
University of New Orleans University of New Orleans

ScholarWorks@UNO ScholarWorks@UNO

University of New Orleans Theses and
Dissertations Dissertations and Theses

Summer 8-6-2013

Oyster Sustainability Modeling as a Public Resource Oyster Sustainability Modeling as a Public Resource

Nathan A. Cooper
University of New Orleans, ncooper@uno.edu

Follow this and additional works at: https://scholarworks.uno.edu/td

 Part of the Databases and Information Systems Commons, Numerical Analysis and Scientific

Computing Commons, and the Software Engineering Commons

Recommended Citation Recommended Citation
Cooper, Nathan A., "Oyster Sustainability Modeling as a Public Resource" (2013). University of New
Orleans Theses and Dissertations. 1688.
https://scholarworks.uno.edu/td/1688

This Thesis-Restricted is protected by copyright and/or related rights. It has been brought to you by
ScholarWorks@UNO with permission from the rights-holder(s). You are free to use this Thesis-Restricted in any
way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you
need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative
Commons license in the record and/or on the work itself.

This Thesis-Restricted has been accepted for inclusion in University of New Orleans Theses and Dissertations by
an authorized administrator of ScholarWorks@UNO. For more information, please contact scholarworks@uno.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of New Orleans

https://core.ac.uk/display/216840238?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.uno.edu/
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/etds
https://scholarworks.uno.edu/td?utm_source=scholarworks.uno.edu%2Ftd%2F1688&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=scholarworks.uno.edu%2Ftd%2F1688&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=scholarworks.uno.edu%2Ftd%2F1688&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=scholarworks.uno.edu%2Ftd%2F1688&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=scholarworks.uno.edu%2Ftd%2F1688&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uno.edu/td/1688?utm_source=scholarworks.uno.edu%2Ftd%2F1688&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uno.edu

Oyster Sustainability Modeling as a Public Resource

A Thesis

Submitted to the Graduate Facility of the
University of New Orleans
in partial fulfillment of the

requirements for the degree of

Master of Science
in

Computer Science

by

Nathan Cooper

B.S. University of New Orleans, 2011

August, 2013

ii

Acknowledgements

 I would first like to thank the Louisiana Sea Grant program, the Louisiana Department of Wildlife

and Fisheries, the National Fish and Wildlife Foundation, and The University of New Orleans for funding

this project.

 I would like to express my extreme gratitude to my advisor Dr. Mahdi Abdelguerfi, who has

provided me with so many opportunities throughout my academic career. My deepest thanks goes out

to Dr. Thomas Soniat for his friendly advice and expertise each day, helping a programmer to better

understand the world of oysters. Also I would like to thank Dr. Shengru Tu, my advisor and coordinator,

for his cheerful and always-helpful guidance. Of course, thanks to Susan Colley Theodosiou for her

never-ending diligence and hard work.

 A shout-out goes to my former brothers-in-code, Janak Dahal and Christian Chuindja Ngniah,

who helped build this project from the ground up. And to Josh Gallegos, whose database expertise

provided invaluable assistance. I know I’ll be leaving the site in good hands.

 I’d like to show my appreciation for everyone who helped us with the project. Thanks to Fareed

Qaddoura, John Finigan, Jeanne Boudreaux, and all my wonderful professors from The University of New

Orleans for their dedication, knowledge, and friendliness. Thanks to Patrick Banks, Mark Schexnayder,

and everyone else at LDWF who were all a great pleasure to work with. And thanks to John Klinck, Eric

Powell, Roger Mann, and all the other researchers involved, without whom this project would not be

possible.

 Finally, my warm thanks goes out to my mother Lisa Cooper, grandmother Frances Gregg, and

the rest of my friends and family, who provided me with love and moral support throughout my studies.

A special nod goes out to Christine Carey for her valuable insights and encouragement.

 Thanks everyone!

iii

Table of Contents

List of Tables ... v

List of Figures ... vi

Abstract ... vii

Oyster Sustainability Modeling as a Public Resource ... 1

1. Introduction .. 1

2. Input Data ... 3

LDWF Stock Assessment ... 3

Oyster Data ... 5

Cultch Data .. 7

3. Model Logic ... 10

Introduction .. 10

Oyster Component .. 11

Oyster Mortality .. 11

Oyster Growth... 13

Sack Conversion .. 15

Cultch Component .. 16

Shell Loss ... 16

Cultch From Dead Oysters .. 17

Sack Conversion .. 18

Fishing ... 18

Model Pseudocode ... 20

GET_STAGE.. 22

GET_MORTALITY_FRACTION .. 22

GET_SACKS_PER_OYSTER ... 22

GET_SACKS_PER_GRAM ... 23

GET_OYSTER_MASS .. 23

GET_NEW_LENGTH ... 23

GET_NET_SHELL_LOSS .. 25

Analysis ... 26

Future Changes ... 26

4. Implementation .. 28

Introduction .. 28

Previous Implementations .. 28

Fortran Implementation ... 28

Java Implementation... 28

Current Implementation ... 29

Introduction .. 29

Data Schema ... 30

Model Schema .. 32

iv

Simulation Schemas .. 33

Procedures .. 34

Performance ... 44

Data Aggregation .. 45

Interactive Site .. 47

Web Environment ... 47

Security ... 47

Presentation .. 48

Performance ... 52

Future Goals .. 54

5. Simulations .. 55

Parameterization .. 55

Experiments .. 58

Retrospective Analysis .. 58

LDWF Sustainable Management ... 59

Future Simulations .. 60

6. Conclusion ... 62

References .. 63

Vita .. 65

v

List of Tables

Tables

Table 1. Example replicate gear sizes. .. 5

Table 2. Example work group data. .. 5

Table 3. Example total predicted oysters. .. 6

Table 4. Example cultch data. ... 8

Table 5. Total estimated cultch ... 9

Table 6. Global model parameters. .. 20

Table 7. Per-station model parameters. ... 21

Table 8. Simulation parameter values. ... 56

Table 9. Results of retrospective analysis simulations. .. 61

vi

List of Figures

Figure 1. LWDF Louisiana Coastal Study Areas (CSA’s). .. 3

Figure 2. LDWF Oyster Sample Data Sheet. .. 4

Figure 3. A flow chart of the model’s high-level logic... 10

Figure 4. Typical mortality fractions for adult and juvenile oysters. .. 12

Figure 5. A typical von Bertalanffy growth curve. .. 13

Figure 6. Typical values for 𝑘 as a function of time over one year. .. 14

Figure 7. Typical simulated oyster growth starting in August at 1 mm. ... 15

Figure 8. Typical sack volume for oysters of a particular size. .. 16

Figure 9. Typical contributed shell weights as a function of oyster length. ... 17

Figure 10. Typical shell mass-to-volume relationship ... 18

Figure 11. The data MS SQL database schema. .. 31

Figure 12. The model MS SQL database schema. ... 32

Figure 13. The model simulation MS SQL schema. ... 34

Figure 14. RUN_MODEL procedure performance. ... 44

Figure 15. The growth profile management page. ... 49

Figure 16. Survey profile assignment. ... 49

Figure 17. Survey filtering form. ... 50

Figure 18. The cultch mass summary display. .. 51

Figure 19. The cultch mass timeline display. .. 52

Figure 20. Model Results server and page benchmarks. .. 53

Figure 21. Shell-to-weight plot used to derive OPS parameters. ... 57

Figure 22. LDWF estimated sack and seed/spat stocks. ... 59

vii

Abstract

A simulation algorithm based on biological references points proposed by Powell and Klink (2007) is

implemented for predicting the total allowable catch of eastern oysters (Crassostrea virginica) from

Louisiana’s coast. The model accepts initial per-square-meter shell mass and oyster size distributions as

input. Fishing effort is provided as fractions removed of each resource for each month of the season.

The model outputs the expected remaining shell mass and harvests of sack and seed oysters after 𝑡

discrete fishing months. Oyster mortality credits the shell budget, while fishing fractions debit oyster

and shell resources. Surviving oysters grow larger along a time-dependent von Bertalanffy growth curve.

Fishing fractions are chosen heuristically with the goal of minimizing shell loss. Input data is collected by

the Louisiana Department of Wildlife and Fisheries in their annual stock assessment. The model is

available as a public web resource at www.oystersentinel.org.

Oysters, Crassostrea virginica, Modeling, Information Technology, Simulation, Fishery

1

Oyster Sustainability Modeling as a Public Resource

1. Introduction

 The abundance of the eastern oyster Crassostrea virginica in Louisiana’s estuaries supports a

thriving fishing industry. About 1.7 million acres constitute the public water bottoms where sack oysters

(≥ 75 mm) are directly marketed and seed oysters (< 75 mm) removed for transplant onto private leases.

The Louisiana Department of Wildlife and Fisheries (LDWF) is responsible for managing these grounds.

However, they currently have no quantitative reference points for harvest sustainability (LDWF, 2010).

 Powell and Klink (2007) proposed biological reference points based on the abundance of either

oyster numbers (𝑁) or substrate mass (𝑆). In this model, the population and/or shell quantity remains

constant with respect to time. That is,

𝑑𝑁

𝑑𝑡
= 0

Eq. 1

or

𝑑𝑆

𝑑𝑡
= 0

Eq. 2

Mann and Powell (2007) argue that the primary management goal is better captured by Eq. 2, as shell is

more economical to conserve than to replace. Also, oyster populations are most likely more limited by

the substrate upon which larvae attach and adults grow than by the number of oysters needed to

reproduce and replace the population.

 Powell, Klinck, and Soniat (2010) proposed a one-year forward prediction model in which the

shell impact of a given fishing scenario is simulated, using local population data in conjunction with

existing modeling techniques to arrive at quantitative estimations of shell loss. The model accepts initial

per-square-meter shell mass and oyster size distributions as input. Fishing effort is provided as fractions

2

removed of each resource for each month of the season. The model outputs the expected remaining

shell mass and harvests of sack and seed oysters after 𝑡 discrete fishing months. Oyster mortality credits

the shell budget, while fishing fractions debit oyster and shell resources. Surviving oysters grow larger

along a time-dependent von Bertalanffy growth curve. Fishing fractions are chosen heuristically with the

goal of minimizing shell loss.

 This thesis presents a formalization of the algorithm developed by Klinck, Powell, and Soniat in

the original model (2011). It begins with a high-level description of the data aggregation techniques used

as input for the model, followed by an abstract treatment of the model logic. It then describes the

software techniques the author used to restructure and improve the model, making it a publically-

accessible resource which draws its input from an online database. Finally, it describes some of the

preliminary results obtained from its simulations and its goals as a management tool for the oyster

industry.

3

2. Input Data

LDWF Stock Assessment

 The LDWF provides data appropriate for model input in the form of an annual stock assessment.

The LDWF conducts this assessment every summer across multiple Coastal Study Areas (CSA’s). Before

2012, there were seven such individually-managed CSA’s constituting the Louisiana public oyster

grounds, depicted in the map below (Figure 1). In 2012, these were consolidated into five stations.

Figure 1. LWDF Louisiana Coastal Study Areas (CSA’s).

Within each CSA are multiple stations, ranging in area from less than 10 acres to several hundred acres.

During the stock assessment, each station is sampled at various replicate locations. Divers deploy 0.25

m2 or 1.0 m2 grids on the reef and remove oysters and cultch. Live and dead oysters are recorded

separately and are measured based on the longest length across the shell with 1-mm precision. The

oysters from each replicate are tallied on an official Sample Data Sheet (Figure 2). Each oyster in the

replicate is counted and categorized into one of 41 different size classes, or work groups. Each size class

spans 5 mm, allowing oysters from 0 to 204 mm to be recorded. Additional environmental conditions for

each replicate (air temperature, wind direction, wind speed, turbidity, etc.) are recorded, along with a

description of the cultch quality and counts of various non-oyster species encountered on the reef. Data

in this format is available at least as far back as 1999, allowing a high size-resolution time series to be

4

available as input for the model (LDWF 2010). As of the 2012 stock assessment, the cultch, or material

constituting the reef bottom, is separated by type and weighted with 1-gram precision.

Figure 2. LDWF Oyster Sample Data Sheet.

 The model aims to use this data by applying the no-shell-loss criterion (Mann & Powell, 2007). A

wide range of simulation possibilities exist by focusing on various combinations of stations within a

particular year. For example, simulating a single station can be used for narrow-scope area

management, whereas simulating every station in a CSA together can be used to inform management

about the entire region.

5

Oyster Data

 For each included station, the model expects as input a size-to-count mapping for each

populated work group. Replicate work group data must be averaged on a per-station basis in order to

construct an abstract representative sample for each station included in the analysis. To accomplish this,

a simple arithmetic mean is taken. More replicates per station generally imply more accurate results.

 Consider the fictitious “Station 1” as an example. Station 1 is has a total area of 250 acres. Five

replicate samples, A - E, were surveyed at various locations, three on 0.25 m2 grids, and two on 1.0 m2

grids,1 as depicted in the table below (Table 1).

Table 1. Example replicate gear sizes.
Replicate Gear Size (m2)

A 0.25
B 1.00
C 0.25
D 1.00
E 0.25

 Oyster data was sampled at each of the five replicates. This replicate data is shown on the

following table (Table 2), with an empty entry indicating no oysters were found for that particular size

group.

Table 2. Example work group data.

Group (mm) Mid (mm) A B C D E

0 0 - 4 2 2 1 5
1 5 - 9 7 2 1 4 1
2 10 - 14 12 1 2
3 15 - 19 17 1
4 20 - 24 22 5
5 25 - 29 27 2 1 1
6 30 - 34 32 1 1 1 2

1 Grid sizes smaller than 1 m2 are only used by LDWF for cultch plants with dense oyster populations to lessen the
sampling effort. The example here uses assorted grid sizes to prevent loss of generality.

6

Assume only the size groups listed are under consideration. Note that for replicate D, the survey was

conducted, but no oysters were found.

 First, a live count of each work group must be computed for each station. A simple series of

steps are performed to obtain this. Assume the model is processing a set 𝑆 of included stations. For each

station 𝑠 ∈ 𝑆, let the total station area be 𝐴𝑠 and let 𝑅𝑠 be a collection of replicates in 𝑠. For each

replicate 𝑟 ∈ 𝑅𝑠 , let 𝑎𝑟 denote the gear area of the sample and let 𝑛𝑔,𝑟 denote the live number of

oysters in any work group 𝑔 ∈ 𝐺. Then the station’s estimated group-𝑔 oyster density, 𝑂𝑔,𝑠 is given by

the following formula (Eq. 3).

 𝑂𝑔,𝑠 =
1

|𝑅𝑠|
∑

𝑛𝑔,𝑟

𝑎𝑟
𝑟∈𝑅𝑠

 Eq. 3

Next, this density is used to compute the total estimated oyster count across the entire station,

𝑁𝑔,𝑠, given by the formula below (Eq. 4), where 𝐾 is a simple conversion from acres to square meters

(approximately 4046).

𝑁𝑔,𝑠 = 𝑂𝑔,𝑠 × 𝐴𝑠 × 𝐾 Eq. 4

Applying the last two equations for Station 1 yields the following results (Table 3).

Table 3. Example total predicted oysters.

g Group (mm) 𝑶𝒈,𝟏 𝑵𝒈,𝟏

0 0 – 4 5.2 5,260,910
1 5 – 9 5.8 5,867,940
2 10 – 14 2.4 2,428,110
3 15 – 19 0.8 809,371
4 20 – 24 4.0 4,046,860
5 25 – 29 2.6 2,630,460
6 30 – 34 3.4 3,439,830

The length of oysters in each work group is taken to be the mid-value of the size range of that

group (i.e. 0 – 4 mm oysters are considered 2 mm). It is this mapping of size and station to total oysters

that provides a complete estimate of the oyster population for the model.

7

The older version of the model could not treat stations individually. Thus, a further calculation

had to be made during the preprocessing stage whereby the included stations were combined into one.

In this scenario, the total estimated oysters across all stations in 𝑠 ∈ 𝑆, denoted 𝑁𝑔 is given in the

following formula (Eq. 5). However, in the current version of the model, this step is not necessary.

 𝑁𝑔 = ∑ 𝑁𝑔,𝑠

𝑠∈𝑆

 Eq. 5

Cultch Data

 Cultch, or the non-living reef environment of the oyster habitat, is a critical input parameter of

the model. It is the manipulation of this resource that determines the fishing sustainability of the

simulated region.

 Prior to 2012, LDWF did not take quantitative sample measurements of shell or cultch, making it

impossible to use station-specific values for the model’s required input. In such cases, this value was

roughly approximated by a single best-estimate density (𝑔/𝑚2) value. However, during the 2012 stock

assessment, detailed measurements of cultch were made, a policy which is expected to continue for

future assessments. To accommodate the additional information, the author created a revised LDWF

Oyster Sample Data Sheet.

 For each replicate, surveyed cultch is separated by type and weighted with 1-gram precision.

Along with the brown shell from dead oysters, measurements are recorded for limestone (frequently

planted as artificial shell to improve reef conditions), concrete, mussel shell, and any other additional

cultch types found. While the original model prototype did not distinguish between types of cultch, the

improvements introduced by the author allow cultch types to be individually specified as input.

However, the natural loss (dissolution and biodegradation) rates of each type of cultch is largely

unknown and is the subject of ongoing investigations.

8

 Consider the following data from the Station 1 example in the previous section (Table 4). Cultch

types were measured for each replicate below and measured in grams. Note that a blank entry indicates

that no cultch survey for that type was conducted, whereas a zero value indicates that the survey was

made, but no cultch of that type was found. Here, replicate E did not perform any cultch measurements

and replicate D failed to measure mussel weights.

Table 4. Example cultch data.

Cultch Types Mass (g)

Type Name A B C D E

0 Brown Oyster Shell 1076 1,412 1045 4006
1 Muddy Oyster Shell 301 2013 623 1099
2 Brown Limestone 1,002 0 985 4012
3 Mussels 0 205 0

 Assume the model is processing a set 𝑆 of included stations and that we are interested in each

type of cultch from a set 𝑇. For each station 𝑠, suppose 𝛿𝑡,𝑠 is an estimate of the type-𝑡 shell density (in

g/𝑚2) for that area. Let the total station area be 𝐴𝑠 and let 𝑅𝑠 be a collection of replicates in 𝑠. For each

replicate 𝑟 ∈ 𝑅𝑠, let 𝑎𝑟 denote the gear area of the sample and 𝑑𝑡,𝑟 be the amount of cultch of type 𝑡

measured in grams, or undefined if no sample was made. Finally, let 𝑤𝑡,𝑟 be defined by the below

equation (Eq. 6).

𝑤𝑡,𝑟 = {

𝑑𝑡,𝑟

𝑎𝑟
𝑖𝑓 𝑑𝑡,𝑟 𝑖𝑠 𝑑𝑒𝑓𝑖𝑛𝑒𝑑

𝛿𝑡,𝑠 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 Eq. 6

Thus, for the sample data provided above, all of replicate E and the mussel cultch type of replicate D

would be estimated from the respective 𝛿𝑡,𝑠 values.

 With a density estimate provided for each replicate, the average is computed next. The station’s

estimated type-𝑡 cultch density, 𝐶𝑡,𝑠 is given by the following formula (Eq. 7).

9

 𝐶𝑡,𝑠 =
1

|𝑅𝑠|
∑ 𝑤𝑡,𝑟

𝑟∈𝑅

 Eq. 7

Similarly to oysters, this density is used to compute the total estimated cultch mass across the

entire station, 𝑀𝑡,𝑠, given by the following formula (Eq. 8). It is this mapping of cultch type and station to

cultch mass that is presented as input to the model.

𝑀𝑡,𝑠 = 𝐶𝑡,𝑠 × 𝐴𝑠 × 𝐾 Eq. 8

The results of applying this logic to the data above is shown below (Table 5), with each 𝛿𝑡,𝑠 value

specified respectively.

Table 5. Total estimated cultch

t Type Name 𝜹𝒕,𝟏 𝑪𝒕,𝒔 𝑴𝒕,𝒔

0 Brown Oyster Shell 5,000 3,780.4 3,824,687,386
1 Muddy Oyster Shell 2,000 1,761.6 1,782,237,144
2 Brown Limestone 3,000 2992 3,027,051,280
3 Mussels 1,000 441 446,166,315

As was the case with oyster work groups, the older version of the model would require the

station information to be collapsed out, namely by Eq. 9 below.

 𝑀𝑡 = ∑ 𝑀𝑡,𝑠

𝑠∈𝑆

 Eq. 9

10

3. Model Logic

Introduction

 The data sources from the previous section provide the necessary input to the model. With this

information computed, the simulation can begin execution. The descriptions in this section are based on

the author’s analysis of the model documentation (Powell, Klinck & Soniat, 2011) and original Fortran

program (Klinck, Powell, & Soniat 2011).

 The diagram below (Figure 3) illustrates the basic logic of the simulation.

Figure 3. A flow chart of the model’s high-level logic.

 Note that the logic in this section applies to the original procedural versions of the model. The

newer version, implemented as database functions, applies the same concepts, but operates on tables.

This section will describe the pseudocode procedurally, while the SQL code itself is presented in the

Implementation section.

11

 The primary simulation routine consists of a high-level time loop, iterating for each month of the

simulation. Typically, this means a 12-month forward prediction between stock assessments. Within

each step, each oyster size group and each cultch type is simulated. Oysters of each size group are

removed due to a time-dependent natural mortality rate. Additionally, a monthly fishing fraction is

applied that removes oysters from each group. The sizes for each oyster are then increased along a

time-dependent von Bertalanffy curve to simulate seasonal growth. The shell mass equivalent from the

oysters dead from natural mortality during that month are credited to a specially-designated cultch type

(usually brown oyster shell). Then for all cultch types, a monthly dissolution factor and a fractional

fishing value debit the mass.

 This process repeats until the end of the simulation. A running total of shell and oysters fished is

kept updated for each iteration. By examining these results, the operator can fine-tune fishing rates to

optimize for a desired termination condition (i.e. minimized loss of shell). Each stage in this process and

the associated variables is discussed below.

Oyster Component

Oyster Mortality

 Natural oyster mortality is simulated using a mortality fraction that generalizes oysters lost due

to natural causes such as disease and predation. The associated mortality rate varies per month

(tracking annual variation in temperate) using a trigonometric model. For month 𝑡, if 𝑚𝑎𝑣𝑔 is the month

of average mortality, then this mortality rate 𝑚(𝑡) can be calculated for adult oysters (≥ 25 mm) as:

𝑚(𝑡) = 𝑚0,𝐴 + 𝑚1,𝐴 × sin (2𝜋 ×

𝑡 − 𝑚𝑎𝑣𝑔

12
) Eq. 10

and for juvenile oysters (< 25 mm) as:

12

𝑚(𝑡) = 𝑚0,𝐽 + 𝑚1,𝐴 × sin (2𝜋 ×

𝑡 − 𝑡𝑎𝑣𝑔

12
) Eq. 11

Here, 𝑚0,𝐴 and 𝑚0,𝐽 represent the mean annual mortality rate for adults and juveniles, respectively,

while 𝑚1,𝐴 and 𝑚1,𝐽 represent the annual mortality rate maximum deviation for adults and juveniles,

respectively. To calculate the number dead monthly, the resulting value for 𝑚 can be substituted in an

exponential decay equation, which is multiplied by N, the number of oysters in the work group, to

obtain 𝑁𝑑𝑒𝑎𝑑, the number of oysters dead for the given month, as shown by the equation below (Eq.

12).

𝑁𝑑𝑒𝑎𝑑 = 𝑁 × (1 − ⅇ−(m(t) 12⁄)) Eq. 12

The mortality fraction using some representative values (which assumes juvenile mortality rates are

higher than those of adult oysters) is depicted as a function of time in the graph below (Figure 4).

Figure 4. Typical mortality fractions for adult and juvenile oysters.

𝒓𝟎,𝑨: 0.51, 𝒓𝟏,𝑨: 0.41, 𝒓𝟎,𝑱: 1.2, 𝒓𝟏,𝑱: 1.1, 𝒕𝒂𝒗𝒈: 6

Note that while the graph above (as well as other graphs in this section) is continuous, the model applies

this fraction per-month in discretized units of time at the beginning of each month.

0.00

0.05

0.10

0.15

0.20

Dec Jan Feb Mar Apr May Jul Aug Sep Oct Nov Dec Jan

M
o

rt
al

it
y

Fr
ac

ti
o

n

Month

Sack/Seed

Spat

13

Oyster Growth

 Oysters in the simulation grow steadily along a von Bertalanffy growth curve. The standard von

Bertalanffy function allows animals to approach an asymptotic maximum length 𝜆∞ at annual rate 𝑘,

given the age 𝑎0 (in years) when length is zero. Specifically, the length 𝜆 of animals of age 𝑎 (in months)

is given by the equation below (Eq. 13).

𝜆(𝑎) = 𝜆∞ × (1 − ⅇ−𝑘(

𝑎
12

−𝑎0))
Eq. 13

The figure below illustrates such an age approximation for oysters (Figure 5).

Figure 5. A typical von Bertalanffy growth curve.

𝑳∞: 130, 𝒂𝟎: 0.045, 𝒌: 0.8

 A simple adjustment is made to this formula in the model to accommodate the slower growth

oysters experience during winter months. The growth rate 𝑘 is computed trigonometrically as a function

of time. Thus, given a mean annual growth rate 𝑘0, a growth rate maximum deviation 𝑘1, and a time (as

a fraction of a year) of average growth rate 𝑡𝑎𝑣𝑔, the growth rate 𝑘 at time 𝑡 (in months) is expressed by

the equation below (Eq. 14).

𝑘(𝑡) = 𝑘0 + 𝑘1 × sin (2𝜋 × (

𝑡

12
− 𝑡𝑎𝑣𝑔)) Eq. 14

0

50

100

150

0 12 24 36 48

Le
n

gt
h

 (
m

m
)

Age (months)

14

The figure below (Figure 6) illustrates how the growth rate 𝑘 fluctuates with respect to time.

Figure 6. Typical values for 𝑘 as a function of time over one year.

𝒌𝟎: 0.8, 𝒌𝟏: 0.09, 𝒕𝒂𝒗𝒈: 0.4

 The model transforms each work group’s length by one month’s growth increment at the end of

every month. Given an oyster during month 𝑡 with length 𝜆𝑡, the growth rate 𝑘(𝑡), and a maximum

length 𝜆∞, the new length after one month of growth 𝜆𝑡+1 can be calculated by the below equation (Eq.

15).

𝜆𝑡+1 = 𝜆∞ − (𝜆∞ − 𝜆𝑡) × ⅇ(−𝑘(𝑡)∕12) Eq. 15

The graph below (Figure 7) illustrates a change in simulated oyster growth when the above formula is

applied per-month.

0.60

0.70

0.80

0.90

1.00

Dec Jan Feb Mar Apr May Jul Aug Sep Oct Nov Dec Jan

G
rw

o
th

 R
at

e

Month of Year

15

Figure 7. Typical simulated oyster growth starting in August at 1 mm.

𝑳∞: 130, 𝒌𝟎: 0.8, 𝒌𝟏: 0.09, 𝒕𝒂𝒗𝒈: 0.4

Sack Conversion

 Oyster harvests are typically measured in sacks, 1.5-bushel quantities of oysters. In order to

determine this amount, oyster length must be converted to volume. A simple power fit is used to

determine the sack volume obtained from an oyster of a particular size. Given constants 𝑂𝑃𝑆𝑎 and

𝑂𝑃𝑆𝑏, the number of sacks 𝑉 of volume 𝑣 (in liters) of N oysters of length 𝜆 can be approximated by the

following formula (Eq. 16).

𝑉(𝜆) = 𝑁 ×

52.85

𝑂𝑃𝑆𝑎 × 𝜆𝑂𝑃𝑆𝑏 × 𝑣
 Eq. 16

The result of an oysters-per-sack conversion model is scaled by the number of oysters present and

volume of the sacks used in order to achieve this generalization. The graph below (Figure 8) illustrates

the similar relationship between oyster length and the corresponding number per sack.

0

20

40

60

80

0 2 4 6 8 10 12 14

Le
n

gt
h

 (
m

m
)

Time (months)

16

Figure 8. Typical sack volume for oysters of a particular size.

𝑵: 1, 𝑶𝑷𝑺𝒃:1.767 × 108, 𝑶𝑷𝑺𝒃: -2.926, 𝒗: 52.85

Cultch Component

Shell Loss

 Cultch on the reef is subject to environmental dissolution that occurs naturally. When reef

particles eventually deteriorate to a fine enough grain, they are unsuitable for oyster recruitment

(Gunter 1979). This is simulated by a simple fraction 𝑟𝑡 associated with each cultch type, which

represents the ratio of cultch that is lost each month. This amount is debited from the cultch stock at

the beginning of each month. Thus, given 𝑀 grams of a particular cultch type, the cultch lost to

dissolution 𝑀𝑑𝑖𝑠𝑠𝑜𝑙𝑣𝑒𝑑 is given by the following equation (Eq. 17).

𝑀𝑑𝑖𝑠𝑠𝑜𝑙𝑣𝑒𝑑 = 𝑟𝑡 × 𝑀 Eq. 17

 Values for cultch loss are difficult to estimate; however, experiments on local reefs are being

conducted to determine this parameter. Note that in the original model, this parameter was provided as

an annual decay rate. This was converted to a fraction in the updated model for simplicity, since the

percent removed is constant for each discrete month.

0

20

40

60

80

100

50 55 60 65 70 75 80

O
ys

te
rs

 P
e

r
Sa

ck

H
u

n
d

re
d

s

Oyster Length (mm)

17

Cultch From Dead Oysters

 Each oyster that dies naturally in place contributes its shell mass back into the reef environment.

This is simulated by approximating the mass of each oyster that undergoes natural mortality and adding

this to the cultch mass stock of a specially-designated cultch type representing dead oyster shell. A

power model is used to perform this conversion. Given model variables 𝑀𝑎 and 𝑀𝑏, the shell massed

𝑀𝑔𝑎𝑖𝑛𝑒𝑑 gained from 𝑁 oysters of length 𝜆 can be approximated by:

𝑀𝑔𝑎𝑖𝑛𝑒𝑑 = N × 𝑀𝑎 × 𝜆𝑀𝑏 Eq. 18

 The relationship between length and contributed shell mass is demonstrated by representative

values of 𝑀𝑎 and 𝑀𝑏 in the graph below (Figure 9).

Figure 9. Typical contributed shell weights as a function of oyster length.

𝑴𝒂: 0.0004, 𝑴𝒃: 2.8213

 This relationship is also useful for determining the mass of live oysters still on the reef. The same

formula can be used to track changes in live oyster weight, assuming a conversion factor from shell

weight to whole oyster weight. This may be helpful when considering live biomass as a sustainability

criterion.

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80

W
e

ig
h

t
(g

)

Oyster Length (mm)

18

Sack Conversion

 Like oysters, shell mass must be converted into sacks. Given 𝑀 grams of shell, the corresponding

sack quantity 𝑉 for sacks of volume 𝑣 (in liters) is given by the following equation (Eq. 19).

𝑉(𝑀) =

𝑀

𝑑 × 𝑣 × 𝑝
 Eq. 19

The variables 𝑑 and 𝑝 above are specific to each cultch type. Specifically, 𝑑 represents the estimated

density of the shell (𝑔/𝐿) that carries out the conversion. The variable 𝑝 is a packing coefficient, the

ratio of occupied volume of shell to volume of cultch. The packing coefficient is required due to the

loose packing of the cultch inside of the sacks (i.e. 1 is perfect packing, whereas lower values indicate

more dispersed packing). The graph below (Figure 10) illustrates this linear relationship for typical

values.

Figure 10. Typical shell mass-to-volume relationship

𝒅: 2200, 𝒗: 52.85, 𝒑: 0.59

Fishing

 The user initializes the model with oyster fishing rates for each month of the simulation. These

rates, 𝑅𝑠𝑎𝑐𝑘, 𝑅𝑠𝑒𝑒𝑑, and 𝑅𝑐𝑢𝑙𝑡𝑐ℎ are arrays of percentages of resources fished for sack oysters (≥ 75

mm), seed/spat oysters (< 75 mm), and cultch mass, respectively. Each of these is defined explicitly to

account for the month’s fishing activity. Oyster fishing is simulated by simply removing the

0

0.05

0.1

0.15

0.2

0.25

0 2 4 6 8 10 12 14 16

Sh
e

ll
V

o
lu

m
e

 (
sa

ck
s)

Shell Mass (kg)

19

corresponding fraction of the quantity of each oyster work group. Cultch fishing is simulated by

removing the corresponding fraction of each cultch type’s mass. Each cultch type is assumed to be

fished in equal proportions.

 Given 𝑁 seed-sized oysters, the number fished 𝐹𝑠𝑎𝑐𝑘,𝑚 from the available population in month

𝑚 is approximated by the equation below (Eq. 20).

𝐹𝑠𝑒𝑒𝑑,𝑚 = 𝑅𝑠𝑒𝑒𝑑,𝑚 × 𝑁 Eq. 20

 Likewise, given 𝑁 sack-sized oysters, the number fished 𝐹𝑠𝑎𝑐𝑘,𝑚 from the available population in

month 𝑚 is approximated by the equation below (Eq. 21).

𝐹𝑠𝑎𝑐𝑘,𝑚 = 𝑅𝑠𝑎𝑐𝑘,𝑚 × 𝑁 Eq. 21

 Finally, given 𝑀 grams of remaining shell, the shell mass fished 𝐹𝑐𝑢𝑙𝑡𝑐ℎ,𝑚 from the available

stock in month 𝑚 is approximated by the equation below (Eq. 22).

𝐹𝑐𝑢𝑙𝑡𝑐ℎ,𝑚 = 𝑅𝑐𝑢𝑙𝑡𝑐ℎ,𝑚 × 𝑀 Eq. 22

 Fishing from an oyster reef generally occurs in one of three ways (Soniat et al, 2012):

 (1) sack oysters are directly harvested for the market,

 (2) shell and seed oysters are fished for transplant to private leases, and

 (3) shell, seed, and sack oysters are all harvested together for transplant to private leases.

 Since sack oysters, seed oysters, and shell mass are handled independently, care must be taken

to ensure that the fishing fractions entered represent realistic fishing scenarios. For example, for direct

sack harvest represented by the first scenario, the incidental harvest of seed and shell is assumed to be

minimal. When simulating the second scenario, seed and shell should be harvested at the same fraction.

For the third scenario, all rates should be equivalent.

20

 Because each month is discretized in the way previously described, the order in which fishing

rates apply each month affects the resulting estimated sustainable harvest. An earlier version of the

model treated each removal fraction independently to the month's initial stock. However, the newer

version applies fishing fractions to the stock remaining after oyster mortality and shell dissolution. This

has the precautionary effect of producing lower sustainable fishing estimates.

Model Pseudocode

 The logic of the model described in the preceding section is now fully detailed in high-level

pseudocode. In the current implementation, the model runs independently for each station and results

are aggregated as needed for displaying the results. The algorithms described here are slightly simplified

for the sake of clarity, omitting some minor calculated values that are sometimes important for

interpreting the results.

 Table 6 below describes the global parameters required, which are used by every station in the

simulation. These parameters control the size classification of oysters, the sack capacity, and the months

for which the model is run.

Table 6. Global model parameters.

Symbol Description

𝒕𝟎 Initial month of simulation (1 = January, etc.).
𝒕𝒎𝒂𝒙 Number of months to run the simulation.

𝒗 Sack capacity (L / sack).
𝝀𝒔𝒂𝒄𝒌 Minimum sack oyster size (mm).
𝝀𝒔𝒆𝒆𝒅 Minimum seed oyster size (mm).

 Table 7 describes each per-station parameter. These parameters can be specified separately for

each station in the simulation. This allows a high degree of flexibility when dealing with oysters from

different regions, In practice, however, simulations will probably treat most stations identically,

excepting only a few stations in which different parameters must apply. For the older version of the

21

model without station-specific input, the per-station parameters above are simply globals applied to the

input as a whole.

 Let 𝑠 be the current station. The parameters 𝑁, 𝐿, and 𝐶 in Table 7 are, respectively, the

estimated oyster quantities (𝑁𝑡,𝑠), the associated mid-value lengths, and the estimated cultch masses

per type (𝑀𝑡,𝑠), as described from the Model Data section. The remaining parameters correspond to the

values described in the Model Logic section above.

Table 7. Per-station model parameters.

Symbol Description

Data Parameters

N Array of initial oyster numbers.
L Array of initial oyster sizes (mm), with indices corresponding to N.

𝑴 Array of initial cultch mass (g) of each cultch type.

Fishing Parameters

𝐑𝒔𝒂𝒄𝒌 Array of monthly removal fractions of sack.
𝐑𝒔𝒆𝒆𝒅 Array of monthly removal fractions of seed/spat.

𝐑𝒄𝒖𝒍𝒕𝒄𝒉 2D array of monthly removal fractions for each cultch type.
Cultch Parameters

𝑵𝑳 Array of monthly natural shell loss fractions for each cultch type.
𝑫 Array of shell densities (𝑔 ∕ 𝐿) for each cultch type.
𝑷 Array of packing coefficients for each cultch type.

Oyster Growth Parameters

𝑴𝒂 Mass model coefficient.
𝑴𝒃 Mass model exponent.

𝑶𝑷𝑺𝒂 Per-sack model coefficient.
𝑶𝑷𝑺𝒃 Per-sack model exponent.

𝝀∞ Asymptotic maximum oyster size (mm).
𝒌𝟎 Mean annual growth rate.
𝒌𝟏 Growth rate freedom.

𝒕𝒂𝒗𝒈 Time of average growth rate (years).

Oyster Mortality Parameters
𝒎𝟎,𝑨 Adult mean annual mortality rate.
𝒎𝟏,𝑨 Adult annual mortality rate freedom.
𝒎𝟎,𝑱 Juvenile mean annual mortality rate.

𝒎𝟏,𝑱 Juvenile annual mortality rate freedom.

𝒎𝒂𝒗𝒈 Month of average mortality (1 = January, etc.).

 For all pseudocode used in this section, assume a dynamically-typed language similar to

JavaScript. The array indexing scheme used is informal.

22

GET_STAGE

 This routine is used to classify oysters of a given length (𝑙𝑒𝑛𝑔𝑡ℎ) in mm into SACK, SEED, or SPAT

constants based on specified global threshold sizes 𝜆𝑠𝑎𝑐𝑘 and 𝜆𝑠𝑒𝑒𝑑.

function GET_STAGE (𝑙𝑒𝑛𝑔𝑡ℎ) {
 if (𝑙𝑒𝑛𝑔𝑡ℎ ≥ 𝜆𝑠𝑎𝑐𝑘)
 return SACK
 else if (𝑙𝑒𝑛𝑔𝑡ℎ ≥ 𝜆𝑠𝑒𝑒𝑑)
 return SEED
 else
 return SPAT
}

GET_MORTALITY_FRACTION

 This routine computes the fraction of oysters dead due to natural causes at a given month

(𝑡𝑖𝑚𝑒) and of length (𝑙𝑒𝑛𝑔𝑡ℎ) in mm. The fraction is based on an exponential model with a time-

dependent rate that uses different constants for adult and juvenile oysters. At month 𝑚𝑎𝑣𝑔, the

mortality rate is equivalent to the respective mean rate 𝑟0, but can vary seasonally by as much as ± 𝑟1.

function GET_MORTALITY_FRACTION (𝑙𝑒𝑛𝑔𝑡ℎ, 𝑡𝑖𝑚𝑒) {
 if (GET_STAGE(𝑙𝑒𝑛𝑔𝑡ℎ) ≠ SPAT)

 var 𝑚 ← 𝑚0,𝐴 + 𝑚1,𝐴 × sin (2𝜋 ×
𝑡𝑖𝑚𝑒−𝑚𝑎𝑣𝑔

12
)

 else

 var 𝑚 ← 𝑚0,𝐽 + 𝑚1,𝐽 × sin (2𝜋 ×
𝑡𝑖𝑚𝑒−𝑚𝑎𝑣𝑔

12
)

 return 1 − 𝑒−(m∕12)
}

GET_SACKS_PER_OYSTER

 This routine calculates the conversion factor for oysters of a particular length (𝑙𝑒𝑛𝑔𝑡ℎ) in mm

for calculating sack volume from count. A simple polynomial model is used to perform this conversion

using two constants, the 𝑂𝑃𝑆𝑎 coefficient and the 𝑂𝑃𝑆𝑎 exponent. Since this formula was derived from

experiments using 1.5 bushel sacks, an additional scaling factor 𝑣 is added that permits a global, user-

defined sack capacity.

23

function GET_SACKS_PER_OSYTER (length) {

 return
52.85

𝑂𝑃𝑆𝑎×𝑙𝑒𝑛𝑔𝑡ℎ𝑂𝑃𝑆𝑏×𝑣

}

GET_SACKS_PER_GRAM

 This routine calculates a linear conversion factor for cultch of type 𝑐 for calculating sack volume

from cultch mass. The parameterized density and packing coefficient is used to perform the conversion,

and the global 𝑣 variable is used to allow a user-defined sack capacity.

function GET_SACKS_PER_GRAM (c) {

 return
1

𝐷[𝑐]×𝑃[𝑐]×𝑣

}

GET_OYSTER_MASS

 This routine relates the length of an oyster to its associated mass. A simple polynomial model is

used to perform this conversion using two constants, the 𝑀𝑎 coefficient and the 𝑀𝑏 exponent. This

function is used to estimate both the shell contribution of dead oysters and (by derivation) the mass of

living oysters on the reef.

function GET_OYSTER_MASS (length) {
 return 𝑀𝑎 × 𝑙𝑒𝑛𝑔𝑡ℎ𝑀𝑏
}

GET_NEW_LENGTH

This routine is used to calculate the adjusted length of an oyster of a particular length (𝑙𝑒𝑛𝑔𝑡ℎ)

in mm after growth over the course of a given month (𝑡𝑖𝑚𝑒) using a von Bertalanffy growth curve. The

growth rate 𝑘 is time-dependent, specified by an average rate 𝑘0 at time 𝑡𝑎𝑣𝑔with freedom of ±𝑘1. As

the oyster grows larger, it approaches an asymptotic maximum size, specified by 𝜆∞. In the case that the

oyster already exceeds 𝜆∞, the original length is returned (in the case of exceptionally large input

oysters).

24

function GET_NEW_LENGTH (𝑙𝑒𝑛𝑔𝑡ℎ, 𝑡𝑖𝑚𝑒) {
 if (𝑙𝑒𝑛𝑔𝑡ℎ > 𝑙∞)
 return 𝑙𝑒𝑛𝑔𝑡ℎ
 else {

 var 𝑘 ← 𝑘0 + 𝑘1 × sin (2𝜋 × (
𝑡𝑖𝑚𝑒

12
− 𝑡𝑎𝑣𝑔))

 return 𝜆∞ − (𝜆∞ − 𝑙𝑒𝑛𝑔𝑡ℎ) × ⅇ−𝑘/12
 }
}

25

GET_NET_SHELL_LOSS

 This is the primary routine of the model. It takes all input parameters and performs the entire

station simulation, returning the difference between initial and starting cultch types.

function GET_NET_SHELL_LOSS (𝑠𝑡𝑎𝑡𝑖𝑜𝑛) {
 var t ← 𝑡0
 var total_initial_shⅇll ← 0
 for each (m in M)
 total_initial_shⅇll ← total_initial_shⅇll + M[m]
 var shⅇll ← total_initial_shell
 var harvested_oyster_sacks ← 0
 var harvested_shell_sacks ← 0
 while (t – 𝑡0 < 𝑡𝑚𝑎𝑥) {
 //Perform oyster simulation.
 var nⅇw_shⅇll ← 0
 for each (g in N) {
 var dⅇad ← GET_MORTALITY_FRACTION(t, L[g]) × N[g]
 nⅇw_shⅇll ← nⅇw_shⅇll + GET_OYSTER_MASS(L[g]) × dead
 if (GET_STAGE(L[g]) = SACK)
 var fishⅇd ← R𝑠𝑎𝑐𝑘[t] × (N[g] – dead)
 else
 var fishⅇd ← R𝑠𝑒𝑒𝑑[t] × (N[g] – dead)
 harvested_oyster_sacks ← harvested_oyster_sacks
 + fished × GET_SACKS_PER_OYSTER(L[g])
 N[g] ← N[g] – dead – fished
 L[g] ← GET_NEW_LENGTH(L[g],t)
 }
 //Perform cultch simulation.
 for each (m in M) {
 if (m = DEAD_OYSTER_SHELL_INDEX)
 var shell_created ← new_shell
 else
 var shⅇll_crⅇatⅇd ← 0
 var shⅇll_lost ←NL[m] × M[m]
 var shell_fished ← R𝑐𝑢𝑙𝑡𝑐ℎ[m,t]
 × (M[m] + shell_created – shell_lost)
 var harvⅇstⅇd_shⅇll_sacks ← harvⅇstⅇd_shⅇll_sacks
 + shell_fished × GET_SACKS_PER_GRAM (m)
 M[m] ← M[m] – shell_lost + shell_created – shell_fished
 shⅇll ← shⅇll – shell_lost + shell_created – shell_fished
 }
 t ← t + 1
 }
 return (total_initial_shell – shell)
}

26

 The GET_NET_SHELL_LOSS function will be run for every station in the set of stations under

consideration. Assume the per-station constants referenced above are valid for the current station being

simulated.

Analysis

 The bulk of the per-station code is contained within a month-iterating loop, which itself contains

two independent loops iterating through the number of work groups and cultch types, respectively. Let

𝑡 = 𝑡𝑚𝑎𝑥, 𝑚 = |𝑀|, and 𝑛 = |𝑁| from the above pseudocode. Assuming the constant run-time of all

basic arithmetic and indexing, the algorithm has a run time complexity of Θ(𝑡 × (𝑛 + 𝑚)), or,

equivalently, Θ(𝑡 × max (𝑛, 𝑚)) (Cormen, 2009).

 Furthermore, if running the simulation for each of 𝑠 = |𝑆| stations, each with a maximum of

𝑐𝑚𝑎𝑥 cultch types and 𝑔𝑚𝑎𝑥 work groups, the total run-time will have a worst-case run-time complexity

of 𝑂(𝑠 × 𝑡 × (𝑔𝑚𝑎𝑥 + 𝑐𝑚𝑎𝑥)). In reality, the number of oyster work groups will exceed the number of

cultch types in most cases. Therefore, the usual-case upper-bound run-time is 𝑂(𝑠 × 𝑡 × 𝑔𝑚𝑎𝑥).

 These bounds do not include the cost of performing the replicate aggregation for each station.

Assuming a maximum per-station replicate count of 𝑟𝑚𝑎𝑥, this will introduce another worst-case 𝑂(𝑠 ×

𝑟𝑚𝑎𝑥 × (𝑔𝑚𝑎𝑥 + 𝑐𝑚𝑎𝑥)) preprocessing factor. However, since the replicate count is usually low, the

usual-case upper-bound run-time above is expected to hold.

 The SQL implementation of the model has a similar complexity. However, the parallelization and

optimizations built into the database engine may decrease the run-time by a constant factor as

determined by available CPU’s, caching ability, and other factors.

Future Changes

 While the current model version provides all the currently-desired functionality, the possibility

of expanding it is still open. One of the most useful features would be the inclusion of an algorithm to

obtain the appropriate fishing fractions automatically, within the desired precision. The current SQL

27

implementation (see the following section) allows the user to specify fishing rates in relative terms. A

simple iterative algorithm could be used to determine which additional fishing modifier would best meet

certain sustainability criterion. Additional investigation into the algorithm itself could allow a more

mathematically elegant solution to this problem. This is left as a future goal if such a feature is deemed

useful.

 Additionally, the extent to which oyster growth and mortality and cultch loss are dependent on

temperature and salinity is not widely understood. As these relationships become better-known, the

model can be automated to use environmental conditions from stock assessments to estimate those

parameters.

28

4. Implementation

Introduction

 The oyster sustainability model has undergone significant changes since its first conception.

Originally a Fortran model, the author transcoded the model in Java, then subsequently rebuilt it as a

MS SQL algorithm. This section describes various implementation details and a discussion on the choices

that were made. It also demonstrates some of the front-end features the implementation provides.

Previous Implementations

Fortran Implementation

In March 2010, Dr. John Klinck coded the initial version of the sustainability model in Fortran

based on a rough specification developed with Eric Powell and Thomas Soniat. Input was controlled via

formatted text files specified by command line arguments. Output was generated as a text report. UNO

undergraduate student Janak Dahal worked to link the model to LDWF stock assessment data. Due to

the complexity of selecting and preparing this data for consumption by the model, a user interface was

required. Using Microsoft Access, a stock assessment database was created, along with associated forms

for selecting and aggregating data. However, interaction with this architecture was difficult since the

output report had to be parsed manually to extract specific data at known offsets. The model itself was

treated as a black box. It soon became evident that the model needed to be reconstructed in order to be

more easily integrated into a user interface.

Java Implementation

The architecture of the stock assessment model was completely renovated beginning in May

2011. The Access databases containing sample data were exported into the more robust MS SQL format.

The author transcribed the original Fortran code into Java. In doing so, several improvements were

made. As the original program was mostly untested, several logical errors were discovered that could

29

easily have resulted in invalid output. These included bugs in the main simulation loop that accumulated

fishing statistics. Additionally, care was given to prevent program crashes. Edge-case input data (i.e. null

or zero values) in the original model could have potentially resulted in division by zero or other fatal

errors. These cases were addressed using conditional logic and exception-handling. The new model

program was deployed as a REST (Representational State Transfer) web service on the Apache Tomcat

platform. This service type can be accessed by any technology capable of sending HTTP requests and

features can easily be exposed or hidden via simple configuration. The RESTful architecture was also

particularly appealing as it allowed the model to remain agnostic to any future integration changes. The

server accepted a single JSON-formatted string as input. This string was parsed into objects and used to

instantiate Java Objects required by the model. The simulation was then performed and output sent

back to the client, packaged in JSON format.

Current Implementation

Introduction

While the Java implementation provided a clear upgrade from the original prototype, it did not

offer the flexibility required for large-scale interaction with the available data. It would also be clumsy

for the web server to interact with the REST server if a larger load of data was required to be

interchanged. To improve upon this, a second implementation was provided by the author, this time

using MS SQL as the entire foundation. A new stock assessment database schema proposed by the

author was implemented by undergraduate student Josh Gallegos, which made the data from the

original Access database more structured. Gallegos also assisted by updating front-end forms, providing

additional database implementation duties, and validating oyster data already entered.

A completely in-database implementation provides several advantages over the previous

solutions. First, latency and throughput are improved, since the data requires no inter-process

communication to receive and output the results. The algorithms further benefit from the

30

parallelization, caching, and performance optimizations native to the database engine. Furthermore, it

allows previous boiler-plate data management structures that were required in the original

implementations to be handled by database engine itself, eliminating possible errors. Finally, it allows

the logic to be expressed in a universal syntax. The syntax of MS SQL is well-known and allows future

maintainers to focus on the logic rather than the designer’s specific construction of data structures.

This implementation choice had very few disadvantages. The only significant consideration was

that it is a departure from the original code. The first two implementations were traditional procedural

algorithms with a front-end command-line interface. The database implementation introduces a

dependency on the MS SQL environment and associated data tables. However, since the data and server

environment have been stable for some time, this is not considered a significant detriment.

By transitioning to the pure SQL format, new features were able to be added. Simulations can be

easily run per-station, so it is no longer necessary to aggregate all input into a single result. Also, results

can be fine-tuned and adjusted with little expense.

Data Schema

The original oyster data schema was developed by Janak Dahal in MS Access from the original

paper data forms. Dahal and the author migrated this to MS SQL via a direct format conversion in May

of 2011. The schema remained relatively unchanged until the construction of the MS SQL model

implementation, which was completed in mid 2013. During this time, the developers took the

opportunity to improve the database, introduce additional constraints, and generalize some features.

31

The current scheme diagram for stock assessment data is depicted in the diagram below (Figure

11).

Figure 11. The data MS SQL database schema.

 The ASSESSMENTS table is used to provide the highest-level separation of data samples. A new

entry is created every year during the annual stock assessment. The SURVEYS table is used to group

together replicates within a single station. This design was chosen so that stations could potentially be

re-surveyed (as was the case in August 2012, when some stations had to be re-surveyed after Hurricane

Isaac). Each SURVEYS entry is associated with a STATIONS entry. This abstracts the station information

from the sampling initiative (a problem with the old schema, as station acreage may change annually

with changes in policy).

32

The REPLICATES table contains entries associated with their respective surveys. For each

replicate, an entry from GEAR_TYPE is associated. Finally, OYSTER_SAMPLES and CULTCH_SAMPLES

provide the replicate data on a per-size-group and per-cultch-type basis, respectively.

Model Schema

 The figure below (Figure 12) shows a simplified version of the MS SQL schema corresponding to

the model configuration data.

Figure 12. The model MS SQL database schema.

The MODEL_INPUT table allows users to enter the global variables for their simulation. One or

more MODEL_INPUT_SURVEYS are associated with each MODEL_INPUT entry that specifies the

SURVEYS entry the model will be run against. For each of these, different profiles can be configured. The

33

per-station parameters described in the Pseudocode section are broken down into

MODEL_GROWTH_PROFILES, MODEL_MORTALITY_PROFILES, MODEL_CULTCH_PROFILES, and

MODEL_FISHING_PROFILES. This allows stations to potentially re-use profiles as deemed necessary.

 Of particular interest is the FISHING_MULTIPLIER field in the MODEL_INPUT_SURVEYS table.

This value is multiplied by the fishing fractions provided in the MODEL_FISHING_POLICIES table to obtain

the effective fishing fractions. This allows the user to configure each fishing profile as independent

proportions, then scale the values quickly when configuring each specific station.

Simulation Schemas

 The figure below (Figure 13) describes the schema used for the data simulation. A separate

stored procedure runs, acting on a single MODEL_INPUT table. This generates a new MODEL_OUTPUT

entry. Information from the MODEL_INPUT_SURVEYS is copied over as a new

MODEL_OUTPUT_SURVEYS entry so that MODEL_INPUT_SURVEYS data can be deleted and modified

without affecting the output from a previous run.

 The MODEL_OUTPUT_OYSTERS and MODEL_OUTPUT_CULTCH tables contain the simulation

results. The simulation procedure updates the removal fractions and uses SQL’s calculated column

feature to perform the conversions automatically. Both tables track the resource’s starting amount

(count for oysters and mass for cultch) and the quantities removed by category. The simulation

procedure then uses this information to determine the remaining quantity, which becomes the next

month’s initial amount. Thus, a station that runs for 𝑡 months will require 𝑡 + 1 rows of output per

resource, as an additional final-results entry is always required.

34

Figure 13. The model simulation MS SQL schema.

Procedures

 The logic of the model is wrapped in a single procedure, RUN_MODEL, depicted in the sample

on the following pages. For brevity and security reasons, the complete source is not included.

35

BEGIN TRANSACTION MODEL

 -- Perform cleanup of older models.

 DECLARE @cleanup_days int = 30;

 DECLARE @cleanup_delete_protected bit = 0;

 EXEC dbo.CLEAR_MODEL_OUTPUT @cleanup_days, @cleanup_delete_protected;

 -- Setup

 DECLARE @run_date datetime = SYSDATETIME();

 DECLARE @total_months int, @initial_month int;

 SELECT

 @total_months = MONTHS,

 @initial_month = INITIAL_MONTH

 FROM MODEL_INPUT WHERE MODEL_INPUT.INPUT_ID=@input_id

 -- Check input parameters.

 IF (@@ROWCOUNT != 1)

 BEGIN

 RAISERROR('The INPUT_ID provided is invalid.',15,1)

 ROLLBACK TRANSACTION MODEL

 END

 ELSE IF NOT EXISTS (SELECT * FROM MODEL_INPUT_SURVEYS WHERE MODEL_INPUT_SURVEYS.INPUT_ID=@input_id)

 BEGIN

 RAISERROR('There are no MODEL_INPUT_SURVEYS associated with the provided INPUT_ID.',15,1)

 ROLLBACK TRANSACTION MODEL

 END

 ELSE IF EXISTS (SELECT * FROM MODEL_OUTPUT WHERE MODEL_OUTPUT.OUTPUT_LABEL = @output_label)

 BEGIN

 RAISERROR('A MODEL_OUTPUT record already exists with the given OUTPUT_LABEL.',15,1)

 ROLLBACK TRANSACTION MODEL

 END

 ELSE

 BEGIN

36

 -- Copy MODEL_INPUT parameters into a new MODEL_OUTPUT row to save the state of the input.

 INSERT INTO MODEL_OUTPUT (

 MODEL_OUTPUT.RUN_DATE,

 MODEL_OUTPUT.PERSIST_RESULTS,

 MODEL_OUTPUT.INPUT_ID,

 MODEL_OUTPUT.MINIMUM_SIZE_SEED,

 MODEL_OUTPUT.MINIMUM_SIZE_SACK,

 MODEL_OUTPUT.DEAD_CULTCH_TYPE_ID,

 MODEL_OUTPUT.DEAD_CULTCH_SUBTYPE_ID,

 MODEL_OUTPUT.INITIAL_MONTH,

 MODEL_OUTPUT.MONTHS,

 MODEL_OUTPUT.INPUT_NAME,

 MODEL_OUTPUT.INPUT_DESCRIPTION,

 MODEL_OUTPUT.SACK_CAPACITY,

 MODEL_OUTPUT.CREATED_BY_ID,

 MODEL_OUTPUT.OUTPUT_LABEL

)

 SELECT

 @run_date,

 0, /*false*/

 INPUT_ID,

 MINIMUM_SIZE_SEED,

 MINIMUM_SIZE_SACK,

 DEAD_CULTCH_TYPE_ID,

 DEAD_CULTCH_SUBTYPE_ID,

 INITIAL_MONTH,

 MONTHS,

 INPUT_NAME,

 INPUT_DESCRIPTION,

 SACK_CAPACITY,

 CREATED_BY_ID,

 @output_label

 FROM MODEL_INPUT WHERE MODEL_INPUT.INPUT_ID=@input_id

 -- Determine the new OUTPUT_ID of the MODEL_OUTPUT row we just created.

 DECLARE @output_id int = SCOPE_IDENTITY();

37

 -- Copy the state of each MODEL_INPUT_SURVEYS into new MODEL_OUTPUT_SURVEY rows.

 INSERT INTO MODEL_OUTPUT_SURVEYS (

 MODEL_OUTPUT_SURVEYS.OUTPUT_ID,

 MODEL_OUTPUT_SURVEYS.INPUT_SURVEY_ID,

 MODEL_OUTPUT_SURVEYS.ACRES,

 MODEL_OUTPUT_SURVEYS.ASSESSMENT_NAME,

 MODEL_OUTPUT_SURVEYS.SURVEY_NAME,

 MODEL_OUTPUT_SURVEYS.REGION_NAME,

 MODEL_OUTPUT_SURVEYS.FISHING_MULTIPLIER,

 MODEL_OUTPUT_SURVEYS.STATION_CODE,

 MODEL_OUTPUT_SURVEYS.STATION_NUMBER

)

 SELECT

 @output_id,

 MODEL_INPUT_SURVEYS.INPUT_SURVEY_ID,

 SURVEYS.ACRES,

 CONVERT(nvarchar(4),ASSESSMENTS.YEAR) + N' ' + ASSESSMENTS.ASSESSMENT_NAME,

 STATIONS.STATION_NAME + CASE WHEN

 SURVEYS.SURVEY_SUFFIX IS NULL THEN '' ELSE ' (' + SURVEYS.SURVEY_SUFFIX + ')' END,

 REGIONS.REGION_NAME,

 MODEL_INPUT_SURVEYS.FISHING_MULTIPLIER,

 STATIONS.STATION_CODE,

 STATIONS.STATION_NUMBER

 FROM

 MODEL_INPUT_SURVEYS

 INNER JOIN SURVEYS ON SURVEYS.SURVEY_ID=MODEL_INPUT_SURVEYS.SURVEY_ID

 INNER JOIN STATIONS ON STATIONS.STATION_ID=SURVEYS.STATION_ID

 INNER JOIN ASSESSMENTS ON ASSESSMENTS.ASSESSMENT_ID=SURVEYS.ASSESSMENT_ID

 INNER JOIN REGIONS ON REGIONS.REGION_ID=STATIONS.REGION_ID

 WHERE

 MODEL_INPUT_SURVEYS.INPUT_ID=@input_id

38

 -- Run the actual simulation.

 DECLARE @time int = 1, @month int = @initial_month;

 WHILE (@time <= @total_months+1)

 BEGIN

 -- Run the oyster simulation, getting data from the previous output rows.

 INSERT INTO MODEL_OUTPUT_OYSTERS (

 OUTPUT_SURVEY_ID,

 TIME,

 MONTH_ID,

 GROUP_ID,

 OYSTER_STAGE_ID,

 LENGTH,

 INITIAL_COUNT,

 MORTALITY_FRACTION,

 FISHING_FRACTION,

 MASS_CONVERSION,

 SACK_CONVERSION

)

 SELECT * FROM dbo.SIMULATE_OYSTERS(@output_id, @time, @month)

 -- Run the cultch simulation, getting data from the previous output rows.

 INSERT INTO MODEL_OUTPUT_CULTCH (

 OUTPUT_SURVEY_ID,

 TIME,

 MONTH_ID,

 CULTCH_TYPE_ID,

 CULTCH_SUBTYPE_ID,

 INITIAL_MASS,

 NEW_MASS,

 LOSS_FRACTION,

 FISHING_FRACTION,

 SACK_CONVERSION

)

 SELECT * FROM dbo.SIMULATE_CULTCH(@output_id, @time, @month)

 -- Go to the next month.

 SET @time = @time + 1;

 SET @month = ((@month) % 12) + 1;

 END

39

 COMMIT TRANSACTION MODEL

 END

 -- Return the new OUTPUT_ID that was generated.

 RETURN @output_id;

40

 For housekeeping purposes, a stored procedure REMOVE_OLD_ENTRIES clears away any

previous results older than 30 days that are not flagged as PERSISTED. RUN_MODEL then copies the

necessary MODEL_INPUT_SURVEYS data into new MODEL_OUTPUT_SURVEYS in order to retain their

values across future edits. It then iterates through every month of the simulation. Calls to table-valued

functions SIMULATE_OYSTERS and SIMULATE_CULTCH are then made, which abstract the per-month

changes for each station’s resources.

 For the first month of the simulation, the model must first collect the data from the stored stock

assessment data. Each month thereafter may be run simply by examining the previous entries. The code

for the latter cases is presented below.

 First, oysters are simulated as follows:

41

DECLARE @last_month int = ((@month - 2) % 12) + 1;

INSERT INTO @RESULTS

SELECT

 OLD.OUTPUT_SURVEY_ID,

 @time,

 @month,

 OLD.GROUP_ID,

 dbo.GET_OYSTER_STAGE(MINIMUM_SIZE_SEED,MINIMUM_SIZE_SACK,OLD.NEW_LENGTH),

 OLD.NEW_LENGTH,

 OLD.REMAINING,

 CASE WHEN @time=MONTHS+1 THEN 0 ELSE dbo.GET_MORTALITY_FRACTION(

 M.MORTALITY_JUVENILE_0,M.MORTALITY_JUVENILE_1,M.MORTALITY_ADULT_0,M.MORTALITY_ADULT_1,

 M.MINIMUM_SIZE_ADULT,M.MORTALITY_T_AVERAGE_MONTH_ID,OLD.NEW_LENGTH,@month) END,

 CASE WHEN @time=MONTHS+1 THEN 0 ELSE OLD.FISHING_MULTIPLIER * dbo.GET_FISHING_RATE(

 MINIMUM_SIZE_SEED,MINIMUM_SIZE_SACK,

 F.SPAT_FRACTION,F.SEED_FRACTION,F.SACK_FRACTION,OLD.NEW_LENGTH) END,

 dbo.GET_OYSTER_MASS(OYSTER_MASS_A, OYSTER_MASS_B,OLD.NEW_LENGTH),

 dbo.GET_OYSTER_SACKS(OYSTERS_PER_SACK_A, OYSTERS_PER_SACK_B, SACK_CAPACITY,OLD.NEW_LENGTH)

FROM (

 SELECT

 MODEL_OUTPUT_SURVEYS.OUTPUT_ID,

 MODEL_OUTPUT_SURVEYS.FISHING_MULTIPLIER,

 G.OYSTERS_PER_SACK_A,

 G.OYSTERS_PER_SACK_B,

 G.OYSTER_MASS_A,

 G.OYSTER_MASS_B,

 MODEL_INPUT_SURVEYS.MORTALITY_PROFILE_ID,

 MODEL_INPUT_SURVEYS.GROWTH_PROFILE_ID,

 MODEL_INPUT_SURVEYS.FISHING_PROFILE_ID,

 MODEL_OUTPUT_OYSTERS.OUTPUT_SURVEY_ID,

 MODEL_OUTPUT_OYSTERS.GROUP_ID,

 MODEL_OUTPUT_OYSTERS.INITIAL_COUNT - MODEL_OUTPUT_OYSTERS.FISHED_COUNT -

 MODEL_OUTPUT_OYSTERS.DEAD_COUNT as REMAINING,

 dbo.GET_NEW_OYSTER_SIZE(G.VB_LENGTH_MAXIMUM,

 dbo.GET_GROWTH_FACTOR(G.VB_K_0,G.VB_K_1,G.VB_T_AVERAGE,@last_month),

42

 MODEL_OUTPUT_OYSTERS.LENGTH) as NEW_LENGTH

 FROM

 MODEL_OUTPUT_OYSTERS

 INNER JOIN MODEL_OUTPUT_SURVEYS ON q

 MODEL_OUTPUT_OYSTERS.OUTPUT_SURVEY_ID=MODEL_OUTPUT_SURVEYS.OUTPUT_SURVEY_ID

 INNER JOIN MODEL_INPUT_SURVEYS ON

 MODEL_INPUT_SURVEYS.INPUT_SURVEY_ID=MODEL_OUTPUT_SURVEYS.INPUT_SURVEY_ID

 INNER JOIN MODEL_GROWTH_PROFILES as G ON

 MODEL_INPUT_SURVEYS.GROWTH_PROFILE_ID=G.GROWTH_PROFILE_ID

 WHERE MODEL_OUTPUT_OYSTERS.TIME=(@time-1) AND MODEL_OUTPUT_SURVEYS.OUTPUT_ID=@output_id

) as OLD

 INNER JOIN MODEL_MORTALITY_PROFILES AS M ON OLD.MORTALITY_PROFILE_ID=M.MORTALITY_PROFILE_ID

 LEFT JOIN MODEL_FISHING_POLICIES AS F ON

 OLD.FISHING_PROFILE_ID=F.FISHING_PROFILE_ID AND F.MONTH_ID=@month

 INNER JOIN MODEL_OUTPUT ON MODEL_OUTPUT.OUTPUT_ID=OLD.OUTPUT_ID

 Then, cultch is simulated, with the DEAD_MASS quantities from the oyster simulation being applied to the cultch whose

CULTCH_SUBTYPE_ID and CULTCH_TYPE_ID corresponding to dead cultch.

INSERT INTO @RESULTS

SELECT

 OLD.OUTPUT_SURVEY_ID,

 @time,

 @month,

 OLD.CULTCH_TYPE_ID,

 OLD.CULTCH_SUBTYPE_ID,

 OLD.REMAINING_MASS,

 CASE WHEN OLD.CULTCH_SUBTYPE_ID=DEAD_CULTCH_SUBTYPE_ID AND OLD.CULTCH_TYPE_ID=DEAD_CULTCH_TYPE_ID

 THEN DEAD_MASS ELSE 0 END,

 CASE WHEN @time=MONTHS+1 THEN 0 ELSE OLD.LOSS_FRACTION END,

 CASE WHEN @time=MONTHS+1 THEN 0 ELSE COALESCE(OLD.FISHING_MULTIPLIER*F.SHELL_FRACTION,0) END,

 OLD.SACK_CONVERSION

FROM (

43

 SELECT

 MODEL_OUTPUT_SURVEYS.OUTPUT_ID,

 MODEL_OUTPUT_SURVEYS.FISHING_MULTIPLIER,

 MODEL_OUTPUT_SURVEYS.INPUT_SURVEY_ID,

 MODEL_OUTPUT_CULTCH.OUTPUT_SURVEY_ID,

 MODEL_OUTPUT_CULTCH.CULTCH_TYPE_ID,

 MODEL_OUTPUT_CULTCH.CULTCH_SUBTYPE_ID,

 MODEL_OUTPUT_CULTCH.LOSS_FRACTION,

 MODEL_OUTPUT_CULTCH.SACK_CONVERSION,

 MODEL_OUTPUT_CULTCH.INITIAL_MASS - MODEL_OUTPUT_CULTCH.DISSOLVED_MASS -

 MODEL_OUTPUT_CULTCH.FISHED_MASS + MODEL_OUTPUT_CULTCH.NEW_MASS AS REMAINING_MASS

 FROM

 MODEL_OUTPUT_CULTCH

 INNER JOIN MODEL_OUTPUT_SURVEYS ON

 MODEL_OUTPUT_SURVEYS.OUTPUT_SURVEY_ID=MODEL_OUTPUT_CULTCH.OUTPUT_SURVEY_ID

 WHERE MODEL_OUTPUT_CULTCH.TIME=(@time-1) AND MODEL_OUTPUT_SURVEYS.OUTPUT_ID=@output_id

) as OLD INNER JOIN (

 SELECT

 MODEL_OUTPUT_SURVEYS.OUTPUT_SURVEY_ID,

 SUM(DEAD_MASS) as DEAD_MASS

 FROM MODEL_OUTPUT_OYSTERS

 INNER JOIN MODEL_OUTPUT_SURVEYS ON

 MODEL_OUTPUT_SURVEYS.OUTPUT_SURVEY_ID=MODEL_OUTPUT_OYSTERS.OUTPUT_SURVEY_ID

 WHERE MODEL_OUTPUT_SURVEYS.OUTPUT_ID=@output_id AND MODEL_OUTPUT_OYSTERS.TIME=@time

 GROUP BY MODEL_OUTPUT_SURVEYS.OUTPUT_SURVEY_ID

) as DEAD_OYSTERS ON DEAD_OYSTERS.OUTPUT_SURVEY_ID=OLD.OUTPUT_SURVEY_ID

INNER JOIN MODEL_INPUT_SURVEYS ON MODEL_INPUT_SURVEYS.INPUT_SURVEY_ID=OLD.INPUT_SURVEY_ID

LEFT JOIN MODEL_FISHING_POLICIES AS F ON

 MODEL_INPUT_SURVEYS.FISHING_PROFILE_ID=F.FISHING_PROFILE_ID AND F.MONTH_ID=@month

INNER JOIN MODEL_OUTPUT ON MODEL_OUTPUT.OUTPUT_ID=OLD.OUTPUT_ID

44

Performance

Figure 14. RUN_MODEL procedure performance.

 The RUN_MODEL procedure was benchmarked by running the query against a series of

MODEL_INPUT values directly from the SQL Server Management Studio. The procedure was run directly

from the Dell server hosting the production database. For each trial, the SQL cache was turned off and a

simple timer was setup using the CURRENT_TIMESTAMP and DATEDIFF built-in functions. Simulations

were performed using 1, 5, 20, 50, and 100 surveys from the 2012 stock assessment. Each simulation

ran for 12 months using standard parameters (discussed in the Simulations section). Each survey had

low to moderate amounts of oyster and cultch data, with 1 to 5 replicates each. The cultch profile used

for each survey only considered brown oyster shell. Three trials were performed for each simulation,

with the average of the three taken as the canonical speed. The graph above (Figure 14) shows the

results of this benchmarking. Note that in practice, the resulting times will likely be considerably lower,

due to the caching ability of MS SQL.

 The results indicate that the model scales linearly for station quantities within the average-case

range. A linear regression using Microsoft Excel showed an 𝑅2 value of 0.9979. This is consistent with

the algorithm analysis performed in the previous section. However, it is possible that surveys with an

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

0 10 20 30 40 50 60 70 80 90 100

Q
u

er
y

Ti
m

e
 (

m
s)

Surveys Included

45

outlying number of replicates or cultch and oyster samples may result in skewed performance. If

performance becomes in issue in practice, investigations should be made to optimize the algorithm.

Data Aggregation

 Once the simulation has been run, monthly data is available for each of the stations in the

simulation. Since this data is overwhelming in its raw format, SQL views were provided by the author

that aggregate this view for easy digestion by the user. A feature of this method is that aggregation

within a single simulation can be filtered on a per-station basis. The MODEL_OUTPUT_SURVEYS table is

outfitted with a 1-bit INCLUDED column. By introducing predicates that filter out non-INCLUDED

surveys, the user may adjust the scope of the simulations results to whatever degree is necessary.

 An abundance of such aggregation views exist, so only one sample will be provided here. The

MODEL_CULTCH_SUMMARY view offers a high-level overview of each station. It provides the starting

and ending cultch quantities, specified in mass and volume, the percent difference between them, as

well as other interesting information. Again, note that a significant amount of associated code has been

omitted for brevity.

46

SELECT

 STARTING.OUTPUT_ID,

 /*Mass*/

 SUMMARY.TOTAL_NEW_MASS,

 SUMMARY.TOTAL_FISHED_MASS,

 SUMMARY.TOTAL_DISSOLVED_MASS,

 SUMMARY.TOTAL_NEW_MASS/AREA.TOTAL_SQUARE_METERS as NEW_MASS_PER_SQUARE_METER,

 SUMMARY.TOTAL_FISHED_MASS/AREA.TOTAL_SQUARE_METERS as FISHED_MASS_PER_SQUARE_METER,

 SUMMARY.TOTAL_DISSOLVED_MASS/AREA.TOTAL_SQUARE_METERS as DISSOLVED_MASS_PER_SQUARE_METER,

 STARTING.INITIAL_MASS/AREA.TOTAL_SQUARE_METERS as INITIAL_MASS_PER_SQUARE_METER,

 ENDING.REMAINING_MASS/AREA.TOTAL_SQUARE_METERS as REMAINING_MASS_PER_SQUARE_METER,

 STARTING.INITIAL_MASS as TOTAL_INITIAL_MASS,

 ENDING.REMAINING_MASS as TOTAL_REMAINING_MASS,

 dbo.GET_PERCENT_DECREASE(STARTING.INITIAL_MASS,ENDING.REMAINING_MASS) as PERCENT_MASS_LOSS,

 (STARTING.INITIAL_MASS - ENDING.REMAINING_MASS) as NET_MASS_LOSS,

 /*Sacks*/

 SUMMARY.TOTAL_DISSOLVED_SACKS,

 SUMMARY.TOTAL_FISHED_SACKS,

 SUMMARY.TOTAL_NEW_SACKS,

 SUMMARY.TOTAL_NEW_SACKS/AREA.TOTAL_SQUARE_METERS as NEW_SACKS_PER_SQUARE_METER,

 SUMMARY.TOTAL_FISHED_SACKS/AREA.TOTAL_SQUARE_METERS as FISHED_SACKS_PER_SQUARE_METER,

 SUMMARY.TOTAL_DISSOLVED_SACKS/AREA.TOTAL_SQUARE_METERS as DISSOLVED_SACKS_PER_SQUARE_METER,

 STARTING.INITIAL_SACKS/AREA.TOTAL_SQUARE_METERS as INITIAL_SACKS_PER_SQUARE_METER,

 ENDING.REMAINING_SACKS/AREA.TOTAL_SQUARE_METERS as REMAINING_SACKS_PER_SQUARE_METER,

 STARTING.INITIAL_SACKS as TOTAL_INITIAL_SACKS,

 ENDING.REMAINING_SACKS as TOTAL_REMAINING_SACKS,

 dbo.GET_PERCENT_DECREASE(STARTING.INITIAL_SACKS,ENDING.REMAINING_SACKS) as PERCENT_SACKS_LOSS,

 (STARTING.INITIAL_SACKS - ENDING.REMAINING_SACKS) as NET_SACK_LOSS

FROM

 MODEL_AREA as AREA

 INNER JOIN STARTING ON STARTING.OUTPUT_ID=AREA.OUTPUT_ID

 INNER JOIN ENDING ON ENDING.OUTPUT_ID=STARTING.OUTPUT_ID

 INNER JOIN MODEL_OUTPUT ON MODEL_OUTPUT.OUTPUT_ID=STARTING.OUTPUT_ID

 INNER JOIN SUMMARY ON SUMMARY.OUTPUT_ID=STARTING.OUTPUT_ID

47

Additional views partition cultch by type, which is useful when considering multiple cultch types

for sustainability. Similar views present oyster data, both as a whole and per-stage. These views, in

conjunction with the routines above, various check constraints, computed columns, helper functions,

and maintenance procedures, constitute the entirety of the current implementation. The remaining

section is dedicated to the front-end view of the model.

Interactive Site

Web Environment

 Drupal, a free and open-source PHP-based CMS, was used as a framework for the web site

containing the front-end user interface for the model. It is currently running on the Apache HTTP server

as a PHP application. Drupal’s Form API allowed fast and simple form generation, which was necessary

to properly allow for the many input variables the model requires. Gallegos provided the

implementation to the new model input tables. The author provided the forms required to view the

results of a simulation. A new Dell server was setup to host these services at the UNO Department of

Computer Science. The site aims to completely replace the previous incarnation of Oyster Sentinel, and

is now up and running with new and migrated content from the previous site at www.oystersentinel.org.

This section describes the model configuration interface. Details on the data entry forms, implemented

by Dahal and Gallegos, are omitted. For security purposes, the site code is not presented in detail;

rather, a high-level treatment is provided.

Security

 The hierarchical data provided by LDWF required a custom level of security and access

privileges. A simple system was implemented in Drupal that allows separation of user control into CSA’s,

known in the site as regions. Each user that logs in can be granted access to zero or more of these

regions, allowing them to overwrite stock assessment data and save model presets under region-specific

48

namespaces. This separation prevents users from different CSA’s from accidentally overwriting data

belonging to one another. Special users called managers can delegate access to each CSA via a custom

user access page. Managers also have the ability to delete data, create new stock assessments, and

organize new stations.

 Besides these custom features, the site utilizes several other typical security methods.

Passwords are hashed automatically by Drupal. The database is not listening on a public port. Site errors

result in PHP execution termination without any debugging information. Drupal’s Form API provides

server-side validation with post-processing that prevents XSS attacks, input modification, and other

malicious techniques. SQL statements are properly bound as PDO objects, reducing the threat of query

injection. A CAPTCHA service helps prevent automated logon attempts. Finally, regular backups are

made in the event of accidental overwrites or catastrophic failure.

Presentation

 The forms used for data input and viewing were designed to be as simple as possible. The stock

assessment data entry forms were made to closely mimic the physical paper forms used by the LDWF.

Access to the model itself is divided into three stages: (1) Model Profiles, (2) Model Setup, and (3) Model

Results.

 First, the Model Profiles section (designed by Gallegos) allows users to configure profiles for

growth, mortality, cultch, and fishing, as previous described. For example, the figure below (Figure 15)

demonstrates the user’s view of modifying or deleting growth profiles. Clicking “Edit” will allow the use

to modify each field corresponding to that profile. The “Add New” button allows the creation of new

profiles.

49

Figure 15. The growth profile management page.

 Second, the Model Setup page allows the user to step through the process of running a model.

After entering global variables described in the previous section, the user may assign each station

profiles that correspond to the simulation being performed. The figure below illustrates how this is done

(Figure 16).

Figure 16. Survey profile assignment.

50

 Finally, the user may view the results of the simulation. The Model Report form provides access

and management of the results of previously runs. The figure below (Figure 17) illustrates how specific

surveys may be filtered out of the view and data aggregation.

Figure 17. Survey filtering form.

The user may then view data in both summary and timeline views. The mass and volume of both

oysters and cultch are presented in analogous tables. The jqplot JavaScript library was used to present

the user with a view graphical representation of the data. This specific library was chosen because it is

client-side (easing the load on the server), well-documented, and utilizes the commonly-available HTML

canvas interface. For older browsers which do not support the canvas element, this option is not

available.

The figure below (Figure 18) demonstrates the summary view for cultch mass. Here, pie charts

display how each cultch type contributes to the total cultch present. The amounts of each type at the

start and end of the simulation are then shown in the table below.

51

Figure 18. The cultch mass summary display.

 The optional timeline view displays the month-to-month changes to each resource. The figure

below (Figure 19) demonstrates the timeline view for cultch mass. The line graph shows the relative

quantity of the resource for each month. The table below it shows how the resource was affected, with

color-coded arrows denoting the loss or gain of each. A drop-down selection menu above the timeline

allows the user to filter between different oyster stages and cultch types (depending on the display).

Selecting “[ALL]” allows all resources to be combined into a single view.

52

Figure 19. The cultch mass timeline display.

Performance

 The Model Results page is timed for efficiency evaluation using two timers. The first timer

(“Server”) is performed in PHP, evaluating the time elapsed to execute the Drupal module that collects

input, initiates the SQL result aggregations, and generates JavaScript for rendering the jqplot charts. The

second timer (“Page”) is performed in JavaScript, starting when browser executes the first body scripts

loaded by Drupal and ending with the document.ready handler call.

 The same simulations described in the RUN_MODEL benchmark earlier were viewed to gauge

the speed of the Model Results page. The results of the Server and Page timers are shown. Each page

was refreshed three times after initially loading the page once (for more consistent browser caching)

53

and the average of the three trials was used. The trials were also run in two modes. In “Min” mode,

timelines and graphs were turned off. In “Full” mode, both timelines and graphs were both enabled. The

browser used was Google Chrome Version 27.0.1453.116 m, running on a Dell Inspiron One with

Windows 7 and a 2.40 GHz AMD Athlon II X4 610e processor.

Figure 20. Model Results server and page benchmarks.

 Microsoft Excel was used to perform a linear regression for each of the four experiments. Again,

we see a clear linear trend in performance. The Server timers demonstrate a steeper slope, as the SQL

queries executed for aggregation must work with increasingly more rows as the number of surveys

increase. The Page timers demonstrate the gentler slope since the page renders only slightly more data

with each increase of surveys. However, the Full Page timer performed slower than any other result due

to the additional burden of constructing the HTML canvas graphs.

 Note that the trend suggests that for greater than 100 surveys, the Server costs may soon

overtake the Page costs due to the large amount of required data processing. This is not likely a

problem, as it would be uncommon to run the model against more than 100 surveys at once.

0

200

400

600

800

1000

1200

1400

0 20 40 60 80 100

Ti
m

e
 (

m
s)

Surveys Included

Server (Min) Server (Full) Page (Min) Page (Full)

54

Future Goals

The current implementation provides a robust solution for interacting with oyster data and

performing simulations. However, future demand may require more features to be added. For instance,

users are often interested in the sum of dead cultch mass and live oyster mass, which gives a good

approximation of the reef total shell mass. A system which incorporates the automation of this

computation along with useful filtering abilities may be useful.

55

5. Simulations

The Java version of the model was used to perform various preliminary simulations for the

Louisiana Department of Wildlife and Fisheries. The model was parameterized with values from a variety

of existing sources. This section briefly describes the results obtained.

Parameterization

Since the model is quite sensitive to its input parameters, much effort was invested in providing

it the most accurate arguments possible. The parameters from the Model Logic section are repeated

below (Table 8) with the values used for simulations listed. Recall that the Java version of the model

treated the entire simulated region as a single entry, so per-station parameters are global variables in

this table. Also recall that only brown oyster shell was used; thus, cultch parameters are no longer

arrays. The remaining entries are unchanged.

56

Table 8. Simulation parameter values.

Symbol Value

General Parameters

𝒕𝟎 8
𝒕𝒎𝒂𝒙 12

𝒗 52.859
𝝀𝒔𝒂𝒄𝒌 75
𝝀𝒔𝒆𝒆𝒅 25

Cultch Parameters

𝑵𝑳 0.008
𝑫 2200
𝑷 0.59
Oyster Growth Parameters

𝑴𝒂 4 × 10−4
𝑴𝒃 2.8213

𝑶𝑷𝑺𝒂 1. 767 × 108
𝑶𝑷𝑺𝒃 -2.926

𝝀∞ 151
𝒌𝟎 0.8
𝒌𝟏 0.09

𝒕𝒂𝒗𝒈 0.4

Oyster Mortality Parameters
𝒎𝟎,𝑱 1.2

𝒎𝟏,𝑱 1.1

𝒎𝟎,𝑨 0.51
𝒎𝟏,𝑨 0.41

𝒎𝒂𝒗𝒈 6

The 𝑡0 value is set to 8, as the LDWF stock assessment is performed around August. 𝑡𝑚𝑎𝑥 is set

to 12, as a one-year forward prediction is desired until the next year’s stock assessment. The 𝑣

parameter is set to 52.859, as fishermen typically bag oysters into 1.5-bushel sacks. The 𝜆𝑠𝑎𝑐𝑘 parameter

is set to 75, the minimum length of a harvest-size oyster. 𝜆𝑠𝑒𝑒𝑑 is set to 25, the minimum size seed as

defined by the LDWF (LDWF, 2010).

Powell et al. (2012) estimated the density 𝐷 of cultch to be 2.2 kg/L. Loose shell was packed

into a container of known volume. The weighed mass was then divided by 𝐷 and the container’s volume

to arrive at the packing coefficient 𝑃 of 0.59 (Powell, Klinck, & Soniat, 2010).

57

Shell loss was determined to be approximately 9.5% per year (Powell et al., 2006). By solving for

the monthly loss fraction, the 𝑁𝐿 parameter was set accordingly to 0.008.

 The length-to-weight correlation was derived using local sampling data (Eberline, 2012) and a

power regression was used to determine the 𝑀𝑎 and 𝑀𝑏 parameters as 4 × 10−4 and 2.8213,

respectively. This yields a fair approximation, with an R2 value of 0.8441. The figure below (Figure 21)

provides a representation of this data.

Figure 21. Shell-to-weight plot used to derive OPS parameters.

 The oysters-per-sack relationship is well-established. Louisiana oyster data (Hopkins, 1950) was

used to arrive at the 𝑂𝑃𝑆𝑎 and 𝑂𝑃𝑆𝑏 parameters as 1.767 × 108 and -2.926, respectively. Growth rates

𝑘0 and 𝑘1 of were decided by Powell, Klinck, & Soniat. when developing the model, based on spat

growth estimates (2010). A particularly high 𝜆∞ value of 151 was used to simulate fast oyster growth,

with a correspondingly low seasonal variation.

 Informed by previous mortality analyses of adult oysters (Mackin, 1961, Owen, 1955) and

juvenile oysters (Powell et al., 2009), the mortality parameters 𝑚0,𝐽, 𝑚1,𝐽, 𝑚0,𝐴, and 𝑚1,𝐴 were set to

1.2, 1.1, 0.51, and 0.41, respectively. The 𝑚𝑎𝑣𝑔 parameter was set such that mortality peaks in

September and is least in March (Mackin, 1961).

0

50

100

150

200

250

300

350

0 20 40 60 80 100 120 140

Sh
e

ll
W

e
ig

h
t

(g
)

Oyster Length (mm)

58

Experiments

Retrospective Analysis

 The Java implementation was run against CSA 2 stock assessment data from 1999 to 2009 and a

retrospective analysis was made (Soniat et al., 2012). In these simulations, sustainability was decided to

be a total reef mass (live oyster shell mass + dead shell) loss not exceeding a magnitude of ±5%, with no

loss of dead shell allowed.

 Due to the absence of measured cultch samples, an assumption of the initial density was

required. In these simulations, the cultch densities were set to 5,000 g/m2 (Mann et al., 2009) for each

station, indicating healthy reefs. The resulting sustainable harvest proved quite sensitive to this

parameter. Lower initial cultch density would result in higher estimates of sustainable harvests since

fewer oysters would need to remain and die in place to maintain the smaller cultch amount. This

realization was a factor in encouraging cultch measurements during future stock assessments.

 Data was compared against the current oyster stock and harvest reports from each annual Stock

Assessment Report. The figure below (Figure 22) shows the stock, in sacks, from 1999 to 2009. These

numbers were used as a basis of comparison for the results obtained by the model.

59

Figure 22. LDWF estimated sack and seed/spat stocks.

 The results of the simulations are shown in the table below (Table 9). Quantities are in sacks

unless otherwise noted. A * denotes division by zero, when the simulation did not allow any fishing.

Note that for some months, the reported fishing was within the threshold of simulated sustainability.

Most noticeably, in 2000, only 13.2 of sack oysters were fished than what the model allowed. However,

as the time series progresses, the allowed fishing becomes lower, with some years allowing for no

fishing at all when oyster numbers were particularly low.

LDWF Sustainable Management

 In order to determine the effectiveness of using the model as a basis for management, a trial

fishing experiment was decided upon during a 2012 stock assessment workshop at The University of

New Orleans. Hackberry Bay, a public oyster station in CSA 3, was chosen as the location to test the

accuracy of the model. After running simulations, 7,000 sacks of shell and seed and 4,700 sacks of sack

oysters were deemed sustainable. A recommendation was made that boats be monitored daily until the

limit is reached, when fishing would be shut down for the season. The results of the experiment should

be available after the 2013 stock assessment. The new data will be reviewed and compared against the

model-predicted values.

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

Es
ti

m
at

e
d

 S
to

ck
 (

sa
ck

s)
Th

o
u

sa
n

d
s

Year

Sack

Seed/Spat

60

 Provided the results are successful, the LDWF will seek to use the model as a quantitative tool to

assist in the certification of the Louisiana oyster industry as sustainable.

Future Simulations

 Additional simulations should be performed in an effort to improve the model. As the

availability of cultch data increases, simulations should be performed that compare model-predicted

shell impact with actual surveyed shell impact. Each parameter should be scrutinized further against

multiple stations. These comparisons will help determine causes of error and reveal the strengths and

weaknesses of the model for proper analysis and future advancements.

61

Table 9. Results of retrospective analysis simulations.

Year
Sack Fishing Seed Fishing

Estimated
Stock

Actual
Harvest

Harvest/
Stock (%)

Simulated
Harvest

Harvest/
Sim (%)

Estimated
Stock

Actual
Harvest

Harvest/
Stock (%)

Simulated
Harvest

Harvest/
Sim (%)

1999 1,989,508 700,617 35.2 2,012,018 34.8 3,382,040 138,056 4.1 372,441 37.1

2000 1,754,696 403,374 23.0 3,049,175 13.2 6,828,812 201,560 3.0 816,468 24.7

2001 4,642,996 844,898 18.2 3,065,531 27.6 3,851,418 318,490 8.3 385,332 82.7

2002 1,937,488 704,284 36.4 1,004,700 70.1 1,201,982 281,766 23.4 176,001 160.1

2003 1,134,036 286,963 25.3 751,139 38.2 1,598,908 626,320 39.2 87,736 713.9

2004 741,188 535,936 72.3 634,174 84.5 1,497,112 391,072 26.1 86,670 451.2

2005 598,628 271,271 45.3 234,559 115.7 778,146 58,270 7.5 0 *

2006 308,986 183,355 59.3 794,925 23.1 2,215,294 221,134 10.0 53,6576 41.3

2007 619,124 278,580 45.0 414,042 67.3 902,068 347,170 38.5 340,485 102.0

2008 248,786 265,581 106.8 0 * 221,502 154,006 69.5 0 *

2009 156,900 167,614 106.8 476,887 35.1 483,524 165,376 34.2 354,295 46.7

62

6. Conclusion

 This paper presented a formalization of the algorithm proposed by Powell and Klinck. It first

described the data sources obtained from The Louisiana Department of Wildlife and Fisheries and

detailed how this data was extrapolated into the final input. An abstract description of each component

of the model was then described and presented in pseudocode. Next, the implementation history was

reported, with emphasis on the data modeling and web presentation of the front-end available at

www.oystersentinel.org. Finally, some initial applications of the model were discussed, summarizing a

retrospective analysis and experiments made in association with LDWF.

 The wealth of accurate historical data provided by LDWF lends itself very well to the modeling

initiative; however, more simulations need to be performed and analyzed before the effectiveness of

the current model can be fully ascertained. Future improvements are expected to add more

functionality to the model, which will hopefully result in a functional metric for sustainable oyster

harvest in Louisiana.

63

References

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009) Introduction to algorithms (3rd ed.).
Cambridge, Mass: MIT Press.

Eberline, B. S. (2012). Population dynamics of the eastern oyster in the northern Gulf of Mexico. M.S.

Thesis, Louisiana State University, Louisiana State University.

Gunter, G. (1979). Studies of the southern oyster borer, Thais haemostoma. Gulf Research Reports, 6,

249-260.

Hopkins, S. H. (1950). The inter-relationship of weight, volume, and linear measurements of oysters and

the number of oysters per Louisiana sack measure. (pp. 15). College Station, TX: Texas A&M
Research Foundation.

Klinck, J. M., Powell, E. N., & Soniat, T. M. (2011) OysterShell.F90 [Fortran source code]. Retrieved May

23, 2011.

LDWF. (2010). Oyster stock assessment report of the public oyster areas in Louisiana seed grounds and

seed reservations. Baton Rouge, LA: The Louisiana Department of Wildlife and Fisheries.

Mackin, J. G. (1961). Oyster disease caused by Dermocystidium marinum and other microorganisms in

Louisiana. Publication of the Institute of Marine Science, 7, 132-299.

Mann, R., & Powell, E. N. (2007). Why oyster restoration goals in the Chesapeake Bay are not and

probably cannot be achieved. Journal of Shellfish Research, 26, 905-917.

Mann, R., Southworth, M., Harding, J. M., & Wesson, J. A. (2009). Population studies of the native

eastern oyster, Crassostrea virginica, (Gmelin, 1791) in the James River, Virginia, USA. Journal of
Shellfish Research, 28(2), 193-220. doi: 10.2983/035.028.0203

Owen, H. M. (1953). Growth and mortality of oysters in Louisiana. Bulletin of Marine Science of the Gulf

and Caribbean, 3, 44-54.

Powell, E. N., & Klinck, J. M. (2007). Is oyster shell a sustainable estuarine resource? Journal of Shellfish

Research, 26(1), 181-194. doi: 10.2983/0730-8000(2007)26[181:iosase]2.0.co;2

Powell, E. N., Klinck, J. M., Ashton-Alcox, K., Hofmann, E. E., & Morson, J. M. (2012). The rise and fall of

Crassostrea virginica oyster reefs: the role of disease and fishing in their demise and a vignette
on their management. Journal of Marine Research, 70(2-3), 505-558.

Powell, E. N., Klinck, J. M., Ashton-Alcox, K. A., & Kraeuter, J. N. (2009). Multiple stable reference points

in oyster populations: implications for reference point-based management. Fishery Bulletin 107,
133–147.

Powell, E. N., Klinck, J. M., & Soniat, T. M. (2010). Model Documentation. Unpublished manuscript.

64

Powell, E. N., Kraeuter, J. N., & Ashton-Alcox, K. A. (2006). How long does oyster shell last on an oyster
reef? Estuarine, Coastal and Shelf Science, 69(3-4), 531-542. doi: 10.1016/j.ecss.2006.05.014

Soniat, T. M., Klinck, J. M., Powell, E. N., Cooper, N., Abdelguerfi, M., Hofmann, E. E., . . . Quaddoura, F.

(2012). A shell-neutral modeling approach yields sustainable oyster harvest estimates: a
retrospective analysis of the Louisiana state primary seed grounds. Journal of Shellfish Research,
31(4), 1103-1112.

65

Vita

The author was born in Hattiesburg, Mississippi. He obtained his Bachelor’s degree in computer science

from The University of New Orleans in 2011. After graduation, he worked as a graduate assistant under

Dr. Thomas Soniat of the UNO biology department, working on the Oyster Sentinel project as part of his

computer science thesis.

	Oyster Sustainability Modeling as a Public Resource
	Recommended Citation

	tmp.1374095592.pdf.WjgDH

