
University of New Orleans University of New Orleans

ScholarWorks@UNO ScholarWorks@UNO

University of New Orleans Theses and
Dissertations Dissertations and Theses

Fall 12-20-2013

Dynamic User Defined Permissions for Android Devices Dynamic User Defined Permissions for Android Devices

Christopher D. Stelly
cdstelly@gmail.com

Follow this and additional works at: https://scholarworks.uno.edu/td

Recommended Citation Recommended Citation
Stelly, Christopher D., "Dynamic User Defined Permissions for Android Devices" (2013). University of New
Orleans Theses and Dissertations. 1775.
https://scholarworks.uno.edu/td/1775

This Thesis is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with
permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright
and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-
holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the
work itself.

This Thesis has been accepted for inclusion in University of New Orleans Theses and Dissertations by an
authorized administrator of ScholarWorks@UNO. For more information, please contact scholarworks@uno.edu.

https://scholarworks.uno.edu/
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/etds
https://scholarworks.uno.edu/td?utm_source=scholarworks.uno.edu%2Ftd%2F1775&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uno.edu/td/1775?utm_source=scholarworks.uno.edu%2Ftd%2F1775&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uno.edu

Dynamic User Defined Permissions for Android Devices

A Thesis

Submitted to the Graduate Faculty of the

University of New Orleans

in partial fulfillment of the

requirements for the degree of

Master of Science

in

Computer Science

by

Christopher Stelly

B.S. University of Louisiana Lafayette, 2011

December 2013

 ii

Copyright 2013, Christopher Stelly

 iii

Acknowledgements

I’d like to thank my adviser, Dr. Vassil Roussev, as well as my committee members Dr.

Golden Richard III, Dr. Irfan Ahmed, and Dr. Christopher Summa. I offer my sincere

appreciation for the learning experiences over the past year. Life management tips were at

times more significant than guidance on the research, and were more important than you

know.

My completion of this project would never have been realized without the indefatigable

support offered by my parents since day one. Likewise, I wouldn’t be where I am today

without the support of an undergraduate pal turned lifelong friend. Thank you.

Finally, and most importantly, for my loving and supportive wife:

thank you; now let’s go enjoy married life.

 iv

Table of Contents

List of Figures .. v

Abstract .. vi

1. Introduction .. 1
Android Permissions Framework .. 1
Problems with Android Permissions Framework ... 1

2. Prior Solutions ... 6
MockDroid .. 7
FlaskDroid .. 8
Dr. Android and Mr. Hide .. 10
Drawbacks ... 11

3. New Approach: Aspect-Oriented Programming .. 13
Instrumentation for Dynamic Permissions .. 19

4. Results .. 24
General Usage .. 24
Case Studies ... 25

5. Critique of Methods ... 32

6. Conclusion .. 33
Future Work ... 33

References ... 34

Vita ... 36

 v

List of Figures

Figure 1-1 Simple Flashlight App ... 2
Figure 1-2 Permissions Requred (Partial Listing) ... 3
Figure 2-1 Android Architecture .. 6
Figure 2-2 Prior Solutions ... 7
Figure 2-3 MockDroid... 7
Figure 2-4 FlaskDroid ... 9
Figure 2-5 Dr. Android Mr. Hide ... 10
Figure 3-1 Code to implement when accessing contacts .. 14
Figure 3-2 Pointcut Breakdown ... 14
Figure 3-3 Contact Blocking Aspect .. 15
Figure 3-4 AppSanitizer ... 16
Figure 3-5 Sanitation Pipeline .. 17
Figure 3-6 Contacts Aspect ... 20
Figure 3-7 System Service Aspect... 21
Figure 3-8 Dynamic Permission Setting .. 22
Figure 4-1 Sanitizer GUI .. 24
Figure 4-2 Sample Sanitization .. 25
Figure 4-3 DW Contacts ... 26
Figure 4-4 DW Contacts ... 26
Figure 4-5 Notification contacts were accessed (Instrumented) ... 27
Figure 4-3 DW Contacts with fictitious contacts (instrumented) ... 28
Figure 4-4 Permissions required for installation of "Super Bright LED Flashlight" .. 29
Figure 4-5 Super-Bright LED Flashlight (Unmodified) .. 30
Figure 4-6 Logcat Output: Device ID being given to an ad service, along with other encrypted strings 30
Figure 4-7 FlashlightApp (Instrumented) .. 31

 vi

Abstract

Mobile computing devices have become an essential part of everyday life and are becoming

the primary means for collecting and storing sensitive personal and corporate data.

Android is, by far, the dominant mobile platform, which makes its permissions model

responsible for securing the vast majority of this sensitive data.

The current model falls well short of actual user needs, as permission assignments are

made statically at installation time. Therefore, it is impossible to implement dynamic

security policies that could be applied selectively depending on context. Users are forced to

unconditionally trust installed apps without means to isolate them from sensitive data.

We describe a new approach, app sanitization, which automatically instruments apps at

installation time, such that users can dynamically grant and revoke individual permissions.

The main advantage of our technique is that it runs in userspace and utilizes standard

aspect-oriented methods to incorporate custom security controls into the app.

Keywords: android; security; privacy; permissions; instrumentation; aspect oriented

programming; appsanitizer

 1

1. Introduction

The introduction of the first iPhone in 2007 marked the transition of mobile devices,

such as cell phones, from specialized platforms into general purpose computers whose

functionality can be extended by installing third-party applications (a.k.a. apps). Over time,

the Android platform became the dominant standard with over a billion devices currently

in active use and over a million applications are available from the Google Play app store

[18]. Installing any of these applications requires a certain level of trust on part of the user,

as most apps are given access to sensitive user information.

The user is given some control over the process as apps need explicit permission to

access various data and hardware resources on the device, such as contact information,

GPS location, microphone, camera, etc. Unfortunately, the Android permissions model does

not provide users with enough control over the installed apps, which can easily result in

loss of privacy, and has potentially serious security implications in corporate

environments.

Android Permissions Framework

With few exceptions, Android applications are written in Java and executed by a

special virtual machine (VM) known as Dalvik. The Dalvik VM consumes bytecode that is in

a proprietary format; however, it can also be translated to and from standard Java bytecode

format.

For an application to gain access to protected data or resources on a device, a

permission must be obtained from the system [23]. Each application uses its manifest file to

declare at installation time the permissions it needs; during the installation process, the

user is given the choice of agreeing to the requested permissions on an all-or-nothing basis.

That is, either the application is installed with the full complement of permissions it

requested, or not at all. Once permissions are granted, the application has them for life and

the user is never consulted again. The only way to revoke a permission is to uninstall the

application altogether.

A permission can be defined by individual developers, but normally exists in a set

contained within the stock Android operating system. If these are not included in the

metadata, but the application attempts to use a resource under their jurisdiction anyway, a

security exception is thrown and access is denied. Once agreed, the application can use the

set of application programming interfaces (APIs) within the Android OS to access protected

resources. At access time, the Package Manager is utilized by the API to perform

application authentication for the specified resource. It is notable that no check is

necessary on the developer’s part—Android automatically handles the permission

enforcement on every access.

Problems with Android Permissions Framework

There are several problems with the described permissions model; all stem from the

overall focus on ease of use and the shortsighted view of the resulting weaknesses with

respect to security and privacy. To understand these problems, we

representative use cases and show

Over-provisioned applications

In our first case, Alice (who is an average user)

app. She would likely start by going

of results will follow, and for such a simple application she is likely to pick a free one.

Additionally, she is conscious of picking a well

for a high

rating in the 5-

star system.

The number

one result

(Super-Bright

LED

Flashlight) is

free and ranks

over a 4.75 out

of 5 (stars)

based on

about 560,000

reviews. Absent any technical expertise, picking that app is a perfectly rationale choice, as

illustrated by the more than 10 million installations

Figure 1-1.

At the installation step,

Figure 1-2:

 2

security and privacy. To understand these problems, we consider several

show the resulting problems.

provisioned applications

(who is an average user) wants to install a simple

start by going to the Play Store and search for “flashlight”

llow, and for such a simple application she is likely to pick a free one.

Additionally, she is conscious of picking a well-respected application, so she always checks

Absent any technical expertise, picking that app is a perfectly rationale choice, as

illustrated by the more than 10 million installations, with the store advertisement show

At the installation step, Alice is presented with the permissions request

Figure 1-1 Simple Flashlight App

consider several

simple flashlight

and search for “flashlight”—hundreds

llow, and for such a simple application she is likely to pick a free one.

respected application, so she always checks

Absent any technical expertise, picking that app is a perfectly rationale choice, as

with the store advertisement show in

is presented with the permissions request shown in

At this point, our average user is more than likely to grant the permissions

requested as she probably does not fully understand the

permissions grab. The only criterion she can rely

technical expertise gets substituted for trustworthiness.

From a technical perspective,

required for the stated purpose of the application is

functionality is built into the app has

judge. We can surmise that most of it is tied to identifying and tracking the device, and to

presumably serve targeted ads

Over-provisioning is root

developer’s perspective, there are

their hands on; advertisers live and die on

attention to, and any information attainable

user’s lack of recourse empowers developers’ mindsets when asking for permissions.

Unfortunately, Google—

advertiser influence as the compan

surprising, then, to learn that 70% of all apps collect data

Figure

3

At this point, our average user is more than likely to grant the permissions

as she probably does not fully understand the egregious nature of the requested

The only criterion she can rely on is reputation, which in the absence

technical expertise gets substituted for trustworthiness.

rom a technical perspective, the app is over-provisioned as the only permission

purpose of the application is ‘control flashlight’; whatever other

into the app has a different purpose that users are ill-equipped to

We can surmise that most of it is tied to identifying and tracking the device, and to

serve targeted ads—the source of income for the developer.

provisioning is rooted amongst several possible causes. From the app

developer’s perspective, there are monetary incentives to ask for everything they can get

live and die on the ability to deliver ads the user will pay

tion attainable that might aid that purpose. Additionally,

recourse empowers developers’ mindsets when asking for permissions.

—the owner of Android—has no incentive to minimize

advertiser influence as the company is driven on an advertisement business

70% of all apps collect data irrelevant to the main function of

Figure 1-2 Permissions Requred (Partial Listing)

At this point, our average user is more than likely to grant the permissions

nature of the requested

on is reputation, which in the absence of

the only permission

; whatever other

equipped to

We can surmise that most of it is tied to identifying and tracking the device, and to

From the app

ng they can get

the ability to deliver ads the user will pay

Additionally,

recourse empowers developers’ mindsets when asking for permissions.

minimize

business model. It is not

main function of

 4

the application [17]; one advertisement library alone is installed on over 350,000 unique

applications [10]. While no law governs the disclosure of a user’s personal information in

this manner, most users do not understand the amount of data that apps collect on them.

Even supposing it is the case that users and developers fully understand and accept

this permissions framework (along with its implications), malicious applications take

advantage of this state of affairs. These second order consequences are serious threats, as

demonstrated with malware designed to hijack an application and redelegate their access

to a different, arbitrary application [14]. This type of attack is able to utilize the inter-

application communications infrastructure to perform a privileged task without the

attacking application having such privileges.

The net effect of over-provisioned apps is twofold: an increased attack surface, and

an increased exposure of personal information. These problems are exacerbated both by

the user’s lack of recourse and the static way in which permission policies are

implemented.

Static policy assignment

Consider Bob, who, working as a manager, has access to important company

information; additionally, he uses his mobile phone to conduct everyday business actions.

If Bob were to install an application that had access to the camera and/or microphone, as

well as network access, that application could surreptitiously record audio and/or take

pictures and send them to unknown parties. Since Bob works with company trade secrets,

this scenario is especially serious as anything within line of sight to the phone can be

captured and important conversation could be eavesdropped upon.

This proof of concept attack has been successfully demonstrated on Android devices

[15]. Any application (including completely legal and well-respected apps) asking for

camera rights could carry out this attack. The attack vector involves taking pictures of the

user’s surroundings, without his knowledge, and sending the images to the remote

attacker; in turn, the images are combined into a visual 3D model of his environment.

Other sophisticated attacks utilize the device’s built-in accelerometers to capture

keystrokes when the phone is placed near a keyboard. Furthermore, and as discussed

earlier, applications are vulnerable to permission redelegation, further increasing the

attack surface.

The cause of these problems is not that the application has been over-provisioned;

instead the simple fact is that permissions are being abused. The inability for users to do

anything about this is because of the static manner in which these permissions have been

assigned.

A static permissions model means that once an application has been given a

permission, it cannot be modified. That is, once a user agrees an application can use the

microphone, it can access the microphone at any time it chooses and in whatever manner

the application chooses. This is exacerbated by the fact that a user has only one choice

when installing an application – either to grant the application everything it asks for, or to

not install the application.

 5

Alternatively, dynamic permissions would allow the users to enable or disable

permissions on a per application basis. Using our process, users must initially accept

everything the application asks for. However, they can then turn on/off individual

permissions for individual applications through an easy to understand user interface. In

addition, information resources (such as contacts) can be faked, which will allow the

application to function as normal but with completely false data.

Confusing and coarsely-grained permissions

Users are presented with a synopsis of needed permissions when installing an app.

Presupposing that users take the time to read the explanation for each permission, it is

doubtful whether they understand the implications behind each one. Specifically, users

exhibit problems caused by confusing category headings, disparities between permissions

and risk, inability to reason about the absence of permissions, and warning fatigue [19].

 Confusing Category Headings Overly broad category headings manifest

themselves in many cases. In particular, the READ_PHONE_STATE permission, under the

heading “Phone Calls”, leads some users to believe companies have permission to market

their number to telemarketers. The READ_CONTACTS permission under “Personal

Information” leads other users to believe that the application would have access to their

stored passwords. Asked whether or not a given application had permissions to read their

text messages, users are able to accurately answer only 38% of the time.

 Unclear Risks of making Resources Available Connecting warnings to risk is

troublesome for users as well, even if the terms of the warnings in the permission are

understood. For example, the warning that an application can have “full Internet access”

leaves much to the imagination – the user must draw their own conclusions as to the risks

involved with accepting that statement.

 Absence of Permissions Because of the over 100 default permissions possible for

the application to ask for, users lose track of or even forget permissions exist. Thus, when

one is missing, they are not likely to notice. This leads to assessing a similar permission,

which is asked for, as overly broad in scope.

 Warning Fatigue Warning fatigue is unavoidable and contributes to the challenge

of securing personal data. Instead of meeting this challenge with improved warnings or

reducing low-risk warnings, it is better to change the model altogether by offering the user

the option to give or take permissions individually. The user should be presented with a list

of permissions the application asks for, with a checkbox (defaulted to ‘unchecked’) for each

one, indicating if the application should have access to that particular resource. This way,

the user is forced to think about what she is giving up instead of blankly accepting a risk

she is tired of thinking about.

 With a dynamic permissions model these issues would be circumvented if not

rendered invalid. Additionally, we can specify our own permissions in as fine grain a

manner as we wish and have them individually granted or revoked. In this fashion, security

conscious users would have no qualms about what a particular application is asking for.

 6

2. Prior Solutions

Previous solutions have been presented which implement additional protection,

giving users control of protected resources. There are three general approaches when

implementing additional resource protections: 1) return the resource unaltered, 2) deny

any access to the resource, and 3) return fictitious or masked versions of the resource.

Trusted apps can be given access to personal information, while untrusted apps can be fed

fictitious data. The ability to return fictitious data is important as applications are expecting

to have access to resources for which they were originally designed to use; with a denial of

access, the app may behave erratically.
These solutions all wrest control from the application at various points in the control

flow in order to implement additional security measures.

Figure 2-1 Android Architecture

 In this representation of Android’s architecture (Figure 2-1), there are several

modules involved in executing an application's call for data. Each one of them is a control

point that can be used to incorporate a custom security mechanism. Figure 2-2 lists the

control points used by previous solutions:

Database query /

Hardware request

...

Calendar

Contacts
GPS

Camera

WiFi

Radio

... P
ro

te
c
te

d

R
e
s
o
u
rc

e
s

S
ys

te
m

F
ra

m
e
w

o
rk

A
p

p
lic

a
tio

n

S
a
n
d

b
o
x

Content Providers /

System Services

K
e
rn

e
l

U
s
e
rs

p
a
c
e

Device

Information

Package Manager

 7

Control point Solution

Content Providers/System Services MockDroid, TISSA

Android’s Package Manager FlaskDroid

Application layer (user-space) Dr. Android & Mr. Hide

Figure 2-2 Prior Solutions

MockDroid
MockDroid intercepts the control flow at the System Framework level, within the

kernel. Developed by Beresford et al. [1], it provides false information to apps if the user

declares them untrusted. For example, they are able to return a constant, ‘false’, device id

when an untrusted application attempts to read the device id.

Figure 2-3 MockDroid

 This approach relies on modifying both the security checks as well as the content

provider libraries. The package manager service is the central node for Android security.

Because every API interfacing sensitive data accesses the package manager, this is a perfect

opportunity to intercept control flow.

Database query /

Hardware request

...

Calendar

Contacts
GPS

Camera

WiFi

Radio

... P
ro

te
c
te

d

R
e
s
o
u
rc

e
s

S
ys

te
m

F
ra

m
e
w

o
rk

A
p

p
lic

a
ti
o
n

S
a
n
d

b
o
x

Content Providers /

System Services

K
e
rn

e
l

U
s
e
rs

p
a
c
e

Device

Information

Modification from Android OS

Package Manager

 8

MockDroid implements application access verification within Android’s package

manager class. If the decision is made to ‘mock the data’, the customized package manager

returns control to the content providers, indicating the user’s decision.

When a content provider receives a request from an application for which the user

declares untrusted, an empty data set will be returned. If, on the other hand, the user has

only allowed the application to have ‘mocked’ data, “plausible but incorrect” results, such

as a falsified last names, are returned to the application.

This approach implements dynamic permissions; however, it involves low level

modification within the kernel. Rewriting part of an operating system, although providing a

robust solution, is not without drawbacks, and we revisit the issue later in this chapter.

Furthermore, MockDroid was not demonstrated to be effective for several types of sensors

and data; only one or two types of data are protected with this system.

FlaskDroid
At the 2013 USENIX Security Symposium, a group of researchers presented their

work on an improved Android security architecture. This work was realized as a

framework dubbed FlaskDroid [5].

FlaskDroid is an implementation of the Flask architecture [21], with heavy

inspiration from SELinux (or, in this case, SE Android). Flask is a Linux operating system

implementing flexible security policies, and is now incorporated into SELinux (a popular

security conscious distribution).

 9

Figure 2-4 FlaskDroid

In this architecture, the major change is the way in which access policies are

implemented. There are three central components that constrict application access to a

minimum: Context Providers, a Security Server, and a Policy Database. These are in

addition to modifications to kernel components such as content providers.

When a system library such as a content provider queries for data, it first reaches

the newly implemented user-space security server. This server implements policy

decisions based on input previously received from the user. Depending on the outcome of

that verification, the calling app is allowed access to the data.

In addition to the standard resource APIs, this approach also takes into

consideration a malicious application that has gained root access. To protect against such a

threat, policy checks are enforced at the syscall level. This means that were a malicious

application to attempt a MAC level query, FlaskDroid would be able to intercept the call and

respond appropriately.

The vetted nature of the Flask operating system, and by extension the FlaskDroid

operating system, provides for a sound approach to policy management. In addition,

FlaskDroid protects from malware with root access.

Database query /

Hardware request

...

Calendar

Contacts
GPS

Camera

WiFi

Radio

... P
ro

te
c
te

d

R
e
s
o
u
rc

e
s

S
ys

te
m

F
ra

m
e
w

o
rk

A
p

p
lic

a
ti
o
n

S
a
n
d

b
o
x

Content Providers /

System Services

K
e
rn

e
l

U
s
e
rs

p
a
c
e

Device

Information

Modification from Android OS

Context Providers

Security Server

Policies

 10

The major drawback this approach exhibits is consistent with other work –

extensive modification of the operating system is required.

Dr. Android and Mr. Hide
Dr. Android and Mr. Hide are two processes that work together to intercept control

flow of the app within the Application layer and execute entirely in user space [16].

Figure 2-5 Dr. Android Mr. Hide

Dr. Android and Mr. Hide instrument target applications. Instrumentation is the act

of modifying a program’s bytecode representation without having access to the source

code. This is possible because strongly-typed interpreted languages use an intermediate

representation, known as bytecode, which retains all necessary symbolic information,

allowing additional code to be spliced in.

The instrumented version of the app is almost exact replica of the original

application, except that calls using privacy-related APIs are replaced with calls to a

modified implementation of the API. This duplicate API, loaded into userspace, will cause

Database query /

Hardware request

...

Calendar

Contacts
GPS

Camera

WiFi

Radio

... P
ro

te
c
te

d

R
e
s
o
u
rc

e
s

S
ys

te
m

F
ra

m
e
w

o
rk

A
p

p
lic

a
ti
o
n

S
a
n
d

b
o
x

Content Providers /

System Services

K
e
rn

e
l

U
s
e
rs

p
a
c
e

Device

Information

Modification from Android OS

Package Manager

Custom Security

Customized Content Providers /

System Services

 11

the application to exhibit a new behavior when utilizing methods within it. For example,

the duplicated API might block network access if the request is to a known malicious URI.

Written in OCaml, the instrumentation mechanisms are non-trivial to use for the

average Java developer. Additionally, this approach relies on up-to-date Android APIs,

which are continuously updated over time. Finally, this method does not provide dynamic

control of permission revocation.

Drawbacks
These methods presented have achieved securing sensitive data and resources on

the Android platform. However, to implement these features in most of the methods above,

a modification of Android source code is required. The fallout from this simple fact is far

reaching. Some of these disadvantages include:

• Recompilation of the Android operating system is necessary

• Custom ROM is needed to install the new version of the operating system

• Future updates released for the Android operating system are not likely to be

folded into the custom operating system

o Future updates released for the Android operating system could

break the way these modifications work

• Technical knowledge is needed to flash ROMs and reinstall operating

systems on mobile devices

Since Android is open source, developers can easily change source code and

recompile the system. However, the sheer size and complexity behind operating systems

can inhibit kernel hackers from doing this in a robust manner. Modifications to such

complex systems are likely to have unintended, unsafe, and insecure consequences. For

this reason, warranties on mobile devices are generally voided upon installation of such

changes.

These devices are, by design, resistant to installation of unverified software; a user

must first overwrite such built-in security mechanisms. This process includes flashing new

Read Only Memory (ROM) to the device, which in turn disables verification of the update

being pushed. If the user then trusts the source of the new operating system, he will be able

to install the operating system. Should any step in this dubious process fail, it is possible for

the device to become ‘bricked’, effectively rendering the device useless. In these situations,

and if it is possible in the given situation, the user usually resorts to restoring the device to

the as-purchased state. The majority of Android users cannot be expected to exhibit this

level of technical knowledge.

Another drawback of using a custom operating system is that updates to the original

operating system are not necessarily going to be installed on the device. This fact alone

should discourage installation of unsupported constructs. Should the custom operating

system implement updates from Android, it is possible that updates to any part of the

kernel interfere with the customizations made, making the device more unstable if usable

at all.

Despite the number of drawbacks, there are some important advantages to a kernel

space solution, the largest of which is that it provides a higher level of assurance by

 12

ensuring that protection is not circumvented. In particular, if malware were to gain root

access on the device, it is still possible to protect the resources. Separately, apps can be run

as-is with no need for modification.

 Dr. Android and Mr. Hide, while providing the advantage of making all modifications

solely in userspace, does not allow for a dynamic permissions model. In addition, it must

continuously update its libraries to match that of the current API release. Finally, the

instrumentation must be written in OCaml, which would have a relatively steep learning

curve.

To eliminate the largest of these drawbacks, while still achieving the same goals, we

developed a method that allows any application to be automatically instrumented with our

sanitization process, thereby giving us control at important junctions in the flow of the

program. Based on that, we implement a dynamic, user-defined permissions model that

effectively supersedes the default one.

 13

3. New Approach: Aspect-Oriented Programming

We have developed a methodology to transform applications such that users can

control how these applications access protected resources. The idea is similar to the one

proposed by Jeon et al. [16], in that it uses bytecode instrumentation as a means to

intercept the control flow of the application within user space. However, instead of using a

custom bytecode instrumentation tool (written in OCaml), we utilize an aspect-oriented

programming (AOP) approach, which allows us to write the control code in Java, and splice

it into the original application using the de facto standard Java AOP implementation,

AspectJ [8]. The benefits of the approach are threefold: a) developers of the access control

enforcement point can utilize the Android environment; b) our implementation does not

require the tracking and replication of the rapidly evolving Android SDK capabilities; and c)

it reduces access-control-induced latency by performing the checks inside the application’s

process.

Bytecode instrumentation with AspectJ

As discussed earlier, Android applications are compiled into a series of instructions

prior to execution. These instructions – the bytecode – are then interpreted by the Dalvik

virtual machine. Instrumentation is the act of modifying these instructions. For instance,

we can modify every instruction accessing personal data to instead return an empty data

set. Aspect oriented programming gives us the ability to find every set of such instructions.

Suppose we wish to modify a query into the contacts database. The normal call is of

the form:

query

public final Cursor query(Uri uri,

 String[] projection,

 String selection,

 String[] selectionArgs,

 String sortOrder)

Query the given URI, returning a Cursor over the result set.

Parameters:
 uri - The URI, using the content:// scheme, for the content to retrieve.
 projection - A list of which columns to return.
 selection - A filter declaring which rows to return.

 selectionArgs - The values will be bound as Strings.

 sortOrder - How to order the rows

Returns:
 A Cursor object, which is positioned before the first entry, or null

 AspectJ can modify the query prior to execution yet after arguments have been

assigned values. We will selectively modify the query

changing the query’s selection criteria

The code shown in Figure 3

passes a conditional branch, line 33,

the query’s criteria. When the program

database, it will necessarily find

proceed function is how an aspect

control flow to resume as normal; in this case, the query will execute and return its result

to the application.

Now that we have the code we want to run, we find all points in the

access the contacts database. Aspect oriented programming is the ideal paradigm to

in this case. With it, we are able to crosscut

(additional or modified behavior) at all

application code) we specify.

Our join point for contacts looks like the following:

The name of the pointcut is used when defining the advice type later in the aspect. The

type ‘call’ is used to weave when the function is cal

return type can be used to more exactly filter what methods we want to weave throughout

the target program. With the wildcard

the function, here ‘query. This specifies the name of the function(s) we want to weave.

While this supports wildcards, as well as classpath filtering, we limit our weave points to

the function name. The last part of the pointcut to defi

our example, we allow any number of arguments.

Figure 3-

 14

can modify the query prior to execution yet after arguments have been

We will selectively modify the query to return an empty cursor

changing the query’s selection criteria.

e code shown in Figure 3-1 will, conditionally, shut off access to a database. If it

a conditional branch, line 33, it will append a false condition, “where 0
. When the program executes the query to get a cursor to the

find nothing – a cursor pointing to an empty dataset

function is how an aspect hands control back to the application in order for

low to resume as normal; in this case, the query will execute and return its result

Now that we have the code we want to run, we find all points in the application that

Aspect oriented programming is the ideal paradigm to

With it, we are able to crosscut the entire application, applying advice

(additional or modified behavior) at all join points (specified locations within the

Our join point for contacts looks like the following:

Figure 3-2 Pointcut Breakdown

The name of the pointcut is used when defining the advice type later in the aspect. The

type ‘call’ is used to weave when the function is called within the original program.

return type can be used to more exactly filter what methods we want to weave throughout

the wildcard ‘*’, it will match any return type. Next is the name of

. This specifies the name of the function(s) we want to weave.

While this supports wildcards, as well as classpath filtering, we limit our weave points to

the function name. The last part of the pointcut to define is the argument specification. In

number of arguments.

-1 Code to implement when accessing contacts

can modify the query prior to execution yet after arguments have been

n empty cursor by

shut off access to a database. If it

where 0”, line 36, to

a cursor to the contacts

a cursor pointing to an empty dataset. The

in order for

low to resume as normal; in this case, the query will execute and return its result

application that

Aspect oriented programming is the ideal paradigm to follow

advice

within the

The name of the pointcut is used when defining the advice type later in the aspect. The cut

led within the original program. The

return type can be used to more exactly filter what methods we want to weave throughout

Next is the name of

. This specifies the name of the function(s) we want to weave.

While this supports wildcards, as well as classpath filtering, we limit our weave points to

ne is the argument specification. In

 15

The final step remaining combines the code we want to execute at the pointcuts we

specify within a single object. This object is known as an aspect.

This aspect, show in Figure 3-3, will utilize a pointcut to capture all calls within the

application’s code matching the function name “query” (line 3). Additional requirements

are imposed on the pointcut, assuring that any matched functions both have specified

arguments and exist within a specified classpath. These additional restrictions allow us to

specify what classes we weave into; without8 them, we could potentially instrument more

bytecode than we wish to. Lines 7 and 8 declare that the following code should be applied

around all found pointcuts matching the criteria. The ‘around’ advice is used when we want

to modify the functionality at weaving point; alternative types of advice can modify control

flow either before or after the weaving point.

A graphical representation of this flow is represented with Figure 3-4.

1. public aspect aspect24adba4 {
2. pointcut anyQuery (Uri uri,String[] projection,String selection,String[] selec

tionArgs, String sortOrder)
3. : call(* query(..))
4. && args(uri, projection, selection, selectionArgs, sortOrder)
5. && within ((com.google.ads.u) ||);
6.
7. Object around(Uri uri,String[] projection,String selection,String[] selectionArg

s, String sortOrder)
8. : anyQuery(uri, projection, selection, selectionArgs, sortOrder) {
9. try {
10. if (accessingContactsDatabase()) {
11. if (blockContacts == false){
12. //do nothing
13. System.out.println("[!]Allowing access to contacts");
14. } else {
15. //block access
16. System.out.println("[!]Blocking access to contacts");
17. selection = selection + “ where 1 > 2 ”;
18. }
19. }
20. } catch (Exception e) {
21. System.out.println(e);
22. }
23. return proceed(uri, projection, selection, selectionArgs, sortOrder);
24. }

Figure 3-3 Contact Blocking Aspect

 16

Figure 3-4 AppSanitizer

 After applying aspects to the application, the requests going to the system

framework (denoted with the ‘1’ and intercepted control line), have been weaved based on

our advice. Instrumenting bytecode in this fashion leaves both the application and

operating system agnostic to the fact that we’ve gained control.

Automation

We have built a process to automatically perform bytecode instrumentation.

Database query /

Hardware request

...

Calendar

Contacts
GPS

Camera

WiFi

Radio

... P
ro

te
c
te

d

R
e
s
o
u
rc

e
s

S
ys

te
m

F
ra

m
e
w

o
rk

A
p

p
lic

a
ti
o
n

S
a
n
d

b
o
x

Content Providers /

System Services

K
e
rn

e
l

U
s
e
rs

p
a
c
e

Device

Information

Modification from Android OS

Policy Manager

Calendar

Contacts

Fictional Data

1

The first step in the

process is attaining the target

application file. While the routine

method involves visiting Google’s

Play Store, .apks can be installed

from any source. For our

purposes, we utilized open

source libraries that crawl the

Play Store, downloading apps as

if it were an Android device. This

was successful in downloading

about 100 applications before

being blocked by Google’s

servers. A more effective method,

although not autonomous

involves a third party extension

for Google Chrome

ApkDownloader.

Once the .apk has been

downloaded, we begin the

process of implementing

additional security measures. The

format of an .apk archive allows

us to unzip the file and gain

access to the bytecode. This code

is in an Android specific format,

Dalvik bytecode. In order to

utilize well-established tools,

convert the Dalvik bytecode back

to Java bytecode thereby granting

use of tools made specifically to

study, modify, and rebuild Java

bytecode (such as AspectJ). This

conversion process is performed

with the Dex2Jar suite of tools,

and the output is in Java’s .class

format.

We could immediately begin applying aspects to Java’s bytecode, however, to

minimize the amount of work done when recompiling the instrumented bytecode, we first

want to get a list of all classes

finding all classes that contain a particular function call. Obfuscation would normally

present a barrier to this method, however since w

API we can be sure the function

that make these targeted API calls as additional criteria when applying our aspects.

17

The first step in the

process is attaining the target

While the routine

method involves visiting Google’s

n be installed

For our

purposes, we utilized open

crawl the

Play Store, downloading apps as

This

was successful in downloading

about 100 applications before

being blocked by Google’s

effective method,

lthough not autonomous,

extension

for Google Chrome,

Once the .apk has been

begin the

of implementing

The

format of an .apk archive allows

gain

This code

is in an Android specific format,

. In order to

 we

ik bytecode back

thereby granting

use of tools made specifically to

and rebuild Java

This

conversion process is performed

suite of tools,

.class

We could immediately begin applying aspects to Java’s bytecode, however, to

work done when recompiling the instrumented bytecode, we first

classes we want to weave into. Bash level tools can

contain a particular function call. Obfuscation would normally

present a barrier to this method, however since we are only weaving calls to the

be sure the function definitions remain unchanged. We add all found class

targeted API calls as additional criteria when applying our aspects.

Figure 3-5 Sanitation Pipeline

We could immediately begin applying aspects to Java’s bytecode, however, to

work done when recompiling the instrumented bytecode, we first

Bash level tools can be utilized for

contain a particular function call. Obfuscation would normally

calls to the Android

We add all found classes

targeted API calls as additional criteria when applying our aspects.

Sanitation Pipeline

 18

The aspects are then ready to be applied. The AspectJ tool suite includes a special

compiler, AspectJ compiler, or ajc. We provide ajc with the aspects we’ve defined as well as

all .class files derived from the original Android application. Ajc will apply the aspects to

the bytecode and output a new .jar archive. Still in the Java format, we use another tool in

the Dex2Jar toolchain, jar2dex, to get back to our desired Android format, Dalvik bytecode.

This bytecode, output as a .dex file, replaces the .dex file within the original application’s

archive. With the new bytecode inside its archive, the .apk is ready to be resigned and

reinstalled.

 19

Instrumentation for Dynamic Permissions

In the Android API, there are only a few ways to utilize or access protected

resources, and we have broken these down by what archetype of resource they are most

closely related to. We focus on Sensors, which includes the camera, network radio, and GPS

radio, as well as Databases, which include contact information, calendar, and account

information. While the functions of resources within these archetypes are not necessarily

similar, the methods to access them through the API are exactly the same; we take

advantage of this fact when applying aspects.

Databases

Databases are used to store many kinds of information within the device. Of

paramount importance to privacy is the contacts database, which stores names, phone

numbers, addresses, photos, and other information. To intercept requests for this data, we

configure our aspects to match the method within the Android API matching ‘cursor

query(Uri uri, String[] projection, String selection….)’. The first argument in this method

defines what database to pull from by use of a URI. Contact information, for example, is

accessed with the URI “android.provider.ContactsContract.Contacts.CONTENT_URI".

Remaining arguments are used for further defining the query, such as the columns to select

from and the criteria the results must match. When weaving, we only apply additional

security measures to target URIs.

Databases also offer a unique opportunity in that we can provide the calling

application with fake information. We achieve this by copying a database to the device’s

storage that, while identical in schema, has falsified information in it. Within the aspect, we

instead generate a cursor, the Android handler for queries, to the falsified database. When

the cursor is returned to the application, it would have no knowledge it is instead looking

at false information.

An aspect applying this style of advice is the following:

 20

1. public aspect aspectba818d3 {
2. private final String NoChange = "0";
3. private final String Block = "1";
4. private final String FakeIt = "2";
5. SanitizedAppData sad = new SanitizedAppData();
6.
7. pointcut anyQuery (Uri uri,String[] projection,String selection,String[] selectionArg

s, String sortOrder)
8. : call(* query(..))
9. && args(uri, projection, selection, selectionArgs, sortOrder);
10.
11. Object around(Uri uri,String[] projection,String selection,String[] selectionArg

s, String sortOrder)
12. : anyQuery(uri, projection, selection, selectionArgs, sortOrder) {
13. System.out.println(" -- Sanitizer has reached our Weaved Code --");
14. sad.initialize();
15.
16. try {
17. if (uriHelper.contactsUri()) {
18. System.out.println(" -- Sanitizer has matched the target URI --");
19. System.out.println(" -- 'SAD' setting: " + sad.contactsSetting());
20. if (sad.contactsSetting().equals(NoChange)){
21. //do nothing
22. System.out.println("Allowing access to Contacts");
23. } else if (sad.contactsSetting().equals(Block)) {
24. //block it by making database query which will break
25. System.out.println("Blocking Access to Contacts Database");
26. selection = selection + " and 1 > 2";
27. } else {
28. System.out.println(" --

 Attempting to get into the second database.. --");
29. Cursor myCursor = fakeContactData(uri, projection, selection, se

lectionArgs, sortOrder);
30. return myCursor;
31. }
32. }
33. } catch (Exception e) {
34. System.out.println(" --

 Sanitizer has reached our Weaved Code, but failed to successfully interrupt the sys
tem call --");

35. System.out.println(e);
36. proceed(uri, projection, selection, selectionArgs, sortOrder);
37. }
38. return proceed(uri, projection, selection, selectionArgs, sortOrder);
39. }
40.
41. public Cursor fakeContactData(Uri uri,String[] projection,String selection,Strin

g[] selectionArgs, String sortOrder) {
42. System.out.println("-- Opening Database to /sdcard/contacts2.db --");
43. SQLiteDatabase myDB = SQLiteDatabase.openOrCreateDatabase("/sdcard/contacts2

.db", null);
44. return myDB.query("view_contacts", projection, selection, selectionArgs, nul

l, null, null, null);
45. }
46. }

Figure 3-6 Contacts Aspect

 21

Figure 3-6 contains an entire aspect. Combining both the pointcut, lines 7 through 9,

and the advice, lines 11 through 49. The net effect of this aspect is to splice into the

application at any point a ‘query’ function is called with the following logic: a) if the target

database is the contacts database, then b) proceed by following user’s selection by allowing

access to the database, denying access to the database, or returning a cursor to the

alternative database with fake information, and finally c) return the cursor to application,

thereby conceding control back to its original state.

Sensors

The GPS radio is a sensor attached to Android devices. This peripheral is one of the

most unnecessarily requested by applications; ad supported apps generally require it. In

order to activate the radio within code, developers use the high-level procedure

getSystemService(String name), where name is, in this instance, “location”. The returned

object is a LocationManager, which has callback functions for when it is updated. Crafting a

malformed LocationManager, and returning that in place of what the application is

expecting, prevents the application from receiving any kind of update.

An HTTP Download service is built into the API for managing downloads from the

internet. To utilize this method, developers use the same getSystemService(String name)

method, but provide “download” to the procedure. The resulting returned object is of type

DownloadManager. Weaving into this point, we can similarly craft a response preventing

the DownloadManager from completing its download.

1.public aspect aspect262fac6 {
2. pointcut systemServiceCut(String theString)
3. : call(* getSystemService(..))
4. && args(theString)
5. && within(com.QrBarcodeScanner.Encode.*);
6.
7. Object around(String theString)
8. : systemServiceCut(theString) {
9. System.out.println(" -- Sanitizer has reached our Weaved Code --");
10. if (theString.equalsIgnoreCase("download")) {
11. if (sad.httpDownload().equals(NoChange)){
12. //do nothing
13. System.out.println("Allowing access to HTTP Download");
14. } else if (sad.httpDownload().equals(Block)) {
15. //block it by returning a bad service
16. System.out.println(" -- Blocking Download --");
17. return proceed(" ");
18. }
19. }
20. return proceed(theString);
21. }
22. }

Figure 3-7 System Service Aspect

 In order to grant the user

allow access, to deny access, or in some

application on the device to write

resource, the SD card is an easy way to share information between the settings application

and the instrumented application.

however this method requires the settings application to be

background as a service. While providing the advantage of no read/write operations to the

SD card, the drawbacks include that Android can kill background

low on memory.

To make these decisions, w

Using the application demonstrated in Figure 3

permissions on a per-application basis.

Location Based Permissions

 In addition to allowing the user to selectively grant and revoke

permissions, a location based access policy is useful.

installations, for instance, no pictures should be taken

employees in corporate environments will have a smartphone on or near them; were a

device to be infected with malware, attackers could gain access to valuable company trade

Figure 3

 22

In order to grant the user the ability to dynamically choose what action to take

allow access, to deny access, or in some cases provide fake information – we install an

application on the device to write user decisions to the SD card. Acting as a shared

resource, the SD card is an easy way to share information between the settings application

and the instrumented application. Alternatively, broadcasts and intents could be used,

however this method requires the settings application to be constantly running in the

background as a service. While providing the advantage of no read/write operations to the

SD card, the drawbacks include that Android can kill background =services when running

To make these decisions, we provide the user a simple GUI.

the application demonstrated in Figure 3-8, the user can grant and

application basis.

the user to selectively grant and revoke access to individual

permissions, a location based access policy is useful. Within sensitive government

allations, for instance, no pictures should be taken by any applications. Likewise,

orporate environments will have a smartphone on or near them; were a

device to be infected with malware, attackers could gain access to valuable company trade

Figure 3-8 Dynamic Permission Setting

the ability to dynamically choose what action to take - to

we install an

Acting as a shared

resource, the SD card is an easy way to share information between the settings application

Alternatively, broadcasts and intents could be used,

constantly running in the

background as a service. While providing the advantage of no read/write operations to the

services when running

grant and revoke

access to individual

Within sensitive government

Likewise,

orporate environments will have a smartphone on or near them; were a

device to be infected with malware, attackers could gain access to valuable company trade-

 23

secrets. To this end, aspects can be configured to detect whether or not the device is within

a certain distance from a given location. If so, information can be hidden from instrumented

applications, and sensor access can be revoked.

4. Results
To study the effectiveness of

‘AppSanitizer’, and conducted several case studies.

General Usage

Assuming that we have attained a copy of the apk we wish to

process by dropping the file into our pipeline.

 There are several options for sanitization. While the default is to cut across the

entire application, we provide the option to reduce the amount of instrumentation done to

the source application. Upon sanitization

 24

To study the effectiveness of our process, we built a proof of concept

, and conducted several case studies.

Assuming that we have attained a copy of the apk we wish to ‘sanitize’, we begin the

process by dropping the file into our pipeline.

here are several options for sanitization. While the default is to cut across the

the option to reduce the amount of instrumentation done to

anitization, we see output similar to the following

Figure 4-1 Sanitizer GUI

we built a proof of concept process named

, we begin the

here are several options for sanitization. While the default is to cut across the

the option to reduce the amount of instrumentation done to

output similar to the following:

 25

Case Studies

DW Contacts

 DW Contacts is a free application aimed at enhancing or replacing the standard

phone application packaged within Android [22]. Most features advertised relate to

accessing and communicating contacts quickly and efficiently, whether via SMS, MMS,

email, or a normal phone conversation.

 This application was chosen due to its large volume of downloads (up to 5 million)

as well as an easy way to show the ability to provide fake information

58:Sanitizer cdstelly$ SanitizeAPK.py -c true -a DWApp.apk
[*] Beginning Sanitization
[-] Cleaning the working directory
[-] Decompiling the APK
 dex2jar DWApp.apk -> outJar.jar
[-] Generating random class name
[-] Aspect Name: aspectd138229
[-] Finding the classes which call: "query"
[-] Preparing the environment...
[-] Weaving aspect from just .class files..:
[-] 8 warnings
[-] Now we have the jar.. let's generate a dex!
[-] jar2dex ./target/classes/post-compile-time/output.jar -> classes.dex
[-] call com.android.dx.command.Main.main[--dex, --no-strict, --
output=/Users/cdstelly/Code/Android/Thesis/Sanitizer/classes.dex,
/Users/cdstelly/Code/Android/Thesis/Sanitizer/target/classes/post-compile-
time/output.jar]
[-] updating: classes.dex
[-] zip warning: Local Entry CRC does not match CD: classes.dex
 (deflated 60%)
[-] Signing the apk
[-] sign DWApp.apk -> DWApp-signed.apk
[-] Removing the currently installed application..
[-] * daemon not running. starting it now on port 5037 *
[-] * daemon started successfully *
[-] Success
[-] Installing the modified version..
2151 KB/s (3255732 bytes in 1.477s)
 pkg: /data/local/tmp/DWApp-signed.apk
[-] Success

Figure 4-2 Sample Sanitization

 26

In Figure 4-3, we see normal operation of the application – loading of contact names.

After instrumenting the application’s bytecode, launching the application results in the

screen presented in Figure 4-4. The user has been notified with the standard Android

notification system; optionally, an alert is fired, and an icon appears in the top left of the

status bar.

Upon inspection of the notification (i.e., pulling down the notification bar), the

following selection is presented to the user (Figure 4-5).

Figure 4-3 DW Contacts

(Unmodified)

Figure 4-4 DW Contacts

(Instrumented)

the app has cached.

If she selected the option to fake all contact information for DW Contacts,

time she runs the app he could

Figure 4-5 Notification contacts were accessed

 (Instrumented)

27

Three options are

displayed: Allow, Fake,

and Deny. Selecting

notification itself

take the user

SanitizerSettings

application, where

select to allow, fake, or

block data.

As show

previously with

3, the user

modify the privacy

settings of any sanitized

app he has installed.

saving, he should restart

the app sh

modify the settings of.

This is not strictly

necessary, but should be

done to clear

she selected the option to fake all contact information for DW Contacts,

 expect to see the image in Figure 4-6.

5 Notification contacts were accessed

(Instrumented)

Three options are

displayed: Allow, Fake,

and Deny. Selecting the

notification itself will

the user to the

SanitizerSettings

application, where he can

select to allow, fake, or

block data.

As show

previously with Figure 3-

, the user is able to

modify the privacy

of any sanitized

he has installed. After

he should restart

the app she is trying to

modify the settings of.

This is not strictly

necessary, but should be

done to clear anything

she selected the option to fake all contact information for DW Contacts, the next

 28

Fictitious data has been given to

the application. This will ensure that

even though we are modifying the

application to protect our privacy, the

application will continue to behave as

normal.

As the fictitious data resides in

userspace, it could be modified at any

time. Thus, it is possible to populate the

database with ‘masked’ data, which

could prove to be a useful middle

ground between privacy and

application usability. Masked data could

take the form of contacts which last

names were all replaced with a mask

character, such as the letter ‘x’.

Super-Bright LED Flashlight

 In our case studies used to describe the permissions issue, we looked at the ‘Super-

Bright LED Flashlight’ app [20]. Since it has been installed up to 500 million times, or one in

five Android devices worldwide, it is worth a deeper look.

Prior to download, the following permissions are required:

Figure 4-3 DW Contacts with fictitious contacts

(instrumented)

 29

The number of permissions is too many – there is only one required for a flashlight

app, and that is “control flashlight”. With network and camera access, this application has

the facility to execute the PlaceRaider attacks as discussed earlier. The application is ad-

supported, however, and as such can reasonably require network access. On the other

hand, the application also has the ability to upload information with ‘full network access’.

Clearly, this application is over-provisioned.

Your location

precise location (GPS and network-based)

approximate location (network-based)

Network communication

view network connections

full network access

view Wi-Fi connections

receive data from Internet

Phone calls

read phone status and identity

Storage

modify or delete the contents of your USB storage

Your applications information

retrieve running apps

Camera

take pictures and videos

Development tools

change system display settings

System tools

modify system settings

test access to protected storage

Affects Battery

control flashlight

prevent device from sleeping
Figure 4-4 Permissions required for installation of "Super Bright LED Flashlight"

 We immediately notice the ads at the bottom

Internet permissions. However, without doing anything remotely close to network traffic

analysis, one can simply look at the

running to see that it is sending off the device id and several kinds of private information

off to an ad service.

Figure

Figure 4-6 Logcat Output: Device ID being given to an

 30

We immediately notice the ads at the bottom - this is the plausible cause

. However, without doing anything remotely close to network traffic

analysis, one can simply look at the standard debugging output of the application when

running to see that it is sending off the device id and several kinds of private information

Figure 4-5 Super-Bright LED Flashlight

(Unmodified)

Logcat Output: Device ID being given to an ad service, along with other encrypted strings

cause for full

. However, without doing anything remotely close to network traffic

lication when

running to see that it is sending off the device id and several kinds of private information

with other encrypted strings

 31

 This is in addition to several encrypted strings appearing in the standard output. We

do know that the app requires exact GPS location permissions, so it is possible that it is

encrypting your location (for use with the ads, hopefully).

 Applying the same sanitization process to the flashlight apk, we were able to block

all network access. The effects of this are at least twofold: 1) the application cannot upload

any information about the device, and 2) ads are no longer displayed.

 This application is a prime example of why these kinds of apps should have a more

versatile permissions model. When we trust an application with any combination of

permissions including full network access, we must be wary of the possible consequences.

Figure 4-7 FlashlightApp (Instrumented)

 32

5. Critique of Methods

While we achieve the goal of implementing dynamic privacy controls, we have

discovered drawbacks with our method. These include:

• Advanced obfuscation techniques inhibit ability to recompile some

applications

• To install these apps, we must resign other people’s work

• If the device’s available memory runs low, the permission watching service

could be killed and the user will not be notified until restarting the service or

device

• When Android eventually implements required permissions to read/write

the SD card, we will have to add that permission to the application’s manifest

• Many apps are advertiser based; this method can prevent ads from running

Many developers obfuscate their application’s code prior to release. This is an

effective way to prevent reverse engineers from immediately realizing the purpose of a

given method. Our design takes this into account as we consider the fact that Android API

calls cannot be obfuscated – to utilize certain functionality, you must use the methods

provided. What was unaccounted for, however, was the inability for our decompilation and

recompilation tool (dex2jar) to handle obfuscation techniques. The dex2jar suite works

well in most cases of obfuscation, but for some apps (such as Google Chrome), the

recompilation process did not work as planned. Although the decompilation and weaving

processes worked as intended, more research into this, or perhaps a future update of the

dex2jar tool, are required to provide a completely robust solution.

One consideration our work brings to light is that in order to install the modified

application, we must re-sign the original developer’s work as any modifications break the

original developer’s signature. From a functional standpoint, this is no problem. However,

original developers can be understandably displeased with such actions.

In order to utilize the run-time warnings that notify the user when a sensitive

resource is active, we deploy a service that runs in the background processes of the device.

Once the aspect is accessed, the warning comes from this service vice weaved code. As all

devices are constantly trying to conserve battery, they periodically kill inactive services.

While this behavior was not witnessed when testing, the shutdown of the service would

prevent the user from being warned their information was being accessed. However, the

aspects would continue to function as normal and would follow any settings already set in

place.

Once side effect we introduce is that advertisements can be effectively disabled

when we deny network access to an application. An issue worthy of a debate in itself, this

can be seen as both a fantastic side effect for end users and as a negative consequence for

developers who are financially supported by advertisements.

 33

6. Conclusion

Mobile devices are increasingly trusted with information of both corporate and

personal varieties. The largest platform by far, Android, has not even come close to

implementing an exemplary security model with regards to protection of this information.

Likewise, protection for hardware sensors on Android devices has fallen by the wayside.

The lack of protection falls well short of user needs while simultaneously presents a

serious security threat.

A variety of causes contribute to the lack of protection. Statically assigned

permissions, which must be agreed upon prior to application installation, cannot be

changed at any time. Rampant numbers of apps are over-provisioned, each asking for

ludicrous access to personal information or completely unrelated hardware sensors.

This is a well-known set of problems, and prior solutions have approached it from

the ground up; that is, they have focused on implementing reasonable security policies

within Android’s open source kernel. While these solutions have achieved the goals of

improving Android with such security policies, they are severely hampered by the way in

which they have implemented them; the re-writing of operating system source code is

unnecessary and burdensome.

Alternatively, other prior work has implemented improvements to the security

model at the application layer, within userspace, bypassing the excessive drawbacks

caused by operating system modification. This prior work, however, could be improved

upon by use of standard, well-understood technologies, as well as expansion of goals and

implementation.

Our research, instantiated in the form of AppSanitizer, provides an ideal solution for

implementation of reasonable security policies within Android. These policies revert the

static nature of permission assignment, while simultaneously giving the user the power to

grant and revoke individual permissions on a per-application basis. For permissions that

access information, such as contacts, AppSanitizer can reliably return fictitious data.

AppSanitizer is also automated, providing an additional advantage for this approach.

The main benefit of this work is the grant to a user the ability to control whether or

not an application can access a protected resource, post-install time, without modifying the

operating system.

Future Work
Future work could implement the sanitization process on the device itself,

bypassing the need for ad-hoc installation and instrumentation. Because this solution likely

requires root access of the device, an alternative may be to provide the sanitation of apps

as a web service.

In a different light, the ability to easily instrument Android apps is not limited to

improvement of security policies. This approach can be used in a variety of situations;

almost any behavior can be implemented if an appropriate aspect is written.

 34

References

[1] MockDroid http://www.cl.cam.ac.uk/~acr31/pubs/beresford-mockdroid.pdf

[2] AppFence

http://homes.cs.washington.edu/~pjh/pubs/hornyack_appfence_ccs2011.pdf

[3] TISSA http://www.cs.ncsu.edu/faculty/jiang/pubs/TRUST11.pdf

[4] SAINT http://www.patrickmcdaniel.org/pubs/acsac09a.pdf

[5] FlaskDroid https://www.tk.informatik.tu-

darmstadt.de/fileadmin/user_upload/Group_TRUST/PubsPDF/flaskdroid_tr.pdf

[6] Statistics on number sold http://mobithinking.com/mobile-marketing-tools/latest-

mobile-stats/a#smartphone-shipments

[7] Number of android devices http://techcrunch.com/2013/08/07/android-nears-80-

market-share-in-global-smartphone-shipments-as-ios-and-blackberry-share-slides-per-

idc/

[8] Introduction to AspectJ http://www.eclipse.org/aspectj/doc/next/progguide/starting-

aspectj.html#advice

[9] TaintDroid http://static.usenix.org/events/osdi10/tech/full_papers/Enck.pdf

[10] Selling Secrets Of Phone Users To Advertisers. (2013, October 6) New York Times, p. 1,

4

[11] Mobile Market Share, http://techcrunch.com/2013/08/07/android-nears-80-market-

share-in-global-smartphone-shipments-as-ios-and-blackberry-share-slides-per-idc/

[12] QR Reader for Android

https://play.google.com/store/apps/details?id=uk.tapmedia.qrreader&hl=en

[13] Seven+ WP7 Calculator

https://play.google.com/store/apps/details?id=com.tombarrasso.android.wp7calculator

[14] Permission Re-Delegation: Attacks and Defenses

https://www.usenix.org/legacy/event/sec11/tech/full_papers/Felt.pdf

[15] PlaceRaider http://arxiv.org/pdf/1209.5982v1.pdf

[16] Dr. Android and Mr. Hide http://www.cs.umd.edu/~jfoster/papers/cs-tr-5006.pdf

 35

[17] Cambridge Price of Free http://www.cam.ac.uk/research/news/what-is-the-price-of-
free

[18] 1 million Android apps http://www.gazelle.com/thehorn/2013/08/14/google-play-
store-hits-million-apps-milestone/

[19] Felt et al. Android Permissions: User Attention, Comprehension, and Behavior

[20] Flashlight App
https://play.google.com/store/apps/details?id=com.surpax.ledflashlight.panel

[21] Flask: Android Security Kernel https://www.cs.utah.edu/flux/flask/

[22] DW Contacts
https://play.google.com/store/apps/details?id=com.dw.contacts&hl=en

[23] Android Security Overview
http://www.acumin.co.uk/download_files/WhitePaper/android_white_paper_2.pdf

 36

Vita

Christopher Drew Stelly was born in Mobile, Alabama. After completing his work at
McGill-Toolen High School in 2007, he entered the University of Louisiana in Lafayette,
Louisiana. After receiving a degree of Bachelor of Science in 2011, he enrolled in
Graduate School at the University of Louisiana. In 2012, he transferred to the Graduate
School at the University of New Orleans.

	Dynamic User Defined Permissions for Android Devices
	Recommended Citation

	Microsoft Word - 363412-text.native.1385326632.docx

