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Abstract 
 

The fast capacity growth of cheap storage devices presents an ever-growing problem of 

scale for digital forensic investigations. One aspect of scale problem in the forensic process is the 

need for new approaches to visually presenting and analyzing large amounts of data. Current 

generation of tools universally employ three basic GUI components—trees, tables, and 

viewers—to present all relevant information. This approach is not scalable as increasing the size 

of the input data leads to a proportional increase in the amount of data presented to the analyst.  

We present an alternative approach, which leverages data visualization techniques to 

provide a more intuitive interface to explore the forensic target. We use tree visualization 

techniques to give the analyst both a high-level view of the file system and an efficient means to 

drill down into the details. Further, we provide means to search for keywords and filter the data 

by time period.  

 

Keywords: Visualization, Treemap visualization, Sunburst visualization, JSON.    
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Chapter 1: Introduction 
 

Digital forensics analysts are currently struggling to keep up with the fast increasing size 

of forensic targets.  Looking forward, we can expect the pressures of scale to increase further due 

to the following fundamental trends: 

 The size and complexity of forensic targets will continue to grow for the foreseeable 

future. Hard drives have recently reached the 3TB mark with realistic medium-term 

prospects of 14TB by 2018. ‖In FY09, the RCFL Program nearly doubled the number of 

TBs processed compared with only two years ago.‖ [1] 

 Human resources charged with the problem will not grow appreciably. Relative to the 

growth of the data, the growth in the number of analysts will be negligible as it is yet 

another cost to be born to maintain societal law and order. 

 There are real-world deadlines on most forensic analyses. Forensic lab managers and 

practicing analysts are acutely aware of this fact. In a criminal case, there might be the 

luxury of having more time to investigate the case; in civil/internal cases, there are strict 

limits on the time and resources clients will spend. 

Put together, these trends mean that the forensic analyst will have to do substantially more work 

in about the same amount of time per case. Clearly, the forensic tools will need to become a lot 

faster and smarter. One particular aspect in which current tools a sorely lacking is their user 

interface. 

Current generation of integrated forensic environments universally use a few basic GUI 

components to present information. We have selected two most popular forensic tools and 

discuss the GUI of these tools.  Figures 1 and 2 shows a typical example of EnCase Forensics [2] 

and FTK toolkit [3], and what the GUI of such a tool looks like. It utilizes three main 

components–trees to navigate (and filter based on) hierarchical structures; tables to allow for 

sorting and filtering based on artifact attributes (name, timestamps, etc.) and content (keywords); 

and a viewer component that can render various types of artifacts, such as text, html, and images. 
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Figure 1: EnCase Forensic main screen. 

EnCase Forensic is an integrated Windows-based graphical user interface suite of tools. 

The interface contains four different panes: tree, table, view and filter as shown in Figure 1. This 

interface helps the analyst navigate and to observe an object in detail. 

To get the details of an object, highlight it in the tree pane, and the table pane will display 

the details about that object. To get more details about the object in the table pane, highlight it in 

the table pane and the details will appear in the view pane, which can be used to interpret the 

data effectively. Filters are used to allow the investigator to include the files that meet only the 

filter conditions. Using these different panes, investigators will be able to break down complex 

file structure for examination, such as registry files, pst files etc. The problem of this approach is 

that, as the amount of data increases the number of files to be presented in the panes increases. 

So, display space required to present the data should be increased proportionally, which is not 

possible and the investigator has to spend more effort to define even more complicated queries 

that reduce the result set to a manageable size. In other words investigator has to face the data 

load. 
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Figure 2: FTK interface. 

Forensic Toolkit (FTK) is another commonly deployed forensic tool which is also 

operated on Windows platform. FTK toolkit interface has different tabs such as E-mail and 

images, to include specialized views for browsing particular file types. FTK analyzes the data 

located on the storage device, and then it will index all the files and group them together 

according to the file hierarchy of the system as shown in Figure 2. As more data is extracted 

from the source, the investigator is bombarded with more data and has to spend more time and 

put more effort to search through all the data. Even filter options might not scale properly and 

thus transfers the load on to the investigator. 

This style of presenting data is quite dated and increasingly inadequate in the face of 

rapid data growth. Visualizing large data provides a means to effectively use a limited display 

space. The design goals are to choose a visualization layout to present the whole data in the 
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space available with data interaction. Data interaction strongly depends on the given exploration 

task, such as searching, or filtering which certainly includes an easy and intuitive navigation with 

strong support for the user‘s orientation. 

 

Figure 3: Intella screenshot (Vound). 

The eDiscovery space [4] can provide some relevant examples of visual analytic 

techniques that can be helpful. For example, Intella5 uses a visual clustering interface to provide 

both a high-level clustered overview of email relationships and details on how these are derived. 

The important aspect of this style of visualization is that it allows both the big picture and the 

outliers to be readily observed. We view such capabilities as critical to managing large data sets. 
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Chapter 2: Tree Visualization Techniques 

In this chapter we discuss most commonly used tree visualization techniques to represent 

the data. The tree view provides an overview of the dataset that facilitates navigation through the 

data, and provides context for the more detailed information available in the supplemental nodes. 

The leaves, while representing the individual data records, are both decorative and functional.  

2.1 Data Structure Trees 

Data tree structure provides the viewer to understand the hierarchical relationships among 

the data items and helps in exploiting the organization of the data. Data structure trees are useful 

since a great deal of information is hierarchical: file systems, corporate relationships, a library 

cataloged to the decimal system to name a few.  

Though this tree structure shows the hierarchy and relationships among the data, it does 

not give the details about individual items. In the Figure 4 we can only see one attribute, the 

name. It is possible to encode a second attribute by using color or using some special symbols. 

The number of nodes in each level increases, as distance from the root increases; therefore there 

is a large amount of wasted space. 

 

Figure 4: Example of Data structure tree. 
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In the example shown in Figure 4, note the wasted space in the corners of the tree. The 

width of conventional data structure trees increases exponentially relative to the height. This 

causes distortion and makes the tree difficult to read. 

2.2 Radial Tree Layout 

Radial tree layout is another tree technique which attempts to solve the space problem by 

rearranging the hierarchical data items, an example is shown in Figure 5. This tree structure 

obeys the chain of commands, but shows only limited attributes and does not work well for deep 

hierarchies. When the focus is shifted away from the root it is hard to understand the structure of 

file system. In this approach, the nodes that are on the outer edge of the large trees tend to be tiny 

and difficult to see, as they are constrained to fit the circular space. 

 

Figure 5: Example of Radial Tree layout. 



 

7 
 

2.3 Bubble trees 

In bubble tree techniques, the space problem is reduced by converting the typical rooted 

data structure tree into a general graph-theory tree that efficiently utilizes page space [5]. These 

trees are abstract and only a limited number of hierarchical levels can be displayed. It is also 

difficult to perform tasks, such as comparison, because only limited sub-levels are shown for any 

node at a time. In Figure 6, it is difficult to compare descendants of node 1 with the descendants 

of node 3. 

 

Figure 6: Example of a bubble tree. 

2.4 Treemap  

A treemap is a two-dimensional, space-filling approach for visualizing a tree structure 

considering certain attributes of a node are mapped to the size and color of the nodes visualized 

as rectangles. Child nodes are visualized as rectangles inside the parent node so that the whole 

area of the parent node is used. A treemap can also visualize changes in other ways; it can 
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change either the size or colors of the items on the map [8]. The size of an item is the usual way 

of representing relationships between some values. Colors can also be used to visualize how 

often the size of the an object changes. For example, mapping the color of an entity to red when 

its properties change often and to green when its properties change rarely makes the changes 

clear. 

The problem is when the tree is balanced, where each parent has the same number of 

children and each leaf has the same size. Then representation can make it difficult for the user to 

determine where the node is in the level and how the current node is related to other node at the 

same level. Figure 7, represents the President‘s 2011 Budget proposal, where different colors and 

levels of brightness can easily be spotted from treemap visualization.  

 

Figure 7: President’s 2011 Budget proposal 

Source: http://www.nytimes.com/interactive/2010/02/01/us/budget.html 

http://www.nytimes.com/interactive/2010/02/01/us/budget.html
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2.5 Sunburst 

Another solution to space issues is to rearrange the tree to take better advantage of space. 

Sunburst trees are radial space filling technique, an example is shown in Figure 8. This technique 

takes a data structure tree in which each subtree is represented as a triangle and arranges the tree 

radially [9]. The subtrees become segments of the circles with the root as a small central circle. 

Each successive ring represents a level of the tree. The leaves are segments on the outermost 

circle. This addresses some of the space concerns about standard data structure tree by fitting the 

tree into a compact space that clearly preserves the hierarchy and allows comparisons of leaves 

to leaves within a level. Sunburst techniques clearly show the hierarchy, but also illustrate 

limited attributes and do not work well for a deep hierarchy.  

 

Figure 8: Example of a Sunburst tree. 

Summary 

In this chapter we have discussed how trees are used to represent data. All these tree 

techniques represent hierarchical data, with their own drawbacks. Some techniques fail to show 

more than one or two attributes and some of these techniques are space intensive while others are 

unintuitive. We are primarily concerned about the space, and it is clear from the aforementioned 

discussion that data structure tree, radial Tree and bubble tree structures can represent more data 
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but require more space. Treemap and sunburst trees provide space efficiency, so we considered 

working with these trees. In the next section we present our design using these two tree 

structures.  
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Chapter 3: New Data Exploration Interface 

As we have explained earlier in Chapter 1, the current GUI designs are not suitable and 

might be too hard for the analyst to interpret and investigate massive targets of data. At the same 

time there has been a significant development in the web based tools and the success of these 

tools depends on the user interface design provided. These web tools provide GUI designs that 

can represent large amounts of data. The goal of this development is to provide an enhanced tool 

that is scalable and useful for managing the data using Web display and navigation. An open 

architecture can directly benefitted from the fast development of visualization tools for the web 

and can be integrated at minimal effort. 

In this section we present our user interface design that will be simple to use but more 

scalable and that will be using certain web based technological tools to represent the digital 

forensic data. 

3.1 JSON  

The Web is becoming an open collection of services that can be composed to build new 

applications. In these applications the use of data interchange offers an efficient alternative for 

page replacement and the applications are delivered as HTML pages. Data interchange formats 

were developed for the new web applications. XML web services, a data interchange format 

have been pushed by for a while. Yet, the new web is centered along a new set of lightweight 

data format, JSON. Like XML, it is designed to be human readable, and this can help when 

debugging and testing. JSON is derived from object oriented representation of JavaScript, and 

therefore is very popular as a data format in Web applications. Because JSON has extensive 

support in JavaScript, it is often used in AJAX, Adobe Flash Web applications for creating rich, 

dynamic user experiences that incorporate remote data and service execution. However, JSON 

can be read and written by many programming languages. 
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3.2 Data processing pipeline 

The data we obtain is from the system and the information that is available to the system 

and recorded on the storage device is obtained from the target by forensic analyst. The recovered 

metadata is used by the investigators for future analysis processing. The metadata discusses the 

forensic value of the information that is found. Forensic value means the possibility to draw 

conclusions about events on the system from the data. So this metadata is of large size since it 

contains information of all the files on the storage device. Since JSON is a light weight data 

format, the metadata used for visualization is in JSON format. 

 

Figure 9: Overview of the process. 

Figure 9, shows the overview of the process, the extracted data from the file system is 

used as JSON format. 

3.3 Visualization Design Sketch  

User interface (UI) design and interaction are the major factors in designing visualization 

systems that help the user to explore the data. We can divide visualization systems in general 

into two main components: representation and interaction. 

 The representation component concerns the mapping of data into visual representations 

and comes from the field of computer graphics. 

 The interaction component comes from the field of human-computer interaction and 

involves the dialogue between the user and the system. 

The representation component has received most of the attention by far in the research while 

the interaction component has often been relegated to a secondary role. Interaction is stated as an 
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essential part of visualization systems because without it the visualization techniques just 

become static images or autonomously animated images [6]. 

In our design we have two visualization hierarchies, first is the file system hierarchy, as 

defined by the relationship between parent and number of child nodes and the other is spatial 

hierarchy, which uses space filling visualization that uses containment to show the parent child 

relationship. The file system hierarchy is represented using Sunburst visualization and the spatial 

hierarchy is represented using treemap visualization. 

 

Figure 10: Design sketch. 

3.3.1 File system hierarchy 

In Figure 10, the design of Sunburst visualization is shown, for this visualization we use a 

node-edge tree technique, so the tree is drawn in more space efficient manner. All the nodes and 

edges fit within a circle, and the viewer is able to focus on elements in each level. In this 

technique files and directories deeper in the hierarchy are drawn further from the center. Child 
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nodes are drawn within the arc subtended by their parents. The angle of an item's arc corresponds 

precisely to the number of child nodes in the file structure. 

User controls are added to the visualization to make it more user interactive. Hovering 

the mouse on to the node gives the time of creation of file and the name of the file. Another 

interactive control is the expand control which is used to hide or expand the parent and child 

node. At the start, file system hierarchy is set to expand view, so that all child nodes and parent 

nodes are visible. By clicking on a particular node the child nodes hide/collapse or expand 

depending on the present state of the node selected. 

3.3.2 Spatial hierarchy 

Next is the spatial hierarchy, we represented this using treemap visualization. In Figure 

10, the design of treemap visualization is shown; the full display space is used to visualize the 

contents of the tree. Each node (as shown in the tree diagram) has a name. The size of leaves 

represent for instance the size of individual files. The treemap is constructed via recursive 

subdivision of the initial rectangle. The size of each sub-rectangle corresponds to the size of the 

node. The direction of subdivision alternates per level: first horizontally, next vertically, etc. As a 

result, the initial rectangle is partitioned into smaller rectangles, such that the size of each 

rectangle reflects the size of the leaf. The structure of the tree is also reflected in the Treemap, as 

a result of its construction. Color and annotation is used to give extra information about the 

leaves. 

We define the following user controls to helps the investigator working with the 

visualization with interactions. 

Hovering: Hover over a rectangle in layout and see to which child does this corresponds to and 

the size of the file. This is an essential visualization as without it the rectangles are meaningless. 

File type selection: Limit the data display to a specific file type group. At first ‗All File Type‘ is 

selected we can narrow this to select any file type present in the data provided.  

Zooming: ‗Zoom in‘ to a sub-cause having it occupy the whole screen to give more detail on the 

underlying files. This will allow the viewer with specific interest to explore that date subset 

without distraction. 
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Search: Using the search box, the investigator can search for the file by entering the name. 

Timeline slider: One more interactive option is the timeline slider. The users can jump to 

different times or choose time ranges in which to analyze the quality attributes. The Treemap 

show only the files accessed in that particular time period. 

3.3.3 Interaction between views 

Linking the two visualizations with each other allows the analyst to drill down into the 

data and makes the search easy. The triangular boxes/nodes in sunburst visualization show 

hierarchical level and the name of the node, and the clicked nodes affect the contents of treemap 

visualization. This allows analyst to connect both visualizations and drill down further into 

different parts of data, without losing the view of the entire data. 

If a node is clicked in the sunburst view the node event is triggered in the Treemap view 

to show all the child nodes of that particular node. The node that is selected collapses all its child 

nodes depending on the current state of the node; for example, if the node selected is in expanded 

view all nodes are collapsed and vice versa. If the node selected has no child nodes nothing 

happens in the Sunburst view. Changes applied to the filters in treemap view, does not affect the 

sunburst view. So the investigator can use the sunburst view from the point where it is stopped. 
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Chapter 4: Implementation 
 

This chapter describes the implementation of the design presented in Chapter 3. 

4.1 JSON input data interface 

As defined in section 3 the generated file is in JSON (JavaScript Object Notation).The 

properties of JSON such as language-independence data interchange format makes it useful.  

The JSON body file is an intermediate file when creating a timeline of file activity. It is a 

pipe delimited text file that contains one line for each file (or other even type, such as a log or 

registry key). The file contains the information about the deleted file as well. The body file 

produced consists of file name, file creation time and crtime. 

JSON is built on two universal structures [7]: 

 A collection of name/value pairs represented as a user-defined object. 

 An ordered list of values represented by an array. 

In various languages, the collection of name pairs can be realized as an object, record, 

struct, dictionary, hash table, keyed list or associative array and ordered list is realized as an 

array, vector, list or sequence. Below example show the object and array types: 

[ 

{"name":"Root/$OrphanFiles", "size":0, "crtime":"1970-01-01 00:00:00 UTC"}, 

{"name":"Root/WINDOWS/inf/oem3.inf (deleted)", "size":0, "crtime":"1970-01-01 00:00:00 UTC"}, 

{"name":"Root/$Secure:$SDH", "size":56, "crtime":"2008-10-20 14:26:07 UTC"}, 

{"name":"Root/Program Files/Microsoft Office/Office12/1033/STSLIST.CHM", "size":367096, 

"crtime":"2006-08-17 19:50:18 UTC"}, 

{"name":"Root/WINDOWS/Fonts/RAVIE.TTF", "size":74416, "crtime":"1998-07-14 21:42:16 UTC"} 

] 

In our case the JSON body file data created by the stat command, containing a total of 

38723 entries. The JSON data example shown above, the name attribute of the file includes the 

name of the file, which intern is used to get the type of file and hierarchy tree structure. The 

deleted file is highlighted in the name attribute by including deleted in curved brackets. The 



 

17 
 

second attribute is the size attribute, which shows the size of the file. This is a numeric value, 

and size of file is in kB. The last attribute is the crtime, which give the creation time. This 

attribute is represented in UTC format, which is calculated into seconds and used for future 

purposes. 

4.2 Technologies used 

We wanted to have a lightweight and ubiquitously available modular visualization tool 

for the analysis of the run-time behavior of quality variability, we chose Adobe Flash [8] as the 

target programming environment. Adobe Flash Player is a cross-platform browser plug-in and so 

this tool can therefore be used on various platforms that have Adobe Flash Player. Flash 

applications are compiled into the SWF file format (SWF is not an acronym, although it is 

associated with Shockwave Flash) [9] and are run on an ActionScript Virtual Machine 2 [10] 

(AVM) inside Flash Player. 

The following are the languages we used: 

MXML: MXML is an XML markup language that is used to layout user interface components. 

We use MXML in combination with Action Script to develop rich internet applications. 

Flex Library project: Flexlib project is an open source user interface components for Adobe 

Flex. Currently there are many mxml enhanced components, like TreeGrid, FlowBox etc. We 

used Flexlib libraries mainly for Draggable Slider component. 

Action Script: Action Script Language adds the complex interactivity and data display in the 

application. Action Script contains a large amount of built in library with which we can create 

such a visual application. Flex builder supports more than one version of action script; we used 

action script 3.0 which thoroughly follows the rules of object oriented programming style. 

Action Script 3.0 executes extremely fast which makes it perfect for complex visualizations and 

data manipulations. 

Flare Library: Flare is an Action Script library for creating visualizations that run in the Adobe 

Flash Builder created by Visualization Lab of UC Berkeley. It helps in visualizing structured and 

unstructured data. Structured visualization includes building blocks such as node-link diagram, 

containment diagrams and unstructured   (edge-free) data visualization such as scatter plots. It 
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has many usable visualization techniques, it is not a ready to use tool, rather a toolkit for the 

developers to use to create visualization intended for data visualization [11].   

4.3 An example  

4.3.1 Basic view 

The Visualization shown in Figure 11 is an example of the prototype system. The 

application is an SWF file and this SWF file can be played in any Adobe Flash Player, working 

on a browser. The basic view of the project is shown in Figure 11. 

 

Figure 11: The basic view with sunbust visualization, treemap visualization and Filters. 

This figure show two views the sunburst visualization and the treemap visualization, 

along with the filter: highlight, file type filters and Timeline Slider. 

4.3.2 File system hierarchy view 

As explained earlier, in the sunburst view shows all the files and directories. The parent 

node size is dependent on the number of child nodes it contains and color intensity shows the 
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difference in depth. When a particular node is clicked the, if it has any child node all the child 

node hide/collapse and expand depending on the present state of the node. As shown in Figure 

12, When we move the mouse over the node the name of the file is shown, and clicking on 

‗AIM_6.8.12.4‘ node the child nodes of this parent collapse as shown in Figure 13.  

 

Figure 12: ‘AIM_6.8.12.4’ node and its child nodes Expanded. 
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Figure 13: ‘AIM_6.8.12.4’ and its child nodes collapsed/hidden. 

4.3.3 Spatial hierarchy 

On the right hand side of the basic view is the treemap visualization. The treemap 

visualization shows all the files of the target system which has size of more than zero. 
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Figure 14: ‘metal_ss.dll’ is highlighted and with size: 362496kB. 

By moving the cursor over the node the name of the node ‗metal_ss.dll‘ is shown in 

Figure 14, and the hierarchy is also shown. It also highlights the size of the file. The number 

shown in the bottom of the box is the creation time in seconds. 

Clicking a file node shows all the nodes of next hierarchical levels as shown in Figure 15. 
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Figure 15: Next hierarchical level of the selected node. 

Clicking on the selected node again zooms in to visualize the next hierarchical level. The 

parent node of the hierarchical level displayed is shown in the bottom left corner. In figure 16, 

we can see the consecutive parent nodes of the ‗metal_ss.dll‘  

 

Figure 16: hierarchy of ‘metal_ss.dll’. 
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Figure 17: Highlights all files with keyword ‘excel’ in name attribute. 

We can highlight the file in the treemap by typing the search keyword in the search 

option. Figure 17 shows the search filter in this example all nodes with name attribute containing 

‗excel‘ is highlighted. 
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Figure 18: File type filter ‘dll’ selected, nodes of dll files displayed. 

Another filter is the file type filter, in the example ‗dll‘ file type is selected and the 

treemap visualization will show all the files of type ‗dll‘ shown in Figure 18. Other file system 

include exe 
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Figure 19: Files that are created in the time period 1992-2005. 

Another most important interactive option is the timeline slider. In the figure 19 we show 

the files that are created in the time period selected. The timeline slider also has an option of 

dragging the visible region. 

We can apply any number of filters at a time. The files corresponding to the filters 

applied will be displayed.   
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4.3.4 Interaction between file system hierarchy and spatial hierarchy: 

Most important is the interaction between the views. In Figure 20 and 21, we can see the 

whole view and the changed treemap visualization when the node ‗Temp‘ is selected in sunburst 

visualization. 

 

 

Figure 20: ‘Temp’ is highlighted 



 

27 
 

 

Figure 21: Temp is clicked, child nodes of Temp visualized in treemap Visualization. 
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Chapter 5: Conclusion 

In this work, we argued that the current generation of forensic tool user interfaces is 

inadequate in terms of helping forensic analysts cope with the rapid growth in the size of digital 

forensic targets. We presented a new approach to designing data exploration interfaces based on 

data visualization techniques that builds on the experience of web technologies 

Specifically, we demonstrated the successful use of sunburst and treemap visualizations 

to render topological and special relationships in the file system‘s hierarchy. Unlike existing 

techniques, this allows a quick and intuitive way to both present an aggregate view of the data 

and to drill down into the details. We integrated three filtering techniques—keyword search 

facility, file type filter, and time interval filter. Together, these present an easy way to control the 

most frequently used filtering techniques. The results of the filters can be observed on the data 

visualizations in real time, thereby giving the investigator immediate feedback and a chance to 

build a high-level mental map of the evidence. 

We used common web technologies so that our work could be integrated with back-end 

analytical modules. For that purpose, we defined a lightweight JSON data input interface, which 

abstracts away the details of obtaining the target data set. Thus, our visualization would work 

with any analytical slice of the file system as long as the output fits the input format. The actual 

visualization component was built on Adobe Flash technology, which allows the application to 

run in a web browser, or as a standalone application. 
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