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Abstract 
 

The objective of this study is to determine whether changes in arthropod 

community structure in restored longleaf pine savannas corresponds to differences in 

vegetation structure often associated with burn frequency. Longleaf pine savannas are 

fire-maintained ecosystems characteristic of the southeastern United States and have 

experienced severe declines (around 97%) since European settlement. Changes in fire 

regime have been instrumental in the declines. Restoration of these ecosystems has 

involved reinstitution of periodic burnings to promote and maintain vegetative 

characteristics of the savannas. This study investigates trends in arthropod communities 

from areas heavily invaded by hardwood shrubs against those dominated by longleaf 

pines and associated vegetation. These data suggest that herb-dominated sites have 

higher overall diversity. While overall abundance differences were not found, significant 

differences have been detected at the order and family level, indicating that vegetation 

structure and periodic burning are important factors in maintaining arthropod 

communities characteristic of these savannas. 

 

Keywords:  Longleaf pine savanna, arthropods, prescribed fire, vegetation structure 
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Introduction 

Longleaf pine savannas 

 Longleaf pine (Pinus palustris Mill.) savannas are characteristic of the lower 

coastal plains of the southeastern United States.  These savannas, once a ubiquitous 

part of the landscape, have become a severely diminished and endangered ecosystem.  

Prior to European settlement, this ecosystem historically extended from Virginia, south 

to Florida, and west to Texas (Barnett 2013) and spanned approximately 37 million 

hectares (Aschenbach et al. 2010; Frost 1993).  Now, only 1.3 million hectares remain 

and the land that does remain is often patchy and degraded in large part due to human-

mediated changes in historic fire regimes (Barnett 2013; Aschenbach et al. 2010; Gilliam 

& Platt 1999).   

European colonization of the U.S. led to rapid and dramatic change and/or 

reduction in native ecosystems.  In the Southeastern U.S., declines in longleaf pine 

savannas, have been so steep that they have become one of the most endangered 

ecosystems in the country (Aschenbach et al. 2010).  Approximately 97% of this 

ecosystem has been decimated by logging, conversion to agricultural lands, 

urbanization, and fire suppression (Barnett 2013; Aschenbach et al. 2010). 

Such heavy losses of habitat coupled with the degraded nature of the remaining 

patches have negatively impacted many organisms that rely on this ecosystem for 

survival.  Examples include a broad range of rare and endangered plants, as well 

vertebrate species such as the red-cockaded woodpecker, the Louisiana pine snake, the 

gopher tortoise, and the southern fox squirrel (Aschenbach et al. 2010; Van Lear et al. 
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2005; Barnett 2013).  The decline in longleaf pine savannas coupled with changes in fire 

regime have had and will continue to have severe consequences for these at-risk plants 

and animals as well as a variety of others that rely primarily on this ecosystem for 

survival. 

 

Longleaf pine savanna characteristics 

Longleaf pine (Pinus palustris) savannas are fire-structured habitats and typically 

have an open, park-like vista structure.  They are characterized by intermittent trees in 

the overstory (primarily longleaf pines), a sparse midstory, and a dense herbaceous 

groundcover made up of wide diversity of plants (Aschenbach et al. 2010).  These 

savannas range from xeric sandhills to seasonal wetlands (Aschenbach et al. 2010).  

Longleaf pines and the component grasses and forbs that comprise the herb-layer tend 

to be shade-intolerant, fire-dependent plants that thrive in the savanna setting with 

periodic burning.  In the absence of periodic fires, however, other hardwoods often out-

compete them for resources.  Longleaf pines are a long-lived species with an extensive 

grass stage that lasts several years (Barnett 2013).  This lengthy grass stage makes them 

vulnerable to competition from other woody plant species (Barnett 2013).  However, 

the grass stage is also highly fire-tolerant and thrives in the presence of periodic burning 

which controls other woody plant species. 
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Fire Suppression  

Although timber harvesting and conversion of longleaf pine savannas into 

agricultural land or urban areas have all played important roles in the declines of this 

ecosystem type, fire suppression has been a major factor in savanna loss and continues 

to be a cause for concern and potential ecosystem loss in the tracts of longleaf pine 

savanna that remain today (Steen 2013).  Fire has proven to be an important 

evolutionary driver of ecosystem adaptation throughout history (Nowacki & Abrams 

2008).  Naturally occurring fires (e.g. those caused by lightning), in conjunction with fires 

started by humans (i.e. burnings implemented by Native Americans before European 

settlement), have resulted in a plethora of fire-adapted species that depend on regular 

burning for establishment and/or persistence (Nowacki & Abrams 2008).  Since the 

heavy implementation of fire suppression strategies beginning in the 1920’s, fire-

dependent plant species that live on these savannas are being out-competed by fire-

sensitive species that have taken root and expanded their ranges (Nowacki & Abrams 

2008; Barnett 2013).   

Without periodic fire, other woody trees and shrubs facilitate each other in a 

positive feedback loop in which they alter environmental conditions to promote further 

establishment and reduce conditions required for persistence of savanna plants 

(Nowacki & Abrams 2008).  For instance, they reduce sunlight and soil resources to the 

plants that are not shade tolerant and need the nutrient cycling associated with burning 

(Aschenbach et al. 2010).  As longleaf pine recruitment fails and the herbaceous plants 

are shaded out, the pine needles and ground layer that provide fuel for the low-
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intensity burns necessary to maintain the ecosystem are also lost, thereby reducing fire 

frequency and reinforcing the dominance of woody plants (Steen 2013). 

In addition to excluding woody species that would otherwise encroach into the 

ecosystem, periodic fires, which are fueled by the herbaceous ground layer and the 

fallen longleaf pine needles, serve several other purposes (Barnett 2013; Steen 2013).  

They stimulate production of seeds by native species and release nutrients back into 

soils that are oftentimes nutrient-poor.  By preventing encroachment of woody species, 

fires may also promote greater longleaf pine recruitment since longleaf pines tend to be 

more sensitive to competition than most other pines of the Southern U.S. (Loudermilk 

et al. 2011; Vasconcelos 2009; Aschenbach et al. 2010; Barnett 2013).  Burning is 

therefore an integral part of maintaining the biological diversity that longleaf pine 

savannas harbor.  

 

Restoration 

 As humans continue to damage and change ecosystems, attempts to restore 

ecosystems and their functions have become increasingly common in an effort to stem 

loss of important ecosystem services and reduce/reverse pervasive trends of 

biodiversity loss (Burkhalter 2013; Bullock et al. 2011).  Reestablishing biodiversity, 

community structure, and ecosystem processes are all important aspects of trying to 

restore an area that has been impacted significantly by anthropogenic forces (Burkhalter 

2013).  Because of the once widespread nature of longleaf pine savannas combined with 
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their high rates of biodiversity and large numbers of rare species, they have become a 

popular ecosystem for conservation and restoration attempts (Aschenbach et al. 2010).   

Restoration projects often focus on reintroduction of or fostering native 

vegetation, with the assumption that this strategy is sufficient to restore both 

ecosystem function and other components of the habitat including landscape structure, 

fauna, etc.  (Burkhalter 2013).  Strategies for restoring longleaf pine savannas follow the 

vegetation restoration model. Methods include cutting down or thinning of competing 

hardwood vegetation (shrubs, other pine species such as slash or loblolly pine, and 

other trees), replanting of longleaf pine seedlings, and reintroduction of prescribed 

burning to promote growth of desirable natives.  Decisions to restore degraded sites are 

often based on the degree of degradation and the likelihood that restoration can be 

successful.  For example, a site that was used extensively as farmland may no longer 

contain a viable native seed bank.  Tracts of land with remnant or neighboring 

populations where the land has not been heavily modified are better candidates for 

restoration. 

Studies on restored mine pits in Australia and Spartina marshes in New Jersey 

have indicated that vegetative structure is a key component in restoring native 

arthropod assemblages to desired reference conditions (Moir et al. 2005; Gratton & 

Denno 2005).  However, it is important to note that dispersal capabilities can have 

substantial impacts on the restoration trajectory of arthropods for these communities, 

possibly allowing more mobile taxa to colonize more quickly than those with more 

limited dispersal capabilities (Moir et al. 2005).  Despite evidence that vegetation 
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structure can significantly affect overall arthropod diversity and community 

composition, there is little information on how vegetation structure in longleaf pine 

savannas affects arthropod assemblages on a wider scale.  Most studies thus far have 

focused on the effects of vegetation structure on soil-litter arthropods and other 

specific taxa following fire, rather than on the larger community composition of 

arthropods in these ecosystems.  

 

Arthropods as Indicators of Restoration Success 

Restoration success is commonly assessed by considering vegetative structure of 

restored sites, but restoration of native fauna is often a preeminent goal and some taxa 

may be utilized to evaluate restoration as well (Longcore 2003).  Arthropods are 

considered by many to be a useful indicator because they have short generation times, 

large population sizes, they are relatively easy to collect, and they fill many roles within 

an environment including the roles of pollinator, decomposer, predator and prey, so 

significant amounts of information regarding the environment can be garnered fairly 

easily by collecting insects over relatively short periods of time (Longcore 2003; 

Burkhalter 2013). 

Several studies have demonstrated relationships between vegetation structure 

and arthropod community observations (Ulyshen et al. 2009; Hanula et al. 2011; Hanula 

et al. 2011).  Collins et al. (2002) was able to link an increase in arthropod density in 

longleaf pine ecosystems with decreasing hardwood mid-story associated with 

infrequent burning.   In that study, they demonstrated that open pine stands contained 
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significantly higher densities of arthropods than those stands clogged with mid-story 

hardwoods and indicated that lack of ground vegetation in habitats dominated by a 

hardwood midstory was responsible for this trend.   Other studies suggest that absence 

or removal of understory shrubs in savannas typically dominated by an herbaceous 

understory, increases biomass and abundance of arthropods (Ulyshen et al. 2010; 

Hartley et al. 2010).   

 

Trap Catch 

 Trap type is an important determinant of what types of arthropods are caught in 

an environment.  The types of traps used for arthropod sampling are important and will 

dictate the amount and type of data a researcher can collect.  If one is trying to 

determine overall characteristics of an arthropod community or trying to sample a 

particular taxonomic group, it is key to choose the right type of traps for the purpose.  

Ground dwelling arthropods are often caught in pitfall traps buried in the soil, whereas 

pollinators and flying insects are often attracted to particular colors and scents that 

might correspond with flowers they visit (Campbell & Hanula 2007).  Therefore, gaining 

an accurate depiction of community structure is dependent on using the right kind of 

traps to capture the arthropods one would like to collect.  In a study of overall 

community, several types of traps should be employed to ensure adequate sampling of 

various arthropod taxa that will respond differently to each.   
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Research objectives 

 The objective of this study was to determine how insect community structure in 

restored longleaf pine savannas is affected by vegetation structure.  Because the sites 

sampled in this study had similar burn history but differing vegetative characteristics, 

effects of relatively recent changes in vegetation structure in a fire-dependent 

community could be assessed.  This study was completed at the Abita Creek Flatwoods 

Preserve (ACFP).  My study compared arthropod community structure in areas that had 

been heavily invaded by hardwood shrubs against similarly burned areas that were 

primarily dominated by longleaf pines and an herbaceous understory.  While the 

literature suggests that arthropod numbers and diversity are negatively correlated with 

increased shrub cover, most studies focus on single insect orders.  This study will 

attempt to create a more complete picture of the differences at the order and family 

level in arthropod communities inhabiting compartments heavily invaded with shrub-

cover versus those with in areas primarily consisting of the herbaceous ground-cover 

and sparse overstory that are characteristic of traditional longleaf pine savannas.   

 A secondary objective is to evaluate the effectiveness of trap types and multiple 

trap colors for attracting particular orders and families of arthropods.  Assessing the 

relative effectiveness of the different traps employed in the study may be relevant for 

future studies attempting to survey particular arthropod groups.   To elucidate which 

traps are best for which groups, I wanted to compare different types of traps and 

specimens they collected.   
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Methods 

Study Site 

 This study was conducted at the Abita Creek Flatwoods Preserve, a 950-acre 

conservation site (Figure 1) owned by The Nature Conservancy, in St. Tammany Parish, 

Louisiana, approximately five miles from Abita Springs, Louisiana.  The preserve is 

situated in the Prairie Terrace geologic formation.  Its location, variety of soil types, 

geology, and hydrological conditions provide habitat for a diverse community of plants 

and animals.  Three hundred plants species, including twenty species of rare plants (e.g. 

parrot pitcher plant, spoon-leaved sundew, bog flame-flower, and the endangered 

Louisiana quillwort) and several uncommon animal species such as the Bachman’s 

Sparrow and the barking tree frog, live in this relatively small tract of protected land.   

The Nature Conservancy (TNC) acquired the land in 1996 because, despite 

logging in the 20th century, fire suppression and subsequent colonization by slash pines 

and other hardwoods and shrubs, the native vegetation remained relatively intact.  

Since then, TNC has been actively engaged in restoring indigenous pine savanna habitat 

by clearing areas that were formerly dominated by longleaf pine by the use of controlled 

burns and replanting longleaf pine seedlings.  TNC carries out prescribed burning on 

designated units regularly to maintain the open structure of the longleaf pine savannas 

(Figure 1). 

In addition to the longleaf pine savanna, the preserve also contains slash pine-

pond cypress forest, eastern hillside seepage bogs, bayhead forests, and river floodplain 
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forest (Fig.2).  As well as providing habitat for many rare species, this wetland habitat is 

an important watershed resource for the surrounding communities. 

 

 

Figure 1. Map of the Abita Creek Flatwoods Preserve showing burn units and approximate sampling sites. 
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Figure 2.  Map of the Abita Creek Flatwoods Preserve showing community types. 

 

Sampling Design 

 To assess the differences between arthropod communities in shrub-dominated 

plots versus plots dominated by grasses and forbs, I chose six sites at the Abita Creek 
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Flatwoods Preserve (Fig.1) that had all had a similar burn history (the most recent burn 

on the sites had been conducted in 2009 prior to the study); 3 sites were dominated by 

the herbaceous grass characteristic of traditional longleaf pine savannas and 3 sites 

were dominated by shrubby undergrowth, predominately titi (Cyrilla racemiflora).   

After careful review of available plots throughout the preserve, the six sites were 

chosen carefully to be representative of the vegetative structure found within the 

preserve.  Shrub-dominated sites were set up within larger areas dominated by shrub so 

as to decrease possible crossover from herb-dominated areas.  Herbaceous sites were 

established within large areas of pine savanna.  All plots were circular and 5 m in radius, 

with insect traps placed within two meters of the center as vegetation on the plot 

permitted. 

 

Traps 

 In each plot, I haphazardly distributed three flight interception traps and two 

pitfall traps.  The flight interception traps were constructed using one meter of 4-gauge 

wire and white, yellow, and blue plastic bowls purchased from a party supply store.  I 

twisted each piece of wire into a stem that I could bury into the ground and a circular 

portion that would suspend the colored bowls in air.  4-gauge wire was required to 

support the weight of the bowls when filled with liquid.  The pitfall traps were 

assembled digging a hole large enough that an 8-cm diameter steel can would fit inside 

flush with the ground.  This can prevented the hole from collapsing in or changing shape 
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throughout my sampling period.  For every collection period, nine-ounce plastic cups 

were placed within the steel cans.   

 

Arthropod Sampling 

 Twice a month, from July 2011 until July 2012, the traps were set to collect for 

24 hours (except November 2011 which only had one sampling period due to weather 

complications).  The traps were set primarily on clear days when possible, in order to 

maximize the number of arthropods that would encounter the traps.  To set the traps, I 

put a few drops of dish soap in each and half-filled the trap with water to disperse the 

soap.  The soap reduces the surface tension of the water so that arthropods that come 

into contact with the solution are unable to escape the trap.  Filling traps halfway was 

enough to avoid evaporation of the solution during the sample period and keep the 

bowls at a weight that was supportable by the wire suspension post.  In addition, 

clothespins were employed to attach the bowls to the wire posts to prevent the bowls 

from tipping over in windy conditions. 

Traps were left open for approximately 24 hours and the contents were 

collected in labeled Ziploc bags and returned to the lab.  The arthropods were then 

removed from the soapy water solution and placed in labeled cups with a 70% ethanol 

solution to prevent decay while awaiting identification. 

Arthropods were identified by morphological characters using a microscope and 

a variety of field guides and dichotomous keys (Triplehorn & Johnson 2005; Borror & 

White 1970; White 1983; Milne & Milne 1980; Eaton & Kaufman 2007; Evans 2008; 
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McAlpine 1981; McAlpine 1987).  All arthropods were identified to order.  Most insect 

orders were identified to family with the exceptions of Thysanoptera and Collembola 

which were only classified to order. 

 

Statistical Analyses 

All statistical analyses were performed using Systat Version 11 (SYSTAT Software Inc., 

Richmond,CA).   

Richness Measures 

I calculated family richness as well as the Shannon diversity index (H) and the 

Shannon equitability index (EH) for each sampling unit.  Shannon diversity index (H) is 

often used in ecological studies to quantify diversity in a sample or population (equation 

1).  Higher values of H correspond with higher levels of diversity.  The Shannon 

equitability index (EH) measures evenness of a sample or population (equation 2).  

Values range from 0 to 1 where 0 signals that one taxonomic group is overtaking the 

sample and 1 is complete evenness.  After calculating family richness, H and EH, I ran 

two-sample t-tests to compare these values between the shrub-covered (covered) and 

grass-dominated (open) sites.   

 

 

       

     Equation 1: Shannon diversity index  
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                Equation 2: Shannon equitability index 

 

Abundance of Orders and Families 

To determine if there were overall differences in arthropod community 

composition between shrub and herb-dominated sites, I analyzed the data at the level 

of total abundance, abundance of orders, and where identifications were possible, 

abundance of families.  Shapiro-Wilks tests for normality were used to test for 

deviations from normality in the observation data and the order data.  Abundance was 

calculated per site and that data was analyzed using a two-sample t-test to compare 

total abundance in covered versus open sites.  Two-sample t-tests were then employed 

to assess any differences between the sites at the level of order.  Differences in 

abundance at the family level were analyzed using two-sample t-tests.   

To ensure that significant ecological patterns were not obscured by analyses that 

focused on a large number of families with relatively small numbers of individuals,  I also 

categorized families in terms of functional group, where known, in order to analyze the 

representation of trophic guilds by vegetation structure.  I pooled families known to be 

predominantly characterized by six trophic patterns: Predators, flower visitors, 

herbivores, parasites, wood-inhabiting beetles, and detritovores.   Groups with a 

mixture of trophic habits were excluded from the analysis of functional groups.  I used 

MANOVA to compare abundance patterns between herb and shrub dominated sites for 

the five groups mentioned above.  In this analysis, I also separately included Formicidae 

and Dolichopodidae, two families sampled in large numbers in this study.  They were 
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not included within the functional groups because their numbers may have 

overwhelmed other patterns in the data. 

 

Seasonal Trends 

 In addition to variation in numbers by burn treatment, I also analyzed the data to 

check for seasonal trends within the herb-dominated and shrub-dominated plots.  Due 

to the patchy occurrence of insect taxa in individual sample dates, samples were pooled 

into summer (July-August), fall (September-November), winter (December-February), 

and spring (March-May) for analysis.  Mean values for total abundance, abundance by 

order, and abundance by family were calculated by summing total samples across 

season and dividing by the number of sample dates.  For winter and spring, collections 

were taken 6 times (twice per month).  In the fall sample, only one sample was taken for 

November due to inclement weather and the summer sample only had 3 sample dates 

because of a burn that was implemented by TNC in June 2012.  Data was collected for 

June and July 2012, but that data was not comparable to rest of the collected data and 

was excluded from analysis of diversity, abundance, and seasonal trends. After 

calculation of seasonal abundance numbers, a Repeated Measures ANOVA (RMA) was 

used to compare herb-dominated and shrub dominated sites using burn treatment as 

the among-subjects effect and season as the within-subjects effects.  One-way ANOVAs 

with Tukey’s HSD post-hoc tests were then run to evaluate differences by season.  RMA 

were then run for seasonal differences by order.  When the RMA produced statistically 

significant results, I tested for differences between vegetation types or among seasons 
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using one-way ANOVAs with Tukey’s HSD post-hoc tests.  One-way ANOVAs with 

Tukey’s HSD post-hoc tests were used to analyze data at the family level. 

 

Trap type catch 

 I also compared trap success at the order and family level.  I calculated totals for 

the white, blue, and yellow bowls (I excluded the pitfall traps because they are not 

strictly comparable based on the type of arthropods they sample).  First, I ran a two-way 

ANOVA to check for differences between site type and number of specimens collected 

by each bowl color.  Two-way ANOVAs were used to look at burn and bowl color.  The 

data was then analyzed by order using two-sample t-tests to test for differences 

between the bowl colors.  Lastly, trap collection success was assessed by family using 

one-way ANOVAs and Tukey’s HSD post-hoc analysis.  When analyzing trap usefulness 

by family, I included pitfall traps because at this level of taxonomic analysis, it was 

illuminating to parse out which families within the orders were caught with each type of 

trap.   

 

Results 

Diversity measures 

 I collected a total of 9038 arthropods, including 8656 insects from 117 families 

were collected from sites surveyed from July 2011 until July 2012.  The preserve was 

burned extensively (including five of my six sites) in June 2012, so I excluded samples 

collected after May 2012 from the analysis of richness and diversity measures as well as 
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the vegetation-based analyses and seasonal trends, because burning may have affected 

the collectability of arthropods.  For these analyses, I used only the 6152 arthropods 

trapped between July 2011 and May 2012.  T-tests revealed that herb-dominated sites 

had significantly greater total Shannon diversity over the course of the study than the 

shrub-dominated sites (t=-3.34,p=0.029;Table 1).  Neither total family-level richness nor 

equitability measures differed significantly among shrub and herb-dominated sites 

(Table 1).   

 
 
Table 1.  Comparison of total family-level richness, Shannon-diversity (H) and equitability (EH) for shrub- 
and herb-dominated sites at Abita Creek Flatwoods Preserve. 

_______________________________________________________________________ 

__________Shrub-Dominated Herb-Dominated           t  P____ 

Richness 61.67±2.517  63.67±2.517   -0.97  0.386 

H  2.66±0.148  2.98±0.067   -3.34  0.029* 

EH  0.65±0.039  0.72±0.022   -2.68  0.055_ 

 

Abundance of Orders and Families 

 From July 2011 until May 2012, a two-sample t-test detected no difference 

(p=.631) in overall arthropod abundance between the shrub-dominated and herb-

dominated sites.  All orders of arthropods with more than 50 individuals were analyzed 

for abundance between the two site types using two-sample t-tests.  Coleoptera, 

Hymenoptera, Hemiptera, Collembola, Thysanoptera, Araneae, Lepidoptera, and Acari 

demonstrated no significant difference between site type, although Araneae was 
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marginally significant (p=0.078).  Diptera was the only order that showed a significant 

difference in abundance between site types(p=0.046); more specimens were caught in 

the shrub-dominated landscape.   

Table 2.  Comparison of total abundance and abundance by order for shrub- and herb-dominated sites at  
Abita Creek Flatwoods Preserve. 

 

 

___________Shrub-Dominated Herb-Dominated            t  P____ 

Totals     986.00±161.53  1064.67±206.52             -0.520              0.631 

Acari    13.33±3.21    34.67±23.76              -1.541  0.198 

Araneae   21.00±2.00     33.67±9.07              -2.361  0.078 

Coleoptera   41.33±11.59     59.00±19.92              -1.328  0.276 

Diptera   315.00±30.27   260.33±13.58   2.854  0.046* 

Collembola   215.33±71.16   169.67±37.07     0.986  0.380 

Hemiptera   52.00±7.21     90.00±32.74   -1.963  0.121 

Hymenoptera    92.33±48.42    106.33±56.13  -0.327  0.760 

Lepidoptera      8.00±0.00     10.67±2.52   -1.835  0.140 

Thysanoptera    216.67±80.93   288.33±122.35  -0.846  0.445 

 The abundance of individual families was analyzed for those with sufficient 

counts to permit statistical analysis (Table3).  Within Coleoptera, only Lampyridae 

demonstrated a significant difference between site type with more individuals found in 

the herb-dominated areas (p=0.013).  In Diptera, two families, Anthomyiidae and 

Ephydridae, had significantly more individuals in the herb-dominated sites (p=0.004 and 

p=0.002 respectively), whereas the shrub-dominated sites supported significantly more 
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Calliphoridae (p=0.023), Dolichopodidae (p=0.017), and Mycetophilidae (p=0.033).  

Phorids occurred with greater frequency in shrub-dominate sites (9.33±4.04 vs. 

2.33±2.08), while the Chironomids appeared more frequently in herb-dominated sites 

(11.00±6.00 vs. 22.00±4.58), but in neither case was this difference significant (p=0.056 

and p=0.065 respectively).  Among the Hymenoptera, Halictidae was the only family to 

demonstrate a significant difference between treatments, with more individuals caught 

in shrub-dominated areas (p=0.024).  Of the families in Hemiptera, aphids were 

significantly more abundant in herb-covered sites (p=0.028).  The only family of 

Lepidoptera analyzed, Hesperiidae, was non-significant for this measure. 

Table 3.  Comparison of abundance by family for shrub- and herb-dominated sites at Abita Creek 
Flatwoods Preserve. 

_______________________________________________________________________ 

_____________Shrub-Dominated Herb-Dominated            t  P____ 

COLEOPTERA 

Buprestidae       3.67±1.53  2.67±1.16    0.905  0.417 

Carabidae       1.67±1.16  0.67±1.16    1.061  0.349 

Chrysomelidae      1.67±0.58  1.33±0.58    0.707  0.519 

Curculionidae        1.00±1.73   2.33±0.58   -1.265  0.275 

Lampyridae       0.33±0.58  2.33±0.58   -4.243  0.013* 

Mordellidae       19.00±8.72  39.67±27.65   -1.235  0.284 

Scolytidae       3.00±3.46  3.00±4.36    0.00           1.000  

Staphylinidae       1.00±0.00    3.33±1.16   ---------  --------- 
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Table 3.  Comparison of abundance by family for shrub- and herb-dominated sites at Abita Creek 
Flatwoods Preserve. 

_______________________________________________________________________ 

_____________Shrub-Dominated Herb-Dominated            t  P____ 

DIPTERA 

Anthomyiidae        0.68±1.16  10.33±2.517        -6.047  0.004* 

Asilidae        2.00±2.00   0.33±0.58     1.387  0.238 

Bibionidae        0.68±1.16  1.67±0.58    -1.342  0.251 

Calliophoridae        3.33±0.58   0.67±1.16     3.578  0.023* 

Cecidomyiidae        8.67±3.22   6.00±3.46     0.977  0.384 

Ceratopogonidae   5.67±2.08   5.33±5.86     0.093  0.930 

Chironomidae         11.00±6.00  22.00±4.58    -2.524  0.065 

Chloropidae         3.00±1.73   2.67±2.52    0.189  0.859 

Culicidae                   1.33±2.31  1.00±1.00    0.229  0.830 

Dolichopodidae       193.00±26.15        123.67±15.18    3.971  0.017* 

Drosophilidae           10.00±1.73   7.00±5.00     0.982  0.382 

Ephydridae               0.33±0.58   5.00±1.00   -7.000  0.002* 

Muscidae          5.33±1.53  4.67±2.08    0.680  0.678 

Mycetophilidae       5.33±2.08   1.33±0.58    3.207  0.033* 

Phoridae                   9.33±4.04   2.33±2.08    2.667  0.056 

Sarcophagidae         14.00±6.25  10.67±1.53    0.898  0.420 

Scathophagidae       0.67±0.58   3.67±3.79   -1.357  0.246 

Scatoposidae          1.67±1.53   1.33±1.53    0.267  0.802 
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Table 3.  Comparison of abundance by family for shrub- and herb-dominated sites at Abita Creek 
Flatwoods Preserve. 

_______________________________________________________________________ 

_____________Shrub-Dominated Herb-Dominated            t  P____ 

Sciaridae          14.67±7.02   10.00±1.73    1.117  0.326 

Sphaeroceridae        2.33±2.31    5.33±1.53   -1.877  0.134 

Syrphidae           5.00±1.73   11.33±8.96   -1.202  0.296 

Tabanidae           2.00±1.00   1.67±0.58    0.500  0.643 

Tachinidae           1..00±1.00   2.67±2.52   -1.066  0.346 

HEMIPTERA 

Aphidae           3.00±1.73  33.67±15.63   -3.377  0.028* 

Cercopidae           1.33±0.58   5.33±2.52   -2.683  0.055 

Cicadellidae           33.33±10.97   40.33±15.18   -0.647  0.553 

Coccoidea           1.33±0.58   4.00±2.65   -1.706  0.163 

Psyllidae           2.33±3.22   1.33±1.53    0.487  0.652 

HYMENOPTERA 

Apidae            6.33±4.04   3.00±2.08    1.143  0.317 

Diapriidae           3.67±2.08   2.67±3.06    0.469  0.664 

Encyrtidae           1.67±1.53   2.67±1.53   -0.802  0.468 

Eulophidae                 2.00±2.65   3.67±2.08   -0.857  0.440 

Formicidae           56.67±51.59   70.00±53.93   -0.309  0.772 

Halictidae           2.33±0.58   0.67±0.58    3.536  0.024* 

Mymaridae           3.33±2.89   6.67±2.89   -1.414  0.230 
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Table 3.  Comparison of abundance by family for shrub- and herb-dominated sites at Abita Creek 
Flatwoods Preserve. 

_______________________________________________________________________ 

_____________Shrub-Dominated Herb-Dominated            t  P____ 

 

Platygasteridae         1.67±1.53   2.33±2.31   -0.417  0.698 

Scelionidae           4.67±1.53   4.67±2.52    0.000  1.000 

LEPIDOPTERA 

Hesperiidae           6.33±1.16   5.67±2.31    0.447  0.678 

 

Functional Groups 

 Combining families into trophic functional groups revealed patterns not 

apparent from considering family-level data alone (Table 4).  When the data was 

separated and compared by functional groups, MANOVA revealed significantly more 

predators (p<0.001), flower visitors (p=0.019), herbivores (p=0.004), and parasites 

(p=0.001) in herb-dominated sites (Table 5).  Wood-boring beetles and detritovores 

were significantly more common in shrub-dominated areas (p=0.045 and p<0.001 

respectively) (Table 5). 

Table 4. Abundance of functional groups at three shrub- and three herb-dominated sites at Abita Creek 
Flatwoods Preserve. 

 
Sample 
Site Predators 

Flower 
Visitors Herbivores Parasites Borers Detritiovores 

Shrub1 2 38 63 24 6 56 

Shrub2 4 54 57 17 12 68 

Shrub3 3 40 50 19 4 63 

Herb1 6 26 69 23 11 41 

Herb2 5 102 143 34 3 49 

Herb3 8 86 120 29 4 50 
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Table 5.  Multivariate analysis of variance table for functional guild comparisons between shrub- and 
herb-dominated sites. 

________________________________________________________________________ 

Guild   Sum of Squares df Mean-Square    F  P____ 
 
Predators  7104.33   2  3552.17   156.71            <0.001* 
Error   90.67    4  22.67 
 
Flower Vis.  21073.33   2  10536.67   12.53  0.019* 
Error   3362.67   4  840.67 
 
Herbivores  46374.67   2  23187.33  31.41   0.004* 
Error   2953.33   4  738.33 
 
Parasites  3665.33   2  1832.67   84.59   0.001*  
Error   86.67    4  21.67 
 
Boring   269.33   2  134.67   7.41   0.045* 
Error   72.67    4  18.17 
 
Detritivores  18189.67   2  9094.83   299.83            <0.001* 
Error    121.33   4  30.33_______________________________ 
 

Seasonal Trends 

With RMA, I found there was a significant effect of season on total arthropod 

abundance (p<0.001).  No significant difference was detected between different 

vegetation types (p=0.252) or in the interaction between vegetation cover-type and 

season (p=0.860), meaning that patterns of change over time did not differ significantly 

between shrub- and herb-dominated sites (Table 6). 
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Table 6.  Repeated Measures Analysis of Variance table for seasonal abundance and vegetation type. 

_______________________________________________________________________ 

 __________   Sum of  Squares   df         Mean-Square       F-ratio           P____ 

Vegetation Type 708.144  1 708.144     1.791 0.252 

Error   1581.547  4 395.387      

Season   27295.224  3 9098.408     47.338        <0.001* 

Vegetation*Season 143.674  3 47.891       0.249  0.860 

Error   2306.426  12 192.202 _________________               

 

After the overall RMA, I ran two-way ANOVAs on each pair of seasons to 

evaluate differences in abundance and season*vegetation effect.  I found significant 

differences in arthropod abundance between summer and fall (p=0.003), summer and 

spring (p<0.001), fall and spring (p<0.001), winter and spring (p<0.001), and fall and 

winter (p=0.035).  Spring and fall had significantly higher arthropod counts than summer 

and winter.  Spring had a significantly higher abundance of arthropods than any other 

season (Fig. 3).  In all comparisons, I found no significant difference in seasonal changes 

in abundance between shrub-dominated vs. herb-dominated sites. 
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Figure 3.   Mean number observations of arthropods per season/per vegetation type. 

 

Using RMA, significant differences in seasonal abundances were found for every 

order except Collembola (p=0.364) (Fig. 4). With Tukey HSD Post-Hoc tests, I determined 

that Hemipterans were caught significantly more frequently in the spring than in fall 

(p=0.019) or winter (p=0.002) (Fig.5). Coleopterans were caught significantly more 

frequently in the summer than in the fall (p=0.005) or winter (p=0.001) (Fig.6).  Diptera 

were trapped significantly more often in the spring (p<0.001 against all other seasons) 

(Fig. 7).  Hymenopterans were sampled significantly more often in spring than in fall 

(p=0.029) or winter (p=0.012) (Fig.8).  Significantly lower numbers of Lepidoptera were 

caught in winter than in fall (p=0.002) or spring (p=0.035) (Fig. 9).  Abundance of 

Thysanoptera was signficantly greater in spring than in any other season 

(summer,p=0.001; fall,0.002;winter,p=<0.001) (Fig.10).  Araneae were captured least 

often in winter, but significantly different only from summer (p=0.031) (Fig.11).  
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Figure 4.   Mean number observations of Collembola per season/per vegetation type. 
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Figure 5.   Mean number observations of Hemiptera per season/per vegetation type. 
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Figure 6.   Mean number observations of Coleoptera per season/per vegetation type. 
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Figure 7.   Mean number observations of Diptera per season/per vegetation type. 
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Hymenoptera
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Figure 8.   Mean number observations of Hymenoptera per season/per vegetation type. 
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Figure 9.   Mean number observations of Lepidoptera per season/per vegetation type. 
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Figure 10.   Mean number observations of Thysanoptera per season/per vegetation type. 

 

 

Araneae

0

2

4

6

8

10

12

summer fall winter spring

M
e

an
 #

 o
f 

In
d

iv
id

u
al

s

shrub

herb

 

Figure 11.   Mean number observations of Araneae per season/per vegetation type. 

 

 A subset of families (those families with over 25 sampled individuals), was 

analyzed for seasonal differences using two-way ANOVAs for season and vegetation 
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type.  Those that showed significant differences were then subjected to Tukey HSD Post-

Hoc tests.  In Hemiptera, both Aphididae (p=0.001) and Cicadellidae (p=0.003) exhibited 

significant seasonal variation.  Despite this indication by ANOVA, the pairwise Post-Hoc 

tests for Aphididae showed no variation between seasons. (Fig. 12) (Fig.31)  I found that 

the interaction between vegetation and season was significant for aphids (p=0.001), 

indicating that while aphids exhibited a dramatic increase in spring for herb-dominated 

areas they did not experience a similar increase in shrub-dominated sites (Fig. 13).  

More Cicadellids were sampled in the spring than any other season 

(summer,p=0.005;fall,p=0.009;winter, p=0.003) (Fig.14) (Fig.31).  

 

Figure 12.   Mean number observations of Aphididae per season. 
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Figure 13.   Mean number observations of Aphididae per season/per vegetation type. 

 

 

Figure 14.   Mean number observations of Cicadellidae per season. 

 

 The three families of Coleoptera analyzed for seasonal differences all showed 

significant differences in abundance.  Scolytidae showed significantly higher abundance 

in winter than any other season (summer,p=0.036;fall,p=0.036;spring,p=0.036) (Fig. 
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15)(Fig.33), but all of the individuals were caught on one day at the end of February.  

Buprestidae was significantly more abundant in spring than any other season 

(summer,p<0.001;fall,p<0.001;winter, p<0.001) (Fig.16) (Fig.33). Mordellidae was more 

common in summer than any other season, but only significantly more abundant when 

compared with winter (p=0.011) (Fig. 17) (Fig.30).   

 

Figure 15.   Mean number observations of Scolytidae per season. 

 

Figure 16.   Mean number observations of Buprestidae per season. 
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Figure 17.   Mean number observations of Mordellidae per season. 

 

Order Diptera had the highest number of families that varied significantly by 

season.  Of the families whose larvae are dependent on plant tissues, Anthomyiids were 

more abundant in winter than any other season (summer,p=0.001;fall,p=0.008;spring, 

p=0.002) (Fig. 18) and Cecidomyiids were most abundant in fall (summer,p=0.006; 

winter, p=0.010) (Fig.19) (Fig. 31).  Of the detritivores, Chironomids showed significantly 

higher numbers in spring than in summer or fall (summer,p=0.001;fall,p=0.002) (Fig. 20) 

and Muscid flies were caught significantly more frequently in winter and spring than in 

summer:  summer:winter (p=0.045) and summer: spring (p=0.015) (Fig.21).  Predatory 

Dolichopodids exhibited significantly higher numbers in spring than any other season 

(p<0.001 for each comparison) (Fig.22).  Fungivorous Sciarids and Drosophilids also 

displayed seasonal variation.  Sciarids were caught least frequently in winter but the 

only significant difference was between winter and spring (summer,p=0.067; 
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fall,p=0.067;spring,p=0.007) (Fig.23), while Drosophilids were captured significantly 

more often in summer than any other season (winter,p=0.003;fall,p=0.006; 

spring,p=0.001) (Fig.24).  Sarcophagids, which feeding on decaying animal tissue, were 

most frequently trapped in the fall with significantly lower numbers caught in both 

summer (p=0.006) and winter (p=0.008) (Fig.25). 

 

Figure 18.   Mean number observations of Anthomyiidae per season. 

 

 Figure 19.   Mean number observations of Cecidomyidae per season. 



 36 

 

Figure 20.   Mean number observations of Chironomidae per season.  

 

 

 

 

Figure 21.   Mean number observations of Muscidae per season. 
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Figure 22.   Mean number observations of Dolichopodidae per season. 

 

 

 

Figure 23.   Mean number observations of Sciaridae per season. 
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Figure 24.   Mean number observations of Drosophilidae per season. 

  

 

Figure 25.   Mean number observations of Sarcophagidae per season. 

 

Of the three families of Hymenoptera tested for seasonal differences, Formicidae 

and Mymaridae had seasonally significant differences while Apidae did not.  Formicids 

were most abundant in spring (Fig.26), but spring abundance differed significantly only 
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from fall and winter (summer,p=0.086;fall,p=0.044;winter,p=0.037). Mymarids were 

significantly more abundant in spring than any other season (Fig.27) (summer, 

p<0.001;fall,p=0.037; winter,p=0.003)(Fig.32).  Hesperiids, in Order Lepidoptera, 

demonstrated higher catch quantities in fall and spring respectively (Fig.28)(Fig.30).  Fall 

and spring were not significantly different from one another and neither were winter 

and summer, but all other seasonal comparisons were significantly different 

(summer:fall,p=0.001; summer:spring,p=0.034; fall:winter,p=0.001; 

winter:spring,p=0.020).   

 

 

Figure 26.   Mean number observations of Formicidae per season. 
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Figure 27.   Mean number observations of Mymaridae per season. 

 

 

Figure 28.   Mean number observations of Hesperiidae per season. 
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Figure 29.   Mean number observations of predator families per season. 

0

5

10

15

20

25

30

35

summer fall winter spring

A
ve

ra
ge

 #
 o

f 
In

d
iv

id
u

al
s

Flower Visitors

Mordellids

Syrphids

Hesperiidae

Apidae

Halictidae

  

Figure 30.   Mean number observations of flower visitor families per season. 
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Figure 31   Mean number observations of herbivore families per season. 

 

  

Figure 32.   Mean number observations of parasitic hymenoptera families per season. 
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Figure 33.   Mean number observations of wood-borer families per season. 

Trap type catch 

 Arthropod bowl color catches were analyzed using a two–way ANOVA with trap 

color and vegetation type as factors.  Total captures of all arthropods (p=0.042), as well 

as total Coleoptera (p=0.011), Diptera (p<0.001), Hemiptera (p<0.001), Lepidoptera 

(p=0.040), and Thysanoptera (p=0.024) all exhibited significant differences among trap 

types.  Hymenoptera (p=0.056), Araneae (p=0.848), Acari (p=0.367),and Collembola 

(0.460) did not show significant differences in catch among trap types.  

 Two-sample t-tests were then run to determine trap efficiency among the bowl 

colors.  Total arthropod captures were significantly greater in yellow traps than in white 

traps (p=0.05).  Both Diptera and Hemiptera were captured most in yellow bowls 

(Diptera, p<0.001 for comparisons with white and blue; Hemiptera, p=0.001 for 

comparisons with white and blue).  In contrast, thysanopterans were caught significantly 

more often in blue and white bowls than yellow bowls (blue:yellow, p=0.001; 
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white:yellow, p=0.007).  Lepidoptera were caught significantly more frequently in blue 

bowls than yellow (p=0.038) Hymenoptera were trapped in yellow bowls significantly 

more than blue (p=0.025).  Coleoptera were caught significantly more frequently in blue 

bowls than in white bowls (p=0.037). 

 

Figure 34.   Number of observations of Diptera per trap color. 

 

 

Figure 35.   Number of observations of Hemiptera per trap color. 
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Figure 36.   Number of observations of Lepidoptera per trap color. 

 

 

Figure 37.   Number of observations of Thysanoptera per trap color. 
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Figure 38.   Number of observations of Hymenptera per trap color. 

 

 

Figure 39.   Number of observations of Coleoptera per trap color. 

 

 I assessed trap preference at the family level for those families represented by 

enough specimens to permit statistical comparisons among traps.  Of the hemipterans, 

aphids (yellow:white,p=0.001; yellow:blue,p=0.001), cicadellids (yellow:white,p<0.001; 
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yellow:blue,p<0.001), and psyllids (yellow:white,p=0.011; yellow:blue,p=0.011) all 

exhibited significantly higher numbers in yellow bowls.  The lepidopteran family 

Hesperiidae, was caught significantly more in blue bowls than yellow bowls 

(blue:yellow,p=0.004).   

In Order Hymenoptera, members of Apidae were trapped in white bowls more 

frequently than yellow (p=0.018).  Mymarids (yellow:white,p=0.001; 

yellow:blue,p=0.013, yellow:pitfall, p=0.002), and Platygasterids (yellow:white,p=0.013; 

yellow:blue,p=0.001; yellow:pitfall, p=0.001), landed in yellow bowls significantly most 

often, Formicids and Scelionid were caught most often in the pitfall traps (Formicids-

p=0.001 for all comparisons against pitfall traps; Scelionids-pitfall:white,p<0.001; 

pitfall:blue,p=0.001; yellow:pitfall, p=0.002), and Halictids were more frequently caught 

in blue bowls when compared to yellow (p=0.028), but not significantly more than 

white.   

Coleopterans showed a range of relationships to trap color.  Several families 

exhibited non-significant trap association, but four families had a significant outcome.  

Mordellids were trapped most frequently in white (yellow:white,p=0.044; 

white:blue,p=0.017; white:pitfall, p=0.004).  Buprsestids were found significantly more 

often in blue traps than yellow or white traps (blue:yellow,p=0.028; 

pitfall:blue,p=0.028).  Lampyrids were most often taken in yellow traps (all comparisons 

p<0.001).  Carabids in pitfall traps (p=0.025 compared with blue and yellow bowls) 

(although no significant difference existed between numbers caught in pitfall traps and 

white bowls). 
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Among Diptera, Dolichopodids and Sarcophagids were captured significantly 

more often in yellow traps (p<0.001 all comparisons) while Drosophilids were taken 

most often in white (p<0.001 for all comparisons) and Tabanids in blue traps 

(blue:white,p=0.003; yellow:blue,p=0.001; yellow:pitfall, p=0.001).  Dixids were found in 

yellow traps significantly more often than blue or yellow bowls (p=0.050 for both 

comparisons). 

 

Discussion 

 In this study, Shannon diversity at the family level and abundance of key 

functional guilds was significantly greater in herb-dominated sites than sites with 

extensive woody mid-story shrubs.  This is despite the close physical proximity of sites 

with different habitat types.  In some instances, these two habitats graded sharply into 

one another over a distance of only a few meters, and occasionally, they inter-digitated.  

This would be expected to promote relatively similar insect communities in samples 

from the two sites, but this was not the case.  Despite the ability of insects to move 

freely among patches, functional group abundance and diversity reflected overall plant 

diversity; shrub-dominated patches had nearly continuous cover of Cyrilla racemiflora 

while herb-dominated sites had up to 30 species per square meter (A. Entrup, personal 

communication). 

In contrast, no differences in total abundance, evenness, or richness of families 

were found between herb-dominated sites and shrub-dominated sites.  This is likely 

due, in part, to the high numerical dominance of a few taxa, particularly Dolichopodidae 
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and Formicidae, and the large number of families with only a few specimens.  

Combining taxa into functional groups revealed significant ecological relationships 

between feeding niche and vegetation structure that was obscured by the finer-scale 

abundance patterns of individual taxa.  Phytophagous and flower visiting arthropods  

were more abundant in the herb-dominated sites corresponding with the increased 

plant diversity.  Wood-boring insects and detritivores showed stronger associations with 

shrub-dominated sites which contain more woody stems and detritus accumulated from 

shrubs.   

The transition from herb- to shrub-dominated sites is regulated by fire interval, 

and significant change in longleaf pine vegetation structure may be apparent in as little 

as three years (Van Lear et al. 2005).  In this study, phytophagous insect diversity is 

often strongly correlated with plant diversity.  Loss of a diverse herb layer to a smaller 

variety of shrubby species is expected to lead to lost abundance of those plant-

associated insects (Armitage & Ober 2012)  So, even though total abundance of 

arthropods is maintained in each site type, diversity is not. 

 

Taxa Showing Habitat Association 

Of the orders analyzed for differences based on vegetation structure, only 

Diptera showed significant differences in abundance between site types.  The greater 

abundance of Diptera in shrub-dominated sites is largely due to the overwhelming 

abundance of Dolichopodids which favored those sites.  Of the 6152 arthropods 

analyzed for associations with vegetation type, 950, or 15.4%, were Dolichopodids.  
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Sixty percent of these flies were sampled in the shrub-dominated zone.  One factor 

affecting the abundance of these flies might be that they are predaceous flies feeding 

on a variety of small arthropods, eggs, and larvae.  Previous studies have suggested that 

suitable prey items such as soil-dwelling arthropods increase in abundance and diversity 

with time after a fire, a possible reason being that larvae are often detritivorous, and 

shrub-dominated areas may provide more food for larvae (Hanula & Wade 2003). 

However, my samples did not show such a pattern; Collembola were the dominant soil-

dwelling taxon, and they did not differ in abundance between sites dominated by herbs 

and those dominated by shrubs.  My samples were based on only two pitfall traps per 

site, and it is possible that using additional pitfall traps to increase capture rate might 

have revealed small but significant differences in soil arthropod abundance or diversity.  

It is also possible that other invertebrate taxa not sampled by my methods are 

important prey of dolichopodid flies. 

 Eight families showed significant association with either vegetation type.  In 

Order Coleoptera, beetles of family Lampyridae were caught significantly more often in 

herb-dominated sites.  When signaling for mating, lampyrids often perch on vegetation 

(Moosman 2009).  While perches would be available in both herb-dominated and shrub-

dominated sites, perhaps the more open nature of the grassy sites allowed for better 

visibility when attempting to locate mates.   

 Halictid bees were found most frequently in the shrub-dominated areas.  A study 

at Auburn University has suggested that halictids were primary pollinators of titi (Cyrilla 

racemiflora) which is the primary shrub associated with the shrub-dominated sites in 
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this study (Dute et al. 2004).  This study found that specimens of Dialictus (Halictidae) 

that had visited the titi flowers carried 90% titi pollen (Dute et al. 2004).   

 The fly families Anthomyiidae and Ephydridae were predominantly collected in 

the herb-dominated habitat, whereas Dolichopodidae, Calliphoridae, and 

Mycetophilidae were found more often in the shrub-dominated regions.  Anthomyiids 

may have been more common in the herb-dominated areas because of the higher 

diversity of plant species.  Known as root-maggot flies, the larvae are primarily 

phytophagous.  Ephydrids have a variety of trophic associations, but they are primarily 

detritivores feeding on all manner of rotting organic material, though others include 

algae feeders and leaf miners (Foote 1995).  Mycetophilid larvae are typically fungivores 

(Matile 2012) while Calliphorid larvae are heavily dependent on decaying animal matter.   

Aphids were also more highly associated with herb-dominated sites than shrub-

covered sites.  Aphid species are selective herbivores that primarily feed on one plant 

species (Stern 2008).  The high number of aphids in the herb-dominated sites is likely 

due to associations with preferred vegetation available in those sites.   

Of the eight families that displayed significant preference for either vegetation 

type, four were more prevalent in shrub-dominated sites and four were more common 

in herb-dominated sites.  Most of the families frequently found in herb-dominated sites 

were phytophagous during some part of their life cycle.  
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Seasonal Trends 

Totals 

Higher overall arthropod abundance in spring is consistent with the expectation 

that as temperatures warm and vegetation grows and flowers with the warming 

temperatures, arthropods will become more active and begin reproduction to allow 

larval development in the warm spring and summer months before temperatures and 

vegetative growth begin to dwindle later in the year (Topp 2003).  These results are 

consistent for both the shrub- and herb-dominated areas, suggesting that the 

availability of young tissues promotes arthropod abundance in both habitats.   

 

Arthropod Orders 

 When assessing seasonal trends by arthropod order, I found that all orders, 

except Collembola, varied significantly by season and that patterns of change by season 

were not significantly different between the site types for any order.  Collembola might 

be less vulnerable to change by season since they are soil-litter dwellers, but other 

studies have suggested that they reach peak densities in winter months (Hibdon 2003).  

Although most orders (Hemiptera, Diptera, and Thysanoptera) followed the trend of 

higher abundance in spring corresponding with new plant growth, hymenopterans also 

had high abundances in summer likely do to the fact that formicids become more active 

in warmer temperatures (Ober & DeGroote 2011) when they are searching for 

resources.  
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The most abundant coleopteran, and likely the reason for the concentration of 

beetles in summer, are the Mordellids (flower beetles).  Mordellids were 176 out of 301, 

or 58.5%, of beetles collected from July 2011 until May 2012 and they were heavily 

concentrated in the summer months.  Their high densities in spring and summer are 

likely attributed to vegetation availability.  Since they are known flower visitors that 

consume nectar and pollen (Rutledge & Young 2007), they may be utilizing a particular 

type of plant that is prevalent at that time, perhaps titi which is a summer bloomer 

(Fischer 1997).   

Lepidopterans did not exhibit strong seasonal observations except that they 

were uncommon in the winter season.  The only two Lepidoptera that were trapped in 

the winter sample came on the last sampling date at the end of February, which was a 

warm day that may have signified the beginning of spring and ended the overwintering 

period for these arthropods.  Members of Araneae were significantly more common in 

summer than winter perhaps owing to a greater abundance of prey items in the 

summer months.   

 

Families 

Within Coleoptera, families Scolytidae, Buprestidae, and Mordellidae, all 

exhibited significant seasonal patterns.  Scolytids were significantly more abundant in 

the winter sampling period than any other and Buprestids were significantly more 

abundant in the spring than any other time.  One thing to note is that every Scolytid was 

collected at the last date of winter sampling at the end of February and that day was 
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warm, as noted above with the Lepidopterans.  Even though, the sampling date was 

technically in the winter period, the increase in temperature could have signaled a 

change in season to the Scolytids.  Scolytids are dependent on woody vegetation and 

are commonly associated with pine habitat.   Scolytids are often associated with pine 

trees and typically emerge to search for a place to oviposit or a new host.  It is likely that 

the warming temperatures serve as a signal for the advent of this stage of the normally 

well-hidden Scolytids’ life cycle (Forcella & Harvey 1983).  Of the individuals within the 

family Buprestidae, most were of the genus Acmaeodera, which are mostly flower 

visitors that are known to be active in spring and early summer.  So this result is not 

surprising.  None of the beetle families exhibited varying seasonal patterns between 

herb- and shrub- dominated sites. 

Within Hymenoptera, Mymarids showed significantly higher presence in spring 

than all other seasons, likely corresponding with the higher abundance of organisms 

they parasitize (insect eggs).  Formicids, which are active in warmer temperatures 

demonstrated higher abundance in spring and summer.     

Of the analyzed Hemipteran families, Aphididae did show significant differences 

in seasonal patterns between site types.  Closer inspection revealed that while the herb-

covered sites had a highly significant increase of individuals in the spring, the shrub-

dominated sites did not experience the same explosion of growth which likely 

prevented the pairwise comparisons from attaining seasonal significance.  It appears 

likely that the widespread initiation of new growth in herbaceous plants in the spring 

provides significantly greater resources for aphids than do shrubs.  
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Hesperiids (Lepidoptera) were significantly more common in spring and fall than 

summer and winter and they exhibited different seasonal shift depending on site type. 

In the shrub-dominated zones there was a more substantial increase in catch during the 

fall than in the herb-dominated areas perhaps indicating that the shrub-dominated 

zones are preferred for reproduction. 

I tested more Dipteran families than any other group for changes in seasonal 

abundance.  The trends that I noticed here are that most families of flies are significantly 

prevalent in either summer, fall, or spring, but there is typically not much significant 

pairwise variation, indicating that either the fly families are making use of resource 

availability (vegetation or detritus) that is present over multiple seasons or that their 

activity is determined by temperature conditions that extend over more than one 

season.   Each of these fly families may use particular resources that are common during 

one season or another, but it is difficult to pinpoint on which resources each of these 

families are depending since most have varying life history strategies within the families.  

One outlier in the fly families is Anthomyiidae.  Anthomyiids were collected significantly 

more often in herb-dominated sites and they were also caught significantly more in 

winter than any other season.  Since very few were caught in shrub-dominated sites at 

any time of year and several were trapped in herb-dominated sites, the differences in 

seasonal variation were significantly different as well.  Since the larvae of these flies are 

dependent on plant tissue, it seems as if the preponderance of adults corresponds with 

a time of year when those larval resources are not as readily available.  Cecidomyiids, 

which are typically gall formers, may be most abundant in fall due to emergence after 
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larval development takes place in young plant tissues in spring and summer.  

Dolichopodids, predators, display a spike in numbers corresponding with increases in 

other invertebrates that are potential prey items.  Chironomids and Muscids, both of 

which were most common in spring and winter, likely make use of detrital material that 

builds up over winter months.  Drosophilids and Sciarids both depend on fungal material 

and decomposition of organic material for food resources, but Drosophilids 

demonstrated a peak in winter whereas Sciarids peaked in spring.  The reason for this 

difference is likely due to Sciarid emergence concentration in spring (Nielson & Nielson 

2004).  Sarcophagids, which are animal tissue feeders, have shown increases in 

abundance with warming temperatures (Mulieri et al. 2008).  It is unclear why they 

would have been more prevalent in the fall season than summer.  It is possible that the 

incomplete summer collection has biased the collection of Sarcophagids. 

Of the arthropod families analyzed for seasonal differences that did not exhibit 

seasonal differences, Ceratopogonids (Diptera) encompass a variety of life history 

patterns that may allow different species to thrive at varying times.  Some are 

predators, some are flower visitors, while others still feed on blood (McAlpine 1981; 

Triplehorn & Johnson 2005).  Syrphids (Diptera), surprisingly for flower visitors, had no 

strong seasonal patterns in this study.  The apids (Hymenoptera) caught in this study 

were primarily Apis mellifera (honeybees) and they were the only apids caught in 

winter.   
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Trap Type Abundance  

 When discriminating between blue, yellow, and white bowls, I found that yellow 

bowls caught significantly more arthropods than white bowls, but no significant 

difference was found between yellow and blue, or blue and white.  This result has been 

found in similar studies comparing the efficiency of colored pan traps (Hoback et al. 

1999).  It has been suggested that yellow pigments resemble pigments of foliage that 

insects can detect and are attracted to which is what makes yellow traps good all-

purpose traps (Prokopy & Owens 1983; Leong & Thorpe 1999).  When comparing 

relative effectiveness of bowl color by order, I found that yellow bowls were the best for 

trapping flies primarily due to the overwhelming abundance of Dolichopodids that 

landed in the yellow traps which confirms results from the Hoback et al. study (1999).  

For Lepidopterans, which were primarily Hesperiids, blue bowls were significantly better 

than yellow.  Though associations have been found between Lepidopterans and the 

color yellow, in this study, as well as a study by Campbell & Hanula (2007), 

Lepidopterans dominated by Hesperiids have favored blue traps.  This may indicate that 

blue is a more easily discernible color or perhaps Hesperiids are just particularly 

attracted to blue.  Hymenopterans, as expected, landed in blue bowls significantly more 

often than yellow likely because shorter wavelengths of light are more visible to them 

including wavelengths in the UV spectrum.  White and blue bowls did not exhibit 

significant difference and it has been shown that some bees see white as a blue-green 

color which may make white and blue indistinguishable (Leong & Thorp 1999).  

Hemipterans overwhelming chose yellow bowls which is consistent with other studies 
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(Prokopy & Owens 1983).  Coleoptera significantly chose white over blue bowls while 

Thysanopterans chose blue bowls significantly more often than white and white bowls 

significantly more often than yellow.  Both of these results correspond with results from 

Campbell & Hanula (2007). 

 

Families 

For the family-level analysis, I included the pitfall traps because several of the 

families were caught almost exclusively in the pitfall traps.  In Hemiptera, the 

significantly higher numbers of Cicadellids, Aphids, and Psyllids in yellow bowls than in 

any other trap indicates the foliage association discussed earlier.  

Members of Apidae were caught most often in white bowls, but there was no 

significant difference between white and blue, likely due to the visibility of blue 

wavelengths and the reflectance from the white bowls appearing similar to the bees.  

Halictids, also unsurprisingly, were caught most in blue bowls, since many bees have 

strong vision in the shorter wavelength range.    Formicids were caught in significant 

quantities in pitfall traps which is not surpising since they are primarily wingless.  

However, the parasitic wasp group Scelionidae, were also most prevalent in the pitfall 

traps, which although surprising for a flying insect, is not so surpising when one 

considers that many are egg parasites of ground-dwellers.  Mymarids and Platygasterids 

(both parasitic wasps) were caught primarily in yellow bowls which are known to be 

good for catching parasitoid wasps (Duelli et al. 1999).   
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Beetles (Order Coleoptera) were more cosmopolitan which has been found in 

other studies also.  The significant results associating Mordellids with white bowls were 

contrary to the results of Campbell & Hanula (2007) where they found that Mordellids 

were most highly correlated with yellow pan traps.  However, my findings for Buprestids 

with blue bowls over yellow or pitfall traps were similar to those found in the same 

Campbell & Hanula study .  Carabids, otherwise known as ground beetles, were, not 

surprisingly, caught most in pitfall traps.  Lampyrids prevalence in yellow bowls seems to 

correspond with the vegetation requirements discussed earlier in this study if the color 

yellow resembles foliar pigments. 

Dolichopodids and Sarchophagids were primarily trapped in yellow bowls which 

corresponds with the pattern for many flies.  The most abundant group of flies caught in 

this study was the Dolichopodids, and since they were most abundantly found in the 

yellow traps, that was part of the reason why the Dipterans were found significantly 

more often in yellow bowls than any other trap and why yellow bowls attracted such 

large numbers overall compared to the other two bowl colors. Regarding many of the 

other pairwise comparisons between trap types, most of the remaining significant 

differences fell between bowls and pitfall traps where the flies chose the bowls over the 

pitfalls, with one exception; members of Sphaeroceridae were caught frequently in 

pitfall traps. 

According to my results, trap catches are very much dependent on family level 

attractions, so to get an adequate sampling of most orders, multiple types of traps or 
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colors should be employed.  It is important to consider the characteristics of the group 

to be sampled when choosing successful traps. 

 

Conclusions 

 Results from this study indicate that vegetation type does have a significant 

effect on several orders and families of arthropods that reside in longleaf pine savannas.  

Herb-dominated sites support more functional guilds as well as a higher diversity of 

arthropod taxa, indicating that the characteristic vegetation of restored longleaf pine 

savannas at the Abita Creek Flatwoods Preserve is important for arthropod community 

structure.  Despite the matrix in which the sampled sites exist, clear differences were 

observed between vegetation types.  These results suggest that periodic burning which 

maintains vegetation will help to maintain biodiversity of arthropod communities in 

longleaf pine savannas. 
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Appendix 1 

 
Class   Order             Family  Frequency 
 
Insecta                          Coleoptera                     Brathinidae    2 
 
Insecta                        Coleoptera   Bruchidae    1 
 
Insecta                        Coleoptera   Buprestidae   19 
 
Insecta                        Coleoptera   Carabidae    7 
 
Insecta                          Coleoptera                     Cerambycidae    3 
 
Insecta                          Coleoptera                    Chrysomelidae    9 
 
Insecta                        Coleoptera    Ciidae     1 
 
Insecta                        Coleoptera    Cryptophagidae   1 
 
Insecta                        Coleoptera    Curculionidae  10 
 
Insecta                        Coleoptera    Derodontidae   0 
 
Insecta                        Coleoptera                       Elateridae                       2 
 
Insecta                        Coleoptera                       Erotylidae    1 
 
Insecta                        Coleoptera                        Laemophloeidae   1 
 
Insecta                        Coleoptera     Lampyridae    8  
 
Insecta                          Coleoptera                        Lathridiidae    1 
 
Insecta                          Coleoptera                        Limnichidae    1 
 
Insecta                        Coleoptera                        Melyridae     2 
 
Insecta                        Coleoptera                 Mordellidae   176   
  
Insecta                        Coleoptera                       Mycetophagidae   0 
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Class   Order             Family  Frequency 
 
Insecta                           Coleoptera                    Nititulidae    3 
 
Insecta                           Coleoptera  Phalacridae    5 
 
Insecta                           Coleoptera  Pselaphidae    1 
 
Insecta                           Coleoptera                    Scarabidae    6 
 
Insecta                           Coleoptera                    Scolytidae   18 
 
Insecta                           Coleoptera                    Scymaenidae    5 
 
Insecta                           Coleoptera                    Staphylinidae   13 
 
Insecta                           Coleoptera                    Tenebrionidae    2 
 
Insecta                           Coleoptera                    Trogossitidae    1 
 
Insecta                           Diptera  Agromyzidae    1 
 
Insecta                           Diptera  Anthomyiidae   33 
 
Insecta                           Diptera  Asilidae    7 
 
Insecta                           Diptera                     Bibionidae    7 
 
Insecta                           Diptera  Calliphoridae   12 
 
Insecta                           Diptera                          Cecidomyiidae   44 
 
Insecta                           Diptera                          Ceratopogonidae  33 
 
Insecta                           Diptera  Chironomidae   99 
 
Insecta                           Diptera               Chloropidae   17 
 
Insecta                           Diptera  Chyromyidae    1 
 
Insecta                           Diptera                           Conopidae    1 
 
Insecta                           Diptera                           Culicidae    7 
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Class   Order             Family  Frequency 
 
Insecta                            Diptera  Dixidae   21 
 
Insecta                            Diptera  Dolichopodidae  950 
 
Insecta                            Diptera  Drosophilidae   51 
 
Insecta                            Diptera  Empididae    6 
 
Insecta                            Diptera  Ephydridae   16 
 
Insecta                            Diptera  Lonchopteridae   1 
 
Insecta                            Diptera  Millichiidae    6 
 
Insecta                            Diptera  Muscidae   30 
 
Insecta                            Diptera  Mycetophilidae  20 
 
Insecta                            Diptera  Phoridae   35 
 
Insecta                            Diptera  Piophilidae    1 
 
Insecta                            Diptera  Platypezidae    2 
 
Insecta                            Diptera  Rhinophoridae   4 
 
Insecta                            Diptera                         Sarcophagidae   74   
 
Insecta                            Diptera                         Scathophagidae  13 
 
Insecta                            Diptera                         Scatopsidae    9 
 
Insecta                            Diptera                         Sciaridae   74 
 
Insecta                            Diptera                         Sphaeroceridae  23 
 
Insecta                            Diptera  Stratiomyidae    1 
 
Insecta                            Diptera                         Syrphidae   49 
 
Insecta                            Diptera                         Tabanidae   11 
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Class   Order             Family  Frequency 
 
Insecta                           Diptera                          Tachinidae   11 
 
Insecta                           Diptera                          Tipulidae    4 
 
Insecta                           Hemiptera                     Aphidae   110 
 
Insecta                           Hemiptera  Cercopidae   20 
 
Insecta                           Hemiptera  Cicadellidae   221 
 
Insecta                           Hemiptera  Coccoidea   16 
 
Insecta                           Hemiptera                    Coreidae    2 
 
Insecta                           Hemiptera  Lygaeidae    2 
 
Insecta                           Hemiptera                    Membracidae    8 
 
Insecta                           Hemiptera                    Miridae    1 
 
Insecta                           Hemiptera              Psyllidae   11 
 
Insecta   Hymenoptera  Andrenidae    1   
 
Insecta   Hymenoptera  Aphelinidae    3  
 
Insecta   Hymenoptera  Apidae    29 
 
Insecta   Hymenoptera  Bethylidae    4 
 
Insecta   Hymenoptera  Ceraphronidae   3 
 
Insecta   Hymenoptera               Colletidae    1 
 
Insecta   Hymenoptera  Cynipidae    2 
 
Insecta   Hymenoptera  Diapriidae   19 
 
Insecta   Hymenoptera  Dryinidae    1 
 
Insecta   Hymenoptera               Encyrtidae   13 
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Class   Order             Family  Frequency 
 
Insecta   Hymenoptera  Eulophidae   17 
 
Insecta   Hymenoptera            Eupelmidae    3 
 
Insecta   Hymenoptera  Eurytomidae    1 
 
Insecta   Hymenoptera  Figitidae    1 
 
Insecta   Hymenoptera               Formicidae   380  
 
Insecta   Hymenoptera           Halictidae    9 
 
Insecta   Hymenoptera  Ichneumonidae   2 
 
Insecta   Hymenoptera  Megachilidae    3 
 
Insecta   Hymenoptera  Megaspilidae   1 
 
Insecta   Hymenoptera  Mymaridae   30   
 
Insecta   Hymenoptera            Platygastridae   12 
 
Insecta   Hymenoptera  Pompiliidae    2 
 
Insecta   Hymenoptera  Pteromalidae    2 
 
Insecta   Hymenoptera  Scelionidae   28 
 
Insecta   Hymenoptera  Sphecidae    3 
 
Insecta   Hymenoptera  Torymidae    2 
 
Insecta   Hymenoptera   Tiphiidae    3 
 
Insecta   Hymenoptera   Trichogrammatidae     5 
 
Insecta   Hymenoptera            Vespidae    2 
 
Insecta   Lepidoptera  Coleophoridae    3 
 
Insecta   Lepidoptera  Elachistidae    3 
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Class   Order             Family  Frequency 
 
Insecta   Lepidoptera              Gelechiidae    4  
 
Insecta   Lepidoptera              Hesperiidae   36 
 
Insecta   Lepidoptera                  Lyonetiidae    2  
 
Insecta   Lepidoptera                  Nepticulidae    2 
 
Insecta   Lepidoptera                 Noctuidae    5 
 
Insecta   Lepidoptera                 Sphingidae    1 
 
Insecta   Orthoptera  Acrididae    5 
 
Insecta   Orthoptera  Gryllidae    9 
 
Insecta                         Orthoptera  Tettigionidae    1 
 
 
 
 
 
 
 
 



 72 

Vita 
 

Cara Beth Nighohossian was born in St. Louis, Missouri and raised in Granite City, 

Illinois. In the fall of 1999 she started her undergraduate career at Saint Louis University 

in St. Louis, MO.  She double-majored in Chemistry and English and completed her B.A. 

in 2004.  After working as a lab technician, Cara returned to school in 2008 to take 

biology classes at Southern Illinois University-Edwardsville.  During the summer of 2009, 

she moved to New Orleans and enrolled in biology courses at Tulane University.  In 

August 2008, Cara began her Master’s in Biological Sciences at The University of New 

Orleans, which she completed in May 2014 under the advisement of Dr. Jerome 

Howard. 

 
 


	Arthropod Abundance and Diversity in Restored Longleaf Pine Savannas at Abita Creek Flatwoods Preserve
	Recommended Citation

	Class                                           Order                                               Family

