
University of New Orleans University of New Orleans

ScholarWorks@UNO ScholarWorks@UNO

University of New Orleans Theses and
Dissertations Dissertations and Theses

Summer 8-2-2012

Integrating Oracle PeopleSoft Campus Solution to External Integrating Oracle PeopleSoft Campus Solution to External

Applications Applications

Ishwor Aryal
University of New Orleans, iaryal@uno.edu

Follow this and additional works at: https://scholarworks.uno.edu/td

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Aryal, Ishwor, "Integrating Oracle PeopleSoft Campus Solution to External Applications" (2012). University
of New Orleans Theses and Dissertations. 1508.
https://scholarworks.uno.edu/td/1508

This Thesis-Restricted is protected by copyright and/or related rights. It has been brought to you by
ScholarWorks@UNO with permission from the rights-holder(s). You are free to use this Thesis-Restricted in any
way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you
need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative
Commons license in the record and/or on the work itself.

This Thesis-Restricted has been accepted for inclusion in University of New Orleans Theses and Dissertations by
an authorized administrator of ScholarWorks@UNO. For more information, please contact scholarworks@uno.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of New Orleans

https://core.ac.uk/display/216840433?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.uno.edu/
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/etds
https://scholarworks.uno.edu/td?utm_source=scholarworks.uno.edu%2Ftd%2F1508&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.uno.edu%2Ftd%2F1508&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uno.edu/td/1508?utm_source=scholarworks.uno.edu%2Ftd%2F1508&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uno.edu

Integrating Oracle PeopleSoft Campus Solution to External Applications

A Thesis

Submitted to Graduate Faculty of the

University of New Orleans

in partial fulfillment of the

requirements for the degree of

Master of Science

In

Computer Science

By

Ishwor Aryal

B.S., Colorado Technical University, Denver, CO 2006

August, 2012

ii

ACKNOWLEDGEMENT

I would like to thank my Professor Dr. Shengru Tu for giving me opportunity to work on

this project and his excellent guidance and feedback without which this thesis would not have

been possible. I would like to extend thanks to Dr. Golden G. Richard, III and Dr. N Adlai A

Depano for being part of my thesis defense committee.

I would also like to thank University Computing and Communication team at UNO for

providing infrastructure to work on and all the support they have provided.

iii

Table of Contents

List of Figures ... v

Abstract ... vii

Chapter 1 Introduction .. 1

Chapter 2 Background .. 3

2.1 Oracle PeopleSoft Campus Solution ... 3

2.1.1 Application Designer .. 3

2.1.2 Security in PeopleSoft .. 3

2.1.3 Application Messaging and Web Service ... 5

2.2 Web Services Description Language (WSDL) ... 6

2.3 SOAPUI .. 7

2.4 SharePoint and Document Library .. 7

2.5 Microsoft InfoPath .. 7

2.6 Visual Studio ... 8

Chapter 3 Integration Design .. 9

3.1 Three Types of Integration .. 9

3.1.1 Application Messaging ... 9

3.1.2. Staged or Flat File.. 10

3.1.3. Web Service ... 11

3.2 Integration Broker ... 12

3.2.1 Integration Gateway ... 13

3.3 Inbound and Outbound Request Flow ... 14

3.4 Web Service Design based on Component Interface .. 16

3.5 Summary ... 18

Chapter 4 Implementation... 20

4.1 Component Interface Construction ... 20

4.2 Configuration for Building Web Service .. 23

4.3 Building and Providing Web Services .. 24

4.3.1 Enabling Required Service Operation .. 24

iv

4.3.1 Providing Web Service ... 26

Chapter 5 Case Study .. 30

5.1 Case I – Name Change Request .. 30

5.1.1 Problem Description ... 30

5.1.2 Configuration .. 31

5.1.3 Building Component Interface ... 32

5.1.4 Creating and Exposing Web Service .. 33

5.1.5 Testing Web Service ... 33

5.1.6 Implementation on InfoPath Form ... 35

5.1.8 Applying SharePoint Workflow Foundation .. 36

5.2 Case II – Retire or Rehire Employee in PeopleSoft Human Resource Component 40

5.2.1 Problem Description ... 40

5.2.2 Configuration .. 40

5.2.4 Building and Exposing Web Service .. 42

5.2.5 Testing Web Service ... 42

5.2.6 Implementation ... 45

5.2.7 Alternative Proposed Solution .. 45

Chapter 6 Conclusion and Future Work ... 47

References ... 48

VITA ... 50

v

List of Figures

Fig: 1 Peoplesoft Security Foundation .. 4

Fig: 2 Peoplesoft Security – User, Roles And Permission Lists ... 5

Fig: 3 High Level Messaging Architecture ... 10

Fig: 4 Message Flow In Two Applications ... 12

Fig: 5 Integration Gateway Architecture .. 14

Fig: 6 Flow Of Inbound Request .. 15

Fig: 7 Flow Of Outbound Request .. 15

Fig: 8 Ps Component Interface Architecture .. 17

Fig: 9 Application Designer: Project, Component And Component Interface View 21

Fig: 10 Ci Based Services Step 1 .. 25

Fig: 11 Ci Based Services Step 2 .. 25

Fig: 12 Web Service Wizard ... 26

Fig: 13 Web Service Wizard ... 27

Fig: 14 Web Service Wizard ... 27

Fig: 15 Web Service Wizard ... 28

Fig: 16 Web Service Wizard Results .. 28

Fig: 17 Test Case Project Pane ... 31

Fig: 18 Project, Component And Component Interface Side By Side View 33

Fig: 19 Soapui Wsdl Import .. 34

Fig: 20 Testing Person Search Method ... 34

Fig: 21 Infopath Form ... 35

Fig: 22 After Submitted .. 36

Fig: 23 Workflow Foundation In Sharepoint For Form Submission .. 37

Fig: 24 Sharepoint Document Library For Form Submit ... 37

Fig: 25 Workflow Foundation In Sharepoint For Form Approval ... 38

Fig: 26 Sharepoint Document Library View After Form Approved .. 38

Fig: 27 Email Triggered After Form Is Approved .. 39

Fig: 28 Peoplesoft Data Change View After Form Is Approved .. 39

Fig: 29 Component And Component Interface For Job Data ... 41

Fig: 30 Soap Wsdl Import ... 42

Fig: 31 Get() Method Of Web Service And Result In Soapui .. 43

Fig: 32 Status Of Employee: Rehired And Active Since 02/26/2012 .. 43

Fig: 33 Testing Of Update Method In Soapui .. 44

vi

Fig: 34 Peoplesoft User Interface Of Employment Data After Update Method Is Executed 44

vii

Abstract

An integration solution must sustain multiple PeopleSoft upgrades, which is necessary to

preserve investment in system integrations. Since the underlying structures and connection

technologies of PeopleSoft have been and can be migrated from version to version in order to

enhance features and performance, it is critical for any external component of integration to be

built based on publicly visible interfaces of the PeopleSoft component. We have developed a

standard-based solution to integrate “PeopleSoft Campus Solution” into “Microsoft SharePoint”

using Web services generated by PeopleSoft’s Pure Internet Architecture. We have illustrated

such kind of integration in two examples that emulate some of the imminent problems in the

University’s current information systems between the PeopleSoft Campus and SharePoint

Workflow. The methodology used in this is applicable to integrations of general COTS software

systems into modern enterprise information systems.

PeopleSoft Campus Solution, COTS Software, Microsoft SharePoint, InfoPath, SOAPUI,

Component Interface based Web Service, Integration Broker

1

Chapter 1 Introduction

Since the diversified business need of large companies and organizations always exceed any

single commercial-off-the-shelf (COTS) software product, distributed systems consisting of multiple

COTS products mixed with customized software are the common structures of enterprise information

systems. Mounting experience has shown that the effective use of COTS software products has long been

challenging since its inception decades ago (Dean, 2002). From the COTS-based Software System

initiative advocated by Carnegie Mellon Software Engineering Institute (SEI) in 2001 to the theory and

practice of “System of Systems”, significant efforts have been invested in research on COTS software

integration (Fisher, 2007).

In principle, the Web service technology should be inherently suitable to system integration. In

reality, proprietary techniques in COTS products often complicate integration. For example, Oracle

PeopleSoft Campus Solution is one of the fastest growing products for Higher Education. In over two

decades, PeopleSoft was difficult to connect to third party applications (Lynn, 2001). After Oracle

acquired the product in 2004, a number of enhancements have been done to make the product able to

communicate with external applications with various techniques (Lynn, 2001). However, it is still a

challenge by experiments for developers and end users to make integrations. In the recent several versions

of the PeopleSoft products, PeopleSoft has been promoting the Web service technology for interacting

with external applications.

In this project, we have developed a systematic, standard-based solution to integrate “PeopleSoft

Campus” into “Microsoft SharePoint Workflow Foundation” using Web services generated by

PeopleSoft’s Pure Internet Architecture (PIA). The primary objectives of this project are to identify the

available techniques for integration with Web services and minimize customization in integration. A

critical criterion of success is to achieve version neutral. That is, an integration solution must sustain

multiple PeopleSoft upgrades. This is necessary in order to preserve investment in system integrations.

PeopleSoft upgrades their products periodically to enhance features and performance. PeopleSoft is

obliged to facilitate migration of customers’ data. However, PeopleSoft does not support the

transformation of clients’ customization code. Thus, massive code customization in PeopleSoft

deployment will hinder future PeopleSoft upgrades (Tu, 2002). The underlying architecture and

connection technologies of PeopleSoft have been migrated from the traditional client/server paradigm to a

multi-tier architecture then to a service-oriented architecture. For interaction with a PeopleSoft

component, it is critical for any external component to be built based on the publicly visible interfaces of

2

the PeopleSoft component. Such kind of visible interfaces could be available in PeopleSoft API or could

be created using PeopleSoft PIA. If a change happens in the PeopleSoft API or the subject PeopleSoft

component, PeopleSoft will be obligated to document the change which can assure manageability of the

related integration parts.

The methodology that brought up the above solution to PeopleSoft-SharePoint integration is

applicable to integrations of general COTS software systems into modern enterprise information systems.

At the same time, the experiments carried out in this project have been targeted at a number of imminent

problems in the University’s current information systems between the PeopleSoft Campus and SharePoint

Work Flow. An immediate goal of this project is to provide practical, affordable, manageable solutions to

University’s information systems. The ultimate goal is to advocate the integration approach based on

Web-services in the System of Systems research (Fisher, 2007; Luzeaux, 2011).

The remainder of this thesis is assumes the following organization. Chapter 2 provides the

background of the project with some technologies and specific components within PeopleSoft Campus

Solution. Chapter 3 provides integration techniques and design. Chapter 4 provides implementation of

chosen technique in chapter 3. Chapter 5 provides detail implementation case study. Two tests were done

during the project: one with PeopleSoft Delivered Component for Human Resource Job related

component and the other test case with custom built component Interface. The final chapter provides

summary of achievements from the project along with conclusion.

3

Chapter 2 Background

Some of the technologies and products used for this thesis project are described in this chapter

2.1 Oracle PeopleSoft Campus Solution

Oracle PeopleSoft Campus Solution (formally known as PeopleSoft Campus Solution) is a

comprehensive solution for student administration for Higher Education institutions. PeopleSoft was

founded in 1987 with human Resource product as their first launched product and extended their service

to variety of areas such as financial Institutions, healthcare Managements, education and public sectors

organizations. The core components of this product are web server, application server, database server.

The back end is oracle database and the front end is a browser. Within the application, core building

blocks are fields, records, pages, menus, components, component interface, Application Engine (most of

them are programmed in COBOL) (PeopleBook, 2012).

2.1.1 Application Designer

This is the core development tool to develop and customize PeopleSoft Applications for the

PeopleSoft Pure Internet Architecture, maintain data, and perform updates and upgrades PeopleSoft

Applications. It enables developers and system analyst to build a variety of definitions including Fields,

Records (tables), Pages, Components, Menus, Component Interface, Testing, Program Debugging, Data

Consistency Checking, Program Validation and write programs and modules in PeopleCode and SQL.

This tool is used as developmental and testing in this project (PeopleBook, 2012).

2.1.2 Security in PeopleSoft

Security is especially critical for core business applications, such as PeopleSoft applications.

Typically, what is needed is a need to restrict the usage, viewing and customization of the data and

applications. PeopleSoft provides security features, including components and People Tools applications,

to ensure that the sensitive application data do not fall into the wrong hands. As the PeopleSoft Internet

Architecture (PIA) is implemented, a robust and scalable means is needed by which the users can be grant

authorization efficiently.

Security can be applied to all users, including employees, managers, customers, contractors, and

suppliers. Users are grouped according to roles given to them with different degrees of access. For

instance, there might be an Employee role, a Manager role, and an Administrator role. Users who belong

4

to a particular role require a specific set of permissions, or authorizations, within the system, so that they

can complete their daily tasks.

The objects and definitions in the PeopleSoft development environment must also be secured

from viewing. Restriction can be implemented to block the end users from accessing particular pages and

components, also to restrict the definitions that the site’s developers can access using PeopleSoft

Application Designer. A definition refers to any of the definitions that are created within PeopleSoft

Application Designer, such as records, pages, or components. Each object definition may have individual

security needs (PeopleBook, 2012).

Accessing a PeopleSoft application requires first passing through several layers of network,

Operating System, and Database security. These capabilities are defined by the technical environment and

need to be configured outside of PeopleSoft. The following figure demonstrate the same.

Fig: 1 PeopleSoft Security Foundation

The picture below exemplifies the relationship between Users, Roles and Permission Lists.

Permission lists are assigned to roles, which are then assigned to user profiles. A role may contain

numerous permissions and a user profile may have numerous roles assigned to it. Because permission

lists are applied to users through roles, a user inherits all the permissions assigned to each role to which

the user belongs. The user's access is determined by the combination of all of the roles.

5

Fig: 2 PeopleSoft Security – User, Roles and Permission Lists

2.1.3 Application Messaging and Web Service

Application Messaging, based on the “publish-and-subscribe” model, allows PeopleSoft

applications to integrate with each other and with third party applications. This model provides

integration that is close to real-time, which means that the publisher need not be connected to the

subscriber when publishing the data. On one end, a message is created and published and on the other

end, the message is delivered to any number of subscribers.

Application messages are the fundamental building blocks comprising the application messaging

system. Messages are self-describing entities formatted in XML. Each message contains data to be

distributed among systems at runtime. To enable the creation and delivery of application messages,

following object types in Application Designer are defined:

Message definitions: Stores the information about how a single application message is constructed. Each

message definition has a multi-level structure, similar to components, that defines the data to be inserted

into the application message at runtime.

Message channels: Channels correspond to groups of message definitions. They help order messages,

enhance scalability, and provide a simple way to define processing characteristics of many similar

messages as a single group. Channels include message routings, which define the mappings between

message nodes on the messaging network.

Message Nodes: The physical systems (application servers or databases) connected to the messaging

network.

6

PeopleSoft supports providing WSDL documents to the PeopleSoft WSDL and Universal

Description, Discovery, and Integration (UDDI) repositories. The system enables consuming WSDL

documents from other PeopleSoft and third-party systems, and automatically creates integration metadata

based on the consumed WSDL documents for processing integrations. Other than basic building blocks,

PeopleSoft WSDL document includes: WS-Security elements, UsernameToken and SAMLToken,

PartnerLinkType elements (for BPEL Application) (PeopleTool 8.51, 2011).

A SOAP Message is an ordinary XML document that consists of three sections:

A SOAP Envelope – The top element of the XML document representing the message and defines the

content of the message. It defines the framework of what is in a message, how to process it, who should

deal with it and whether it is optional or mandatory.

A SOAP Header – This section is optional. It contains header information and attributes that can be set

to encode and further identify the type of processing and additional features of the message.

A SOAP Body – This section contains the call and response information intended for the recipient of the

message. This is the message “payload”. SOAP is not a requirement for exposing a web service, but

should be used when appropriate when implementing a web service. Many web services today expose

functionality over XML/HTTP without using SOAP.

2.2 Web Services Description Language (WSDL)

The shape and contents of the SOAP XML will not be the same for each transaction. One

transaction might require one input parameter, while another might require many. The structure and

contents of the request XML must be communicated to other parties who want to invoke a given web

service. Likewise, the structure and contents of the response XML that is sent back with the results of the

transaction need to be communicated as well. WSDL is an XML-based description of how to connect to a

web service. It references a schema which describes the inputs and outputs of a web service and the URL

to post requests to in order to invoke the web service (Benz, 2003).

The default URL format is as follows:

http://localhost/PSIGW.war/PeopleSoftServiceListeningConnector/PT_WORKLIST.1.wsdl

7

2.3 SOAPUI

SOAPUI is a free and open source cross-platform Functional Testing solution. With an easy-to-

use graphical interface, and enterprise-class features, SOAPUI allows developer/testers to easily and

rapidly create and execute automated functional, regression, compliance, and load tests. Most of the

testing of the WSDL file generated by PeopleSoft Integration Broker is tested with this tool (SmartBear

Software, 2011).

2.4 SharePoint and Document Library

SharePoint is a multipurpose tool to cater to web requirements common for most industries.

Unlike a typical web application or content management system, SharePoint platform is designed to

manage web server configuration itself. This allows for the bulk management, scaling, and provisioning

of servers often required by large organizations or cloud hosting providers. A Library is a list where each

item in the list refers to a file that is stored in SharePoint that contain files. Files created with library can

be view in Browser as well and InfoPath application. Microsoft SharePoint comes with some pre-defined

list and library definitions. These include: Announcement Lists, Blogs, Contacts, Discussion Boards,

Document Libraries, External Content Lists, Pages, Surveys, and Tasks. With Microsoft Office

SharePoint, workflows can be built that add application logic to the site/application/document without

having to write custom code. Using the Workflow Designer, rules can be created that associate conditions

and actions with items in Microsoft SharePoint lists and libraries, so that changes to items in lists or

libraries trigger actions in the workflow. In this project, document library and workflow features are used

as a Web service consumer and one of the data repositories respectively (Bustamante, May 2008).

2.5 Microsoft InfoPath

Microsoft Office InfoPath is a software application for designing, distributing, filling and

submitting electronic forms containing structured data. It supports SOAP web service, REST web service,

SharePoint Library or List, Database connection and XML documents. In this project, SOAP Web service

is consumed by InfoPath form and utilizes workflow in SharePoint to route and save document in

SharePoint Library as well as consume PeopleSoft exposed Web service method to maneuver data in

PeopleSoft database (Bustamante, May 2008).

8

2.6 Visual Studio

It is an integrated development tool to develop applications in wide variety of programming

languages and techniques. In this project, this tool is used to test some basic functionality of PeopleSoft

Web service Methods exposed to external Application (Sempf, 2004).

9

Chapter 3 Integration Design

There are two types of integrations available in PeopleSoft; Real Time Integration and Non-real

time Integration. Most of the integration done in PeopleSoft - to - PeopleSoft is done in real time. It is

called messaging which is an xml based data exchange. All other integration is done in non-real time

where data are dumped in a table or a flat file from one system and later picked up by other. This involves

lots of resources writing the data dump program and processing program. In recent years, Web service

(both WSDL and REST) was introduced in PeopleSoft to communicate with external application.

Because of technical complexity, product limitations, and lack of proper documentation, this technique

has been mainly used by Software consulting companies but has rarely been successfully used by

PeopleSoft user community. In this chapter, PeopleSoft’ PeopleSoft’s integration types, its limitations and

challenges as well as work around are discussed in detail. In this chapter we further study Component-

Interface based Web Service.

3.1 Three Types of Integration

There are three major methods of integration available in PeopleSoft Campus Solution:

• Application Messaging

• Staged or Flat File

• Web Service

3.1.1 Application Messaging

“Application Messaging” is an XML based solution. The standard procedure is to build nodes,

build messages and then finally create channel for those messages. Application messaging guarantees that

messages are delivered in the order published and that they are single-threaded on the subscriber.

Therefore, it is the publisher’s responsibility to publish messages in the proper order. Application

messaging supports the integration of PeopleSoft applications and third party systems by publishing

business events as XML messages. To publish data, third party applications can post XML messages

directly to PeopleSoft’s Application Messaging Gateway servlet. To subscribe to data, third party

applications can accept and process XML messages posted by PeopleSoft by adding a custom Java

subscription handler to the Application Messaging Gateway servlet. To determine whether the publish

was successful, standard HTTP Post return codes and the PeopleSoft Reply Document return code can be

checked. If the subscribing PeopleSoft system is not available at the time the third party system attempts

10

the publish, the message will not be delivered. The third party system must queue the messages and

“retry” until the subscribing system is back online (PeopleTool 8.51, 2011).

This solution works but has lots of overhead to achieve the goal. This process needs lots of XML

parsing and generation of PeopleSoft proprietary schemas. This method is useful when organization share

data between different information systems internally, and with partners’ external systems. Application

messaging provides benefits including synchronization of data between systems and System-to-system

workflow. There are scenarios in which application messaging is advantageous such as Application-to-

application integration and Cross-release integration

Fig: 3 High Level Messaging Architecture

3.1.2. Staged or Flat File

This is a non-standard way of integration. This is not real time integration. This process skips

existing implementation of business rules but depends on PeopleSoft internal data schema. The data

elements that are needed for the integration is generated with SQR and SQC (PeopleCode) and/or SQL

and stored in flat file or database. Later same database or file is used to update data in another system

using PeopleCode or other application programming languages. The critical problem with this technique

is the dependency to PeopleSoft’s internal data schema. From version to version, the PeopleSoft products

can reasonably change their internal schema. When this kind of change happens, the investment of

integration suffers the danger of dysfunction. Sometimes this process is useful if the third party vendor

11

only provide flat file or CSV file or other sorts of database structures. This technique has been superseded

by a later technique called file parser.

3.1.3. Web Service

The PeopleSoft defines that a Web service is simply an application component that is accessed

programmatically over the internet using XML over HTTP. Any discrete component of application

functionality can be exposed as a Web service. Examples include Employee names, Job data, and

customer profile. Any of these application components can be published and accessed over the internet as

web services. Web services consist primarily of the following standard technologies:

• XML

• SOAP

• WSDL

XML is the language in which all the data structures, SOAP and WSDL are written. They are the

most basic requirements for a Web service. Simple Object Access Protocol (SOAP) specifies the format

and schema of messages. WSDL specifies the operations of We services. SOAP and WSDL make

cataloging, discovering and implementing Web service easier.

Web services are loosely coupled as they have well defined, published interfaces in WSDL and

can be easily accessed from remote systems over the internet by (HTTP). They require coordination based

on standards. The underlying technology behind the Web service can be changed and replaced without

impacting the standard-binding components for integration. This loose coupling nature of Web services

decouples the PeopleSoft internal data schema and external applications, which make possible for

software integration to sustain PeopleSoft upgrade progress, to preserve the investments of integration,

and making it easier to integrate applications (Benz, 2003).

All PeopleSoft components can invoke or can be invoked as Web services using the Integration

Broker. For example, following diagram summarizes the message flow of PeopleSoft Supply Chain

Management (SCM) submitting a Customer Profile Web service request in PeopleSoft Customer

Relationship Management (CRM).

12

Fig: 4 Message Flow in two Applications

In figure 4, PeopleSoft Customer Relationship Management submits a request to create a “new

order” using Web service, the service operation defined in Integration Broker is executed. It transforms

and reroutes the incoming messages to PeopleSoft Supply Chain Management. Internal application in

Supply Chain Management then subscribes the messages; invoke the “new order” component of

PeopleSoft Customer Relationship Management. Outbound would be similar except Supply Chain

Management System executes the method and return response to Integration Broker that sends response

back to Customer Relationship Management.

Most discussions around Web services are based on synchronous style integration. But sometimes

the calling program does not want to incur the overhead of synchronous calls to remote systems Using

PeopleSoft Application Messaging; web services can be invoked asynchronously.

3.2 Integration Broker

PeopleSoft Integration Broker facilitates integrations with other PeopleSoft and third-party

systems. It features a services-oriented architecture that enables developers to expose PeopleSoft business

logic to calling components. The PeopleSoft Integration Broker is a framework that supports synchronous

and asynchronous messaging in a variety of communication protocols. It manages message structures,

message contents, and transport disparities. The Integration Broker also has native SOAP support for

13

sending and receiving messages. Using the Integration Broker technologies, PeopleSoft applications can

be both Web service clients and a Web service server. Web services in PeopleTools are built from the

bottom-up approach starting with the message that needs to be passed to the caller of the Web service.

The same messages are used while defining new service operations which are grouped into Services. The

service operations are then provided with PeopleCode Handlers to take the inbound request messages or

populate outbound response messages (PeopleTool 8.49, 2011).

The two major components of PeopleSoft Integration Broker are the integration gateway and the

integration engine. The integration gateway is a platform that manages the receipt and delivery of

messages passed among systems through PeopleSoft Integration Broker. The integration engine is an

application server process that routes messages to and from PeopleSoft applications as well as transforms

the structure of messages and translates data according to specifications defined.

3.2.1 Integration Gateway

The structure of the Integration Gateway is shown in Figure 3.2. Its three components are

explained below.

Connectors: Listening and Target connectors to receive and deliver messages. Listening connectors

receive requests from integration participants, send them to the gateway manager, and deliver responses

back to the integration participants. The target connectors generate requests, send them to integration

participants, wait for responses from participants, and deliver the responses back to the gateway manager.

The integration gateway invokes target connectors dynamically through the gateway manager. The target

connectors adhere to a standard structure by implementing the target connector interface provided by the

integration gateway. By implementing this interface, target connectors can take advantage of all gateway

manager services.

Gateway Manager: The gateway manager processes all messages flowing through integration gateway

and maintains links to all integration components including connectors and gateway service.

Gateway Services: These are the services that gateway managers for messages parsing. It uses two

message objects: IBRequest and IBresponse to enter and exit Integration Broker. It also uses connector

management services for message routing functions that has varying level of complexity. Web service

security, error and service logging, error handling, and message validation are major functions of

Gateway service that are ultimately used by gateway managers

14

The primary function of Integration Gateway is to manage the receipt and delivery of messages.

Following are basic features of Integration Gateway:

• Listening and target connectors that transport messages between integration participants and

integration engine

• Logging information regarding message receipt delivery and errors

• Checking format compatibility of the message

Fig: 5 Integration Gateway Architecture

In integration gateway, listening connectors receive messages and deliver to the gateway manager

which determines which target connector to use to deliver the message to their intended recipient. The

target connector then delivers the messages to the intended recipient.

3.3 Inbound and Outbound Request Flow

The purpose of the components explained earlier in this chapter is to support interactions in an

integrated system, which is realized by inbound and outbound messaging. Figure 5 and 7 demonstrate the

inbound and outbound requests within PeopleSoft Integration Broker. A request is sent into the gateway

by an external application. Then the Integration Gateway passes it on to the application server. The

15

application server processes the request, and returns a response which is sent back to the external system

by the Integration Gateway.

Fig: 6 Flow of Inbound Request

Fig: 7 Flow of Outbound Request

This process consists of the following steps:

Step 1: An external application sends a request to Integration Broker

Step 2: The request is received by the listening connector which writes the request to the gateway log file

exactly the same as it was received on wire; normalizes the service operation for the use by application

server, and populates an internal request class from the received request.

Step 3: The request is then processed by the PeopleSoft target connector which serializes the request

string and sends to application server via a Java Online Transaction Connection (JOLT). All

communications between the gateway and the application server is done via Multipurpose Internet Mail

Extensions (MIME) messages. This MIME message is written in gateway log before sending to

application server.

Step 4: Once the application server receives the MIME request, it parses the message into a request object

and pre-processes it. Pre-processing is a multistep process to authenticate service operations, determining

the direction of the operation (inbound/outbound), identifying connectors and its properties, and

16

extracting the information about the node and determining runtime handlers. Once these steps are done,

further processing carried out based on the available data by PeopleCode behind the scene.

For the outbound request, once the output is ready, the application server converts message to the

MIME standard format. The request must be sent to the PeopleSoft listening connector on the gateway

using the value of the Gateway URL defined for the given gateway. If this URL is not valid or does not

point to the PeopleSoft listening connector, the application server will be unable to send the request.

Step 5: Once the Application Server processes the request, regardless of the result, it sends response back

to the gateway. If the connection between gateway and application server is synchronous, it will get some

response only after the completion of the operation whereas if the connection is asynchronous, then

integration gateway will receive response as soon as the delivery is confirmed. The response will be in

MIME format.

Step 6: Once the response is received by PeopleSoft Target Connector, it is written in gateway log, parse

the MIME back to gateway request object and return to listening connector.

Step 7: The final step is to pass response to external application by Listening Connector according to the

protocol used.

In PeopleSoft Campus Solution, Web service can be built through 2 methods: Application Classes

and Component Interface. Each has advantages and disadvantages however; this project focuses on

building web service through Component Interface. (PopleBook, 2011)

3.4 Web Service Design based on Component Interface

A component interface is to enable exposure of a PeopleSoft component for synchronous access

from another application (PeopleCode, Java, C/C++, COM, or XML). A Component interfaces can be

viewed as "black boxes" that encapsulate PeopleSoft data and business processes, and hide the details of

the structure and implementation of the underlying page and data. A component interface maps to one,

and only one, PeopleSoft component. A component interface is created in the PeopleSoft Application

Designer by selecting the PeopleSoft component. Record fields on the PeopleSoft component are mapped

to the keys and properties of the Component Interface. Figure 8 shows the relationship between the basic

elements of the component interface architecture.

17

Fig: 8 PS Component Interface Architecture

Every component interface has the following main attributes:

• Component Interface Name

• Keys (get keys, create keys, and find keys)

• Properties and collections (fields and records)

• Methods.

In most cases, component interfaces behave the same as their associated components. This means

that PeopleCode events typically trigger in the same order as the component. However, several runtime

considerations cause exceptions to this behavior relate both to PeopleCode processing and search dialog

box processing (PeopleTool 8.51, 2012).

This project highlights the web service based on Component Interface of PeopleSoft. Once the

component is in place in PeopleSoft, a component interface is built in application designer. Web Service

is then built based on the Component Interface. Every time the Interface is updated, Component Interface

needs to be modified including the People Code behind scene if there are any modifications done in the

delivered component. The final step is to recreate the web service and expose it. Component Interfaces

are PeopleSoft's way of exposing the business logic developed into Components for consumption by other

areas of the system. Component interfaces are part of PeopleSoft's Integration Broker technology and an

attempt to introduce SOA into the product. They tend to work quite well but can be slow for large

amounts of data processing. This solution is best suited if data needs to be insert/update/delete through

PeopleCode, and PeopleCode requires replicating a lot of existing business logic that already exists in a

component then a component interface is the best approach as all the business logics are already in place.

18

PeopleSoft can automatically generate a component interface for developers but have to note that it will

not be completely correct. Some tweaking needs to be done a to meet requirements. Before going any

further, validating component interface is the key which is again a PS delivered functionality/tool. There

are five standard methods come with component interface depending upon the type of interface and its

functionality.

Cancel: Cancels the instance of the component interface object executing this method and rolls back

changes. This closes the component interface and returns its created state. Returns True if component is

successfully cancelled, otherwise returns False.

Create: This creates (adds) a new set of keys to the component - essentially the same as pressing add and

entering the relevant keys through the component. The created keys are associated with the component

interface object. At this point the CI is instantiated with the created data. Returns True if data is

successfully created, otherwise returns False.

Find: Find allows for a partial key (wildcard) search for data in the underlying component.

Get: Gets the data from the underlying component interface matching on the get keys specified? The

component interface is object is instantiated with the resulting data from the component. Returns True if

data is successfully retrieved, otherwise returns False.

Save: Save changes made to the component data through the component interface object. The saved

method triggers standard PeopleCode processing. All errors are logged to the PeopleSoft Messages

Collection (PSMessages) and this collection may be used for troubleshooting errors.

3.5 Summary

Among couple ways to integrate PeopleSoft Campus Solutions to external applications, this

project focuses on the method of integration using Web service. Web service can be built in couple ways

but this project discusses creating Web service using components in PeopleSoft. Since a component is a

collection of records, keys, and PeopleCode functions logically grouped together, it provides complete

business logic to be used out of the box even with limited understanding of the underlying processes that

takes place within PeopleSoft System when the component is used.

I have devised a solution to allow outside applications such as Microsoft InfoPath to update the

PeopleSoft database through an existing PeopleSoft component as if a user keys in the data through a

PeopleSoft page. With this method, every business rule is still enforced by the original PeopleSoft

19

component. Such integration can sustain PeopleSoft upgrades if the interface of the related component is

not changed and any internal data schema change will not affect the integration. Every problem that is

possibly caused by an upgrade can be examined by reviewing the interface of the related components

only.

20

Chapter 4 Implementation

This chapter describes the implementation of the design presented in chapter 3. As discussed in

chapter 3, the integration method used is based on Component Interface. This project has some pre-

conditions regarding the preparation for the implementation. Following are some preconditions:

• Components: A set of pages and business logic for (the business purpose) is identified in the

existing PeopleSoft System or created by the programmer

• Component Interface: PeopleSoft delivers few built-in Component Interfaces; if not delivered it

needs to be created using Application Designer.

• Access privilege for Components: Proper PeopleSoft security needs to be provided in order to use

component. For this project, the Administrator-level security is assigned.

4.1 Component Interface Construction

Once the component is built and ready to use, Component Interface is built off with that

Component. A component interface maps to one, and only one, PeopleSoft component. The following

figure shows the side by side view of Component and Component Interface. Left pane is project pane

where all elements of the project such as fields, records, pages, menus, component name, and component

Interface name along with project name are displayed. In the middle pane is Component Pane where all

the properties and records related to the component is displayed. The right pane shows the Component

Interface built off of the Component selected. Even though five methods are displayed on the Component

Interface pane for the selected component, only some methods are displayed for all component Interfaces.

For example, PeopleSoft does not allow delete method to be exposed for any components to external

applications.

21

Fig: 9 Application Designer: Project, Component and Component Interface view

A component Interface view shows records and scrolls in the component via tree representation.

A scroll in a component interface is referred to a data collection. A data collection is the generic

APIObject that acts as a container of the collection and of other PeopleCode objects. Data collection

objects are used to store the data in a scroll level so that it can be programmatically traversed.

Among several ways of building Component Interface, this project uses the PeopleSoft’s

delivered way to create Component Interface using Application Designer. PeopleSoft offers five attributes

for each Component Interface namely:

Name: Unique name of the Component Interface specified while saving it. This name is later used by

programs that call the Component Interface to access its properties and methods.

Key: Special properties containing values that retrieve an instance of list of instances for the Component

Interface. It is created by PeopleSoft based on the search record definition for the underlying component.

Properties: Each property includes both component data and Component Interface settings. There are

two kinds of properties. The Standard properties are assigned automatically when Component Interface is

built; the User-defined properties are defined by developer mapped to record fields on the PeopleSoft

component and are displayed in Application Designer. Properties can correspond to either record field or

scroll (a collection of records).

Collections: Each collection is a special type of property that corresponds to a scroll. It contains fields

and subordinate scrolls as defined in its underlying component. By default, a collection uses the name of

the primary record for the underlying scroll.

Methods: Methods are functions that do specific tasks. The standard methods are those available for all

Component Interface. The User-defined are the methods added by developer to add functionality to

existing Component Interface.

22

The construction a Component Interface will require the following steps.

Step 1: Determining the Fields to Expose in Component Interface

Fields from a component are exposed in the component interface by dragging a record field or

scroll from the component view into the component interface view shown in figure 3.1. Thorough

understanding of the underlying component is required so that exposed fields are actually required in the

external application. For example, if the component has a field called National_ID, before exposing it to

the Component Interface, requirement of that field in external application should be verified. The idea is

to expose only those fields that are necessary. The component view displays fields that are available in the

component buffer at runtime. Buffer is the place in a component where all the fields are loaded at once for

that component at runtime. For example, if a record containing 10 fields has only 3 fields included on a

page or visible to the page, then the component view will list only those 3 fields however it loads all 10

fields in buffer (PeopleBook, 2012).

The first time a collection from the component view is dragged to the component interface view,

the system uses the following rules to determine what properties to expose:

• Keys are exposed only at the highest-level scroll (data collection) in which they first appear.

Typically, Get keys or Create keys are not exposed as properties, because these are set before

a Get or Create operation and might be inadvertently changed.

• Make sure that all properties within the collection are not deleted; that would result in an

empty collection. If such empty collections exist, they need to be removed; otherwise, they

appear with X in the component interface view.

• If the page does not support Add mode, the level-zero record of the component should not be

exposed, because it contains data that is not specific to the component interface that is being

created.

• Fields that is not visible in the component view should not be exposed.

The component optimization code (execute within Application Engine) may attempt to eliminate

unused fields from its buffer, which could result in an error if that field is accessed by the component

interface.

Step 2: Validating Component Interface

Validation ensures that the structure of a component interface is still valid. Over time, the

structure of a component interface can become invalid due to component structural changes and

23

modifications. For example, this can happen whenever a component deletes or adds a record or field. It

can also happen if the keys on the component are added or removed. Properties and keys that no longer

synchronize with their associated components are marked with an X icon. This is also checked in

Application Designer tool.

Step 3: Component Interface Security

After creating a component interface, permission must be set for the new component interface

and its all methods before it can be accessed. Security management for the component interface is

provided through the PeopleSoft Internet Architecture (PIA) pages. As discussed in (chapter 2 to

Component Interfaces) permission are set at the permission list level in PeopleSoft security manager.

Step 4: Testing Component Interface

PeopleSoft Application Designer delivers a simple test tool called Component Interface Tester.

Once the component interface is ready, it can be tested for its intended functionality. Only methods that

are exposed and have proper security setting can be tested using the tool. A result pane is displayed if the

test is successful. Once the test is complete, Component Interface is ready to be used. For this project,

web service is built off of this Component Interface and exposed so external application can consume its

methods. Proceeding sections will provide details of Web service creation, security and process to expose

to external application followed by consuming the service.

4.2 Configuration for Building Web Service

Web service is built with Integration Broker. Following are the pre-conditions for Web service

creation and consumption. Integration Broker needs to be installed and configured for any external or

internal application so that they can communicate with PeopleSoft. The following are some of the key

elements that need to be setup before attempting to build Web service.

• Enable the publication and subscription processes in the application server so there is support for

asynchronous services. These are the services required to provide queues for gateway to store

service request. In this case, the communication is synchronous so this is not mandatory.

• Change the Default Local Node to some meaningful one. In this project PeopleSoft delivered

generic node (PSFT_HR) is used.

• Configuration of the PeopleSoft Listening Connector is the first required step for this project.

This is necessary for the Application Server to locate and communicate with an Integration

Gateway.

24

• Configuration of the PeopleSoft Target Connector is also required so Integration Gateway knows

where the Application Server is located.

• This is very important step to complete the service configuration. This is required for running

web services. In this step, some default naming information for services and schemas are entered

and also the PeopleSoft Service Listening Connector is identified.

• Other standard setup includes securing the integration environment by applying security at the

web server, gateway, application server, nodes and service operation level; fine tuning integration

system performance by employing failover, master/slave processing, load balancing

4.3 Building and Providing Web Services

Once the setup is tested and confirmed, Web service is built from PeopleSoft Integration Broker

off of selected Component Interface. These are the steps of the process where service operations such as

update, create, get and others can be selected to be exposed in Web service based on the component

selected. Again, not all components expose all methods. Building and providing Web service is divided

into two sections as following:

4.3.1 Enabling Required Service Operation

• Select the component Interface to be exposed as a Web service. This can be achieved by using search

page in “CI-Based Services” menu in PeopleSoft Integration Broker component

• Review the Component Interface status to determine availability. For the first time it is used, the

status will be “Does not exist” which means operations are not being used in any other services for

that component Interface. The diagram below shows the status of each operation along with action

type and methods. Selected (checked) methods will become service operation to be exposed in Web

service that is being built.

25

Fig: 10 CI Based Services Step 1

• Once “Display Selected Actions” is clicked, default (PeopleSoft System generated) operation names

are degenerated along with message versions. Aliases and messages versions may be specified if

required however the service operation name cannot be changed.

• Again, once the “Perform Selected Actions” is clicked, operation status is changed from “not created”

to “Operation created”. This indicates that the Web service and Service Operations are now created

and Web Service can be now published and WSDL can be generated. The following diagram

illustrates the same.

Fig: 11 CI Based Services Step 2

26

4.3.1 Providing Web Service

Creating Web service with PeopleSoft delivered wizard is the easiest and effective way. It is

located under PeopleSoft Integration broker and has 4 steps process as following:

Step 1: Select Service to be provided (defined in section 4.3.1). Service name is system generated name

similar to Component Interface name. It can be changed manually or Service alias can be added for

external applications consuming that service.

Fig: 12 Web Service Wizard

Step 2: Select Service Operation that is going to be exposed in Web service. This is the step of the

process where decision for exposing methods takes place. For example in the following diagram, if

update functionality needs to be blocked from the external application that is consuming the Web service,

CI_NJM_VNDR_IP_UP.V1 should be unchecked.

27

Fig: 13 Web Service Wizard

Step 3: This is the final step of building Web service for the selected component Interface. In this step,

WSDL is generated for the service. The WSDL file can be viewed with the system generated link.

Fig: 14 Web Service Wizard

Step 4: In this step, WSDL file publishing options are picked. It can be either published in WSDL

Repository or published to UDDI servers. For this project, it is published in WSDL Repository.

28

Fig: 15 Web Service Wizard

Once these steps are completed PeopleSoft Integration Broker will provide a confirmation page

with the generated WSDL URL that looks similar to the following diagram.

Fig: 16 Web Service Wizard Results

Again, PeopleSoft security needs to be setup for each exposed operations as well as Web service.

After applying proper security, WSDL URL can be distributed to any number of external sources to be

consumed. Security to these PeopleSoft delivered operations is mandatory: GETWSDL and

GETSCHEMA. These are delivered permissions for accessing WSDL file and schemas for newly created

Web service.

One of the most important things learned during this project is that: just because WSDL is

generated or Web service is generated does not mean it is valid. There are so many things could go wrong

such as XML schema definition could not be validated and writing that definition could be difficult.

29

Thorough understanding of the product is required. Another challenge was to test the WSDL file that

could not execute the INIT procedure in PeopleSoft. Some of the real time problems and challenges are

discussed in Case Study chapter.

30

Chapter 5 Case Study

In this chapter, two experimental cases are presented. In the first case, everything is created from

the scratch, which includes the PeopleSoft records, pages, components, component interfaces and the

PeopleSoft Web service. In the second case, we use an existing component in the PeopleSoft Human

Resource Management component called “Job Data”. This component includes all job related information

for employee.

5.1 Case I – Name Change Request

5.1.1 Problem Description

PeopleSoft’s building blocks are fields, records (tables), components, pages, menus, and COBOL

and PeopleCode associated with them for processing. In this test case, all those elements are created from

the scratch in PeopleSoft using PeopleSoft Application Designer. This is a simple case where name

change request is made by an authorizing department such as reception desk of Office of Admissions for

existing student via an online form. Once a change request form is submitted, according to the predefined

workflow, an email is triggered to a business unit. The document is stored in a secure location for further

processing. An operator then reviews the form, approves or denies it and submits the form along with

his/her decision. This submission triggers another workflow where the original initiator receives a

notification of the action via email and the form is sent to a secure location for record logging. If the form

is approved, the student’s name is updated in PeopleSoft Campus Solution by invoking update method

using Web service. If the request is denied, the form is still stored in a secure location, but the student

data is not updated in PeopleSoft Campus Solution. In this example, the external application consuming

PeopleSoft Web service is Microsoft InfoPath form and the secure location is a Microsoft SharePoint

Server.

When the InfoPath form is launched, the user is prompted to enter the student identification

number. The form pulls the name from PeopleSoft using the Get() method exposed through a Web service

and populates the form. When the change of name is approved by the operator, the InfoPath accesses the

Update() method to update student’s name through the PeopleSoft Web service. In this section, we will

discuss how the component, component interface and Web service are built, how security for component,

components Interface, and web service are used.

31

5.1.2 Configuration

As discussed in Chapter 3 and Chapter 4, configuration is important. In this test case,

configuration includes creation of required fields, record (table), page, menu, component, and security.

The first step of the process is to identify the fields to be used by the form which are first name, last name,

and identification number as well as the record that contains those fields. A component is built to include

those fields to present as a business unit. In this project, all the needed fields are in one table,

U_MY_TEST_TBL; therefore a component is built with table, U_MY_TEST_TBL. The newly created

component is now attached to a menu within PeopleSoft for user to access. The last step to be done done

before using that menu item is to grant permission to the end user. Permission is granted through the

PeopleSoft Security Management. Figure 17 shows each item built with Application Designer in

PeopleSoft followed by list of items.

Fig: 17 Test Case Project Pane

• Project Name: U_ISH_TEST

• Field Names: U_FIRST_NAME, U_LAST_NAME, U_ID

• Record (Table) Name: U_MY_TEST_TBL

32

• Page Name: U_MY_TEST_PAGE

• Menu Name: U_MY_TEST_MENU

• Component Name: U_MY_TEST_COMP

Once fields, record, component, and menu are built, security is applied and tested in PeopleSoft page.

5.1.3 Building Component Interface

Once the component is thoroughly tested in PeopleSoft, the next step is to build a component

interface. While creating component interface, this test case uses PeopleSoft delivered and suggested way

that is by using Application Designer. Following are the generic steps for creating a component interface.

Step 1: Search and find desired component from the Application Designer menu bar.

Step 2: Once selected, right click the component and click component interface. By default all tables with

records, search keys, and methods associated with component are included in the Component Interface. In

this project, available methods are Create(), Cancel(), get(), Find() and Save(). In more complex

components, lots of tables and fields are associated and not all of them are included in component

interface by default. Those records and fields that are not included automatically can be manually added

to the component interface by dragging from the component pane and dropping it into component

interface pane. [The only exception to that is the search key and get key. Those key methods cannot be

manually added as they are tied to the underlying business logic and PeopleCode. If desired, those can be

added but underlying PeopleCode and business logic needs to be modified.]

Step 3: Once completed, the component interface is saved with a unique name so that security can be

applied to it.

Step 4: Once saved, the next step is to apply PeopleSoft security for the newly created component

interface so user can access for testing and further work. Security is applied through PeopleSoft Security

management as described in Chapter 3 and Chapter 4

Step 5: The final step of creating component interface is to test for its functionality and accuracy. The

Application Designer has built-in tools for both operations. The component interface can be tested by

right clicking the component interface and click test component interface. The generated testing cases can

test every method in the component interface.

Following is a snapshot of the Application Designer after building the component interface of the

component, U_MY_TEST_COMP.

33

Fig: 18 Project, Component and Component Interface side by side view

5.1.4 Creating and Exposing Web Service

Once the component interface is built, a web service can be created with PeopleSoft Integration

Broker, as explained in chapter 4.3.1 and 4.3.2. After applying permissions to newly created Web service,

testing is done through a tool called SOAPUI and Visual Studio 2010.

5.1.5 Testing Web Service

As mentioned in Chapter 2, SOAPUI is a freeware tool for testing web services and XML files. It

extracts and presents all WSDL definitions, schema definitions, operations, services, end points, WSDL

contents, and other useful information based on the WSDL input.

34

Fig: 19 SOAPUI WSDL Import

In the Figure 19, the left side shows all the methods available or exposed to external systems via

PeopleSoft Web service. The right side pane shows the WSDL definition, operations and other useful

information. Similarly, figure 20 shows the basic request and response soap message in SOAP UI

interface.

Fig: 20 Testing Person Search Method

Another set of testing was done by creating a Web application in Visual Studio 2010. A page is

built with few fields and uses Consume Web Service tool in Visual Studio to create proxy server. In this

test case, all five methods: Cancel (), Create (), Find (), Get (), Save () are exposed and successfully

tested.

35

5.1.6 Implementation on InfoPath Form

Once test of SOAP and Visual Studio page is successful, the InfoPath form designer was used to

design a simple demo form. InfoPath has simple form utility tool with drag-and-drop features. InfoPath

was chosen for this project because of its simplicity and its compatibility with SharePoint Workflow

Foundation. In this test case, update functionality of the Web service is tested. Once the design of the

form is completed, it needs to be published in SharePoint Document Library as a template so it can be

accessed by users over the internet via browser or InfoPath client. While uploading InfoPath form in

SharePoint, form fields that are desired to identify document status and form fields desired to be used in

workflow process needs to be identified. In this test case, form fields such as submitted_by, approved_by,

submitted_date, approved_date and few others are identified while uploading the form as template.

Other than title, banners, button and other elements, there are three sections in the following form:

Fig: 21 InfoPath Form

36

First section: This part of the form is used to get student information from the PeopleSoft Campus

Solution. Once the student identification number is entered, get() method is invoked to get information

from database and populates in the form.

Second section: This is the section use for workflow process. Once the correct name, submitted_by,

submitted_to and submitted_date is entered and the form is submitted, it is saved in SharePoint Document

Library and triggers an email notification to approving department along with the location of the

document in SharePoint document library. At this point, PeopleSoft Web service is not accessed as it is

still in approval process.

Third section: This is the section where approval to change name takes place and PeopleSoft web service

is accessed if the form is approved. After clicking to the email notification URL, the approving unit see

document as below

Fig: 22 After Submitted

5.1.8 Applying SharePoint Workflow Foundation

Once the Submit button is clicked on the form for the first time, workflow triggers in SharePoint

Workflow Foundation. Workflow in SharePoint is conditional rule that explains what needs to happen

37

when the form is submitted. Conditions are basic if-else statements with user defined actions. In this test,

once the form is submitted for the first time, it is saved in SharePoint document library in XML format

and generates a pre-formatted email to the recipient along with the absolute URL of the document. In this

case, the person responsible for approving this change request form is the recipient. At this point of the

process, rules are set so that no communication between the Web service client and the server takes place.

Student’s data is not updated in PeopleSoft until the form is approved and submitted. What follows are

the workflow rules for the initial submit process.

Fig: 23 Workflow Foundation in SharePoint for Form Submission

Here, when the form is submitted, SharePoint checks if the Review status is in submitted status. If

it it, then a simple email is triggered. In this example, specific email address is used however in reality;

this email address could be identified based on form values and route. The following diagram shows how

the Document Library in SharePoint looks.

Fig: 24 SharePoint Document Library for Form Submit

38

Since the form is only in submitted status, fields such as Approved_by, Approved_date and

workflow status are blank.

Similarly, the workflow rule for forms that are in approved status is created as show in the figure

25. If the form is finally approved and submitted, then the SharePoint checks if the form’s status is

approved. If this holds true, then another email is triggered to the email address who originally requested

to make the name change and PeopleSoft Web service is called and update method is executed to update

data in PeopleSoft Campus Solutions.

Fig: 25 Workflow Foundation in SharePoint for Form Approval

Once Form is Approved and submitted, 3 events triggered

Event 1: Save the Completed Form to SharePoint Document Library as permanent document. All fields

related to approval process are filled out such as Approved BY, Date, Status and so on. Following figure

highlights some of those.

Fig: 26 SharePoint Document Library view after Form Approved

39

Event 2: Email notification is triggered to person who initially submitted notifying the approval status.

Fig: 27 Email Triggered after Form is approved

Event 3: Appropriate action is taken in PeopleSoft based on the method used from Web service. In this

test case, update method is used to correct name. Following figure shows the change in PeopleSoft.

Fig: 28 PeopleSoft Data Change View after Form is approved

40

5.2 Case II – Retire or Rehire Employee in PeopleSoft Human Resource Component

5.2.1 Problem Description

In this test case, Retire or Rehire request is processed. A request is made to the human resource

staff by a business manager to take action for an employee. Once a change request form is submitted, the

form is routed to the supervisor or department head of that employee for approval via email triggered by

predefined workflow in SharePoint. A copy of the original form is stored in a secure location. If the form

is approved, the employee’s status is changed in PeopleSoft Campus Solution by invoking update method

using the Web service. A copy of the approved form is stored in SharePoint Document Library. If it is

denied, the denied form is still stored in document library but employee data is not updated in PeopleSoft

Campus Solution.

In this test case, PeopleSoft delivered component interface, CI_JOB_DATA is chosen to build

Web service. The component chosen for this test incorporates job related employee information in a

single component, JOB_DATA.

5.2.2 Configuration

As discussed in chapter 3 and chapter 4, configuration includes access privilege for the

component interface and underlying component for the end user. Since the component and component

interface being used in this test case is delivered by PeopleSoft Campus Solution, no further action is

required other than testing available methods for the component interface. Component Interface,

CI_JOB_DATA offers four methods namely: Cancel, Find, Get and Save. This component interface does

not provide create method which prevents external application from adding new employee in the system.

PeopleSoft has delivered another component called CI_JOB_DADA_EMPL for creating or adding new

employee in the system which is not used in this project.

41

Fig: 29 Component and Component Interface for Job Data

In Figure 29, left pane shows the component along with all the records associated with that. The

right pane shows the component interface along with keys, properties and methods available. Closer look

at the right pane indicates that the component interface has a collection of records associated with the

underlying component.

42

5.2.4 Building and Exposing Web Service

Once the component interface is thoroughly tested in PeopleSoft Application Designer, the next

step is to build a Web service as explained in chapter 4.3.1 and 4.3.2. After applying access privilege to

newly created Web service, test is performed though a tool called SOAPUI. Section 5.2.5 explains the

steps taken to test the Web Service.

5.2.5 Testing Web Service

As we discussed and tested in chapter 5, case I, first test is done using SOAPUI. In the figure 30,

the left side shows all the methods available or exposed to the external systems via PeopleSoft Web

service for Job data component. The right side pane shows the WSDL definition, WSDL contents,

operations and other useful information.

Fig: 30 SOAP WSDL Import

In left pane, there are two types of update methods exposed by the Web service; update and

updateData. UpdateData method is used to modify existing data which mean that the historic data is not

maintained whereas update method preserves historic data by not modifying the existing data instead it

inserts a new row of data with required change. In this project, update method is tested.

The Figure 31 shows snapshot of input parameters and output data after executing get() in

SOAPUI. The left pane is the input parameters where employee identification number and record number

are use. The right pane shows the result with lots of information. In this test case we are interested in

43

employee status and action taken for the employee. In this example, employee number 0045 is still an

active employee with Rehire as status.

Fig: 31 Get() method of Web Service and Result in SOAPUI

The Figure 32 shows the PeopleSoft User Interface view for the status of the employee.

Fig: 32 Status of employee: Rehired and Active since 02/26/2012

Figure 35 shows the SOAPUI test on update method exposed by JOB _DAT Web service. In the

left pane, input parameters are set. All elements not requiring update must be deleted in order for update

to execute. Unused elements carry empty strings that cause PeopleCode to generate errors based on the

business logic for that component. Value of 1 highlighted on the right side of the figure 35 indicates that

the update was successful. In this example, we are attempting to retire an employee, 0045 effective on

04/15/2012.

44

Fig: 33 Testing of Update method in SOAPUI

In figure 34, immediate reflection of the change is shown via PeopleSoft Campus Solution User

Interface page. Noticeably, new row is added on top of the existing one with the most recent date

(04/15/2012) with the status of employment “Inactive” and the action taken is “Retired”. This update

method preserves the historic data by not modifying the existing data. In other word, update works as

insert where data is inserted into the table(s). The only difference is that insert needs all the required fields

as parameter whereas update needs only key values and fields that need update. As we can see in figure

34, all data are still inserted using Update method which are retrieved in runtime and stored in memory

for processing. Each row can be viewed by using the arrow key on the top right corner of the page.

Fig: 34 PeopleSoft User Interface of employment data after update method is executed

If the same update was done using UpdateData method exposed by Web service, there would

have been only one record for this employee and we would have lost historic data for that employee; such

as hired date, hired reason and other relevant information. UpdateData method is used rarely in business

unit and very few users are granted privilege to do so.

45

5.2.6 Implementation

Once Web service is thoroughly tested in SOAPUI, implementation in the InfoPath form is one of

biggest challenge for this test case. This is because of the complexity of the Web Service WSDL file,

schema and definition provided by PeopleSoft. Testing of the same Web service is successfully done in

SOAPUI however implementing the same functionality is hard in InfoPath for the following reasons.

• PeopleSoft Web service has combinations of simple and complex object types. This means that a

complex object has multiple simple objects.

• As discussed in section 5.2.5, while executing update method, elements that do not require updating

must be deleted. InfoPath does not allow developer to strip elements on the Form so update cannot be

done

• When using web service in InfoPath, it can execute get data method from the PeopleSoft Web service

and display data from the complex object however it could not expand the complex object where

developer can attach data value within the simple object of that complex object. For example, to

terminate employee, following information is required as input parameter:

• Employee number (KEYPROP_EMPLID),

• Record number (KEYPROP_EMPL_RCD),

• Date (KEYPROP_EFFDT),

• Sequence (KEYPROP_EFFSEQ)

• Action (PROP_ACTION)

The figure 5.2.4 shows the structure of the soap request; employee number and record are simple

object type whereas date, sequence and action are simple type within a complex object type COLL_JOB.

When creating InfoPath form, developer can see only complex object type, COLL_JOB which is

not sufficient to pass required simple object type as update parameters.

5.2.7 Alternative Proposed Solution

After extensive study, couple solutions are discovered and proposed as a workaround which will

be discussed in this chapter but implementation is set for future work. Both solutions requires extensive

programming knowledge and resources to implement in SharePoint Workflow Foundation. The first

solution proposed is to write custom code within InfoPath form’s submit method to update employee

data. Another is to create standard .net Web service methods (Get, Find, Create, Update, Updatedata).

Each method should have the parameters that allow the input/output data. Then in the method's logic,

46

instantiate the PeopleSoft's Web service to assign or get the values to or from the PeopleSoft Web

service's properties. InfoPath form then can reference .NET Web service that consumes the underline

PeopleSoft Web service. Since the objective of this project is to come up with the solution to minimize

programming resource, maximize version compatible and minimize maintenance, neither of the solutions

are adapted in this project. However; to show the possibility, simple test is done using .NET environment

to consume PeopleSoft Web service methods without tying it to SharePoint Workflow Foundation.

47

Chapter 6 Conclusion and Future Work

In this project work, component and Component Interface are studied and generated Web service

based on selected component Interface and exposed to external application. We studies the techniques of

integrating PeopleSoft Campus Solution product with non-PeopleSoft application using emerging

technology called Web service.

Specifically, we demonstrated the use of Component Interface Based Web Service in InfoPath

form to be integrated with SharePoint Document Library and Workflow Foundation. The idea being

simple to use yet robust technique to expose PeopleSoft business logic without the need of extensive

programming and modification of delivered code is tested and achieved in this project work.

In this project work, commonly used technologies such as Web service, SOAP, SOAPUI, Visual

Studio, InfoPath Designer, SharePoint Server, SharePoint Designer, SharePoint Workflow Foundation,

and SharePoint Document Library to plan, design, create, test and implement; to integrate PeopleSoft

Campus Solution to external application.

This same technique can be utilized in several different areas such as mobile application for

student/faculty self-service, integrate external Online Application for Admissions to PeopleSoft, single

sign on in SharePoint sites, or even expose relevant PeopleSoft components/menus/pages/function to

SharePoint without compromising security and business logic.

48

References

[1] J. Dean, A. Gravel (Eds.), COTS-Based Software Systems, (Proceedings of the First International

Conference on COTS-Based Software Systems (ICCBSS 2002), Orlando, FL, USA, February 4-6, 2002),

LNCS 2255, Springer-Verlag, Heidelberg, Germany, 2002.

[2] D.A. Fisher, B.C. Meyers and P. Place, “Conditions for Achieving Network-Centric Operations in

systems of Systems”, Carnegie Mellon Software Engineering Institute technical note, CMU/SEI-2007-

003, 2007.

URL: http://www.sei.cmu.edu/reports/07tn003.pdf

[3] S. Tu, G. Li and P. Augustin, “Strategies for Integration of a non-OO EIS and the J2EE Framework”,

proceedings of the 26
th
 Computer Software and Applications Conference (CompSAC) , pp 246-251,

Oxford, England, August 26-29, 2002.

[4] D. Luzeaux, J.R. Ruault, J.L. Wippler, Complex System and Systems of Systems Engineering, ISTE

Ltd and John Wiley & Sons Inc, 2011

[5] Oracle Corporations, Oracle PeopleTools Campus Solution Release 9.0 (CS) up to and including

Bundle 24/AF, 2012

URL: http://docs.oracle.com/cd/E29376_01/hrcs90r5/eng/psbooks/index.htm

[6] Enterprise PeopleTools 8.50 PeopleBook: PeopleSoft Component Interfaces, PeopleSoft Application

Designer Developer's Guide, Oracle Corporations, 2012

[7] Oracle Corporation, Oracle PeopleSoft Internet Architecture and Web Services - A Technology

Overview – PeopleSoft, Technology Whitepaper, March 2002

[8] Oracle Corporation, the Out of the Box Application Sample Application Kit for PeopleSoft:

Application Overview & Installation

[9] Ali Khawaja Microsoft Consulting Services - Office SharePoint Server 2007 and PeopleSoft

Integration, Whitepaper, Published: 5/25/2007

[10] Abhishek Nigam, Teekam Chand Goyal (Intelligroup, Inc), Connecting to PeopleSoft® from

Microsoft® Office InfoPath Whitepaper Prepared by: Published: September 2004

[11] David Sohigian, PeopleSoft and Babar Batla, Connecting to PeopleSoft® Web Services with

Microsoft® Visual Studio.Net ® Microsoft Published: September 2004

[12] The University of New Orleans, SharePoint Intranet Site

URL: https://privateers.uno.edu:44300/students/admissions/default.aspx

[13] Michele Leroux Bustamante, Microsoft SharePoint Workflow Foundation, IDesign, May 2008

URL: http://msdn.microsoft.com/en-us/library/cc748597.aspx

[14] Oracle Corporations, PeopleCode Tranning Manual - PeopleTool 7.5, June 2007

[15] Bill Sempf, Donald Xie, James Greenwood, Professional Visual Studio .NET, Apress 2004

49

[16] Brian Benz with John R. Durant, XML Programming Bible, Wiley Publishing, Inc. 2003

Anderson, Lynn (2001). Understanding PeopleSoft8. Sybex. pp. 22. ISBN 0-7821-2930-7

50

VITA

Ishwor Aryal was born in Kathmandu, Nepal. He earned his Bachelor of Science from Colorado

Technical University with Computer Science as major on March 2006. He was enrolled in the graduate

program in Computer Science at the University of New Orleans in January 2007.

	Integrating Oracle PeopleSoft Campus Solution to External Applications
	Recommended Citation

	Microsoft Word - 305359-text.native.1343150717.docx

