the vulnerabilities of these third party application to keep them from being exploited

by malwares.

1.3 Virtual Machine Architecture

1.3.1 Virtual Machine Monitor

A virtual machine monitor (VMM) is a thin layer of software that runs directly on the hard-

ware of a machine. The VMM exports a virtual machine abstraction (VM) that resembles

the underlying hardware. This abstraction models the hardware closely enough that soft-

ware which would run on the underlying hardware can also be run in a virtual machine.

VMMs virtualize all hardware resources, allowing multiple virtual machines to transparently

multiplex the resources of the physical machine. The operating system running inside of a

VM is traditionally referred to as the guest OS, and applications running on the guest OS

are similarly referred to as guest applications. Basic architecture of a VMM can be seen in

Figure 1.3.

10

Hypervisor

Hardware

OS OS OS

Hypervisor

Operating System (OS)

OS OS OS

Hardware

Native (bare metal) Hosted

Type 1 Type 2

Figure 1.3: Architecture of two basic types of Virtual Machine Monitors

As Figure 1.3 shows, in a virtualized environment, a VMM provides the interface between

each VM and the underlying physical hardware. The OS layer between a VMM and the

physical hardware is optional, depending on which of the two major types of VM managers

you choose. In a Type 1 system the VMM runs directly on the physical hardware, eliminating

an abstraction layer and often improving e�ciency as a result. Examples of Type 1 systems

include VMware ESX [29], XEN [31], and Microsoft Hyper-V [19]. In a type 2 system, the

VMM uses an OS as an interface to the physical hardware. Type 2 systems include VMware

Workstation [29], the QEMU [26] open source process emulator, KVM [15], Parallels [24],

and Virtual PC/Server [28]. Type 2 systems rely on the underlying OS to provide hardware

interaction and device drivers, and thus often have a wider range of physical hardware

components to interact with.

Traditionally, the VMM is the only privileged code running on the system. It is essentially

a small operating system. This style of VMM has been a standard part of mainframe

computers for 30 years, and recently has found its way onto commodity x86 PCs. Hosted

11

VMMs like VMware have emerged that run a VMM concurrently with a commodity "host

OS" such as Windows or Linux. In this setting, the virtual machine appears as simply

another program running on the host operating system.

Despite a radical di�erence from the users perspective, traditional and hosted VMMs

di�er little in implementation. In a hosted architecture the VMM merely leverages a third-

party host OS to provide drivers, bootstrapping code, and other functionality common to

VMMs and traditional operating systems, instead of being forced to implement all of its

functionality from scratch. VMMs have traditionally been used for logical server partitioning,

and are supported for a wide range of architectures; for example, the IBM xSeries (x86

servers), pSeries (Unix), zSeries (mainframes), and iSeries (AS/400) all have VMMs available.

Recently, as hosted VMMs have appeared on the desktop, they have begun to discover other

applications such as cross-platform development and testing.

1.3.2 VMM Implementation

Although the speci�cs of a VMMs implementation are architecture-dependent, VMMs tend

to rely on similar implementation techniques. Among these techniques is con�guring the real

machine so that virtual machines can safely and directly execute using the machine's CPU

and memory. By doing this, VMMs can e�ciently run software in the virtual machines at

speeds close to that achieved by running them on the bare hardware.

VMMs can also fully isolate the software running in a virtual machine from other virtual

machines, and from the virtual machine monitor. A common way to virtualize the CPU is to

run the VMM in the most privileged mode of the processor, while running virtual machines

in less privileged modes. All traps and interrupts that occur while a virtual machine is

running transfer control to the VMM. Attempts by the virtual machines to access privileged

operations trap into the VMM; the VMM emulates privileged operations for the VM. In this

architecture, the VMM can always control the virtual machine regardless of what the software

in the virtual machine does. Memory is commonly virtualized by keeping a virtual MMU

12

for each virtual machine that re�ects the VMs view of its address space. The VMM retains

control of the real MMU, and maps each VMs physical memory in such a way that VMs

do not share physical memory with each other, or with the VMM. Through this technique

the VMM is able to create the illusion that each VM has its own address space that it fully

controls. This also allows the VMM to isolate the VMs from one another and prevents them

from accessing the memory of the VMM. In addition to virtualizing the CPU and memory,

the VMM intercepts all input/output requests from VMs to virtual devices and maps them

to the correct physical I/O device. For memory-mapped I/O, the VMM only allows a virtual

machine to see and access the particular I/O devices it is permitted to use.

1.3.3 Virtual Machine Introspection

Virtual Machine Introspection (VMI) is a technique for externally monitoring the run time

state of a system-level virtual machine. Monitors can be placed in another virtual machine,

within the hypervisor, or within any other part of the virtualization architecture. For virtual

machine introspection, the run time state can be de�ned broadly to include processor regis-

ters, memory, disk, network, and any other hardware-level events. The introspection library

we have used through out this work is the LibVMI [17]. Section 1.3.4 discuss in details the

architecture and working of LibVMI library.

1.3.4 LibVMI

We have used libVMI [17] library extensively in our projects. It is an introspection library

focused on reading and writing memory from virtual machines (VMs). It is based on the

library Xenaccess [58] which was developed as a student project. Initially it only supported

Xen [31] but then, support for KVM was added to Xenaccess and Xenaccess was renamed

to libVMI. For convenience, LibVMI also provides functions for accessing CPU registers,

pausing and un-pausing a VM, printing binary data, and more. LibVMI is designed to work

across multiple virtualization platforms (LibVMI currently supports VMs running in either

13

Hypervisor

Hardware

VCPU

CPU

Operating

System and

User Apps
VMI Tools

Introspection

Application

Disk

Memory

HW Events

Network Events

CPU Registers

Hypervisr or

Introspection Machine

User Virtual Machine

Figure 1.4: Virtual Machine Introspection

Xen or KVM). LibVMI also supports reading physical memory snapshots when saved as a

�le (like VMware snapshots). It also support memory analysis tools like Volatility [30] to

directly access VMs memory but the performance is much slower that native libVMI based

programs.

LibVMI architecture is based on six high-level requirements. In a general sense, these

requirements can be seen as typical good programming guidelines, or good security guidelines.

This is done to leverage known design principles in order to build a robust monitoring

architecture. With this in mind following are the six requirements for monitoring VMs.

1. No super�uous modi�cations to the VMM: The VMM should remain as small

and simple as possible since it is part of the TCB. If a VMM includes the necessary

primitives to support the monitoring architecture, then it should not be modi�ed. If a

VMM lacks the necessary primitives, then the modi�cations made should be what is

minimally required to support the monitoring architecture.

14

2. No modi�cations to the VM or the target OS: Modi�cations to the target OS

(i.e., the OS being monitored) are problematic. The target OS can tamper with this

code, and changes to the target OS may require access to the target OS source code,

which is not always available. One of the key reasons why virtualization is attractive

for monitoring is the isolation between VMs. Placing monitoring code within the

same OS that is being monitored bypasses this isolation, negating this key bene�t.

Therefore, this requirement encourages all monitoring code to remain in an isolated

VM unless such a restriction makes it impossible for a monitor to gather the necessary

information.

3. Small performance impact: An excessive performance impact can render a monitor-

ing architecture worthless. This requirement ensures that the monitoring architecture

does not prevent the target OS from performing its intended functions. The perfor-

mance impact is measured as any reduction in performance of an application caused

by the monitoring software. Ideally this impact is both small and consistent, but some

initialization costs may be required.

4. Rapid development of new monitors: New monitors may be needed to address

new types of attacks. Furthermore, it is advantageous to keep the monitor code simple

to limit the opportunity for introducing errors into the monitors. The monitoring

architecture should provide APIs that are used to develop new monitors. Therefore,

satisfaction of this requirement means that the APIs should be designed in a way that

simpli�es the job of the monitor developer.

5. Ability to monitor any data on target OS: Monitors should have a full view

into the target OS. The monitoring architecture should not be limited to providing

information about a small part of the target OS. For example, an ideal memory monitor

should be able to view all memory on the target OS. Likewise, an ideal disk monitor

should be able to view all data going to and from the disk device. While this ideal

15

may not always be possible, the more information a monitor can view, the harder it is

for an attacker to evade detection.

6. Target OS cannot tamper with monitors: If the target OS can tamper with the

monitors, then the possibility exists for malicious code to tamper with the monitors.

For this reason, all of the monitors should be isolated or protected from the target OS.

This is related to requirement (2), above. However, here it is required that all monitor

code, regardless of its location, be protected from attack. If all monitor code is in an

isolated VM, then this is not di�cult. If some monitor code must be placed outside of

the TCB, then additional measures must be taken to protect that code. The extent of

these measures will depend on the nature of the code being protected.

This implementation methodology provides an excellent platform for us to develop various

malware analysis and detection tools. Although it doesn't fully provide all the aspects

required for our research but served as an excellent starting point for us for development of

various tools.

1.4 Contributions

This thesis research has been taken from the collaboration which contributed to the �elds

of malware analysis, computer forensics, Virtual Machine Introspection (VMI) and Cloud

Computing.

• We have develop a robust platform Atomizer [45] to analyze the heap of a process

running inside a virtual machine in a Cloud environment.

• We developed a library to analyze pages that have been swapped out of the main

memory in a VM.

16

• In our collaboration we developed ModChecker [32] which is a unique and light weight

method to verify the integrity of the kernel modules by cross viewing similar virtual

machines in a Cloud environment.

• In our collaboration we developed IDTChecker [33] which verify the integrity of im-

portant kernel structure like Interrupt Descriptor Table (IDT) to detect the presence

of a malware entity.

• Several peer-reviewed research publications have resulted from this collaboration.

1.5 Organization

The organization of the rest of this work is as follows. Chapter 2 describes various publica-

tions and works done related to our �eld of heap-based malware analysis. After discussing

some past works we are going to discuss our major work in heap-based malware analysis in

the Chapter 3. Chapter 4 provides conclusions and some directions for future work.

1.6 Bibliographic Attributions

This thesis presents the work that was part of the following publication.

• Atomizer: A Fast, Scalable and Lightweight Heap Analyzer for Virtual Machines in

a Cloud Environment, which was presented at the proceedings of 6th Layered Assur-

ance Workshop (LAW'12), In conjunction with the 28th Annual Computer Security

Applications Conference(ACSAC'12) on December 2012 at Orlando, Florida

17

Chapter 2

Related Work

In this chapter we will describe, in detail, various works done in the �eld of heap-based

malware analysis. Various techniques have been used in many work of literature toward

studying and mitigating the e�ects of the heap based malwares. We will provide a brief

introduction of these works in this part of the dissertation. There has been a large volume of

work published on heap spray detection. Most of the work focuses on JavaScript analysis and

classifying web contents on the basis of dynamic and static features. This chapter covers the

existing approaches and tools that are most related to our work. Section 2.1 describe various

works in the �eld of heap-based malware detection and analysis. Section 2.2, Section 2.3

and Section 2.4 describes some major works done by Microsoft [18] in the �eld of heap-based

malware detection and analysis.

2.1 Miscellaneous Work

In this section we are discussing some minor works that are related to heap-based mlaware

analysis.

18

2.1.1 Heap Inspector

LeMasters [51] demonstrates a simple Heap Inspector tool that visualizes heap sprayed

NOP sleds by searching for byte patterns that resemble NOP instructions. It does so by

injecting a DLL into the process that is being analyzed to create a gateway to the heap

object. It further relies on the Windows API to gather the heap data. All this combined

not only signi�cantly impacts the performance of the guest system, but also is detectable by

malware.

2.1.2 JSAND

Cova et al. propose JSAND [37] that provides a framework to emulate JavaScript code and

discover the key features that are most commonly found in malware. These features include

code obfuscation, environment analysis techniques, and exploitation mechanisms. JSAND

uses machine-learning techniques to establish the characteristics of normal JavaScript code

and uses these characteristics to detect anomalous code [37]. JSAND is a �nger printing tech-

nique that can be evaded by a clever malware developer. Techniques like time-based checks

and exception handling described in [43] can be used to evade the emulation part of JSAND.

Unlike Atomizer, JSAND relies heavily on emulation which can have many limitations [43].

2.1.3 BuBBles

An important property of a heap-spraying attack is that it relies on homogeneity of memory.

This means that it expects large parts of memory to contain the same information (i.e., its

nop-shellcode). It also relies on the fact that landing anywhere in the nop sled will cause

the shellcode to be executed. BuBBle's [40] countermeasure breaks that assumption by

introducing diversity on the heap, which makes it much harder to perform a heap-spraying

attack. The assumption is broken by inserting special interrupting values in strings at random

positions when the string is stored in memory and removing them when the string is used

19

by the application. These special interrupting values will cause the program to generate an

exception when it is executed as an instruction. Because these special values interrupt the

strings inside the memory of the application, the attacker can no longer depend on the nop

sled or even the shellcode being intact. If these values were placed at �xed locations, the

attacker could attempt to bypass the code by inserting jumps over speci�c possible locations

within the code. Such an attack however is unlikely, because the attacker does not know

exactly where inside the shellcode control has been transferred. However, to make the attack

even harder, the special interrupting values are placed at random locations inside the string.

Since an attacker does not know at which locations in the string the special interrupting

values are stored he cannot jump over them in his nop-shellcode. This lightweight approach

thus makes heap-spraying attacks signi�cantly harder at very low cost.

2.2 Nozzle

Working for Microsoft, Ratanaworabhan et al. proposed Nozzle [60] which performs static

control �ow analysis of parts of the heap, interpreting them as code segments to detect ma-

licious content. Nozzle accomplishes that by intercepting common heap allocating function

calls and gathering information about the heap, as well as its content. This technique is

browser-speci�c and could potentially be detected by the attacker. As described by Nozzle,

an attacker could time her heap sprays to avoid detection by this mechanism. Scanning heap

objects via introspection requires no memory hooks and makes the entire guest operating

system oblivious to heap analysis. Nozzle also poses a 10% overhead, which led to the de-

velopment of an improved version of the programs called Zozzle [38]. The basic architecture

of Nozzle is shown in �gure 2.1.

Nozzle is a run time monitoring infrastructure that detects attempts by attackers to

spray the heap. Nozzle uses lightweight emulation techniques to detect the presence of

objects that contain executable code. To reduce false positives, Nozzle uses a notion of

20

Browser Threads

Browser Heap

Nozzle Threads

A
llo

c
a

ti
o

n
 H

is
to

ry

Nozzle Detector

Browser Process

Figure 2.1: Basic Nozzle Architecture

global "heap health". Its lightweight emulator scans heap allocated object data to identify

valid x86 code sequences, disassembling the code and building a control �ow graph. Because

the attack jump target cannot be precisely controlled, the emulator follows control �ow to

identify basic blocks that are likely to be reached through jumps from multiple o�sets into the

object. Nozzle developed a novel approach to mitigate this problem using global heap health

metrics, which e�ectively distinguishes benign allocation behavior from malicious attacks.

Fortunately, an inherent property of heap spraying attacks is the fact such attacks a�ect

the heap globally. Consequently, Nozzle exploits this property to drastically reduce the false

positive rate. Nozzle was mostly static method of detecting heap spray attacks. It visited

various URLs and tried to detect presence of heap spray based attacks n those URLs. The

heavy weight nature of Nozzle made it di�cult to be deployed in a running environment.

21

2.3 Zozzle

Zozzle [38] was the next iteration after Nozzle in the work being done by Microsoft with

regards to heap spray attacks. Zozzle is a low-overhead solution for detecting and prevent-

ing JavaScript malware that is fast enough to be deployed in the browser. Its approach

uses Bayesian classi�cation of hierarchical features of the JavaScript abstract syntax tree

to identify syntax elements that are highly predictive of malware. Zozzle is able to detect

JavaScript malware through mostly static code analysis e�ectively. Zozzle has an extremely

low false positive rate of 0.0003, which is less than one in quarter million. Despite this high

accuracy, the Zozzle classi�er is very fast, with a throughput at over 1 MB of JavaScript

code per second [38].

Zozzle is designed to perform static analysis of JavaScript code on a given site and quickly

determine whether the code is malicious and includes an exploit. In order to be e�ective,

the tool must be trained to recognize the elements that are common to malicious JavaScript,

and the researchers behind it stress that it works best on de-obfuscated code. The Zozzle

was trained by crawling millions of Web sites and using Nozzle, to process the URLs and see

whether malware was present.

Zozzle is speci�cally designed to detect and defend against heap-spraying exploits

launched by malicious JavaScript found on Web sites. In many cases these days, that kind

of exploit is hosted on a legitimate site that's been compromised and is being used as part

of a drive-by download attack. Often, the code is hosted on a speci�c page for a day or

even a few hours and then is taken down, either by the attacker or the site owner. it's been

shown in [38] this, along with the multiple layers of obfuscation that attacker use to cloak

JavaScript exploits, can make it di�cult for automated tools to identify such malware with

a high degree of accuracy.

Once Nozzle has labeled JavaScript contexts, it needs to extract features from them that

are predictive of malicious or benign intent. For Zozzle, Nozzle creates features based on the

hierarchical structure of the JavaScript abstract syntax tree (AST). Speci�cally, a feature

22

consists of two parts: a context in which it appears (such as a loop, conditional, try/catch

block, etc.) and the text (or some substring) of the AST node. For a given JavaScript

context, it only track whether a feature appears or not, and not the number of occurrences.

To e�ciently extract features from the AST, it traverses the tree from the root, pushing

AST contexts onto a stack as it descends and popping them as it ascends. These features

are then used in Zozzle to identify suspicious activity.

Zoozle was created to remove the main drawback in the Nozzle, that was it's heavy

weight nature. Although Zozzle was faster than Nozzle but it still lack various feature [49]

that allowed various malware to pass by it.

2.4 Rozzle

In recent years, attacks that exploit vulnerabilities in browsers and their associated plugins

have increased signi�cantly. These attacks are often written in JavaScript and literally

millions of URLs contain such malicious content.

While static and runtime methods for malware detection been proposed in the litera-

ture [60] [38] [40], both on the client side, for just-in-time in-browser detection, as well as

o�ine, crawler-based malware discovery, these approaches encounter the same fundamen-

tal limitation. Web-based malware tends to be environment-speci�c, targeting a particular

browser, often attacking speci�c versions of installed plugins. This targeting occurs because

the malware exploits vulnerabilities in speci�c plugins and fail otherwise. As a result, a

fundamental limitation for detecting a piece of malware is that malware is triggered infre-

quently, only showing itself when the right environment is present. In fact, we observe that

using current �ngerprinting techniques, just about any piece of existing malware may be

made virtually undetectable with the current generation of malware scanners.

Rozzle [49] is a JavaScript multi-execution virtual machine, a way to explore multiple

execution paths within a single execution so that environment-speci�c malware will reveal

23

itself. Using large-scale experiments, it is shown that Rozzle increases the detection rate for

o�ine runtime detection by almost seven times. In addition, Rozzle triples the e�ectiveness

of online runtime detection. It is also shown that Rozzle incurs virtually no runtime overhead

and allows to replace multiple VMs running di�erent browser con�gurations with a single

Rozzle-enabled browser, reducing the hardware requirements, network bandwidth, and power

consumption.

24

Chapter 3

Heap-base Malware Detection

In this chapter we are going to discuss in detail our major contribution. We developed a

robust tool to detect heap-based malwares using introspection in virtualized environment

like Clouds. Section 3.1 discusses the Atomizer [45] which is a novel technique developed to

detect malicious activities in the heap of a process.

3.1 Introduction to Atomizer

Atomizer which browses through the heaps of processes running inside VMs and looks for

heap-based activities like heap spray. Atomizer runs on a privileged VM and uses VMI to

access the heaps of the processes inside virtual machines running on a cloud server. Currently,

only the heaps that are allocated by the operating system for the processes can be accessed

by Atomizer. Application-generated heaps (e.g., those created by the Java Virtual Machine

(JVM)) can also be examined by Atomizer, through available Atomizer APIs. Atomizer

requires no changes to be made to virtual machine manager(VMM), VMs and the programs

being monitored.

Atomizer's architecture makes it di�cult for any malware inside the VM to detect and

disable it. Atomizer also monitors all the pages of the heap that have been swapped out

of main memory. Atomizer is designed to be modular, so that new features can easily be

25

added. The most popular type of heap-based attacks are heap sprays [60], that's why in this

chapter we are mainly focused on heap spray attacks, although Atomizer can also be used

for detecting any heap-based attacks.

Heap Spraying techniques involve instructing client side languages such as JavaScript to

allocate large blocks of heap memory (50-200MB) containing malicious shellcode and NOP

sleds that "slide" into the shellcode. The �nal piece of the puzzle relies on overwriting a

function pointer to point to a random location within the large NOP sled heap object [2],

which typically requires a separate exploit. Large blocks of heap spray can easily be detected

by simple scans, however, newer and less intrusive heap spray attacks that more accurately

manipulate the layout of the application heap layout increase reliability and precision, with-

out the need for large blocks of heap spray. Techniques like Feng Shui Heap Spray [68]

defragments and makes holes in the heap object to insure that the function pointer is readily

available and positioned properly for smashing with a heap over�ow [39].

Techniques like JIT spraying [35] have been developed to bypass both ASLR and DEP.

JIT spraying utilizes knowledge about a JIT compiler's architecture to spray the heap with

executable code that can then be compiled by the JIT compiler. The JIT heap spray is

constructed large enough to overwhelm and bypass ASLR. JIT spray uses return oriented

programming (ROP) [61] gadgets to mark the heap pages as executable so that the contents

of the pages can be executed. JIT spray uses a leaked pointer, which is essentially a random

heap address, to jump to that location and follows the NOP sled down to the JIT shell code

that is executed to exploit the system. Modern exploitation techniques, such JIT spraying,

makes it even more important to look for malicious activities inside the heap of a process.

3.2 Atomizer Architecture

The Atomizer infrastructure consists mainly of three components, Process Information Ex-

tractor, Heap Extractor and Swapped Heap Page Extractor as shown in Figure 3.1. We

26

assume a typical cloud computing environment consisting of hardware, a VMM (or hyper-

visor such as XEN [31]), guest VMs and a privileged VM (where Atomizer gains access the

heap memory content using VM introspection). The reason behind the development of a

real time out-of-VM heap spray analyzer as a proof of concept that o�oading heap spray

detection to the hypervisor has insigni�cant impact on the guest OS.

The �rst component, Process Information Extractor, is responsible for determining the

basic attributes of the process being monitored. These basic attributes of the process include

the internal operating system structures that provide us with valuable information about the

location of the process in physical memory. The location of the heap is extracted in the second

step called Heap Finder. There might be various heaps in the process and the location of all

of them are passed on to the next component, Heap Extractor.

Stack

Code

Internet

Explorer

Virtual Machine

(DomN)

Process

Analyzer

Atomizer

Privileged Virtual Machine

(Dom0)

Heap

Finder

Heap

Extractor

Heap

Analysis

Module
Process

Information

Extractor

Heap

Stack

Code

Notepad

Heap

...

Stack

Code

Proc n

Heap

Swapped Heap

Page Extractor

Physical Memory

Swap

File
Virtual Machine Disk

Figure 3.1: Atomizer Architecture

27

The Heap Extractor component receives the physical memory locations of the heaps from

the �rst component of the Atomizer and extracts all the heap pages of the process. In a

typical system some heap pages may be swapped out of physical memory for e�ciency, so the

Atomizer architecture also has the capability to access pages that are currently swapped out.

When the Heap Extractor module encounters a swapped heap page, it uses the Swapped

Heap Page Module to access those pages. The Swapped Heap Page Extractor component of

the Atomizer uses information about the guest OS' swapping architecture to access swapped

pages.

The Atomizer is designed to work in a cloud environment to monitor multiple VMs run-

ning in the environment using a single privileged system. The VMI interface provides access

to the memory of all the VMs running on a single physical server. The Atomizer can browse

through the heaps of all the processes running in these VMs with low performance impact,

i.e., without using many of resources of the cloud server. The Atomizer has a modular design

which allows adding support for various operating systems. The Heap Analysis Module part

is also designed in such a way that adding additional modules to enhance heap analysis is

very straightforward. In particular, the Heap Extractor module provides an application pro-

grammable interface (API), allowing new heap analysis techniques to use the Heap Extractor

API's to access heap memory. These API's can be used to detect any type of heap-based

attacks.

3.3 Atomizer Implementation

We developed a proof of concept prototype of Atomizer on XEN [31] that had Microsoft

Windows XP (Service Pack 2) VMs running. We used the libVMI library [17] to introspect

the heap of web browsers (Internet Explorer or Firefox) running on Windows XP virtual

machines. We also used libguestfs [16] to access the page �le of memory pages that have

been swapped to the hard drive.

28

3.3.1 Process Information Extraction

Windows operating systems maintain information about executing processes in Process En-

vironment Block (PEB) structures. In this part of the implementation, Atomizer looks for

memory address of the PEB structure of the process. It goes through known memory ad-

dresses to locate the PEB structure using appropriate PEB signatures [62]. Once the location

of the PEB structure is found the information regarding the process is extracted from it.

That information includes the location of the heaps, number of heaps available and maxi-

mum number of heaps allowed by the OS. This information is then forwarded to the next

component of the Atomizer.

Algorithm 1 Heap Memory Browsing using VAD tree
for i = 0x7FFD0000 to 0x7FFDF000 do
if ((5 == i+ 0xa4)&&(1 == i+ 0xa8)) then
PEB = i
break;

end if

end for

HEAPNUM := PEB + 0x88
HEAPADDRESS := PEB + 0x090
heapCounter := 0
while heapCounter < HEAPNUM do

HEAPNODE := HEAPADDRESS +(4 ∗ heapCounter)
segmentCounter := 0
while segmentCounter < 64 do
HEAPSEGMENT := HEAPNODE + 0x58 + (4 ∗ segmentCounter)
HEAPENTRY := HEAPSEGMENT + 0x20
while (HEAPENTRY + 0x005) 6= 0 do
HEAPSIZE := HEAPENTRY
READ_MEMORY(HEAPENTRY, HEAPSIZE)
HEAPENTRY := HEAPENTRY + (HEAPSIZE * 8)

end while

segmentCounter++
end while

heapCounter++
end while

29

3.3.2 Heap Extractor

The Heap Extractor component of Atomizer provides the main facility for browsing through

the heap of the process using the virtual address descriptors (VAD) obtained via introspec-

tion. The memory manager in Windows maintains a set of VADs that describes the status of

the process's address space [62]. To �nd the VAD tree of a process being monitored, it uses

the process environment block structure (PEB) information received from Process Informa-

tion Extractor. Using this information, it browse through all the heap nodes, heap segments,

and heap entries in various heaps of a process. Algorithm 1 describes the algorithm used to

browse through the entire heap. If a heap page entry is in the VAD tree and not in physical

memory, than there is a possibility that the heap page has been swapped out of memory.

As modern heap sprays do not require large amounts of NOP sleds, it is important that

those heap pages are also examined. Details of how it access pages that are swapped out are

provided in Section 3.3.3. Heap extractor can access the page memory both page by page

and byte by byte. This facility has been provided to facilitate various algorithms that might

perform better with either of these memory access methods. This implementation uses the

page by page access method to extract one page at a time from the heap and send it to the

Heap Analysis Module (discussed in Section 3.3.4).

3.3.3 Swapped Heap Page Extractor

When the Atomizer needs to access a swapped out page, it follows a procedure similar to

that of the guest OS. We can describe this method as a two-step process where in the �rst

step, the Atomizer retrieves the page �le number and the page o�set and in the second step,

it uses this information to obtain the value of the virtual address from the page �le.

Atomizer prototype is based on Windows XP (SP2), with Physical Address Extension

(PAE) support enabled, for implementation. The PAE gives us four levels of virtual address

translation where a (32-bit) virtual address (in PAE) contains the pointers to the page

directory pointer table, page directory table, page table and page byte o�set. Unlike the

30

Algorithm 2 Simple NOP Sled Detection

NOPZ ← HASH-TABLE of NOPs/NOP-replacements
LIMIT ← 150
BUFFER ← Memory bu�er from Heap size = SIZE
SKIP ← 1
index := 0
nops := 0
skipped := 0
while index < SIZE do

if NOPZ[BUFFER[index++]] then
nops++

else if skipped < SKIP then

skipped++
else

nops := 0
end if

if nops == LIMIT then

NOP sled detected
end if

end while

page directory pointer table, the page directory and page table both have 64 bit entries.

PAE supports two page sizes i.e. 4K and 2M (also referred as large page). Depending on the

page size (4K and 2M), the page �le number and page o�set are recorded into the page table

or the page directory respectively. If the 7th bit of page directory entry is valid, it means

that the entry is pointing to a large 2M page instead of a page table. In order to ensure

that an entry in the page directory or page table contains the o�set of a page in page �le, its

0th (valid bit), 10th (prototype bit) and 11th (transition bit) bits must be zero. Moreover,

the o�set is present in the higher 32 bits (from 32 to 51 bits) of the 64-bit entry and the

page number is present in the lower 32-bit of the entry. In the second step, Atomizer uses

the libguestfs [16] library to access the page �le of the guest VMs from Dom0 and reads

the corresponding page using the page o�set information. Atomizer then uses the page byte

o�set present in the virtual address to access the value of the virtual address. The page byte

o�set is the o�set of the value in the page pointed to by the virtual address.

31

3.3.4 Heap Analysis Module

The heap memory received from the heap extractor can be analyzed in the Heap Analysis

Module. Various algorithms may be used here to determine whether the heap of the process

contains malicious contents or not. Some techniques like STRIDE [34] and ECL-Polynop [42]

use sequential analysis of network packets to detect NOP sleds in network tra�c, rather than

in the process heap itself. Using the same model in this implementation, I implemented a

simple Polymorphic NOP detection algorithm to detect the presence of NOP sleds in the

heap using sequential analysis of the heap data. This implementation uses the Atomizer

architecture to sequentially go through the heap memory and compares each byte of data

with a hash table of NOPs and NOP replacements. The algorithm keeps tracks of sequences

of NOPs/NOP replacements found and if the length of these sequences are beyond a certain

limit it raises a �ag. The sequence limit used in our experiments was 150 NOPs. This

limit was selected because it gave no false positives in our experiments. This simple NOP

sled detection algorithm is depicted in the Algorithm 2. This module demonstrates that

Atomizer architecture provides a simple way of implementing these kinds of algorithms in

the heap analysis module to detect NOP sleds. The presence of NOP sleds typically means

that malicious content is present in the heap.

3.4 Atomizer Evaluation

3.4.1 Experimental Settings

For this experiment, we build a simple cloud environment. This test bed featured a Quad

Core i7 (2.67 GHz * 8) server with HyperThreading enabled and 18 GB of RAM. This server

had a 64-bit privileged virtual machine (DomO) running Fedora 16 (kernel 3.3.2-6) along with

Xen 4.1.2 [31]. We instantiated �ve VM clones (DomU: Dom1-Dom5) in Xen from a single 32

32

bit Window XP (SP2) installation to make sure that all VMs are identical. We also used

the introspection library for VMI (libvmi-0.6) [17] and libguestfs [16] in all the experiments.

3.4.2 Malware Detection

To test the e�ectiveness of Atomizer was tested against various types of heap sprays com-

monly found on the web, as well as some custom made heap spray programs.

Simple Heap Spray

The �rst set of experiments involved the Skypher heap spray generator [9], an example of a

simple heap spraying technique. Di�erent variants of Skypher were tested on both Internet

Explorer and Mozilla Firefox. Atomizer e�ectively detected the heap spray with no false

positives. Atomizer was also tested against another known heap spray attack, Aurora [8].

This types of heap spray demonstrated some simple obfuscation techniques to hide the

payload. The payload in Aurora was encrypted using the JavaScript libraries and decrypted

at run time. The Atomizer detected the heap spray without any false positives.

Polymorphic NOP Sled Detection

To test the e�ectiveness of Atomizer against polymorphic NOP sled detection, in the second

set of experiments, we created a small application in C that sprayed various polymorphic

NOP sleds along with a dummy shell code in the heap. Most of the NOP sled obfuscation

tools like ADMutate [1] are designed to evade Intrusion Detection Systems(IDS) by encrypt-

ing the packets which contain the heap spray code until it is executed. As we are monitoring

the heap, the NOP sled cannot be encrypted in the heap making it the best place for detect-

ing it. Polymorphic NOP sleds use NOPs and NOP replacements to simulate the behavior of

random data in the heap. This implementation uses a hash table of up to 118 known NOP

replacements (which includes both one and two bytes NOP replacements) to detect the NOP

sleds. This hash table represents the most commonly used NOP replacements used by roots

33

kits like ADMutate [1], which contains the biggest public list of NOP replacements [42].

NOP sleds that might include unknown NOP replacements may not be detected by this im-

plementation but newly discovered NOP replacements may potentially be added seamlessly

to our hash table. This implementation successfully detected the polymorphic NOP sleds

without any false positives.

Heap Feng Sui

The Atomizer was tested against a state of the art exploit, Heap Feng Shui [68]. Heap Feng

Shui is a deterministic heap spray that reduces the amount of heap spraying required for

the exploit. Heap Feng Shui uses the HeapLib (a JavaScript heap manipulation library) to

defragment the heap so that it can align the heap nodes and consequently requires a smaller

size of heap spray to execute the exploit. The Atomizer was able to detect this exploit which

shows its e�ectiveness against state of the art exploits.

3.4.3 Experimental Performance Analysis

An experimental performance analysis of the Atomizer with respect to CPU resource utiliza-

tion was done to determine the e�ect of heap spray detection on the cloud environment. The

main purpose of these experiments was to determine the CPU resources used by Atomizer.

For performance evaluation purposes in these experiments, the Atomizer was allowed to con-

tinue scanning the heap even after the heap spray block was found. For better performance

the detector should be stopped when the �rst sign of malicious activity is raised.

In these experiments, the Atomizer was run on VMs with a simple workload (like a web

browser running a YouTube video). This workload also represents the application being

monitored by Atomizer during the experiment. The CPU usage was monitored while the

systems ran. This was done to set a baseline that shows CPU usage in the normal usage of

the VMs. Figure3.2(a) shows the CPU baseline for the VMs.

34

The Atomizer was run as a multi-process application to monitor all the virtual machines

running on the server. The current multi-process implementation of Atomizer works around

a lack of thread safety in the libVMI library, an issue that we are currently working to

address. The Figure 3.2(b) shows the e�ect of Atomizer on the CPU. The Figure 3.2 shows

the cumulative CPU usage of all the Virtual CPU's (VCPU) on the server (in this case there

were eight VCPUs). This shows the overall e�ect of all the applications, including Atomizer

and VMs on the CPU usage. Xentop [31] (the tool used in this experiment to measure the

CPU usage) adds up the percentage of all the VCPUs available to the system. The rise in

the CPU usage is due to the processing needed by the light load running on the VMs plus the

e�ect of Atomizer. The multi-process nature of the Atomizer also exerts more load on CPU.

This limitation can be removed by implementing a multi-threaded version of Atomizer, a

project that we have currently underway. The average CPU load increased incrementally,

that shows that Atomizer has acceptable performance and is scalable.

3.4.4 Conclusion

Atomizer presented a novel and scalable method to analyze the heap memory of the processes

running inside a set of VMs, via VM introspection. Atomizer can be easily extended by

implementing new detection methods for any type of heap-based attacks. Experimental

results show that Atomizer successfully detects various heap spray attacks and randomly

generated polymorphic NOP sled samples with no false positives. Further work is required

to improve the performance via a multi-threaded implementation of Atomizer.

35

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 10 20 30 40 50 60

cp
u-

us
ag

e
[%

]

Time (sec)

One VM
Two VMs

Three VMs
Four VMs
Five VMs

(a) 1�5 Idle VMs running

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

cp
u-

us
ag

e
[%

]

Time (sec)

One VM
Two VMs

Three VMs
Four VMs
Five VMs

(b) 1�5 VMs with light load & Atomizer

Figure 3.2: CPU Performance (CPU usage in Dom0)

36

Chapter 4

Conclusion

In this thesis we have discussed various tools developed by us that can enhance our ability to

detect and analyze various heap-based malware and kernel level exploits. Our tools provide

robust ways of detecting the malwares in Cloud based environment. This ability to detect

malware at a cloud level is unique to our tools and distinguishes them from all other tools out

there. The reason behind this assumption is that they are specially designed to work in an

environment where multitudes of VMs are running at the same time. The similarity between

the VMs created by the notion that it is simple to deploy similar VM at the same time give

us a unique opportunity to observe the changes that can be created by malware entity in that

environment. We use this opportunity to investigate these changes using our tools. These

changes can be sometimes quite striking like a nop-sled in the heap or can be subtle like a

small change in the heap like Heap Fang Shui [68]. These changes can be di�cult to �nd

because they are cleverly crafted to be hidden from the naked eye by hiding them behind

the regular working of the Operating System or the Application they are targeting. Our

tool Atomizer [45]is designed speci�cally to look through the regular working environment

of the heap of process or kernel memory space (that also includes kernel heap) to look for

signs of these malware using introspection. The regular working working environment of

any system can be really chaotic and our tools are designed to look for certain aspect of

37

the malwares that are only speci�c to them. The large scale deployment of our tools is

also a unique feature. As they are designed to monitor a Cloud environment they can be

used to observe large number of VMs at the same time without putting unnecessary load

on the Cloud Servers and with out making huge changes to the code. This provides a great

feature for our tools to be deployed quite easily in an environment like Clouds, which was

designed to use the physical power of the machines to the maximum by deploying large

number of VMs at the same time. This also provided us with certain challenges that are not

available in the non-virtualized environment. We had to look at the memory of the VMs as

a whole and use various signatures to �gure out where di�erent applications were located

(running in the memory) and then look for the heap and other memory area and structures

in those applications. Inside the VMs this thing can bee done using system libraries directly

which is considered as their weakness because the malware can detect the presence of these

monitoring tools and possibly disable them, which is not possible in our scenario. This also

give us more control over the analysis, that was not available inside the VMs.

Atomizer provides us with the capability to look through the heap of any type of process

running inside the virtual machines. This is like a library which can be used to create tools,

which are trying to detect malicious activity inside the heap. The dynamic nature of the heap

is quite challenging for any tools to detect and analyze the heap directly. Most tools rely on

indirect methods for the detection of heap-based malware. This can reduce the reliability

of these tools to certain extant and makes it possible for malwares to detect the presence

of a detection mechanism. Atomizer not only analyzes the whole heap but also checks for

malicious activity in the heap pages that have been swapped out of the main memory. These

features are unique to our tool and keep the false positive to the minimum.

This work provides us with various important tools. During this research, we discovered

newer arenas that we could not cover in this work and are left as future work. The most

important thing that we observed was that, there were various applications that were using

custom heap managing libraries on top of OS provided heap mangers. These custom heap

38

managing libraries are being used to either provide more control over heap management

(for performance purposes) or to provide extra security on the heap. One study on Adobe

PDF Reader custom heap manager [52] suggests that custom heap management in these

application can open new doors for malware developers to take advantage of weakness in

them. More study is required to detect malicious activities in custom heap managers and

heaps created by them.

39

Bibliography

[1] Admutate. http://www.pestpatrol.com/zks/pestinfo/a/admmutate.asp.

[2] Advanced heap spraying technique. http://www.blackhat.com/presentations/

bh-europe-07/Sotirov/Presentation/bh-eu-07-sotirov-apr19.pdf.

[3] Amd. http://www.amd.com/.

[4] C� explorer. http://www.ntcore.com/exsuite.php.

[5] Data execution prevention. http://technet.microsoft.com/en-us/library/

cc738483.aspx.

[6] Digital signatures for kernel modules. http://msdn.microsoft.com/en-us/library/
bb530195.aspx.

[7] Hacking with linux kernel module. http://newdata.box.sk/raven/lkm.html.

[8] Heap spray exploit tutorial: Internet explorer use after free au-
rora vulnerability. http://grey-corner.blogspot.com/2010/01/

heap-spray-exploit-tutorial-internet.html.

[9] Heap spray generator. http://skypher.com/SkyLined/heap_spray/small_heap_

spray_generator.html.

[10] Heavyload. http://www.jam-software.com/heavyload/.

[11] Hooking the kernel directly. http://www.codeproject.com/Articles/13677/

\Hooking-the-kernel-directly.

[12] Idtguard. http://www.msuiche.net/2006/12/10/idtguard-v01-december-2005-build/.

[13] Inline hooking in windows. www.exploit-db.com/download_pdf/17802/.

[14] Intel. http://www.intel.com/.

[15] Kvm. http://www.linux-kvm.org/page/Main_Page/.

[16] Libguestfs. http://libguestfs.org/.

[17] Libvmi. http://code.google.com/p/vmitools/.

40

http://www.pestpatrol.com/zks/pestinfo/a/admmutate.asp
http://www.blackhat.com/presentations/bh-europe-07/Sotirov/Presentation/bh-eu-07-sotirov-apr19.pdf
http://www.blackhat.com/presentations/bh-europe-07/Sotirov/Presentation/bh-eu-07-sotirov-apr19.pdf
http://www.amd.com/
http://www.ntcore.com/exsuite.php
http://technet.microsoft.com/en-us/library/cc738483.aspx
http://technet.microsoft.com/en-us/library/cc738483.aspx
http://msdn.microsoft.com/en-us/library/bb530195.aspx
http://msdn.microsoft.com/en-us/library/bb530195.aspx
http://newdata.box.sk/raven/lkm.html
http://grey-corner.blogspot.com/2010/01/ heap-spray-exploit-tutorial-internet.html
http://grey-corner.blogspot.com/2010/01/ heap-spray-exploit-tutorial-internet.html
http://skypher.com/SkyLined/heap_spray/ small_heap_spray_generator.html
http://skypher.com/SkyLined/heap_spray/ small_heap_spray_generator.html
http://www.jam-software.com/heavyload/
http://www.codeproject.com/Articles/13677/\Hooking-the-kernel-directly
http://www.codeproject.com/Articles/13677/\Hooking-the-kernel-directly
http://www.msuiche.net/2006/12/10/idtguard-v01-december-2005-build/
www.exploit-db.com/download_pdf/17802/
http://www.intel.com/
http://www.linux-kvm.org/page/Main_Page/
http://libguestfs.org/
http://code.google.com/p/vmitools/

[18] Microsoft. http://www.microsoft.com/.

[19] Microsoft hyper-v. http://www.microsoft.com/en-us/server-cloud/

hyper-v-server/default.aspx.

[20] Ollydbg. http://www.ollydbg.de/.

[21] Opdis. http://mkfs.github.com/content/opdis/.

[22] Openssl. http://www.openssl.org/.

[23] Osr driver loader. http://www.osronline.com/article.cfm?article=157.

[24] Parallels. http://www.parallels.com/.

[25] Peering inside the pe: A tour of the win32 portable executable �le format. http:

//msdn.microsoft.com/en-us/library/ms809762.aspx.

[26] Qemu. http://wiki.qemu.org/Main_Page.

[27] Sql slammer. http://www.sans.org/security-resources/malwarefaq/

ms-sql-exploit.php.

[28] Virtual pc. http://support.microsoft.com/kb/958559.

[29] Vmware. http://www.vmware.com.

[30] Volatility. http://code.google.com/p/volatility/.

[31] Xen. http://www.xen.org/.

[32] Irfan Ahmed, Aleksandar Zoranic, Salman Javaid, and Golden G. Richard III. Mod-
checker: Kernel module integrity checking in the cloud environment. In ACM symposium
on Applied computing, 4th International Workshop on Security in Cloud Computing
(CloudSec '12), September 2012.

[33] Irfan Ahmed, Aleksandar Zoranic, Salman Javaid, Golden G. Richard III, and Vassil
Roussev. Idtchecker: Rule-based integrity checking of interrupt descriptor tables in
cloud environments. In Proceedings of the 9th IFIP WG 11.9, International Conference
on Digital Forensics, Orlando, Florida, January 2013.

[34] Periklis Akritidis, Evangelos P. Markatos, Michalis Polychronakis, and Kostas G. Anag-
nostakis. Stride: Polymorphic sled detection through instruction sequence analysis.
In 20th IFIP International Information Security Conference (IFIP/SEC), Makuhari-
Messe, Chiba, Japan, May 2005.

[35] Dion Blazakis. Interpreter exploitation: Pointer inference and JIT spraying. In BLACK
HAT DC, Arlington, VA, US, January 2010.

[36] R. Buyyaand, J. Broberg, and A. Goscinski. CLOUD COMPUTING: Principles and
Paradigms. John Wiley and Sons, Inc., Hoboken, New Jersey, 2011.

41

http://www.microsoft.com/
http://www.microsoft.com/en-us/server-cloud/hyper-v-server/default.aspx
http://www.microsoft.com/en-us/server-cloud/hyper-v-server/default.aspx
http://www.ollydbg.de/
http://mkfs.github.com/content/opdis/
http://www.openssl.org/
http://www.osronline.com/article.cfm?article=157
http://www.parallels.com/
http://msdn.microsoft.com/en-us/library/ms809762.aspx
http://msdn.microsoft.com/en-us/library/ms809762.aspx
http://wiki.qemu.org/Main_Page
http://www.sans.org/security-resources/malwarefaq/ms-sql-exploit.php
http://www.sans.org/security-resources/malwarefaq/ms-sql-exploit.php
http://support.microsoft.com/kb/958559
http://www.vmware.com
http://code.google.com/p/volatility/
http://www.xen.org/

[37] Marco Cova, Christopher Kruegel, and Giovanni Vigna. Detection and analysis of drive-
by-download attacks and malicious javascript code. In International World Wide Web
Conference, Raleigh, North Carolina, US, April 2010.

[38] Charles Curtsinger, Benjamin Livshits, Benjamin Zorn, and Christian Seifert. ZOZ-
ZLE: Low-overhead mostly static javascript malware detection. In USENIX Security
Symposium, San Francisco, California, US, August 2011.

[39] Mark Daniel, Jake Honoro�, and Charlie Miller. Engineering heap over�ow exploitswith
javascript. In WOOT: Proceedings of the 2nd conference on USENIX Workshop on
o�ensive technologies, San Diego, California, US, 2008.

[40] Francesco Gadaleta, Yves Younan, and Wouter Joosen. Bubble: a javascript engine
level countermeasure against heap-spraying attacks. In Proceedings of the Second in-
ternational conference on Engineering Secure Software and Systems, ESSoS'10, pages
1�17, Berlin, Heidelberg, 2010. Springer-Verlag.

[41] T. Gar�nkel and M. Rosenblum. A virtual machine introspection based architecture
for intrusion detection. In Symposium on Network and Distributed System Security
(NDSS), Feb 2003.

[42] Yuri Gushin. http://www.ecl-labs.org/papers/ecl-poly.txt.

[43] Fraser Howard. Malware with your mocha? obfuscation and anti-emulation
tricks in malicious javascript, September 2010. http://www.sophos.com/security/

technical-papers/malware_with_your_mocha.pdf.

[44] G. Hoglund J. Butler. Rootkits: Subverting the Windows Kernel. Addison-Wesley,
Boston, 2005.

[45] Salman Javaid, Irfan Ahmed, Aleksandar Zoranic, and Golden G. Richard III. Atomizer:
A fast, scalable and lightweight heap analyzer for virtual machines in a cloud environ-
ment. In Proceedings of the 6th Layered Assurance Workshop (LAW'12), in conjunction
with the 28th Annual Computer Security Applications Conference (ACSAC'12), Or-
lando, Florida, December 2012.

[46] Kad. Handling interrupt descriptor table for fun and pro�t. http://www.phrack.org/
issues.html?issue=59&id=4&mode=txt.

[47] Kimmo Kasslin. Kernel malware: The attack from within. In 9th Annual Association of
anti-Virus Asia Researchers Conference (AVAR), Auckland, New Zealand, December
2006.

[48] E. Kirda, S. Jha, and D. Balzarotti. Toward revealing kernel malware behavior in virtual
execution environments. Lecture Notes in Computer Science, 5758:304�325, 2009.

[49] Clemens Kolbitsch, Benjamin Livshits, Benjamin Zorn, and Christian Seifert. ROZ-
ZLE: De-cloaking internet malware. In IEEE Symposium on Security and Privacy, San
Francisco, California, US, May 2012.

42

http://www.sophos.com/security/technical-papers/malware_with_your_mocha.pdf
http://www.sophos.com/security/technical-papers/malware_with_your_mocha.pdf
http://www.phrack.org/issues.html?issue=59&id=4&mode=txt
http://www.phrack.org/issues.html?issue=59&id=4&mode=txt

[50] Greg Kroah-Hartman. Signed kernel modules. Linux Journal, 117:48�53, 2004.

[51] Aaron LeMaster. Heap spray detection with heap inspector. In Blackhat USA, Las
Vegas, Nevada, US, 2011.

[52] Haifei Li and Guillaume Lovet. Adobe reader's custom memory man-
agement: a heap of trouble. http://www.fortiguard.com/paper/

Adobe-Reader-s-Custom-Memory-Management-a-Heap-of-Trouble.

[53] Peter A. Loscocco, Perry W. Wilson, J. Aaron Pendergrass, and C. Durward McDonell.
Linux kernel integrity measurement using contextual inspection. In ACM workshop on
Scalable trusted computing, STC '07, pages 21�29, New York, NY, USA, 2007.

[54] Kristis Makris and Kyung Dong Ryu. Dynamic and adaptive updates of non-quiescent
subsystems in commodity operating system kernels. In EuroSys, pages 327�340, Lisbon,
Portugal, March 2007.

[55] P. Mell and T. Grance. The NIST de�nition of cloud computing. Technical report,
National Institute of Standards and Technology, Information Technology Laboratory,
2007.

[56] mxatone and ivanlef0u. Stealth hooking : Another way to subvert the windows kernel.
http://www.phrack.org/issues.html?issue=65&id=4.

[57] Walter Oney. Programming the Microsoft Windows Driver. Microsoft Press, New York,
second edition edition, 2002.

[58] B.D. Payne, M.D.P. de Carbone, and Wenke Lee. Secure and �exible monitoring of
virtual machines. In Computer Security Applications Conference, 2007. ACSAC 2007.
Twenty-Third Annual, pages 385�397, 2007.

[59] Alin Rad Pop. Dep/aslr implementation progress in popular third-party windows ap-
plications anti-emulation tricks in malicious javascript, June 2010. http://secunia.

com/gfx/pdf/DEP_ASLR_2010_paper.pdf.

[60] Paruj Ratanaworabhan, Benjamin Livshits, and Benjamin Zorn. NOZZLE: A defense
against heap-spraying code injection attacks. In USENIX Security Symposium, San
Francisco, California, US, August 2009.

[61] Ryan Roemer, Erik Buchanan, Hovav Shacham, and Stefan Savage. Return-oriented
programming: Systems, languages, and applications. ACM Trans. Inf. Syst. Secur.,
15(1):2:1�2:34, March 2012.

[62] Mark E. Russinovich, David A. Solomon, and Alex Ionescu. Microsoft Windows inter-
nals. Microsoft Press, �fth edition, 2009.

[63] Joanna Rutkowska. System virginity veri�er de�ning the roadmap for malware detection
on windows system. In Hack in the Box, 2005.

43

http://www.fortiguard.com/paper/Adobe-Reader-s-Custom-Memory-Management-a-Heap-of-Trouble
http://www.fortiguard.com/paper/Adobe-Reader-s-Custom-Memory-Management-a-Heap-of-Trouble
http://www.phrack.org/issues.html?issue=65&id=4
http://secunia.com/gfx/pdf/DEP_ASLR_2010_paper.pdf
http://secunia.com/gfx/pdf/DEP_ASLR_2010_paper.pdf

[64] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn, and P. Khosla. Pioneer: verifying
code integrity and enforcing untampered code execution on legacy systems. In Twentieth
ACM Symposium on Operating Systems Principles, pages 1�16, 2005.

[65] Hovav Shacham, Matthew Page, Ben Pfa�, Nagendra Modadugu, and Dan Boneh. On
the e�ectiveness of address-space randomization. In ACM Conference on Computer and
Communications Security, Washington, DC, US, October 2004.

[66] A. Silberschatz, P. B. Galvin, and G. Gagne. Operating System Concepts, 8th Edition.
John Wiley and Sons, Inc., Hoboken, New Jersey, 2009.

[67] Skywing Skape. Bypassing patchguard on windows x64. http://uninformed.org/?v=
3&a=3&t=sumry.

[68] Alexander Sotirov. Heap fang shui in javascript. In BLACK HAT Europe, Amsterdam
, Netherlands, March 2007.

44

http://uninformed.org/?v=3&a=3&t=sumry
http://uninformed.org/?v=3&a=3&t=sumry

Vita

Salman Javaid was born in Rawalpindi, Pakistan and received his B.S in Mathematics with
a minor in Physics from Punjab University Lahore and then proceed to receive his Post-
graduate diploma in Information technology from Govt. Asgharmall College Rawalpindi.
He then received his M.S in Information Technology from National University of Science and
Technology(NUST), one of the top University in Pakistan. His research interests are in the
area of digital live forensics, particularly malware analysis using introspection, and security
and privacy in cloud environment, and network pen-testing.

45

	Analysis and Detection of Heap-based Malwares Using Introspection in a Virtualized Environment
	Recommended Citation

	Funding
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	Abstract
	1 Introduction
	1.1 Heap Spraying
	1.1.1 Heap Spray Techniques
	1.1.2 Just In Time (JIT) Spraying
	1.1.3 Heap Feng Shui

	1.2 Operating System based Security
	1.2.1 Data Execution Prevention (DEP)
	1.2.2 Address Space Layout Randomization (ASLR)
	1.2.3 Status of DEP and ASLR in Third Party Applications

	1.3 Virtual Machine Architecture
	1.3.1 Virtual Machine Monitor
	1.3.2 VMM Implementation
	1.3.3 Virtual Machine Introspection
	1.3.4 LibVMI

	1.4 Contributions
	1.5 Organization
	1.6 Bibliographic Attributions

	2 Related Work
	2.1 Miscellaneous Work
	2.1.1 Heap Inspector
	2.1.2 JSAND
	2.1.3 BuBBles

	2.2 Nozzle
	2.3 Zozzle
	2.4 Rozzle

	3 Heap-base Malware Detection
	3.1 Introduction to Atomizer
	3.2 Atomizer Architecture
	3.3 Atomizer Implementation
	3.3.1 Process Information Extraction
	3.3.2 Heap Extractor
	3.3.3 Swapped Heap Page Extractor
	3.3.4 Heap Analysis Module

	3.4 Atomizer Evaluation
	3.4.1 Experimental Settings
	3.4.2 Malware Detection
	3.4.3 Experimental Performance Analysis
	3.4.4 Conclusion

	4 Conclusion
	Bibliography
	Vita

