
University of New Orleans University of New Orleans

ScholarWorks@UNO ScholarWorks@UNO

University of New Orleans Theses and
Dissertations Dissertations and Theses

Summer 8-13-2014

Feature selection and clustering for malicious and benign Feature selection and clustering for malicious and benign

software characterization software characterization

Dalbir Kaur R. Chhabra
University of New Orleans, dchhabra@uno.edu

Follow this and additional works at: https://scholarworks.uno.edu/td

 Part of the Information Security Commons

Recommended Citation Recommended Citation
Chhabra, Dalbir Kaur R., "Feature selection and clustering for malicious and benign software
characterization" (2014). University of New Orleans Theses and Dissertations. 1864.
https://scholarworks.uno.edu/td/1864

This Thesis is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with
permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright
and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-
holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the
work itself.

This Thesis has been accepted for inclusion in University of New Orleans Theses and Dissertations by an
authorized administrator of ScholarWorks@UNO. For more information, please contact scholarworks@uno.edu.

https://scholarworks.uno.edu/
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/etds
https://scholarworks.uno.edu/td?utm_source=scholarworks.uno.edu%2Ftd%2F1864&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=scholarworks.uno.edu%2Ftd%2F1864&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uno.edu/td/1864?utm_source=scholarworks.uno.edu%2Ftd%2F1864&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uno.edu

Feature selection and clustering for malicious and benign software characterization

A Thesis

Submitted to the Graduate Faculty of the
University of New Orleans
in partial fulfillment of the

requirements for the degree of

Master of Science
in

Computer Science
Information Assurance

by

Dalbir Kaur Chhabra

B.E. Gujarat University, 2010

August 2014

	 	ii

ACKNOWLEDGEMENT

I am very thankful to Dr. Mahdi Abdelguerfi and Dr. Shengru Tu for offering me wonderful

opportunity of pursuing Master’s degree at University of New Orleans. I would like to express

my deepest appreciation to my advisor, Dr. Irfan Ahmed, who provided me with a learning

opportunity in his laboratory and helped me to grow as a student. I would also like to express my

sincere gratitude to my thesis committee members, Dr. Golden Richard III and Dr. Adlai Depano

for providing me guidance and criticism that helped me in completion of my thesis successfully.

I would like to extend my sincere appreciation to my family for their guidance, encouragement,

and support. I would like to thank my colleagues and friends for their contributions during my

course of study. John Finigan, helped me to setup system and provided me with huge dataset of

malware and Aisha Ibrahim Ali-Gombe guided me through unsupervised learning algorithm and

Matlab. I take this opportunity to thank the faculty and administrative members of the

department of Computer Science for their availability, whenever needed, without making any

appointments.

	 	iii

TABLE OF CONTENTS

LIST OF TABLES .. iii
LIST OF FIGURES .. iv
ABBREVIATIONS .. vi
ABSTRACT ... vii
CHAPTER 1 PROJECT OVERVIEW
 1.1 Introduction ..1
 1.2 Statement of problem ... 1
 1.3 Project Objective .. 2
 1.4 Project Scope ... 2
 1.5 Limitation ... 3
 1.6 Thesis Structure ... 3
CHAPTER 2 BACKGROUND
 2.1 Malware and its types .. 6
 2.2 Introduction to Malware Analysis .. 8
 2.3 Malware Analysis Techniques ... 8
 2.4 Introduction to Portable Executable Format .. 10
CHAPTER 3 RELATED WORK
 3.1 Malware Detection ... 15
 3.2 Data Mining ... 16
 3.3 Discussions and Summary ... 16
CHAPTER 4 PROPOSED METHODOLOGY
 4.1 Proposed Approach .. 18
 4.2 Introduction to Data Mining .. 19
 4.3 Data Collection .. 21
 4.4 Data Pre-processing ... 23
 4.4.1 Feature Extraction ... 24
 4.5 Feature Selection ... 26
 4.6 Clustering Algorithm ... 28
 4.6.1 Hierarchical Learning Algorithm .. 28
 4.6.2 K-mean Learning Algorithm ... 30
 4.6.3 Self Organizing Mapping Algorithm .. 31
CHAPTER 5 EXPERIMENT AND OUTCOME OF PROJECT
 5.1 Experimental Tools and Environment ... 37
 5.1.1 Microsoft Visual Studio .. 37
 5.1.2 Matlab ... 37
 5.1.3 VMware Workstation .. 38
 5.2 Experimental Results ... 38
 5.3 Discussion ... 69
CHAPTER 6 CONCLUSION AND FUTURE STUDY
 6.1 Conclusion ... 72
 6.2 Future Study ... 72
 6.3 Summary .. 73
REFERENCES .. 74
VITA .. 76

	 	iv

LIST OF TABLES

Table 2.1 PE Header Fields .. 12

Table 2.2 PE Section .. 14

Table 4.1 Data Collection .. 22

Table 4.2 PE Features Extraction ... 24

Table 4.3 PE Features Selection .. 27

Table 4.4 PE Features .. 27

Table 5.1 Experiment 1 Clusters .. 40

Table 5.2 Experiment 2 Clusters .. 43

Table 5.3 Experiment 3 Clusters .. 46

Table 5.4 Experiment 4 Clusters .. 50

Table 5.5 Experiment 5 Clusters .. 53

Table 5.6 Experiment 6 Clusters .. 55

Table 5.7 Experiment 7 Clusters .. 60

Table 5.8 Experiment 8 Clusters .. 63

Table 5.9 Experiment 9 Clusters .. 65

Table 5.10 Results Summary ... 68

Table 5.11 Results Analysis ... 68

	 	v

LIST OF FIGURES
Figure 2.1 PE File Format .. 11

Figure 4.1 Proposed Methodology ... 18

Figure 4.2 PE Headers Extraction .. 24

Figure 4.3 Hierarchical Matlab Code ... 29

Figure 4.4 K-mean Matlab Code ... 31

Figure 4.5 Neural Network Architecture ... 32

Figure 4.6 Neural Network Training ... 32

Figure 4.7 SOM Topology ... 33

Figure 4.8 SOM Neighbor Connections .. 33

Figure 4.9 SOM Neighbor Weight Distances .. 34

Figure 4.10 SOM Weight Planes ... 34

Figure 4.11 SOM Weight Positions ... 35

Figure 4.12 SOM Sample Hits ... 35

Figure 4.13 SOM Matlab Code .. 36

Figure 5.1 Experiment 1 Binary Tree .. 39

Figure 5.2 Experiment 1 Plot ... 40

Figure 5.3 Experiment 1 Graph ... 41

Figure 5.4 Experiment 2 Plot ... 43

Figure 5.5 Experiment 2 Graph ... 44

Figure 5.6 Experiment 3 SOM Hits ... 45

Figure 5.7 Experiment 3 Graph ... 48

Figure 5.8 Experiment 4 Binary Tree .. 49

Figure 5.9 Experiment 4 Plot ... 50

	 	vi

Figure 5.10 Experiment 4 Graph ... 51

Figure 5.11 Experiment 5 Plot ... 52

Figure 5.12 Experiment 5 Graph ... 53

Figure 5.13 Experiment 6 SOM Hits ... 55

Figure 5.14 Experiment 6 Graph ... 57

Figure 5.15 Experiment 7 Binary Tree .. 59

Figure 5.16 Experiment 7 Plot ... 59

Figure 5.17 Experiment 7 Graph ... 61

Figure 5.18 Experiment 8 Plot ... 62

Figure 5.19 Experiment 8 Graph ... 63

Figure 5.20 Experiment 9 SOM Hits ... 65

Figure 5.21 Experiment 9 Graph ... 67

Figure 5.22 Result Summary Graph .. 69

Figure 5.23 Result Analysis Graph ... 69

	 	vii

ABBREVIATIONS

AV Antivirus

PE Portable Executable

SOM Self Organizing Map

COFF Common Object File Format

.EXE	 Executable Files

DLL Dynamic Link Library

.OBJ	 Object Code

KDD Knowledge Discovery in Database

SVM	 Support Vector Machines

ANN Artificial Neural Network

VS	 Visual Studio

IDE Integrated Development Environment

VC++ Visual C++

VM	 Virtual Machines

NFD Number of Files in dataset

HFC Hierarchical Falsely Clustered

KFC K-mean Falsely Clustered

SFC SOM Falsely Clustered

	 	viii

ABSTRACT

Malware or malicious code is design to gather sensitive information without knowledge or

permission of the users or damage files in the computer system. As the use of computer systems

and Internet is increasing, the threat of malware is also growing. Moreover, the increase in data

is raising difficulties to identify if the executables are malicious or benign. Hence, we have

devised a method that collects features from portable executable file format using static malware

analysis technique. We have also optimized the important or useful features by either

normalizing or giving weightage to the feature. Furthermore, we have compared accuracy of

various unsupervised learning algorithms for clustering huge dataset of samples. So once the

clusters are created we can use antivirus (AV) to identify one or two file and if they are detected

by AV then all the files in cluster are malicious even if the files contain novel or unknown

malware; otherwise all are benign.

	

Keywords:

Static malware analysis, Portable Executable, unsupervised learning algorithm, malicious or

benign samples, feature selection, clustering, software characterization

	 	1

CHAPTER 1: PROJECT OVERVIEW

1.1 Introduction

As the use of computer systems and Internet is increasing, the need for network security is also

growing. The lack of sophisticated protection on network has attracted skilled and motivated

cyber criminals to introduce wide range of security attacks. This security attacks are the

‘malicious’ codes or software that are designed for performing illegal or unethical task, which

are commonly known as malware.

Malware or malicious codes are designed to gather sensitive information without knowledge or

permission of the users, gain unauthorized access to the system resources, or damage files in the

computer system. Malware does not damage the computer system or any network equipment

physically but it can harm the data or available resources by using all the available RAM, CPU

usage, network bandwidth or storage spaces. Malware should not be confused with the defective

software that is intended for legitimate work but has some errors. A majority of malware attacks

computer system or network through the Internet.

Earlier the anti-malware vendors and researchers used to detect malware on its signature but the

enormous increase in the malware has made their detection very difficult. Thus, it has now

become important to develop new technique(s) using malware analysis.

1.2 Statement of problem

Identifying malware from executables has become a huge problem. As the data are increasing,

number of executables is also growing at a high pace. Thus, by clustering the executables and

	 	2

then by just analyzing one executable, will help in generalizing if the executables in cluster are

benign or malicious. This method will increase the detection rate of malware.

1.3 Project Objective

The enormous increase in the malware has made it difficult for the researcher and anti-malware

vendors to detect the malicious executables. Moreover, there is an increase in the data and it is

difficult to distinguish between malicious and benign executables without running them. Our

objective was to understand the PE file format and extract the important and useful features that

will help in clustering them in benign and malicious groups.

The goal of our research was to explore a number of standard data mining techniques or

algorithms in order to cluster the executables using static anomaly detection with highest

accuracy.

1.4 Project Scope

The proposed method will help to identify the malicious executables from the collected

executables with highest accuracy. When there are large numbers of executables and identifying

malware is complex, then proposed method can be used to create clusters of benign and

malicious executables.

Analyzing the executables without running them saves lot of time and work. The static analysis

approach is less dirty and painful compared to dynamic analysis. The data mining techniques

	 	3

makes the method more effective, efficient and quick. Various clustering algorithms are

compared and one with the highest accuracy is used.

1.5 Limitation

This research aimed to enhance the malware detection by using data mining classification

techniques. The proposed method has following limitations:

The method is limited to the analysis of executables that can run on the various version of

Microsoft Windows Operating System; Win-32 and Win-64 bit Portable Executable (PE)

files. All datasets (benign and malware) used were in Win-32 or Win-64 PE format.

The research was limited to static malware detection technique.

The research was based on unsupervised learning algorithm to identify malware.

1.6 Thesis Structure

The thesis is organized as mentioned below.

Background:

In chapter 2, a broad background is given regarding the project. It introduces malware and its

types in brief and followed by that is Malware analysis and its techniques. This explains the

types of malware that we were using in our dataset and an important technique of our thesis

project called the static malware analysis techniques. In section 2.4 the Portable Executable file

format is introduced from which we will be collecting the features, which will be important for

clustering.

	 	4

Related Work:

In chapter 3, we have presented the related work for our thesis project. This section helps in

understanding what and how much is done related to techniques involved in this project. In

section 3.1, we have discussed few papers on malware detection and in section 3.2 we are

discussing work done using data mining techniques. Lastly in section 3.3 we discuss our project

and the work, which is already done in this field. We then summarized how our work is different

from other work and how it will be useful.

Proposed Methodology:

Chapter 4 proposes the method of our thesis work. It then explains each step of our method like

data collection, data preprocessing, feature extraction, and feature selection. At last in section

4.5, all the clustering algorithm such as Hierarchical, K-mean and Self Organizing Map (SOM),

which we implemented in our research work is explained.

Experiment and outcome of project:

Experimental tools and environment and the experiment results with regards to unsupervised

leaning algorithm are discussed in chapter 5. All 9 important experiments, their results and

detailed analysis are covered in this chapter. Then in section 5.3, discussion on the experiment

and results is done.

	 	5

Conclusion and Future study:

Chapter 6 gives the conclusion on thesis project. Furthermore, the future studies are also

discussed in this chapter. At last, thesis study is summarized in section 6.3 of the chapter.

	 	6

CHAPTER 2: BACKGROUND

2.1 Malware and its types

Malware are the malicious codes that are written to perform unethical tasks for example

accessing system without authorization from administrator, collecting sensitive information,

damaging data or system resources. Malware can be categorized into, among others, Virus,

Worm, Spyware, Trojan, Backdoor, Rootkit. The most common types of malware are Virus,

Worm and Trojan.

Types of malware [1]:

Virus:

It is a form of malware that copy itself and spread to other computers. It spread to other

computer by attaching themselves to the various programs or executing code when user executes

the infected program. Virus replicates itself and leaves its infections as it travels from one system

to another. Generally, virus is not released unless user executes the infected program but once it

is released it starts replicating itself.

Worm:

Worms are standalone programs that exploit operating system vulnerabilities to spread over

computer networks. Worms do not travel by linking itself to an existing program like Virus does.

Worms can also contain payloads, a piece of code designed to perform illegal or unethical task

that damage host computer or network.

	 	7

Spyware:

Spyware, as the name suggest is the malware type that spies on the user activity. The spying

includes gathering information, among others like the websites visited, browser history, system

or account information, financial data, and banking details. These gathered information is then

transmitted to malware owners. Spyware does not infect host system but once it enters the

system; it installs itself and collects information in background so that it remains undetected.

Trojan:

A Trojan horse or commonly known as Trojan is a type of malware, which is non-self

replicating. It misrepresent itself as a normal executable and trick user to download and install

the malware. A Trojan can give remote access of infected system to hackers or attackers, which

allow them to steal data, install more malware or modify files.

Backdoor:

Backdoor malware allows the unauthorized access of the computer to the hackers while

remaining undetected. The threat of this kind of malware was initiated when multi-user and

network operating system were started using widely. Backdoors can be created by rewriting

compiler and not changing the code before or after the compilation. The complier can be written

in such a way that a piece of code, compiles the code normally but also triggers backdoor.

Rootkit:

Rootkit malware type is same as Trojan or backdoor in a way that it tries to gain access of the

computer system without permission or knowledge of the user and tries to remain undetected.

	 	8

The rootkit is different from Trojan as it is installed by the hacker after gaining the access or

automatically. Unlike other malware rootkit gains full access of the system, it can modify or

install any software. It is a standalone program that tries to hide processes, registry data, network

connections or files. It is nearly impossible or difficult to detect and remove a rootkit malware

from the infected computer.

2.2 Introduction to Malware Analysis

The intention of creating malicious codes has been changing from more widespread to more

sophisticated by targeting sensitive information such as passwords, credit card information and

bank details that has made malware analysis very crucial.

Since the malware causes significant loss of critical data and sometimes damage the network, the

malware detection has become one of the most critical issues in the field of computer security.

Thus, in order to detect malware efficiently, malware analysis plays an important role.

2.3 Malware Analysis Techniques

Malware analysis can be broadly classified into static and dynamic technique [2].

Dynamic Malware Analysis Technique:

Dynamic malware analysis technique is also commonly known as behavioral analysis as it

examines the behavior of malware by executing the binary code in the controlled environment.

Behavioral analysis is quicker but tricky way of malware analysis as while doing analysis if

	 	9

malware is not provided the suitable environment then there are more chances that analyst will

miss the characteristics of malware.

Behavior or dynamic analysis can be further divided into two categories as basic and advanced.

Basic malware analysis provides suitable environment to malware, monitor their execution and

gather all the information related to their runtime behavior. These information can be related to

API or system calls, files added, removed and/or modified, new services installed, changes in

processes or registry files or any modifications in system settings.

Advanced behavior analysis requires knowledge of windows internals and specific

programming. Analysts can load binary code into debugger tools such as ollydbg or windbg and

run malware code line by line and monitor its activity.

Static Malware Analysis Technique:

Static malware analysis technique is performed by analyzing code statically without running the

sample using tools such as PE Viewer, CFF explorer and more. Thus it is also known as code

analysis. This technique is safer than dynamic malware analysis technique as malware are not

executed. If malware is packed then analysis cannot be performed on it without unpacking the

malware.

Code analysis technique can also be further classified into basic and advanced categories. Basic

code analysis technique is not very efficient but it is easy and very quick. The goal of static

analysis is to classify the sample into malicious and benign executables without understanding

the capabilities of samples. It does not require checking the actual instructions of sample. Basic

	 	10

code analysis includes identifying if antivirus detects any sample, sample is packed or unpacked,

its version information, any suspicious imports by executables or if any PE field format is

malformed.

Advanced code analysis, like advanced behavioral analysis, requires knowledge of windows

internals, Assemble language and compiler code. In this type of analysis analysts are required to

load the binary code into disassembler such as IDAPro to perform reverse engineering and

completely analyze the executables. After performing reverse engineering analysts will

understand how the code works or how malware infects the system, which in turn will help to

reduce infection or help to create better security and defense softwares. This is the most effective

technique.

2.4 Introduction to Portable Executable Format

The PE file format is derived from the earlier common object file format (COFF) found on

VAX/VMS. The primary goal behind designing PE file format was to standardize the executable

format of all the versions for windows operating system on all supported processors. The

secondary goal was to provide the smart and easy way for the windows operating system to run

program and also store essential information which is required to execute a piece of code [3].

The PE format was initially designed to support Win32-based systems or 32-bit operating system

of Microsoft. Later, few modifications were done in PE format to support Win64-based systems

or 64-bit operating system of Microsoft, also known as PE32+. The PE format can be used on

versions of operating systems such as Windows NT, Windows 95, Windows XP, and Windows

	 	11

7, 32-bit or 64-bit. Executable files (.exe), Dynamic Link Library (DLL) (.dll), Object code (.obj)

are kind of PE file formats. The difference between .exe and .dll files is only of a single bit,

which indicates if the file should be treated as an exe or as a dll.

PE File Structure:

PE file consists of number of headers and sections, organized as a linear stream of data as shown

in Figure 2.1 and for better understanding of each field in headers we have created Table2.1. PE

file begins with an MS-DOS header, a real mode program stub, and a PE file signature.

Immediately following are all headers and sections [4].

Figure 2.1 PE File Format [4]

	 	12

(Table 2.1 Cont.)

Size Field Description
IMAGE_DOS_HEAD

uint16_t e_magic Magic number
uint16_t e_cblp Bytes on last page of file
uint16_t e_cp Pages in file
uint16_t e_crlc Relocations
uint16_t e_cparhdr Size of header in paragraphs
uint16_t e_minalloc Minimum extra paragraphs

needed
uint16_t e_maxalloc Maximum extra paragraphs

needed
uint16_t e_ss Initial (relative) SS value
uint16_t e_sp Initial SP value
uint16_t e_csum Checksum
uint16_t e_ip Initial IP value
uint16_t e_cs Initial (relative) CS value
uint16_t e_lfarlc File address of relocation table
uint16_t e_ovno Overlay number
uint16_t e_res1[4] Reserved words
uint16_t e_oemid OEM identifier (for e_oeminfo)
uint16_t e_oeminfo OEM information; e_oemid

specific
uint16_t e_res2[10] Reserved words
uint32_t e_lfanew Address of image file header

IMAGE_FILE_HEAD
uint16_t Machine machine version
uint16_t NumberOfSections No. of Sections
uint32_t TimeDateStamp Date time stamp
uint32_t PointerToSymbolTable Pointer to symbol table
uint32_t NumberOfSymbols No. of Symbols
uint16_t SizeOfOptionalHeader Size of Optional header
uint16_t Characteristics characteristics

IMAGE_DATA_DIRECT
uint32_t VirtualAddress Virtual address of data directory
uint32_t Size Size of data directory

IMAGE_OPTIONAL_HEAD
uint16_t Magic

	 	13

unsigned char MajorLinkerVersion Version of Major Linker
unsigned char MinorLinkerVersion Version of Minor Linker
uint32_t SizeOfCode Size of Code
uint32_t SizeOfInitializedData Size of Initialized Data
uint32_t SizeOfUninitializedData Size of Uninitialized Data
uint32_t AddressOfEntryPoint Address of Entry Point
uint32_t BaseOfCode Base of Code
uint32_t BaseOfData Base of Data
uint64_t ImageBase Image Base
uint32_t SectionAlignment Section Alignment
uint32_t FileAlignment File Alignment
uint16_t MajorOperatingSystemVersion Major Operating System Version
uint16_t MinorOperatingSystemVersion Minor Operating System Version
uint16_t MajorImageVersion Major Image Version
uint16_t MinorImageVersion Minor Image Version
uint16_t MajorSubsystemVersion Major Subsystem Version
uint16_t MinorSubsystemVersion Minor Subsystem Version
uint32_t Reserved1 Reserved1
uint32_t SizeOfImage Size of Image
uint32_t SizeOfHeaders Size of Headers
uint32_t CheckSum Check Sum
uint16_t Subsystem Subsystem
uint16_t DllCharacteristics Dll Characteristics
uint64_t SizeOfStackReserve Size of Stack Reserve
uint64_t SizeOfStackCommit Size of Stack Commit
uint64_t SizeOfHeapReserve Size of Heap Reserve
uint64_t SizeOfHeapCommit Size of Heap Commit
uint32_t LoaderFlags Loader Flags
uint32_t NumberOfRvaAndSizes Number of Rva and Sizes
IMAGE_DATA_DIRECT DataDirectory[16] Array of Data Directory

IMAGE_NT_HEAD
uint64_t Signature Signature
IMAGE_FILE_HEAD FileHeader File Header
IMAGE_OPTIONAL_HEAD OptionalHeader Optional Header

IMAGE_SECTION_HEAD
unsigned char ; Name[8] Array for name of section
uint32_t PhysicalAddress Physical Address
uint32_t VirtualSize Virtual Size
uint32_t VirtualAddress Virtual Address
uint32_t SizeOfRawData Size of Raw Data

	 	14

uint32_t PointerToRawData Pointer to Raw Data
uint32_t PointerToRelocations Pointer to Relocations
uint32_t PointerToLinenumbers Pointer to Line numbers
uint16_t NumberOfRelocations Number of Relocations
uint16_t NumberOfLinenumbers Number of Line numbers
uint32_t Characteristics Characteristics

Table 2.1 PE Header Fields [5]

All sections can be easily understood by looking at Table 2.2. In general PE file will have at least

two sections, one for code and the other for data.

Section
Name

Section Description

.text Code Section
Contains the executable code

CODE Code Section of file linked by Borland Delphi or Borland Pascal
Contains the executable code

.data Data Section
Stores global data accessed throughout the program

DATA Data Section of file linked by Borland Delphi or Borland Pascal
Stores global data accessed throughout the program

.rdata Section for Constant Data
Holds read-only data that is globally accessible within the program

.idata Import Table
Sometimes present and stores the import function information; if this section
is not present, the import function information is stored in the .rdata section

.edata Export Table
Sometimes present and stores the export function information; if this section
is not present, the export function information is stored in the .rdata section

.pdata Exception section
Present only in 64-bit executable and stores exception-handling information

.tls TLS Table
Contains information of thread local variables

.reloc Relocation Information
Contains information for relocation of library files

.rsrc Resource Information
Stores resources needed by the executable

Table 2.2 PE Section [6]

	 	15

CHAPTER 3: RELATED WORK

Significant amount of research has been done in past to detect malware using windows PE file

format. Moreover, many anti-malware vendors have adopted different methods to identify the

malicious executables. Researcher and malware analysts have applied different approaches in

determining the process to detect malware by using static and/or dynamic malware analysis

technique. Additionally various data mining technique have also been used. The following

sections discuss the related work.

3.1 Malware Detection

Much of the research done in malware detection falls into realm of static and/or dynamic

malware analysis. Liao [7] has developed a method that extract features from the PE headers and

finds top 5 distinguishing features of malware to identify them. He has also developed an Icon

extractor to extract icons from PE file and find top 3 icons and eight misleading icons from

malware. The dataset consist of 5598 malware and 1237 benign samples. Treadwell [8]

presented an obfuscated malware detection technique that scans for suspicious patterns in PE

format on packed malware by comparing to signature available by antivirus products. Moreover,

Christodorescu [9] scans for malicious pattern in the code.

Comar [10] has developed a novel framework, which detects known and novel malware with

high precision. Features were collected from the layer 3 and layer 4 network flow characteristics.

The framework then transforms the features using tree, decreasing the imperfections in the data

that results in useful features. Alzab [11] has developed an automated system to extract features

	 	16

from API call and have used n-gram to detect benign or malicious executable. The dataset used

for the experiment contains 242 malware and 72 benign files.

3.2 Data Mining

Iwamoto [12] has proposed a method of classifying samples into malware and benign by using

API call sequences. Aljamea [13] has proposed a static analysis approach using text based search

techniques, control flow graph, hashing, and decision tree algorithm to cluster samples.

Similarly, Mutant X-S [14] groups the malware according to similarity in their code instruction

whereas, OPEM [15] uses features such as counting the existence of operational codes extracted

using static analysis technique and the execution information using dynamic technique.

In 2008, McBoost [16] framework was proposed that is primarily a malware collection tool and

its utility as an online real-time malware detection tool is limited due to high processing

overheads and relatively low detection rates [17]. However, the scope of their work is limited to

the detection of packed executables only. In 2009, Shafiq [17] PE-Miner, a framework, which

collects structural features, performs feature reduction and does clustering using data mining was

proposed. PE-Miner extracts around 189 features, which were then reduced by RFR, PCA or

HWT. Dataset used by PE-Miner have 1447 benign, 10,339 malware from VX heaven and 5,526

malware from Malfease.

3.3 Discussion and Summary

Several methods have been proposed by extracting different features from the PE file format

such as DLL’s, API function calls, frequency of instruction code, API call sequences, text based

	 	17

search technique, and hashing. Some methods collect wide range of feature and uses feature

reduction technique to reduce the dimensionality of the features. Moreover, many supervised and

unsupervised data mining techniques such as decision tree, IBk, J48, NB, SMO, RIPPER,

hierarchical, K-mean and many more has been used to cluster or classify the samples.

We have proposed a method, which extracts fewer features from the PE header and compares

various data mining methods to increase the accuracy of the clusters, which in turn improves the

accuracy of detecting benign or malicious executables. The features that we used were file size,

number of sections, number of unknown sections, number of dll called, Size of Code, Size of

initialized data, size of uninitialized data, Size of Image, Check sum, DLL Characteristics, Size

of Stack Reserve, Size of Stack Commit and no. of directories. We have compared three

unsupervised data mining techniques hierarchical, K-mean and SOM [18].

	 	18

CHAPTER 4: PROPOSED METHODOLOGY

4.1 Proposed Approach

Malware has become serious problem, since the use of computers and high-speed network is

increasing in our day-to-day life. Thus there is an urgent need for effective methods to categorize

the malware automatically. Malware categorization is an important problem in malware analysis

and recently many clustering techniques have been created. However, such techniques have

limited effectiveness and few were used commercially.

The main objective of this research is to develop a method that improves the efficiency of

distinguishing benign and malicious executables by using data mining, feature reduction and

classification algorithms based on static malware analysis. The method can be understood easily

from the Figure 4.1.

Figure 4. 1 Proposed Methodology

The method can be divided into specific objectives such as:

	 	19

Collecting datasets of benign and malicious executables to perform experiments

Writing code to parse PE format and extract important and useful features

Selecting the most related features and removing or eliminating the outliers

Finding appropriate data mining classification techniques such as Hierarchical clustering,

K-mean algorithm, and SOM neural network to create benign and malicious sample

clusters

Optimizing the approach by comparing various data mining techniques and increasing

efficiency of cluster

We have written code, which reads the entire directory passed and checks if the executables is a

PE file. Once it confirms, it will start extracting useful features and write them to an excel file.

Later an algorithm is implemented which selects the most related features and deletes the outliers

from the excel file. Then clustering techniques were used to cluster the samples effectively and

efficiently. Results of the clustering techniques were compared and optimized.

4.2 Introduction to Data Mining

Data Mining is a computational process of describing or finding similarity or patterns in the large

amount of data. It helps in the analysis of data by discovering new trends or correlation in data

already present in database in novel ways that it becomes useful to the data analysis. Data mining

is considered to be an application of machine learning which uses both pattern recognition

technologies as well as statistical and mathematical techniques.

	 	20

Data mining is also an integral part of knowledge discovery in database (KDDs). The steps

involved in KDD process are mentioned below [19].

 Selection – Reducing dataset by maintaining the integrity of original dataset

 Pre-processing – To remove noise or irrelevant data

 Transformation – Transform data into required formats

 Data Mining – To obtain or discover useful patterns in data

 Interpretation/ Evaluation – To identify useful patterns by applying validation and

evaluating the results

Below mentioned are primary six tasks involved in data mining process [19].

 Clustering – Identify similarity in data and form groups or clusters

 Classification – Categories new data in predefined classes by discovering predictive

learning function.

 Regression – Discovering predictive learning function, which models data with the least

error.

 Summarization – Finding a compact representation for a set or subset of data

 Anomaly detection – Identify the most significant changes or errors in data set

 Dependency Modeling – Finding relationship between features or their values in a dataset

	 	21

Data mining process uses machine learning algorithms depending on whether the class labels are

provided for learning, these algorithms can be divided into two categories supervised learning or

unsupervised learning.

Supervised Learning uses labeled training data, which consists of both input and desired output

values. Supervised learning algorithm is trained using the training dataset and new data or test

data is categorized accordingly. Supervised learning algorithms include but are not limited to

decision tree, support vector machines (SVM), naïve bayes, random forest, regression models,

and nearest neighbor [20].

Unsupervised Learning algorithm tries to find hidden structure by using unlabeled data. The

model generating the output much either is stochastic to avoid producing same output each time.

Unsupervised algorithms include but are not limited to hierarchical, K-mean, SOM, DBSCAN

and OPTICS [21].

4.3 Data Collection

We have created three datasets of malware and benign binaries to obtain optimized results. Our

malware datasets were collected from [22] and our benign files were gathered from various

versions of Microsoft windows operating system files and various windows application of 32 bit

and 64 bit. Our first dataset contains 22,172 binaries, second contains 14,467 binaries and third

comprises of 11,960 binaries. The binaries contain both dlls and executables. The overview of

dataset is mentioned in below Table 4.1.

	 	22

(Table 4.1 Cont.)

Dataset Benign Malware

1 Windows 7 Ent SP0 dll 1958 Backdoor 5046
Windows 7 Ent SP0 exe 442 Worm 5713
Windows 7 Ent SP1 dll 1941 Flooder 190
Windows 7 Ent SP1 exe 444
Windows 8 Ent SP0 dll 2593
Windows 8 Ent SP0 exe 483
Windows 8 Ent SP1 dll 2858
Windows 8 Ent SP1 exe 504

Total No. of Files 11223 10949
 22172
Maximum File Size 67967488 9507381
Minimum File size 718 1476

2 Windows Vista Ent SP0 dll 1566 Trojan 7242

Windows Vista Ent SP0 exe 387 Packed 366
Windows Vista Ent SP1 dll 1579 Flooder 381
Windows Vista Ent SP1 exe 392
Windows Vista Ent SP2 dll 1594
Windows Vista Ent SP2 exe 394
Applications 34
System and others 532

Total 6478 7989
 14467
Maximum File Size 30595068 34748928
Minimum File size 718 2097

3 Windows XP SP1 dll 1110 Constructor 616

Windows XP SP1 exe 305 Exploit 649
Windows XP SP2 dll 1128 Hacktool 705
Windows XP SP2 exe 311 Rootkit 3180
Windows XP SP3 dll 1242 Hoax 1125
Windows XP SP3 exe 323
Windows Server 2000 dll 959
Windows Server 2000 exe 307

	 	23

Total 5685 6275
 11960
Maximum File Size 11286096 7089664
Minimum File size 817 672

Table 4.1 Data Collection

4.4 Data Pre-processing

The goal of our research was to gather useful features and explore various data mining

techniques, which helps to create clusters with high accuracy. Our focus is to extract useful

features from PE headers that distinguish between benign and malicious files.

Some binaries collected were not in PE, win 32 bit or win 64 bit format, so we have written code

in such a way that it checks if the given binary is in the required format or not before trying to

extract features.

Some of the malware collected were packed as hacker tries to hide the content of malware by

packing it. Similarly, some of the benign files were packed so that the application can be

protected from cracking. In order to extract useful features by disassembling, the packed or

compressed binaries were unpacked. Then each binary is disassembled and all the features from

the PE headers were extracted.

	 	24

Figure 4.2 PE Headers Extraction

Figure 4.2 shows the output in command prompt window while running the code for feature

extraction. Only the unknown section names are printed on the output window.

4.4.1 Feature Extraction

This section explains and describes the features extracted from PE files. We have written code to

disassemble the PE file. We have collected 53 features from all the dataset of benign and

malicious files. All 53 features are mentioned and described in Table 4.2.

(Table 4.2 Cont.)

SR
No.

Feature Name Header Description

1 FSize File Size
2 DBpp DOS Bytes on last page of file

	 	25

3 DPf DOS Pages in file
4 DR DOS Relocations
5 DShp DOS Size of header in paragraphs
6 Dmaxp DOS Minimum extra paragraphs

needed
7 Dminp DOS Maximum extra paragraphs

needed
8 Diss DOS Initial (relative) SS value
9 DSPv DOS Initial SP value

10 Dcsum DOS Checksum
11 DIPv DOS Initial IP value
12 Dicsv DOS Initial (relative) CS value
13 Dreltab DOS File address of relocation table
14 DONum DOS Overlay number
15 NSec File No. of Sections
16 DateTime File Date Time
17 FPointerToSymbolTable File Pointer To Symbol Table
18 FNumberOfSymbols File Number Of Symbols
19 FSizeOfOptionalHeader File Size Of Optional Header
20 FCharacteristics File Characteristics
21 USec File No. of Unknown Sections
22 IDll File No. of DLL Function call
23 OMajorLinkerVersion OPT Major Linker Version
24 OMinorLinkerVersion OPT Minor Linker Version
25 SCode OPT Size of Code
26 SIData OPT Size of Initialized Data
27 SUData OPT Size of Uninitialized Data
28 OAddressOfEntryPoint OPT Address Of Entry Point
29 OBaseOfCode OPT Base Of Code
30 OBaseOfData OPT Base Of Data
31 OImageBase OPT Image Base
32 OSectionAlignment OPT Section Alignment
33 OFileAlignment OPT File Alignment
34 OMajorOperatingSystemVersion OPT Major Operating System Version
35 OMinorOperatingSystemVersion OPT Minor Operating System Version
36 MImageVer OPT Major Image Version
37 OMinorImageVersion OPT Minor Image Version
38 OMajorSubsystemVersion OPT Major Subsystem Version
39 OMinorSubsystemVersion OPT Minor Subsystem Version
40 OReserved1 OPT Reserved1

	 	26

41 OSizeOfImage OPT Size Of Image
42 OSizeOfHeaders OPT Size Of Headers
43 CSum OPT CheckSum
44 OSubsystem OPT Subsystem
45 DLLChar OPT Dll Characteristics
46 OSizeOfStackReserve OPT Size Of Stack Reserve
47 OSizeOfStackCommit OPT Size Of Stack Commit
48 OSizeOfHeapReserve OPT Size Of Heap Reserve
49 OSizeOfHeapCommit OPT Size Of Heap Commit
50 OLoaderFlags OPT Loader Flags
51 ONumberOfRvaAndSizes OPT Number Of Rva and Sizes
52 NDirectories OPT No. of Directories
53 DModified Date Modified

Table 4.2 PE Features Extraction

Features like USec, IDll and DModified are the features, which were created using the data

obtained from PE headers. USec feature is for calculating number of unknown section name in

PE file. A counter representing USec feature is initialized and incremented if a section name

obtain from PE file is other than common name like .text, .data, .pdata, .rdata, .rsrc, .reloc, .tls,

.idata, .edata, CODE, DATA or BSS. Similarly, IDLL is for counting number of dlls called in

Import directory. DModified is the modification date of PE file. This feature is collected from

the properties of the PE file.

4.5 Feature Selection

All 53 extracted features were considered as initial set of features. Several experiments were

carried out using this set of features but the accuracy obtained after applying data mining

techniques was average. So, to improve the performance and accuracy of clustering with

minimum measurements and low overheads, we removed the features that were outliers or not

	 	27

giving useful information. Thus we have selected 13 features, which are mentioned and

described in Table 4.3.

SR
No.

Feature Name Header Description

1 FSize File Size
2 NSec File No. of Sections
3 USec File No. of Unknown Sections
4 IDll File No. of DLL Function call
5 SCode OPT Size of Code
6 SIData OPT Size of Initialized Data
7 SUData OPT Size of Uninitialized Data
8 OSizeOfImage OPT Size Of Image
9 CSum OPT Check Sum

10 DLLChar OPT Dll Characteristics
11 OSizeOfStackReserve OPT Size Of Stack Reserve
12 OSizeOfStackCommit OPT Size Of Stack Commit
13 NDirectories OPT No. of Directories

Table 4.3 PE Features Selection

Table 4.4 PE Features

Now for better understanding of the data, various features were normalized and given weightage.

Normalization helps in comparing the values for different data sets in a way that it eliminates the

effects of certain gross influences. There were some features in our list of selected features

whose data may vary according to the size of files. Thus for better comparison we have

SR
No.

Feature Name Header Description

1 NSec File Normalized No. of Sections
2 USec File Weighted No. of Unknown Sections
3 IDll File Normalized No. of DLL Function

call
4 SCode OPT Normalized Size of Code
5 SIData OPT Normalized Size of Initialized Data
6 SUData OPT Normalized Size of Uninitialized

Data
7 NDirectories OPT Normalized No. of Directories

	 	28

normalized the features by dividing the data with its file size. We have also given more

weightage to a feature by multiplying its data with constant integer value hundred. The below

mentioned Table 4.4 contains normalized and weighted features.

4.6 Clustering Algorithm

The clustering algorithm forms group or clusters such that member inside a cluster are similar,

and distinct from the objects in other clusters. For statistical analysis of data, clustering method

is used frequently in the field of data mining. The cluster or groups can be formed, by using

various algorithms that differ in the criteria. The criteria used for forming clusters may include

groups with small distances among the data, dense areas, intervals or particular statistical

distributions [23].

We have used hierarchical, K-mean and self-organizing map clustering algorithm for our data

analysis. The notion of each of the clustering algorithm is different and varies significantly in

their properties.

4.6.1 Hierarchical Learning Algorithm

Hierarchical clustering is an example of connectivity models, which uses distance connectivity to

create groups or clusters. The hierarchy is a tree of clusters, which contains a node as child

clusters while sibling cluster share a common parent node [24].

	 	29

We have used agglomerative hierarchical cluster analysis that is already implemented in Matlab.

The hierarchical algorithm distinguishes every pair of data in dataset. Then it links the pair of

data in close space using the distance criteria that is generated by distinguishing every pair of

data in dataset. In next step a binary tree is formed using data paired into binary clusters. At last,

the clusters were created either by finding natural clusters in the binary tree or by using cutting

off criteria [25].

The function pdist calculates the Euclidean distance between each data pair to distinguish every

pair of data in dataset. The linkage function clusters data into binary tree and dendogram

function helps to view the binary cluster tree graphically for better understanding. The function

cluster is applied to find cut in tree to form clusters either naturally or by giving arbitrary cutoff

value in function itself. Figure 4.3 shows the code written in Matlab for hierarchical clustering.

Figure 4.3 Hierarchical Matlab Code

As mentioned in the above Hierarchical Matlab code, we used distance cutoff to create clusters

of the dataset.

	 	30

4.6.2 K-mean Learning Algorithm

K-mean is an example of partition based clustering algorithm. The k-mean algorithm forms

clusters from the data by allocating an index number to each observation according to their mean

value. Each cluster is created or given same index number with nearest mean value. Unlike

hierarchical clustering, k-mean creates cluster on single level and using each observation rather

than similarities or dissimilarities between data pair. Thus k-mean is more suitable and efficient

for cluster analysis of large datasets [26].

K-mean treats each observation in the data as unique. It creates partition in which objects within

each cluster are similar, and distinct from the objects in other clusters [27]. The centroid of the

cluster is calculated by the sum of distances from all data and it helps to increase the efficiency

of the cluster. K-mean iteratively improves by minimizing the sum of distances of each data from

its clusters centroid. The algorithm iterates until the sum of distances of data from centroid

cannot be reduced further. Thus the resultant clusters were compact and well separated as

possible.

The k-mean algorithm is already implemented in Matlab. As explained earlier, k-mean algorithm

returns index of the clusters. Figure 4.4 represents the code written in Matlab to use k-mean

algorithm.

	 	31

Figure 4.4 K-mean Matlab Code

As mentioned in Figure 4.4 we asked the K-mean algorithm to create 10 clusters at maximum.

We came up with cluster number 10 by trial and error. When number of clusters was increased,

empty clusters were created and when the number of clusters was decreased, there was

significant drop in the accuracy.

4.6.3 Self Organizing Mapping Algorithm

The SOM is an excellent tool in exploratory phase of data mining [18]. SOM is a type of

artificial neural network (ANN) that produces discrete clusters by training the network using

unsupervised learning. SOM uses neighborhood function to preserve the topological properties

of input [28]. SOM groups the data based on similarity between objects. Thus it can be used to

create clusters of benign and malicious objects.

The other version of SOM training, which we have used is called batch algorithm. It presents

whole dataset to the network then algorithm determines winning neuron and updates each weight

vector by moving it to the average position of all input vector [29].

	 	32

Matlab has a tool, which can be used to run SOM algorithm. As shown in Figure 4.5 we can first

create grid and train data using batch algorithm in Figure 4.6.

Figure 4.5 Neural Network Architecture

Figure 4.6 Neural Network Training

	 	33

SOM creates different type of plots for the better understanding of analysis results. Figure 4.7

gives view of SOM topology.

Figure 4.7 SOM Topology

Figure 4.8 shows SOM neighbor connections

Figure 4.8 SOM Neighbor Connections

	 	34

Figure 4.9 depicts SOM neighbor weight distances.

Figure 4.9 SOM Neighbor Weight Distances

Figure 4.10 gives overview of SOM weight planes.

Figure 4.10 SOM Weight Planes

	 	35

Figure 4.11 shows SOM weight positions.

Figure 4.11 SOM Weight Positions

Figure 4.12 gives gist on SOM sample hits.

Figure 4.12 SOM Sample Hits

	 	36

In SOM weight distance and planes, the weights were closer if it is indicated by light colors and

the distances were larger if it is indicated by darker band. The color difference distinguishes

between the data points weight and distance.

Figure 4.13 represents the code written in Matlab to use SOM algorithm.

Figure 4.13 SOM Matlab Code

As mentioned in the code, SOM algorithm is first trained and output is saved in Matlab. Then

using output, clusters were created. The algorithm is asked to create maximum of 100 clusters.

	 	37

CHAPTER 5: OUTCOME OF PROJECT

5.1 Experimental Tools and Environment

This section gives an overview on the tools and environment used for the thesis project.

5.1.1 Microsoft Visual Studio

Visual Studio (VS) is a comprehensive collection of tools and services that helps to create a wide

variety of applications [30]. VS is an integrated development environment (IDE) from Microsoft

that supports different programming languages that allows to write, edit or debug code. We have

created Visual C++ (VC++) project using Microsoft VS to disintegrate or collect PE headers

values from executables and dynamic link library files. Microsoft VC++ implements both C and

C++ compiler and specific tools for integration with VS IDE. We have added several packages

and in-built libraries to write code.

5.1.2 Matlab

Matlab is a language with strong abstraction and easy to use visual interface that can be used for

data analysis, developing algorithm, creating models and applications, for programming and

more. The built-in tools, mathematical functions and algorithms help to explore multiple

approaches and get the result faster. Matlab can be used in various fields but not limited to

computational biology, computational finance, simulation, image and video processing, signal

processing, data analysis, control systems [31].

	 	38

5.1.3 VMware Workstation

VMware workstation is a hypervisor, which helps users to create one or more virtual machines

(VM) on a single system. Each VM can run different operating systems such as Linux, Ubuntu,

and different version of Windows. VMware workstation supports host network, share hard

drives, and USB devices with VM [32].

VM plays an integral part in malware analysis. VM enables us to create a virtual environment

with all the necessary tools and applications required according to our need. We have used

VMware workstation version 10.0.1 build-1379776 with windows 7 operating system and 5.7

GB RAM.

VM has a very useful and important feature called snapshot, which saves the state of machine.

We can create snapshots of our VM that will save all the data, application installed and settings

of the operating system at that very moment. Once the snapshot is created we can restore the

saved state whenever it is necessary. For example, if a malware affects the system we can restore

the machine to its stored state by restoring a snapshot. The snapshot feature saves lot of time and

work while doing malware analysis.

5.2 Experimental Results

Experiment 1:

Input: Dataset1

	 	39

Algorithm: Hierarchical algorithm

Output: Figure 5.1 represent the binary tree of hierarchical algorithm on dataset1 in

dendogram form with top twelve nodes. We have created dendogram with cutoff as the

dataset is very large and dendogram representing the complete dataset was visually not clear.

Now, to go one step further we have created clusters and represented in Figure 5.2. Similarly,

for clearer view we have represented few cluster and data points in the graph.

Figure 5.1 Experiment 1 binary tree

	 	40

Figure 5.2 Experiment 1 Plot

Clusters were created using cutoff on distance criteria. Table 5.1 represents the 28 clusters

created with useful details. Column “Value” represents the number of executables with type

benign or malicious and “Percentage” gives the idea on percent of executables type in cluster.

(Table 5.1 Cont.)

Hierarchical on Datset 1

Cluster Executable Value Percentage Cluster Executable Value Percentage Cluster Executable Value Percentage

1 Benign 0 0.00% 11 Benign 8 50.00% 20 Benign 11127 51.01%

 Malacious 1 100.00% Malacious 8 50.00% Malacious 10686 48.99%

2 Benign 0 0.00% 12 Benign 0 0.00% 21 Benign 7 77.78%

 Malacious 59 100.00% Malacious 1 100.00% Malacious 2 22.22%

3 Benign 6 85.71% 13 Benign 3 100.00% 22 Benign 0 0.00%

 Malacious 1 14.29% Malacious 0 0.00% Malacious 56 100.00%

4 Benign 4 100.00% 14 Benign 0 0.00% 23 Benign 3 100.00%

 Malacious 0 0.00% Malacious 1 100.00% Malacious 0 0.00%

5 Benign 3 100.00% 15 Benign 0 0.00% 24 Benign 0 0.00%

 Malacious 0 0.00% Malacious 1 100.00% Malacious 91 100.00%

	 	41

6 Benign 0 0.00% 16 Benign 0 0.00% 25 Benign 4 100.00%

 Malacious 30 100.00% Malacious 1 100.00% Malacious 0 0.00%

7 Benign 6 100.00% 17 Benign 0 0.00% 26 Benign 7 100.00%

 Malacious 0 0.00% Malacious 3 100.00% Malacious 0 0.00%

8 Benign 3 50.00% 18 Benign 0 0.00% 27 Benign 4 100.00%

 Malacious 3 50.00% Malacious 1 100.00% Malacious 0 0.00%

9 Benign 3 75.00% 19 Benign 0 0.00% 28 Benign 3 100.00%

 Malacious 1 25.00% Malacious 1 100.00% Malacious 0 0.00%

10 Benign 32 94.12%

 Malacious 2 5.88%

Table 5.1 Experiment 1 Clusters

Figure 5.3 Experiment 1 Graph

Analysis: There were around 22,172 executables in dataset. After applying hierarchical

algorithm, 28 clusters were created using distance cutoff. Hereafter analyzing the cluster data

we found that around 10,702 executables were clustered wrongly, which results in accuracy

of 51.73%.

	 	42

Now we further analyze the results or clusters obtained after applying Hierarchical algorithm

on Dataset1. We have created a graph in Figure 5.3 for better understanding of our results.

The X-axis represents the cluster with 50% to 100% accuracy rate divided in four groups.

The Y- axis represents the percentage of the clusters that belongs to the groups mentioned in

X-axis. Each of the bar has a percentage label which represents the percentage of executables

from Datset1 that belongs to the group. Moreover, from the figure 5.3 we observe that

98.54% of executables from Dataset1 have 50-79.99% accuracy and less than 20% of

clusters belong to this group. Thus, we know that most of the executables from Dataset1

belong to less than 20% of clusters and has efficiency between 50% to 79.99% and rest of the

clusters have only 1.46% of executables. Hence, the efficiency obtained in this experiment is

very low.

Experiment 2:

Input: Dataset1

Algorithm: K-means algorithm

Output: Figure 5.3 represent centroid of the clusters created using kmean algorithm. Table

5.2 shows the percentage of Benign and Malicious executables in each cluster.

	 	43

Figure 5.4 Experiment 2 Plot

Kmean on Datset 1

Cluster Executable Value Percentage Cluster Executable Value Percentage
1 Benign 0 0.00% 6 Benign 64 73.56%

 Malacious 73 100.00% Malacious 23 26.44%

2 Benign 19 79.17% 7 Benign 7 63.64%
 Malacious 5 20.83% Malacious 4 36.36%

3 Benign 333 3.06% 8 Benign 50 79.37%
 Malacious 10541 96.94% Malacious 13 20.63%

4 Benign 10733 98.89% 9 Benign 0 0.00%
 Malacious 120 1.11% Malacious 41 100.00%

5 Benign 0 0.00% 10 Benign 17 23.29%
 Malacious 73 100.00% Malacious 56 76.71%

Table 5.2 Experiment 2 Clusters

	 	44

Figure 5.5 Experiment 2 Graph

Analysis: There were around 22,172 executables in dataset that is used for clustering. After

applying K-mean algorithm 10 clusters are created. The number of clusters were decided by

trial and error and given to the algorithm. If we create more than 10 clusters than empty

clusters were created and if we give less than accuracy is reduced significantly. After

analyzing the details of each cluster given in Table 5.2, we found that out of 22,172 around

515 executables were wrongly clustered, which gives accuracy of 97.68%. This accuracy is

significantly more than obtained in experiment1.

Similar to Experiment 1 we have created a graph in Figure 5.5 for better understanding and

analysis of the results or clustered obtained by applying K-mean algorithm on Dataset1. As

shown in Figure 97.99% executables from Dataset1 belongs to the clusters having accuracy

	 	45

of 90-99.99% but out of the clusters created approximately 20% of clusters have this kind of

efficiency.

Experiment 3:

Input: Dataset1

Algorithm: SOM algorithm

Output: A grid of 10 X 10 is created according to the input. Figure 5.4 represents the sample

hits, which means it shows the number of elements in each cluster. Table 5.3 gives the details

of each cluster.

Figure 5.6 Experiment 3 SOM Hits

	 	46

(Table 5.3 Cont.)

SOM on Datset 1

Cluster Executable Value Percentage Cluster Executable Value Percentage Cluster Executable Value Percentage

1 Benign 0 0.00% 30 Benign 536 100.00% 58 Benign 0 0.00%

 Malacious 19 100.00% Malacious 0 0.00% Malacious 9 100.00%

2 Benign 0 0.00% 31 Benign 22 95.65% 59 Benign 0 0.00%

 Malacious 16 100.00% Malacious 1 4.35% Malacious 11 100.00%

3 Benign 68 4.83% 32 Benign 1270 100.00% 60 Benign 10 100.00%

 Malacious 1340 95.17% Malacious 0 0.00% Malacious 0 0.00%

4 Benign 67 19.20% 33 Benign 4718 98.99% 61 Benign 3 21.43%

 Malacious 282 80.80% Malacious 48 1.01% Malacious 11 78.57%

5 Benign 0 0.00% 34 Benign 0 0.00% 62 Benign 6 100.00%

 Malacious 350 100.00% Malacious 1 100.00% Malacious 0 0.00%

6 Benign 0 0.00% 35 Benign 0 0.00% 63 Benign 3 100.00%

 Malacious 916 100.00% Malacious 13 100.00% Malacious 0 0.00%

7 Benign 16 0.91% 36 Benign 51 94.44% 64 Benign 6 100.00%

 Malacious 1744 99.09% Malacious 3 5.56% Malacious 0 0.00%

8 Benign 118 2.91% 37 Benign 93 96.88% 65 Benign 11 91.67%

 Malacious 3942 97.09% Malacious 3 5.56% Malacious 1 8.33%

9 Benign 4 80.00% 38 Benign 103 93.64% 66 Benign 3 100.00%

 Malacious 1 20.00% Malacious 7 6.36% Malacious 0 0.00%

10 Benign 0 0.00% 39 Benign 188 100.00% 67 Benign 0 0.00%

 Malacious 21 100.00% Malacious 0 0.00% Malacious 19 100.00%

11 Benign 0 0.00% 40 Benign 371 100.00% 68 Benign 0 0.00%

 Malacious 30 100.00% Malacious 0 0.00% Malacious 18 100.00%

12 Benign 0 0.00% 41 Benign 732 100.00% 69 Benign 2 100.00%

 Malacious 3 100.00% Malacious 0 0.00% Malacious 0 0.00%

13 Benign 0 0.00% 42 Benign 0 0.00% 70 Benign 3 100.00%

 Malacious 19 100.00% Malacious 5 100.00% Malacious 0 0.00%

14 Benign 0 0.00% 43 Benign 0 0.00% 71 Benign 0 0.00%

 Malacious 69 100.00% Malacious 8 100.00% Malacious 1 100.00%

15 Benign 12 2.27% 44 Benign 0 0.00% 72 Benign 6 66.67%

 Malacious 516 97.73% Malacious 1 100.00% Malacious 3 33.33%

16 Benign 0 0.00% 45 Benign 88 96.70% 73 Benign 7 77.78%

 Malacious 2 100.00% Malacious 3 3.30% Malacious 2 22.22%

17 Benign 0 0.00% 46 Benign 0 0.00% 74 Benign 0 0.00%

	 	47

 Malacious 11 100.00% Malacious 157 100.00% Malacious 3 100.00%

18 Benign 0 0.00% 47 Benign 168 91.30% 75 Benign 4 100.00%

 Malacious 20 100.00% Malacious 16 8.70% Malacious 0 0.00%

19 Benign 0 0.00% 48 Benign 246 100.00% 76 Benign 0 0.00%

 Malacious 2 100.00% Malacious 0 0.00% Malacious 19 100.00%

20 Benign 1 0.46% 49 Benign 3 100.00% 77 Benign 0 0.00%

 Malacious 215 99.54% Malacious 0 0.00% Malacious 3 100.00%

21 Benign 27 7.61% 50 Benign 0 0.00% 78 Benign 4 100.00%

 Malacious 328 92.39% Malacious 18 100.00% Malacious 0 0.00%

22 Benign 3 1.01% 51 Benign 0 0.00% 79 Benign 6 100.00%

 Malacious 295 98.99% Malacious 28 100.00% Malacious 0 0.00%

23 Benign 8 100.00% 52 Benign 0 0.00% 80 Benign 8 50.00%

 Malacious 0 0.00% Malacious 5 100.00% Malacious 8 50.00%

24 Benign 2060 99.32% 53 Benign 47 97.92% 81 Benign 3 100.00%

 Malacious 14 0.68% Malacious 1 2.08% Malacious 0 0.00%

25 Benign 3 60.00% 54 Benign 66 98.51% 82 Benign 3 100.00%

 Malacious 2 40.00% Malacious 1 1.49% Malacious 0 0.00%

26 Benign 0 0.00% 55 Benign 0 0.00% 83 Benign 7 100.00%

 Malacious 16 100.00% Malacious 154 100.00% Malacious 0 0.00%

27 Benign 0 0.00% 56 Benign 0 0.00% 84 Benign 3 100.00%

 Malacious 3 100.00% Malacious 56 100.00% Malacious 0 0.00%

28 Benign 21 13.73% 57 Benign 12 92.31% 85 Benign 3 100.00%

 Malacious 132 86.27% Malacious 1 7.69% Malacious 0 0.00%

29 Benign 0 0.00%

 Malacious 3 100.00%

Table 5.3 Experiment 3 Clusters

	 	48

Figure 5.7 Experiment 3 Graph

Analysis: There were around 22,172 executables that were clustered using SOM algorithm.

We have asked SOM algorithm to create maximum 100 clusters from the given dataset. SOM

creates 85 clusters with elements or data and 15 of them were empty. After analysis of

clusters mentioned in Table 5.3 we found that around 451 out of 22,172 were wrongly

clustered, which gives accuracy of 97.97%. This accuracy is best so far, obtained for

dataset1.

We have analyzed the results or clusters obtained from Dataset1 after applying SOM

algorithm and created a graph in Figure 5.7. This graph helps to understand the analysis

easily. As we can see that maximum clusters have 90-99.99% or 100% accuracy and around

97% of executables from Dataset belongs to this groups. Thus, this algorithm has the highest

accuracy for Dataset1.

	 	49

Experiment 4:

Input: Dataset2

Algorithm: Hierarchical algorithm

Output: Experiment 4 is same as experiment 1 just the input dataset is different. Same as

experiment1 Figure 5.8 represent dendogram and Figure 5.9 represent cluster plot.

Figure 5.8 Experiment 4 binary tree

	 	50

Figure 5.9 Experiment 4 Plot

(Table 5.4 Cont.)

Hierarchical on Datset 2

Cluster Executable Value Percentage Cluster Executable Value Percentage Cluster Executable Value Percentage

1 Benign 3 100.00% 10 Benign 34 100.00% 19 Benign 0 0.00%

 Malacious 0 0.00% Malacious 0 0.00% Malacious 2 100.00%

2 Benign 0 0.00% 11 Benign 0 0.00% 20 Benign 4 100.00%

 Malacious 1 100.00% Malacious 1 100.00% Malacious 0 0.00%

3 Benign 3 100.00% 12 Benign 3 100.00% 21 Benign 4 100.00%

 Malacious 0 0.00% Malacious 0 0.00% Malacious 0 0.00%

4 Benign 3 100.00% 13 Benign 0 0.00% 22 Benign 7 87.50%

 Malacious 0 0.00% Malacious 1 100.00% Malacious 1 12.50%

5 Benign 0 0.00% 14 Benign 6 100.00% 23 Benign 11 100.00%

 Malacious 1 100.00% Malacious 0 0.00% Malacious 1 0.00%

6 Benign 6 100.00% 15 Benign 1 100.00% 24 Benign 0 0.00%

 Malacious 0 0.00% Malacious 0 0.00% Malacious 8 100.00%

7 Benign 3 100.00% 16 Benign 3 100.00% 25 Benign 0 0.00%

 Malacious 0 0.00% Malacious 0 0.00% Malacious 2 100.00%

8 Benign 0 0.00% 17 Benign 6377 44.45% 26 Benign 3 100.00%

	 	51

 Malacious 1 100.00% Malacious 7969 55.55% Malacious 0 0.00%

9 Benign 0 0.00% 18 Benign 7 100.00%

 Malacious 1 100.00% Malacious 0 0.00%

Table 5.4 Experiment 4 Clusters

Figure 5.10 Experiment 4 Graph

Analysis: There were around 14,467 executables in dataset, which is used for clustering.

Then applying hierarchical algorithm that uses distance cutoff for creating cluster, around 26

clusters were created. After analyzing the cluster details in Table 5.4, we found that out of

14,467 around 6379 were wrongly clustered. This gives accuracy of 55.91% to the

experiment, which is low.

	 	52

The graph in Figure 5.10 represents the analysis results in an efficient way. The graph shows

that there were maximum clusters with 100% accuracy but that contains only 0.78% of

executables from Dataset2. About 99.16% of executables belongs to the lowest accuracy

rates with few clusters only. Thus, Experiment 4 does not serve our purpose.

Experiment 5:

Input: Dataset2

Algorithm: K-mean algorithm

Output: This experiment is same as Experiment 2 just input dataset is different. Figure 5.11

represent centroid of clusters and Table 5.5 represent cluster data.

Figure 5.11 Experiment 5 Plot

	 	53

Kmean on Datset 2

Cluster Executable Value Percentage Cluster Executable Value Percentage
1 Benign 41 91.11% 6 Benign 11 47.83%

 Malacious 4 8.89% Malacious 12 52.17%

2 Benign 16 1.05% 7 Benign 7 77.78%
 Malacious 1505 98.95% Malacious 2 22.22%

3 Benign 207 11.47% 8 Benign 14 4.56%
 Malacious 1598 88.53% Malacious 293 95.44%

4 Benign 35 94.59% 9 Benign 4 100%
 Malacious 2 5.41% Malacious 0 0.00%

5 Benign 6143 57.33% 10 Benign 0 0.00%
 Malacious 4573 42.67% Malacious 0 0.00%

Table 5.5 Experiment 5 Clusters

Figure 5.12 Experiment 5 Graph

	 	54

Analysis: There were around 14,467 executables in this dataset. We apply K-mean algorithm

and try to create 10 clusters out of which 9 have data and one empty cluster is created. After

analyzing the cluster data mentioned in Table 5.5, we found that around 4829 executables

were clustered wrongly. This gives accuracy of 66.62%, which is more than hierarchical

clustering but not best.

For better understanding of analysis results we have created a graph shown in Figure 5.12,

which gives gist of the clusters with their accuracy and number of executables belonging to

each group. Around 45% of clusters have accuracy of 90-99.99% and only 13.20 % of

executables from Dataset2 belongs to this group. Maximum of executables belongs to the

lowest accuracy group and hence the K-mean algorithm has low accuracy.

Experiment 6:

Input: Dataset2

Algorithm: SOM algorithm

Output: This experiment is same as experiment 3 but the input dataset is different. Figure

5.13 gives the sample hits of the clusters and Table 5.6 gives cluster details.

	 	55

Figure 5.13 Experiment 6 SOM Hits

(Table 5.6 Cont.)

SOM on Datset 2

Cluster Executable Value Percentage Cluster Executable Value Percentage Cluster Executable Value Percentage

1 Benign 15 93.75% 33 Benign 40 54.05% 65 Benign 0 0.00%

 Malacious 1 6.25% Malacious 34 45.95% Malacious 53 100.00%

2 Benign 3 100.00% 34 Benign 26 24.07% 66 Benign 0 0.00%

 Malacious 0 0.00% Malacious 82 75.93% Malacious 79 100.00%

3 Benign 4 100.00% 35 Benign 0 0.00% 67 Benign 3 100.00%

 Malacious 0 0.00% Malacious 397 100.00% Malacious 0 0.00%

4 Benign 0 0.00% 36 Benign 12 2.28% 68 Benign 0 0.00%

 Malacious 9 100.00% Malacious 514 97.72% Malacious 12 100.00%

5 Benign 7 77.78% 37 Benign 0 0.00% 69 Benign 0 0.00%

 Malacious 2 22.22% Malacious 272 100.00% Malacious 110 100.00%

6 Benign 305 100.00% 38 Benign 1 9.09% 70 Benign 0 0.00%

 Malacious 0 0.00% Malacious 10 90.91% Malacious 138 100.00%

7 Benign 1129 99.91% 39 Benign 3 13.64% 71 Benign 0 0.00%

 Malacious 1 0.09% Malacious 19 86.36% Malacious 97 100.00%

8 Benign 3319 99.58% 40 Benign 27 57.45% 72 Benign 0 0.00%

 Malacious 14 0.42% Malacious 20 42.55% Malacious 76 100.00%

	 	56

9 Benign 137 8.08% 41 Benign 0 0.00% 73 Benign 0 0.00%

 Malacious 1558 91.92% Malacious 72 100.00% Malacious 51 100.00%

10 Benign 16 88.89% 42 Benign 0 0.00% 74 Benign 0 0.00%

 Malacious 2 11.11% Malacious 10 100.00% Malacious 113 100.00%

11 Benign 23 100.00% 43 Benign 0 0.00% 75 Benign 1 1.30%

 Malacious 0 0.00% Malacious 44 100.00% Malacious 76 98.70%

12 Benign 7 100.00% 44 Benign 0 0.00% 76 Benign 6 100.00%

 Malacious 0 0.00% Malacious 47 100.00% Malacious 0 0.00%

13 Benign 0 0.00% 45 Benign 2 1.35% 77 Benign 3 4.17%

 Malacious 2 100.00% Malacious 146 98.65% Malacious 69 95.83%

14 Benign 3 100.00% 46 Benign 1 0.44% 78 Benign 0 0.00%

 Malacious 0 0.00% Malacious 227 99.56% Malacious 153 100.00%

15 Benign 181 100.00% 47 Benign 1 0.55% 79 Benign 0 0.00%

 Malacious 0 0.00% Malacious 181 99.45% Malacious 158 100.00%

16 Benign 507 100.00% 48 Benign 0 0.00% 80 Benign 0 0.00%

 Malacious 0 0.00% Malacious 11 100.00% Malacious 125 100.00%

17 Benign 19 100.00% 49 Benign 0 0.00% 81 Benign 0 0.00%

 Malacious 0 0.00% Malacious 1 100.00% Malacious 88 100.00%

18 Benign 116 49.36% 50 Benign 0 0.00% 82 Benign 0 0.00%

 Malacious 119 50.64% Malacious 59 100.00% Malacious 126 100.00%

19 Benign 3 100.00% 51 Benign 0 0.00% 83 Benign 0 0.00%

 Malacious 0 0.00% Malacious 72 100.00% Malacious 59 100.00%

20 Benign 3 100.00% 52 Benign 0 0.00% 84 Benign 1 3.85%

 Malacious 0 0.00% Malacious 42 100.00% Malacious 25 96.15%

21 Benign 4 80.00% 53 Benign 0 0.00% 85 Benign 1 100.00%

 Malacious 1 20.00% Malacious 180 100.00% Malacious 0 0.00%

22 Benign 3 100.00% 54 Benign 0 0.00% 86 Benign 6 75.00%

 Malacious 0 0.00% Malacious 145 100.00% Malacious 2 25.00%

23 Benign 0 0.00% 55 Benign 1 1.79% 87 Benign 0 0.00%

 Malacious 3 100.00% Malacious 55 98.21% Malacious 132 100.00%

24 Benign 151 85.80% 56 Benign 0 0.00% 88 Benign 0 0.00%

 Malacious 25 14.20% Malacious 93 100.00% Malacious 102 100.00%

25 Benign 146 99.32% 57 Benign 1 1.10% 89 Benign 0 0.00%

 Malacious 1 0.68% Malacious 90 98.90% Malacious 117 100.00%

26 Benign 1 50.00% 58 Benign 3 75.00% 90 Benign 0 0.00%

 Malacious 1 50.00% Malacious 1 25.00% Malacious 94 100.00%

	 	57

27 Benign 1 0.22% 59 Benign 0 0.00% 91 Benign 0 0.00%

 Malacious 458 99.78% Malacious 35 100.00% Malacious 86 100.00%

28 Benign 44 31.21% 60 Benign 0 100.00% 92 Benign 0 0.00%

 Malacious 97 68.79% Malacious 101 0.00% Malacious 74 100.00%

29 Benign 4 100.00% 61 Benign 0 0.00% 93 Benign 0 0.00%

 Malacious 0 0.00% Malacious 99 100.00% Malacious 18 100.00%

30 Benign 44 47.31% 62 Benign 0 0.00% 94 Benign 3 75.00%

 Malacious 49 52.69% Malacious 90 100.00% Malacious 1 25.00%

31 Benign 68 66.02% 63 Benign 0 0.00% 95 Benign 4 80.00%

 Malacious 35 33.98% Malacious 126 100.00% Malacious 1 20.00%

32 Benign 66 58.41% 64 Benign 0 0.00% 96 Benign 3 100.00%

 Malacious 47 41.59% Malacious 154 100.00% Malacious 0 0.00%

Table 5.6 Experiment 6 Clusters

Figure 5.14 Experiment 6 Graph

	 	58

Analysis: There were around 14,467 executables that is clustered using SOM algorithm. We

asked algorithm to create maximum of 100 clusters but 96 clusters were created with data

and 4 empty clusters were created as mentioned in Table 5.6. In this algorithm around 584

executables were wrongly classified. This results in accuracy of 95.96%, which is best

among three algorithms on dataset2.

Figure 5.14 shows a graph with analysis result for our better understanding. Similar to

experiment 3, this experiment also has around 92% of files from Dataset2 that belongs to

either 90-99.99% or 100% group, which in turn has maximum number of clusters. Hence,

like experiment 3, experiment 6 has highest accuracy for Dataset2.

Experiment 7:

Input: Dataset3

Algorithm: Hierarchical algorithm

Output: This experiment is same as experiment 1 and 4 just the input dataset is different.

Figure 5.15 is dendogram of binary tree and Figure 5.16 represents the clusters.

	 	59

Figure 5.15 Experiment 7 Binary Tree

Figure 5.16 Experiment 7 Plot

	 	60

Hierarchical on Datset 3

Cluster Executable Value Percentage Cluster Executable Value Percentage Cluster Executable Value Percentage

1 Benign 3 100.00% 13 Benign 0 0.00% 25 Benign 11 78.57%

 Malacious 0 0.00% Malacious 1 100.00% Malacious 3 21.43%

2 Benign 0 0.00% 14 Benign 0 0.00% 26 Benign 4 100.00%

 Malacious 1 100.00% Malacious 1 100.00% Malacious 0 0.00%

3 Benign 4 80.00% 15 Benign 0 0.00% 27 Benign 4 100.00%

 Malacious 1 20.00% Malacious 2 100.00% Malacious 0 0.00%

4 Benign 0 0.00% 16 Benign 2 100.00% 28 Benign 4 100.00%

 Malacious 1 100.00% Malacious 0 0.00% Malacious 0 0.00%

5 Benign 1 100.00% 17 Benign 0 0.00% 29 Benign 12 100.00%

 Malacious 0 0.00% Malacious 1 100.00% Malacious 0 0.00%

6 Benign 0 0.00% 18 Benign 4 100.00% 30 Benign 0 0.00%

 Malacious 4 100.00% Malacious 0 0.00% Malacious 1 100.00%

7 Benign 11 100.00% 19 Benign 1 100.00% 31 Benign 0 0.00%

 Malacious 0 0.00% Malacious 0 0.00% Malacious 2 100.00%

8 Benign 4 100.00% 20 Benign 1 100.00% 32 Benign 4 100.00%

 Malacious 0 0.00% Malacious 0 0.00% Malacious 0 0.00%

9 Benign 47 97.92% 21 Benign 0 0.00% 33 Benign 0 0.00%

 Malacious 1 2.08% Malacious 4 100.00% Malacious 4 100.00%

10 Benign 4 100.00% 22 Benign 4 100.00% 34 Benign 7 100.00%

 Malacious 0 0.00% Malacious 0 0.00% Malacious 0 0.00%

11 Benign 0 0.00% 23 Benign 5555 47.10% 35 Benign 0 0.00%

 Malacious 1 100.00% Malacious 6239 52.90% Malacious 1 100.00%

12 Benign 0 0.00% 24 Benign 0 0.00%

 Malacious 2 100.00% Malacious 3 100.00%

Table 5.7 Experiment 7 Clusters

	 	61

Figure 5.17 Experiment 7 Graph

Analysis: There were around 11,960 executables in this dataset, which were clustered using

Hierarchical algorithm with distance cutoff. After applying algorithm around 35 clusters

were created as mentioned in Table 5.7. From this table we can infer that out of 11,960

around 5,560 executables were wrongly clustered. Thus accuracy of only 53.51% is received

for this dataset.

Analysis of clusters created by applying Hierarchical algorithm on Dataset3 is shown in

Figure 5.17, in the form of a graph. This graph shows groups of clusters with the accuracy as

mentioned on X-axis and has a label with the percentage of files belonging to each group. As

we can see from the graph more clusters were created with 100% accuracy but it covers only

0.83% of the executables from the Dataset3. Most of the files from the Dataset3 have lowest

	 	62

accuracy and only few numbers of clusters were created. Thus from this result we can infer

that Hierarchical algorithm will not help us to create clusters with highest accuracy.

Experiment 8:

Input: Dataset3

Algorithm: K-mean algorithm

Output: Experiment 8 is same as experiment 2 & 5 just the input dataset is different. Figure

5.18 represent centroid of clusters and Table 5.8 gives the number of malware and benign in

each cluster.

Figure 5.18 Experiment 8 Plot

	 	63

Kmean on Datset 3

Cluster Executable Value Percentage Cluster Executable Value Percentage
1 Benign 31 86.11% 6 Benign 522 7.83%

 Malacious 5 13.89% Malacious 6143 92.17%

2 Benign 5045 98.08% 7 Benign 5 71.43%
 Malacious 99 1.92% Malacious 2 28.57%

3 Benign 5 62.50% 8 Benign 4 36.36%
 Malacious 3 37.50% Malacious 7 63.64%

4 Benign 15 65.22% 9 Benign 43 93.48%
 Malacious 8 34.78% Malacious 3 6.52%

5 Benign 15 75.00% 10 Benign 0 0.00%
 Malacious 5 25.00% Malacious 0 0.00%

Table 5.8 Experiment 8 Clusters

Figure 5.19 Experiment 8 Graph

	 	64

Analysis: There were 11,960 executables that were clustered using K-mean algorithm. The

algorithm is asked to create 10 clusters but 9 clusters were created with data and 1 empty

cluster is created. We can infer from Table 5.8 that around 651 executables were clustered

incorrectly. As a result we get accuracy of 94.56%, which is significantly more than

Hierarchical algorithm applied on same dataset.

From Figure 5.19 we observed that less than 40% of clusters have accuracy of 90-99.99%

and this group contains about 99.12% of executables from Dataset3. The highest bar in the

graph is for lowest accuracy, which means most of the clusters have lowest accuracy but that

covers only 0.58% of executables from Dataset3. This experiment has good accuracy

compared to Experiment 7.

Experiment 9:

Input: Dataset3

Algorithm: SOM algorithm

Output: Experiment 9 is same as experiment 3 and 6 just the input dataset is different.

Figure 5.20 gives the sample hits that represent number of elements or data in each cluster.

	 	65

Figure 5.20 Experiment 9 SOM Hits

(Table 5.9 Cont.)

SOM on Datset 3

Cluster Executable Value Percentage Cluster Executable Value Percentage Cluster Executable Value Percentage

1 Benign 0 0.00% 27 Benign 73 100.00% 53 Benign 0 0.00%

 Malacious 2 100.00% Malacious 0 0.00% Malacious 20 100.00%

2 Benign 5 100.00% 28 Benign 19 86.36% 54 Benign 0 0.00%

 Malacious 0 0.00% Malacious 3 13.64% Malacious 39 100.00%

3 Benign 1276 100.00% 29 Benign 7 87.50% 55 Benign 0 0.00%

 Malacious 0 0.00% Malacious 1 12.50% Malacious 18 100.00%

4 Benign 1108 100.00% 30 Benign 0 0.00% 56 Benign 16 100.00%

 Malacious 0 0.00% Malacious 2 100.00% Malacious 0 0.00%

5 Benign 66 44.00% 31 Benign 8 100.00% 57 Benign 1 0.14%

 Malacious 84 56.00% Malacious 0 0.00% Malacious 730 99.86%

6 Benign 8 72.73% 32 Benign 4 80.00% 58 Benign 3 2.91%

 Malacious 3 27.27% Malacious 1 20.00% Malacious 100 97.09%

7 Benign 0 0.00% 33 Benign 0 0.00% 59 Benign 0 0.00%

 Malacious 4 100.00% Malacious 212 100.00% Malacious 3 100.00%

8 Benign 0 0.00% 34 Benign 48 100.00% 60 Benign 4 100.00%

 Malacious 1 100.00% Malacious 0 0.00% Malacious 0 0.00%

9 Benign 8 100.00% 35 Benign 10 83.33% 61 Benign 4 21.43%

 Malacious 0 0.00% Malacious 2 16.67% Malacious 0 78.57%

	 	66

10 Benign 3 100.00% 36 Benign 5 100.00% 62 Benign 4 100.00%

 Malacious 0 0.00% Malacious 0 0.00% Malacious 0 0.00%

11 Benign 851 100.00% 37 Benign 0 0.00% 63 Benign 4 66.67%

 Malacious 0 0.00% Malacious 1 100.00% Malacious 2 33.33%

12 Benign 542 100.00% 38 Benign 0 0.00% 64 Benign 1 100.00%

 Malacious 0 0.00% Malacious 1 100.00% Malacious 0 0.00%

13 Benign 349 99.71% 39 Benign 42 2.06% 65 Benign 4 100.00%

 Malacious 1 0.29% Malacious 1997 97.94% Malacious 0 0.00%

14 Benign 4 100.00% 40 Benign 80 18.02% 66 Benign 5 100.00%

 Malacious 0 0.00% Malacious 364 81.98% Malacious 0 0.00%

15 Benign 4 100.00% 41 Benign 6 35.29% 67 Benign 1 100.00%

 Malacious 0 0.00% Malacious 11 64.71% Malacious 0 0.00%

16 Benign 8 100.00% 42 Benign 44 36.97% 68 Benign 0 0.00%

 Malacious 0 0.00% Malacious 75 63.03% Malacious 4 100.00%

17 Benign 7 0.00% 43 Benign 41 48.81% 69 Benign 0 0.00%

 Malacious 2 100.00% Malacious 43 51.19% Malacious 4 100.00%

18 Benign 1 100.00% 44 Benign 16 32.65% 70 Benign 0 0.00%

 Malacious 0 0.00% Malacious 33 67.35% Malacious 4 100.00%

19 Benign 242 99.59% 45 Benign 0 0.00% 71 Benign 7 100.00%

 Malacious 1 0.41% Malacious 3 100.00% Malacious 0 0.00%

20 Benign 191 98.96% 46 Benign 11 91.67% 72 Benign 0 0.00%

 Malacious 2 1.04% Malacious 1 8.33% Malacious 2 100.00%

21 Benign 107 100.00% 47 Benign 4 80.00% 73 Benign 0 0.00%

 Malacious 0 0.00% Malacious 1 20.00% Malacious 4 100.00%

22 Benign 4 50.00% 48 Benign 3 0.40% 74 Benign 5 100.00%

 Malacious 4 50.00% Malacious 754 99.60% Malacious 0 0.00%

23 Benign 4 100.00% 49 Benign 172 12.16% 75 Benign 3 100.00%

 Malacious 0 0.00% Malacious 1242 87.84% Malacious 0 0.00%

24 Benign 4 66.67% 50 Benign 81 23.41% 76 Benign 8 100.00%

 Malacious 2 33.33% Malacious 265 76.59% Malacious 0 0.00%

25 Benign 1 100.00% 51 Benign 0 0.00% 77 Benign 4 100.00%

 Malacious 0 0.00% Malacious 63 100.00% Malacious 0 0.00%

26 Benign 139 100.00% 52 Benign 5 2.96%

 Malacious 0 0.00% Malacious 164 97.04%

Table 5.9 Experiment 9 Clusters

	 	67

Figure 5.21 Experiment 9 Graph

Analysis: There were 11,960 executables in dataset that were clustered using SOM algorithm.

The algorithm is asked to create maximum of 100 clusters out of which 77 clusters with data and

33 empty clusters were created. After analyzing the data mentioned in Table 5.9, we found that

586 executables were clustered incorrectly which leads to accuracy of 95.10%. Thus, SOM has

highest accuracy among three algorithms.

Moreover, to understand the analysis mentioned in Table 5.9 in an efficient way, we have created

graph in Figure 5.21. Around 77% of executables from Dataset3 has 90 to 100% accuracy and

	 	68

more than 60% of clusters have 100% of accuracy. Thus SOM algorithm has highest accuracy on

Dataset3.

5.3 Discussion

The following Table 5.10, Figure 5.22 and Figure 5.23 show the summary of experiments

results.

 Dataset1 Dataset2 Dataset3

Number of Files in dataset (NFD) 22172 14467 11960
Hierarchical Falsely Clustered (HFC) 10702 6379 5560
Kmean Falsely Clustered (KFC) 515 4829 651
SOM Falsely Clustered (SFC) 451 584 586

Table 5.10 Results Summary

Dataset Algorithm
50-79.99 80-89.99 90-99.99 100

Cluster % Files % Cluster % Files % Cluster % Files % Cluster % Files %

Dataset1

Hierarchical 17.86 98.54 3.57 0.03 3.57 0.15 75.00 1.28

K-mean 50.00 1.16 0.00 0.00 20.00 97.99 30.00 0.84
SOM 5.88 0.24 3.53 2.29 22.35 72.90 68.24 24.58

Dataset2
Hierarchical 3.85 99.16 3.85 0.06 0.00 0.00 92.31 0.78
K-mean 33.33 74.29 11.11 12.48 44.44 13.20 11.11 0.03
SOM 13.54 6.50 5.21 1.56 17.71 56.68 63.54 35.25

Dataset3
Hierarchical 5.71 98.73 2.86 0.04 2.86 0.40 88.57 0.83
K-mean 55.56 0.58 11.11 0.30 33.33 99.12 0.00 0.00
SOM 15.58 6.76 9.09 15.97 11.69 38.44 63.64 38.83

Table 5.11 Results Analysis

Table 5.10 is represented in graphical form in Figure 5.22 for better understanding and

comparison. First set of three bars compares the number of executables in each datasets, second

set of bars compares number of executables that were incorrectly clustered using Hierarchical

	 	69

algorithm, third set of bars compares number of executables falsely clustered using K-mean

algorithm on three datasets and fourth set of bars compares falsely clustered executables using

SOM algorithm on all three datasets.

Figure 5.22

Figure 5.23

The comparison of results obtained from Hierarchical, K-mean and SOM algorithm on each

dataset is represented in Figure 5.23. The X-axis represents the results obtained from all nine

	 	70

experiments. Each experiment has four bars, each representing percentage of cluster having

accuracy in the ranges mentioned in graph. Each range is labeled with the percentage of files

belonging to that range from the dataset. For example, the first bar from experiment 1 with color

green represents the percentage of cluster belonging to 50-79.99% accuracy and the label

98.54% says the percentage of executables that belongs to this clusters from the complete

dataset. The highlighted text covers most of the executables from the dataset, which belongs in

90 to 100 range. Thus from the graph we know that SOM algorithm has best accuracy.

	 	71

CHAPTER 6: CONCLUSION AND FUTURE STUDY

6.1 Conclusion

Several experiments have been conducted on various datasets out of which some are mentioned

in experiment results section. Different features have been collected and various clustering

algorithm were used to cluster the executables. We finally found some interesting features

among others like number of unknown sections, number of dll function calls, number of

directories, size of executables, and an algorithm with highest accuracy, efficiency and lowest

falsely clustered rate.

After all the analysis and experiments among unsupervised learning algorithm like hierarchical,

K-mean and SOM, we found 13 interesting features from PE headers and SOM clustering

algorithm as best as it gives highest accuracy, efficiency and low falsely clustered rate while

clustering any dataset. Thus after clustering we need to check one or two executables and say

that the cluster either contains all the benign or all malicious executables.

6.2 Future Study

Future studies will address the four aspects in which the accuracy of clustering can be increased.

The first aspect is to collect more static features, second aspect is to conduct dynamic analysis

and collect some more useful feature, thirdly to implement some more unsupervised machine

learning algorithm and lastly try further clustering malicious clusters into their types.

More static features can be collected from code section and other sections of PE file format,

	 	72

which will be useful in clustering. Opcodes as predictor of malware [33] can be implemented

that will collect frequency of opcode. The frequency of string or any other string or Text related

features could be used as mentioned in Text based search [34].

As per [35], static analysis alone will not help in successful clustering or detection of malware.

Thus adding some important and useful features from dynamic analysis can increase accuracy

and efficiency of clustering. AMAL [36] like using API call sequence if combined with this

project can also increase efficiency.

Different unsupervised machine learning algorithm can be implemented that helps in increasing

accuracy of clustering. Clustering with Gaussian Mixture Models [37] and Hidden markov

models [38] can be easily used as they are already implemented in Matlab. Results from this

algorithm can be compared with already implement algorithms.

Further, clustering executables first in benign and malicious and then further create clusters of

malicious executables according to their types like Trojan, spyware, backdoor, rootkit, virus,

worm and more. Targeting the features that makes them different from one another can help to

cluster malware according to their types.

6.3 Summary

This chapter concludes the thesis with discussion, analysis of experiments, and future extension

of the project. Although some addition and improvements will help in increasing accuracy but

this project has successfully gathered useful static features, which helps in clustering

executables, efficiently and accurately using unsupervised learning algorithms.

	 	73

REFERENCES

[1] http://en.wikipedia.org/wiki/Malware

[2] http://www.sans.org/course/reverse-engineering-malware-malware-analysis-tools-techniques

[3] http://msdn.microsoft.com/en-us/magazine/cc301805.aspx

[4] http://www.csn.ul.ie/~caolan/publink/winresdump/winresdump/doc/pefile2.html

[5] http://msdn.microsoft.com/en-us/library/ms809762.aspx

[6] http://www.ntcore.com/files/inject2exe.htm#TheWindowsNTdata2_2

[7] Yibin Liao. PE-Header-Based Malware Study and Detection

[8] Scott Treadwell, Mian Zhou. A Heuristic Approach for Detection of Obfuscated Malware

[9] M Christodorescu, S Jha. Static Analysis of Executables to Detect Malicious Patterns

[10] P Comar, L Liu, S Saha, P Tan, A Nucci. Combining Supervised and Unsupervised Learning for Zero-

Day Malware Detection

[11] M Alazab, R Layton, S Venkataraman, P Watters. Malware Detection Based on Structural and

Behavioural Features of API Calls

[12] Kazuki Iwamoto, K atsumi Wasaki . Malware Classification based on Extracted API Sequences using

Static Analysis

[13] M Aljamea, V Ghanaei, C Iliopoulos, R Overill. Static Analysis and Clustering of Malware Applying Text

Based Search

[14] X Hu, S Bhatkar, K Griffin, K Shin. MutantX-S: Scalable Malware Clustering Based on Static Features

[15] I Santos, J Devesa, F Brezo, J Nieves, and P Bringas. OPEM: A Static-Dynamic Approach for Machine-

learning-based Malware Detection

[16] R Perdisci, A Lanzi, W Lee. McBoost: Boosting Scalability in Malware Collection and Analysis Using

Statistical Classification of Executables

[17] M Shafiq, S Tabish, F Mirza, M Farooq. A Framework for Efficient Mining of Structural Information to

Detect Zero-Day Malicious Portable Executables

[18] Juha Vesanto and Esa Alhoniemi, Student Member, IEEE. Clustering of the Self-Organizing Map

[19] http://en.wikipedia.org/wiki/Data_mining

	 	74

[20] http://en.wikipedia.org/wiki/Supervised_learning

[21] http://en.wikipedia.org/wiki/Unsupervised_learning

[22] http://vxheaven.org/vl.php

[23] http://en.wikipedia.org/wiki/Cluster_analysis

[24] Pavel Berkhin. Survey of clustering data mining techniques. Technical report, Accrue Software, San Jose,

CA, 2002.

[25] http://www.mathworks.com/help/stats/hierarchical-clustering.html

[26] http://en.wikipedia.org/wiki/K-means_clustering

[27] http://www.mathworks.com/help/stats/k-means-clustering.html#bq_679x-19

[28] http://en.wikipedia.org/wiki/Self-organizing_map

[29] http://www.mathworks.com/help/nnet/ug/cluster-with-self-organizing-map-neural-network.html

[30] http://www.visualstudio.com

[31] http://www.mathworks.com/products/matlab/

[32] http://www.vmware.com/products/workstation/

[33] Daniel Bilar. Opcodes as predictor for malware

[34] M Aljamea, V Ghanaei, C Iliopoulos, R Overill. Static Analysis and Clustering of Malware Applying Text

Based Search

[35] A Moser, C Kruegel, and E Kirda. Limits of Static Analysis for Malware Detection

[36] A Mohaisen, O Alrawi. AMAL: High-Fidelity, Behavior-based Automated Malware Analysis and

Classification

[37] http://www.mathworks.com/help/stats/gaussian-mixture-models.html

[38] http://www.mathworks.com/help/stats/hidden-markov-models-hmm.html

	 	75

VITA

The author was born in Ahmedabad, Gujarat, India. She obtained her Bachelor’s degree in

Computer Engineering from Gujarat University in 2010. She then gained 2 years of field

experience in India where she was part of research software development and network

engineering team, with a goal to produce high quality projects and virtual private network (VPN)

with security for the company.

To	utilize	her	education	and	work	experience	towards	earning	Masters	and	in	order	to	advance	her	

skills	 and	 knowledge	 in	 the	 field	 of	 Computer	 Science, she joined University of New Orleans

(UNO) in Fall 2012. Throughout the Masters program she had graduate assistantship where she

worked on various web applications. Courses	 such	 as	 computer	 forensics	 and	 network	 security	

kindled	her	interest	for	the	field	of	Information	Assurance	(IA).	To	pursue	her	interest	and	perform	

her	thesis	research	in	the	field	of	IA,	she	joined	Dr.	Irfan	Ahmed’s	(her	thesis	advisor)	research	team	

that	works	on	malware,	computer	security	and	digital	forensics	at	UNO.

	

	Feature selection and clustering for malicious and benign software characterization
	Recommended Citation

	Microsoft Word - 2014_MS_Chhabra_Dalbir

