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ABSTRACT 
 

The purpose of this research is to develop a 3-D numerical model on the Lower 

Mississippi River to simulate hydrodynamics and non-cohesive sediment transport. The study 

reach extends from Bonnet Carré Spillway (RM 127) to Head of Passes (RM 0). Delft3D 

with sigma coordinates was selected as the river modeling tool. This model River domain is 

characterized by a complex distributary system that connects the Mississippi River to the 

Gulf of Mexico. The boundary conditions were: water levels in the Gulf and Head of Passes; 

and discharges upstream. For the calibration, there are observed data for both types of 

boundary conditions. Several periods of high discharge were simulated to compare water 

level, discharge, velocity profiles and sediment transport with measurements and accomplish 

calibration and validation of the model. A calibrated 3-D model has been developed with the 

following %RMSE: 5% for stage; 6% for discharge; and 5% for sand load.      

 

Keywords: 3-D numerical modeling, Hydrodynamic simulation, Sediment transport, Lower 

Mississippi River, Distributary Flows 
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1. INTRODUCTION  
 

1.1 General 

 

The Mississippi River is one of the major rivers of the United States.  For centuries it 

has been a natural resource that has been used for industrial and economic purposes. As it 

approaches the Gulf of Mexico, it creates a large delta, covering approximately 13,000 square 

miles. The installation of flood protection systems such as levees, along with dams and 

navigation works have negatively affected the replenishment of sediment in the delta. A large 

amount of sediment (up to 120 million tons per year) is transported into the Gulf of Mexico 

instead of going to the wetlands depriving them of sediment (Allison & Meselhe, 2010; 

Parker & Sequeiros, 2006). 

 

The Mississippi River is a complex system and finding solutions to the restoration of 

the delta and adjacent wetlands is a very complicated task (CPRA, 2012). However, 

numerical modeling can be used as a tool in studying the behavior of the lower Mississippi 

River, through the analysis of hydrodynamics and sediment transport along the modeling 

domain (Meselhe, et al., 2005).   

  



Figure 1. Modeling Domain from Bonnet Carré to Head of Passes (Visible Earth, 2001) 



 



 
 

2 

This research project presents a three-dimensional model of the Lower Mississippi 

River reach extending from Bonnet Carré (RM 127) to the Head of Passes (RM 0) as shown 

in Figure 1. Along the reach, there are no mayor inflows but there are numerous outflows 

such as West Bay and Main Pass, and the reach downstream of Bohemia (RM 47) on the east 

bank of the River where there is a natural levee that overtops in periods of high flow. 

 

This study focuses on the development of a three dimensional numerical model that 

predicts the hydrodynamics and the non-cohesive sediment transport on the Lower 

Mississippi River. Delft3D (Deltares, 2011), a 3-D finite volume, orthogonal curvilinear grid, 

hydrodynamic and sediment transport computer software will be used for the 3-D modeling 

of the river domain.  

 

1.2 Problem Statement 

 

The use of computational models to replace physical models to study the 

hydrodynamics and sediment transport in environments such as rivers, lakes and coastal areas 

is a relatively recent approach but it is a very attractive tool. The computation of solutions for 

this kind of model involves solving continuity, momentum and energy equations along with 

differential equations for sediment continuity bringing the advantage of adaptability into the 

different physical domains compared to what a physical model can provide. Moreover, 

numerical models are not subjected to distortion effects as many physical models while being 

able to solve the equations for the same flow conditions as the ones observed in the field 

(Papanicolaou, Mohamed , Krallis, Prakash, & Edinger, 2008).   

 

The modeling of sediment transport in particular is a very challenging task. It is a very 

complex process that requires experimental, field and numerical studies in order to accurately 

predict bed load and suspended load, interaction between turbulence, sediment transport in 

unsteady flows, among other important parameters (Barkdoll & Duan, 2008).  

 

Furthermore, the Lower Mississippi River is a very unique domain. For high flow 

periods, the river bed follows a non-cohesive sediment bed behavior, which must be modeled 

under particular formulations in order to calculate erosion and deposition patterns (Pereira, 

2011). Under low flow conditions the cohesive sediment regime is more important. Some 

issues facing managers of the Lower Mississippi River are: a) river stage and potential 

flooding, b) erosion and shoaling that may impact navigation, and c) saltwater intrusion.  
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The effect of new outlets/diversions on these issues requires the predictive capability 

of various types of models ranging from 1-D to 3-D models.   

  

The Delft3D-FLOW module (Deltares, 2011) will be used to simulate the 

hydrodynamics and non-cohesive sediment transport in the Lower Mississippi River. The 

non-cohesive sediment transport simulations will be performed by the implementation of the 

Van Rijn (1984) formulation. 

  

 

1.3 Objective 

 

The main objective of this research project is to develop a Delft3D three dimensional 

hydrodynamics and non-cohesive sediment transport model for the Lower Mississippi River 

that is capable of simulating the river response to large diversions. 

 

Another important objective is to achieve more independence from other models for 

future boundary conditions. This model utilizes stage values as boundary conditions for the 

major outlets to the Gulf of Mexico. Stage is preferable to discharge boundary conditions 

since is available from monitoring stations and/or sea level rise models.  

 

 Finally, the model will be tested for applicability under storm surge hurricane 

conditions in the area evaluated.  
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2. LITERATURE REVIEW  
 

2.1 Background Research 

 

A three-dimensional morphological sediment transport model was developed by 

Lesser et al. using the Delft3D-FLOW module, a multidimensional hydrodynamic and 

transport model that calculates non-steady flow and transport phenomena (Deltares, 2011). 

Different cases were evaluated, simulating a straight flume, a curved flume and cases applied 

to wave and current flume and the Ijmuiden harbor area among other experiments. It was 

found on the validation studies a response on different important processes as entrainment, 

transport, settling of sediment, varying levels of uniform bed shear stress, bed slope effects, 

among others. They also established that further evaluation on the model had to be done due 

to some special cases evaluated showing high sensitivity to the bed roughness changes 

(Lesser, Roelvink, van Kester, & Stelling, 2004).   

 

A CH3D-SED three-dimensional hydrodynamic model was developed to compute 

sediment transport, erosion, and deposition in sand-bed rivers. This model was found to be 

well suited for predicting erosion and deposition patterns in bends, distributaries, and thalweg 

crossings between bends. The model was validated for the hydrodynamics and sediment 

transport simulations for several reaches of the Mississippi River. They found, for instance, at 

Red Eye Crossing (RM 223) a 13% difference between their predicted values and 

observations for sediment deposition. Moreover, for one of the models, at Head of Passes, 

they reproduced successfully the flow distribution, and found good agreement for observed 

and predicted velocities and suspended sediment concentrations (Gessler, et al., 1999).    

 

Pereira developed a three dimensional ECOMSED and a one dimensional CHARIMA 

unsteady flow mobile-bed model of the Lower Mississippi River from Belle Chasse (RM 76) 

to Main Pass (RM 3) to simulate river currents, diversion sand capture efficiency, erosional 

and depositional patterns with and without diversions. Also, the introduction of new 

diversions at different locations with different geometries and outflows was studied. He 

found that the smaller diversions had little impact on the downstream sand transport but 

larger diversions had important effects such as the reduction in the slope of hydraulic grade 

line, available energy for transport along channels, sand transport capacity in the main 

channel, and an increment in shoaling.  
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Upstream of the diversion he found a tendency for erosion and possible head-cutting while 

immediately downstream of the diversion there was a zone of deposition (Pereira, 2011). 

 

A 1-D numerical model from Tarbert Landing to the Gulf of Mexico was calibrated, 

validated, and applied to predict the response of the Lower Mississippi River to different 

stimuli, such as proposed diversions, channel closures, channel modifications, and relative 

sea level rise. The model was developed by using HEC-RAS 4.0, a 1-D mobile-bed 

numerical model, which was calibrated based on a discharge hydrograph at Tarbert Landing 

and a stage hydrograph at the Gulf of Mexico to calculate the hydrodynamics of the river. 

The model showed that RSLR will decrease the capacity of the river to carry bed material 

(Davis, 2010).  

 

Two one dimensional mobile bed numerical models were set for the Lower 

Mississippi River by Gurung (2012). A 1-D HEC-RAS model from Tarbert Landing to the 

Gulf of Mexico, based on the 1-D HEC-RAS model developed by Davis (2010); and a 1-D 

CHARIMA model from Belle Chasse to the Gulf of Mexico were developed in order to aid in 

the restoration and flood control effort. The models were calibrated and validated to predict 

the response of the river to channel modifications, varied flow and hurricane conditions. He 

observed flow distributions in the un-leveed channels, obtained prediction of shoaling or 

erosion in the main stem, and propagation of storm surges and reverse flows under hurricane 

conditions (Gurung T. , 2012) 

 

Terán et al. (2013) developed two models to simulate the surge due to Hurricane Isaac 

for the Lower Mississippi River, a 1-D HECRAS model from Tarbert Landing to the Gulf of 

Mexico and a 2-D Delft3D model from Bonnet Carré to Head of Passes. The period evaluated 

represented a very unusual event since the river discharge was near a record low flow and the 

storm was moving extremely slow. The 1-D and 2-D models were evaluated for their ability 

to accurately predict a hurricane surge in the Mississippi River validating against observed 

data obtained from the U.S. Army Corps of Engineers (USACE:rivergages, 2012). Both 

models gave good representations of the surge movement by capturing the height and speed 

of travel of the storm surge (Teran, et al., 2013). 
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A 2D/3D hydrodynamic and sediment transport model was set up in Yangtze Estuary 

region in China. The simulations were run using Delft3D-FLOW. The model was found to be 

capable of reproducing the hydrodynamics and sediment transport processes. It was applied 

to the storm surge problem and the morphological evolution of Jiuduansha Shoals. It was 

found that better results were obtained if wind and wave effects are taken into account for 

storm surge simulations; and that the fractions of cohesive and non-cohesive sediment should 

be also included to reproduce morphological changes (Hu, Ding, Wang, & Yang, 2008).  

 

A three dimensional model was developed for tidal estuary in the Pontchartrain 

Estuary to simulate long term salinity (Retana, 2008). For the development of the model, a 

multi-step approach was used involving a physical model of salinity exchange through a pass, 

a 3-D FVCOM model of the physical experiment, an FVCOM model of idealized 

Pontchartrain Basin and an FVCOM model for the entire estuary, including inputs from the 

Mississippi. The model reproduced seasonal salinity. It was also found that a variable friction 

coefficient distribution was needed to reproduce tides and salinity and that the model 

presented a high sensitivity to this parameter. It was also found that the salinity transport was 

improved by implementing a bi-directional open boundary condition in the vertical (Retana, 

2008).  

 

2.2 General Concepts 

 

2.2.1 Computational Fluids Dynamics 

  

The analysis of systems involving fluid flow, heat transfer and associated phenomena 

based on computer simulations is defined as Computational fluid dynamics (CFD). The 

introduction of more advanced high-performance computing hardware and user-friendly 

interfaces has promoted to the use of CFD in the solution of many problems including open 

channel flows (Versteeg & Malalasekera, 2007). 

 

CFD codes are structured around the numerical features: pre-processor, solver and 

post-processor (Versteeg & Malalasekera, 2007). The pre-processing step treats the input of a 

flow problem, which involves different activities. One of these is the geometry definition of 

the region to be studied, known as the computational domain. Another important task is the 

grid generation, which is the subdivision of the domain into smaller, non-overlapping sub-

domains called cells which constitute the mesh or grid.  
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Moreover, the phenomena to be analyzed must be selected, the fluid properties must be 

defined and appropriate boundary conditions must be specified (Versteeg & Malalasekera, 

2007).  

 

The solution process can be done through three numerical solution techniques, which 

include: finite difference, finite elements and spectral methods. The finite volume method 

represents a special finite difference formulation which involves the integration of a control 

volume (employing the divergence theorem to convert some of the volume integrals to 

surface integrals) that distinguishes the finite volume method from all other CFD techniques, 

and its statements for each finite size cell makes all definitions easier to understand than the 

finite element and spectral methods (Versteeg & Malalasekera, 2007). 

 

Finally the post-processing is the final last stage where results are visualized. There 

are versatile data visualization tools that allow domain geometry and grid display, plots of 

vector, lines and shaded contour, 2D and 3D surface, and also allow particle tracking, view 

manipulation (translation, rotation, scaling, etc.) and color PostScript or other graphics output 

(Versteeg & Malalasekera, 2007). 

 

2.2.2 Sediment Transport of Non-cohesive Sediment 

 

The transport of sediments by flow of water is the complete transport of solids that 

pass through a channel cross section. The sediment transport mechanisms can be explained 

by different kinds of motion (Graff, 1998).  

 

There are three main ways in which non - cohesive sediment particles are transported, 

which are rolling, suspension and saltation. The rolling motion is given when the bed shear 

velocity is slightly greater than the critical bed shear velocity for movement initiation; 

suspension takes place when the bed shear velocity is higher than the critical value allowing 

the movement of the particle without being in contact with the bed; and saltation occurs when 

the bed shear velocity is high enough to allow the particle to travel for a distance without 

hitting the bed but not high enough to be suspended (Pereira, 2011). Figure 2 shows the 

motion modes affecting non-cohesive sediment.    
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Figure 2. Particle motion mechanisms (UDM, 2013) 

 

According to the mechanism of transport the particles that constitute the total bed 

material load, qs, can be divided into bed load, qsb, the volumetric discharge per unit width of 

rolling particles; and suspended load, qss, the volumetric discharge per unit width of saltating 

particles. The total bed material load is defined as the summation of the bed load and 

suspended load as follows qs = qsb + qss (Graff, 1998). Some researchers use volumetric 

loading units and others use mass loading units. 

 

2.3 Delft3D General Overview 

 

 

Delft3D is an integrated modeling framework with a multi-disciplinary approach that 

can carry out 2-D and 3-D computations for coastal, river, lake and estuarine areas. It can 

perform simulations of flows, sediment transports, waves, water quality, morphological 

developments and ecology. Delft3D is composed of several modules which are grouped on a 

mutual interface being capable to interact with one another. The hydrodynamic simulations 

are run with Delft3D -FLOW, a multi-dimensional program that performs unsteady flow and 

transport phenomena resulting from tidal and meteorological forcing on a rectilinear or 

curvilinear grid. The sigma co-ordinate is used to define the vertical distribution for the three 

dimensional simulations (Deltares, 2011). 
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2.4 Delft3D Formulation 

 

2.4.1 Hydrodynamic equations 

 

 Delft3D-FLOW solves the Navier Stokes equations for incompressible flow. In 3D 

models the vertical velocities are computed from the continuity equation. The set of partial 

differential equations in combination with an appropriate set of initial and boundary 

conditions is solved on a structured grid (Deltares, 2011). 

 

 In the horizontal direction orthogonal curvilinear coordinates are used in the Cartesian 

system, (ξ, η). 

 

 For the vertical direction the system is defined based on the boundary fitting 

coordinate system known as the sigma (σ) co-ordinate system which is defined by the 

following equation, 

                                                        

                                                        (1) 

 

where z is the vertical co-ordinate in physical space; ζ is the free surface elevation 

above the reference plane (at z = 0); d is the depth below the reference plane and H is the total 

water depth given by H = d + ζ (Deltares, 2011). 

 

 
Figure 3. Example of σ-model (Deltares, 2011) 
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 The vertical σ system presents layers that are bounded by two sigma planes, and that 

follow the bottom topography and the free surface. The number of layers remain constant 

along the entire domain, however; the distribution of the relative layer thickness can be 

variable allowing to give more resolution to the area of interest such as the bed for sediment 

transport, among others. For this system we have that the bottom corresponds to σ = -1 and 

the free surface to σ = 0 as shown in Figure 2 (Deltares, 2011).  

 

The continuity equation is given by: 

  

 

(2) 

 

 

 

where U is the depth-averaged velocity in ξ-direction, V is depth-averaged velocity in 

η-direction, and  √      √     are coefficients used to transform curvilinear to rectangular 

coordinates. With Q representing the contributions per unit area due to the discharge or 

withdrawal of water, precipitation and evaporation: 

 

 (3) 

 

 

The momentum equations in the horizontal for the ξ-direction and the η-direction are 

given respectively by: 

  (4) 
and 

(5) 
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where u, v, w are the flow velocities in  ξ-direction, η- direction and σ –direction 

respectively.  The three dimensional turbulence is represented by vV, which is the vertical 

eddy viscosity defined as: 

                                           (6) 
 

vV
back

 is the background vertical mixing coefficient; vmol is the kinematic viscosity of 

water and v3D is computed by a 3-D turbulent closure model.  

 

 Density variations are neglected, except for the pressure gradients, Pξ  and Pη and the 

horizontal Reynold’s stresses are represented by the forces Fξ  and Fη.  

 

 The vertical velocity ω is computed from the continuity equation and it represents the 

vertical velocity relative to the moving σ-plane. It is define as follows: 

 

    (7) 
  

The physical vertical velocities w, which are required for the post-processing, can be 

expressed in the horizontal velocities, water depths and vertical ω-velocity according to: 

 

         (8) 

  

Under shallow water assumption, the vertical momentum equation is reduced to a 

hydrostatic pressure equation given by: 

 

                                                      (9) 
 

 where g is the acceleration due to gravity and ρ is density of water.  After integration, 

the hydrostatic pressure is presented as: 
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                               (10) 

 

 For water of constant density and taking into account the atmospheric pressure, the 

pressure gradient is defined as: 

 

 

          (11) 

 

             (12) 

 

 

  

The gradients of the free surface level are the so-called barotropic pressure gradients. 

The atmospheric pressure is included in the system for storm surge simulations, since 

atmospheric pressure gradients are important in the external forcing at peak winds (Deltares, 

2011).  

 

 If density is non-uniform, the pressure gradients related to temperature and salinity 

effect are defined as: 

 

 

(13) 

 

 

(14) 

 

The forces Fξ and Fη in the horizontal momentum equations, which represent the 

unbalance of horizontal, are expressed as:    

 

 

     

   (15) 

 

    

   (16) 
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where τ is the shear stress. For the small-scale flow (partial slip along closed 

boundaries), for instance when shear stresses must be taken into account, expressing the shear 

stresses as: 

 

                                     (17) 

               (18) 

                                  (19) 

 

For large-scale flow simulated with coarse horizontal grids, for example where shear 

stress along the closed boundaries may be neglected, the forces Fξ and Fη are simplified as: 

 

 

   (20) 



 

 

(21) 

 

 

The discharge of water taking into account momentum adds a term in the U and V 

momentum equation: 

 

(22) 

(23) 

 

where Mξ is the source or sink of momentum in ξ-direction; Mη is the source or sink of 

momentum in η-direction;  ̂ is the velocity of water discharged in ξ-direction and   ̂ is the 

velocity of water discharged in η-direction.  
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2.4.2 Transport Equations 

 

 The transport of suspended solids, dissolved substances, salinity and heat is often 

required in modeling water bodies. The transport is simulated under an advection-diffusion 

formulation in three dimensions. In order to represent discharges and withdrawals, the source 

and sink terms are included. The transport equation is defined as: 

 

 (24) 

 

 where DH is the horizontal diffusion coefficient; DV is the vertical diffusion 

coefficient; λd represents the 1
st
 order decay process and S is the source and sink terms per 

unit area due to discharge (qin) or withdrawal (qout) of water (Deltares, 2011).  

 

2.4.3 Boundary Conditions 

 

 A group of initial and boundary conditions for water levels and horizontal velocities 

must be specified to get a solution for the 3D and 2D depth-averaged shallow water equations 

applied in Delft3D-FLOW. The contour of the model domain consists of closed boundaries 

which are parts along “land-water” lines (river banks, coastlines) and open boundaries which 

are parts across the flow field. Closed boundaries are natural boundaries, while open 

boundaries are always artificial “water-water” boundaries. To limit the computational area 

and computational effort in a numerical model it is necessary to introduce open boundaries. 

 

 For Delft3D-FLOW the flow at the open boundaries is sub-critical, which means that 

the velocity of wave propagation is bigger than the magnitude of the flow. For subcritical 

flow there are two situations, inflow and outflow. At inflow, where the velocity component 

along the open boundary is set to zero, it is necessary to specify two boundary conditions 

while at outflow it is required to specify one boundary condition. The first boundary 

condition is external forced by the water level, the normal velocity, the discharge rate or the 

Riemann invariant. The second boundary condition is a built-in boundary condition. 
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 The reach of the built-in boundary condition is frequently restricted to only a few grid 

cells near to open boundary, in that case is recommended to specify the tangential velocity 

component, but for Delft3D-FLOW it is not possible yet to specify it at the input, therefore, it 

would be suitable to define the model boundaries at locations where the grid lines of the 

boundary are perpendicular to the flow with the purpose of obtaining a realistic flow pattern 

near the open boundary (Deltares, 2011). This should be accomplished in designing the grid, 

since all of the mesh should be orthogonal. 

 

2.4.4 Turbulence 

 

 The turbulent scales of motion are solved as a “sub-grid" process since the vertical 

and horizontal grid is usually too coarse. The primitive variables are space and time averaged 

quantities. Filtering the equations leads to the need for appropriate closure assumptions. 

 

 The horizontal eddy viscosity coefficient vH and the eddy diffusivity coefficient DH 

are much larger than the vertical coefficients vV and DV. The horizontal coefficients are 

assumed to be a superposition of molecular viscosity, 2D-turbulence and 3D-turbulence.  

 

 The three-dimensional turbulence is computed following one of the turbulence closure 

models. The k-L turbulence closure model is used for the 3-D simulations performed in this 

research.  

 

2.4.4.1 k-L Turbulence Model 

 

The к-L model is a first order turbulence closure scheme implemented in Delft3D-

FLOW in which the mixing length L is given by the following equation:  

 

                                      (25) 

                          

where κ is the turbulent kinetic energy; d is the depth below some horizontal plane of 

reference; H is the total water depth; FL (Ri) is the damping function. 
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The velocity scale is supported on the kinetic energy of turbulent motion. The 

turbulent kinetic energy к follows from a transport equation that contains an energy 

dissipation term Dk, a buoyancy term Bk and a production term Pk, assuming that these terms 

are the dominating terms and that the horizontal length scales are much larger than the 

verticals ones.  

 

The transport equation is employed in a non-conservative form. The second 

assumption leads to simplification of the production term. The transport equation for к is as 

follows:  

  

        (26) 

 

where Dk is an energy dissipation term, Pk is a production term, Pkw is a production 

term due to wave action; Bk is a buoyancy flux term and ε is the dissipation in transport 

equation for turbulent kinetic energy . 

 

 

With,  

 

                                                     (27) 

 

 

The horizontal gradients of the horizontal velocity and all the gradients of the vertical 

velocities are neglected in the production term Pk of turbulent kinetic energy, and then this 

term is given by: 

                                         (28) 

 
 

A more extended production term Pκ of turbulent kinetic energy (option “partial slip”, 

rough side wall) can be used for small-scale applications, given by: 
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  (29)  
 

In this equation, ν3D is the vertical eddy viscosity, expressed by: 

 

                                                      (30) 

 

where c’µ is a constant determined by calibration, derived from the empirical constant 

cµ in the κ-ξ model. 

 

In the two previously Pк equations expressed, it has been assumed that the gradients 

of the vertical velocity w can be neglected with respect to the gradients of the horizontal 

velocity components u and v. In the same way, has been neglected the horizontal and vertical 

(σ-grid) curvature of the grid. 

 

The turbulent energy production due to wave action is given by Pkw, as is described in 

the following equation: 

 

                    (31) 

 

where z’ is the vertical co-ordinate; Dw is the total depth-averaged due to wave 

breaking; ρw is the density of the water;  Hrms/2 is the root-mean-square wave height. 

 

Turbulent kinetic energy is converted into potential energy in stratified flows. This is 

represented by a buoyancy flux Bk expressed by: 

 

                                                      (32) 

                                                                                                                                                                                

using the Prandtl-Schmidt number σρ = 0.7 for salinity and temperature and σρ = 1.0 

for suspended sediments. 
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For the к-L model, it is assumed that the dissipation ε depends on the mixing length L 

and kinetic turbulent energy к, according to:  

                                                               (33) 

 

where cD, is a constant determined by calibration, derived from the constant cμ : 

 

                                                      (34) 
  

 

It is necessary to specify boundary conditions to obtain a solution from the transport 

equation. It is assumed a local equilibrium of production and dissipation of kinetic energy at 

the bed which leads to the following Dirichlet boundary condition: 

 

                                                         (35) 

 

To determine the friction velocity u*b at the bed from the magnitude of the velocity in 

the grid point nearest to the bed, it is assumed a logarithmic velocity profile, using the 

following expression: 

 

                                                    (36) 
 
 

where   ⃗⃗⃗⃗   is the vertically averaged friction velocity; Δzb is the distance to the 

computational grid point closest to the bed  ; z0 is the bed roughness length. The bed 

roughness (roughness length) might be improved by the presence of wind generated short 

crested waves. 

 

A similar Dirichlet boundary condition is prescribed, in case of wind forcing for the 

turbulent kinetic energy к at the free surface: 

 

                                                             (37) 
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where u*s is the friction velocity at the free surface. The turbulent kinetic energy k at 

the surface is set to zero, in the absence of wind. 

 

At open boundaries, the next equation is used to calculate the turbulent energy k 

without horizontal advection: 

 

                                 (38) 

 

For a logarithmic velocity profile this will approximately lead to the next linear 

distribution based on the shear-stress at the bed and at the free surface: 

 

                             (39) 

 

 

where u*b is the modified friction velocity near bed; u*s is the friction velocity at the 

free surface. 

 

2.4.5 Van Rijn (1984) 

 

 For the transport of fine sediments without waves, Van Rijn (Rijn, 1984a; 1984b; 

1984c) proposes the following relations.  The following expression gives the bead – load 

transport rate: 

(40) 

(41) 

 

 

where    is a non-dimensional particle diameter;     is the median diameter of 

sediment; and T a dimensionless bead shear parameter is calculated with the following 

expression: 

                                                      (42) 
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 According to Shields, τbc this is normalized with the critical bed shear stress using 

the following expressions: 

                                                    (43) 

 

                                                  (44) 
 

 

                                                  (45) 
 

 

 where Cg,90 can be defined as the Chézy coefficient, related to the grain and defined 

by this expression: 

 

                                                 (46) 
 

 According to Shields, the critical shear is written:  

 

                                                 (47) 
 

 From this, θcr defined as the Shields parameter and a function of the dimensionless 

particle parameter,   obtained with the following expression: 

 

                                                  (48) 

 

 On the other hand, the expression for the suspended transport is: 

 

                                                  (49) 
 

  

 where,   is a reference concentration, given by: 

 

                                            (50) 
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 q is the depth averaged velocity; h is the water depth;     is the shape factor with 

only and approximate solution:  

 

 

 

 

                                              (51) 

 

                                              (52) 

 

 

where, ξc is the reference level or roughness height (can be interpreted as the bed-load 

layer thickness); zc is the suspension number given by: 

 

                                                   (53) 
 

 

                                                             (54) 
 

 

                                              (55) 

 

 

                                             (56) 

 

“The bed-load transport rate is imposed as bed-load transport due to currents,     , 

while the computed suspended load transport rate is converted into a reference concentration 

equal to      ” (Deltares, 2011). 
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2.4.6 Non-cohesive sediment dispersion 

 

The vertical sediment mixing coefficient can be calculated using the algebraic or k-L 

turbulence model, being computed from the vertical fluid mixing coefficient. When it is non-

cohesive sediment, the Van Rijn’s “beta factor” multiplies the fluid mixing coefficient. The 

beta factor describes the different diffusivity of a fluid “particle” and a sand grain, and the 

mathematical representation is: 

 

                                                        (57) 

 

where εs
(l )

 is the vertical sediment mixing coefficient for sediment fraction; β is the 

Van Rijn’s “beta” factor for the sediment fraction; εf
(l )

 is the vertical fluid mixing coefficient 

calculated by the selected turbulence closure model (Deltares, 2011). 

 

2.5 Lacey Regime Equations 

 

The Lacey Regime Equations are used for the design of channels, stating a set of stable 

channel dimensions for each given flow and silt load (Davis, 2010). The depth and width of 

the channel are given based on the wetted perimeter and hydraulic radius.  

 

The width is represented by the expression below, 

 

                                                          (58) 

 

The depth of the channel is represented by R which is given by, 

 

                                                  (59) 

                                                           (60) 

 

To estimate the velocity in the channel the next expression is used,  

 

                                                         (61) 

The cross-sectional area of the channel can be found by the continuity equation, 
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                                                   (62) 

 

 where P is the wetted perimeter which represents the width, ft; Q is the flow rate, 

ft
3
/s; fs is the silt factor used to incorporate sediment effect; D50 is the median grain size, in; v 

is the velocity, ft/s; R is the hydraulic radius which represents the depth, ft; A is the cross-

sectional area, ft
2
.  

 

To obtain the dimensions of the equivalent channels, the cumulative width and depth 

of the cuts or bifurcated channels are used.  

 

2.6 Statistical Analysis  

 

The root mean square error (RMSE), the coefficient of determination of r and the bias 

between the observations and simulated results were obtained using the following equations: 

 

                       (63) 
 

                                         (64) 
 

                                    (65) 
 

where Oi is the observed value; Pi is the modeled value; O  is the average of the 

observed value, P  is the average of the modeled value;  N is the number of observations 

(Krause, Boyle, & Base, 2005; Pereira, 2011). 
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3. METHODOLOGY 
 

3.1 Model Selection 

 

 Different three dimensional models had to be evaluated based on their capabilities 

to decide what the best option was for the hydrodynamics and sediment transport simulations 

on the modeling domain. After a preselecting process, two models were considered for this 

application, mainly based on their availability, ECOMSED and Delft3D. 

 

3.1.1 ECOMSED   

 

ECOMSED is a sigma coordinate, free surface model, designed to realistically 

simulate time-dependent distribution of waters levels, currents, temperature, salinity, tracers, 

cohesive and non-cohesive sediments and waves in marine and freshwater systems. It is 

based on the Princeton Ocean Model developed by Alan Blumberg and George Mellor (1987) 

with modifications for its applicability in estuaries and coastal oceans and subsequent 

additions from many other contributors. The major assumption in this code and most others is 

that the vertical pressure distribution is hydrostatic (McCorquodale & Georgiou, 2006) 

 

3.1.2 Delft3D 

 

Delft3D offers the Delft3D-FLOW module, which is a multidimensional (2D and 3D) 

hydrodynamic and transport simulation model which calculates non-steady flow and transport 

phenomena resulting from tidal and meteorological forcing on a curvilinear, boundary fitted 

domain. In 3D simulations, the vertical grid is defined following the sigma transformation. 

This results in a high computing efficiency because of the constant number of vertical layers 

over the whole computational domain (McCorquodale & Georgiou, 2006). 

 

3.1.3 Selection Criteria 

 

 The model selection criteria are always subjected to the problem that is to be solved 

but some common aspects to evaluate are: the availability of the model; what processes can 

be simulated; cost of obtaining and implementing the code; assumption and limitations; ease 

of utilization; quality of documentation and user manual; hardware and software 

requirements; grid system; formulation; graphic user interface; order of accuracy; among 

other important parameters for the domain to be studied (McCorquodale & Georgiou, 2006).  
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 Based on the most important characteristics to simulate the hydrodynamics and non-

cohesive sediment transport on the Lower Mississippi River, Table 1 is constructed to 

visualize in a more practical way which model is more suitable for this purpose.  

 
Table 1. Model Characteristics for Selection 

Characteristic ECOMSED Delft3D 

Public Domain Yes Yes 

Distributor HydroQual Deltares 

Formulations Finite Volume Method Finite Volume Method 

Grid Structured Structured 

Sediment Module Yes Yes 

Wetting/Drying No Yes 

Pre-processing Tool No Yes 

Post Processing Tool No Yes 

Cost Free Free 

 

 After analyzing different aspects of models available, Delft3D turned out to be a 

more convenient and powerful option to perform the processing, noting that the graphical 

user interface provides pre-processing and post-processing tools that ease the modeling 

process.  The modeled physics are similar in both models. 

 

 Delft3D was developed to solve the shallow wave equations in 2-D and 3-D. It has 

been successfully applied to coastal areas, estuaries and rivers. It is a public domain model 

with a large user group. It was selected for the Mississippi River because it includes: riverine 

and estuarine hydrodynamics, sediment transport and channel morphology. It has an excellent 

graphics interface (Teran, et al., 2013). 

 

3.1.4 Delft3D Capabilities 

 

 The Delft3D main capabilities that are suited for this project research involve:  

 3-D hydrostatic numerical model 

 Orthogonal curvilinear grid  

 Based on a sigma (σ) level coordinates for the vertical distribution  

 Perform non-cohesive sediment transport  

 Provide morphology updating options during simulations  

 Possibility of performing parallel computations  
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3.2 General Modeling Setup 

 

A 3-D Delft3D numerical model was developed for hydrodynamics and non-cohesive 

sediment transport simulations on the Lower Mississippi River. 

 

3.2.1 General Considerations  

 

The study area extends from Bonnet Carré (RM 127) to the Head of Passes (RM 0). 

The model was applied to simulate the hydrodynamics and non-cohesive sediment transport 

of the modeling domain for high flow periods. After experimentation with a range of time 

steps, the simulations were performed using a time step of 0.5 minutes. The sigma levels 

were variable according to a parabolic distribution with the smallest layers near the bed. A 

variable roughness was used over the domain. Van Rijn’s 1984 sediment formulations were 

used for the sediment transport simulations. The basic model developed at the beginning of 

the research project was applied to periods under hurricane storm surge conditions. 

 

3.2.2 Modeling Domain 

 

The modeled reach in this study extends from Bonnet Carré (RM 127) to the Head of 

Passes (RM 0), which is shown in Figure 3. Along the reach there are some continuous 

outflows such as West Bay and Main Pass, and the east bank of the river downstream of 

Bohemia (RM 47) has a natural levee that overtops in periods of high flow. Some other 

outlets are: Grand Pass and Tiger Pass, Baptiste Collette, Fort St Philip, Caernarvon and 

Davis Pond and are also represented in the grid corresponding to this domain.    
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Figure 3. Modeling Domain (USGS, 2007) 

 

3.2.3 Model Development  

 

To start up the model, a 2-D depth-averaged model in the study reach was set up 

based on a 2-D hydrodynamic model built by Dr. Pereira (Pereira, 2-D Regional Delft3D 

model for the Mississippi River Hydro-study, 2012) based on discharge boundary conditions 

for all outlets for the same reach. Figure 4 shows the original grid indicating all outlets 

boundary conditions being discharge type. First, a uniform bathymetry and uniform 

roughness for the main channel and outlets were used. For this stage, the modeled was to be 

transformed from a discharge based boundary condition for the outlets to a stage based model 

for the most important outlets in the domain. This process had to be done step by step, since 

those changes lead to instabilities.  

 

Bonnet Carré 

RM 127 

Head of Passes 

RM 0 
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Figure 4. Initial Grid map Indicating Boundary Conditions Type 

 

 

After the main outlets (West Bay, Main Pass, Bohemia Spillway, Grand Pass and 

Tiger Pass, Baptiste Collette and Fort St Philip) were set to stage boundary conditions, the 

model was converted into a three dimensional model, with 10 layers under a parabolic 

scheme, going from thinner layer at the bottom to thicker at the surface. Along with the 

conversion to a 3-D model, the bathymetry and roughness Manning’s n were converted to a 

variable distribution to obtain a more realistic setting of the model. Figure 5 shows the 

transitional grid between the original model grid and the final grid with the extended grid. 
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Figure 5. Transitional Grid map Indicating Boundary Conditions Types 

 

Moreover, some overflow zones were extended to account for channels present 

between the Bohemia and Fort St Philip area. Figure 6 shows the last grid for the extended 

and refined grid.  

 

 
Figure 6. Final Grid map Indicating Boundary Conditions Types 
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3.2.3.1 Grid Generation 

 

The generation of the grid by using the Delft3D was a simple but time consuming 

process. The tool used for this purposed was the RGFGRID. The grid was built on a map 

sample that was imported into the grid generation tool. Figure 7 shows the samples being 

imported to the grid generation tool.    

 

 
Figure 7. Sample importing 

 

 The next step consisted in creating splines following the shape of the river section. 

Figure 8 displays the spline creation on a section of the main stem of the river.  

 

 
Figure 8. Spline creation 
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After the splines are defined, they must be converted into grid. Figure 9 shows the 

splines being converted to grid.  

 

 
Figure 9. Grid creation 

 

Then splines must be deleted, which is shown on Figure 10.   

 

 
Figure 10. Splines deletion 

 

Depending on the way the splines are drawn, it might be necessary to refine or 

derefine the grid generated. Figure 11 shows both options on the main menu.  
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Figure 11. Refinement and Derefinement  

 

Once the grid has been developed, it is necessary to orthogonalise it, this process is 

shown in Figure 12.  

 

 
Figure 12. Grid Ortogonalisation 

 

 After the grid is created, the file must be exported as a .grd file.     
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3.2.3.2 Bathymetry Interpolation 

 

  The bathymetry interpolation was done by using the QUICKIN tool. The generated 

grid file (.grd) and depth samples (.xyz file) must be imported into the interface. Figure 13 

shows the grid being imported into the program, and Figure 14 presents the bathymetry and 

the grid being superposed.    

 

 
Figure 13. Grid Importing into QUICKIN 

 

 
Figure 14. Depth and Grid Superposition 

 

Once both files have been imported into the tool, it is necessary to interpolate the 

depths into the grid as shown in Figure 15.  
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Figure 15. Bathymetry Interpolation  

  

Finally, the depths must be exported as a .dep file to create the bathymetry file, as 

displayed in Figure 16.    

 

 
Figure 16. Depth file Generation 

 

 

3.2.3.3 Roughness File Generation 

 

 The roughness file for a spaced varied distribution is generated using the QUICKIN 

tool. As done for the bathymetry interpolation, the grid must be imported to the tool. Once 

the grid has been displayed, a polygon around the desired area must be drawn to define the 

value needed. Figure 17 shows a polygon around an area of the grid. 
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Figure 17. Polygon definition 

 

 Once the polygon was drawn, the value for the roughness must be defined. Figure 18 

shows the option to insert the roughness value, which is created like a depth file.  

 

 
Figure 18. Roughness Definition 
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Once the .dep file has been exported, an .rgh file must be created containing the 

values assigned as depth on this last .dep file. It is important to highlight that the roughness 

file needs to be filled with a component on the u direction, and one for the v direction. As 

recommended by Deltares, both components were defined with the same value, meaning the 

values defined as depth for the roughness are pasted twice on the roughness file.  

 

3.2.3.4 Boundary Condition Definition 

 

The boundary conditions are defined on the Flow input tool. Once the grid has been 

generated, the .mdf file (main input file) can be created to define all the variables needed, 

including the boundary conditions. The grid file must be imported into this input file. Figure 

19 shows the main options on the menu of the .mdf generation file, where the Boundaries 

button can be observed. Under this option, using the visualization area, the boundaries are 

defined.  Figure 20 shows the created boundary.  

 

 
Figure 19. Boundary Creation 
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Figure 20. Boundary Definition 

 

 The flow input tool only allows the specification of two values for each boundary, one 

initial and one final value. However, the data were introduced externally on the ASCII file 

generated (.bct file).    

 

3.3 Hydrodynamics and Sediment Transport Set up  

 

3.3.1 Grid Resolution  

 

The grid has a varied resolution. The total grid consists of 2004 points in the M 

direction and 117 points in the N direction. The main channel consists of about 20 cells 

across. The typical grid dimension is 50m. Figure 21 shows a portion of the grid where the 

number of cells across the channel can be observed.  
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Figure 21. Final Grid View  

 

3.3.2 Bathymetry 

 

Setting up the bathymetry for this model was a very wearying task. The construction 

of the bathymetry file consisted on compiling data from different sources, such as LIDAR 

2003 bathymetry data, Corps of Engineers Multibeam, Lake Pontchartrain Basin Foundation 

(LPBF) surveyed height of land data and Google Earth data.   

 

The surveyed depths were used to build the bathymetry where available; otherwise, 

the depths were estimated by using Lacey Regime equations based on the measured widths of 

the channels (Google Earth). For the overflow areas, such as Fort St Philip and Ostrica, some 

equivalent channels were used to replace the cuts present in those areas (based on ΣAR
2/3

) 

that have the capability to extract flow from the main channel. Figure 22 displays the 

dimensions for the equivalent channels, and Figure 23 shows the bathymetry and the grid 

around that area.  

   

Also, the Gras Pass, which is a channel that formed in the Bohemia area during the 

spring flood of 2011, was added to the bathymetry by using the same approach. 
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Figure 22. Cuts at Fort St Philip (Google Earth) 

 

 
Figure 23. Equivalent Channels at Fort St Philip  

 

The high land that works as a natural levee in the Bohemia area was treated as a 

broad-crested weir, which was built based on data provided by LPBF. 
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The bathymetry distribution for the modeling domain is shown in Figure 24. 

 

 
Figure 24. Bathymetry distribution along the domain 

 

3.3.3 Layer Distribution 

 

The vertical sigma coordinates consist on 10 layers being 11 sigma levels along the 

entire domain. They are distributed under a parabolic profile, going from the thinner layer at 

the bottom to the thicker one at the surface. Figure 25 shows the vertical profile for the layer 

distribution. 

 
Figure 25. Parabolic Profile for Vertical Layer Distribution 
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3.3.4 Roughness 

 

The roughness was defined under Manning’s n formulation.  It was a varied 

roughness along the entire domain. The Manning’s n was the main parameter to calibrate the 

hydrodynamics in the model. Tables 2 and 3 present the Manning’s n used in the different 

areas of the modeling domain.  

 

Table 2. Manning’s n roughness for main channel  

Area – Main Channel  Manning’s n 

Bonnet Carré (RM 127) to New Orleans (RM 103) 0.02600 

New Orleans (RM 103) to IHNC Lock (RM 93) 0.02700 

IHNC Lock (RM 93) to West Point a la Hache (RM 

49) 
0.01680 

West Point a la Hache (RM 49) to  Bohemia area (RM 

44) 
0.01450 

Bohemia area (RM 44) to Venice (RM 11) 0.01485 

Venice (RM 11) to Head of Passes (RM 0) 0.01750 

 

Table 3. Manning’s n roughness for outlets 

Area – Outlets  Manning’s n 

Bohemia Spillway 0.06 

Bohemia 2 0.06 

Ostrica 1 0.08 

Ostrica 2 0.07 

Equivalent Channels @ 

Ostrica 
0.05 

Fort St Philip 0.10 

Fort St Philip 2 0.10 

Equivalent Channels  0.03 

Baptiste Collette 0.03 

Grand + Tiger Pass 0.04 

West Bay 0.06 

Main Pass 0.03 

Gras Pass 0.05 

 

Figure 26 displays the Manning’s n roughness distribution map in the modeling 

domain.  
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Figure 26. Manning’s n Roughness distribution along the domain 

 

 

3.3.5 Boundary Conditions 

 

The upstream boundary condition at Bonnet Carré (RM 127) and Caernarvon and 

Davis Pond diversions corresponds to daily discharge flows obtained from a calibrated 1-D 

HEC-RAS model from Tarbert Landing to Gulf of Mexico (Gurung T. , 2012).  The 

downstream end, Head of Passes (RM 0), and outlets (Main Pass, West Bay, Baptiste 

Collette, Grand Pass + Tiger Pass, Fort St, Philip and Bohemia Spillway) boundary 

conditions consist on daily stage values obtained from USACE data (USACE:rivergages, 

2012) and NOAA data (NOAA:Tides&Currents, 2012). The outlets data corresponds to data 

at the Gulf of Mexico for the corresponding periods. Figure 27 shows the modeling domain 

and boundaries along the domain.  
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Figure 27. Boundaries along the modeling domain 

 

 

3.3.6 Sediment Transport Main Settings 

 

The sediment transport formulations correspond to the Van Rijn (1984) equations. 

Three sediment classes are included based on the particle size. Table 4 shows the grain sizes 

and settling velocities corresponding to the different classes of sand particles simulated in the 

model.  

 

The sediment size distribution was completed based on a USACE report (Nordin & 

Queen, 1992).  

 

Table 4. Sediment Classes, Particle Size and Fall Velocities 

Sediment 

Class 

Sediment Size, D50 

(mm) 

Settling Velocity 

(m/s) 

Very Fine Sand 0.08833 0.0053 

Fine Sand 0.16667 0.0180 

Medium Sand 0.33333 0.0430 
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3.3.7 Other important parameters and settings 

 

For the hydrodynamics and non-cohesive sediment transport simulations some 

parameters can be summarized as follows: 

 Initial water level: 1.5m 

 Initial Sediment Concentration (all classes): 0.0Kg/m
3
 

 Specific sediment density: 2650Kg/m
3
 

 Horizontal Eddy Viscosity: 1.0m
2
/s 

 Vertical Eddy Viscosity: 0.1m
2
/s 

 Horizontal Eddy Diffusivity:  10.0m
2
/s 

 Turbulence 3-D Model: k-L 

 Update bathymetry during FLOW simulation: Enabled 

 Equilibrium sand concentration profile at inflows boundaries: Enabled 

 Reference height (.tra files): 2.5m 

 Alpha Coefficient (.tra files): 1.0 

 

It is important to highlight that both the Alpha Coefficient and the Reference height 

were the main parameters to obtain the sediment transport calibration. In this project many 

different setting combinations were tested; however, for simplification purposes, only 

calibrated results will be presented.  

 

3.4 Hurricanes Application Setup 

 

The model used for the Hurricane application consisted on the two dimensional model 

based on the original grid and stage boundary conditions. Two hurricane periods were 

simulated to obtain an estimate of the behavior of the model for storm surge propagation 

analysis: Hurricane Isaac and Hurricane Gustav.  

 

3.4.1 Grid Resolution 

 

The grid presented a varied resolution. The first grid developed in general terms is a 

100mx100m curvilinear grid. The main channel consists of 9 cells across with widths of 

about 1000m in average. Figure 28 shows a section of the grid where the number of cells 

across the channel can be observed for the original grid.  



 
 

45 

 
Figure 28. Original Coarser Grid View  

 

3.4.2 Boundary Conditions 

 

The upstream boundary condition corresponds to the hourly discharge flows at 

Bonnet Carré (RM 127) obtained from 1-D HEC-RAS model on storm surge developed by 

Terán et al. (2013). The downstream end, Head of Passes (RM 0), and outlets (Main Pass, 

West Bay, Baptiste Collette, Grand Pass + Tiger Pass, Fort St, Philip and Bohemia Spillway) 

boundary conditions consist on hourly stage values. Figure 29 shows the grid and locations 

where boundary conditions are given. 

 

 
Figure 29. Original Coarse Grid with Boundary Condition Locations  
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3.4.3 Other important parameters 

 

Other important parameters to set up the hurricane model were the bathymetry, initial 

conditions, time step and the roughness. 

 

The bathymetry file used consisted on a varied depth distribution going from 10m to 

25m in different areas of the reach. Most outlets have a 10m depth, except for Bohemia 

which has 5m. Figure 30 shows the bathymetry along the domain. 

 

 
Figure 30. Depth varied distribution along the domain for first grid 

 

 

For the initial condition a 2m uniform water level was set. The time step used for the 

hydrodynamic simulations was 0.4 min. The roughness was set to a 0.02 uniform value for 

the Manning’s roughness coefficient in both components.  
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4. RESULTS 
 

This chapter presents the results obtained for the different periods simulated, showing 

hydrodynamics by looking at stage, discharge and velocity profiles; and sediment transport of 

non-cohesive sediment in different stations along the modeling domain. The results presented 

also include the application of the model to hurricane storm surge simulations under a two 

dimensional approach.  

 

4.1 Hydrodynamics  

 

The hydrodynamic simulation results are presented for the different periods evaluated. 

Results for water levels, discharges and velocities are shown along different stations of the 

river.  

 

The hydrodynamic simulations were mainly run for three periods. The first period 

simulations were performed from 03/25/2011 to 04/10/2011, referred to as March/April 2011. 

The second one corresponds to simulations run from 05/10/2011 to 06/01/2011, referred to as 

May 2009; and the simulations for the third one started on 05/10/2009 and ended on 

05/30/2009. Some other periods were run in order to obtain velocity profiles and non-

cohesive sediment transport results based on the data available.     

 

4.1.1 Stage Results  

 

The model stage results are plotted against observed data for the different stations. 

The observed data is obtained from the U.S. Army Corps of Engineers (Rivergages) website 

(USACE:rivergages, 2012). 

 

4.1.1.1 March/April 2011 

 

Results for some stations along the domain for the March/April 2011 period are 

presented in this section. Figure 31 shows the observed and simulated stage values at the 

upstream end, Bonnet Carré (RM 127) of the modeling domain, Figure 32 presents the 

observed and simulated water levels at New Orleans (RM 103) and Figure 33 shows the stage 

at Venice (RM 11) 
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Figure 31. Simulated and Observed Water Level at Bonnet Carré - March/April 2011 

 

 

 
Figure 32. Simulated and Observed Water Level at New Orleans - March/April 2011 
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Figure 33. Simulated and Observed Water Level at Venice - March/April 2011  

 

 

 A water level longitudinal profile is presented on Figure 34, displaying the observed 

and modeled stage results along the modeling reach.  

 

 
Figure 34. Water Level Profile along the Main Channel - March/April 2011 

  

The metrics analysis was performed to observe the agreement in observed and 

simulated data. The metrics for stage values is presented on Table 5, displaying the values for 

the different station and determining the overall efficiency of the model.  

   

  



 
 

50 

Table 5. Metrics for stage results – March/April 2011 

Station RMSE (%) Bias (ft) Overall r 

Bonnet Carré (RM 127) 1 -0.03 

0.99 

New Orleans (RM 103) 5 -0.60 

IHNC Lock (RM 93) 8 -0.89 

West Point a la Hache (RM 

49) 

2 0.04 

Venice (RM 11) 3 0.03 

 

 

4.1.1.2 May 2011 
 

The observed and simulated stage values for the different stations during these period 

simulations are presented next. Figure 35 shows the stage values at Bonnet Carré; Figure 36 

presents the observed and simulated stage values at New Orleans; and Figure 37 displays the 

stage values at Venice. 

 

 
Figure 35. Simulated and Observed Water Level at Bonnet Carré - May 2011  
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Figure 36. Simulated and Observed Water Level at New Orleans - May 2011  

 

 
Figure 37. Simulated and Observed Water Level at Venice - May 2011  

 

 

A longitudinal profile for the stage values is shown in Figure 38, presenting the 

observed and simulated data along the channel for the May 2011 period. 

 



 
 

52 

 
Figure 38. Water Level Profile along the Main Channel - May 2011  

 

 The metrics were determined for the period of May 2011; the results are presented on 

Table 6. Root mean square error and Bias error were determined for each station analyzed in 

the model, and the overall efficiency of the model was also calculated. 

 

Table 6. Metrics for stage results – May 2011 

Station RMSE (%) Bias (ft) Overall r 

Bonnet Carré (RM 127) 2 -0.39 

0.99 

New Orleans (RM 103) 6 -0. 90 

IHNC Lock (RM 93) 9 -1.25 

West Point a la Hache (RM 

49) 

3 -0.17 

Venice (RM 11) 4 -0.10 

 

4.1.1.3 May 2009 

 

The observations and simulated values of stage for the different stations during May 

2009 period are plotted in this section. Stage values at Bonnet Carré are shown in Figure 39; 

observed and simulated stage values at New Orleans are presented in Figure 40; and the stage 

values at Venice are in Figure 41. 

 

Also, a longitudinal profile was developed to show the stage values along the main 

channel for the observed and modeled data. The water level profile for May 2009 is presented 

in Figure 42.   
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Figure 39. Simulated and Observed Water Level at Bonnet Carré - May 2009 

 

 
Figure 40. Simulated and Observed Water Level at New Orleans - May 2009 

 

 
Figure 41. Simulated and Observed Water Level at Venice - May 2009 
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Figure 42. Water Level Profile along the Main Channel - May 2009 

 

 The metrics for stage results on the May 2009 period are presented in Table 7.  

 

Table 7. Metrics for stage results – May 2009 

Station RMSE (%) Bias (ft) Overall 

r 

Bonnet Carré (RM 127) 3 -0.09 

0.99 

New Orleans (RM 103) 4 -0.48 

IHNC Lock (RM 93) 7 -0.78 

West Point a la Hache (RM 

49) 

12 0.58 

Venice (RM 11) 7 0.24 
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4.1.2 Discharge Results 
 

The results obtained for the flow on the main outlets and some important points in the 

modeling domain are presented in this section.   

 

4.1.2.1 March/April 2011 

 

The upstream end flow corresponding to Bonnet Carré is shown in Figure 43. Also, 

the downstream end discharge is shown in figure 44. Flow at Fort St. Philip, one of the main 

outlets in the modeling domain, is presented in Figure 45.    

 

 
Figure 43. Flow at Bonnet Carré – March/April 2011  

 

 
Figure 44. Flow at Head of Passes – March/April 2011 
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Figure 45. Flow at Fort St Philip – March/April 2011 

 

The flow distribution for main outlets and other important points is shown in Figure 

46. Two set of estimated data for the discharge were used. One is based on the estimate 

provided by Lake Pontchartrain Basin Foundation (Lopez & Lake Pontchartrain Basin 

Foundation , 2008); and the second one corresponds to a set of data based on an estimate 

provided by USACE (U.S. Army Corps of Enginners, 2013).   

 

 
Figure 46. Estimated and Modeled Discharge for U/S, D/S and outlets – March/April 2011 
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Based on the two different estimates for discharge a range of error percentage is 

presented in Table 8. Also the overall efficiency and RMSE are shown. 

 
Table 8. Estimated and Modeled Discharge Values – March/April 2011 

 
 

4.1.2.2 May 2011 

 

Similarly to the previous period presented, the flows corresponding to Bonnet Carré, 

Head of Passes and Fort St Philip are shown in Figure 47, Figure 48 and Figure 49, 

respectively for May 2011.     

 

 
Figure 47. River Flow downstream of Bonnet Carré Spillway– May 2011 

 

LPBF Estimated USACE Estimated Modeled

River Station Flow (ft3/s) Flow (ft3/s) Flow (ft3/s)

Bonnet Carré 993159 993159 993159 0% 0% 0%

Head Of Passes 481154 482505 499098 -4% -3% -4%

Venice 765469 748118 2% 2%

Grand+Tiger Pass 92486 84202 90599 2% -8% -3%

Baptiste Collette 130130 76547 97447 25% -27% -1%

Main Pass 97571 91856 95044 3% -3% 0%

Bohemia Spillway 86094 130483 101913 -18% 22% 2%

Fort St Philip 70386 85034 76748 -9% 10% 0%

LPBF 

%Difference

USACE 

%Difference

Mean 

%Difference

Overall 

r

Overall 

RMSE %

0.99 5%
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Figure 48. Flow at Head of Passes – May 2011 

 

 
Figure 49. Flow at Fort St Philip – May 2011 

 

 Figure 50 displays the 2 sets of estimated values previously mentioned, and the 

modeled values for the discharges during the May 2011 simulated period.  
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Figure 50. Estimated and Modeled Discharge for U/S, D/S and outlets – May 2011 

 

The difference percentage between estimated and simulated data is shown in Table 9 

for the main outlets and some important points of the main channel. Also, the mean 

difference based on the two sets of observed data; the overall efficiency coefficient, r; and the 

overall RMSE percentage is shown. 

 

Table 9. Estimated and Modeled Discharge Values – May 2011 

 

 

  

LPBF Estimated USACE Estimated Modeled

River Station Flow (ft3/s) Flow (ft3/s) Flow (ft3/s)

Bonnet Carré 1150010 1150010 1150010 0% 0% 0%

Head Of Passes 557144 540195 604306 -8% -12% -10%

Venice 856992 834419 3% 3%

Grand+Tiger Pass 107092 94269 97915 9% -4% 2%

Baptiste Collette 150682 85699 103981 31% -21% 5%

Main Pass 112980 102839 100927 11% 2% 6%

Bohemia Spillway 99691 169056 142168 -43% 16% -13%

Fort St Philip 81502 110171 95230 -17% 14% -2%

0.99 7%

LPBF 

%Difference

USACE 

%Difference

Mean 

%Difference

Overall 

r

Overall 

RMSE %
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4.1.2.3 May 2009 

 

For May 2009, flows at Bonnet Carré (downstream), Head of Passes and Fort St 

Philip are shown in Figures 51, 52 and 53, respectively.   

 

 
Figure 51. Model Discharge at Bonnet Carré - May 2009 

 

 

 
Figure 52. Model Discharge at Head of Passes - May 2009 
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Figure 53. Model Discharge at Fort St. Philip - May 2009  

 

The flow distribution showing estimated values and simulation results are displayed 

in Figure 54 for the period May 2009.  

 

 
Figure 54. Estimated and Modeled Discharge for U/S, D/S and outlets – May 2009 
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The estimated flows for the most important outlets of the outlets in the modeling 

domain and some other point in the main channel are presented against the values obtained 

for the May 2009 simulations are displayed in Table 10. Moreover, the difference percentage, 

mean difference percentage, overall efficiency and RMSE percentage is shown for the results 

obtained.  

 
Table 10. Estimated and Modeled Discharge Values – May 2009 

 

 

4.1.3 Velocity Results 

 

For the velocities a depth average map is presented just to give an idea of the range of 

velocities found. Moreover, velocity profiles are presented for different periods where 

observed data is available (Allison M. , 2012) 

 

4.1.3.1 March/April 2011 

 

Figure 55 displays the depth average velocity map for the March/April 2011 period 

for the entire domain. Observed data for this period was not available for this period; 

consequently, the depth average profile and vertical velocity profile for observed and 

simulated data are not shown.   

 

LPBF Estimated USACE Estimated Modeled

River Station Flow (ft3/s) Flow (ft3/s) Flow (ft3/s)

Bonnet Carré 1172010 1172010 1172010 0% 0% 0%

Head Of Passes 567802 547883 578946 -2% -6% -4%

Venice 869189 835433 4% 4%

Grand+Tiger Pass 109141 95611 96975 11% -1% 5%

Baptiste Collette 153564 86919 102718 33% -18% 7%

Main Pass 115142 104303 96343 16% 8% 12%

Bohemia Spillway 101598 174858 165968 -63% 5% -29%

Fort St Philip 83061 113952 113167 -36% 1% -18%

0.99 4%

LPBF 

%Difference

USACE 

%Difference

Mean 

%Difference

Overall 

r

Overall 

RMSE %
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Figure 55. Depth averaged velocity map – March/April 2011 

 

 Some important areas are zoomed in to observe in more detail the velocity 

distribution. Figure 56 shows the velocity distributions around the Myrtle Grove area; Figure 

57 exposes the velocity distribution around the Bohemia area; Figure 58 presents the velocity 

distribution for the Fort St Philip area; and Figure 59 displays the velocity distribution around 

the Main Pass area.  
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Figure 56. Depth average velocity map (ft/s) for Myrtle Grove area – March/April 2011 

 

 
Figure 57. Depth average velocity map (ft/s) for Bohemia area – March/April 2011 
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Figure 58. Depth average velocity map (ft/s) for Fort St Philip area – March/April 2011 

 

 
Figure 59. Depth average velocity map (ft/s) for Main Pass area – March/April 2011 
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4.1.3.2 May 2011 

 

A depth average map for the May 2011 period is shown in Figure 60 to observe the 

range of velocities in the domain.      

 

 
Figure 60. Depth average velocity map – May 2011 

 

To observe in more detail the velocity distribution, some areas of the map are 

amplified in the next figures. Figure 61 illustrates the velocity distributions around the Myrtle 

Grove area; Figure 62 presents the velocity distribution around the Bohemia area; Figure 63 

shows the velocity distribution for the Fort St Philip area; Figure 64 displays the velocity 

distribution around the Main Pass area. 
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Figure 61. Depth average velocity map (ft/s) for Myrtle Grove area – May 2011 

 

 
Figure 62. Depth average velocity map (ft/s) for Bohemia area – May 2011 
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Figure 63. Depth average velocity map (ft/s) for Fort St Philip area – May 2011 

 

 
Figure 64. Depth average velocity map (ft/s) for Main Pass area – March/April 2011 
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4.1.3.3 May 2009 

 

The data available for the velocities on this period corresponds to the area around 

Magnolia (RM 47). Table 11 displays the overall RMSE and efficiency coefficient r for this 

period. 

 

  Table 11. Metrics for Velocity Profiles – May 2009 

Profile Overall 

%RMSE 

Overall r 

Cross-sectional 7 0.98 

Vertical 22 0.97 

 

Figure 65 shows the cross-sectional profile of the measurements and simulated depth 

averaged velocity. 

 

 
Figure 65. Cross-Sectional Velocity Profile, RM 47 – May 2009 

 

The vertical velocity profile for the Magnolia area during the May 2009 run is 

presented on Figure 66.  
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Figure 66. Vertical Velocity Profile, RM 47 – May 2009 

 

The depth average velocity map for May 2009 simulation is shown in Figure 67.  

 

 
Figure 67. Depth average velocity map – May 2009 
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4.1.3.4 September 2009 

 

In order to observe the behavior on velocities compared to available observations on 

the Empire area (RM 31) the velocity profiles were obtained. Table 12 shows the overall 

RMSR and r for this period around the Empire area. 

 

Table 12. Metrics for Velocity Profiles – September 2009 

Profile Overall 

%RMSE 

Overall r 

Cross-sectional 8 0.84 

Vertical 23 0.83 

 

Figure 68 present the depth averaged velocity profile, and Figure 69 displays the 

vertical velocity profile for this period. 

 

 
Figure 68. Cross-Sectional Velocity Profile, RM 31 – September 2009 
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Figure 69. Vertical Velocity Profile, RM 31 – September 2009 

 

4.1.3.5 April 2010 

 

The depth average velocity profile is shown in Figure 70 and the vertical velocity 

profile in Figure 71 for the Magnolia area (RM 46) for April 2010. The observations and 

simulation results are plotted to observe the agreement.  Table 13 presents the overall RMSE 

and coefficient of efficiency    

 
Table 13. Metrics for Velocity Profiles – April 2010 

Profile Overall 

%RMSE 

Overall r 

Cross-sectional 23 0.80 

Vertical 33 0.97 
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Figure 70. Cross-Sectional Velocity Profile, RM 46 – April 2010 

 

 
Figure 71. Vertical Velocity Profile, RM 46 – April 2010 

 

4.2 Sediment Transport 

 

The non-cohesive sediment transport results are presented in this section. Figures 72 

and 73 show the locations where observed data (Allison, 2011) is available for the periods 

evaluated. 
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Figure 72. Sediment measurement locations at Myrtle Grove area (RM 61) 

 

 

 
Figure 73. Sediment measurement locations at Magnolia area (RM 47) 

 

4.2.1 March/April 2011 

 

The non-cohesive sediment run for this period was performed from 03/27/2011 to 

04/02/2011.  The suspended sand concentrations and loads measurements (Allison, 2011) 

were plotted against the modeled results to calibrate the model. 

 

Figures 74, 75 and 76 show the observed and simulated suspended sand 

concentrations for Myrtle Grove area (RM 61) for the March/April 2011 period.   
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Figure 74. Simulated and Observed Suspended Sand Concentration at Myrtle Grove, MGup2 

(RM 61). March/April 2011  

 

 
Figure 75. Simulated and Observed Suspended Sand Concentration at Myrtle Grove, MGup3 

(RM 61). March/April 2011   
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Figure 76. Simulated and Observed Suspended Sand Concentration at Myrtle Grove, MGup4 

(RM 61). March/April 2011   

 

Figures 77, 78 and 79 show the observed and simulated suspended sand 

concentrations for Magnolia area (RM 47) for the March/April 2011 period.   

 

 
Figure 77. Simulated and Observed Suspended Sand Concentration at Magnolia, MAG1 (RM 

47). March/April 2011   
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Figure 78. Simulated and Observed Suspended Sand Concentration at Magnolia, MAG2 (RM 

47). March/April 2011 

   

 
Figure 79. Simulated and Observed Suspended Sand Concentration at Magnolia, MAG3 (RM 

47). March/April 2011   

 

 Table 14 exhibits the measurements for non-cohesive sediment load against the model 

results obtained for Myrtle Grove area (RM 61) and Magnolia area (RM 47) for the 

March/April 2011 period.  
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Table 14. Measured and Modeled Bed Load, Suspended Load and Total Load – March/April 

2011 

(Tonnes/day) Area Observed Simulated Difference Overall r 
Overall 
%RMSE 

Bed Load 
Myrtle Grove 15094 16750 -11% 

0.99 5% 

Magnolia 12403 17011 -37% 

Suspended 
Load 

Myrtle Grove 199533 201725 -1% 
Magnolia 190874 177242 7% 

Total Load 
Myrtle Grove 214627 218474 -2% 

Magnolia 203277 194253 4% 
 

 

4.2.2 May 2011 

 

The non-cohesive sediment simulation for this period was performed from 05/11/2011 

to 05/15/2011.  The suspended sand concentrations and loads measurements were plotted 

against the modeled results to observe the agreement in both data series.  

 

Figures 80, 81 and 82 display the observed and simulated suspended sand 

concentrations for Myrtle Grove area (RM 61) for the May 2011 period.   

 

 
Figure 80. Simulated and Observed Suspended Sand Concentration at Myrtle Grove, MGup2 

(RM 61). May 2011 
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Figure 81. Simulated and Observed Suspended Sand Concentration at Myrtle Grove, MGup3 

(RM 61). May 2011 

 

 
Figure 82. Simulated and Observed Suspended Sand Concentration at Myrtle Grove, MGup4 

(RM 61). May 2011 

 

The observed and simulated suspended sand concentrations for the Magnolia area 

(RM 47) during the May 2011 period are presented on Figures 83, 84 and 85.   

 



 
 

80 

 
Figure 83. Simulated and Observed Suspended Sand Concentration at Magnolia, MAG1 (RM 

47). May 2011 

 

 
Figure 84. Simulated and Observed Suspended Sand Concentration at Magnolia, MAG2 (RM 

47). May 2011 
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Figure 85. Simulated and Observed Suspended Sand Concentration at Magnolia, MAG3 (RM 

47). May 2011 

 

Table 15 shows the measurements for non-cohesive sediment load against the modeled values 

obtained for Myrtle Grove area (RM 61) and Magnolia area (RM 47) for the May 2011 period.  

 
Table 15. Measured and Modeled Bed Load, Suspended Load and Total Load – May 2011  

(Tonnes/day) Area Observed Simulated Difference Overall r 
Overall 
%RMSE 

Bed Load 
Myrtle Grove 13686 18801 -37% 

0.98 23% 

Magnolia 47488 22882 52% 

Suspended 
Load 

Myrtle Grove 155541 118626 24% 
Magnolia 111058 109111 2% 

Total Load 
Myrtle Grove 169227 137427 19% 

Magnolia 158546 131993 17% 
 

 

4.2.3 May 2009 

 

The non-cohesive sediment run for this period was performed from 05/01/2009 to 

05/07/2009.  The suspended sand concentrations and loads measurements were plotted 

against the modeled results to calibrate the model.  

 

Figures 86, 87 and 88 show the observed and simulated suspended sand 

concentrations for Myrtle Grove area (RM 61) for the May 2009 period.   
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Figure 86. Simulated and Observed Suspended Sand Concentration at Myrtle Grove, MGup2 

(RM 61). May 2011 

 

  
Figure 87. Simulated and Observed Suspended Sand Concentration at Myrtle Grove, MGup3 

(RM 61). May 2009 
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Figure 88. Simulated and Observed Suspended Sand Concentration at Myrtle Grove, MGup4 

(RM 61). May 2009 

 

The observed and simulated suspended sand concentrations for the Magnolia area 

(RM 47) for the May 2011 period are presented in Figures 89, 90 and 91.   

 

 
Figure 89. Simulated and Observed Suspended Sand Concentration at Magnolia, MAG1 (RM 

47). May 2011 
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Figure 90. Simulated and Observed Suspended Sand Concentration at Magnolia, MAG2 (RM 

47). May 2009 



 
Figure 91. Simulated and Observed Suspended Sand Concentration at Magnolia, MAG3 (RM 

47). May 2009 

  

The observed and simulated bed load, suspended load and total load for the May 2009 

period are presented in Table 16. 
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Table 16.  Measured and Modeled Bed Load, Suspended Load and Total Load – May 2009 

(Tonnes/day) Area Observed Simulated Difference Overall r 
Overall 
%RMSE 

Bed Load 
Myrtle Grove 6684 6632 1% 

0.88 >50% 

Magnolia 5943 7802 -31% 

Suspended 
Load 

Myrtle Grove 26824 28580 -7% 
Magnolia 103568 40349 61% 

Total Load 
Myrtle Grove 33508 35212 -5% 

Magnolia 109511 48151 56% 
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4.3 Application for Hurricanes 
 

The 2-D hydrodynamic model developed at the first stage was applied to hurricane 

periods corresponding to Isaac and Gustav to test the robustness of the model, since a two 

dimensional model is well suited for storm surge applications.  

     

4.3.1 Hurricane Isaac 

 

The simulation for Hurricane Isaac was performed in the period starting from 

08/27/2012 to 09/01/2012. The results obtained for the 2-D hydrodynamic model at different 

stations along the domain compared to the observations by the US Army Corps of Engineers 

(Personal Communication) are presented in this section. 

 

Figure 92 displays the stage values obtained from the model at New Orleans (RM 

103) station compared to the measured values for the same period. Similarly, Figure 93 

shows the stage at Harvey Lock (RM 93). 

 

 
Figure 92. Simulated and Observed Stage at New Orleans (RM 103) for Isaac  

 

The surge height was determined along the channel during Hurricane Isaac and results 

are represented on Figure 94 as a longitudinal profile. 

 

Table 17 shows the %RMSE and bias for the peak stage value for the Hurricane Isaac. 
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Figure 93. Simulated and Observed Stage at Harvey Lock (RM 98) for Isaac 

 

 
Figure 94. Surge height along the Main Channel for Isaac 

 
Table 17. Metrics for Peak Stage Prediction – Hurricane Isaac 

Station 
Stage (ft) 

%RMSE Bias (ft) 
Modeled  Observed 

New Orleans (RM 103)  11.4 11.9 

3% 0.1 
Harvey Lock (RM 98) 11.4 11.6 

IHNC Lock (RM 93) 11.28 11.03 

Algiers Lock (RM 88) 11.02 10.97 
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4.3.2 Hurricane Gustav  

 

The simulation for Hurricane Gustav was performed in the period starting from 

08/30/2008 to 09/01/2008. The results for the 2-D hydrodynamic model and the observed 

values by the USACE at different stations are shown in the next figures. Figure 95 plots the 

simulated and observed stage for New Orleans during Gustav Hurricane; Figure 96 displays 

the values for West Point a la Hache; and Figure 97 shows results and observations for 

Venice. 

 

 
Figure 95. Simulated and Observed Stage at New Orleans (RM 103) for Gustav 

 

 
Figure 96. Simulated and Observed Stage at West Point a la Hache (RM 49) for Gustav 
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Figure 97. Simulated and Observed Stage at Venice (RM 11) for Gustav 

 

 Figure 98 displays the longitudinal profile of surge height for Hurricane 

Gustav indicating the stations that were evaluated in the simulations. Table 18 displays the 

%RMSE and bias for the peak stage value for the Hurricane Gustav. 

 

 
Figure 98. Surge height along the Main Channel for Gustav 

 

 
Table 18. Metrics for Peak Stage Prediction – Hurricane Gustav 

Station 
Stage (ft) 

%RMSE Bias (ft) 
Modeled  Observed 

Bonnet Carré (RM 127) 9.90 10.40 

6% 0.5 
New Orleans (RM 103)  9.85 10.30 

Harvey Lock (RM 98) 9.61 10.34 

Algiers Lock (RM 88) 9.31 9.90 
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5. DISCUSSION  
 

5.1 Hydrodynamics  

 

5.1.1 Stage Results 

 

Based on the observations available for stage values (USACE:rivergages, 2012), 

graphical and numerical comparisons were performed in order to determine the agreement 

between the model and the measurements.  

 

5.1.1.1 March/ April 2011 
 

 For the graphical comparison, there is a very good agreement for most stations with 

the observations. Based on the metrics analysis, for New Orleans (RM 103) the model is 

underpredicting a 5% and for IHNC Lock (RM 93) an 8%, being this last the station with the 

highest %RMSE. All stations %RMSE is under 9%, being lower than the target which is 

<15% (Meselhe E. , 2013), indicating a satisfactory prediction based on water level 

evaluation. The overall efficiency coefficient is 0.99 and the overall RMSE is 4%.  

 

The highest bias for this period is 0.89ft which is less than 1ft that is satisfactory 

based to the high target of <1ft for all stations (Meselhe E. , 2013). 

 

From the longitudinal profile it can be observed that the model is following the trend 

of the observations along the main channel. 

5.1.1.2 May 2011 
 

Similarly, the validation period results corresponding to May 2011 are in good 

agreement with the observations for that period, which can be observed from the graphical 

comparison. Moreover,  based on the metrics analysis, the highest %RMSE, which 

corresponds to 9% for IHNC Lock is still under the defined target high limit of <15%. The 

overall efficiency coefficient is 0.99 and the overall %RMSE is 5%, representing all 

satisfactory results.  
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The highest bias corresponds to IHNC Lock with a 1.25ft value (absolute value) 

which is above the high limit target of 1ft; however, the 80% of the stations meet the low 

limit target being under the <1ft.  

 

The simulation results follow the trend of the observations, which can be seen on the 

water level longitudinal profile for this period.  

 

5.1.1.3 May 2009 

 

For the May 2009 period there is also very good agreement between the 

measurements and the simulation results. The metrics analysis showed satisfactory results for 

the water level. The highest %RMSE corresponds to West Point a la Hache (RM 49) with a 

12%, being this value lower than the high limit target of <15%. Additionally, the overall 

efficiency is 0.99 and the overall %RMSE is 7%.  

 

The highest bias found in this simulation period was 0.78ft (absolute value), which 

meets the target on the higher limit of <1ft.  

 

Similarly to the previous simulations, the results for the water levels follow the trend 

of the measurements, which can be observed on the longitudinal profile for the stage 

presented on the results section for this period.      

 

5.1.2 Discharge Results 

 

To determine the performance of the model for discharge distribution prediction, the 

results obtained from the simulations were compared to estimated values from two different 

sources; one is based on the estimate provided by Lake Pontchartrain Basin Foundation 

(Lopez & Lake Pontchartrain Basin Foundation , 2008); and the second one is based on an 

estimate provided by USACE (U.S. Army Corps of Enginners, 2013).   

 

When looking at the two different sources for the estimated values, for some areas it 

is found a difference between the observations of about 20%. Moreover, it is important to 

consider that there is about a 5% to 8% of error that is carried in the measurements based on 

the river flow, and that based on Tarbert Landing there is about an 8% error on the 

measurements. 
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For the overflow areas in the domain, such as Bohemia; West Bay; Fort St Philip; 

among others, it is significant to observe that the flow estimation depends on the exact reach 

where the flow was measured, and if the cuts present on the nearby areas were taken into 

account. Moreover, equivalent channels are being used in the model on the overflow areas to 

represent some of the cuts on the nearby zones.  

 

It is not possible to rely only on one source, for this reason; by considering all the 

previous information, the calibration of the model for the discharge was performed to target 

the mean difference of the two set of observation based estimated flows 

 

5.1.2.1 March/April 2011 
 

A graphical comparison is presented to visually appreciate the agreement of the 

estimated values and the model results. For most of the outlets there is a good agreement 

based on the estimated average. 

 

The overall comparison between the simulated values and the estimated values shows 

satisfactory results, being the overall efficiency 0.99 and the overall %RMSE 5%. For the 

evaluation on the main outlets it was found that a mean difference percentage of -4% was the 

highest value.  

 

For most of the outlets the flows fall under the mean difference of the estimated 

values. West Bay (RM 4) is a particular case, the estimated values range between 38273cfs 

and 42882cfs being the model result 69677cfs, which indicates that the model is over-

predicting by a significant amount. However, as it was stated before, there are some cuts on 

the west bank of the river that represent an important flow extraction, and West Bay is 

extracting the flow for those cuts to ensure the mass conservation in the domain.  

 

5.1.2.2 May 2011 
 

For this validation period the overall efficiency was 0.99 and the overall %RMSE was 

7%. The highest mean difference corresponds to Bohemia Spillway with a -13%. Once more, 

it is important to consider the error present in the observations, and the existence of cuts that 

might not be included in one of the measurement estimates.  
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The West Bay outflow, as explained for the previous period is expected to be higher 

than the observed since the model is including some of the cuts on the west bank. The 

estimated flow by LPBF for West Bay was 49655cfs; the estimated by USACE was 

42850cfs, while the one determined by the model was 73400cfs.  

 

5.1.2.3 May 2009 
 

Similarly for this validation period, there was an overall efficiency of 0.99 and an 

overall %RMSE of 4%. The highest mean difference corresponds to Bohemia Spillway area; 

however, it is important to remember that this is one of the main areas where cuts are being 

represented by equivalent channels, meaning this that the flow extraction by the model is 

expected to be higher than the measured value. The same behavior is observed for Baptiste 

Collette and Fort St Philip in a lower scale. 

 

For West Bay during this period the value based on the LPBF estimate was 50604cfs; 

the one based on the USACE estimate was 43459cf, and the value obtained from the 

simulation was 71000cfs.  

 

5.1.3 Velocity Results 

 

The velocity distribution in the domain was obtained by representing the depth 

average velocity in a map for some periods (no observations available), and by obtaining 

depth averaged velocity profiles and vertical velocity plotted against available observed data 

(Allison M. , 2012) for some other periods.  

 

5.1.3.1 March/ April 2011 
 

For this period the depth averaged velocity distribution was presented in a map 

format. The expected range for the velocity based on observations for other periods is 

between 3ft/s to 7ft/s. It can be observed on the map that the velocities in the main channel 

for Myrtle Grove (RM 61) and Bohemia (RM 45) are about 6.5ft/s; for Fort St Philip (RM 

20) is about 5ft/s; and for the area near Main Pass (RM 4) is about 4.5ft/s, being all in the 

expected range. 
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5.1.3.2 May 2011 

 

In this period, based on the map distribution, velocities around Myrtle Grove and 

Bohemia area in the main channel were about 7ft/s. The velocities for the Fort St Philip area 

and near Main Pass were about 6ft/s. Once more, the velocities were on the expected range.  

 

5.1.3.3 May 2009 

       

For this period there was available data and it was possible to build a depth averaged 

velocity profile and a vertical velocity profile plotting the measurements and the model 

results for the Magnolia area (RM 47). Based on the profiles it can be observed a very good 

agreement of the model results with the measurements. Furthermore, the metrics show 

satisfactory results based on the target. The efficiency for the cross-sectional profile was 

0.98; the efficiency for the vertical profile was 0.97, and the target is an efficiency >0.75 

(Meselhe E. , 2013). The target for the %RMSE is <30%, the %RMSE was 7% for the depth 

averaged velocity; and 22% for the vertical profile, meaning the model has a satisfactory 

performance for velocity prediction.  

 

Based on the map of depth averaged velocities, the velocities fall into the expected 

range of 3ft/s to 7ft/s.  

  

5.1.3.4 September 2009 

  

This period was run to test the performance of the model on velocity prediction, since 

there was available measured data. Based on the graphical comparison, there is a good 

agreement between observations and model results. Moreover, the metrics show an efficiency 

of 0.84 for the depth averaged velocity and a 0.83 for the vertical velocity, being both above 

the target of >0.75. The %RMSE for the cross-sectional velocity was 8% and for the vertical 

velocity was 23%, being both over the target of >30% (Meselhe E. , 2013).  

   

5.1.3.5 April 2010 

 

Based on the comparison of available observed data and the model for this period, the 

performance of the model on velocity prediction was evaluated. The graphical comparison 

shows a fairly good agreement between observed and model values. The efficiency for the 
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depth averaged velocity was 0.80 and for the vertical velocity 0.97, meaning the target of 

>0.75 is being achieved. For the depth averaged velocity the %RMSE was 23%, which meets 

the target value statement of %RMSE>30%.For the vertical velocity the %RMSE was 33% 

which is a above the target value; however, it is still acceptable since the velocities fall under 

the expected range of values of 3ft/s to 7ft/s.    

 

5.2 Sediment Transport Results 

 

The non-cohesive sediment transport prediction of the model was evaluated by 

comparing the model results with measurements (Allison, 2011) corresponding to the same 

periods.    

 

5.2.1 March/April 2011 

 

There is a good agreement on the suspended sand concentration profiles for both 

Myrtle Grove area (RM 61) and Magnolia area (RM 47). Moreover, the model showed a 0.99 

overall efficiency and an overall %RMSE of 5%. There is a very good agreement in the total 

load for both Myrtle Grove and Magnolia. The suspended load prediction is also very 

satisfactory for this period on the two areas analyzed; and the bed load prediction for Myrtle 

Grove is fairly good, while for Magnolia the model is over-predicting for a 37%, which is 

still a satisfactory value based on the target of <50% (Meselhe E. , 2013).   

 

5.2.2 May 2011 

 

For this period based on the suspended sand concentration profiles there is a good 

agreement between observations and model results. The overall efficiency is 0.94 and the 

overall %RMSE is 20%. The total load prediction gave very satisfactory results for both the 

Myrtle Grove and Magnolia area. The suspended load estimation was fairly good being the 

highest difference percentage for the Myrtle Grove area with an over-prediction of 24%. The 

bed load for the Magnolia area was under-predicted by a 52%, while the bed load for the 

Myrtle Grove area was over-predicted by a 37%, being these values still satisfactory for the 

sand transport prediction. 
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5.2.3 May 2009 

 

There is a good agreement on the suspended sand concentration for Myrtle Grove, and 

a fairly good agreement for Magnolia based on the profiles for this period. Furthermore, for 

the Myrtle Grove sediment transport prediction results were very satisfactory. The bed load, 

suspended load and total load %difference were below 15% for the Myrtle Grove area. 

However, the performance for Magnolia on this period was not as good as expected still 

being acceptable. The bed load estimation for Magnolia resulted in very satisfactory results, 

not obtaining so plausible for suspended and total load with a 61% and 56% of under-

prediction respectively.  

 

5.3 Application for Hurricanes Results 
 

The 2-D hydrodynamic model was applied to the analysis of stage during Hurricanes 

Isaac and Gustav.  

 

5.3.1 Hurricane Isaac 

 

From the graphical comparison between available observed data (USACE:rivergages, 

2012) and the model results there is a good agreement on the peak prediction. Moreover, the 

shape of the simulated stage hydrographs follows the tendency of the observations 

hydrograph.      

 

Based on the peak for the stage the overall %RMSE was 3% and the bias 0.1ft, which 

shows a very good performance on the peak prediction.  

 

Also, the surge height was predicted along the main channel showing a value of about 

8.5ft for New Orleans. Based on a 1-D HEC-RAS model for storm surge prediction (Gurung 

T. , 2012) the storm surge propagated as far as Tarbert Landing (RM 302) with a surge height 

of about 4ft.   
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5.3.2 Hurricane Gustav 

  

Based on the graphical comparison, the model had a fairly good performance for the 

peak stage prediction, also following the tendency of the observations available.    

 

The overall %RMSE based on the peak stage was 6% and the bias was 0.6ft, showing 

once more a good performance of the model for the peak stage prediction. The surge height 

based on the Gustav data was about 5ft for the upstream end of the model of Bonnet Carré 

(RM 127). For the hurricane Gustav, the storm surge also propagated as far as Tarbert 

Landing with a surge height (Gurung T. , 2012) was about 2ft.  
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6. CONCLUSIONS 
 

The following conclusions have been derived from this study: 

 

 The three dimensional hydrodynamic model of the Lower Mississippi river was 

calibrated for the March/April 2011 period for stage prediction with an overall 

efficiency of 0.99, an overall %RMSE of 4% and an overall bias -0.29ft. The %RMSE 

for all stations meets the high target of <15% for all stations, being the highest 

%RMSE the IHNC Lock result corresponding to an 8%, and the lowest %RMSE 

corresponds to Bonnet Carré with a 1%.  

 

 The May 2011 validation period for the hydrodynamic model lead to satisfactory 

results on stage prediction. The overall efficiency was 0.99; the overall %RMSE was 

5%; and the overall bias -0.74. The %RMSE for all stations meets the high limit of the 

target of <15%. 80% of the stations meet the target of <1ft for the bias, being only one 

station above the value with 1.25ft corresponding to IHNC Lock. 

 

 For the May 2009 hydrodynamic validation period, stage results were also 

satisfactory. Finding an overall efficiency of 0.99; an overall %RMSE of 6%; and the 

overall bias -0.1ft. All stations presented a %RMSE <15% meeting the target. 

Additionally, the bias for all stations was below 1ft, meeting once more the high limit 

of the target for stage prediction.       

 

 The discharge prediction for all periods was satisfactory based on the mean difference 

percentage for the estimates from LPBF and USACE. The overall efficiency for all 

the periods was 0.99, and the %RMSE was below 10%.  

 

 The velocities were in the expected range between 3ft/sec to 7ft/sec along the domain 

for all the periods evaluated. Moreover, the period with available observed data 

showed a very good agreement between the measurements and the simulated values, 

meeting the target for a %RMSE <30% and an efficiency r > 0.75. 

 

 The non-cohesive sediment prediction in the Myrtle Grove and Magnolia area, lead to 

satisfactory results. For the calibration period the overall %RMSE was 5%, obtaining 

a good prediction of the total load, bed load and suspended load. 
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  For the validation period of May 2011, the total load prediction resulted in very 

satisfactory results. The model showed acceptable values for bed load and suspended 

load in both Magnolia and Myrtle Grove areas.   

 

 For May 2009, the model had a very good performance for the Myrtle Grove area. 

The bed load prediction for the Magnolia area was very good, while suspended and 

total load showed an under-prediction over 70%. 

 

 The application of the 2-D model for hurricane storm surge simulation was 

satisfactory for both Hurricane Isaac and Hurricane Gustav. The model showed a very 

good prediction of the peak stage during these events, and followed the hydrograph 

shape based on the observations available.     
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7. RECOMMENDATIONS 
 

 For further research on the hurricane application, better results might be obtained by 

adapting all outlets depths to more realistic values and also varying roughness along 

the modeling domain, for instance; depth and Manning’s n roughness files from the 

three dimensional model could be used to improve this model.  

 

 The bedform option in Delft3D should be calibrated and evaluated in comparison to 

Chezy and Manning’s roughness approaches.  
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APPENDIX A: Boundary Conditions 
 

 This appendix shows plots for the boundary conditions used in the different periods 

simulated. 
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Application for Hurricanes 
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APPENDIX B: Other results 
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Hurricane Application 
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APPENDIX C: Original Grid and Expanded Grid Comparisons 

 
Original Grid for Main Channel – Upstream Bohemia 

 

 
 

Expanded Grid for Main Channel – Upstream Bohemia 
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Original Grid for Bohemia Area 

 

 

 
Expanded Grid for Bohemia Area 
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Original Grid for Fort St Philip Area 

 

 

 

Expanded Grid for Fort St Philip Area 
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