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Abstract 

 

An integration solution must sustain multiple PeopleSoft upgrades, which is necessary to 

preserve investment in system integrations.  Since the underlying structures and connection 

technologies of PeopleSoft have been and can be migrated from version to version in order to 

enhance features and performance, it is critical for any external component of integration to be 

built based on publicly visible interfaces of the PeopleSoft component. We have developed a 

standard-based solution to integrate “PeopleSoft Campus Solution” into “Microsoft SharePoint” 

using Web services generated by PeopleSoft’s Pure Internet Architecture. We have illustrated 

such kind of integration in two examples that emulate some of the imminent problems in the 

University’s current information systems between the PeopleSoft Campus and SharePoint 

Workflow.  The methodology used in this is applicable to integrations of general COTS software 

systems into modern enterprise information systems. 
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Chapter 1 Introduction 

Since the diversified business need of large companies and organizations always exceed any 

single commercial-off-the-shelf (COTS) software product, distributed systems consisting of multiple 

COTS products mixed with customized software are the common structures of enterprise information 

systems. Mounting experience has shown that the effective use of COTS software products has long been 

challenging since its inception decades ago (Dean, 2002).  From the COTS-based Software System 

initiative advocated by Carnegie Mellon Software Engineering Institute (SEI) in 2001 to the theory and 

practice of “System of Systems”, significant efforts have been invested in research on COTS software 

integration (Fisher, 2007).   

In principle, the Web service technology should be inherently suitable to system integration.  In 

reality, proprietary techniques in COTS products often complicate integration.  For example, Oracle 

PeopleSoft Campus Solution is one of the fastest growing products for Higher Education. In over two 

decades, PeopleSoft was difficult to connect to third party applications (Lynn, 2001).  After Oracle 

acquired the product in 2004, a number of enhancements have been done to make the product able to 

communicate with external applications with various techniques (Lynn, 2001). However, it is still a 

challenge by experiments for developers and end users to make integrations. In the recent several versions 

of the PeopleSoft products, PeopleSoft has been promoting the Web service technology for interacting 

with external applications.  

In this project, we have developed a systematic, standard-based solution to integrate “PeopleSoft 

Campus” into “Microsoft SharePoint Workflow Foundation” using Web services generated by 

PeopleSoft’s Pure Internet Architecture (PIA).  The primary objectives of this project are to identify the 

available techniques for integration with Web services and minimize customization in integration.  A 

critical criterion of success is to achieve version neutral.  That is, an integration solution must sustain 

multiple PeopleSoft upgrades.  This is necessary in order to preserve investment in system integrations.  

PeopleSoft upgrades their products periodically to enhance features and performance.  PeopleSoft is 

obliged to facilitate migration of customers’ data.  However, PeopleSoft does not support the 

transformation of clients’ customization code.  Thus, massive code customization in PeopleSoft 

deployment will hinder future PeopleSoft upgrades (Tu, 2002).  The underlying architecture and 

connection technologies of PeopleSoft have been migrated from the traditional client/server paradigm to a 

multi-tier architecture then to a service-oriented architecture.  For interaction with a PeopleSoft 

component, it is critical for any external component to be built based on the publicly visible interfaces of 
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the PeopleSoft component.  Such kind of visible interfaces could be available in PeopleSoft API or could 

be created using PeopleSoft PIA.  If a change happens in the PeopleSoft API or the subject PeopleSoft 

component, PeopleSoft will be obligated to document the change which can assure manageability of the 

related integration parts.   

The methodology that brought up the above solution to PeopleSoft-SharePoint integration is 

applicable to integrations of general COTS software systems into modern enterprise information systems.  

At the same time, the experiments carried out in this project have been targeted at a number of imminent 

problems in the University’s current information systems between the PeopleSoft Campus and SharePoint 

Work Flow.  An immediate goal of this project is to provide practical, affordable, manageable solutions to 

University’s information systems.  The ultimate goal is to advocate the integration approach based on 

Web-services in the System of Systems research (Fisher, 2007; Luzeaux, 2011).  

The remainder of this thesis is assumes the following organization.  Chapter 2 provides the 

background of the project with some technologies and specific components within PeopleSoft Campus 

Solution. Chapter 3 provides integration techniques and design. Chapter 4 provides implementation of 

chosen technique in chapter 3. Chapter 5 provides detail implementation case study. Two tests were done 

during the project: one with PeopleSoft Delivered Component for Human Resource Job related 

component and the other test case with custom built component Interface. The final chapter provides 

summary of achievements from the project along with conclusion.  
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Chapter 2 Background 

Some of the technologies and products used for this thesis project are described in this chapter 

2.1 Oracle PeopleSoft Campus Solution 

Oracle PeopleSoft Campus Solution (formally known as PeopleSoft Campus Solution) is a 

comprehensive solution for student administration for Higher Education institutions. PeopleSoft was 

founded in 1987 with human Resource product as their first launched product and extended their service 

to variety of areas such as financial Institutions, healthcare Managements, education and public sectors 

organizations. The core components of this product are web server, application server, database server. 

The back end is oracle database and the front end is a browser. Within the application, core building 

blocks are fields, records, pages, menus, components, component interface, Application Engine (most of 

them are programmed in COBOL) (PeopleBook, 2012).    

2.1.1 Application Designer 

 

This is the core development tool to develop and customize PeopleSoft Applications for the 

PeopleSoft Pure Internet Architecture, maintain data, and perform updates and upgrades PeopleSoft 

Applications. It enables developers and system analyst to build a variety of definitions including Fields, 

Records (tables), Pages, Components, Menus, Component Interface, Testing, Program Debugging, Data 

Consistency Checking, Program Validation and write programs and modules in PeopleCode and SQL. 

This tool is used as developmental and testing in this project (PeopleBook, 2012).  

2.1.2 Security in PeopleSoft 

 

Security is especially critical for core business applications, such as PeopleSoft applications. 

Typically, what is needed is a need to restrict the usage, viewing and customization of the data and 

applications. PeopleSoft provides security features, including components and People Tools applications, 

to ensure that the sensitive application data do not fall into the wrong hands. As the PeopleSoft Internet 

Architecture (PIA) is implemented, a robust and scalable means is needed by which the users can be grant 

authorization efficiently.  

Security can be applied to all users, including employees, managers, customers, contractors, and 

suppliers. Users are grouped according to roles given to them with different degrees of access. For 

instance, there might be an Employee role, a Manager role, and an Administrator role. Users who belong 
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to a particular role require a specific set of permissions, or authorizations, within the system, so that they 

can complete their daily tasks.  

The objects and definitions in the PeopleSoft development environment must also be secured 

from viewing. Restriction can be implemented to block the end users from accessing particular pages and 

components, also to restrict the definitions that the site’s developers can access using PeopleSoft 

Application Designer. A definition refers to any of the definitions that are created within PeopleSoft 

Application Designer, such as records, pages, or components. Each object definition may have individual 

security needs (PeopleBook, 2012).  

Accessing a PeopleSoft application requires first passing through several layers of network, 

Operating System, and Database security. These capabilities are defined by the technical environment and 

need to be configured outside of PeopleSoft. The following figure demonstrate the same. 

 

Fig: 1 PeopleSoft Security Foundation 

       

The picture below exemplifies the relationship between Users, Roles and Permission Lists. 

Permission lists are assigned to roles, which are then assigned to user profiles. A role may contain 

numerous permissions and a user profile may have numerous roles assigned to it. Because permission 

lists are applied to users through roles, a user inherits all the permissions assigned to each role to which 

the user belongs. The user's access is determined by the combination of all of the roles. 
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Fig: 2 PeopleSoft Security – User, Roles and Permission Lists 

2.1.3 Application Messaging and Web Service 

 

Application Messaging, based on the “publish-and-subscribe” model, allows PeopleSoft 

applications to integrate with each other and with third party applications. This model provides 

integration that is close to real-time, which means that the publisher need not be connected to the 

subscriber when publishing the data. On one end, a message is created and published and on the other 

end, the message is delivered to any number of subscribers. 

Application messages are the fundamental building blocks comprising the application messaging 

system. Messages are self-describing entities formatted in XML. Each message contains data to be 

distributed among systems at runtime. To enable the creation and delivery of application messages, 

following object types in Application Designer are defined:  

Message definitions: Stores the information about how a single application message is constructed. Each 

message definition has a multi-level structure, similar to components, that defines the data to be inserted 

into the application message at runtime.  

Message channels: Channels correspond to groups of message definitions. They help order messages, 

enhance scalability, and provide a simple way to define processing characteristics of many similar 

messages as a single group. Channels include message routings, which define the mappings between 

message nodes on the messaging network.  

Message Nodes: The physical systems (application servers or databases) connected to the messaging 

network. 
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PeopleSoft supports providing WSDL documents to the PeopleSoft WSDL and Universal 

Description, Discovery, and Integration (UDDI) repositories. The system enables consuming WSDL 

documents from other PeopleSoft and third-party systems, and automatically creates integration metadata 

based on the consumed WSDL documents for processing integrations. Other than basic building blocks, 

PeopleSoft WSDL document includes: WS-Security elements, UsernameToken and SAMLToken, 

PartnerLinkType elements (for BPEL Application) (PeopleTool 8.51, 2011). 

A SOAP Message is an ordinary XML document that consists of three sections:  

A SOAP Envelope – The top element of the XML document representing the message and defines the 

content of the message. It defines the framework of what is in a message, how to process it, who should 

deal with it and whether it is optional or mandatory. 

A SOAP Header – This section is optional. It contains header information and attributes that can be set 

to encode and further identify the type of processing and additional features of the message. 

A SOAP Body – This section contains the call and response information intended for the recipient of the 

message. This is the message “payload”. SOAP is not a requirement for exposing a web service, but 

should be used when appropriate when implementing a web service. Many web services today expose 

functionality over XML/HTTP without using SOAP. 

2.2 Web Services Description Language (WSDL) 

The shape and contents of the SOAP XML will not be the same for each transaction. One 

transaction might require one input parameter, while another might require many. The structure and 

contents of the request XML must be communicated to other parties who want to invoke a given web 

service. Likewise, the structure and contents of the response XML that is sent back with the results of the 

transaction need to be communicated as well. WSDL is an XML-based description of how to connect to a 

web service. It references a schema which describes the inputs and outputs of a web service and the URL 

to post requests to in order to invoke the web service (Benz, 2003). 

The default URL format is as follows: 

http://localhost/PSIGW.war/PeopleSoftServiceListeningConnector/PT_WORKLIST.1.wsdl 
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2.3 SOAPUI 

SOAPUI is a free and open source cross-platform Functional Testing solution. With an easy-to-

use graphical interface, and enterprise-class features, SOAPUI allows developer/testers to easily and 

rapidly create and execute automated functional, regression, compliance, and load tests. Most of the 

testing of the WSDL file generated by PeopleSoft Integration Broker is tested with this tool (SmartBear 

Software, 2011). 

2.4 SharePoint and Document Library 

SharePoint is a multipurpose tool to cater to web requirements common for most industries. 

Unlike a typical web application or content management system, SharePoint platform is designed to 

manage web server configuration itself. This allows for the bulk management, scaling, and provisioning 

of servers often required by large organizations or cloud hosting providers. A Library is a list where each 

item in the list refers to a file that is stored in SharePoint that contain files. Files created with library can 

be view in Browser as well and InfoPath application. Microsoft SharePoint comes with some pre-defined 

list and library definitions. These include: Announcement Lists, Blogs, Contacts, Discussion Boards, 

Document Libraries, External Content Lists, Pages, Surveys, and Tasks. With Microsoft Office 

SharePoint, workflows can be built that add application logic to the site/application/document without 

having to write custom code. Using the Workflow Designer, rules can be created that associate conditions 

and actions with items in Microsoft SharePoint lists and libraries, so that changes to items in lists or 

libraries trigger actions in the workflow. In this project, document library and workflow features are used 

as a Web service consumer and one of the data repositories respectively (Bustamante, May 2008).  

2.5 Microsoft InfoPath 

Microsoft Office InfoPath is a software application for designing, distributing, filling and 

submitting electronic forms containing structured data. It supports SOAP web service, REST web service, 

SharePoint Library or List, Database connection and XML documents. In this project, SOAP Web service 

is consumed by InfoPath form and utilizes workflow in SharePoint to route and save document in 

SharePoint Library as well as consume PeopleSoft exposed Web service method to maneuver data in 

PeopleSoft database (Bustamante, May 2008). 
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2.6 Visual Studio 

It is an integrated development tool to develop applications in wide variety of programming 

languages and techniques. In this project, this tool is used to test some basic functionality of PeopleSoft 

Web service Methods exposed to external Application (Sempf, 2004).  
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Chapter 3 Integration Design 

There are two types of integrations available in PeopleSoft; Real Time Integration and Non-real 

time Integration.  Most of the integration done in PeopleSoft - to - PeopleSoft is done in real time. It is 

called messaging which is an xml based data exchange. All other integration is done in non-real time 

where data are dumped in a table or a flat file from one system and later picked up by other. This involves 

lots of resources writing the data dump program and processing program. In recent years, Web service 

(both WSDL and REST) was introduced in PeopleSoft to communicate with external application. 

Because of technical complexity, product limitations, and lack of proper documentation, this technique 

has been mainly used by Software consulting companies but has rarely been successfully used by 

PeopleSoft user community. In this chapter, PeopleSoft’ PeopleSoft’s integration types, its limitations and 

challenges as well as work around are discussed in detail. In this chapter we further study Component-

Interface based Web Service. 

3.1 Three Types of Integration 

There are three major methods of integration available in PeopleSoft Campus Solution: 

• Application Messaging 

• Staged or Flat File  

• Web Service 

3.1.1 Application Messaging 

 

“Application Messaging” is an XML based solution. The standard procedure is to build nodes, 

build messages and then finally create channel for those messages. Application messaging guarantees that 

messages are delivered in the order published and that they are single-threaded on the subscriber. 

Therefore, it is the publisher’s responsibility to publish messages in the proper order. Application 

messaging supports the integration of PeopleSoft applications and third party systems by publishing 

business events as XML messages. To publish data, third party applications can post XML messages 

directly to PeopleSoft’s Application Messaging Gateway servlet. To subscribe to data, third party 

applications can accept and process XML messages posted by PeopleSoft by adding a custom Java 

subscription handler to the Application Messaging Gateway servlet. To determine whether the publish 

was successful, standard HTTP Post return codes and the PeopleSoft Reply Document return code can be 

checked. If the subscribing PeopleSoft system is not available at the time the third party system attempts 
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the publish, the message will not be delivered. The third party system must queue the messages and 

“retry” until the subscribing system is back online (PeopleTool 8.51, 2011).  

This solution works but has lots of overhead to achieve the goal. This process needs lots of XML 

parsing and generation of PeopleSoft proprietary schemas. This method is useful when organization share 

data between different information systems internally, and with partners’ external systems. Application 

messaging provides benefits including synchronization of data between systems and System-to-system 

workflow. There are scenarios in which application messaging is advantageous such as Application-to-

application integration and Cross-release integration  

 

Fig: 3 High Level Messaging Architecture 

3.1.2. Staged or Flat File 

 

This is a non-standard way of integration. This is not real time integration. This process skips 

existing implementation of business rules but depends on PeopleSoft internal data schema. The data 

elements that are needed for the integration is generated with SQR and SQC (PeopleCode) and/or SQL 

and stored in flat file or database. Later same database or file is used to update data in another system 

using PeopleCode or other application programming languages.  The critical problem with this technique 

is the dependency to PeopleSoft’s internal data schema. From version to version, the PeopleSoft products 

can reasonably change their internal schema. When this kind of change happens, the investment of 

integration suffers the danger of dysfunction. Sometimes this process is useful if the third party vendor 
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only provide flat file or CSV file or other sorts of database structures. This technique has been superseded 

by a later technique called file parser.  

3.1.3. Web Service 

 

The PeopleSoft defines that a Web service is simply an application component that is accessed 

programmatically over the internet using XML over HTTP. Any discrete component of application 

functionality can be exposed as a Web service. Examples include Employee names, Job data, and 

customer profile. Any of these application components can be published and accessed over the internet as 

web services.  Web services consist primarily of the following standard technologies: 

• XML 

• SOAP 

• WSDL 

XML is the language in which all the data structures, SOAP and WSDL are written. They are the 

most basic requirements for a Web service. Simple Object Access Protocol (SOAP) specifies the format 

and schema of messages. WSDL specifies the operations of We services. SOAP and WSDL make 

cataloging, discovering and implementing Web service easier. 

Web services are loosely coupled as they have well defined, published interfaces in WSDL and 

can be easily accessed from remote systems over the internet by (HTTP). They require coordination based 

on standards. The underlying technology behind the Web service can be changed and replaced without 

impacting the standard-binding components for integration. This loose coupling nature of Web services 

decouples the PeopleSoft internal data schema and external applications, which make possible for 

software integration to sustain PeopleSoft upgrade progress, to preserve the investments of integration, 

and making it easier to integrate applications (Benz, 2003). 

All PeopleSoft components can invoke or can be invoked as Web services using the Integration 

Broker. For example, following diagram summarizes the message flow of PeopleSoft Supply Chain 

Management (SCM) submitting a Customer Profile Web service request in PeopleSoft Customer 

Relationship Management (CRM). 
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Fig: 4 Message Flow in two Applications 

In figure 4, PeopleSoft Customer Relationship Management submits a request to create a “new 

order” using Web service, the service operation defined in Integration Broker is executed. It transforms 

and reroutes the incoming messages to PeopleSoft Supply Chain Management. Internal application in 

Supply Chain Management then subscribes the messages; invoke the “new order” component of 

PeopleSoft Customer Relationship Management. Outbound would be similar except Supply Chain 

Management System executes the method and return response to Integration Broker that sends response 

back to Customer Relationship Management. 

Most discussions around Web services are based on synchronous style integration. But sometimes 

the calling program does not want to incur the overhead of synchronous calls to remote systems Using 

PeopleSoft Application Messaging; web services can be invoked asynchronously.  

3.2 Integration Broker 

PeopleSoft Integration Broker facilitates integrations with other PeopleSoft and third-party 

systems. It features a services-oriented architecture that enables developers to expose PeopleSoft business 

logic to calling components. The PeopleSoft Integration Broker is a framework that supports synchronous 

and asynchronous messaging in a variety of communication protocols. It manages message structures, 

message contents, and transport disparities. The Integration Broker also has native SOAP support for 
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sending and receiving messages. Using the Integration Broker technologies, PeopleSoft applications can 

be both Web service clients and a Web service server. Web services in PeopleTools are built from the 

bottom-up approach starting with the message that needs to be passed to the caller of the Web service. 

The same messages are used while defining new service operations which are grouped into Services. The 

service operations are then provided with PeopleCode Handlers to take the inbound request messages or 

populate outbound response messages (PeopleTool 8.49, 2011).  

The two major components of PeopleSoft Integration Broker are the integration gateway and the 

integration engine. The integration gateway is a platform that manages the receipt and delivery of 

messages passed among systems through PeopleSoft Integration Broker. The integration engine is an 

application server process that routes messages to and from PeopleSoft applications as well as transforms 

the structure of messages and translates data according to specifications defined. 

 

3.2.1 Integration Gateway 

 

The structure of the Integration Gateway is shown in Figure 3.2. Its three components are 

explained below.   

Connectors: Listening and Target connectors to receive and deliver messages. Listening connectors 

receive requests from integration participants, send them to the gateway manager, and deliver responses 

back to the integration participants. The target connectors generate requests, send them to integration 

participants, wait for responses from participants, and deliver the responses back to the gateway manager. 

The integration gateway invokes target connectors dynamically through the gateway manager. The target 

connectors adhere to a standard structure by implementing the target connector interface provided by the 

integration gateway. By implementing this interface, target connectors can take advantage of all gateway 

manager services.  

Gateway Manager: The gateway manager processes all messages flowing through integration gateway 

and maintains links to all integration components including connectors and gateway service.  

Gateway Services: These are the services that gateway managers for messages parsing. It uses two 

message objects: IBRequest and IBresponse to enter and exit Integration Broker. It also uses connector 

management services for message routing functions that has varying level of complexity. Web service 

security, error and service logging, error handling, and message validation are major functions of 

Gateway service that are ultimately used by gateway managers 
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The primary function of Integration Gateway is to manage the receipt and delivery of messages. 

Following are basic features of Integration Gateway: 

• Listening and target connectors that transport messages between integration participants and 

integration engine 

• Logging information regarding message receipt delivery and errors 

• Checking format compatibility of the message 

 

Fig: 5 Integration Gateway Architecture 

In integration gateway, listening connectors receive messages and deliver to the gateway manager 

which determines which target connector to use to deliver the message to their intended recipient. The 

target connector then delivers the messages to the intended recipient. 

 

3.3 Inbound and Outbound Request Flow  

The purpose of the components explained earlier in this chapter is to support interactions in an 

integrated system, which is realized by inbound and outbound messaging. Figure 5 and 7 demonstrate the 

inbound and outbound requests within PeopleSoft Integration Broker. A request is sent into the gateway 

by an external application. Then the Integration Gateway passes it on to the application server. The 
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application server processes the request, and returns a response which is sent back to the external system 

by the Integration Gateway. 

 

Fig: 6 Flow of Inbound Request 

 

Fig: 7 Flow of Outbound Request 

This process consists of the following steps: 

Step 1: An external application sends a request to Integration Broker 

Step 2: The request is received by the listening connector which writes the request to the gateway log file 

exactly the same as it was received on wire; normalizes the service operation for the use by application 

server, and populates an internal request class from the received request.  

Step 3: The request is then processed by the PeopleSoft target connector which serializes the request 

string and sends to application server via a Java Online Transaction Connection (JOLT). All 

communications between the gateway and the application server is done via Multipurpose Internet Mail 

Extensions (MIME) messages. This MIME message is written in gateway log before sending to 

application server. 

Step 4: Once the application server receives the MIME request, it parses the message into a request object 

and pre-processes it. Pre-processing is a multistep process to authenticate service operations, determining 

the direction of the operation (inbound/outbound), identifying connectors and its properties, and 
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extracting the information about the node and determining runtime handlers. Once these steps are done, 

further processing carried out based on the available data by PeopleCode behind the scene.  

For the outbound request, once the output is ready, the application server converts message to the 

MIME standard format. The request must be sent to the PeopleSoft listening connector on the gateway 

using the value of the Gateway URL defined for the given gateway. If this URL is not valid or does not 

point to the PeopleSoft listening connector, the application server will be unable to send the request. 

Step 5: Once the Application Server processes the request, regardless of the result, it sends response back 

to the gateway. If the connection between gateway and application server is synchronous, it will get some 

response only after the completion of the operation whereas if the connection is asynchronous, then 

integration gateway will receive response as soon as the delivery is confirmed. The response will be in 

MIME format. 

Step 6: Once the response is received by PeopleSoft Target Connector, it is written in gateway log, parse 

the MIME back to gateway request object and return to listening connector. 

Step 7: The final step is to pass response to external application by Listening Connector according to the 

protocol used. 

In PeopleSoft Campus Solution, Web service can be built through 2 methods: Application Classes 

and Component Interface. Each has advantages and disadvantages however; this project focuses on 

building web service through Component Interface. (PopleBook, 2011 ) 

3.4 Web Service Design based on Component Interface 

A component interface is to enable exposure of a PeopleSoft component for synchronous access 

from another application (PeopleCode, Java, C/C++, COM, or XML). A Component interfaces can be 

viewed as "black boxes" that encapsulate PeopleSoft data and business processes, and hide the details of 

the structure and implementation of the underlying page and data. A component interface maps to one, 

and only one, PeopleSoft component. A component interface is created in the PeopleSoft Application 

Designer by selecting the PeopleSoft component. Record fields on the PeopleSoft component are mapped 

to the keys and properties of the Component Interface.  Figure 8 shows the relationship between the basic 

elements of the component interface architecture. 
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Fig: 8 PS Component Interface Architecture 

Every component interface has the following main attributes: 

• Component Interface Name 

• Keys (get keys, create keys, and find keys) 

• Properties and collections (fields and records) 

• Methods. 

In most cases, component interfaces behave the same as their associated components. This means 

that PeopleCode events typically trigger in the same order as the component. However, several runtime 

considerations cause exceptions to this behavior relate both to PeopleCode processing and search dialog 

box processing (PeopleTool 8.51, 2012).  

This project highlights the web service based on Component Interface of PeopleSoft. Once the 

component is in place in PeopleSoft, a component interface is built in application designer. Web Service 

is then built based on the Component Interface. Every time the Interface is updated, Component Interface 

needs to be modified including the People Code behind scene if there are any modifications done in the 

delivered component. The final step is to recreate the web service and expose it. Component Interfaces 

are PeopleSoft's way of exposing the business logic developed into Components for consumption by other 

areas of the system. Component interfaces are part of PeopleSoft's Integration Broker technology and an 

attempt to introduce SOA into the product. They tend to work quite well but can be slow for large 

amounts of data processing. This solution is best suited if data needs to be insert/update/delete through 

PeopleCode, and PeopleCode requires replicating a lot of existing business logic that already exists in a 

component then a component interface is the best approach as all the business logics are already in place. 
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PeopleSoft can automatically generate a component interface for developers but have to note that it will 

not be completely correct. Some tweaking needs to be done a to meet requirements. Before going any 

further, validating component interface is the key which is again a PS delivered functionality/tool. There 

are five standard methods come with component interface depending upon the type of interface and its 

functionality. 

Cancel: Cancels the instance of the component interface object executing this method and rolls back 

changes. This closes the component interface and returns its created state. Returns True if component is 

successfully cancelled, otherwise returns False. 

Create: This creates (adds) a new set of keys to the component - essentially the same as pressing add and 

entering the relevant keys through the component. The created keys are associated with the component 

interface object. At this point the CI is instantiated with the created data. Returns True if data is 

successfully created, otherwise returns False. 

Find: Find allows for a partial key (wildcard) search for data in the underlying component. 

Get: Gets the data from the underlying component interface matching on the get keys specified? The 

component interface is object is instantiated with the resulting data from the component. Returns True if 

data is successfully retrieved, otherwise returns False. 

Save: Save changes made to the component data through the component interface object. The saved 

method triggers standard PeopleCode processing. All errors are logged to the PeopleSoft Messages 

Collection (PSMessages) and this collection may be used for troubleshooting errors. 

3.5 Summary 

Among couple ways to integrate PeopleSoft Campus Solutions to external applications, this 

project focuses on the method of integration using Web service. Web service can be built in couple ways 

but this project discusses creating Web service using components in PeopleSoft. Since a component is a 

collection of records, keys, and PeopleCode functions logically grouped together, it provides complete 

business logic to be used out of the box even with limited understanding of the underlying processes that 

takes place within PeopleSoft System when the component is used.   

I have devised a solution to allow outside applications such as Microsoft InfoPath to update the 

PeopleSoft database through an existing PeopleSoft component as if a user keys in the data through a 

PeopleSoft page.  With this method, every business rule is still enforced by the original PeopleSoft 
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component. Such integration can sustain PeopleSoft upgrades if the interface of the related component is 

not changed and any internal data schema change will not affect the integration. Every problem that is 

possibly caused by an upgrade can be examined by reviewing the interface of the related components 

only.   
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Chapter 4 Implementation 

This chapter describes the implementation of the design presented in chapter 3. As discussed in 

chapter 3, the integration method used is based on Component Interface. This project has some pre-

conditions regarding the preparation for the implementation. Following are some preconditions: 

• Components: A set of pages and business logic for (the business purpose) is identified in the 

existing PeopleSoft System or created by the programmer 

• Component Interface: PeopleSoft delivers few built-in Component Interfaces; if not delivered it 

needs to be created using Application Designer.  

• Access privilege for Components: Proper PeopleSoft security needs to be provided in order to use 

component. For this project, the Administrator-level security is assigned. 

4.1 Component Interface Construction 

Once the component is built and ready to use, Component Interface is built off with that 

Component. A component interface maps to one, and only one, PeopleSoft component. The following 

figure shows the side by side view of Component and Component Interface.  Left pane is project pane 

where all elements of the project such as fields, records, pages, menus, component name, and component 

Interface name along with project name are displayed. In the middle pane is Component Pane where all 

the properties and records related to the component is displayed. The right pane shows the Component 

Interface built off of the Component selected. Even though five methods are displayed on the Component 

Interface pane for the selected component, only some methods are displayed for all component Interfaces. 

For example, PeopleSoft does not allow delete method to be exposed for any components to external 

applications. 

 



21 

 

 

Fig: 9 Application Designer: Project, Component and Component Interface view 

A component Interface view shows records and scrolls in the component via tree representation. 

A scroll in a component interface is referred to a data collection. A data collection is the generic 

APIObject that acts as a container of the collection and of other PeopleCode objects. Data collection 

objects are used to store the data in a scroll level so that it can be programmatically traversed. 

Among several ways of building Component Interface, this project uses the PeopleSoft’s 

delivered way to create Component Interface using Application Designer. PeopleSoft offers five attributes 

for each Component Interface namely:  

Name: Unique name of the Component Interface specified while saving it. This name is later used by 

programs that call the Component Interface to access its properties and methods. 

Key: Special properties containing values that retrieve an instance of list of instances for the Component 

Interface. It is created by PeopleSoft based on the search record definition for the underlying component. 

Properties: Each property includes both component data and Component Interface settings. There are 

two kinds of properties. The Standard properties are assigned automatically when Component Interface is 

built; the User-defined properties are defined by developer mapped to record fields on the PeopleSoft 

component and are displayed in Application Designer. Properties can correspond to either record field or 

scroll (a collection of records). 

Collections: Each collection is a special type of property that corresponds to a scroll. It contains fields 

and subordinate scrolls as defined in its underlying component. By default, a collection uses the name of 

the primary record for the underlying scroll. 

Methods: Methods are functions that do specific tasks. The standard methods are those available for all 

Component Interface. The User-defined are the methods added by developer to add functionality to 

existing Component Interface. 
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The construction a Component Interface will require the following steps. 

Step 1: Determining the Fields to Expose in Component Interface 

Fields from a component are exposed in the component interface by dragging a record field or 

scroll from the component view into the component interface view shown in figure 3.1. Thorough 

understanding of the underlying component is required so that exposed fields are actually required in the 

external application. For example, if the component has a field called National_ID, before exposing it to 

the Component Interface, requirement of that field in external application should be verified. The idea is 

to expose only those fields that are necessary. The component view displays fields that are available in the 

component buffer at runtime. Buffer is the place in a component where all the fields are loaded at once for 

that component at runtime. For example, if a record containing 10 fields has only 3 fields included on a 

page or visible to the page, then the component view will list only those 3 fields however it loads all 10 

fields in buffer (PeopleBook, 2012).  

The first time a collection from the component view is dragged to the component interface view, 

the system uses the following rules to determine what properties to expose: 

• Keys are exposed only at the highest-level scroll (data collection) in which they first appear. 

Typically, Get keys or Create keys are not exposed as properties, because these are set before 

a Get or Create operation and might be inadvertently changed. 

• Make sure that all properties within the collection are not deleted; that would result in an 

empty collection. If such empty collections exist, they need to be removed; otherwise, they 

appear with X in the component interface view. 

• If the page does not support Add mode, the level-zero record of the component should not be 

exposed, because it contains data that is not specific to the component interface that is being 

created. 

• Fields that is not visible in the component view should not be exposed. 

The component optimization code (execute within Application Engine) may attempt to eliminate 

unused fields from its buffer, which could result in an error if that field is accessed by the component 

interface.  

Step 2: Validating Component Interface 

Validation ensures that the structure of a component interface is still valid. Over time, the 

structure of a component interface can become invalid due to component structural changes and 
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modifications. For example, this can happen whenever a component deletes or adds a record or field. It 

can also happen if the keys on the component are added or removed. Properties and keys that no longer 

synchronize with their associated components are marked with an X icon. This is also checked in 

Application Designer tool. 

Step 3: Component Interface Security 

After creating a component interface, permission must be set for the new component interface 

and its all methods before it can be accessed. Security management for the component interface is 

provided through the PeopleSoft Internet Architecture (PIA) pages. As discussed in (chapter 2 to 

Component Interfaces) permission are set at the permission list level in PeopleSoft security manager. 

Step 4: Testing Component Interface  

PeopleSoft Application Designer delivers a simple test tool called Component Interface Tester. 

Once the component interface is ready, it can be tested for its intended functionality. Only methods that 

are exposed and have proper security setting can be tested using the tool. A result pane is displayed if the 

test is successful. Once the test is complete, Component Interface is ready to be used. For this project, 

web service is built off of this Component Interface and exposed so external application can consume its 

methods. Proceeding sections will provide details of Web service creation, security and process to expose 

to external application followed by consuming the service. 

4.2 Configuration for Building Web Service 

Web service is built with Integration Broker. Following are the pre-conditions for Web service 

creation and consumption. Integration Broker needs to be installed and configured for any external or 

internal application so that they can communicate with PeopleSoft. The following are some of the key 

elements that need to be setup before attempting to build Web service. 

• Enable the publication and subscription processes in the application server so there is support for 

asynchronous services. These are the services required to provide queues for gateway to store 

service request.  In this case, the communication is synchronous so this is not mandatory. 

• Change the Default Local Node to some meaningful one. In this project PeopleSoft delivered 

generic node (PSFT_HR) is used.  

• Configuration of the PeopleSoft Listening Connector is the first required step for this project.  

This is necessary for the Application Server to locate and communicate with an Integration 

Gateway. 
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• Configuration of the PeopleSoft Target Connector is also required so Integration Gateway knows 

where the Application Server is located.   

• This is very important step to complete the service configuration.  This is required for running 

web services.  In this step, some default naming information for services and schemas are entered 

and also the PeopleSoft Service Listening Connector is identified.   

• Other standard setup includes securing the integration environment by applying security at the 

web server, gateway, application server, nodes and service operation level; fine tuning integration 

system performance by employing failover, master/slave processing, load balancing 

4.3 Building and Providing Web Services 

Once the setup is tested and confirmed, Web service is built from PeopleSoft Integration Broker 

off of selected Component Interface. These are the steps of the process where service operations such as 

update, create, get and others can be selected to be exposed in Web service based on the component 

selected. Again, not all components expose all methods. Building and providing Web service is divided 

into two sections as following: 

4.3.1 Enabling Required Service Operation 

 

• Select the component Interface to be exposed as a Web service. This can be achieved by using search 

page in “CI-Based Services” menu in PeopleSoft Integration Broker component 

• Review the Component Interface status to determine availability. For the first time it is used, the 

status will be “Does not exist” which means operations are not being used in any other services for 

that component Interface. The diagram below shows the status of each operation along with action 

type and methods. Selected (checked) methods will become service operation to be exposed in Web 

service that is being built. 
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Fig: 10 CI Based Services Step 1 

• Once “Display Selected Actions” is clicked, default (PeopleSoft System generated) operation names 

are degenerated along with message versions. Aliases and messages versions may be specified if 

required however the service operation name cannot be changed. 

• Again, once the “Perform Selected Actions” is clicked, operation status is changed from “not created” 

to “Operation created”.  This indicates that the Web service and Service Operations are now created 

and Web Service can be now published and WSDL can be generated. The following diagram 

illustrates the same. 

 

Fig: 11 CI Based Services Step 2 
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4.3.1 Providing Web Service 

 

Creating Web service with PeopleSoft delivered wizard is the easiest and effective way. It is 

located under PeopleSoft Integration broker and has 4 steps process as following: 

Step 1: Select Service to be provided (defined in section 4.3.1). Service name is system generated name 

similar to Component Interface name. It can be changed manually or Service alias can be added for 

external applications consuming that service. 

 

Fig: 12 Web Service Wizard 

Step 2: Select Service Operation that is going to be exposed in Web service. This is the step of the 

process where decision for exposing methods takes place. For example in the following diagram, if 

update functionality needs to be blocked from the external application that is consuming the Web service, 

CI_NJM_VNDR_IP_UP.V1 should be unchecked. 



27 

 

 

Fig: 13 Web Service Wizard 

  

Step 3: This is the final step of building Web service for the selected component Interface. In this step, 

WSDL is generated for the service. The WSDL file can be viewed with the system generated link. 

 

Fig: 14 Web Service Wizard 

Step 4: In this step, WSDL file publishing options are picked. It can be either published in WSDL 

Repository or published to UDDI servers. For this project, it is published in WSDL Repository. 
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Fig: 15 Web Service Wizard 

Once these steps are completed PeopleSoft Integration Broker will provide a confirmation page 

with the generated WSDL URL that looks similar to the following diagram. 

 

Fig: 16 Web Service Wizard Results 

Again, PeopleSoft security needs to be setup for each exposed operations as well as Web service. 

After applying proper security, WSDL URL can be distributed to any number of external sources to be 

consumed. Security to these PeopleSoft delivered operations is mandatory: GETWSDL and 

GETSCHEMA. These are delivered permissions for accessing WSDL file and schemas for newly created 

Web service.  

One of the most important things learned during this project is that: just because WSDL is 

generated or Web service is generated does not mean it is valid. There are so many things could go wrong 

such as XML schema definition could not be validated and writing that definition could be difficult. 
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Thorough understanding of the product is required. Another challenge was to test the WSDL file that 

could not execute the INIT procedure in PeopleSoft. Some of the real time problems and challenges are 

discussed in Case Study chapter. 
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Chapter 5 Case Study 

In this chapter, two experimental cases are presented. In the first case, everything is created from 

the scratch, which includes the PeopleSoft records, pages, components, component interfaces and the 

PeopleSoft Web service. In the second case, we use an existing component in the PeopleSoft Human 

Resource Management component called “Job Data”. This component includes all job related information 

for employee. 

5.1 Case I – Name Change Request  

5.1.1 Problem Description 

 

PeopleSoft’s building blocks are fields, records (tables), components, pages, menus, and COBOL 

and PeopleCode associated with them for processing. In this test case, all those elements are created from 

the scratch in PeopleSoft using PeopleSoft Application Designer. This is a simple case where name 

change request is made by an authorizing department such as reception desk of Office of Admissions for 

existing student via an online form. Once a change request form is submitted, according to the predefined 

workflow, an email is triggered to a business unit. The document is stored in a secure location for further 

processing. An operator then reviews the form, approves or denies it and submits the form along with 

his/her decision. This submission triggers another workflow where the original initiator receives a 

notification of the action via email and the form is sent to a secure location for record logging. If the form 

is approved, the student’s name is updated in PeopleSoft Campus Solution by invoking update method 

using Web service. If the request is denied, the form is still stored in a secure location, but the student 

data is not updated in PeopleSoft Campus Solution. In this example, the external application consuming 

PeopleSoft Web service is Microsoft InfoPath form and the secure location is a Microsoft SharePoint 

Server.  

When the InfoPath form is launched, the user is prompted to enter the student identification 

number. The form pulls the name from PeopleSoft using the Get() method exposed through a Web service 

and populates the form. When the change of name is approved by the operator, the InfoPath accesses the 

Update() method to update student’s name through the PeopleSoft Web service. In this section, we will 

discuss how the component, component interface and Web service are built, how security for component, 

components Interface, and web service are used.  
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5.1.2 Configuration 

 

As discussed in Chapter 3 and Chapter 4, configuration is important. In this test case, 

configuration includes creation of required fields, record (table), page, menu, component, and security. 

The first step of the process is to identify the fields to be used by the form which are first name, last name, 

and identification number as well as the record that contains those fields. A component is built to include 

those fields to present as a business unit. In this project, all the needed fields are in one table, 

U_MY_TEST_TBL; therefore a component is built with table, U_MY_TEST_TBL. The newly created 

component is now attached to a menu within PeopleSoft for user to access. The last step to be done done 

before using that menu item is to grant permission to the end user. Permission is granted through the 

PeopleSoft Security Management. Figure 17 shows each item built with Application Designer in 

PeopleSoft followed by list of items. 

 

Fig: 17 Test Case Project Pane 

• Project Name: U_ISH_TEST 

• Field Names: U_FIRST_NAME, U_LAST_NAME, U_ID 

• Record (Table) Name: U_MY_TEST_TBL 
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• Page Name: U_MY_TEST_PAGE 

• Menu Name: U_MY_TEST_MENU 

• Component Name: U_MY_TEST_COMP 

Once fields, record, component, and menu are built, security is applied and tested in PeopleSoft page.  

5.1.3 Building Component Interface 

 

Once the component is thoroughly tested in PeopleSoft, the next step is to build a component 

interface. While creating component interface, this test case uses PeopleSoft delivered and suggested way 

that is by using Application Designer. Following are the generic steps for creating a component interface. 

Step 1: Search and find desired component from the Application Designer menu bar. 

Step 2: Once selected, right click the component and click component interface. By default all tables with 

records, search keys, and methods associated with component are included in the Component Interface. In 

this project, available methods are Create(), Cancel(), get(), Find() and Save(). In more complex 

components, lots of tables and fields are associated and not all of them are included in component 

interface by default. Those records and fields that are not included automatically can be manually added 

to the component interface by dragging from the component pane and dropping it into component 

interface pane. [The only exception to that is the search key and get key. Those key methods cannot be 

manually added as they are tied to the underlying business logic and PeopleCode. If desired, those can be 

added but underlying PeopleCode and business logic needs to be modified.] 

Step 3: Once completed, the component interface is saved with a unique name so that security can be 

applied to it. 

Step 4: Once saved, the next step is to apply PeopleSoft security for the newly created component 

interface so user can access for testing and further work. Security is applied through PeopleSoft Security 

management as described in Chapter 3 and Chapter 4 

Step 5: The final step of creating component interface is to test for its functionality and accuracy. The 

Application Designer has built-in tools for both operations. The component interface can be tested by 

right clicking the component interface and click test component interface. The generated testing cases can 

test every method in the component interface. 

Following is a snapshot of the Application Designer after building the component interface of the 

component, U_MY_TEST_COMP. 
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Fig: 18 Project, Component and Component Interface side by side view 

5.1.4 Creating and Exposing Web Service 

 

Once the component interface is built, a web service can be created with PeopleSoft Integration 

Broker, as explained in chapter 4.3.1 and 4.3.2. After applying permissions to newly created Web service, 

testing is done through a tool called SOAPUI and Visual Studio 2010.  

5.1.5 Testing Web Service  

 

As mentioned in Chapter 2, SOAPUI is a freeware tool for testing web services and XML files. It 

extracts and presents all WSDL definitions, schema definitions, operations, services, end points, WSDL 

contents, and other useful information based on the WSDL input.  



34 

 

 

Fig: 19 SOAPUI WSDL Import 

In the Figure 19, the left side shows all the methods available or exposed to external systems via 

PeopleSoft Web service. The right side pane shows the WSDL definition, operations and other useful 

information. Similarly, figure 20 shows the basic request and response soap message in SOAP UI 

interface. 

 

Fig: 20 Testing Person Search Method 

Another set of testing was done by creating a Web application in Visual Studio 2010. A page is 

built with few fields and uses Consume Web Service tool in Visual Studio to create proxy server. In this 

test case, all five methods: Cancel (), Create (), Find (), Get (), Save () are exposed and successfully 

tested. 
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5.1.6 Implementation on InfoPath Form 

 

Once test of SOAP and Visual Studio page is successful, the InfoPath form designer was used to 

design a simple demo form. InfoPath has simple form utility tool with drag-and-drop features. InfoPath 

was chosen for this project because of its simplicity and its compatibility with SharePoint Workflow 

Foundation. In this test case, update functionality of the Web service is tested. Once the design of the 

form is completed, it needs to be published in SharePoint Document Library as a template so it can be 

accessed by users over the internet via browser or InfoPath client. While uploading InfoPath form in 

SharePoint, form fields that are desired to identify document status and form fields desired to be used in 

workflow process needs to be identified. In this test case, form fields such as submitted_by, approved_by, 

submitted_date, approved_date and few others are identified while uploading the form as template.  

Other than title, banners, button and other elements, there are three sections in the following form: 

 

Fig: 21 InfoPath Form 
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First section: This part of the form is used to get student information from the PeopleSoft Campus 

Solution. Once the student identification number is entered, get() method is invoked to get information 

from database and populates in the form. 

Second section: This is the section use for workflow process. Once the correct name, submitted_by,  

submitted_to and submitted_date is entered and the form is submitted, it is saved in SharePoint Document 

Library and triggers an email notification to approving department along with the location of the 

document in SharePoint document library. At this point, PeopleSoft Web service is not accessed as it is 

still in approval process. 

Third section: This is the section where approval to change name takes place and PeopleSoft web service 

is accessed if the form is approved. After clicking to the email notification URL, the approving unit see 

document as below 

 

 

Fig: 22 After Submitted 

5.1.8 Applying SharePoint Workflow Foundation 

 

Once the Submit button is clicked on the form for the first time, workflow triggers in SharePoint 

Workflow Foundation. Workflow in SharePoint is conditional rule that explains what needs to happen 
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when the form is submitted. Conditions are basic if-else statements with user defined actions. In this test, 

once the form is submitted for the first time, it is saved in SharePoint document library in XML format 

and generates a pre-formatted email to the recipient along with the absolute URL of the document.  In this 

case, the person responsible for approving this change request form is the recipient. At this point of the 

process, rules are set so that no communication between the Web service client and the server takes place. 

Student’s data is not updated in PeopleSoft until the form is approved and submitted. What follows are 

the workflow rules for the initial submit process. 

 

Fig: 23 Workflow Foundation in SharePoint for Form Submission 

Here, when the form is submitted, SharePoint checks if the Review status is in submitted status. If 

it it, then a simple email is triggered. In this example, specific email address is used however in reality; 

this email address could be identified based on form values and route. The following diagram shows how 

the Document Library in SharePoint looks.  

 

Fig: 24 SharePoint Document Library for Form Submit 
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Since the form is only in submitted status, fields such as Approved_by, Approved_date and 

workflow status are blank.  

Similarly, the workflow rule for forms that are in approved status is created as show in the figure 

25. If the form is finally approved and submitted, then the SharePoint checks if the form’s status is 

approved. If this holds true, then another email is triggered to the email address who originally requested 

to make the name change and PeopleSoft Web service is called and update method is executed to update 

data in PeopleSoft Campus Solutions.  

 

Fig: 25 Workflow Foundation in SharePoint for Form Approval 

Once Form is Approved and submitted, 3 events triggered 

Event 1: Save the Completed Form to SharePoint Document Library as permanent document. All fields 

related to approval process are filled out such as Approved BY, Date, Status and so on. Following figure 

highlights some of those.  

 

Fig: 26 SharePoint Document Library view after Form Approved 
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Event 2: Email notification is triggered to person who initially submitted notifying the approval status. 

 

Fig: 27 Email Triggered after Form is approved 

Event 3: Appropriate action is taken in PeopleSoft based on the method used from Web service. In this 

test case, update method is used to correct name. Following figure shows the change in PeopleSoft. 

 

Fig: 28 PeopleSoft Data Change View after Form is approved 
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5.2 Case II – Retire or Rehire Employee in PeopleSoft Human Resource Component 

5.2.1 Problem Description 

 

In this test case, Retire or Rehire request is processed. A request is made to the human resource 

staff by a business manager to take action for an employee. Once a change request form is submitted, the 

form is routed to the supervisor or department head of that employee for approval via email triggered by 

predefined workflow in SharePoint. A copy of the original form is stored in a secure location. If the form 

is approved, the employee’s status is changed in PeopleSoft Campus Solution by invoking update method 

using the Web service. A copy of the approved form is stored in SharePoint Document Library. If it is 

denied, the denied form is still stored in document library but employee data is not updated in PeopleSoft 

Campus Solution.  

In this test case, PeopleSoft delivered component interface, CI_JOB_DATA is chosen to build 

Web service. The component chosen for this test incorporates job related employee information in a 

single component, JOB_DATA.  

5.2.2 Configuration 

 

As discussed in chapter 3 and chapter 4, configuration includes access privilege for the 

component interface and underlying component for the end user. Since the component and component 

interface being used in this test case is delivered by PeopleSoft Campus Solution, no further action is 

required other than testing available methods for the component interface. Component Interface, 

CI_JOB_DATA offers four methods namely: Cancel, Find, Get and Save. This component interface does 

not provide create method which prevents external application from adding new employee in the system. 

PeopleSoft has delivered another component called CI_JOB_DADA_EMPL for creating or adding new 

employee in the system which is not used in this project.  
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Fig: 29 Component and Component Interface for Job Data 

In Figure 29, left pane shows the component along with all the records associated with that. The 

right pane shows the component interface along with keys, properties and methods available. Closer look 

at the right pane indicates that the component interface has a collection of records associated with the 

underlying component.  
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5.2.4 Building and Exposing Web Service 

 

Once the component interface is thoroughly tested in PeopleSoft Application Designer, the next 

step is to build a Web service as explained in chapter 4.3.1 and 4.3.2. After applying access privilege to 

newly created Web service, test is performed though a tool called SOAPUI. Section 5.2.5 explains the 

steps taken to test the Web Service. 

5.2.5 Testing Web Service 

 

As we discussed and tested in chapter 5, case I, first test is done using SOAPUI. In the figure 30, 

the left side shows all the methods available or exposed to the external systems via PeopleSoft Web 

service for Job data component. The right side pane shows the WSDL definition, WSDL contents, 

operations and other useful information. 

 

Fig: 30 SOAP WSDL Import 

In left pane, there are two types of update methods exposed by the Web service; update and 

updateData. UpdateData method is used to modify existing data which mean that the historic data is not 

maintained whereas update method preserves historic data by not modifying the existing data instead it 

inserts a new row of data with required change. In this project, update method is tested. 

The Figure 31 shows snapshot of input parameters and output data after executing get() in 

SOAPUI. The left pane is the input parameters where employee identification number and record number 

are use. The right pane shows the result with lots of information. In this test case we are interested in 



43 

 

employee status and action taken for the employee. In this example, employee number 0045 is still an 

active employee with Rehire as status.  

 

 

Fig: 31 Get() method of Web Service and Result in SOAPUI 

The Figure 32 shows the PeopleSoft User Interface view for the status of the employee. 

 

Fig: 32 Status of employee: Rehired and Active since 02/26/2012 

Figure 35 shows the SOAPUI test on update method exposed by JOB _DAT Web service. In the 

left pane, input parameters are set. All elements not requiring update must be deleted in order for update 

to execute. Unused elements carry empty strings that cause PeopleCode to generate errors based on the 

business logic for that component. Value of 1 highlighted on the right side of the figure 35 indicates that 

the update was successful. In this example, we are attempting to retire an employee, 0045 effective on 

04/15/2012. 
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Fig: 33 Testing of Update method in SOAPUI 

In figure 34, immediate reflection of the change is shown via PeopleSoft Campus Solution User 

Interface page. Noticeably, new row is added on top of the existing one with the most recent date 

(04/15/2012) with the status of employment “Inactive” and the action taken is “Retired”. This update 

method preserves the historic data by not modifying the existing data. In other word, update works as 

insert where data is inserted into the table(s). The only difference is that insert needs all the required fields 

as parameter whereas update needs only key values and fields that need update. As we can see in figure 

34, all data are still inserted using Update method which are retrieved in runtime and stored in memory 

for processing. Each row can be viewed by using the arrow key on the top right corner of the page. 

 

Fig: 34 PeopleSoft User Interface of employment data after update method is executed 

If the same update was done using UpdateData method exposed by Web service, there would 

have been only one record for this employee and we would have lost historic data for that employee; such 

as hired date, hired reason and other relevant information. UpdateData method is used rarely in business 

unit and very few users are granted privilege to do so.  
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5.2.6 Implementation  

 

Once Web service is thoroughly tested in SOAPUI, implementation in the InfoPath form is one of 

biggest challenge for this test case. This is because of the complexity of the Web Service WSDL file, 

schema and definition provided by PeopleSoft. Testing of the same Web service is successfully done in 

SOAPUI however implementing the same functionality is hard in InfoPath for the following reasons. 

• PeopleSoft Web service has combinations of simple and complex object types. This means that a 

complex object has multiple simple objects.  

• As discussed in section 5.2.5, while executing update method, elements that do not require updating 

must be deleted. InfoPath does not allow developer to strip elements on the Form so update cannot be 

done 

• When using web service in InfoPath, it can execute get data method from the PeopleSoft Web service 

and display data from the complex object however it could not expand the complex object where 

developer can attach data value within the simple object of that complex object. For example, to 

terminate employee, following information is required as input parameter: 

• Employee number (KEYPROP_EMPLID),  

• Record number (KEYPROP_EMPL_RCD),  

• Date (KEYPROP_EFFDT), 

• Sequence (KEYPROP_EFFSEQ) 

• Action  (PROP_ACTION) 

The figure 5.2.4 shows the structure of the soap request; employee number and record are simple 

object type whereas date, sequence and action are simple type within a complex object type COLL_JOB. 

When creating InfoPath form, developer can see only complex object type, COLL_JOB which is 

not sufficient to pass required simple object type as update parameters.  

5.2.7 Alternative Proposed Solution 

 

After extensive study, couple solutions are discovered and proposed as a workaround which will 

be discussed in this chapter but implementation is set for future work. Both solutions requires extensive 

programming knowledge and resources to implement in SharePoint Workflow Foundation. The first 

solution proposed is to write custom code within InfoPath form’s submit method to update employee 

data. Another is to create standard .net Web service methods (Get, Find, Create, Update, Updatedata). 

Each method should have the parameters that allow the input/output data. Then in the method's logic, 
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instantiate the PeopleSoft's Web service to assign or get the values to or from the PeopleSoft Web 

service's properties. InfoPath form then can reference .NET Web service that consumes the underline 

PeopleSoft Web service. Since the objective of this project is to come up with the solution to minimize 

programming resource, maximize version compatible and minimize maintenance, neither of the solutions 

are adapted in this project. However; to show the possibility, simple test is done using .NET environment 

to consume PeopleSoft Web service methods without tying it to SharePoint Workflow Foundation. 
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Chapter 6 Conclusion and Future Work 

In this project work, component and Component Interface are studied and generated Web service 

based on selected component Interface and exposed to external application. We studies the techniques of 

integrating PeopleSoft Campus Solution product with non-PeopleSoft application using emerging 

technology called Web service.   

Specifically, we demonstrated the use of Component Interface Based Web Service in InfoPath 

form to be integrated with SharePoint Document Library and Workflow Foundation. The idea being 

simple to use yet robust technique to expose PeopleSoft business logic without the need of extensive 

programming and modification of delivered code is tested and achieved in this project work. 

In this project work, commonly used technologies such as Web service, SOAP, SOAPUI, Visual 

Studio, InfoPath Designer, SharePoint Server, SharePoint Designer, SharePoint Workflow Foundation, 

and SharePoint Document Library to plan, design, create, test and implement; to integrate PeopleSoft 

Campus Solution to external application. 

This same technique can be utilized in several different areas such as mobile application for 

student/faculty self-service, integrate external Online Application for Admissions to PeopleSoft, single 

sign on in SharePoint sites, or even expose relevant PeopleSoft components/menus/pages/function to 

SharePoint without compromising security and business logic.    
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