
University of New Orleans University of New Orleans 

ScholarWorks@UNO ScholarWorks@UNO 

University of New Orleans Theses and 
Dissertations Dissertations and Theses 

Fall 12-17-2011 

An Information Value Approach to Route Planning for UAV Search An Information Value Approach to Route Planning for UAV Search 

and Track Missions and Track Missions 

Ryan R. Pitre 
University of New Orleans, rrpitre@uno.edu 

Follow this and additional works at: https://scholarworks.uno.edu/td 

Recommended Citation Recommended Citation 
Pitre, Ryan R., "An Information Value Approach to Route Planning for UAV Search and Track Missions" 
(2011). University of New Orleans Theses and Dissertations. 1403. 
https://scholarworks.uno.edu/td/1403 

This Dissertation is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO 
with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the 
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from 
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself. 
 
This Dissertation has been accepted for inclusion in University of New Orleans Theses and Dissertations by an 
authorized administrator of ScholarWorks@UNO. For more information, please contact scholarworks@uno.edu. 

https://scholarworks.uno.edu/
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/etds
https://scholarworks.uno.edu/td?utm_source=scholarworks.uno.edu%2Ftd%2F1403&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uno.edu/td/1403?utm_source=scholarworks.uno.edu%2Ftd%2F1403&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uno.edu


An Information Value Approach to Route Planning for UAV Search and Track Missions

A Dissertation

Submitted to the Graduate Faculty of the
University of New Orleans
in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy
in

Engineering and Applied Science

by

Ryan R. Pitre

B.S. University of New Orleans, 2002
M.S. University of New Orleans, 2004

December, 2011



Copyright 2011, Ryan R. Pitre

ii



Dedication

This dissertation is dedicated to everybody who I have ever met. Seriously.

iii



Acknowledgments

I would like to give my sincere thanks to my friends and classmates who studied with me while I

was an undergraduate. These friends, who played an integral part of my education, are Chris Dug-

gan, Errol Schmitt, Ryan Thiel, Richard Hassell, Zubair Ahmad, Steve Bourg, Edwin Herasymiuk,

Cuong Tran, Henry Bodden, Jerry Berndsen, Donald Bonck, George Klink, Miguel Cruz, and

Holly McDerment. They all made my undergraduate experience a great one. Despite our many

all-night study sessions and countless hours in the engineering labs, we had fun. Between the lake-

front BBQs and renting out rooms at bars, I still smile looking back. Those memories will forever

be held close to my heart. All of you helped me in ways you’ll never know.

I would also like to give my sincerest thanks to Dr. Zhanlue “George” Zhao. His knowledge

and understanding helped me through my most challenging year of school. I am forever grateful.

I express my gratitude to Dr. Vesselin Jilkov, Dr. Huimin Chen, Dr. Keshu Zhang, Dr. Jifeng

Ru, Dr. Ming Yang, Dr. Anwer Bashi, Dr. Zhansheng Duan, Don Delbalzo, Xiaomeng Bian,

and Xiong Lie for all of your helpful suggestions, insightful comments, and time that you have

provided. All of your questions during our seminars helped shape my research.

Finally, I would like to thank my major professor Dr. X. Rong Li for maturing me academically

and for teaching me the art of critical thinking. It is because of his training that I have truly learned

to learn. Thank you.

iv



Contents

Abstract ix

1 Introduction 1

2 Literature Review 4

2.1 Approaches to UAV Path Planning . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Vehicle Routing Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Search Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.3 Search and Track Strategies . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Planning Horizons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Particle Swarm Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 UAV Route Planning for Joint Search and Track Missions—An Information-Value

Approach 13

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Objective Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.1 Expectation operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.2 Total number of targets detected, N . . . . . . . . . . . . . . . . . . . . . 16

3.2.3 Importance factor, αn,k . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.4 Time factor, λn,k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.5 Information matrix, In,k . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

v



3.3 Desirable Properties of G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3.1 Jointly optimizes detection and tracking . . . . . . . . . . . . . . . . . . . 17

3.3.2 Differentiates information from information value . . . . . . . . . . . . . 18

3.3.3 Easily compares different solutions . . . . . . . . . . . . . . . . . . . . . 18

3.3.4 Naturally prefers early detections . . . . . . . . . . . . . . . . . . . . . . 18

3.3.5 Encourages repeated observations of the same targets . . . . . . . . . . . . 18

3.3.6 Useful for ranking solutions of many practical problems . . . . . . . . . . 19

3.4 Accounting for Team Survival . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.5 Examples and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.5.1 G prefers early detections to late detections . . . . . . . . . . . . . . . . . 22

3.5.2 Use time factor to encourage late information gain . . . . . . . . . . . . . 23

3.5.3 G prefers multiple targets to a single target . . . . . . . . . . . . . . . . . 23

3.5.4 Use importance factor to encourage detecting more targets . . . . . . . . . 24

3.6 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.6.1 Simplifying assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.6.2 Terrain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.6.3 Search vehicles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.6.4 Sensor model and detection function . . . . . . . . . . . . . . . . . . . . . 29

3.6.5 Target distribution and description . . . . . . . . . . . . . . . . . . . . . . 31

3.6.6 Target tracker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.6.7 Search paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.6.8 Evaluating G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.7 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 Minimum Time-Error Planning Horizon for Plan Updating Triggered by Poisson

Random Event 43

vi



4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Optimality of Plans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2.1 Longer plans are not always better plans. . . . . . . . . . . . . . . . . . . 45

4.2.2 The remainder of an interrupted plan is not optimal. . . . . . . . . . . . . . 45

4.3 Errors in Planning Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3.1 Overshoot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3.2 Undershoot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3.3 Accumulating errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3.4 Example of accumulated undershoot. . . . . . . . . . . . . . . . . . . . . 49

4.4 Optimal Planning Horizon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.4.1 Poisson assumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.4.2 Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.5 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.6 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5 Modified Particle Swarm Optimization 63

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2 Review of Particle Swarm Optimization . . . . . . . . . . . . . . . . . . . . . . . 64

5.3 Using Prior Target Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.4 Illustrative Scenario and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6 Summary and Future Work 72

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

vii



Bibliography 84

Vita 85

viii



List of Figures

3.1 Normal case: early detection is better . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Time factor vs. time for Section 3.5.2 . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Use time-increasing time factor to encourage later detection . . . . . . . . . . . . 24

3.4 Normal case: G prefers detecting more targets . . . . . . . . . . . . . . . . . . . . 25

3.5 A case that prefers better tracking to more detections . . . . . . . . . . . . . . . . 26

3.6 Use importance fact to encourage more detections . . . . . . . . . . . . . . . . . . 27

3.7 Terrain map of the search region . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.8 Altitude of the search region in feet . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.9 Probability density for a target’s location . . . . . . . . . . . . . . . . . . . . . . . 31

3.10 Measurement noise vs ∆alt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.11 Optimized search paths with unity importance factor. . . . . . . . . . . . . . . . . 36

3.12 Optimized search paths with an importance factor that decreases once a target is

detected. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.13 Optimized search paths with unity importance factor and six threats (shown in red)

having a kill radius of 3nmi. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.14 A conventional ladder search path with prior . . . . . . . . . . . . . . . . . . . . . 39

3.15 A conventional ladder search path without prior . . . . . . . . . . . . . . . . . . . 40

4.1 An example of overshoot error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 An example of undershoot error. . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

ix



4.3 An example of accumulated undershoot error for a plan of length τ when the in-

terrupting event occurs at a time five planning horizons (5τ) into the future. . . . . 49

4.4 Normalized exponential function vs. units of λ−1. This figure holds for any λ. . . . 51

4.5 Partitioned exponential distribution of Figure 4.4. The section for each index ni

has a width of τ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.6 Shows δn for each of the sections shown in Figure 4.5. Here, ti is the mean event

time in section ni. equation (4.2) shows that δ0 = δ1 = δ2 = . . . = δn . . . . . . . 53

4.7 This example shows that the planning-time error for the first and second plans is

equal to ε2 and ε1, respectively. The third plan has a planning-time error equal to δ. 55

4.8 Letting x = λτ in ∆
′
, this figure shows that the numerator of ∆

′
is equal to zero

when x ≈ 1.1462. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.9 Average time to capture the prey with an initial separation of 50m. The minimum

point occurs when ρ = 1.25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.10 Average time to capture the prey with an initial separation of 100m. The minimum

point occurs when ρ = 1.25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.11 Average time to capture the prey with an initial separation of 250m. The minimum

point occurs when ρ = 1.15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.12 Average time to capture the prey with an initial separation of 500m. The minimum

point occurs when ρ = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.13 Average time to capture the prey with an initial separation of 1000m. The mini-

mum point occurs when ρ = 1.75. . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.14 Average time to capture the prey with an initial separation of 2000m. The mini-

mum point occurs when ρ = 1.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.15 Best horizon versus initial distance with a mean value of 1.3160. . . . . . . . . . . 62

5.1 A fictional campground with hiking trails (grey), forest (green), campsites (tan),

and water (blue). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

x



5.2 A search path generated using the PSO algorithm with prior that has a 67.0%

chance of finding the lost hiker. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3 A search path generated using the PSO algorithm without prior that has a 58.5%

chance of finding the lost hiker. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.4 A hand-made search path that closely follows the hiking trails. This solution has

an 84.7% chance of finding the lost hiker. . . . . . . . . . . . . . . . . . . . . . . 71

5.5 PSO with prior was able to detect more targets after 3 iterations than the PSO

without prior was able to detect after 25 iterations. . . . . . . . . . . . . . . . . . 71

xi



List of Tables

3.1 Target detection probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Percent of targets in each type of terrain . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Target speed (knots) in various types of terrain. . . . . . . . . . . . . . . . . . . . 32

3.4 Tabulated results for the SAT simulation. . . . . . . . . . . . . . . . . . . . . . . . 38

xii



Abstract

This dissertation has three contributions in the area of path planning for Unmanned Aerial Vehicle

(UAV) Search And Track (SAT) missions. These contributions are: (a) the study of a novel metric,

G, used to quantify the value of the target information gained during a search and track mission,

(b) an optimal planning horizon that minimizes time-error of a planning horizon when interrupted

by Poisson random events, and (c) a modified Particle Swarm Optimization (PSO) algorithm for

search missions that uses the prior target distribution in the generation of paths rather than just in

the evaluation of them.

UAV route planning is an important topic with many applications. Of these, military applica-

tions are the best known. This dissertation focuses on route planning for SAT missions that jointly

optimize the conflicting objectives of detecting new targets and monitoring previously detected

targets. The information theoretic approach proposed here is different from and is superior to

existing approaches. One of the main differences is that G quantifies the value of the target infor-

mation rather than the information itself. Several examples are provided to highlight G’s desirable

properties.

Another important component of path planning is the selection of a planning horizon, which

specifies the amount of time to include in a plan. Unfortunately, little research is available to aid in

the selection of a planning horizon. The proposed planning horizon is derived in the context of plan

updates triggered by Poisson random events. To our knowledge, it is the only theoretically derived

horizon available making it an important contribution. While the proposed horizon is optimal in

minimizing planning time errors, simulation results show that it is also near optimal in minimizing

xiii



the average time needed to capture an evasive target.

The final contribution is the modified PSO. Our modification is based on the idea that PSO

should be provided with the target distribution for path generation. This allows the algorithm to

create candidate path plans in target rich regions. The modified PSO is studied using a search

mission and is used in the study of G.

Route Planning, Path Planning, Information Value, Planning Horizon, Particle Swarm Optimiza-

tion, UAV

xiv



1

Introduction

In order to mitigate the loss of human life, many agencies have removed man from the driver’s

seat and have begun employing Unmanned Aerial Vehicles (UAVs) to serve as the information

gathering workhorses to patrol the world’s skies. Many of these UAVs are operated remotely and

this separation between the operator and the UAV saves lives, which results in reducing the overall

risk into a strictly monetary one. Another noteworthy benefit of using UAVs becomes apparent

during long surveillance missions. In these situations, pilots on the ground can operate the UAVs

in shifts allowing for longer missions. In recent years, the demand for unmanned vehicles has

increased and the research community has been called upon to solve the many issues that arise

from using unmanned systems.

This dissertation has three contributions in the area of path planning for UAV Search And Track

(SAT) missions. These contributions are: (a) the study of a novel metric, G, used to quantify the

value of the target information gained during a search and track mission, (b) an optimal planning

horizon that minimizes time-error of a planning horizon when interrupted by Poisson random

events, and (c) a modified particle swarm optimization algorithm for search missions that uses the

prior target distribution in the generation of paths rather than just in the evaluation of them. Three

conference papers [39, 51, 52] and a journal article [53] (to appear) have been published reporting

the work contained in this dissertation.

The main purpose of this dissertation is to propose an information-theoretic approach to route

1



planning for SAT missions. The cornerstone of this approach—our objective function—is novel: it

integrates naturally the conflicting objectives of target detection, target tracking, and team surviv-

ability into a single scalar performance index that quantifies the value of target information. Two

distinctive features distinguish this approach from other information theoretic approaches: The in-

tegration of the conflicting objectives is much more natural and coherent than existing approaches,

and what the objective function quantifies is the value of target information, not the information

itself. This makes more sense than treating all information equally. When a path maximizes our

objective function, the vehicle following that path is expected to gain the most valuable information

by detecting the most important targets and tracking them during the most critical times.

In a real mission, the proposed approach to path planning would be used for the initial plan

and then again to update the plan using the most up-to-date information. A major task for plan

update is the selection of a planning horizon, which defines how far into the future a plan includes.

Unfortunately, there is very little research available on the selection of a planning horizon causing

planning horizons to be selected either arbitrarily or based on limited computational capabilities.

This dissertation proposes an optimal planning horizon that minimizes time-error of a planning

horizon when interrupted by Poisson random events. To our knowledge, it is the only theoretically

derived planning horizon available making it an important contribution.

The final contribution is the modified Particle Swarm Optimization (PSO) algorithm. It is

tailored specifically for SAT missions in that it uses the prior target distribution in the generation

of paths rather than just in the evaluation of them. This is a sensible modification in that the

optimization algorithm should be allowed to use all available information when creating candidate

solutions. In practice, a major drawback to PSO is that the prior distribution of targets is only used

to evaluate the search paths rather than to guide the optimization algorithm in the generation of

candidate search paths.

The proposed objective function, modified particle swarm optimization algorithm, and the

planning horizon are key components of path planning. When used together, they can yield good

2



path plans for search and track missions while maximizing the expectation of the information value

gained.

This dissertation is organized as follows. Chapter 2 provides a literature review in route plan-

ning for unmanned systems. In Chapter 3, we define our objective function and explain our ap-

proach. Chapter 4 derives an optimal planning horizon that minimizes time-errors when interrupted

by Poisson random events. Chapter 5 presents a modified particle swarm optimization algorithm.

Finally, we provide conclusions in Chapter 6.

3



2

Literature Review

2.1 Approaches to UAV Path Planning

Considerable effort has been dedicated to UAV route planning with numerous approaches devel-

oped for three primary classes of problems: (a) vehicle routing to visit known locations/targets, (b)

search for targets, and (c) search for and then track targets. A variety of optimization techniques

have been used to solve the path planning problem including: gradient search [75, 76], evolution-

ary algorithm [46, 54–56], particle swarm [1, 18, 22, 28, 36, 37, 41, 48, 50–53, 66, 70, 73], neural

networks [23] , genetic algorithm [10] , differential evolution [45], ant colony algorithm [77], dy-

namic programming [3,16,17], mixed integer linear programming [5,6,61], Eppstein’s k-best [4],

and myopic approaches [12,13,20,27,32,40,47,65]. The most commonly used optimization con-

straints are speed and turning radius. Other constraints that have been incorporated into objective

functions include communication, detection range, and safety.

A review of published research in path planning is provided next and is arranged by cate-

gory. Section 2.1.1 reviews vehicle routing strategies, Section 2.1.2 reviews search strategies, and

Section 2.1.3 reviews search and track strategies. This dissertation focuses on search and track

missions.

4



2.1.1 Vehicle Routing Strategies

Most research in UAV path planning has focused on vehicle routing strategies (see, e.g., [4, 6, 10,

12, 13, 15, 18, 22, 28, 37, 44–46, 48, 56, 58, 61, 66, 70, 74–76]), which are primarily concerned with

minimizing distance traveled, energy, or time to complete a mission. Vehicle routing approaches

are related to the Traveling Salesman Problem (TSP), which is an optimization problem interested

in finding the shortest route to visit a set of cities exactly once [49]. The vehicle routing approach

of class (a) is similar to TSP with the addition of other constraints and objectives. Fundamentally,

vehicle routing is directing a UAV from point A to point B. Gu et al. provided a short study of path

selection algorithms in [21] but it is far from complete.

There are three common ways to route UAVs. The first way is to optimize the objective function

by determining the best sequence of control inputs to provide to the UAV. These inputs can include

changes in heading, altitude, or speed to name a few. The second way to generate paths uses

graph theory, which assigns nodes to target locations and then connects those nodes with arcs. The

arcs are then assigned a value, which is often based on distance. Then, an optimization algorithm

determines the best sequence of nodes to visit based on the arcs’ values, hence creating a path. The

third way is to grid the environment into equally spaced cells for the UAV to move through like

a game piece. The cells are usually square and are small enough to for the cell’s properties to be

constant. Two examples of cell properties are terrain altitude or threat level.

Obstacle and threat avoidance is a common theme in vehicle routing strategies [4, 6, 10, 13, 18,

28, 45, 56, 61, 66, 77]. In some cases, the threats and obstacles are unknown to the UAVs before

the mission and their appearance may require a plan update. Another danger is a collision between

UAVs. This can be avoided if they are aware of each other’s locations via communication or being

equipped with the appropriate sensors.

Some vehicle routing missions require that the UAVs perform tasks such as monitoring, pho-

tographing, or killing targets. When multiple UAVs are involved, the route planner must determine

how to distribute the workload and it becomes a task assignment problem. Tasks are usually as-

5



signed to the team member that most benefits the team but this may not always be possible as in

the case of limited communication or conflicts. An example of a conflict is when a UAV is only

able to complete a single task.

In dynamic environments, communication between UAVs becomes important when there is a

probability of failing to perform the assigned task. Team members must be updated with informa-

tion such as a task’s state, in case the task needs to be reassigned. Communication is also useful if

a plan changes due to the loss of a UAV or the appearance of new targets or threats.

Another issue involving communication is deciding where the plans are generated. Ideally, a

centralized planner would be implemented under perfect communication conditions. This would

be optimal because decisions would be made with complete information and each UAV would

be directed to act in the best interest of the team. Under limited communication or limited com-

putation constraints, greedier distributed controller strategies have been implemented where each

member behaves in its own best interest.

Voronoi diagrams were used in [4] to ensure that the UAV can maximize its distance from

the nearest threat by providing path segments that are equidistant from nearby threats. The work

of [6] is unique because the UAVs are allowed to begin and end the mission at different times.

This is extended by [61] by including a safety constraint and adding a feature that allows the UAV

to circle, possibly indefinitely, as it determines its next move. In [15], policies were developed

to minimize the amount of time needed to visit pop-up targets. In [58], lower and upper bounds

were derived for a multiple depot UAV routing problem. They present a lower bound for the

traveling salesman problem by viewing it as a multiple depot UAV routing problem. They show

that all of the solutions of this problem are contained in the simplified problem of a constrained

forest problem. Then they show that the constrained forest problem can be solved within a certain

bounds and the multiple depot UAV routing problem cannot be solved with a lower cost than the

constrained forest problem. They also set up the problem to be solved.
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2.1.2 Search Strategies

Search missions, as in [3, 7–9, 16, 17, 20, 23, 32, 40, 41, 47, 51, 54, 55, 59, 67–69] require UAVs to

locate a possibly unknown number of targets with unknown or partially known locations. The

objective for search missions is usually to maximize the probability of detecting the targets. In

many search strategies, once a target has been detected, it is no longer considered. A commonly

used performance measure is the Cumulative Detection Probability (CDP), which is the probability

that the searcher will have detected the target(s) by the end of the mission. CDP is equivalent to

the expected number of targets detected during the mission and is the basis for search theory and

search techniques. CDP emphasizes the detection of targets but it completely ignores frequent

observations of the same targets, which is helpful for tracking.

Search path planning has received considerable attention and some of the works are discussed

next, due to their relevance to SAT missions. The work of [7–9] derived the minimum number

of times to search a cell. They use a Beta distribution to account for the uncertainty surrounding

the probability of a target being in a cell. They also account for the uncertainty of target motion

using transition probability matrices. Later, they further account for the uncertainty in the transi-

tion probability matrix itself using a Dirichlet distribution and they propagate the distribution in

a manner similar to what the particle filter does. In [16, 17], a limited communication coopera-

tive search approach was proposed. They try to maximize a search-to-go gain, which sums the

one-step gain over their planning horizon while considering the UAV’s survival in addition to the

affects of interference by a team member. The work of [41] followed the SAT approach of [65]

without considering the tracking problem. They encouraged UAVs either to search new areas or

to search old areas from viewing angles orthogonal to the viewing angle that the cell was orig-

inally viewed. In [47], a search method was proposed without using a prior target distribution.

They modeled their UAVs as state machines with the following states: global search, locate target,

approach target, find lost target. The last three states are very similar to each other in that they

simply circle the best estimate of the target at some radius. In [54,55], a method was proposed that
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assigns and schedules tasks in order to maximize the team’s overall score. A special emphasis of

this approach is on the communication structure, which they refer to as a market-based approach.

It allows each team member to bid on a task and then the task is assigned to the team member

that will best improve the team’s score. The work of [59] used particle filters to predict the state

of a single target with a known initial location and three possible final locations. It attempts to

solve the problem by decreasing the relative variance of the distribution by choosing trajectories

that minimize the posterior variance of the set of particles. In [69], an approach was proposed for

a search and destroy mission under the constraints of limited sensor range and no communication.

They search for target with unknown locations and must kill the target. They do this by evaluating

the state of the target (alive, damaged, or dead). Because of the lack of communication, they can

only guess what their teammates will do. They claim that their results using team theory and no

communication is able to outperform an approach with full communication.

2.1.3 Search and Track Strategies

The final category for UAV route planning is the Search And Track (SAT) mission, as in [19, 26,

27, 35, 39, 52, 53, 57, 60, 64, 65, 71, 73], which first finds and locates targets and then attempts to

track them for the remainder of the mission. SAT missions are the focus of this dissertation.

Furukawa et al. used a Recursive Bayesian approach in [19] to search and track moving targets.

Given the initial number of targets and their prior distributions, they find the set of control inputs

that minimize the variance of the targets’ states over the planning horizon. Tisdale et al. in [72]

extended the work of [19] using a particle filter with improved results.

The approach of Hoffmann et al. in [26, 27] searches for a single stationary target using an

information theoretic approach by minimizing the entropy of the target distribution at each time

step. A particle filtering technique was proposed to update the state distribution of a target after

each measurement, which is then used to calculate the information gained from each measurement.

This is useful for search missions because it updates the target’s state distribution at each sample
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allowing the planner to use the most up-to-date distribution.

In [60], Ryan and Hedrick extended the work of [26,27] by the addition of a receding horizon.

This work proposed a method to approximate the future distribution of the target state using particle

filtering. This is useful because it allows a plan to be longer than the single step proposed by

[26, 27].

Sinha et al. proposed in [65] a myopic approach that maximizes the information gained from

an environment while searching for new targets and tracking detected targets—the next area to

search is selected by predicting how much information can be gained by searching that area. This

idea of information gain, which inspired our work, is based on the information filter.

A slightly different and simpler approach than [65] was proposed by Sinha et al. in [64] that

does not predict the potential gain from undetected targets. It is heavily focused on improving track

accuracy without including directly the search objective. However, it is not clear if it can generate

search plans because their solutions seem to depend upon following previously detected targets.

This was made easy for them since their simulated sensors had a long detection range capable of

detecting a target anywhere in the search region.

In [71], Tian et al. proposed a look-ahead policy for autonomous cooperative surveillance. This

work uses a layered decision framework rather than integrating multiple objectives into a single

objective function. In other words, the objectives are prioritized and then evaluated in order of

priority. If the minimum criteria of an objective are not satisfied, the next objective will not be

evaluated. In no particular order, their mission objectives are detecting new targets, classification,

tracking, and UAV safety.

In the work [35], Lee et al. presented a path planning strategy for a UAV to track a previously

detected ground vehicle. The system was tested on a real UAV and was able to track a ground

target successfully.

Our SAT work in [39,52,53] were authored on the work contained in Chapter 3. Willigen et al.

extended our work using simple plan updates that allow the UAV to circle newly detected targets
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and then continue with the original plan [73]. They admitted that the updated plans did not always

outperform the preplanned paths.

SAT approaches can also be useful for mapping terrain changes over time. The work in [57]

proposed an approach for a UAV to search for a river and then track and map its banks. Also, [11]

proposed an approach for UAVs to monitor and track the spread of a forest fire.

2.2 Planning Horizons

Very few resources are available on the proper selection of a planning horizon. We have observed

that the use of planning horizons is widespread yet they are usually selected because of limited

computational resources. The following works only hint on the topic of selecting a planning hori-

zon.

In [34], conditions were provided for which a planning horizon can be determined and then

searches the control space to determine when the control input becomes constant. The point in

time when the control input becomes constant is considered the planning horizon. Herbon et

al. proposed in [24, 25] that information about future events beyond the planning horizon should

be used in a plan because it has value. They refer to this window of time beyond the planning

horizon as the effective information horizon with information in the near future having more value

than information farther into the future. This is similar to the idea behind the receding horizon

controller [42]. A receding horizon control generates a plan with the intent of only executing a

portion of it. The portion of the planning horizon that is executed before a plan is automatically

updated is called the action horizon. The action horizon usually has a fixed length and is also

referred to as the execution horizon.

A benefit of using the receding horizon controller over a fixed horizon controller is that it is

a means to provide feedback to the controller. This can help UAVs avoid getting trapped in an

obstacle field [5]. In [38], Li and Cassandras proposed a cooperative receding horizon controller

for a team of UAVs to visit target points. They provide conditions in which their UAVs will visit
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all the target sites without actually assigning the sites to the UAVs. In [43], Nabbe pointed out that

planning horizons (for obstacle avoidance in unknown terrain) are limited by the sensing capability

of the unmanned systems. This is known as the sensing horizon. As part of Nabbe’s approach to

route planning, the vehicles are put in positions that maximize their sensing capabilities. Despite

the importance of planning horizons, little research is available to aid in the selection of a planning

horizon. That is why the planning horizon proposed in Chapter 4 is an important contribution.

2.3 Particle Swarm Optimization

Particle swarm optimization is a form of evolutionary computation that iteratively improves its

population of candidate solutions. Since first published by Kennedy and Eberhart in 1995 [33],

PSO has been used to solve countless problems. In its first eight years, more than 300 papers

related to PSO were published [29] and many modified versions of PSO are available today. For

example, Shi and Eberhart [62, 63] modified PSO and were able to improve its performance in

three benchmark problems. They did so by using a fuzzy controller that dynamically adapts the

inertia weight in the particle’s velocity update equation. See Chapter 5 for an explanation of PSO

and its inertia weight.

Among its many applications, PSO is well suited to solve path planning problems [1, 18, 22,

28, 36, 37, 41, 48, 50–53, 66, 70, 73] and a few modified algorithms are discussed next. Sun et

al. in [70] proposed using skeletonization to initialize the particle set with reasonable solutions

that avoids obstacles. Skeletonization uses a set of vertices similar to that of a Voronoi diagram.

In [66], an “anytime algorithm” version of PSO was used. It allowed the optimization of a plan

to be interrupted in time for a UAV to avoid an obstacle by using its best candidate path. The

work of [36] applied the fuzzy PSO approach of [62, 63] to route planning. Fu [18] proposed a

phase angle-encoded and quantum-behaved particle swarm optimization (θ-QPSO) algorithm and

then applied it to UAV route planning. Fu gave a detailed explanation of several other modified

PSO algorithms and provided a good evaluation of them by comparing them with other forms of
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optimization using several benchmarks. The θ-QPSO algorithm outperformed the other forms of

PSO, the genetic algorithm, and differential evolution algorithm in the benchmarks and in route

planning simulations. To our knowledge, our modified PSO is the only one to incorporate the

target distribution into the algorithm itself.

12



3

UAV Route Planning for Joint Search and Track Missions—An

Information-Value Approach

3.1 Introduction

The purpose of this chapter is to propose an information-theoretic approach to route planning for

Search and Track (SAT) missions. The cornerstone of our approach—our objective function—is

novel: it integrates naturally the conflicting objectives of target detection, target tracking, and team

survivability into a single scalar performance index that quantifies the value of target information.

Two distinctive features distinguish our approach from other information theoretic approaches:

Our integration of the conflicting objectives is much more natural and coherent than existing ap-

proaches, and what our objective function quantifies is the value of target information, not the

information itself. More specifically, our method is superior to the existing information theoretic

approaches [26, 27, 60, 64, 65] in several ways, as elaborated next.

First, our objective function integrates the conflicting objectives of target detection and target

tracking much more naturally and coherently than the existing approaches. In our objective func-

tion, target detection performance is reflected in the number of terms—each term corresponds to

one target detected—while tracking performance is dictated by how large each term is. This makes

much better sense than the ideas underlying the existing approaches.

Second, we assign a value to the information gain rather than treating all information equally.
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The value can be a function of target type, target kinematic state, and time of observation, to name a

few. Note that targets are in general not equally important and therefore information from different

targets should not be equally valued. The same is true for information obtained at different times.

Existing approaches ignore all these important distinctions. For example, our objective function’s

design parameters can be used to emphasize early detections for time-critical rescue missions or

to track targets near strategic locations. These are desirable attributes for an objective function.

When a path maximizes our objective function, the vehicle following that path is expected to gain

the most valuable information by detecting the most important targets and tracking them during

the most critical times.

Another improvement lies in the type of information used and how it is used. The work of

[26, 27, 60] tries to maximize Shannon information in order to reduce the uncertainty of the state

distribution of a single unknown target. Its generalization to the case of multiple targets, or more

importantly an unknown number of targets, is not trivial. In contrast, our approach handles any

number of targets with ease because our basis is average estimation error for detected targets in

terms of Fisher information, which is additive and easily obtained from the output of a target

tracker. Note that Fisher information is variant w.r.t. the order in which elements are arranged,

which is desirable, while Shannon information is not. For example, two independent random

variables x and x̂ could have the same distribution but vastly different realizations. This is reflected

well in Fisher information but not in Shannon information. Fisher information, but not its value,

was also used in [64,65]. Using our information value, a path plan can be generated to provide the

right balance of the search and track objectives regardless of the number of targets in the region or

the type of sensors used by the UAVs.

Additionally, our approach provides a framework for plan updates. A path update is again path

planning except that it is over an updated time horizon and it uses the most up-to-date information,

which includes any detections and target tracks as well as the knowledge of regions that have been

searched. How the target distribution is updated depends on many things. For example, over the
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regions that have been searched without a detection, the spatial density can be reduced to a value

depending on the probability of missed detection of the sensor suite onboard the UAVs. In our

simulations, for simplicity once a target is detected, it will be tracked using a (Kalman) tracking

filter without updating the UAVs’ search paths, meaning that they will continue to follow their

original, preplanned path regardless of what the target is doing. In a real mission, the proposed

approach to path planning would be used for the initial plan and then again to update the plan using

the most up-to-date information.

Our objective function also offers valuable flexibility not found in existing approaches.

Next, we reveal two potential drawbacks of our approach. Our objective function is too com-

plex to maximize analytically, making a simulation based approach necessary. Also, it may be

difficult to set the design parameters to reflect the relative value of the information obtained from

different targets or at different times.

This chapter is organized as follows. In Section 3.2, we define our objective function and

describe its parameters. Section 3.3 highlights the desirable properties of our objective function.

Section 3.4 modifies our objective function to include a penalty for a loss of a team member. In

Section 3.5, we provide several examples of how our objective function can be used. Then, in

Section 3.6, we describe an illustrative scenario. Section 3.7 presents the results of the simulation,

and finally, Section 3.8 contains our conclusions.

3.2 Objective Function

Our objective function, G, quantifies the value of the target information gained during the mission

and is defined as

G = E

[
K∑

k=1

N∑
n=1

αn,kλn,ktr (In,k)

]
(3.1)

where

• E[·] is the expectation with respect to all uncertainty, including target distributions and detec-
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tions.

• K is the length of the mission measured by discrete time intervals.

• N is the total number of targets detected during the mission, which is random before the

mission.

• αn,k is the importance factor for target n at time k.

• λn,k is the time factor for tracking target n at time k once it has been detected.

• tr(In,k) is the trace of the information matrix In,k for target n at time k.

G assigns a value to the information accumulated during the mission based on when, where,

and from which target the information is obtained. The importance and time factors control this

and can be set according to the mission planner’s goals. To maximize G, we need to select the

routes that make more detections (i.e., a large N ) and in the meantime track the targets more

accurately so that each term is large (i.e., In,k is large), especially for important targets, such as

high-profile targets and major threats, at critical times.

3.2.1 Expectation operator

G is the expectation of the total value of the information gained using a particular solution. By

comparing the G values from two different path plans, one can tell, on the average, which of the

path plans will yield more valuable information.

3.2.2 Total number of targets detected, N

The most unusual aspect of G is that the number of terms, N , in the second summation is path

dependent and random—it is equal to the number of targets to be detected. This is so due to

the uncertainty associated with the distribution of targets and missed detections. Maximizing the

number of detected targets is not critical when maximizing G because maximizing formula (3.1)

is not equivalent to maximizing N .
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3.2.3 Importance factor, αn,k

It is a design parameter that is necessary when all targets are not equally important. The importance

factor depends on what is known about the targets and may also be a function of a target’s kinematic

state, such as location or velocity. For example, a target may be more valuable in one location than

in another; a moving target could be more important than a stationary target. The importance

factor can be time dependent—a particular target may become more valuable at a particular time.

If a solution with a high CDP is more desirable than solutions with quality tracks, the importance

factor can be used to reduce the benefit of multiple observations on a target.

3.2.4 Time factor, λn,k

It is used to specify how valuable information is as a function of time. It can control when it is

most important to know where the targets are—e.g., it can reduce the value of information with

age.

3.2.5 Information matrix, In,k

It quantifies the accuracy of the estimates and is the fused information matrix for target n at time k

from all of the UAVs. In the Fisher sense, information is the inverse of uncertainty and a reduction

in uncertainty results in an increase in information [2]. By improving the accuracy of the state esti-

mates, we are increasing the amount of information about the target. The value of this information

is determined by αn,k and λn,k.

3.3 Desirable Properties of G

3.3.1 Jointly optimizes detection and tracking

Jointly optimizing conflicting objectives is quite challenging [30,31]. Our objective function (3.1)

contains elements of both detection and tracking and can be used to optimize these objectives
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jointly.

3.3.2 Differentiates information from information value

Fisher information only quantifies the accuracy of a track without considering the usefulness of the

information. G assigns value to the information according to when, where, and from which target

the information was obtained.

3.3.3 Easily compares different solutions

When using our objective function to evaluate different solutions, the best solution is the one with

the largest value. This greatly simplifies determining which path, among many candidate paths, is

the best solution for the problem at hand.

3.3.4 Naturally prefers early detections

G naturally encourages early detection of targets. When targets are detected early in a mission,

they can be tracked for a longer time, which will increase the total amount of information gained

from those targets. This is supported by the (Kalman) tracking filter’s ability to continue tracking

a target after the last time it was observed. In general, early detection is preferred since it gives

more time for response.

3.3.5 Encourages repeated observations of the same targets

It is beneficial to make multiple observations of the same target so as to track it more accurately. G

encourages tracking targets for a longer time since it will lead to a larger gain in information value

as a result of more terms in the summation.
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3.3.6 Useful for ranking solutions of many practical problems

G quantifies the joint objectives of detection and tracking naturally and coherently. It is flexible

and can be used to rank solutions to many related problems well, such as sensor management—by

determining the best locations to take measurements over time—and resource allocation. In fact,

route planning itself is essentially sensor placement over time.

There are numerous possible enhancement techniques that can be ranked well by G includ-

ing, for example, revisiting the same target, optimizing the field of view, and viewing targets from

different angles. Also, G can handle different numbers of UAVs, different platforms, different sen-

sors types, and different communication schemes. All these enhancements can be applied without

changing our overall approach to path planning.

3.4 Accounting for Team Survival

Our objective function indirectly promotes team survival because UAVs that live longer will have

more opportunities to detect and track targets. Formula (3.1) reflects this without directly account-

ing for the loss. This is because G only keeps track of what is gained in terms of information

value and does not penalize for the loss of a UAV directly. As a result, G does not directly care

about how many UAVs survive. A formula that explicitly accounts for the loss of a team member

is presented next.

Here, a term is added to formula (3.1) that penalizes the team for the loss of team members:

Gs = E

[
K∑

k=1

N∑
n=1

αn,kλn,ktr (In,k)−
M∑

m=1

Gm,km

]
(3.2)

Here, M is the total number of UAVs lost during the mission, which is random before the mission.

Gm is the cost of the searcher in terms of information value even though it may be difficult to

quantify. When there is no knowledge about Gm, we may choose it to be equal to the difference in
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the contributions of the UAV if it is lost or not, which can be obtained by a simulation-based study.

3.5 Examples and Analysis

In this section, we include five simple scenarios to illustrate how different solutions score when

using G. There are no actual UAV paths in these examples. Instead, detection sequences were

assigned to the targets, as will be explained. These examples will highlight the desirable properties

of G. In each figure, the solution that tracks multiple targets will be plotted using a blue solid line

and the solution that tracks a single target will be plotted using a red dot-dash line.

In all the examples, the targets will move at a constant velocity (CV) in a two dimensional space

and we use a Kalman filter with a matching CV motion model to track the targets. Each example

takes place over a 100-s time period and is sampled at a rate of 10Hz for a total of 1000 samples

per scenario. These examples are easily reproducible because the estimation error covariance does

not depend on measurements. In fact, no measurements were simulated for these examples.

The motion and measurement models are

xk = Fxk−1 + Gwk−1

zk = Hxk + vk

(3.3)

20



with w and v being zero-mean Gaussian white noise with covariances Q and R, respectively, and

F =




1 T 0 0

0 1 0 0

0 0 1 T

0 0 0 1




, G =




T 2/2 0

T 0

0 T 2/2

0 T




H =




1 0 0 0

0 0 1 0


 , Q =




1 0

0 1


 m2

s4

R =




4 0

0 4


 m2, T = 0.1s

When viewing the figures in this section, the Φk label on the y-axis is the trace of the informa-

tion matrix at sample k:

Φk = tr(Ik),

to reflect how well the targets are being tracked. However, if multiple targets are included, then

Φk =
N∑

n=1

tr(In,k),

unless otherwise stated. Furthermore, we always set tr(In,k) = 0 before target n has been detected.

Lastly, the legend in each figure shows each solution’s score in terms of

G =
1000∑

k=1

Φk.

Thus, G can be thought of as the area under the Φk curve.
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3.5.1 G prefers early detections to late detections

This example shows that it is better to detect and track a target early rather than later in the mission

when αn,k and λn,k are set to unity. In Figure 3.1, two sets of scores are shown. The first solution

(blue solid line) detects a target at sample number 200 and then observes it until sample 700. The

second case (red dot-dash line) is the first case delayed by 200 samples. In both cases, the target is

observed and tracked for 500 samples and then tracked using prediction until sample 1000. Note

that without the observations, the value of Φk decreases but is still positive valued because it is

estimating the target’s state using prediction.

The blue solid line solution has a higher score of G = 16, 848 while the red dot-dash line

solution only had a score of G = 16, 057. This is because the blue solution was able to predict the

target’s state for 300 samples after the last observation was made, as apposed to the red solution’s

100 samples.
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Figure 3.1: Normal case: early detection is better
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3.5.2 Use time factor to encourage late information gain

This example uses the same scenario as in Figure 3.1 but changes the time factor. See Figure 3.2

for the time factor vs. sample number. For clarity, λk in Figure 3.2 is the same λk as in formula

(3.1), meaning that information gained towards the end of the mission is more valuable. Figure 3.3

shows the time factor applied to the scenario from Figure 3.1. Here,

Φk = λktr(Ik).

In Figure 3.3, the later solution has a greater G value showing that λn,k can be used to encourage

later information gain, if desired.
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Figure 3.2: Time factor vs. time for Section 3.5.2

3.5.3 G prefers multiple targets to a single target

Next, we compare tracking two targets to tracking a single target when the total number of obser-

vations is fixed. This will demonstrate that it is better to distribute the fixed number of observations

over multiple targets than to focus on a single target. For simplicity, we set αn,k and λn,k to unity.
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Figure 3.3: Use time-increasing time factor to encourage later detection

Figure 3.4 plots the gain in information value vs. time and shows that G prefers detecting

multiple targets to detecting a single target. Here, we plot the multiple target case in blue with

Φk =
N∑

n=1

tr(In,k).

At sample 100, a searcher detects and actively tracks a target until sample 200. Between samples

200 and 400, the searcher does not observe the target and tracks it using prediction.

At sample 400, the searcher can either begin tracking a new target (blue solid line) or it can

reacquire the original target (red dot-dash line). In both cases, the second sequence of observations

will continue until sample 600. As seen in Figure 3.4, the two cases are equal until sample 400

when Φk becomes greater for the multiple targets case. This is due to the (Kalman) tracking filter’s

ability to continue tracking the first target using prediction.

3.5.4 Use importance factor to encourage detecting more targets

In some situations, it is possible for a solution that continuously tracks a single target to have a

higher G value than a solution that tracks multiple targets for a shorter time. This is because con-
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Figure 3.4: Normal case: G prefers detecting more targets

tinuously tracking a single target can result in many more positive valued terms in the summation

of formula (3.1). Figure 3.5 shows the information gained from continuously tracking a single

target (red dot-dash line) compared with a solution that briefly tracks two different targets (blue

solid line). If we want to overcome this, αn,k can be used to reduce the importance of a target once

it has been detected so as to encourage more detections.

Figure 3.6 shows the effect that an importance factor has when applied to the scenario depicted

in Figure 3.5, which shows the information gained from continuously tracking a single target.

Here,

Φk =
2∑

n=1

αn,ktr(In,k),

where αn,k was arbitrarily designed to reduce the importance of a target after its first detection.

This is an example of how αn,k can influence UAVs to track more targets.
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Figure 3.5: A case that prefers better tracking to more detections

3.6 Simulation

We begin this section with some simplifying assumptions. We describe the terrain, the search

vehicles, and their sensor’s detection performance followed by a description of the Kalman filter

as a target-tracking algorithm. We then describe the parameters used in our objective function.

Next, we describe several sets of search paths. Finally, we explain how we evaluate G. Section 3.7

contains the results of the simulations.

3.6.1 Simplifying assumptions

The main contribution of this chapter is the proposal of an information-value approach based on

a novel objective function. Applying it to a real-world problem would involve many practical

issues. While those that are unavoidable and will affect our overall approach significantly should

be considered and discussed here, the others need not and should not be discussed, even though

they may affect the results of our approach. In order to focus on the main theme—how the method

works—it is better to simplify things for clarity so as to avoid distracting the reader from the

real purpose of the chapter. Thus we do not include some of the practical issues that may be
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Figure 3.6: Use importance fact to encourage more detections

encountered in a real mission, although they are important. Also, including these issues would

complicate things unnecessarily and make it hard to apply our common sense in the judgment and

analysis of the outcome. In addition, space limitation would not allow us to discuss such issues in

detail.

Therefore, we assumed perfect communication and used centralized fusion during the simu-

lation. We also assume some prior knowledge of the distribution of target locations rather than

assuming that their locations are known. For a fair comparison between the optimized paths and

the ladder pattern solutions, we do not update the path plans. Finally, for simplicity we set both

αn,k and λn,k to unity for all targets. Furthermore, our simulation did not consider the problem of

false alarm, data association, or model mismatch. These problems are not present in all situations

and their incorporation would complicate things substantially. In fact, their treatment is not trivial

and calls for separate studies, which is beyond the scope of this chapter.

The simulation setup presented here is general enough to handle most practical issues discussed

above, but doing so would not change the overall approach; rather, it would complicate things and

make it harder for us to make sense out of the results. For example, changing the sensor, the UAV
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properties, target distribution and behaviors, etc. would change the outcome but the method itself

would remain the same. We chose to use a simple sensor, because using a more sophisticated

sensor model would not change the approach. Our target model is simple yet reasonable in that

every terrain type received its own percentage of the targets. Changing it would also not change

the approach.

3.6.2 Terrain

We simulate a square region that is 60 nautical miles (nmi) wide. The resolution is 162 cells by

162 cells with each cell having its own terrain type and altitude. Figure 3.7 shows the environment

contains three terrain types: mountain, desert, and forest. In the colorbar, the different colors

labeled “Mount.” indicate different altitudes of the mountainous terrain. The region also contains

a road network, shown by grey lines. The altitudes in this region are shown in Figure 3.8 and they

vary from 2808ft to 9295ft.
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Figure 3.7: Terrain map of the search region
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Figure 3.8: Altitude of the search region in feet

3.6.3 Search vehicles

The search team consists of two UAVs. Searchers 1 and 2 begin with the initial coordinates of

(1.25, 1.25)nmi and (58.75, 1.25)nmi, respectively. They will navigate the region at a constant

altitude of 9,842.5ft (3000m) above sea level so that there is no concern of colliding with the

terrain. The UAVs fly at a constant speed of 100kt and are limited to a maximum turning rate of

2deg/s.

3.6.4 Sensor model and detection function

The searchers use a simple optical sensor aimed directly below the vehicle and takes a snapshot

every 10s. At each discrete-time step, an image is captured for the purpose of detecting targets.

The sensor has a viewing angle, θ, set to be about 51deg in every direction. This viewing angle

is sufficient for the searcher to detect a target up to 2nmi away while flying at 9,842.5ft above the

target.

To determine if a target is within the detection range of a searcher, we need to determine the
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difference in altitude between the target and the searcher, ∆alt. A target cannot be detected if the

sensor’s maximum viewing angle θ is smaller than the angle to the target, θt, given by

θt = tan−1 (d/∆alt) (3.4)

where d is the horizontal ground distance between the searcher and the target.

The detection function is used to determine the probability of detecting a target within the

sensor’s field of view. The detection function is expressed as

PD =





PD,terrain + δrBr, θt < θ

0, θt > θ

(3.5)

It is the sum of the probability of detection associated with the target’s terrain, PD,terrain, and the

probability bonus Br, because it is assumed easier to detect an on-road target. The binary operator

δr is

δr =





1, Target is on a road

0, Target is off the road
(3.6)

See Table 3.1 for the probability of detection associated with each type of terrain. The values

consider the possibility of occlusions and the target blending in with its surroundings.

Table 3.1: Target detection probabilities

Road PD,terrain

PD,terrain Bonus +Road Bonus
Desert 0.90 0.05 0.95

Mountain 0.50 0.25 0.75
Forest 0.10 0.40 0.50
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3.6.5 Target distribution and description

The probability that a target is located in a particular terrain type follows the distribution in Table

3.2.

Table 3.2: Percent of targets in each type of terrain

Terrain Type % of targets
Mountain 90

Desert 7
Forest 2
Road 1

Figure 3.9 illustrates the probability density for the distribution of a target’s location. The

percentages from Table 3.2 are uniformly distributed over their respective regions. The numbers

appear to be very small because there are a total of 162 × 162 = 26, 244 cells used to create the

map. Summing the values from each cell results in unity.
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Figure 3.9: Probability density for a target’s location

The targets move at a constant speed of 35kt on a road and travel off the road more slowly,
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with a speed given in Table 3.3. Road targets are allowed to leave the area when they encounter

the edge of the region and they are replaced with a new target headed in the opposite direction. If

an off-road target encounters the edge of the region, it turns around at some random angle. These

steps guarantee that there is a constant number of targets in the region at all times. Furthermore,

the targets remain in their initial terrain type. Otherwise, the targets would leave the target rich

terrain types, which would cause the distribution of targets to vary over time.

Table 3.3: Target speed (knots) in various types of terrain.

Terrain Type speed (kt)
Road 35.00
Desert 33.25

Mountain 8.75
Forest 3.50

3.6.6 Target tracker

Even though the targets can change directions as described above, for simplicity, we used a Kalman

filter with the nearly constant velocity motion model to track the targets and to gain information

once the target has been detected. The motion and measurement models used in the Kalman filter

are given by system (3.3) with

Q =




1 0

0 1


 nmi2

hour4
, R =




σ2
v 0

0 σ2
v


 ft2, T = 10s.

Figure 3.10 shows the standard deviation of the position measurement error along each axis vs.

∆alt.
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Figure 3.10: Measurement noise vs ∆alt

3.6.7 Search paths

For this scenario, we evaluate the expected performance of five sets of paths using our objective

function. Three of them were generated using a modified particle swarm optimization algorithm

and the other two are simple ladder pattern solutions commonly used in search missions.

Optimized search paths without threats

This section does not suggest that our modified particle swarm optimization (PSO) algorithm must

be used to optimize G. Other path optimizers can use G as their objective function. This section is

meant to display how G assigns value to different solutions in a realistic setting. A description of

the algorithm used to generate these solutions is provided in Chapter 5 and is summarized next.

PSO is a form of evolutionary computation that attempts to improve its solution iteratively.

Our modified PSO uses the prior distribution of the targets’ spatial density not only to evaluate

the solutions but also as a guide in creating the solutions. To do so, a population of targets is

generated. Then, a target path is generated for each of those targets and it is sampled at the same
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times that the UAVs’ paths are sampled. So, for every discrete-time location the UAV has, every

target will have a corresponding location. Then, the modified PSO will have every target pull the

UAVs toward its corresponding sampled position, which means that the UAVs will be drawn to

the regions of the map with a high target density although those regions are time varying. This

force of attraction for each of those samples has a magnitude proportional to the inverse square of

the distance between the searcher and the target. These forces, in addition to the traditional terms

in the PSO update equations, make up our modified PSO. This results in more path plans being

created in the target rich regions than elsewhere. Once a generation of search paths is created using

the modified update equations, G is used to evaluate them. Details of our modified PSO algorithm

can be found in Chapter 5 or [51]. For further reading about PSO, see [33], [14], and [29].

The path plans in Figures 3.11 and 3.12 were generated using our modified PSO algorithm.

To optimize each of these plans, we used 256 particles for 20 iterations, which required about one

hour of computation time. To reduce the computation time, the sample rate of each sensor was

reduced to 120 samples/hour during the optimization, which is below the 360 samples/hour used

in the scenario. This reduces the dimension of the problem. Then, once the optimizer has finished

running, the best path will be upsampled to the rate of 360 samples/hour. To avoid overfitting the

paths to a particular realization of targets, the paths were generated using six 500-target sets. Three

of the six sets were used for evaluation and the other three sets were used as guides. For both cases,

one of the three sets was randomly selected for each iteration. These targets are only used by the

optimization algorithm and a larger set of targets will be used to provide the average G value for

the Results section.

After a path is generated but before it is evaluated, it is tested for any violations of its motion

constraints. If the speed is not a constant 100kt or if the heading changes by more than 2deg/s, the

path is corrected. This process is time consuming. The computation time could again be reduced

by improving the path correction process but the means of optimization is not the focus of this

work.
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The difference in how Figures 3.11 and 3.12 were generated is their use of the importance

factor. Figure 3.11 was optimized with an αn,k equal to unity. This type of setting encourages

the searchers to track the targets more accurately by spending more time loitering over targets.

Maintaining longer visibility on a single target conflicts with detecting new targets and requires the

necessary tradeoffs. The UAVs travel faster than the ground targets and the optimization algorithm

handles the issue of maintaining visibility automatically. The path plan that provides the most

valuable information will maximize G by satisfying these conflicting objectives.

Figure 3.12 was generated by reducing the importance factor of a target after each time it is

observed. This causes G to prefer solutions that detect more targets by discouraging too many

observations of a single target. For Figure 3.12, αn,k was set to 1% of its initial value αn,0 after 10

observations:

αn,k = ηdn,kαn,0

where η ≈ 0.631 from η10 = 0.01 and dn,k is the total number of observations on target n before

time k.

The path plans in Figures 3.11 and 3.12 focus on searching the low lying, mountainous region

because of a combination of two factors: (a) there is an abundance of targets in the mountains and

(b) detection range in low lying areas is better than in high altitude regions.

Optimized search paths with threats

Figure 3.13 is a path plan generated for the same environment with threats added. These threats are

assumed to be surface-to-air missile launchers with known locations. The paths were generated

using formula (3.2) with Gm set to 20,000. The threats, marked in red, are guaranteed to kill a

UAV when within 3nmi of it and zero chance of killing the UAV outside of that range. The threats

were strategically placed in the low lying areas to encourage the UAVs to search elsewhere.
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Ladder pattern search paths

Ladder patterns are commonly used search paths and are simple to generate. See Figures 3.14 and

3.15 for two examples. Figure 3.14 shows a pair of ladder patterns that use the prior knowledge

of the possible target locations. This solution was generated to search for targets in the mountain

where 90% of the targets are known to be located. Figure 3.15 shows a pair of ladder patterns

generated without the prior knowledge of the targets’ spatial distribution.

nmi

nm
i

0 20 40 60
0

20

40

60

Figure 3.11: Optimized search paths with unity importance factor.

3.6.8 Evaluating G

G is too complex to maximize analytically, making a simulation based approach necessary. The

following steps were taken to evaluate G: 1) Simulate the searchers following their specified paths.

2) Determine which targets have been detected. This will create a sequence of observations. 3)

Input the coordinates of the observations into the target tracking algorithm and an output of the

target tracking algorithm is the information matrix. Every target will have its own information

matrix at each time-step. 4) Use the set of information matrices to evaluate formula (3.1).
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Figure 3.12: Optimized search paths with an importance factor that decreases once a target is
detected.

3.7 Results and Discussion

In this section we present the results for the five sets of search paths for the two-hour mission

described in Section 3.6. The results from this simulation are presented in Table 3.4. The values

were obtained by averaging over 100 runs using 1000 targets per run for a total of 100,000 targets.

Our objective function is linear in this regard, so the following cases are equivalent (all using the

same target distribution): 1) 100 runs with 1,000 targets, 2) a single run with 100,000 targets, and

3) 100,000 runs with a single target.

The “G1” column contains the average value of our objective function using a constant impor-

tance factor to encourage tracking. The “G2” column was calculated using an importance factor

that decreases after each time it is detected. The “Dets.” column indicates the average number of

unique targets detected per run. Dividing the number in the detections column by 1000 is equiva-

lent to the cumulative detection probability (CDP). The “Obs.” column contains the average total

number of observations, including repeated observations of the same target. The final column is
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Figure 3.13: Optimized search paths with unity importance factor and six threats (shown in red)
having a kill radius of 3nmi.

Table 3.4: Tabulated results for the SAT simulation.

G1 (1012) G2 (1011) Dets. Obs. obs.
target

Optimized with α = 1 (Fig. 3.11) 5.2 5.8 203 996 4.9
Optimized with decaying α (Fig. 3.12) 4.7 6.5 251 1015 4.0

Optimized with α = 1 and threats (Fig. 3.13 ) 4.4 5.6 202 834 4.1
Ladder with prior (Fig. 3.14) 3.7 6.1 270 917 3.4

Ladder without prior (Fig. 3.15) 2.5 4.3 195 663 3.4

the average number of observations per target, which is the total number of observations divided

by the number of targets detected.

The PSO solutions had the most observations per target because they spent more time loitering

in the low lying, mountainous regions, which resulted in the best combination of detection range

and the abundance of targets. Both factors are favorable conditions for tracking targets, especially

because they make it easier for the searchers to reacquire previously detected targets. Once stated,

these reasons become obvious but optimization algorithms often generate solutions using environ-

mental relationships that may not be considered beforehand or even overlooked. Ladder patterns
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Figure 3.14: A conventional ladder search path with prior

often overlook or neglect these relationships.

Column G1 shows that the solution in Figure 3.11 has the highest average value for G when

a constant important factor is used. This was expected and it explains why Figure 3.11 averaged

the most observations per detected target. According to G1, this solution performed best because

it distributed its observations over fewer targets in order to improve tracking performance.

Table 3.4 also shows that Figure 3.12 maximizes G2 when the importance of a target is reduced

after it is detected. Even though Figure 3.12 detected 19 less targets than the informed ladder

patterns of Figure 3.14, the team made 98 more observations and that is why its G2 value is greater

than that of the informed ladder. When comparing the total number of detections, the solutions

in Figures 3.12 and 3.14 fared best because they were designed to favor detections. The fact that

Figure 3.12 maximizes G2 is in line with Section 3.5.4 that the importance factor can be used to

find more targets.

Figure 3.13 contains the only path plan facing threats. The placement of the threats forced the

search team to fly in between the threats to search the low-lying, target rich regions of the map.

The modified PSO algorithm chose to avoid the threats even though the 20,000 loss in information
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Figure 3.15: A conventional ladder search path without prior

value is relatively small compared to the values of G in Table 3.4. This was probably due to the

amount of potential information that would be lost if a UAV were unable to detect new targets.

An interesting point is that the total number of detections is almost the same for Figures 3.13

and 3.11. However, their G1 values vary significantly. This can be attributed to the UAVs of Figure

3.13 being forced to search the higher altitude regions of the mountain, which resulted in a shorter

detection range and fewer repeated observations.

Table 3.4 also shows how a poor solution, as in Figure 3.15, might score. This poor solution

detected fewer targets along with only 3.4 observations per target. Since these two metrics are

important to G, this solution received a much lower value for G in both G1 and G2. Even though the

observations/target for the informed ladder pattern was identical to the uninformed ladder pattern,

the informed ladder pattern performed much better in G because it was able to detect many more

targets.

The differences in the values of G1 and G2 bring to light the trade-off between the conflicting

objectives of detecting new targets and tracking previously detected targets. These objectives are

conflicting because, due to limited resources, a searcher cannot simultaneously follow one target
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while searching elsewhere for new targets. Not only do these differences appear in G, but they

also show up in the detections and observations/target columns. Though the settings of both G1

and G2 consider the objectives of detection and tracking, G1 emphasizes better tracking while G2

encourages detecting more targets. In general, it is hard to say how much better one solution is

than another without knowing exactly which of the objectives is more desirable but Table 3.4 does

provide a starting point in understanding how different solutions are valued.

3.8 Summary

This chapter proposes a novel approach for path planning that maximizes the quantified value of

target information for search and track missions.

The cornerstone of the approach is the introduction of a new scalar-valued objective function

G that integrates naturally and coherently the objectives of target detection, target tracking, and

vehicle survivability: In G, the number of terms reflects the number of targets detected and how

large each term is reflects how well each detected target is tracked. As such, our G makes good

sense for jointly optimizing the conflicting objectives of detection and tracking. Also, G quantifies

the value of information rather than the information itself. This makes G convenient and flexible—

its factors can be chosen to fit a user’s particular needs and are simple to use. The time factor

behaves as a window in time when assigning a value to information. The importance factor is used

to assign a relative value to the information of a target. These factors allow G to quantify the value

of the information that can be obtained by following a particular path.

The simplicity of G makes it promising for many applications. We have provided several sim-

ple examples to highlight the attributes of G. These examples show how the value of G can be

affected by its parameters. We also have included a realistic simulation of a search and track mis-

sion using G with and without threats. Using G, we have compared and discussed the simulation

results for five different path choices for a team of cooperative UAVs. The results show that G can

be used to determine which search path is better at detecting and tracking targets based on which
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targets are important and when they are important. Whether a mission’s focus is track oriented or

detection oriented, tradeoffs must be made and G is able to handle well the tradeoffs between the

conflicting objectives of search and track missions.
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4

Minimum Time-Error Planning Horizon for Plan Updating

Triggered by Poisson Random Event

4.1 Introduction

A major task for plan update is the selection of a planning horizon. A planning horizon is how far

into the future a plan includes. Here, we attempt to answer this question,

What is the optimal planning horizon?

There is very little research, if any, regarding the selection of planning horizons. This chapter

derives a planning horizon that is optimal in the sense of minimizing errors in planning time when

the plan updates are triggered by Poisson random events. This is the first step towards finding

“the” optimal planning horizon if such a horizon exists. It is an important contribution because it

is the only available planning horizon that has been derived. It is suitable for an unknown number

of targets with unknown locations.

Despite the widespread use of planning horizons [6–9,13,16,17,19,26–28,35,41,45,47,51,52,

54, 55, 59, 60, 64–66, 71], very little research is available on the selection of a planning horizon. In

general, they are usually selected either arbitrarily or based on limited computational capabilities.

In [7–9] a lower bound is set for a planning horizon based on the minimum number of looks to

determine whether or not a target is in a region. Unfortunately, much work leaves the planning

horizon for the end-user to decide. This causes horizons to be selected for convenience rather
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than optimality. To help in this selection, this chapter derives an optimal planning horizon that

minimizes errors in planning time, namely, overshoot and undershoot.

Throughout this chapter, an event is defined as anything that triggers a plan to be updated.

Often, these events occur in an unknown number and at unknown times. With this in mind, we

modeled this random number of events by a Poisson distribution while assuming that the rate

parameter is exactly known. Therefore, the corresponding exponential distribution is also known,

which defines the distribution of the time between events. Moreover, it is these events that change

the dynamics of a scenario and require that a plan be updated. Hence, the benefits of using a

Poisson model are twofold in that it describes both the expected number and frequency of events.

In this light, the purpose of this chapter is to show the relationship between the planning horizon

that minimizes planning time errors and the aforementioned rate parameter.

We proceed in Section 4.2 by supporting the need to update a plan when it is interrupted. In

Section 4.3, we define the planning time errors, undershoot and overshoot. Then, in Section 4.4,

we derive the planning horizon that minimizes these errors. Section 4.5 describes a predator-prey

simulation and Section 4.6 presents its results. Finally, we conclude with Section 4.7.

4.2 Optimality of Plans

When change occurs during the mission, there are two options. The first is to ignore the change and

continue with the original plan and the second is to update the plan. This work handles the second

case by proposing a planning horizon that minimizes the time-error when a plan is changed. When

a plan uses the optimal planning horizon, it avoids two pitfalls. The plan can be either too short

or too long. If the plan is too short, it does not consider the big picture. Even though a myopic

plan is less likely to be interrupted, its associated computational savings come at the expense of

not being big-picture optimal. Among these short-sighted plans are the so-called greedy solutions.

On the other hand, when a plan is too long relative to the rate of events, it is not best suited to

achieve the goal because it is very likely to be interrupted. Then, once a plan is interrupted, there
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is no guarantee that the completed portion of the plan is still optimal over the abbreviated horizon.

This is true even if the plan was optimal over its original horizon. Support for using the optimal

planning horizon is provided next.

4.2.1 Longer plans are not always better plans.

Let a plan beginning at time t with a planning horizon length τ be denoted as Pτ (t). Then, let

P ∗
τ (t) be optimal over the interval [t, t + τ ] such that

J(P ∗
τ (t)) ≥ J(Pτ (t)) ∀Pτ (t)

where J is the objective function to be maximized.

Next, suppose that we have two plans P ∗
τ1

(t) and P ∗
τ2

(t) that are optimal over their respective

planning horizons, with

τ1 < τ2.

Then, if plan P ∗
τ2

(t) is interrupted at time t + τ1, it cannot be better than plan P ∗
τ1

(t) over the

interval [t, t + τ1] because plan P ∗
τ1

(t) is optimal over that interval. Hence, the completed portion

of an interrupted plan may not be optimal, which is why plans should not be too long relative to

the rate of interrupting events.

4.2.2 The remainder of an interrupted plan is not optimal.

Let τ2 be the optimal planning horizon among all possible horizons. Using the above reasoning,

we explain why an entirely new plan of length τ2 should be generated following an interruption,

rather than using the remainder of the interrupted plan directly. The key point here is that simply

appending to the remaining part of the current plan is not optimal even when using the optimal

horizon. This is explained next.

Suppose plan P ∗
τ2

(0) is optimal over the interval [0, τ2] and is interrupted at time τ1. The
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question here is,

If a plan is interrupted, should the new plan include the unfinished portion of the

original plan?

The answer is no. P ∗
τ2

(0) was optimal over the interval [0, τ2] because it used all information

available at time t = 0. Now that a new plan is needed, the most up-to-date information should be

used to generate the new plan.

With P ∗
τ2

(0) being interrupted at time τ1, let Pτ12(τ1) denote the unfinished part of the plan over

the interval [τ1, τ2] with

τij = τj − τi.

This is the part of the plan that is in question.

Instead of using Pτ12(τ1) as the beginning part of the next plan, we suggest generating an

entirely new plan, P ∗
τ13

(τ1), that is optimal over the interval [τ1, τ3] with τ3 = τ1 + τ2. This is better

than a plan that combines Pτ12(τ1) with another plan, Pτ23(τ2), that is over the remainder of the

interval [τ2, τ3].

Since P ∗
τ13

(τ1) is optimal over the interval [τ1, τ3],

J(P ∗
τ13

(τ1)) ≥ J(Pτ12(τ1)) + J(Pτ23(τ2)) ∀Pτ23(τ2).

That is, simply appending to the end of the current plan cannot be better than an optimal update,

which justifies generating a new plan.

4.3 Errors in Planning Time

This section describes two types of timing errors: undershoot and overshoot. An undershoot occurs

when a plan ends before an event takes place, thus requiring that a new plan be generated. An

overshoot occurs when an event interrupts a plan, hence wasting the remainder of the plan. In
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other words, a good plan might be end-loaded—a lot of important actions will be undertaken

towards the end of the plan after spending time learning. An overshoot means the plan is cut short

without these important actions. An undershooting plan is a myopic one.

4.3.1 Overshoot.

Once P ∗
τ2

(0) in Section 4.2.2 has been interrupted, the amount of time that is wasted is equal to τ12.

This overshoot is denoted as δ (Figure 4.1). In cases like this, it is easy to calculate the amount of

plan that is wasted as

δ = τ − t.

0 t τ

Overshoot error

Time

 

 

δ

Portion of Plan Executed
Plan Begins
Plan Scheduled to End
Overshoot Error (δ)
Interrupting Event

Figure 4.1: An example of overshoot error.

4.3.2 Undershoot.

If an event has yet to occur and the plan has ended, a new plan will have to be made. Then, when

the event occurs at some time t in the future, the undershoot can be calculated as

ε = t− τ.
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as seen in Figure 4.2.

0 τ t

ε

Undershoot error

Time

 

 

Portion of Plan Executed
Plan Begins
Plan Ends
Undershoot (ε)
Future Event

Figure 4.2: An example of undershoot error.

Furthermore, additional penalties for under-planning may be needed if the event occurs outside

multiple planning horizons. For example, if an event will occur five time-steps into the future, a

planning horizon that only plans for a single step will undershoot the event several times.

4.3.3 Accumulating errors.

Counting both overshoot and undershoot is important. If only the overshoot were considered, a

greedy plan using a single-step horizon would never over-plan. If both overshoot and undershoot

errors are counted, every greedy plan will be penalized because its plans are too short. On the

other hand, if only the undershoot were considered, planning horizons that are too long would

never be penalized. As explained in Section 4.2.1, plans that are prematurely terminated can no

longer guarantee their optimality over the abbreviated time-horizon. These long plans should be

penalized for the amount of plan that is wasted.
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4.3.4 Example of accumulated undershoot.

Suppose a plan has a horizon of length τ . Now suppose that an event will occur at the time 5τ ,

which is unknown to the planner. Figure 4.3 shows that after plan #1, the event will occur four

planning horizons into the future. The undershoot for the first plan is

ε[Pτ (0)] = 4τ,

which is the amount of time between the end of plan #1 and the event. After plan #2, the event will

occur three planning horizons into the future, which is an undershoot of ε[Pτ (τ)] = 3τ . Continuing

on to plan #5, we have ε[Pτ (2τ)] = 2τ , ε[Pτ (3τ)] = τ , and ε[Pτ (4τ)] = 0. These errors are shown

in Figure 4.3. Summing these errors yields the total undershoot error:

4∑
i=0

ε[Pτ (iτ)] = 10τ.

0 1 2 3 4 5

5

4

3

2

1

Plan number and its undershoot errors

Time increments in multiples of τ

P
la

n 
nu

m
be

r

 

 

Portion of Plan Executed
Undershoot
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Event

Figure 4.3: An example of accumulated undershoot error for a plan of length τ when the interrupt-
ing event occurs at a time five planning horizons (5τ) into the future.
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4.4 Optimal Planning Horizon

4.4.1 Poisson assumption

Though optimal planning horizons for other distributions can be derived in a similar fashion, we

use the Poisson distribution to derive the optimal planning horizon. The benefits of using a Poisson

distribution are as follows:

i. Interrupting events are relatively rare, and the Poisson distribution is a widely used good model

for such events.

ii. A Poisson distribution expresses the probability of k events occurring over an interval. Its

probability mass function is given by

p(k, λ) = e−λ λk

k!
k = 0, 1, 2, . . .

Using this distribution, the unknown number of events over an interval can be estimated.

iii. If the rates of different types of interruptions are independent and all Poisson, then the total

rate of interruptions is still Poisson and its rate parameter is equal to the sum of the rate

parameters.

iv. If the rate parameter for a Poisson random variable is λ, then the time between events is

exponentially distributed with the density

f(t, λ) =





λeλt, t > 0

0, t < 0

See Figure 4.4.

v. For a search and track mission, if the number of targets is Poisson, so are the number of
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Figure 4.4: Normalized exponential function vs. units of λ−1. This figure holds for any λ.

detected targets. Because of property iii, this is true even with several types of targets and

each has its own rate parameter or probability of detection.

4.4.2 Derivation

We now derive the optimal planning horizon, τ , that minimizes the expected error (undershoot and

overshoot errors) in planning time. Suppose the number of interrupting events follows a Poisson

distribution with a rate parameter of λ. Then the time between events follows an exponential

distribution with a mean time of 1/λ as shown in Figure 4.4.

First, partition the time axis of Figure 4.4 in multiples of τ , as in Figure 4.5. Here, τ is arbitrary

and is used as boundaries when calculating the probability of an event occurring. Each of these

sections will be referred to by its index number. These indices refer to the number of updates used

to arrive in this section. For example, the first plan will have an index of n0 because it is not an

update while the index of the first update is n1 even though it is the second section, as shown in

Figure 4.5.

Using the boundaries in Figure 4.5, we can obtain the probability of an event occurring in the

nth section relative to the current planning time. See equation (4.1). The event time is denoted by
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Figure 4.5: Partitioned exponential distribution of Figure 4.4. The section for each index ni has a
width of τ .

t and the current planning time is always t = 0.

P{nτ < t < (n + 1)τ} for n = 0, 1, 2, . . .

= P {t < (n + 1)τ} − P {t ≤ nτ}

= [1− exp(−(n + 1)λτ)]− [1− exp(−nλτ)]

= exp(−nλτ)− exp(−(n + 1)λτ)

= exp(−nλτ)(1− exp(−λτ)) (4.1)

We can also calculate the average amount of overshoot, δn, in the nth section. See Figure 4.6

in the derivation of δn in equation (4.2).
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Figure 4.6: Shows δn for each of the sections shown in Figure 4.5. Here, ti is the mean event time
in section ni. equation (4.2) shows that δ0 = δ1 = δ2 = . . . = δn

δn = E[(n + 1)τ − t|nτ < t < (n + 1)τ ]

= (n + 1)τ − E[t|nτ < t < (n + 1)τ ]

= (n + 1)τ −
∫ ∞

0

tf(t|nτ < t < (n + 1)τ)dt

= (n + 1)τ −
∫ (n+1)τ

nτ

t
f(t)

P (nτ < t < (n + 1)τ)
dt

= (n + 1)τ − λ
∫ (n+1)τ

nτ
t · exp(−λt)dt

P (nτ < t < (n + 1)τ)

= (n + 1)τ − λ
∫ (n+1)τ

nτ
t · exp(−λt)dt

exp(−nλτ)− exp(−(n + 1)λτ)

=
{τ − 1

λ
[1− exp(−λτ)]} exp(−nλτ)

exp(−nλτ)− exp(−(n + 1)λτ)

=
τ − 1

λ
[1− exp(−λτ)]

1− exp(−λτ)

=
τ

1− exp(−λτ)
− 1

λ
(4.2)

= δ(τ, λ)

Note that δn is independent of n, meaning that δn is a constant given τ and λ. This makes sense in

view of the memoryless property of the exponential distribution.

The average undershoot for section n is denoted as εn. Note that the corresponding section
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index is relative to the beginning of this particular plan rather than the very first plan. As shown in

Figure 4.7,

ε1 = τ − δ(τ, λ)

ε2 = τ + ε1

ε2 = 2τ − δ(τ, λ)

Then, by induction, we have

ε3 = τ + ε2

ε3 = 3τ − δ(τ, λ)

...

εn = τ + εn−1

εn = nτ − δ(τ, λ)

By default,

ε0 = 0

because an event that interrupts the current plan can only cause an overshoot error. That is why

Plan # 3 in Figure 4.7 does not have an undershoot ε0.

Let ∆τ (t) denote the total planning-time error for a sequence of plans of length τ beginning at

time t. This total error is the sum of the overshoot and all the undershoots. Using Figure 4.7 for

example, the accumulated error for the sequence of plans is

∆τ (0) = ε2 + ε1 + δ. (4.3)

Then, let ∆τ denote average accumulated error for a sequence and ∆τ,n denote the expected error
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Figure 4.7: This example shows that the planning-time error for the first and second plans is equal
to ε2 and ε1, respectively. The third plan has a planning-time error equal to δ.

given that the event occurs in section n. This is defined as

∆τ,n = E [∆τ |nτ < t < (n + 1)τ ]
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resulting in

∆0 =δ(τ, λ)

∆1 =δ(τ, λ) + ε1

∆2 =δ(τ, λ) + ε1 + ε2

∆3 =δ(τ, λ) + ε1 + ε2 + ε3

...

∆n =δ(τ, λ) + ε1 + ε2 + . . . + εn−1 + εn

=δ(τ, λ) + (τ − δ(τ, λ)) + (2τ − δ(τ, λ)) + . . .

+ [(n− 1) τ − δ(τ, λ)] + (nτ − δ(τ, λ))

=δ(τ, λ) + τ

n∑
i=1

i− nδ(τ, λ)

=τ

n∑
i=1

i + (1− n)δ(τ, λ)

We now have (a) the probability of an event occurring in the nth section, P{nτ < t < (n+1)τ},

and (b) the average error associated with the nth section. Then using the total probability theorem,
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we have the expected total planning-time error:

∆ =
∞∑

n=0

E [∆|nτ < t < (n + 1)τ ] P {nτ < t < (n + 1)τ}

=
∞∑

n=0

∆nP {nτ < t < (n + 1)τ}

=
∞∑

n=0

{[
τ

n∑

k=1

k + (1− n)δn

]
P {nτ < t < (n + 1)τ}

}

=
∞∑

n=0

τ
n(n + 1)

2
exp(−nλτ)(1− exp(−λτ))

+
∞∑

n=0

(1− n){τ − 1

λ
[1− exp(−λτ)]} exp(−nλτ)

=
τ(1− exp(−λτ))

2

∞∑
n=0

n(n + 1) exp(−nλτ)

+ {τ − 1

λ
[1− exp(−λτ)]}

∞∑
n=0

(1− n) exp(−nλτ)

=
τ(1− exp(−λτ))

2

2 exp(−λτ)

(1− exp(−λτ))3

+ {τ − 1

λ
[1− exp(−λτ)]} 1− 2 exp(−λτ)

(1− exp(−λτ))2

=
τ exp(−λτ)

(1− exp(−λτ))2
+
{τ − 1

λ
[1− exp(−λτ)}

(1− exp(−λτ))2

− 2τ exp(−λτ)− 2
λ
[exp(−λτ)− exp(−2λτ)]

(1− exp(−λτ))2

=
τ exp(−λτ) + τ − 1

λ
+ 1

λ
exp(−λτ)

(1− exp(−λτ))2

+
−2τ exp(−λτ) + 2

λ
exp(−λτ)− 2

λ
exp(−2λτ)

(1− exp(−λτ))2

=
τ − 1

λ
− (τ − 3

λ
) exp(−λτ)− 2

λ
exp(−2λτ)

(1− exp(−λτ))2
(4.4)

Its derivative is equal to

∆
′
=

1− (3 + λτ) exp(−λτ) + (2 + λτ) exp(−2λτ)

(1− exp(−λτ))3
(4.5)
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It can be shown that ∆ is minimized when ∆
′

is equal to zero or when its numerator is equal

to zero. As seen in Figure 4.8, the numerator of ∆
′
is equal to zero when

τ = ρ
1

λ
(4.6)

with ρ ≈ 1.1462. This is the relationship between the planning horizon that minimizes planning

time errors and the rate parameter. It means that the optimal planning horizon is about 1.15 times

the mean time between update-triggering events.

0 2 4 6 8 10
−0.5

0
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1

1.5

x

f(
x)

f(x) = 1 − (3+x)e−x + (2+x)e−2x

x ≈ 1.1462

Figure 4.8: Letting x = λτ in ∆
′
, this figure shows that the numerator of ∆

′
is equal to zero when

x ≈ 1.1462.

4.5 Simulation

To test the proposed planning horizon, a predator-prey scenario is simulated to compare different

planning horizons. Of the planning horizons compared, the best will be the one that minimizes the

average time for the predator to capture the prey.

Let the speeds of the predator and prey be fixed at 2.5m/s and 2.0m/s, respectively. To evade

the faster predator, the prey will randomly change its heading uniformly over 0–360deg with the
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time between maneuvers following an exponential distribution with mean of τ̄ = 10, meaning that

λ = 0.1 from τ̄ = 1/λ. When the prey changes its heading the predator must update its plan to

account for the prey’s maneuver. Hence, the prey’s maneuver is an interrupting event as viewed by

the predator.

For simplicity, at the instant the prey changes direction, the predator will generate a new plan

that again tries to minimize the distance between them at the end of the new plan. When the

predator’s current plan ends, it will generate a new plan until it finally captures the prey. It is

important to note that the predator’s objective function is to minimize the distance between itself

that the prey at the end of its plan and it does not consider beyond its own planning horizon.

The horizon factor ρ from equation (4.6) will be evaluated over the range 0.25 to 5 in increments

of 0.25. We also evaluate the proposed horizon of ρ = 1.15. Each of these will be evaluated over

10,000 runs to provide a smooth curve. In addition, we repeat the evaluation using different initial

distances, d0. The initial distances used are 50m, 100m, 250m, 500m, 1000m, and 2000m.

4.6 Simulation Results

Figures 4.9–4.14 show the average time needed for the predator to capture the prey. For each case,

the horizon yielding the minimum time is designated with a yellow triangle. Also, the location

of the proposed planning horizon is indicated with a red vertical dashed line. For each case, the

curves appear to have a minimum between the values of one and two. Using the minimum values

from Figures 4.9–4.14, Figure 4.15 shows that the best horizon lies somewhere between ρ = 1 and

ρ = 1.75 for the evaluated ranges and our proposed ρ = 1.15 is a good choice.

4.7 Conclusions

This chapter formulated the problem of an optimal planning horizon and derived a planning hori-

zon that is optimal in the sense of minimizing errors in planning time when the plan updates
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Figure 4.9: Average time to capture the prey with an initial separation of 50m. The minimum point
occurs when ρ = 1.25.
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Figure 4.10: Average time to capture the prey with an initial separation of 100m. The minimum
point occurs when ρ = 1.25.

are triggered by Poisson random events. It is a first step towards finding “the” optimal planning

horizon if such a horizon exists. The predator-prey scenario was presented to compare different

planning horizons. While the proposed horizon is optimal in minimizing planning time errors, our

results show that the proposed horizon is also near optimal in minimizing the average time needed

to capture the prey. The results show that there is not a single best horizon for our simulations but

the test cases provide some evidence that the length of a plan (in time) should be close to the mean

time between interrupting events. One may expect the planning horizon that minimizes the time to

capture the prey be equal to the prey’s mean maneuver time, but the results show that the length of

a plan should lie somewhere between the factors of ρ = 1 and ρ = 1.75.

Optimal planning horizon depends on the nature and features of the mission and planning, and
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Figure 4.11: Average time to capture the prey with an initial separation of 250m. The minimum
point occurs when ρ = 1.15.
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Figure 4.12: Average time to capture the prey with an initial separation of 500m. The minimum
point occurs when ρ = 1.

it can be very complicated. Our simplifying treatment of minimizing the planning time error in

terms of undershoot and overshoot provides a tractable means to handle this complex yet important

problem. Since this treatment is not tailored specifically to any particular application, the results

presented here are general and can be applied in many other areas. Moreover, we used time as an

example but other units can be used to specify the rate parameter of the Poisson distribution.
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Figure 4.13: Average time to capture the prey with an initial separation of 1000m. The minimum
point occurs when ρ = 1.75.
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Figure 4.14: Average time to capture the prey with an initial separation of 2000m. The minimum
point occurs when ρ = 1.5.
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Figure 4.15: Best horizon versus initial distance with a mean value of 1.3160.
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5

Modified Particle Swarm Optimization

5.1 Introduction

A common approach to route planning is to apply an optimization algorithm to obtain a good

solution based on assumptions about the targets. In general, the path planner uses simulated targets

to emulate the expected target behavior in order to evaluate candidate search paths. In practice, a

major drawback is that the prior distribution of targets is only used to evaluate the search paths

rather than to guide the optimization algorithm in the generation of the search paths. This chapter

introduces the use of the prior target distribution in the generation of search paths rather than

only for evaluation. Here, we present a modified particle swarm optimization algorithm for search

missions that explicitly uses the sampled target distribution in the creation of candidate search

paths, which naturally improves the results since the search paths directly depend on the time

varying target locations. Results from a realistic cooperative path planning scenario show that the

usage of target distributions can improve the performance of particle swarm optimization.

The chapter is organized as follows: Section 5.2 briefly summarizes particle swarm optimiza-

tion in order to explain how to use the prior target distribution to create search paths. Section 5.3

introduces the modified particle swarm optimization algorithm. Section 5.4 describes an illustra-

tive scenario. Section 5.5 presents results and Section 5.6 contains the conclusions.
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5.2 Review of Particle Swarm Optimization

Particle swarm optimization (PSO) is an iterative optimization algorithm that uses a large number

of candidate solutions, called particles, to sample the solution space. For the problem described

here, the solution space is the set of all feasible search paths. Like other forms of evolutionary

computation, PSO is useful when evaluating the entire set of feasible solutions is computationally

intractable. It explores the solution space by evaluating candidate search paths and then creating

new paths around the best paths evaluated so far. Particles are evaluated using an objective function

and the cumulative probability of detection is used in this chapter for simplicity.

In search for better solutions, particles traverse the solution space using an equation similar to

the kinematics equation for motion, where motion can be decomposed into position and velocity.

A particle has a position in the solution space and that position represents a unique search path.

A particle also has a velocity in the solution space. The velocity describes how fast the solution

is moving in the solution space and does not reflect the actual velocity of the searchers in the real

world. Rather, it reflects how fast the solution is changed in the real world. As a particle moves

through the solution space, the real-world search path changes shape resulting in a new search

path. The equations for particle swarm optimization are

pi
k+1 = pi

k + vi
k (5.1)

and

vi
k = wi

Iv
i
I + wi

GBvi
GB + wi

LBvi
LB (5.2)

where

• i is the index of the particle.

• pi
k is the position of particle i in the solution space at iteration k.

• vi
k is the velocity vector of the particle in the solution space.

64



• wi
I is the weight assigned to give inertia to this particle.

• wi
GB is the weight that moves a search path towards the very best path discovered so far. It is

the Global Best (GB) among the current set of solutions.

• vi
GB is the point-wise distance vector between this path and the very best path discovered by

the swarm so far.

• wi
LB is the weight that moves a search path towards the best path discovered by this particle

so far. It is the local best (LB) solution in the history of particle i.

• vi
LB is the point-wise distance vector between this path and the best path discovered by this

particle so far.

A search path has N waypoints and each waypoint has a coordinate in the real world. If a

waypoint in the real world can be represented using two coordinates, such as latitude and longitude,

then

pi
k ∈ <N×2

Basically, pi
k contains a sequence of coordinates that describes the search path as a function of

time. The vectors vi
GB and vi

LB have the same dimension as pi
k and are calculated by

vi
GB = pi

GB,k − pi
k (5.3)

vi
LB = pi

LB,k − pi
k (5.4)

where

• pi
GB,k is the GB particle describing the best solution among all solutions at iteration k.

• pi
LB,k is the best path so far for particle i at iteration k.

The weights determine how each of the components are used to update the particle’s velocity.

The choice of weights affects the placement of the search paths for the next iteration. When the

weights favor the best path so far, the other search paths will search closer to that solution. For
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example, if wI and wLB are set to zero and wBSF is set to one, the next search path will be identical

to the solution that is best so far.

After a path is updated, it will be evaluated and then its score will be recorded. Any metric can

be used to evaluate search paths but we use cumulative detection probability, which is the number

of detected targets divided by the total number of targets. A search path will be declared the best

so far if it detects more targets than any other search path is able to detect. This process is iterated

for the desired number of iterations or some other terminating criteria. More can be read about

particle swarm optimization in [14, 29, 33].

5.3 Using Prior Target Distributions

Particle swarm optimization provides a framework that allows search paths to be iterated in such

a way that new search paths focus their energy near other search paths that have already detected

targets. A subtle drawback to this is that the target-containing locations become known only after

other search paths have found targets in these locations. Recall that these targets were generated

using a prior target distribution. If the target distribution is known when generating the simulated

targets, then why not use the prior distribution to create the search paths as well? This question

introduces the modified particle velocity equation for PSO, which is

vi
k = wi

Iv
i
I + wi

GBvi
GB + wi

LBvi
LB +

T∑
t=1

wi
tv

i
t (5.5)

where the new terms added in formula (5.5) are

• T is the total number of simulated targets.

• wi
t is the weight that describes the attraction of the searcher to target t.

• vi
t is a vector representing the distance in the solution space from this particle to target t.

The new term, vt, attracts searchers to locations that contain targets. Furthermore, searchers will be

more attracted to locations with a high density of targets than to locations that contain few targets.
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Without this additional term, new search paths will only be attracted to targets that have already

been detected. When this new term is used, the searchers are explicitly attracted to the targets as

well as other candidate search paths.

As stated in the previous section, the weights determine how each component affects the motion

of a particle. In formula (5.5), the added component encourages the placement of search paths near

locations with high densities of targets, which is unlike the traditional method that waits for the best

paths to find the targets before other paths can begin searching near those locations. It is important

to note that the simulated targets used in the generation of new search paths should not be the same

set of targets used to evaluate the search paths. Otherwise, the solution will be over-fitted to that

specific realization of targets. In other words, the target set used to generate the search path should

not be used again in evaluation.

5.4 Illustrative Scenario and Results

Suppose a hiker has not returned after several days of hiking in a park. The park, as shown in

Figure 5.1, is a campground that is 60 miles by 60 miles. It is believed that there is an 85% chance

that the hiker is on a trail, an 11% chance that the hiker is lost in the forest, and a 4% chance that

the hiker is waiting at another campsite.

The search party consists of two helicopters that fly at a constant speed of 50mph for two

hours. They are equipped with sensors that can easily detect the hiker within a two mile radius,

i.e. probability of detection is unity when the hiker is within 2 miles of the helicopter and zero

elsewhere.

The purpose of this scenario is to demonstrate that using the prior target distribution can im-

prove the performance of PSO in terms of the cumulative probability of detection. The PSO

algorithms will use 200 particles and will be terminated after 25 iterations. For a fair comparison,

the PSO algorithm without prior was initialized with the identical initial conditions as the PSO that

uses prior. This means that the algorithms begin with an identical set of 200 initial search paths
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Figure 5.1: A fictional campground with hiking trails (grey), forest (green), campsites (tan), and
water (blue).

and were evaluated using the same realization of the hiker’s spatial distribution. Additionally, the

set of sampled targets used to evaluate the search paths was not the same as the set used to update

the search paths of the modified PSO in formula (5.5).

Figure 5.2 shows a solution generated using the modified PSO algorithm. This solution detects

67.0% of the simulated hikers during the two-hour search mission. Figure 5.3 shows a solution

generated without using prior that was only able to provide a 58.5% chance of detecting the lost

hiker. Clearly, a better solution would be to cover different sections of the trails rather than revis-

iting the same part of the trail within a short amount of time.

5.5 Results

Simulation results show that using the prior target distribution in the PSO algorithm can produce

search paths that have a better chance of locating a lost hiker than the traditional PSO algorithm.

The modified PSO detected 67.0% of the simulated hikers compared to the 58.5% chance of de-

tecting the hiker using the unmodified PSO. For comparison, the hand-made solution shown in

Figure 5.4 was able to detect 84.7% of the targets. This solution simply followed the trail.
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A cumulative detection probability of 0.67
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Figure 5.2: A search path generated using the PSO algorithm with prior that has a 67.0% chance
of finding the lost hiker.

The PSO solutions did not perform as well as the hand-made solution and there is room for

improvement. The PSO solutions could be improved to match the performance of the hand-made

solution if the PSO was initialized with more particles and allowed more than 25 iterations. An-

other possibility for improvement could come by modifying the PSO to make the trail attractive to

the search paths could possibly improve the solutions.

Figure 5.5 is a comparison of the percentage of hikers detected as a function of iteration num-

ber. It shows that the use of prior improves the performance of PSO. In this example, the unmodi-

fied PSO detected 58.5% of the hikers after 25 iterations, whereas the modified PSO that was able

to detect 59% after only 3 iterations.

5.6 Conclusion

This work is an initial step towards using prior distributions to solve general problems given prior

information. There are several considerations that must be addressed in future work. The first

topic is the proper selection of the weights in order to improve convergence to a near optimal

solution because the PSO solutions presented here are not as good as the hand-made solution.
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A cumulative detection probability of 0.585
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Figure 5.3: A search path generated using the PSO algorithm without prior that has a 58.5% chance
of finding the lost hiker.

Other potential improvements include reducing the attraction to undetectable targets or modifying

the weights to improve the safety of the searcher. As in all types of mission planning, the proposed

method requires that the simulated targets accurately represent the true target distribution in order

to create an effective solution. Additionally, if too few simulated targets are used, the solution will

be over-fitted to that particular realization of the simulated targets. Future work may also include

methods that encourage the searcher to cover more area rather than revisiting searched locations.
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A cumulative detection probability of 0.8675

nmi

nm
i

 

 

0 10 20 30 40 50 60
0

10

20

30

40

50

60
Searcher 1
Searcher 2

Figure 5.4: A hand-made search path that closely follows the hiking trails. This solution has an
84.7% chance of finding the lost hiker.
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Figure 5.5: PSO with prior was able to detect more targets after 3 iterations than the PSO without
prior was able to detect after 25 iterations.
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6

Summary and Future Work

6.1 Summary

This dissertation has three contributions in the area of path planning for UAV SAT missions. These

contributions are: (a) the study of a novel metric, G, used to quantify the value of the target infor-

mation gained during a search and track mission, (b) an optimal planning horizon that minimizes

time-error of a planning horizon when interrupted by Poisson random events, and (c) a modified

particle swarm optimization algorithm for search missions that uses the prior target distribution in

the generation of paths rather than just in the evaluation of them.

We proposed and studied the information-based metric G and its application to search and track

missions using several examples and a realistic simulation of a search and track mission. It has

been shown how our performance index can handle the tradeoffs between the conflicting objectives

of a search and track mission. Since a searcher cannot simultaneously follow a target (to track it)

and locate/track other targets, it is important to be able to balance these tradeoffs when generating

a path plan. It also has been explained how G can be tuned to prefer a particular type of solution

by adjusting the importance and time factors.

We also derived and studied an optimal planning horizon that is optimal in the sense of mini-

mizing errors in planning time when the plan updates are triggered by Poisson random events. Our

simplifying treatment of minimizing the planning time error in terms of undershoot and overshoot

provides a tractable means to handle this complex yet important problem. To our knowledge, it
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is the only theoretically derived planning horizon available making it an important contribution.

Simulation results show that the proposed planning horizon is near-optimal in minimizing the time

needed for the predator to capture its maneuvering prey.

A modified particle swarm optimization algorithm for search missions has also been proposed.

This method explicitly uses the sampled target distribution to create search paths, which naturally

improves the results since the search paths directly depend on the time varying target locations.

This is a valuable contribution for search and track missions because in practice, the prior distri-

bution of targets is only used in the evaluation of candidate search paths rather than to guide the

optimization algorithm in the creation of search paths. Results from a realistic cooperative path

planning scenario show that using the target distribution in this manner can improve the perfor-

mance of particle swarm optimization. To our knowledge, our modified PSO is the only one to

incorporate the target distribution into the algorithm itself.

The three contributions of this dissertation cover three key components in path planning,

namely 1) an objective function, 2) a planning horizon, and 3) an optimization algorithm for path

generation. When used together, they can use the target distribution to generate path plans that

search for and track targets while maximizing the value of the expected information gain.

6.2 Future Work

Future work includes studying the performance of the proposed planning horizon in SAT missions

rather than the predator-prey simulation provided here. Another useful study would be a compar-

ison between the fixed and receding planning horizons. We should study how well our planning

horizon compares to other planning horizons in maximizing G over an entire SAT mission. This

type of simulation would include generating only a few targets from a Poisson distribution and

then allowing the plan to be updated when a target is detected.

A priority in continuing this work is speeding up the PSO algorithm by streamlining the soft-

ware and using parallel processors. As is, the software is too slow to be implemented in a real-time
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system. Speeding up the software can also benefit simulations by allowing more particles to be

used without excessive computational overhead. Once the software is sped up, it would be inter-

esting to repeat the simulation in Chapter 5 with more particles and more iterations. Finally, the

velocity weights of the modified PSO should be studied in terms of improving the convergence of

the algorithm.
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