
University of New Orleans University of New Orleans 

ScholarWorks@UNO ScholarWorks@UNO 

University of New Orleans Theses and 
Dissertations Dissertations and Theses 

Summer 8-4-2011 

Metabolism and cryo-sensitivity of domestic cat (Felis catus) and Metabolism and cryo-sensitivity of domestic cat (Felis catus) and 

cheetah (Acinonyx jubatus) spermatozoa cheetah (Acinonyx jubatus) spermatozoa 

Kimberly Terrell 
University of New Orleans, kterrell@uno.edu 

Follow this and additional works at: https://scholarworks.uno.edu/td 

 Part of the Evolution Commons, and the Other Ecology and Evolutionary Biology Commons 

Recommended Citation Recommended Citation 
Terrell, Kimberly, "Metabolism and cryo-sensitivity of domestic cat (Felis catus) and cheetah (Acinonyx 
jubatus) spermatozoa" (2011). University of New Orleans Theses and Dissertations. 138. 
https://scholarworks.uno.edu/td/138 

This Dissertation is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO 
with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the 
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from 
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself. 
 
This Dissertation has been accepted for inclusion in University of New Orleans Theses and Dissertations by an 
authorized administrator of ScholarWorks@UNO. For more information, please contact scholarworks@uno.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of New Orleans

https://core.ac.uk/display/216840015?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.uno.edu/
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/etds
https://scholarworks.uno.edu/td?utm_source=scholarworks.uno.edu%2Ftd%2F138&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/18?utm_source=scholarworks.uno.edu%2Ftd%2F138&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/21?utm_source=scholarworks.uno.edu%2Ftd%2F138&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uno.edu/td/138?utm_source=scholarworks.uno.edu%2Ftd%2F138&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uno.edu


Metabolism and cryo-sensitivity of domestic cat (Felis catus) and cheetah (Acinonyx jubatus) 
spermatozoa 

 
 
 
 
 
 

A Dissertation 
 
 
 
 
 
 

Submitted to the graduate faculty of the 
University of New Orleans 
in partial fulfillment of the 

requirements for the degree of 
 
 
 
 
 
 

Doctor of Philosophy 
in 

Conservation Biology 
 
 
 
 
 
 

by 
 

Kimberly Ann Terrell 
 

B.S. Tulane University, 2005 
B.A. Tulane University, 2005 

 
August, 2011 



ii 
 

Acknowledgments 

This dissertation would not exist without a team of remarkable individuals who dedicated 

their time and energy to my research and served as thesis committee members.  In particular, Dr. 

Adrienne Crosier worked closely with me for five years and was a valuable source of 

information about cheetah biology and in situ conservation.  I am deeply indebted to Dr. Barry 

Bavister, who helped me to overcome my fear of all things biochemical and whose determined 

efforts resulted in the creation of the University of New Orleans – Smithsonian Conservation 

Biology Institute research partnership.  I am very grateful to Dr. David Wildt, who always kept 

me focused on the ‘big picture’ and whose intensive, ‘Kool-Aid’ editing helped dramatically 

improve my scientific writing.  Dr. Nicola Anthony deserves special thanks – her passion for 

science and ability to remain neutral in research politics are continued sources of inspiration to 

me.  Through his almost super-human attention to detail, Dr. Stanley Leibo helped correct many 

errors in these manuscripts, and I owe him my gratitude.  He has the rare ability to impart 

lifelong knowledge to others, and I will always remember the benefit of purchasing frozen 

turkeys.  Dr. Bernard Rees greatly facilitated this project, through both his understanding of 

cellular metabolism and his role as graduate student coordinator.  The humor and affability he 

brought to this position helped me to feel connected to our university, despite living far from 

New Orleans. 

Several individuals outside my thesis committee also made valuable contributions to this 

project.  Dr. Budhan Pukazhenthi provided thoughtful feedback related to the project design and 

study results and was always happy to answer my endless calls for help with laboratory 

equipment.  Dr. Nucharin Songsasen is both a professional and personal role model to me, and 

has been a valuable source of career advice.  Her multidisciplinary approach to science is an 



iii 
 

instructive research paradigm for any aspiring conservation physiologist.  Dr. Pierre Comizzoli 

provided helpful advice and support throughout this project, as well as motivation to reopen my 

high school French textbook.  Dr. Linda Penfold reviewed each of these manuscripts, but also 

taught me that high fashion is perfectly compatible with wildlife research.  Drs. Louis Padilla, 

Katharine Hope, and Carlos Sanchez contributed veterinary support, and Lisa Ware, Copper 

Aitken-Palmer, Laurie Marker, and Marianne de Jonge provided valuable technical assistance.  I 

am grateful to Jenny Santiestevan who, in addition to technical support, provided friendship and 

commiseration over the tedium of metabolic assays.  I especially thank the late Dr. JoGayle 

Howard for her contribution to the study design and for her pioneering research that made this 

work possible.  

This collaborative project was made possible through support from the National Science 

Foundation Graduate Research Fellowship Program.  Funding also was provided by the 

Audubon Center for Research of Endangered Species, Louisiana State University, the University 

of New Orleans Department of Biological Sciences, the Ohrstrom Family Foundation, the 

William H. Donner Foundation, Inc., the Smithsonian Predoctoral Fellowship Program, and the 

Association for Women in Science.  My research relied on technical and veterinary support from 

the staff of collaborating institutions, specifically, Cheetah Conservation Fund, White Oak 

Conservation Center, The Wilds, San Diego Wild Safari Park, the Philadelphia Zoo, and the 

Cleveland Metroparks Zoo. 

This acknowledgment would not be complete without recognizing the incredible support 

I have received from my friends and family.  In particular, my friend and brilliant scientist, Dr. 

Wayne Buck, catalyzed my decision to pursue a graduate education.  Pamela Thompson, Yamile 

Molina, and I have shared an incredible journey that began as Tulane University freshmen and 



iv 
 

will soon culminate in a biology Ph.D. trifecta.  Lisa Ware, Amy Johnson, and Jennifer Buff 

continually inspire me to get outside and learn more about the natural world.  Kari Morfeld 

reminds me that any challenge can be overcome.  Lacey Braun, Sarah Putman, Jessica Kordell, 

Laura Linn, Ivonne Garzon, Andrea Liebl, Kimberly Fernald, Christine Facella, Amanda Norris, 

and Nick Terrell help me remember there is a world outside of science.  My partner, Rosamond 

Dietrich, put his career on hold for my education and is an infinite source of support and 

inspiration to me.  Finally, I’d like to thank my parents, particularly my mom, who endowed me 

with her strong work ethic and relentless frugality – key traits of a successful conservationist. 

 

  



v 
 

Table of Contents 
 

List of Figures ................................................................................................................................ vii 
List of Tables ................................................................................................................................ viii 
Abstract ........................................................................................................................................... ix 
 
Chapter 1: General Introduction 
 1.1 Teratospermia and Sperm Cryo-Sensitivity .................................................................. 1 
 1.2 Mammalian Sperm Metabolism .................................................................................... 3 
 1.3 Study Focus and Scope ................................................................................................. 4 
 1.4 Status of Captive and Wild Cheetah Populations .......................................................... 5 
 1.5 References ..................................................................................................................... 8 
 
Chapter 2: Evidence for Compromised Metabolic Function and Limited Glucose Uptake in 
Spermatozoa from the Teratospermic Domestic Cat (Felis catus) and Cheetah (Acinonyx jubatus) 
 2.1 Abstract ....................................................................................................................... 15 
 2.2 Introduction ................................................................................................................. 16 
 2.3 Materials and Methods 
  2.3.1 Animals .............................................................................................................. 19 
  2.3.2 Semen Collection and Evaluation ...................................................................... 20 
  2.3.2 Sperm Processing and Metabolic Assessments ................................................. 21 
  2.3.2 Statistical Analyses ............................................................................................ 24 
 2.4 Results 
  2.4.1 Ejaculate and Sperm Characteristics .................................................................. 25 
  2.4.2 Sperm Motility, Acrosomal Integrity, and Metabolism  ............................... 27 
  2.4.3 Relationship Between Metabolic Rates and Sperm Quality .............................. 29 
 2.5 Discussion ................................................................................................................... 31 
 2.6 References ................................................................................................................... 37 
 
Chapter 3: Glycolytic Enzyme Activity is Essential for Domestic Cat (Felis catus) and Cheetah 
(Acinonyx jubatus) Sperm Motility and Viability in a Sugar-Free Medium 
 3.1 Abstract ....................................................................................................................... 49 
 3.2 Introduction ................................................................................................................. 50 
 3.3 Materials and Methods 
  3.3.1 Animals .............................................................................................................. 53 
  3.3.2 Semen Collection ............................................................................................... 54 
  3.3.2 Sperm Processing and Metabolic Assessments ................................................. 54 
  3.3.2 Glycogen Assay ................................................................................................. 57 
  3.3.2 Chemicals .......................................................................................................... 58 
  3.3.2 Statistical Analyses ............................................................................................ 58 
 3.4 Results 
  3.3.1 Exogenous Substrate Availability ...................................................................... 59 
  3.3.2 GAPDH and LDH Inhibition ............................................................................. 62 
  3.3.2 Glycogen Content .............................................................................................. 64 
 3.5 Discussion ................................................................................................................... 64 
 3.6 References ................................................................................................................... 69 
 
 
Chapter 4: Oxidative Metabolism is Essential for Felid Sperm Function, but is Substantially 
Lower in Cheetah (Acinonyx jubatus) Compared to Domestic Cat (Felis catus) Ejaculate 
 4.1 Abstract ....................................................................................................................... 78 



vi 
 

 4.2 Introduction ................................................................................................................. 79 
 4.3 Materials and Methods 
  4.3.1 Animals .............................................................................................................. 81 
  4.3.2 Semen Collection ............................................................................................... 82 
  4.3.3 Sperm Processing ............................................................................................... 83 
  4.3.4 Inhibition of Oxidative Phosphorylation ........................................................... 83 
  4.3.5 Mitochondrial Membrane Potential ................................................................... 85 
  4.3.6 Sperm Morphometrics ....................................................................................... 86 
  4.3.7 Statistical Analyses ............................................................................................ 86 
 4.4 Results 
  4.3.1 Inhibition of Oxidative Phosphorylation ........................................................... 87 
 4.3.2 Mitochondrial Membrane Potential and Sperm Morphometrics ....................... 90 
 4.5 Discussion ................................................................................................................... 94 
 4.6 References ................................................................................................................. 100 
 
Chapter 5: Different Patterns of Metabolic Cryo-Damage in Domestic Cat (Felis catus) and Cheetah 
(Acinonyx jubatus) Spermatozoa 
 5.1 Abstract ..................................................................................................................... 112 
 5.2 Introduction ............................................................................................................... 113 
 5.3 Materials and Methods 
  5.3.1 Animals ............................................................................................................ 115 
  5.3.2 Semen Collection ............................................................................................. 116 
  5.3.3 Sperm Processing and Metabolic Assessments ............................................... 116 
  5.3.4 Sperm Cryopreservation .................................................................................. 118 
  5.3.5 Comparison of Post-Thaw Processing Methods .............................................. 118 
  5.3.6 Accudenz Gradient Optimization for Domestic Cat Spermatozoa .................. 121 
  5.3.7 Chemicals ........................................................................................................ 122 
  5.3.8 Statistical Analyses .......................................................................................... 122 
 5.4 Results 
 5.4.1 Accudenz Gradient Optimization for Domestic Cat Spermatozoa .................. 123 
  5.4.2 Comparison of Post-Thaw Processing Methods .............................................. 124 
 5.5 Discussion ................................................................................................................. 129 
 5.6 References ................................................................................................................. 132 
 
Chapter 6: General Discussion 
 6.1 Metabolic Profiles of Cat and Cheetah Spermatozoa ................................................ 140 
 6.2 Metabolic Indicators of Sperm Function ................................................................... 141 
 6.3 Influence of Species Physiology ............................................................................... 142 
 6.4 Influence of Teratospermia ....................................................................................... 143 
 6.5 Influence of Sperm Cryopreservation ....................................................................... 144 
 6.6 Conclusions and Recommendations .......................................................................... 145 
 6.7 References ................................................................................................................. 146 
  
Appendices 
 Appendix A: Supplemental Figure 2.1 ............................................................................ 148 
 Appendix B: Supplemental Figure 5.1 ............................................................................ 149 
                       Supplemental Figure 5.2............................................................................ 150 
 
 
Vita ............................................................................................................................................... 151 
  



vii 
 

List of Figures 
 

Chapter 1 Figures 
 Fig. 1.1 ................................................................................................................................ 6 
 Fig. 1.2 ................................................................................................................................ 6 
 Fig. 1.3 ................................................................................................................................ 7 
  
Chapter 2 Figures 
 Fig. 2.1 .............................................................................................................................. 27 
 Fig. 2.2 .............................................................................................................................. 28 
 Fig. 2.3 .............................................................................................................................. 31 
 Fig. 2.4 .............................................................................................................................. 33 
 
Chapter 3 Figures 
 Fig. 3.1 .............................................................................................................................. 60 
 Fig. 3.2 .............................................................................................................................. 61 
 Fig. 3.3 .............................................................................................................................. 62 
 Fig. 3.4 .............................................................................................................................. 63 
 Fig. 3.5 .............................................................................................................................. 65 
 
Chapter 4 Figures 
 Fig. 4.1 .............................................................................................................................. 88 
 Fig. 4.2 .............................................................................................................................. 89 
 Fig. 4.3 .............................................................................................................................. 90 
 Fig. 4.4 .............................................................................................................................. 91 
 Fig. 4.5 .............................................................................................................................. 92 
 Fig. 4.6 .............................................................................................................................. 93 
 
Chapter 5 Figures 
 Fig. 5.1 ............................................................................................................................ 124 
 Fig. 5.2 ............................................................................................................................ 125 
 Fig. 5.3 ............................................................................................................................ 126 
 Fig. 5.4 ............................................................................................................................ 128 
 
 
Chapter 6 Figures 
 Fig. 6.1 ............................................................................................................................ 143 
  



viii 
 

List of Tables 
  
Chapter 2 Tables 
 Table 2.1 ............................................................................................................................ 26 
 Table 2.2 ............................................................................................................................ 29 
 Table 2.3 ............................................................................................................................ 30 
 
Chapter 4 Tables 
 Table 4.1 ............................................................................................................................ 94 
  
Chapter 5 Tables 
 Table 5.1 .......................................................................................................................... 123 
 Table 5.2 .......................................................................................................................... 127 
 Table 5.3 .......................................................................................................................... 127 
  



ix 
 

Abstract (350 words max) 
  

 Teratospermia (ejaculation of ≥ 60% structurally abnormal spermatozoa) is prevalent 

among felids facing extinction risk, including the cheetah.  This trait also occurs in certain 

domestic cat populations, providing a valuable research model.  Multiple components of sperm 

function are disrupted in teratospermic cats, and even structurally normal spermatozoa from 

these ejaculates may be functionally compromised.  Teratospermic ejaculates are highly sensitive 

to damage during cryopreservation, limiting the success of genome resource banking programs 

for species conservation.  Although both teratospermia and cryopreservation are linked to 

disruptions in multiple energy-dependent sperm processes, the metabolism of these cells has not 

been investigated.  This project explored how cellular metabolism of domestic cat and cheetah 

spermatozoa is influenced by species physiology, teratospermia, and sperm cryopreservation.   

 The project scope was divided into four studies that collectively examined the two main 

energy-producing pathways in spermatozoa, i.e., glycolysis and oxidative phosphorylation.  Each 

study compared three animal populations: normospermic cat, teratospermic cat, and cheetah.  

First, rates of glycolytic and oxidative substrate utilization were correlated to standard metrics of 

sperm function.  Second, the influence of exogenous substrate availability and glycolytic enzyme 

activity was investigated.  Third, mitochondrial activity and the role of oxidative metabolism 

were assessed.  Lastly, sperm metabolic function was examined after cryopreservation and post-

thaw processing.   

 Patterns of substrate utilization were similar in spermatozoa of the cat and cheetah, 

including an unexpected lack of glucose uptake.  However, rates of sperm pyruvate uptake and 

lactate production were reduced in the teratospermic cat and cheetah compared to the 

normospermic cat.  Lactate production predicted ejaculate quality in each study.  Glycolytic 
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enzyme activity was essential for sperm function, but, unexpectedly, the importance of this 

pathway appeared to be linked to glycerol rather than glucose metabolism.  Sperm oxidative 

metabolism was severely compromised in the cheetah, and comparison with the teratospermic 

cat proved this defect to be species-specific.  Spermatozoa from both species experienced 

metabolic damage during cryopreservation.  Post-thaw processing recovered a metabolically-

normal sperm subpopulation in the cat, but cheetah spermatozoa remained functionally 

compromised.  Collectively, these studies provided key insight into metabolism and cryo-

sensitivity of felid spermatozoa and highlighted the importance of domestic animal models for 

wildlife research. 
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CHAPTER 1: GENERAL INTRODUCTION 

 

1.1 Teratospermia and Sperm Cryo-Sensitivity 

Felidae comprises nearly 40 species and is one of the most phylogenetically diverse 

carnivore families in existence [1].  Teratospermia (ejaculation of ≥ 60% structurally abnormal 

spermatozoa) is remarkably prevalent in this taxon, and nearly all (~90%) felid species studied to 

date consistently ejaculate high proportions (> 40%) of malformed spermatozoa [2].  In addition 

to sperm pleiomorphisms, teratospermic ejaculates generally contain low numbers of 

spermatozoa, and these cells are highly susceptible to damage during cryopreservation [2, 3].  

Severe teratospermia (> 85% structurally abnormal cells) is linked to reduced fecundity and 

infertility in certain wild felids [4-6].  Because most (70%) wild felids are at risk of extinction 

and nearly half of the non-threatened species are in decline [7], understanding the physiology of 

this intriguing reproductive phenomenon is important both for conservation efforts and to 

manage genetically valuable populations ex situ.  Such knowledge also would benefit human 

health, as teratospermia is nearly ubiquitous in man (representing a significant source of male 

infertility [3]) and is common among domestic cat (Felis catus) lineages studied as models of 

human disease [8, 9].   

Teratospermia has been linked to a loss of genetic diversity through opportunistic studies 

of rare felids, including the cheetah (Acinonyx jubatus) [10, 11], lion (Panthera leo) [4, 12], 

Florida panther (Puma concolor coryi) [5, 13], and leopard cat (Felis bengalensis) [4].  In each 

case, ejaculates containing high proportions of structurally abnormal spermatozoa, low sperm 

numbers, and/or poor motility were associated with a lack of heterozygosity from an ancient 

population bottleneck (cheetah [14, 15]), recent population decline (lion [12] and Florida panther 

[13]), or captive inbreeding (leopard cat [4]).  Prospective inbreeding in the domestic cat 
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confirmed the link between ejaculate quality and genetic diversity [2].  After a single generation 

of incestuous mating, proportions of malformed spermatozoa ejaculated increased to > 85% 

(compared to < 45% in outbred males).  In contrast to the low numbers of spermatozoa 

previously reported in teratospermic ejaculates, inbred toms experienced an ~80% increase in 

total sperm production compared to normospermic cats [2].  High numbers of ejaculated 

spermatozoa were linked to an increase in testicular volume and a greater spermatogenic/Sertoli 

cell ratio [16].  This physiological response presents the intriguing possibility that certain 

individuals or populations may possess a compensatory mechanism to maintain fertility despite 

abnormal spermatogenesis [2].  

The ability to empirically test the link between teratospermia and genetic diversity in the 

domestic cat highlights the value of this species as a model for wildlife conservation and human 

health.  Comparative studies of domestic cat populations that produce different proportions of 

pleiomorphic spermatozoa have yielded insight into the extreme cryo-sensitivity and potential 

for decreased fertility of teratospermic ejaculates.  Specifically, spermatozoa from these 

ejaculates exhibit increased susceptibility to osmotic stress [17] and cold-induced acrosome 

damage [18], as well as delayed capacitation [19], impaired acrosomal function [19], reduced 

levels of protein tyrosine phosphorylation [20], chromatin instability [21], decreased zona 

pellucida penetration [22], and compromised fertilization ability in vitro [22].  Importantly, many 

of these cellular functions also are impaired in structurally normal spermatozoa from 

teratospermic ejaculates [19, 20, 22].  In contrast to these detailed studies, there is a lack of 

knowledge about cellular metabolism in felid spermatozoa, including the possible influence of 

teratospermia or cryopreservation.  Given the spermatozoon’s extraordinarily high ATP demands 

and the disruption of multiple energy-dependent processes (e.g., motility, viability, protein 
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tyrosine phosphorylation) in teratospermic ejaculates, cellular metabolism is a priority research 

focus.  Identifying the primary biochemical pathway responsible for sperm energy production 

and understanding its role in teratospermia/cryo-sensitivity could help improve the success of 

assisted reproductive technologies (e.g., sperm cryopreservation, in vitro fertilization) for 

wildlife management and human fertility [23].   

 

1.2 Mammalian Sperm Metabolism 

 Mammalian spermatozoa produce energy in the form of ATP almost exclusively by two 

pathways: glycolysis and oxidative phosphorylation (OXPHOS) [24].  Each pathway’s relative 

importance varies substantially among the small number of species studied, which includes the 

human, mouse, boar, bull, ram, rabbit, and dog (reviewed in [25]).  Sperm energy sources are 

equally diverse, likely reflecting species variation in metabolic substrate availability within the 

female tract [24].  Potential energy substrates include exogenous hexoses (primarily glucose) and 

monocarboxylates (pyruvate and lactate) [24], as well as endogenous lipid [26, 27] and even 

glycogen [28, 29].  The localization of mitochondria to the midpiece and glycolytic enzymes to 

the flagellum results in a compartmentalized mode of sperm energy production [24].  Therefore, 

the relative contribution of each pathway is dictated by its capacity to fulfill local energy 

demands and/or by the operation of intracellular ATP transporters [30].  This 

compartmentalization likely explains the essential role of glycolysis in human [31] and mouse 

[32] spermatozoa, despite extremely inefficient rates of ATP production relative to OXPHOS.  

Both glycolytic [33] and oxidative [34-36] pathways may be disrupted by sperm 

cryopreservation, although substantial variation in susceptibility to metabolic damage can exist, 

even within a species [37].  Given the remarkable differences in mechanisms of energy 
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production among mammalian spermatozoa, comparative investigations of multiple species 

and/or populations are essential for generating reliable conclusions about these unstudied 

processes in felids. 

 

1.3 Study Focus and Scope 

 The overall aim of this project was to understand how metabolism of felid spermatozoa is 

influenced by teratospermia, sperm cryopreservation, and species physiology.  To achieve this 

goal, each study comparatively assessed three felid populations: 1) normospermic domestic cat, 

2) teratospermic domestic cat, and 3) cheetah (an entirely teratospermic species).  The cheetah 

population included wild- and captive-born individuals of the southern African subspecies 

Acinonyx jubatus jubatus housed at the Cheetah Conservation Fund (Otjiwarongo, Namibia) or 

in North American institutions within the Association of Zoos and Aquarium’s Species Survival 

Plan (SSP). 

To assess the importance of glycolytic and oxidative metabolism in felid spermatozoa, 

and to elucidate the mechanisms of sperm cryo-sensitivity, the specific foci of this project 

included: 

1) Glycolytic versus oxidative substrate utilization and metabolic indicators of cellular 

function (Chapter 2). 

Published manuscript: 

Terrell KA, Wildt DE, Anthony NM, Bavister BD, Leibo SP, Penfold LM, Marker 

LL, Crosier AE. Evidence for compromised metabolic function and limited glucose 

uptake in spermatozoa from the teratospermic domestic cat (Felis catus) and cheetah 

(Acinonyx jubatus). Biol Reprod 2010; 83: 833-841. 
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2) The role of exogenous substrate availability and glycolytic enzyme activity in sperm 

function (Chapter 3). 

Published manuscript: 

Terrell KA, Wildt DE, Anthony NM, Bavister BD, Leibo SP, Penfold LM, Marker 

LL, Crosier AE. Glycolytic enzyme activity is essential for domestic cat (Felis catus) 

and cheetah (Acinonyx jubatus) sperm motility and viability in a sugar-free medium. 

Biol Reprod 2011; 84: 1198-1206. 

3) The importance of oxidative phosphorylation for sperm function (Chapter 4). 

Published manuscript: 

Terrell KA, Wildt DE, Anthony NM, Bavister BD, Leibo SP, Penfold LP, Crosier 

AE. Oxidative metabolism is essential for felid sperm function, but is substantially 

lower in cheetah (Acinonyx jubatus) compared to domestic cat (Felis catus) Ejaculate. 

Biol Reprod 2011; 83: 833-841. 

4) Changes in metabolic function resulting from cryopreservation and/or post-thaw 

processing (Chapter 5). 

Manuscript in review: 

Terrell KA, Wildt DE, Anthony NM, Bavister BD, Leibo SP, Penfold LP, Crosier 

AE. Different patterns of metabolic cryo-damage in domestic cat (Felis catus) and 

cheetah (Acinonyx jubatus) spermatozoa. Cryobiology. 

 

1.4 Status of Wild and Captive Cheetah Populations 

 The cheetah (Fig. 1.1) is a species well known to consistently ejaculate high (~80%) 

proportions of abnormal spermatozoa, regardless of geographic range, season, age, or 
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environment (captive versus wild) [11, 38].  This trait has been 

linked to an extreme lack of genetic diversity from a severe 

population contraction ~10,000 years ago [14, 15, 39], 

coincident with the widespread extinctions of Pleistocene 

megafauna [40].  Subsequent analysis revealed a second 

population bottleneck in the twentieth century due to a ~90% 

decline in wild populations from poaching and habitat loss [41].  Today fewer than 10,000 

cheetahs remain in nature, although the effective population size may be less than half of that 

number [42].  The species has disappeared from ~80% of its historic African range [42].  

Surviving cheetahs exist in geographically isolated populations throughout the continent, with a 

very small number of individuals remaining in Iran (Fig. 1.2) [42].  The largest extant cheetah 

population (~4,500 adults) occurs in southern Africa, primarily in Namibia and Botswana [43].  

Since the vast majority of these individuals inhabit private farmland, shooting or trapping by 

farmers (due to the perceived threat of livestock predation) continues to pose a major threat to 

the species’ survival [44].  For example, ~7,000 

Namibian cheetah were killed or brought into 

captivity during the 1980s [45], approximately 

three times the number of free-ranging individuals 

in Namibia today [42].   

Due to the ongoing decline in wild cheetah 

populations (suspected to be ≥ 30% over the past 

three generations), the species is considered by the 

IUCN (International Union for the Conservation of 
Figure 1.2.  Current range (red shading) of 
the cheetah [7]. 

Figure 1.1.  The cheetah. 
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Nature and Natural Resources) to be ‘vulnerable’ to extinction [42].  Captive cheetahs have the 

potential to contribute to the survival of wild populations by providing 1) a long-term reservoir 

of genetic diversity, 2) an opportunity for increasing basic knowledge about a species that is 

challenging to study in the wild, and 3) ‘ambassador’ animals that educate the public, engage 

non-scientists in biodiversity conservation, and generate funds to support in situ conservation.  

However, cheetahs reproduce poorly in captivity (likely due to suboptimal management), and 

these populations are not self-sustaining.  As a result, ~30% of individuals in the global captive 

population are wild-caught [46].  Within the North American Species Survival Plan (SSP) 

population, only ~20% of the 281 cheetahs have ever reproduced, and many founding lineages 

are severely under-represented (Fig. 1.3) [47].  Based on recent population growth rates, genetic 

diversity is predicted to decline to 90% of current levels in only 32 years, in contrast to the 100 

year goal established by the SSP [47].   

Technologies associated with assisted reproduction (e.g., sperm cryopreservation, 

artificial insemination, in vitro fertilization) can facilitate the management of rare felid 

populations through increased reproductive success, reduced translocations of stress-sensitive 

animals for breeding, and the long-term (in theory, infinite) preservation of genetic diversity.  An 

Figure 1.3.  Unequal representation of founding lineages in the North American SSP cheetah population [47]. 
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excellent example of the potential of these tools to contribute to species survival is the black-

footed ferret.  A successful captive breeding and genome resource banking program (including 

routine artificial insemination using cryopreserved spermatozoa) was instrumental in rescuing 

this carnivore from the brink of extinction [48].  Artificial insemination has been successful in 

the cheetah [48], and one surviving cub was produced using cryopreserved spermatozoa 

imported from Africa [49].  Yet despite a demonstrated potential, the success of these 

technologies in the cheetah remains limited [48].  Poor ejaculate quality and extreme cryo-

sensitivity of cheetah spermatozoa represent significant challenges to effective genetic 

management in this species.  Therefore, the cheetah was a priority target species for our 

investigation of felid sperm metabolism.  Because sperm energy production is vital for successful 

fertilization, understanding this process likely will provide clues to optimizing assisted 

reproduction and, ultimately, preserving genetic diversity in this remarkable species.  
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CHAPTER 2: EVIDENCE FOR COMPROMISED METABOLIC FUNCTION 
AND LIMITED GLUCOSE UPTAKE IN SPERMATOZOA  

FROM THE TERATOSPERMIC DOMESTIC CAT (FELIS CATUS)  
AND CHEETAH (ACINONYX JUBATUS) 

 

2.1 Abstract 

Cheetahs and certain other felids consistently ejaculate high proportions (≥ 60%) of 

malformed spermatozoa, a condition known as teratospermia that is prevalent in humans.  Even 

normal-appearing spermatozoa from domestic cat teratospermic ejaculates have reduced 

fertilizing capacity.  To understand the role of sperm metabolism in this phenomenon, we 

conducted a comparative study in the normospermic domestic cat versus the teratospermic cat 

and cheetah with the general hypothesis that sperm metabolic function is impaired in males 

producing predominantly pleiomorphic spermatozoa.  Washed ejaculates were incubated in 

chemically-defined medium containing glucose and pyruvate.  Uptake of glucose and pyruvate, 

and production of lactate were assessed using enzyme-linked fluorescence assays.  Spermatozoa 

from domestic cats and cheetahs exhibited similar metabolic profiles, with minimal glucose 

metabolism and approximately equimolar rates of pyruvate uptake and lactate production.  

Compared to normospermic counterparts, pyruvate and lactate metabolism were reduced in 

teratospermic cat and cheetah ejaculates, even when controlling for sperm motility.  Rates of 

pyruvate and lactate (but not glucose) metabolism were correlated positively with sperm 

motility, acrosomal integrity, and normal morphology.  Collectively, our findings revealed that 

pyruvate uptake and lactate production were reliable, quantitative indicators of sperm quality in 

these two felid species, and that metabolic function was impaired in teratospermic ejaculates.  

Furthermore, patterns of substrate utilization were conserved between these species, including 

the unexpected lack of exogenous glucose metabolism.  Because glycolysis is required to support 
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sperm motility and capacitation in certain other mammals (including the dog), the activity of this 

pathway in felid spermatozoa is a target for future investigation.  

 

2.2 Introduction 

An interesting trait of certain felid species and genotypes is the production of unusually 

high proportions of sperm malformations.  Species, populations, or individuals that express this 

condition are considered teratospermic [1].  This phenomenon is especially common in species 

or subspecies that have low levels of gene diversity (cheetah [2-4]; Florida panther [5, 6]; Asia 

lion [7]) and in domestic cats that have been purposefully inbred [8].  Teratospermia (defined 

here as the production of ≥ 60% structurally-abnormal spermatozoa) also is common among 

men.  A recent meta-analysis of semen characteristics by the World Health Organization 

revealed that > 95% of men can be classified as teratospermic under this definition [9].  

Researchers at the Smithsonian Conservation Biology Institute have used certain felid species 

and genetic lineages to better understand the impact and etiology of teratospermia.  Various 

studies have revealed that spermatozoa from teratospermic ejaculates demonstrate delayed 

capacitation [10], compromised acrosomal function [10], disrupted protein tyrosine 

phosphorylation [11, 12], increased osmotic sensitivity [13, 14], reduced zona penetration ability 

[15], and increased sensitivity to cooling [16] and cryopreservation [17].  These mechanisms no 

doubt contribute to the reduced fertilizing ability of teratospermic ejaculates in vitro, even after 

processing to isolate structurally-normal spermatozoa for insemination [15]. 

Some of these physiological impairments (e.g., tyrosine phosphorylation) could be 

related to a diminished capacity for energy production in malformed spermatozoa, but there is 

currently no knowledge of gamete metabolism in felids.  Studies of mammalian sperm energy 
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production, although conducted since the 1940s, have generally been confined to humans and 

fewer than 10 domesticated species [18].  Yet as Storey detailed in a recent review [18], there are 

considerable differences in metabolic function of male gametes, even within this small group of 

species.  It is known that spermatozoa are capable of generating energy in the form of adenosine 

triphosphate (ATP) through glycolysis and/or oxidative phosphorylation.  However, the relative 

importance of each pathway to sperm functions, such as motility and capacitation, varies among 

species [18-25].  Oxidative phosphorylation is 18 times more efficient than anaerobic glycolysis 

and provides a significant proportion of the ATP supply in spermatozoa of most species [21].  

The notable exception is the human, whose sperm appear to rely entirely on glycolysis for 

motility and hyperactivation [26].  Despite the efficiency of oxidative metabolism, its ability to 

fulfill energy demands in the distal flagellum is questionable [23, 24, 27] as mitochondria are 

confined to the sperm midpiece.  Therefore, glycolysis may be an important supplemental source 

of ATP to fuel sperm motility, and glycolytic enzymes have been localized along the fibrous 

sheath of the flagellum in the boar, bull, rat, stallion, human and mouse [28, 29].  Sperm 

production of lactate (presumably by glycolysis) is correlated positively with motility, normal 

morphology, acrosomal integrity, and osmotic resistance in the boar and donkey [30, 31].  One 

of the latter studies has suggested that these relationships are more than casual in that litter size 

in the pig is enhanced after artificial insemination using sperm producing high lactate 

concentrations [30]. 

In contrast to livestock species, there is a lack of information on sperm metabolism in 

carnivores.  Gamete metabolism has been fairly well-studied in the domestic dog [19, 32-39], 

but, to our knowledge, these pathways have not been investigated in any other carnivore species.  

The dog apparently is uniquely capable of sperm gluconeogenesis [19], which is surprising given 
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that glucose synthesis requires three times more ATP than is produced by glycolysis [40].  

Utilization of this pathway may explain how dog spermatozoa are able to maintain motility and 

achieve capacitation in a medium without glucose [19, 38].  This is especially interesting as 

glucose is required for capacitation in the mouse [41] and human [26], but inhibits this process in 

the bull [42] and guinea pig [43]. 

Felids are attractive models for studying gamete metabolism.  The availability of multiple 

species within the family Felidae provides opportunities for comparative studies to understand 

the conservation (or diversification) of physiological processes.  Furthermore, the existence of 

teratospermia in certain species or genetic lineages provides the opportunity to explore linkage 

between a complex biological phenomenon and potential causative factors.  Our aim in this study 

was to determine the relationship between rates of glycolytic and oxidative sperm metabolism 

and conventional indices of cellular function (i.e., structural morphology, motility, and 

acrosomal integrity).  The approach was unique because we took advantage of two domestic cat 

populations that consistently produce differing proportions of pleiomorphic spermatozoa.  To 

increase the robustness of our findings, we conducted a cross-species comparison using the 

cheetah, a species that is well known to be teratospermic regardless of season or living in free-

ranging versus captive conditions [2-4].  Our hypotheses were that: 1) metabolic rates are useful 

indicators of sperm quality in felids; and 2) metabolic function is compromised in spermatozoa 

from teratospermic ejaculates compared to normospermic counterparts.  We expected that 

elucidating the pathways of felid sperm energy production not only would provide insight into 

the physiological basis of teratospermia, but also might yield a reliable, quantitative indicator of 

ejaculate quality.  The latter information has potential applied benefits.  For example, identifying 

metabolic substrate requirements would be highly informative for enhancing the use of certain 
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types of assisted reproductive technologies for genetically managing wild felid species [44] or 

domestic cat lineages studied as models of human disorders [45].   

 

2.3 Materials and Methods 

2.3.1 Animals 

Electroejaculates were collected from adult domestic cats (ages, 1.5 – 8 years) that were 

known to consistently produce either normospermic (≥ 60% normal sperm/ejaculate, n = 3 

males) or teratospermic (<40% normal sperm/ejaculate, n = 3 males) ejaculates.  A total of 15 

ejaculates was collected from normospermic males (3 – 8 per individual) and 19 ejaculates from 

teratospermic males (3 – 9 per individual).  Males were housed individually in 2.7 m3 indoor 

cages at the Smithsonian Conservation Biology Institute (Front Royal, VA), maintained on a 

14:10 h light:dark cycle and provided dry, commercial cat food (Purina Cat Chow; Ralston 

Purina Co., St. Louis, MO) and water ad libitum. 

Electroejaculates (1 per male, 22 males) were collected from adult cheetahs (ages, 2.5 – 

10 years) housed at the Cheetah Conservation Fund (CCF, Otjiwarongo, Namibia; n = 18), White 

Oak Conservation Center (WOCC, Yulee, FL; n = 3), or the Smithsonian’s National Zoological 

Park (NZP, Washington, D.C.; n = 1).  Males at CCF were wild-born and housed as described 

previously [46].  Males at WOCC were wild-born and housed together (in a group of 3) in a 

2,000 m2 outdoor enclosure and fed a commercially-produced Nebraska Carnivore diet (Central 

Nebraska Packaging Inc, North Platte, NE).  The single male at NZP was captive-born and 

housed on exhibit with two other males in a 1,400 m2 outdoor enclosure and fed a commercially-

produced carnivore diet (Carnivore - 10; Natural Balance Pet Foods Inc., Pacoima, CA). 
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2.3.2 Semen Collection and Evaluation 

A surgical plane of anesthesia was induced in domestic cats and cheetahs according to 

protocols determined by institutional veterinarians and similar to those previously utilized for 

semen collection in these two species [10, 15, 46].  All animal procedures were approved by 

NZP’s Animal Care and Use Committee (ACUC) and the WOCC-ACUC.  Methods for semen 

collection/evaluation were similar to those described in previous studies [10, 15, 46].  A rectal 

probe of 1 cm (domestic cat) or 1.9 cm (cheetah) in diameter with three longitudinal electrodes 

and an electrostimulator (P.T. Electronics, Boring, OR) were used to deliver 80 stimuli (at a low 

voltage of 2 – 5 V) over a 30 min interval [47].  Ejaculates (n = 56 total) were collected in sterile, 

pre-warmed vials as previously described [4, 47]. 

 The volume of each ejaculate was measured using a pipette, and 3 µl of ejaculate were 

immediately assessed visually for sperm percentage motility and forward progressive status (FPS 

or speed of forward progression; scale = 0 – 5, with a rating of 5 equivalent to most rapid, 

straightforward progress [47]).  A sperm motility index was calculated using the formula 

(percent motility + (FPS × 20) ÷ 2 [48].  A 5 µl sample of raw semen was fixed in 0.3% 

glutaraldehyde in phosphate-buffered saline (pH 7.4, 340 mOsm) for subsequent assessment of 

sperm morphology [13].  For each sample, 100 spermatozoa were assessed (1,000× 

magnification) and classified as normal or having (in order of precedence) a head, acrosomal, 

midpiece, flagellar, or other abnormality, as previously described [47].  For all ejaculates, a 

second 5 µl aliquot of raw semen was fixed in 4% paraformaldehyde to evaluate acrosomal 

integrity.  Fixed samples were processed using a modified Coomassie Blue G-250 (Fisher 

Biotech, Springfield, NJ) staining technique, as described earlier [49, 50], and 200 spermatozoa 

from each sample were evaluated (1,000×) and classified as having an intact or non-intact 
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acrosome.  Spermatozoa with an intact acrosome exhibited a uniform blue staining pattern 

overlying the acrosomal region, whereas non-intact cells had clear or patchy staining over this 

region [50]. 

 

2.3.3 Sperm Processing and Metabolic Assessments 

Each ejaculate was diluted immediately with an equal volume of a chemically-defined 

and protein-free, modified mouse tubal fluid medium (cMTF) [51] supplemented with 2% 

polyvinyl alcohol (PVA) [52].  The final cMTF medium (pH 7.45) contained 98.4 mM NaCl, 

4.78 mM KCl, 1.19 mM MgSO4, 1.19 mM KH2PO4, 25 mM NaHCO3, 1.71 mM CaCl2, 1 mM 

glucose, 1 mM Na-pyruvate, 25 mM 3-(N-morpholino) propanesulfonic acid (MOPS) buffer, and 

0.02 mg/mL phenol red.  All reagents were purchased from Sigma Aldrich (St. Louis, MO).  The 

cMTF medium was prepared fresh daily from five concentrated stock solutions containing: 1) 

NaHCO3 and phenol red; 2) CaCl2; 3) glucose and pyruvate; 4) MOPS and phenol red; and 5) all 

remaining reagents.  All stock solutions were kept at 4oC and discarded after 2 weeks (stocks 1 – 

3) or 3 months (stocks 4 and 5).  PVA was added, and the medium was sterilized through a 0.22 

µm syringe filter immediately prior to use.  Osmolality of the final working medium (295 – 341 

mOsm) was determined using a vapor pressure osmometer (Wescor, Inc. Logan, UT) and was 

within 10% of the physiological value of domestic cat semen (323 mOsm [53]). 

 Diluted ejaculates (maintained at ambient temperature, 19 – 24oC) were washed by 

centrifugation (8 min; × 300 g for domestic cat; × 200 g for cheetah) and resuspended in fresh 

cMTF at a concentration of 3 × 106 motile sperm/ml.  Sperm concentration was determined using 

a Nucleocounter SP-100 (Chemometec, Denmark) [54].  Sperm samples (0.5 – 1.0 ml) were 

incubated (37oC) in 1.5 ml centrifuge tubes under oil (200 µl) to prevent evaporation.  Based on 
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rates of sperm oxygen consumption in the dog and fox [55], we estimated that dissolved oxygen 

in cat/cheetah sperm samples would decrease by < 1% after 24 h.  Because sperm respiration is 

not limited until 90% of oxygen is depleted from the medium (starting at the atmospheric value) 

[56], hypoxia due to culture under oil was not of concern.  A sample (130 µl) of sperm 

suspension was taken at 0, 1, 3, 7, and 24 h of incubation, and cells were removed by 

centrifugation (3 min; × 1,000 g) through a CoStar Spin-X 0.22 µm nylon filter tube (Corning 

Incorporated, Corning, NY).  The filter was removed from the tube, and the sperm-free medium 

was stored at -80oC until analysis.  Acrosomal membrane integrity and sperm motility were 

assessed at 0, 1, 3, 7, and 24 h as described above, and are reported as average values over each 

time interval to facilitate comparison with metabolic rates. 

Samples of sperm-free medium were analyzed for glucose, pyruvate, and lactate 

concentrations using enzyme-linked fluorescence assays [51, 57].  Each assay is linked to the 

oxidative status of the coenzyme NADP (glucose) or NAD (pyruvate and lactate).  The reduced 

forms of these coenzymes (NADPH and NADH) fluoresce at 445 nm when excited at 340 nm, 

while the oxidized forms do not.  For the glucose assay, sperm-free medium (10 µl) was 

incubated (5 min, 37oC) with an enzyme cocktail (200 µl) containing 0.42 mM dithiothreitol, 3.1 

mM MgSO4, 0.42 mM ATP, 1.25 mM NADP, and 0.1 U/ml hexokinase/glucose-6-phosphate 

dehydrogenase (HK/G6PDH) in 50 mM EPPS buffer, pH 8.0.  The cocktail was stored in the 

dark at -80oC for up to 3 months prior to use.  The conversion of glucose to 6-phosphogluconate 

was carried out as shown in equation 1.  Glucose concentration determined by this assay was 

directly proportional to NADPH fluorescence.  
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Eqn. 1:                                                   HK 
Glucose + ATP → glucose-6-phosphate  + ADP 

 
                                                                       G6PDH 

Glucose-6-phosphate + NADP+ → 6-phosphogluconate  + NADP+ + H+ 

 

For the pyruvate assay, sperm-free medium was incubated with an enzyme cocktail (as 

above)  containing 0.14 mM NADH and 0.12 U/ml lactate dehydrogenase (LDH) in 50 mM 

EPPS buffer (4-(2-hydroxyethyl)-1-piperazine propane-sulfonicacid), pH 8.0.  The cocktail was 

stored in the dark at -80oC for up to 3 months prior to use.  The conversion of pyruvate to lactate 

was carried out as shown in equation 2.  Pyruvate concentration measured by this assay was 

inversely proportional to NADH fluorescence.  

 
Eqn. 2:                                                                     LDH 

Pyruvate + NADH + H+ → lactate + NAD+ 

 

For the lactate assay, sperm-free medium (25 µl) was incubated (5 min, 37oC) with an 

enzyme cocktail (250 µl) containing 1.92 U/ml LDH, 0.2 U/ml glutamate-pyruvate transaminase 

(GPT), 0.42 mM NAD+, and 100 mM glutamate in 1 M glycine buffer containing 5.6 mM 

ethylenediaminetetraacetic acid.  The buffer was stored at 4oC for up to 1 month prior to use, and 

the cocktail was prepared fresh daily using NAD+ and glutamate stock solutions stored at -80oC 

for up to 3 months prior to use.  This assay is a non-toxic alternative to the LDH/hydrazine assay.  

The conversion of lactate to alanine was carried out as shown in equation 3.  Lactate 

concentration in this reaction was directly proportional to NADH fluorescence. 

 
Eqn. 3:                                                        LDH 

Lactate + NAD+ → pyruvate + NADH + H+  
 

                                                                        GPT 
Pyruvate + glutamate → alanine + α-ketoglutarate  
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Enzymes (LDH, product # HK/G6PDH and GPT) were purchased from Roche Applied Science 

(Indianapolis, IN), and all other assay reagents were obtained from Sigma Aldrich (St. Louis, 

MO).  Fluorescence was analyzed using a Spectra Max Gemini XPS fluorescent plate reader 

(Molecular Devices, Sunnyvale, CA) and SoftMax Pro 5 software (Molecular Devices, 

Sunnyvale, CA).  Metabolic rates were calculated as the change in substrate concentration over 

time, divided by sperm concentration and are reported in nmol/106 sperm/h. 

 

2.3.4 Statistical Analyses 

Data were analyzed with statistical analysis software (SAS) version 9.1 (SAS Institute, 

Cary, NC), and percentage data were arcsine-transformed before evaluation.  Differences in 

ejaculate characteristics and sperm morphology among animal groups (normospermic domestic 

cat, teratospermic domestic cat, cheetah) were assessed using SAS General Linear Model 

Procedures (GLM) [58].  To evaluate changes in sperm motility index (SMI), acrosomal integrity 

(% IA) and metabolic rate over time, data were analyzed using a separate GLM for each animal 

group [58].  Within each domestic cat group (normospermic and teratospermic), there was no 

interaction (P > 0.05) between individual and time as well as no main effect of individual (P > 

0.05) on SMI, % IA, or metabolism; thus, these variables were omitted from the final model.  

Differences in SMI, % IA, and metabolic rate among animal groups were assessed using a 

separate GLM for each time interval [58].  To determine if variation in sperm motility was 

responsible for differences in metabolic rates among animal groups, data from all individuals and 

time points were combined and analyzed using a GLM, with percent motile spermatozoa 

included as a covariate.  When a significant (P < 0.05) F-statistic was measured in any GLM, 

differences among means were assessed using Duncan’s multiple-range test.  Pearson’s 
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correlation was used to evaluate the relationships between metabolic rate and sperm morphology, 

SMI and % IA within and across animal groups.  Results were considered significant at P < 0.05. 

 

2.4 Results 

2.4.1 Ejaculate and Sperm Characteristics 

 Semen volume and sperm concentration were similar (P > 0.05) in normospermic and 

teratospermic domestic cats (Table 2.1).  Cheetah ejaculates were less (P < 0.05) concentrated 

than those from domestic cats, but due to larger (P < 0.05) seminal volumes, the total number of 

spermatozoa per ejaculate did not (P > 0.05) differ among the three animal groups (Table 2.1).  

The average sperm motility index and percentage of structurally-normal spermatozoa were 

similar (P > 0.05) between teratospermic domestic cats and cheetahs, both of which were less (P 

< 0.05) than in normospermic cats (Table 2.1).  A bent midpiece encompassing a cytoplasmic 

droplet was the most prevalent deformity observed in each animal group, and constituted ~45% 

of all abnormalities (Table 2.1).  This was followed by acrosomal abnormalities and proximal 

droplets, which were more (P < 0.05) common in the cheetah (19% and 14% of all deformities, 

respectively) compared to the domestic cat (~8% and 5%).  A bent flagellum encircling a 

cytoplasmic droplet was a less (P < 0.05) frequent deformity in the cheetah (3%) than domestic 

cat (~12%).  In both species, spermatids and midpiece bends (without a droplet) constituted < 

10% of all abnormalities.  More than a dozen other deformities were observed rarely (≤ 5%) in 

each group, but collectively comprised a significant proportion (~15%) of total anomalies.  

These malformations were classified as ‘other’ and included macro/micro-cephaly, bi/tri- 

cephaly, a misshapen head, residual cytoplasm attached to the head, a bent neck, partial or 

complete midpiece aplasia, a distal midpiece droplet, a misshapen midpiece, a coiled flagellum  
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with or without a droplet, and a bi/tri-flagellate spermatozoon.  Images of the more prevalent 

deformities (i.e., constituting ≥ 10% of abnormalities in any group) are provided in Supplemental 

Figure 2.1.  These depictions along with most of the uncommon malformations listed above also 

are available in earlier publications [2, 4]. 

 All three animal groups ejaculated high percentages of acrosome-intact spermatozoa (> 

80% overall; Table 2.1), although teratospermic cats produced a smaller (P < 0.05) proportion of 

cells with intact membranes compared to normospermic counterparts or cheetahs.  

 

 

 

 

Parameter Normospermic cat Teratospermic cat Cheetah 
No. males 3 3 22 
No. ejaculates 15 19 22 
Semen volume (mL)  0.15 ± 0.12a 0.17 ± 0.11a  1.98 ± 0.10b 

Sperm concentration (x106 cells/ml)          345 ± 41a          267 ± 37a  50 ± 34b 
Spermatozoa per ejaculate (x106) 57 ± 21 48 ± 19 93 ± 17 
Sperm motility index*            80 ± 1a            66 ± 1b      69 ± 1b 

Structurally-abnormal spermatozoa (%)            37 ± 4a            73 ± 4b      76 ± 3b 
Deformity type (% of total abnormalities)    

Abnormal acrosome  8.8 ± 2.6a  7.0 ± 2.2a   19.3 ± 2.1b 
Bent midpiece with cytoplasmic droplet         49.2 ± 5.0         43.4 ± 4.7   39.8 ± 4.7 
Bent midpiece without droplet  6.3 ± 1.2a    3.4 ± 1.1a,b  2.1 ± 1.0b 
Proximal midpiece droplet  5.0 ± 2.2a  5.4 ± 2.1a   13.7 ± 1.9b 
Bent flagellum with droplet         12.9 ± 2.1a         10.3 ± 1.9a  3.0 ± 1.7b 
Spermatid  2.2 ± 2.1a  9.0 ± 2.0b 6.8 ± 1.8a,b 
Other*         15.7 ± 3.0         21.8 ± 2.8   15.4 ± 2.5 

Intact acrosomes (%)            92 ± 2a            84 ± 2b      92 ± 2a 
* Calculated as percent (motility + forward progressive status × 20) ÷ 2. 
† Macro/micro-cephaly, bi/tri-cephaly, misshapen head, residual cytoplasm attached to head, midpiece aplasia, 
abnormal midpiece, distal midpiece droplet, coiled flagellum with or without a droplet, biflagellate, and bent neck.   
a,b Within rows, values with different superscript letters differed (P < 0.05).  

 

Table 2.1.  Ejaculate characteristics of domestic cats and cheetahs.  Values represent least-squares means ± 
standard errors.   
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2.4.2 Sperm Motility, Acrosomal Integrity, and Metabolism 

Within each time interval, sperm motility index (SMI) and acrosomal integrity were 

similar (P > 0.05) in teratospermic cats and cheetahs, but reduced (P < 0.05) compared to 

normospermic cats (Fig. 2.1).  Sperm pyruvate uptake from 0 – 1 h was higher (P < 0.05) in 

teratospermic cats compared to cheetahs, and rates in normospermic cats were similar (P > 0.05) 

to both of these groups (Fig. 2.2A).  However, after 1 h, rates were ~70% lower (P < 0.05) in 

teratospermic cats and cheetahs compared to normospermic cats.  Due to this inconsistency and 

large standard error values for the 0 – 1 h interval, rates of pyruvate uptake for this time interval 

were omitted from Pearson’s correlations. 

Exogenous glucose was minimally utilized by domestic cat spermatozoa, and rates of 

uptake were similar (P > 0.05) overall between normospermic and teratospermic males (Fig 

2.2B).  Extracellular glucose concentration of cheetah sperm medium samples did not change (P 

> 0.05) from 0 – 24 h, indicating no metabolism of this substrate by this species.  Sperm lactate 

production occurred at comparatively high rates in all three groups, given the expected ratio (2:1) 

of lactate production to glucose uptake (Fig. 2.2C).  Compared to normospermic cats, rates of  
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Figure 2.1.  Sperm motility index (A) and acrosomal integrity (B) in normospermic domestic cats (open bars), 
teratospermic domestic cats (lined bars) and cheetahs (solid bars).  Among animal groups and within each time 
point, bars with different superscripts differed (P < 0.05).  Error bars represent means ± SEM. 

B. A. 
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sperm lactate production were ~60% less (P < 0.01) in teratospermic cats and ~80% less (P < 

0.001) in cheetahs.  Extreme variation in stoichiometric ratios (glucose or pyruvate uptake as a 

proportion of lactate production) was observed within each time interval for all three groups, 

with most CV values being ≥50% (data not shown).  This variation likely was related to minimal 

(or sometimes zero) changes in metabolic substrate concentration between consecutive time 

points (even in samples with high percentages of motile spermatozoa).  In support of this 

supposition, normospermic cats demonstrated higher sperm metabolic rates and overall less 

variation in stoichiometric ratios (CV = 12 – 392%) compared to the other two groups.  To 

eliminate as much assay ‘noise’ as possible, stoichiometric ratios were recalculated based on the 

total change in substrate concentration from 0 – 24 h of incubation.  Using this method, most (60 
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Figure 2.2  Sperm pyruvate uptake (A), glucose uptake (B) and lactate production (C) in normospermic domestic 
cats (open bars), teratospermic domestic cats (lined bars) and cheetahs (solid bars).  Among animal group and 
within each time point, bars with different superscripts differed (P < 0.01).  Error bars represent least-squares 
means ± standard errors. 
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– 70%) lactate production was attributed to the uptake and reduction of pyruvate, whereas a 

lesser portion (0 – 40%) was credited to the metabolism of exogenous glucose metabolism  

(Table 2.2). 

 

Parameter Normospermic Cat Teratospermic Cat Cheetah* 

No. males 3 3 22 
No. ejaculates 15 19 22 
Glucose 0.2 ± 0.4 0.1 ± 0.4 ND 
Pyruvate 0.6 ± 0.2 0.7 ± 0.2 0.7 ± 0.1 

 

 

2.4.3 Relationship Between Metabolic Rates and Sperm Quality 

When data from all ejaculates (n = 56) were combined, rates of pyruvate 

uptake were correlated positively (P < 0.001) to sperm motility index (SMI; r = 

0.44) and the percentage of intact acrosomes (% IA; r = 0.43; Table 2.3).  Because rates of 

lactate production were correlated positively (P < 0.001) to normal sperm morphology across all 

ejaculates, as well as with SMI and % IA (r = 0.42 – 0.50; Table 2.3), this metric was found to be 

a more accurate indicator of overall cellular quality than pyruvate uptake.  Furthermore, rates of 

lactate production were correlated positively (P < 0.05) to SMI and % IA within each group (r = 

0.34 – 0.67).  Rates of glucose uptake were not (P > 0.05) correlated with SMI or % IA in any 

group. 

To determine if decreased metabolic rates in spermatozoa of teratospermic cats and 

cheetahs were an artifact of reduced motility in these cells, data were reanalyzed with sperm 

motility (% motile and SMI) included as covariates in the GLM.  Results were consistent with 

the previous analysis: sperm pyruvate uptake and subsequent lactate production were decreased  

Table 2.2.  Substrate uptake/lactate production ratios in domestic cat and cheetah spermatozoa. 

* ND, not detected.  
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(P < 0.05) in teratospermic cats and cheetahs compared to normospermic cats, thereby indicating 

a direct relationship to the teratospermic condition. 

Given that rates of lactate production were correlated positively to normal sperm 

morphology across all felid ejaculates, we were curious about the metabolic function of cheetah 

ejaculates containing relatively high proportions (~40%) of structurally-normal spermatozoa.  

Specifically, do these high-quality cheetah ejaculates demonstrate ‘normal’ metabolic function 

when compared to domestic cat counterparts?  Conversely, is metabolic function more severely 

compromised in cheetah ejaculates with very low (~5%) proportions of structurally-normal 

spermatozoa?  To address these questions, cheetah ejaculates from the existing dataset were 

ranked in order of increasing percentages of structurally-normal sperm (% N), and those with the 

lowest and highest percentage values were selected for comparison of lactate production (n = 5 

per group; Fig. 2.3).  The mean % N in each ejaculate group was 7 ± 3% (range, 5 – 10%) and 42 

± 3% (range, 35 – 58%), respectively.  Domestic cat ejaculates (n = 9 total, 4 males) having % N 

values within the 35 – 58% range (mean, 44 ± 2%) were selected from the existing dataset as a 

Parameter Overall Normospermic cat Teratospermic cat Cheetah 

No. males 28 3 3 22 
No. ejaculates 56 15 19 22 
Pyruvate uptake (nmol/106sperm/h)     

Sperm motility index 0.44b 0.44a 0.50b NS 
Intact acrosomes (%) 0.43b 0.41a 0.52b NS 
Structurally-normal spermatozoa (%) NS NS NS NS 

Lactate production (nmol/106sperm/h)     

Sperm motility index 0.45b 0.37a 0.50b 0.67b 

Intact acrosomes (%) 0.42b 0.34a 0.51b 0.62b 
Structurally-normal spermatozoa (%) 0.50b NS NS NS 

Table 2.3.  Correlation coefficient (r) values for metabolic rate versus sperm quality in domestic cats and cheetahs*.  

* NS = not significant (P > 0.05).  
a P < 0.05; b P < 0.001.  
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control for ‘normal’ rates of lactate production.  

Despite the large difference in % N between the 

two cheetah groups, rates of sperm lactate 

production were similar (P > 0.05) and were 

reduced (P < 0.05) compared to the domestic cat 

control group (Fig. 2.3).  Pyruvate and glucose 

metabolism was not reassessed because rates of 

uptake were not correlated with any sperm 

quality index in the cheetah (Table 2.3). 

 

2.5 Discussion 

 This was the first study of sperm metabolism in any felid species, and we made four 

significant discoveries.  First, we determined that felid spermatozoa (at least from the two 

species studied here) did not rely on exogenous glucose as a source of energy.  Rather, based on 

the observed ratios of substrate uptake/production, it appeared likely that these cells generated 

ATP from the catabolism of one or more unidentified endogenous sources.  Secondly, certain 

cellular mechanisms related to sperm energy production were conserved between the domestic 

cat and cheetah, indicated by similar patterns of substrate metabolism between the species.  

Third, metabolic function was impaired in spermatozoa from teratospermic ejaculates as revealed 

by relatively low rates of pyruvate uptake and lactate production in males producing high 

proportions of pleiomorphisms.  This observation was consistent with previous reports that 

linked teratospermia to disruptions in multiple components of sperm function, including several 

energy-dependent processes [10, 11, 15, 59].  Finally, rates of lactate production were correlated 

Figure 2.3  Sperm lactate production in cheetah 
ejaculates selected for either normal (lined bards) or 
abnormal (solid bars) morphology, compared to a 
domestic cat control group (open bars).  Among 
animal group and within each time point, bars with 
different superscripts differed  (P < 0.01).  Error bars 
represent least-squares means ± standard errors. 
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positively to multiple measures of sperm function in both the domestic cat and cheetah.  

Therefore, this substrate may prove to be a valuable indicator of ejaculate quality. 

The lack of glucose uptake by domestic cat and cheetah spermatozoa is unexpected, 

given that glycolysis is required to support sperm motility [21, 26, 34] and capacitation [19, 26, 

60, 61] in the human and domestic dog.  This finding perhaps could result from low hexokinase 

activity in felids compared to other species or, in the case of the cheetah, the complete absence of 

this enzyme.  Reduced hexokinase activity would limit NADPH production, a key component of 

the glutathione-mediated defense system that protects cellular membranes against lipid 

peroxidation damage [62].  This is an intriguing possibility, as spermatozoa from teratospermic 

felids (including the domestic cat and cheetah) are unusually susceptible to membrane damage 

[13, 16, 46].  However, it also remains possible that felid spermatozoa possess fully functional 

hexokinase, but metabolize glucose at modest rates relative to oxidative substrates.  We currently 

are using the glycolytic inhibitor α-chlorohydrin to more thoroughly understand the role of 

glycolysis in felid sperm cellular function. 

Given the observed lack of glucose uptake by cat and cheetah spermatozoa, we were 

surprised to discover that these cells consistently produced lactate, which is an end-product of 

glycolysis [63].  Under our experimental conditions, we consider there to be three possible 

sources of lactate: 1) endogenous glycogen; 2) endogenous phospholipid; and/or 3) imported 

pyruvate.  These potential mechanisms of lactate production are not mutually exclusive and may 

also contribute to varying degrees in the generation of NADH and ATP (Fig. 2.4).  In each case, 

lactate formation could occur in cytosol or mitochondria as sperm-specific lactate dehydrogenase 

(LDHC) has been found in these compartments [64-67].  Lactate and NADH production also 

could occur in separate cellular locations, since reducing equivalents can be transferred between 
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the cytosol and mitochondria by the malate-aspartate shuttle (present in spermatozoa of several 

species [68-70]). 

Glycogen is known to be metabolized by spermatozoa of the domestic dog, another 

carnivore [36].  Intracellular glycogen breakdown would yield ATP, and cytosolic NAD+ would 

be regenerated by lactate production (Fig. 2.4).  However, phospholipid is considered the 

primary endogenous substrate for most mammalian spermatozoa [21] and could provide greater 

Figure 2.4.  Theoretical model showing three possible mechanisms of lactate production by cat and cheetah 
spermatozoa, with  NADH, lactate, and ATP generated from the metabolism of endogenous phospholipid (green), 
glycogen (blue), and/or extracellular pyruvate (purple).  Common metabolic products or intermediates are in 
black.  Dashed line indicates possible intramitochondrial lactate formation.  Enzymes and certain metabolic 
products or intermediates are omitted from the figure for clarity.  The absence of lactate in the starting medium is 
noted by an asterisk (*).  SLC16A7 = monocarboxylic acid transporter 2; G3P = glycerol-3-phosphate; DHAP = 
dihydroxyacetone phosphate; M-A shuttle = malate-aspartate shuttle. 
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amounts of cellular ATP.  Phospholipid hydrolysis would yield glycerol and fatty acids (Fig. 

2.4).  Glycerol would enter the glycolytic pathway via conversion to dihydroxyacetone 

phosphate (DHAP) and would be metabolized to produce lactate, NADH, and ATP [71].  

Mitochondrial oxidation of fatty acids would provide substantial amounts of NADH, which 

could contribute to ATP and/or lactate production (Fig. 2.4).   

Because we used a protein-free, chemically defined medium, the only possible exogenous 

source of lactate in our study was by the uptake and reduction of extracellular pyruvate.  

Although pyruvate reduction would require a NADH source and would not generate ATP [63], 

these molecules could be provided by endogenous substrate metabolism (as described above).  

Pyruvate uptake likely would occur via the facultative transporter SLC16A7 (monocarboxylic 

acid transporter 2, previously known as MCT2), the primary monocarboxylate transporter in 

mature spermatozoa of species studied to date [72-74].  Given the starting composition of our 

cMTF medium (1 mM pyruvate, 0 mM lactate) and the kinetic properties of SLC16A7 and LDH 

[75-77], rapid pyruvate uptake and reduction theoretically should occur independently of sperm 

energy production.  Examination of stoichiometric ratios revealed that 60 to 70% of produced 

lactate could have been explained on the basis of pyruvate uptake and reduction (in contrast to 

only 0 – 40% generated from exogenous glucose catabolism).  These are important observations 

given that lactate production (measured by enzyme-linked fluorescence) has been used as an 

indicator of glycolytic metabolism for other species [25, 30, 31].  Ongoing research in our 

laboratory supports this mechanism of lactate production in felid spermatozoa.  Initial findings 

determined that sperm lactate production was approximately four times greater in the presence of 

exogenous pyruvate compared to equimolar amounts of exogenous glucose.  Furthermore, in the 

absence of both substrates in the culture medium no lactate was produced.  Collectively, these 
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observations suggested that mammalian spermatozoa may produce lactate independently of 

glycolysis, implying that the functional importance of this pathway could have been 

misinterpreted in earlier studies.  More detailed studies are in progress in our laboratory using 

chemical inhibitors of oxidative and glycolytic metabolism to identify the primary energy 

substrates for felid spermatozoa. 

Although the source of lactate was unclear, rates of production provided a consistent 

indicator of sperm motility and acrosomal function in both felid species.  Intriguingly, lactate 

production also was correlated to proportions of structurally-normal spermatozoa among 

domestic cat, but not cheetah, ejaculates.  This finding may be related to previous reports that 

even structurally-intact cells from teratospermic ejaculates can be functionally-compromised.  

Specifically, these spermatozoa may demonstrate increased osmotic sensitivity, delayed 

acrosome reaction, or reduced zona penetration ability [10, 11, 15].  Therefore, rates of lactate 

production may provide an accurate indicator of ejaculate quality in both species, and may reveal 

disrupted cellular physiology in apparently-normal cheetah spermatozoa.  However, lactate 

production should be validated against a more direct measure of sperm fertilizing ability such as 

the zona pellucida assay, particularly given its unclear relationship to ATP generation.  Because 

spermatozoa must be capable of multiple energy-dependent processes to achieve successful 

fertilization, a zona penetration assay could provide a more robust test of the functional 

relevance of lactate production than any single measure of sperm function (e.g., motility).  

Understanding the source and biological significance of lactate produced by felid spermatozoa 

could yield a quantitative, field-friendly indicator of ejaculate quality, which would significantly 

facilitate developing and refining reproductive technologies for improving felid management and 

conservation.   
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Because so little is known about gamete metabolism in felids, this taxon is an excellent 

target for more detailed investigation in this area of study.  The existence of >30 species in the 

family Felidae (including several with the teratospermic phenotype [78]) also provides important 

opportunities to determine the etiology and evolution of certain physiological attributes 

influencing reproductive success.  Indeed, direct comparisons across species are fundamental to 

identifying differences in the mechanisms involving energy production in mammalian gametes, 

particularly given the ambiguities of published findings relating to sperm metabolism.  For 

example, Storey et al. have reported that mouse spermatozoa metabolize endogenous oxidative 

substrates to remain motile for >4 h in vitro in the absence of supplemental energy sources [79].  

Yet Mukai and Okuno have found that mouse spermatozoa become non-motile within 30 min in 

a substrate-free medium and have presented evidence for an obligate role of glycolysis in 

supporting cellular motility [80].  Contradictory findings also have been reported regarding the 

need for exogenous glucose to achieve capacitation in dog spermatozoa [61, 81].  Such 

equivocations often can be avoided and more confidence generated by comparatively evaluating 

two taxonomically-related species using a standardized experimental protocol.  In the present 

study, we found similar patterns of substrate uptake/production in the domestic cat and cheetah, 

suggesting that spermatozoa of both species relied on the same energy source(s).  Relatively low 

rates of substrate uptake/production in cheetah ejaculates revealed that sperm metabolic 

efficiency was compromised in this species.  More importantly, comparison with the 

teratospermic cat model then allowed us to link this finding to ejaculate phenotype.  Still, we 

uncovered a subtle, but key physiological difference between these species.  Specifically, in 

contrast to the domestic cat, even apparently ‘high-quality’ cheetah ejaculates (i.e., containing 

higher proportions of structurally-normal spermatozoa) demonstrated compromised metabolic 
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function.  Thus, while the collective results confirmed that the teratospermic cat was an excellent 

model for expanding knowledge about gamete physiology in wild felids, findings revealed 

important functional differences between these two related species. 

In conclusion, study results underscored the importance of species diversity in 

fundamental reproductive phenomena, as has been emphasized recently in the contexts of 

biological conservation and human health [82].  We predict that understanding the unique 

mechanisms of energy production in felid spermatozoa will facilitate increased efficiency of 

assisted reproductive technologies that have been used for producing offspring in both wild 

felids [83, 84] and domestic cats, including at least eight models of human genetic disease 

(Swanson, W.F., personal communication) [85].  For example, such information would be 

important for optimizing medium composition to maximize sperm survival for artificial 

insemination, in vitro culture (including for IVF), and cryopreservation.  Furthermore, we 

observed that metabolic efficiency reflected other sperm quality metrics across both individuals 

and species, thus providing the first objective, field-friendly indicator of gamete function in 

felids.  Such findings also offer new insights for improving reproduction in small populations of 

endangered species or rare biomedical genotypes.  Indeed, a basic understanding of the 

reproductive uniqueness of a previously unstudied species has been critical to recovery or 

development of self-sustaining populations [82].  The opportunity to conduct these fundamental 

studies is one of the invaluable contributions of ex situ (hedge) felid populations to the 

conservation of Earth’s biodiversity [86]. 
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CHAPTER 3: GLYCOLYTIC ENZYME ACTIVITY IS ESSENTIAL FOR DOMESTIC 
CAT (FELIS CATUS) AND CHEETAH (ACINONYX JUBATUS) SPERM MOTILITY 

AND VIABILITY IN A SUGAR-FREE MEDIUM 

 

3.1 Abstract 

We previously have reported a lack of glucose uptake in domestic cat and cheetah 

spermatozoa, despite observing that these cells produce lactate at rates that correlate positively 

with sperm function.  To elucidate the role of glycolysis in felid sperm energy production, we 

conducted a comparative study in the domestic cat and cheetah, with the hypothesis that sperm 

motility and viability are maintained in both species in the absence of glycolytic metabolism and 

are fueled by endogenous substrates.  Washed ejaculates were incubated in chemically defined 

medium in the presence/absence of glucose and pyruvate.  A second set of ejaculates was 

exposed to a chemical inhibitor of either lactate dehydrogenase (sodium oxamate) or 

glyceraldehyde-3-phosphate dehydrogenase (α-chlorohydrin).  Sperm function (motility and 

acrosomal integrity) and lactate production were assessed, and a subset of spermatozoa was 

assayed for intracellular glycogen.  In both the cat and cheetah, sperm function was maintained 

without exogenous substrates and following lactate dehydrogenase inhibition.  Lactate 

production occurred in the absence of exogenous hexoses, but only if pyruvate was present.  

Intracellular glycogen was not detected in spermatozoa from either species.  Unexpectedly, 

glycolytic inhibition by α-chlorohydrin resulted in an immediate decline in sperm motility, 

particularly in the domestic cat.  Collectively, our findings revealed an essential role of the 

glycolytic pathway in felid spermatozoa that was unrelated to hexose metabolism or lactate 

formation.  Instead, glycolytic enzyme activity could have been required for the metabolism of 
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endogenous lipid-derived glycerol, with fatty acid oxidation providing the primary energy source 

in felid spermatozoa.    

 

3.2 Introduction 

Glycolysis is widely considered to be a key pathway in mammalian sperm energy 

production [1-7].  In the bull, ram, dog, and mouse, glycolysis can fully support sperm motility 

when oxidative metabolism is blocked [1, 8-12].  In the human and rhesus macaque, glycolysis is 

an essential source of ATP, and motility cannot be maintained by respiration alone [5, 12-15].  

Glucose is considered to be the primary metabolic sugar in mammalian spermatozoa [4], but 

these cells also can utilize fructose, mannose, and maltose as substrates for glycolysis [7, 12, 16].  

Although producing < 6% of the ATP generated by oxidative metabolism [17], the 

disproportionate importance of the relatively inefficient glycolytic pathway has been linked to 

the compartmentalization of sperm energy production [18-20].  Because active microtubule 

sliding occurs in the distal flagellum, far from the site of mitochondrial activity [2], glycolysis 

may be an obligate energy source for cellular motility.  Consistent with this idea, glycolytic 

enzymes are tightly bound to structural elements of the sperm flagellum in several species, 

including the rabbit, boar, bull, rat, stallion, human, mouse, and fox [18-21].  Furthermore, even 

in species capable of sustaining motility by oxidative metabolism alone (e.g., mouse), glycolysis 

may be required for sperm capacitation [11, 22, 23], hyperactivation [24, 25], the acrosome 

reaction [25], zona binding [26], or fusion with the oocyte plasma membrane [26].  

We recently described sperm metabolic profiles of the domestic cat and cheetah, the first 

knowledge about gamete energy production in any felid species [27].  One key finding was that 

the condition of teratospermia (where males produce ≥ 60% structurally abnormal spermatozoa) 
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was linked to remarkably reduced rates of sperm lactate production.  This observation suggests 

that sperm ATP synthesis is impaired in teratospermic felids – an intriguing idea, since metabolic 

disruption could explain many of the functional abnormalities observed in these ejaculates, 

including reduced sperm motility [27], delayed capacitation [28], compromised acrosomal 

function [28], disrupted protein tyrosine phosphorylation [29, 30], reduced zona penetration 

ability [31] and decreased fertilization success in vitro [31].  Although occurring at reduced rates 

in teratospermic ejaculates, lactate production is positively correlated to other components of 

felid sperm function (motility and acrosomal integrity [27]), suggesting a key role of anaerobic 

glycolysis in these cells.  Yet regardless of ejaculate quality, our earlier study [27] demonstrated 

that felid spermatozoa experience a surprising lack of glucose uptake, even in the absence of 

other glycolyzable substrates [27].  There are three possible explanations for these observed 

metabolic profiles.  First, glucose may be imported and metabolized at very low rates (below the 

threshold of detection), but at a level still required for supporting sperm motility.  Second, 

endogenous glucose could be present in the form of glycogen, as in the domestic dog where this 

carbohydrate is localized to the sperm head and midpiece [32] and can provide an energy source 

for capacitation in a hexose-free medium [6].  Finally, felids may be unusual among mammals in 

that glycolysis is an insignificant source of sperm energy production.  In this case, we would 

expect the oxidative metabolism of endogenous lipid to support sperm function, since our 

previous study detected little uptake of any extracellular substrates by cat or cheetah 

spermatozoa.  In several species, including the mouse [33], bull [34], and boar [35], sperm 

motility can be maintained through endogenous phospholipid or di-/tri-glyceride metabolism, 

and it is conceivable that this mechanism exists in felids. 
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The cheetah and domestic cat are excellent models for studying sperm function in 

teratospermic species, including humans [36] and several endangered felids [37].  Cheetahs are 

well-known to consistently produce ejaculates containing at least 70% malformed spermatozoa 

[27, 38, 39], while domestic cats may exhibit either the normospermic or teratospermic 

phenotype [27, 40, 41].  Certain other physiological traits that influence fertility also are 

common between humans and domestic cats or cheetahs, including oligospermia [36, 38, 42] and 

sperm chromatin abnormalities [4, 43].  Thus understanding the mechanisms driving sperm 

energy production in the teratospermic domestic cat and cheetah could provide insight into male 

reproductive abnormalities across a range of species.  The present study extended our recent 

comparative findings on sperm metabolism in the cat and cheetah [27] to elucidate the 

contribution of endogenous substrates and glycolytic metabolism to basic sperm function.  The 

hypothesis was that sperm motility and viability are maintained in the absence of glycolytic 

metabolism and are supported by endogenous energy sources, regardless of ejaculate phenotype 

(i.e., normospermic or teratospermic).  Studying the domestic cat and cheetah, our objectives 

were to determine: 1) the influence of exogenous glucose and pyruvate availability on sperm 

motility and viability; 2) the impact of blocking glycolytic ATP synthesis versus NAD+ 

regeneration using chemical inhibitors of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 

and lactate dehydrogenase (LDH), respectively; and 3) differences (or similarities) in sperm 

metabolic function related to species physiology or ejaculate phenotype. 
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3.3 Materials and Methods 

3.3.1 Animals 

Electroejaculates were collected from adult domestic cats (ages, 1.5 – 8 yr) that were 

known to consistently produce either normospermic or teratospermic ejaculates (n = 3 males per 

group).  A total of 10 ejaculates was collected from normospermic males (1 – 5 per individual) 

and 10 ejaculates from teratospermic males (2 – 4 per individual).  Males were housed 

individually in 2.7-m3 indoor cages at the Smithsonian Conservation Biology Institute (SCBI; 

Front Royal, VA), maintained on a 14:10 h light:dark cycle, and provided dry, commercial cat 

food (Purina Cat Chow; Ralston Purina Co., St. Louis, MO) and water ad libitum. 

Electroejaculates (1 per male, 17 males) were collected from adult cheetahs (ages, 2.5 – 

10 yr) housed at the Cheetah Conservation Fund (CCF; Otjiwarongo, Namibia; n = 7), White 

Oak Conservation Center (WOCC; Yulee, FL; n = 6), SCBI (n = 3), or the Philadelphia Zoo 

(Philadelphia, PA; n = 1).  Males at CCF were wild-born and housed as described previously 

[44].  The six males at WOCC represented three sibling pairs, and two of these pairs were 

captive-born.  Each pair was housed separately in 2,500-m2 outdoor enclosures off exhibit and 

fed a mixed diet of two commercial products (Toronto Zoo Feline Diet; Milliken Meat Products 

Ltd., Scarborough, Ontario, Canada; and Carnivore Diet 10; Natural Balance Pet Foods Inc., 

Pacoima, CA).  Males at SCBI were captive born and housed together (in a group of three) off 

exhibit in a 2,200-m2 outdoor enclosure and fed a commercially produced carnivore diet 

(Carnivore Diet 10; Natural Balance Pet Foods Inc., Pacoima, CA).  The single male in 

Philadelphia was captive-born and housed on exhibit in a sibling group with two other males in a 

1,500-m2 outdoor enclosure and fed a commercially produced carnivore diet (Carnivore Diet 10; 

Natural Balance Pet Foods Inc., Pacoima, CA). 
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3.3.2 Semen Collection  

A surgical plane of anesthesia was induced in domestic cats and cheetahs according to 

protocols determined by institutional veterinarians and similar to those previously utilized for 

semen collection in these two species [28, 44].  All animal procedures were approved by the 

National Zoological Park’s Animal Care and Use Committee and similar committees of the 

WOCC and Philadelphia Zoo.  Semen was collected using a rectal probe of 1 cm (domestic cat) 

or 1.9 cm (cheetah) diameter and an electrostimulator (P.T. Electronics, Boring, OR), as 

described previously [27, 45].  A sample of raw semen containing ~2 × 105 spermatozoa was 

fixed in 0.3% glutaraldehyde in phosphate-buffered saline for assessment of sperm morphology, 

as described previously [27, 45, 46]. 

 

3.3.3 Sperm Processing and Metabolic Assessments 

Each ejaculate was diluted immediately with an equal volume of a chemically defined, 

protein-free, modified mouse tubal fluid medium (cMTF) [47] supplemented with 2% polyvinyl 

alcohol (PVA) [48].  The cMTF medium was prepared as described previously [27] and 

contained 98.4 mM NaCl, 4.78 mM KCl, 1.19 mM MgSO4, 1.19 mM KH2PO4, 25 mM 

NaHCO3, 1.71 mM CaCl2, 1 mM glucose, 1 mM Na-pyruvate, 25 mM 3-(N-morpholino) 

propanesulfonic acid (MOPS) buffer, and 0.02 mg/mL phenol red.  Sperm concentration was 

determined using a Nucleocounter SP-100 (Chemometec, Allerød, Denmark) [49]. 

Each diluted ejaculate (maintained at ambient temperature, 19 – 22oC) was washed by 

centrifugation (8 min; × 300 g for domestic cat; × 100 g for cheetah) and resuspended in a 

modification of cMTF corresponding to each treatment.  To evaluate the influence of exogenous 

substrate availability, four aliquots from a given, well-mixed ejaculate (n = 3 normospermic cat, 
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n = 3 teratospermic cat, n = 8 cheetah) were incubated in cMTF containing: 1) no metabolic 

substrates; 2) pyruvate only; 3) glucose only; or 4) both substrates (i.e., complete medium, 

representing the positive control).  To determine the effect of blocking glycolysis, sperm aliquots 

from a second set of ejaculates (n = 6 normospermic cat, n = 6 teratospermic cat, n = 8 cheetah) 

were exposed to 50 mM α-chlorohydrin (a GAPDH inhibitor) and incubated in glucose-free 

cMTF in parallel with negative controls in complete cMTF.  This α-chlorohydrin concentration 

has been used to study sperm metabolism in other species [50] and was the minimum required to 

impair domestic cat sperm function in a preliminary dose-dependent trial (data not shown).  To a 

lesser extent, α-chlorohydrin also inhibits triose phosphate isomerase (TIM), the enzyme 

immediately preceding GAPDH in the glycolytic pathway [51].  Glucose was omitted from the 

α-chlorohydrin treatment medium to prevent the accumulation of cytotoxic glycolytic 

intermediates [52].  Finally, to determine the influence of blocking lactate production, aliquots of 

individual ejaculates (n = 3 normospermic cat, n = 2 teratospermic cat, n = 5 cheetah) were 

exposed to 50 mM sodium oxamate (a specific LDH inhibitor) and incubated in parallel with 

negative inhibitor-free controls in complete cMTF.  This inhibitor concentration also was chosen 

on the basis of a preliminary dose-dependent trial (data not shown).  Some of the ejaculates in 

the sodium oxamate group were also represented in the α-chlorohydrin treatment group (n = 2 

normospermic cat, n = 1 teratospermic cat, n = 4 cheetah).  Medium osmolality was maintained 

in GAPDH and LDH-inhibited samples by adjusting NaCl concentration.  Osmolality of all final 

working media (300 – 345 mOsm) was determined using a vapor pressure osmometer (Wescor, 

Inc, Logan, UT) and was within 10% of the physiological value of domestic cat semen (323 

mOsm). 
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All sperm samples were incubated (37oC) at a concentration of 3 × 106 motile cells per 

milliliter in microcentrifuge tubes under oil to prevent evaporation, as described previously [27].  

Assessments of sperm percentage motility (% M), forward progression (FPS), and acrosomal 

integrity (% IA) were made at 0, 1, 3, and 7 h of incubation by a single investigator who was 

blind to each treatment.  Motility was assessed visually (200 ×), and FPS was rated on a 0 to 5 

scale, with a rating of 5 equivalent to most rapid, linear progress [45].  Spermatozoa (~2 × 105 

cells) were fixed in 4% paraformaldehyde and stained with Coomassie Blue G-250 (Fisher 

Biotech, Springfield, NJ) to evaluate acrosomal integrity, as described previously [42, 53].  

Spermatozoa with an intact acrosome exhibited a uniform blue staining pattern overlying the 

acrosomal region, whereas nonintact cells had clear or patchy staining over this region [42].  

Rates of pyruvate uptake and lactate production were also assessed over each time interval 

(except in the LDH-inhibited group, as these assays utilize LDH-linked fluorescence for 

substrate quantification).  Rates of glucose uptake were assessed over each time interval in the 

first treatment group (exogenous substrate availability).  Although we previously had determined 

that sperm glucose uptake was minimal in these species [27], it was possible that the absence of 

oxidative substrates in the medium would stimulate glucose uptake.  To determine pyruvate, 

lactate, and glucose concentrations, all medium samples were centrifuged (8 min; × 1,000 g) 

through a CoStar Spin-X 0.22-µm nylon filter tube (Corning Incorporated, Corning, NY) and 

stored at –80oC until analysis using a LDH/GPT or HK/G6PDH-linked fluorescence assay 

described previously [27, 47, 54].  Fluorescence was analyzed using a Spectra Max Gemini XPS 

fluorescent plate reader (340 nm excitation, 445 nm emission) and SoftMax Pro 5 software 

(Molecular Devices, Sunnyvale, CA).  In a subset of control samples, sperm cells were removed 

by centrifugation (8 min; × 1,000 g) prior to medium filtration for analysis of glycogen content 
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as described below.  Rates of lactate production were calculated as the change in medium 

substrate concentration over time, divided by sperm concentration and were reported in nmol/106 

sperm/h.  All data were normalized to control values for presentation. 

 

3.3.4 Glycogen Assay 

Glycogen content was measured in control group sperm samples (3 x 105 spermatozoa; n 

= 5 domestic cat, n = 5 cheetah) taken at 0 h, as described above.  To address the possibility that 

the glycogen content of these samples might be below an unknown threshold of detection, we 

also prepared highly concentrated domestic cat epididymal samples for this assay.  Testes (n = 6 

males; ages 1 – 3 yr) were harvested at local veterinary clinics, transported in PBS to the 

laboratory within 6 h of orchiectomy, and dissected in 500 µl cMTF at room temperature.  

Testicular cell suspensions were combined (2 males per tube) and centrifuged (8 min; 300 × g) to 

obtain pellets (n = 3) containing ~1 x 108 sperm.  All samples (ejaculated and epididymal) were 

stored frozen (-80oC) until analysis.  Sperm extracts were prepared for analysis of glycogen 

content using a modified protocol of Ballester et al. [32].  Briefly, sperm pellets were thawed and 

homogenized by sonication with 300 µl of KOH on ice.  Homogenates were incubated at 100oC 

for 15 min, then incubated (37oC) 1:1 with a glycogen hydrolysis buffer (0.3 U/ml α-

amyloglucosidase, 50 mM sodium acetate, pH 4.6) for 30 min.  Standards of known 

concentration (0.00, 0.06, 0.13, 0.25, 0.50, and 1.00 mM) and controls (domestic cat sperm with 

1 mM glycogen added, n = 3) were prepared using the same protocol.  Standards and unknowns 

were assayed for glycogen content using a HK/G6PDH-linked assay described previously [27] 

with a 1:5 ratio of sample to reaction volume.  Fluorescence was quantified as described above. 
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3.3.5 Chemicals 

All reagents were purchased from Sigma Aldrich (St. Louis, MO) unless otherwise noted.  

Enzymes (LDH, GPT, α-amyloglucosidase, HK, and G6PDH) were obtained from Roche 

Applied Science (Indianapolis, IN). 

 

3.3.6 Statistical Analyses 

Data were analyzed with statistical analysis software (SAS) version 9.1 (SAS Institute, 

Cary, NC), and percentage data were arcsine-transformed before evaluation.  The interaction 

between treatment and domestic cat group (normospermic and teratospermic) was assessed using 

SAS General Linear Model (GLM) Procedures [55] with % M, FPS, % IA, and lactate 

production included as response variables.  Treatment and domestic cat group were considered 

class variables, and time was included as a covariate.  Because there was no interaction (P > 

0.05) between treatment and group, all domestic cat samples were combined for subsequent 

analysis.  The interaction between treatment and species (cat and cheetah) was assessed using a 

GLM as described above.  Within species, treatment effects were analyzed separately for each 

time point using paired Student’s t-tests (treatment vs. control).  Pearson’s correlation was used 

to evaluate the relationships between sperm morphology and changes in sperm motility, FPS, % 

IA, and lactate production (relative to controls) at the end of incubation.  Fluorescence of 

glycogen samples was analyzed using a GLM.  Results were considered significant at P < 0.05 

and were reported as least-squares means ± SEM. 
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3.4 Results 

3.4.1 Exogenous Substrate Availability 

To facilitate comparisons between domestic cats and cheetahs, data for all treatment 

groups are presented as normalized to control values.  Absolute values for control samples are 

provided in Figure 3.1.  Overall, the absence of either glucose or pyruvate from the culture 

medium did not (P > 0.05) influence any sperm functional metrics (% M, FPS, or % IA) in the 

domestic cat or cheetah (Fig. 3.2A-C).  The only exception was a decrease (P < 0.05) in % M in 

cheetah ejaculates after 7 h of incubation in a pyruvate-free medium.  After 7 h incubation in 

substrate-free medium, sperm percent motility was decreased (P < 0.05) only in the cat (Fig. 

3.2A), whereas FPS was reduced (P < 0.05) ~50% in the cat and ~20% in the cheetah (Fig 3.2B).  

Acrosomal integrity was not (P > 0.05) influenced by the lack of substrates in either species (Fig. 

3.2C).  In both cats and cheetahs, spermatozoa produced lactate in the absence of glucose, but 

only if pyruvate was present in the culture medium (Fig. 3.2D).  Conversely, rates of lactate 

production were reduced (P < 0.05) by ~80% or more in the absence of pyruvate.  Consistent 

with previous findings [27], sperm glucose uptake was minimal in both species and was not 

influenced (P > 0.05) by the absence of exogenous oxidative substrates (Sup. Fig. 3.1A).  

Likewise, rates of pyruvate uptake were not affected (P > 0.05) by the absence of exogenous 

glycolytic substrates (Sup. Fig. 3.1B).  For all response variables, there was no interaction (P > 

0.05) between substrate availability and species, or between substrate availability and domestic 

cat ejaculate phenotype (i.e., normospermic vs. teratospermic).   
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3.4.2 GAPDH and LDH Inhibition 

The influence of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) inhibition was 

consistent between species and resulted in impaired (P < 0.05) sperm function (% M, FPS, and 

% IA; Fig. 3.3).  Losses in motility (% M and FPS) became more severe (P < 0.05) over time 

(Fig. 3.3A&B), whereas acrosomal integrity was not impaired until 7 h (Fig. 3.3C).  An unusual 

motility pattern that involved rapid flagellar beating, but little forward progression (i.e., vigorous 

twitching) often was observed within 1 h of exposure to the GAPDH inhibitor, prior to declines 

in % M.  Within each species, rates of lactate production were positively correlated (r = 0.30 – 

0.44, P < 0.05) to sperm function (% M, FPS and % IA) and declined (P < 0.05) after 1 h of 

Figure 3.3  Percent motility (A), forward progression (B), acrosomal integrity (C), and lactate production (D) in 
domestic cat (white bars) and cheetah (grey bars) sperm samples incubated with 50 mM α-chlorohydrin to inhibit 
GAPDH.  Data are expressed as percentages of control values (dashed line).  Within each species and time interval, 
bars with an asterisk (*) differed from control values (P < 0.05).  Error bars illustrate least-squares means ± standard 
errors. 
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exposure to the GAPDH inhibitor (Fig. 3.3D).  Substantial variation in rates of pyruvate uptake 

was observed, obscuring any potential overall treatment effect (Sup. Fig. 3.2).  This variation 

likely was related to the assay method that quantified pyruvate uptake based on a decrease in 

baseline fluorescence (in contrast to the more sensitive lactate assay that measured a 

fluorescence increase from zero).  These data also were consistent with our previous 

observations that lactate production is a more reliable indicator of sperm quality than pyruvate 

uptake [27].  Compared to the cheetah, domestic cat spermatozoa were more sensitive (P < 0.05) 

to loss of motility and FPS following glycolytic inhibition (i.e., a treatment-species interaction 

was detected).  However, within domestic cats, ejaculate phenotype did not (P > 0.05) influence 

Figure 3.4  Percent motility (A), forward progression (B), and acrosomal integrity (C) in domestic cat (white 
bars) and cheetah (grey bars) sperm samples incubated with 50 mM sodium oxamate to inhibit LDH.  Data are 
expressed as percentages of control values (dashed line).  All treatment values were similar to controls (P > 0.05).  
Error bars illustrate least-squares means ± standard errors. 

0
20
40
60
80

100
120
140

0 1 3 7

In
ta

ct
 a

cr
os

om
es

 (%
)

Time (h)

0
20
40
60
80

100
120
140

0 1 3 7

M
ot

ili
ty

 (%
)

0
20
40
60
80

100
120
140

0 1 3 7

Fo
rw

ar
d 

pr
og

re
ss

iv
e 

st
at

us B. 

 C. 

 A. 



64 
 

sensitivity to glycolytic inhibition.  None of the sperm functional metrics (% M, FPS, or % IA) 

was influenced (P > 0.05) by the inhibition of lactate production (LDH) in either species (Fig. 

3.4).   

 

3.4.3 Glycogen Content 

Glycogen digest was effective across all standards (R2 ≥ 0.945).  The concentration of 

glycogen in spiked controls was similar (P > 0.05) to the corresponding 1-mM standard.  

However, glycogen content of all samples (ejaculated or epididymal; domestic cat or cheetah) 

did not differ (P > 0.05) from the 0-mM standard.  

 

3.5 Discussion 

Results from our comparative investigation of sperm metabolism in the domestic cat and 

cheetah supported our hypothesis that these cells relied primarily on endogenous substrates to 

fuel motility and viability, although surprisingly GAPDH activity was essential for these 

functions.  Because (1) sperm motility was maintained in a medium without glycolyzable 

substrates, and (2) there was no evidence of intracellular glycogen stores, we concluded that the 

obligate role of the glycolytic pathway was unrelated to sugar metabolism.  Furthermore, since 

sperm motility was impaired following GAPDH, but not LDH inhibition, we surmised that the 

role of this pathway was related to ATP production, rather than NAD+ regeneration.  Based on 

these collective results we propose a new model of energy production in felid spermatozoa, 

whereby ATP is produced primarily by the oxidation of endogenous lipid, and the main function 

of the glycolytic pathway is to metabolize lipid-derived glycerol (Fig. 3.5).  In this model, fatty 

acids hydrolyzed from intracellular lipid (i.e., phospholipid or di-/tri-glycerides) would be 

oxidized by the mitochondria to generate ATP, whereas glycerol would enter the glycolytic 
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pathway via its conversion to dihydroxyacetone phosphate (DHAP) [56].  The remaining steps of 

glycolysis (including the GAPDH-catalyzed conversion of glyceraldehyde-3-phosphate to 1,3-

bisphosphoglycerate) would ultimately produce pyruvate and two molecules of ATP for a net 

gain of one ATP [17].  Cytosolic NADH produced by this process would be transported to the 

mitochondria via the malate-aspartate shuttle to regenerate NAD+ for the next round of glycerol 

metabolism (Fig. 3.5) [57].  Finally, the oxidative metabolism of glycerol-derived pyruvate 

would provide another significant source of ATP.  

Figure 3.5  Theoretical model of energy production in domestic cat and cheetah spermatozoa illustrating targets of 
metabolic inhibition (×).  Diagram includes exogenous substrates utilized in this study (green) and hypothesized 
endogenous energy sources (blue).  Dashed lines indicate pathways determined to be non-essential for sperm 
motility and viability.  Certain enzymes and glycolytic intermediates are omitted from the figure for clarity.  G3P 
= glycerol-3-phosphate; DHAP = dihydroxyacetone phosphate; GAP = glyceraldehyde-3-phosphate; GAPDH = 
glyceraldehyde-3-phosphate dehydrogenase; 1,3-BPG – 1,3-bisphosphoglycerate; LDH = lactate dehydrogenase; 
MT = microtubule.  *Necessary to maintain full motility in the absence of other exogenous substrates. 
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Based on this model, we identified three possible mechanisms by which GAPDH 

inhibition could have compromised sperm function.  First, although perhaps least likely, 

glycolytic inhibition could have caused cytotoxic pathway intermediates to accumulate within 

the spermatozoa [52].  We are doubtful of this possibility, as evidence in the ram and boar 

suggests that α-chlorohydrin does not generate cytotoxic intermediates in the absence of  

exogenous sugars, even when endogenous lipid is actively metabolized [58].  Secondly, the 

glycolytic pathway may have been an important source of mitochondrial substrate, analogous to 

the mechanism of sperm energy production in the boar [35].  Although actively metabolizing 

endogenous lipid, boar spermatozoa do not appear to oxidize fatty acids [59] and instead 

generate oxidative substrates from the glycolytic metabolism of glycerol [35].  However, because 

exogenous pyruvate was available to GAPDH-inhibited spermatozoa, we believe it is unlikely 

that the role of this enzyme is related to oxidative substrate production.  Finally, GAPDH could 

have maintained active microtubule sliding along the length of the flagellum via local glycerol 

metabolism.  This pathway is less efficient than oxidative phosphorylation with a net yield of 

only one ATP per molecule of glycerol.  Nonetheless, glycerol metabolism could support sperm 

motility if mitochondrial energy cannot reach the distal flagellum, analogous to the role of 

compartmentalized glucose metabolism in other species [11].  Given the abnormal pattern of 

sperm motility observed in the domestic cat and cheetah immediately after exposure to the 

inhibitor (i.e., vigorous twitching), we predict that the importance of GAPDH activity was 

related to the need for localized ATP production along the flagellum. 

The importance of lipid metabolism in our model is supported by other studies that 

indicate that this substrate is endogenously present in the form of phospholipid or di/tri-

glycerides and is a significant source of ATP in bull [34], ram [60], boar [35], mouse [33], and 
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rhesus macaque [61] spermatozoa.  Lipid can provide up to six times the energy of an equal 

weight of glycogen [56] and, therefore, is an ideal energy source for spermatozoa that have an 

inherently high ATP demand and tightly-packed, economical structure.  Yet this endogenous 

energy supply appears to be limited in felid spermatozoa, given our observation of a gradual loss 

in progressive motility in substrate-free medium.  In contrast, spermatozoa maintained motility 

with glucose or pyruvate as the sole exogenous substrate, thereby implying a capacity of these 

cells to alter their metabolic strategy in response to a changing microenvironment.  Such an 

adaptive mechanism of energy production would improve chances for in vivo longevity and 

successful fertilization by allowing spermatozoa to metabolize substrates within the female tract 

while utilizing an endogenous energy supply when needed.   

Because the domestic cat routinely produces higher quality ejaculates compared to the 

cheetah [27, 38], we were surprised to discover that spermatozoa from the former were more 

susceptible to motility declines in the absence of exogenous substrates or when GAPDH was 

inhibited.  This unexpected finding could indicate that ATP demand is unusually low in cheetah 

spermatozoa, and may be related to earlier observations that multiple energy-driven processes 

(e.g., motility and cellular viability [27, 39]) consistently are impaired in ejaculates from this 

species.  One of the strengths of our study design was that sperm metabolic function could be 

comparatively assessed not only between species, but also in domestic cat ejaculates containing a 

high versus low proportion of structurally malformed spermatozoa.  This remarkable phenotypic 

difference in the cat has had a significant influence in earlier studies on sperm motility [27, 31], 

chilling sensitivity [62], osmotic stress [46], protein tyrosine phosphorylation [29], capacitation 

[28], acrosomal function [28], zona penetration [31], and fertilizing ability [31].  Yet, the 

incidence of teratospermia among domestic cats in the present study had no influence on sperm 
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sensitivity to glycolytic inhibition or substrate availability.  In contrast, we previously found that 

rates of sperm pyruvate uptake and lactate production were greatly decreased in teratospermic 

cats and cheetahs compared to normospermic cats [27].  Given the proposed model in Figure 3.5, 

we predict that disruptions in sperm physiology associated with teratospermia (including 

substrate uptake/production) are driven primarily by reduced capacity for oxidative energy 

production.  This is the focus of a current investigation in our laboratory.  

In conclusion, our findings emphasized the value of studies that compare biological 

phenomena in non-traditional species (the cheetah) to more commonly used models (the 

domestic cat) [63].  This approach revealed conserved mechanisms of glycolytic metabolism and 

substrate utilization in domestic cat and cheetah spermatozoa.  The consistency of our findings 

was noteworthy, given the significant genetic and phenotypic differences between these two felid 

species, and provided strong support for our proposed model of sperm energy production.  Yet 

while domestic cat and cheetah spermatozoa shared a requirement for GAPDH activity, 

differences were observed regarding the severity of sperm functional declines following 

exposure to the GAPDH inhibitor.  These differences suggested that sperm energy demand may 

be greater in the domestic cat compared to the teratospermic cheetah.  If confirmed, this new 

finding could be mechanistically linked to previous observations that multiple energy-driven 

processes are disrupted in felid ejaculates with the teratospermic phenotype [28, 29, 31, 43].  

Understanding the fundamental cause of these physiological disruptions could provide clues to 

developing methods to enhance sperm fertilizing ability, for example, through exposure to 

metabolic stimulants [64].  As high (>40%) proportions of pleiomorphic spermatozoa have been 

documented in at least 18 of the 21 wild felid species studied [41, 65] and are nearly ubiquitous 
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in man [36], cross-species comparisons that provide insight into teratospermia can help improve 

the success of assisted reproduction for biodiversity preservation and human fertility.   
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CHAPTER 4: OXIDATIVE METABOLISM IS ESSENTIAL FOR FELID SPERM 
FUNCTION, BUT IS SUBSTANTIALLY LOWER IN CHEETAH (ACINONYX 
JUBATUS) COMPARED TO DOMESTIC CAT (FELIS CATUS) EJACULATE 

 

4.1 Abstract 

Compared to the normospermic domestic cat, sperm metabolic function is compromised 

in the teratospermic cat and cheetah, but the pathway(s) involved in this deficiency are unknown.  

Glycolysis is essential for sperm motility, yet appears to function normally in spermatozoa of 

either species regardless of structural morphology.  We conducted a comparative study to further 

understand the mechanisms of energy production in felid spermatozoa, with the hypothesis that 

oxidative metabolism is required for normal sperm function and is impaired in teratospermic 

ejaculates.  Ejaculates from both species were stained with MitoTracker® to quantify 

mitochondrial membrane potential (MMP) or were incubated to assess changes in sperm function 

(motility, acrosomal integrity, and lactate production) after mitochondrial inhibition with 

myxothiazol.  Sperm midpiece dimensions also were quantified.  Sperm mitochondrial 

fluorescence (directly proportional to MMP) was ~95% lower in the cheetah compared to the 

normospermic and teratospermic cat, despite the former having a 10% longer midpiece.  In both 

species, MMP was increased 5-fold in spermatozoa with retained cytoplasm compared to 

structurally normal cells.  Inhibition of oxidative phosphorylation impaired sperm function, but a 

100-fold higher inhibitor concentration was required in the cat compared to the cheetah.  

Collectively, findings revealed that oxidative phosphorylation was required for sperm function in 

the domestic cat and cheetah.  This pathway of energy production appeared markedly less active 

in the cheetah, indicating a species-specific vulnerability to mitochondrial dysfunction.  The 

unexpected, cross-species link between retained cytoplasmic droplets and elevated MMP may 

have reflected increased concentrations of metabolic enzymes or substrates in these structures.
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4.2 Introduction 

Oxidative phosphorylation is an active pathway of sperm energy production in all 

mammalian species studied to date, including the bull, ram, boar, rabbit, mouse, and man 

(reviewed in [1]).  Although human spermatozoa were once considered to be exclusively 

glycolytic [1], cellular respiration now is known as a significant source of ATP [2] and is 

required to maintain motility in these cells [2-6].  Human infertility and/or asthenospermia are 

linked to various indicators of impaired oxidative phosphorylation in spermatozoa, including 

reduced midpiece length [7], abnormal mitochondrial organization [7-9], reduced oxygen 

consumption [10], and decreased mitochondrial enzyme activity [11].  However, the relationship 

between mitochondrial ATP production and fertilizing ability in species other than the human is 

less clear.  For example, although oxidative phosphorylation supplies the majority of ATP in 

bovine spermatozoa [12], bull fertility can be predicted by sperm motility values, but not by 

mitochondrial membrane potential [13, 14].  Conversely, although motility and capacitation of 

murine spermatozoa are unaffected by chemical inhibition of oxidative phosphorylation [15, 16], 

Smcp-/- (sperm mitochondrion-associated cysteine-rich protein) knock-out mice are infertile and 

experience reduced sperm motility and zona penetration ability [17]. 

Little is known about the mechanisms of sperm energy production in the domestic cat or 

its wild relatives.  The cat itself is a valuable model for understanding gamete physiology, 

because there are two readily available phenotypes, normospermic versus teratospermic 

(ejaculating > 60% structurally abnormal spermatozoa) [18, 19].  Because teratospermia is highly 

prevalent in men [20] and considered ubiquitous in certain rare felid species (most notably the 

cheetah, clouded leopard [Neofelis nebulosa], and Florida panther [Puma concolor coryi]) [19], 

understanding the physiological consequences of this condition has application to both human 
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fertility and wildlife management/conservation.  We recently determined that rates of sperm 

lactate production are reduced in the teratospermic domestic cat and cheetah compared to the 

normospermic domestic cat [21].  In both species, lactate production is positively correlated to 

sperm motility, acrosomal integrity, and normal morphology, yet appears to be indirectly related 

to cellular energy production.  Glucose uptake by these cells is minimal or absent [21], and the 

majority of lactate is instead produced by the reduction of exogenous pyruvate [22].  This 

process does not appear to serve any physiological purpose, as sperm motility and acrosomal 

integrity are unaffected when lactate dehydrogenase is chemically inhibited or when pyruvate is 

absent from the culture medium [22].  Although having a questionable role in felid sperm 

fertilizing ability [22], lactate production may indirectly indicate NADH availability that, in turn, 

is important in maintaining REDOX potential [23] and in ATP generation via oxidative 

phosphorylation [24].  If this prediction is correct, reduced rates of lactate production may reflect 

mitochondrial dysfunction in teratospermic domestic cat and cheetah ejaculates.  Alternately, the 

physiological mechanisms causing impaired lactate production may differ between the two 

species.  Regardless, it is likely that a mitochondrial deficiency would significantly impair 

energy generation by the felid spermatozoon, particularly since our previous investigations 

suggest a key role of oxidative phosphorylation in these cells [21, 22].  Although cat and cheetah 

spermatozoa metabolize little or no exogenous glucose, we have discovered that the glycolytic 

enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is required to maintain sperm 

progressive motility in both species [22].  We predict that the importance of GAPDH in felid 

spermatozoa relates to its role in glycerol breakdown, and that these cells rely primarily on the 

metabolism of endogenous phospholipid to support motility and viability.  Such a mechanism 

would explain why felid spermatozoa remain motile for at least 7 h in a substrate-free medium 
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[22], and would suggest that mitochondrial metabolism (of fatty acids and/or glycerol-derived 

pyruvate) is a substantial source of cellular ATP. 

To better understand the mechanisms of cellular metabolism in felid spermatozoa, we 

conducted a comparative assessment of sperm oxidative phosphorylation in the normospermic 

versus teratospermic domestic cat and the teratospermic cheetah.  We tested the hypotheses that 

oxidative phosphorylation is required for sperm motility and viability in the cat and cheetah, and 

that mitochondrial function is impaired in the teratospermic phenotype.  We anticipated that 

knowledge of these mechanisms could yield insight into the disruptions of various energy-

dependent processes usually associated with teratospermia in felids, including sperm motility 

[21], protein tyrosine phosphorylation [25], and the acrosome reaction [26].  Elucidation of these 

functional defects could provide clues for improving the success of reproductive technologies 

(e.g., sperm cryopreservation) useful to improving both human fertility and wildlife 

management/conservation.  

 

4.3 Materials and Methods 

Animals 

Electroejaculates were collected from adult (1.5 – 8 yr old) domestic cats previously 

determined to be normospermic (n = 2 males, n = 6 total ejaculates) or teratospermic (n = 5 

males, n = 8 total ejaculates) [21, 22].  Management protocols for this species at the Smithsonian 

Conservation Biology Institute (SCBI; Front Royal, VA) have been described in detail [21]. 

Electroejaculates (1 per male, 16 males) were collected from adult cheetahs (ages, 2 – 10 

yr) housed at the Cheetah Conservation Fund (CCF; Otjiwarongo, Namibia; n = 1), White Oak 

Conservation Center (WOCC; Yulee, FL; n = 4), the SCBI (n = 5), the Philadelphia Zoo (PHL; 
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Philadelphia, PA; n = 3), The Wilds (TW; Cumberland, OH; n = 2), and the Cleveland 

Metroparks Zoo (CLE; Cleveland, OH; n = 1).  The male at CCF was wild-born and housed 

singly, as described previously [27].  Males at WOCC, SCBI, and PHL were captive-born and 

managed as explained earlier [26], and represented one (PHL) or two (WOCC, SCBI) sibling 

groups at each institution.  Both males at TW were captive-born, one of which was maintained 

singly in a 5,000-m2 outdoor enclosure and the other with two unrelated males in a 500-m2 

outdoor enclosure.  The male at CLE was captive-born and managed on exhibit with a male 

sibling in a 900-m2 outdoor enclosure.  Males at TW and CLE were fed a commercially 

produced diet (Premium Beef Feline Diet; Central Nebraska Packaging Inc., North Platte, NE), 

and diets for this species in all other institutions have been reported previously [21, 22].  There 

was no statistical influence of location on any sperm quality metric (P ≥ 0.27), and we previously 

have determined that ejaculate quality is similar between wild-born Namibian cheetahs and 

captive individuals at North American institutions [28, 29].  Reagents and semen collection 

equipment were transported from SCBI to each study site, and all samples were shipped back to 

our laboratory for analyses of metabolic rates, mitochondrial membrane potential, sperm 

morphology, and acrosomal integrity. 

 

Semen Collection  

A surgical plane of anesthesia was induced in domestic cats and cheetahs for semen 

collection according to protocols developed by institutional veterinarians and were the same as 

we have described previously [26, 27].  All animal procedures were approved by National 

Zoological Park’s Animal Care and Use Committee (ACUC) and similar committees of 

collaborating institutions.  Semen was collected using a rectal probe of 1 cm (domestic cat) or 
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1.9 cm (cheetah) in diameter and an electrostimulator (P.T. Electronics, Boring, OR) as 

described earlier [21, 30]. 

 

Sperm Processing  

Immediately after collection, a 10 µl aliquot of raw semen containing ~2 × 105 

spermatozoa was fixed in 0.3% glutaraldehyde in phosphate-buffered saline for assessment of 

sperm morphology [21, 30, 31].  Each ejaculate then was diluted with an equal volume of a 

chemically defined, protein-free, modified mouse tubal fluid medium (cMTF) [32] supplemented 

with 2% polyvinyl alcohol (PVA) [33].  The cMTF medium was prepared as described earlier 

[21] and contained 98.4 mM NaCl, 4.78 mM KCl, 1.19 mM MgSO4, 1.19 mM KH2PO4, 25 mM 

NaHCO3, 1.71 mM CaCl2, 1 mM glucose, 1 mM Na-pyruvate, 25 mM 3-(N-morpholino) 

propanesulfonic acid (MOPS) buffer, and 0.02 mg/mL phenol red.  All reagents were purchased 

from Sigma Aldrich (St. Louis, MO) unless otherwise noted.  Osmolality of the final working 

medium (315 – 345 mOsm) was determined using a vapor pressure osmometer (Wescor, Inc, 

Logan, UT) and was within 10% of the physiological value of domestic cat semen (323 mOsm 

[34]).  Sperm concentration was determined using a Nucleocounter SP-100 (Chemometec, 

Allerød, Denmark) [35]. 

 

Inhibition of Oxidative Phosphorylation 

Each diluted ejaculate (maintained at ambient temperature, 19–22oC) was washed by 

centrifugation (8 min; × 300 g for domestic cat; × 100 g for cheetah) and resuspended in cMTF.  

To determine the influence of inhibition of oxidative phosphorylation, a sperm sample (3 × 106 

motile sperm/ml) from each ejaculate (n = 6 normospermic cat, n = 6 teratospermic cat, n = 8 
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cheetah) was exposed to 160 nM myxothiazol (known to block transfer of electrons from 

complex ΙΙΙ to cytochrome C [5]; included in the resuspension medium) and incubated in parallel 

with negative controls.  This myxothiazol concentration has been used previously to study 

mammalian sperm metabolism [12] and was the minimum required to disrupt cheetah sperm 

motility in dose-dependent trials (0.16 nM, 16 nM, and 160 nM; data not shown).  Because 

domestic cat spermatozoa were not influenced by the 160 nM myxothiazol treatment, a subset of 

these ejaculates (n = 2 normospermic, n = 2 teratospermic) also were incubated in higher 

inhibitor concentrations (1.6 µM and 16 µM). 

Sperm samples were cultured (37oC) in microcentrifuge tubes under oil to prevent 

evaporation, as described previously [21].  Assessments of sperm percentage motility (% M), 

forward progression (FPS), and acrosomal integrity (% IA) were made at 0, 1, 3, and 7 h of 

incubation.  Motility was assessed visually (200 ×), and FPS was rated on a 0 to 5 scale, with a 

rating of 5 equivalent to most rapid, linear progress [30].  Spermatozoa (~2 × 105 cells) were 

fixed in 4% paraformaldehyde and stained with Coomassie Blue G-250 (Fisher Biotech, 

Springfield, NJ) to evaluate acrosomal integrity using previously described methods [36, 37].  

Spermatozoa with an intact acrosome exhibited a uniform blue staining pattern overlying the 

acrosomal region, whereas nonintact cells had clear or patchy staining over this region [37].  

Because we discovered in an earlier study that there was a positive correlation between lactate 

production and sperm motility, acrosomal integrity, and normal morphology in both the cat and 

cheetah [19], we monitored rates of lactate production (∆ L) in each sample during the 7 h 

incubation period [21].  To determine lactate concentration, medium samples were centrifuged (8 

min; × 1,000 g) through a CoStar Spin-X 0.22-µm nylon filter tube (Corning Incorporated, 

Corning, NY) and stored at –80oC until analysis using a LDH/GPT-linked fluorescence assay 
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[21, 32, 38].  Assay enzymes were purchased from Roche Applied Science (Indianapolis, IN) 

and fluorescence analyzed using a Spectra Max Gemini XPS fluorescent plate reader (340 nm 

excitation, 445 nm emission) and SoftMax Pro 5 software (Molecular Devices, Sunnyvale, CA).  

The ∆ L was calculated as the change in medium substrate concentration over time, divided by 

sperm concentration and reported in nmol/106 sperm/h.  All data were normalized to control 

values for presentation. 

 

Mitochondrial Membrane Potential 

To assess mitochondrial membrane potential (MMP), samples of ejaculates (n = 5 

domestic cat, n = 7 cheetah) were incubated (45 min; ambient temperature, 19–22oC) in the dark 

with 0.5 nM MitoTracker® Red CMXRos (Molecular Probes, Inc., Eugene, OR) in a volume of 

100 µl at a concentration of 3 × 106 motile sperm/ml.  To assess MMP, 100 

spermatozoa/ejaculate were individually analyzed (400 ×) using a BX40 fluorescence 

microscope (Olympus America Inc., Center Valley, PA; 555 nm excitation), and fluorescence 

was quantified using a Sensicam qe high performance camera (Cooke Corp., Romulus, MI) and 

IP Lab v4.04 software (BD Biosciences, Rockville, MD).  The presence of sperm structural 

abnormalities was recorded (as described previously [21]), except for acrosomal deformities, 

which were not reliably detected at this magnification.  Spermatids and retained cytoplasmic 

droplets represented the majority (~80%) of sperm malformations in each species.  For data 

analysis, each spermatozoon was classified into one of the following five major morphotypes: 

structurally normal, midpiece droplet, flagellar droplet, spermatid, and ‘other’ [21].  The 

category of ‘midpiece droplet’ primarily represented a spermatozoon with a bent midpiece 

encircling residual cytoplasm, but also included spermatozoa with a proximal droplet attached to 
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a straight midpiece.  In contrast, a flagellar droplet was always associated with a structural bend 

in the tail region.  The ‘other’ category consisted of rarer type malformations that collectively 

comprised < 10% of all spermatozoa in each species and included head deformities and midpiece 

anomalies or aplasia. 

 

Sperm Morphometrics 

A sperm sample (~2 × 105 cells) from each ejaculate used to assess MMP also was fixed 

in 4% paraformaldehyde for morphometric evaluation.  Dimensions of head length and width, 

midpiece length and width, and principal piece length were measured for 50 spermatozoa (1,000 

×) per subsample by phase contrast microscopy using the Sensicam qe high performance camera 

and IP Lab v4.04 software.  Spermatozoa with complete or partial midpiece aplasia (< 2% of 

total) were excluded from this assessment. 

 

Statistical Analyses 

Data were analyzed with statistical analysis software (SAS) version 9.1 (SAS Institute, 

Cary, NC), and percentage data were arcsine-transformed before evaluation.  Pearson’s 

correlation was used to evaluate the relationships among sperm quality metrics (% M, FPS, % 

IA, and ∆ L) across all samples.  Data for OXPHOS-inhibited samples were normalized (i.e., 

expressed as percentages of control values) for figure presentation only; statistical analyses were 

performed on raw data (i.e., absolute values for inhibited and control samples).  The interaction 

between inhibition of oxidative phosphorylation and domestic cat group (normospermic and 

teratospermic) was assessed using SAS General Linear Model (GLM) Procedures [39] with % 

M, FPS, % IA, and ∆ L included as response variables.  Treatment and domestic cat group were 
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considered class variables, and time was included as a covariate.  The interaction between 

inhibition of oxidative phosphorylation and species (domestic cat and cheetah) was assessed 

using a GLM as described above.  Within species, treatment effects were analyzed separately for 

each time point using paired t-tests (treatment vs. control).  Pearson’s correlation was used to 

evaluate the relationships between sperm morphology and changes in % M, FPS, % IA, and ∆ L 

(relative to controls) at the end of incubation.  Differences in mean MMP, % M, FPS, and % 

structurally normal spermatozoa of MitoTracker-stained samples were analyzed using a GLM 

and Tukey’s Test with animal group (normospermic cat, teratospermic cat, and cheetah) included 

as a class variable.  Differences in MMP among sperm morphotypes were evaluated using a 

separate GLM for each animal group, and means were evaluated using Tukey’s test.  Mean 

sperm dimensions were calculated for each male, and these values then were analyzed using a 

GLM with species included as a class variable.  Differences in sperm morphometrics among 

males were evaluated using Duncan’s new multiple range test.  Results were considered 

significant at P < 0.05.   

 

4.4 Results 

Inhibition of Oxidative Phosphorylation 

Consistent with our previous findings [21], rates of sperm lactate production (∆ L) were 

correlated positively (P < 0.0001) to percentage sperm motility (% M; r = 0.49), forward 

progression (FPS; r = 0.42), and acrosomal integrity (% IA; r = 0.36) across all samples.  To 

facilitate comparisons between the two species, data for all treatment groups were normalized to 

controls, with absolute values for control samples presented in Figure 4.1.  Compared to 

untreated controls (Fig. 4.1), domestic cat sperm from normospermic and teratospermic donors  
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were unaffected (P ≥ 0.05) for sperm %M, % IA, and ∆ L when exposed to 0.16 µM 

myxothiazol (Fig. 4.2A, C-D); there was a modest, but significant (~20%; P < 0.05) loss in FPS 

(Fig. 4.2B).  By contrast, there was an immediate and marked decline (P < 0.05) in cheetah 

sperm % M and FPS, with a ~50% reduction (P < 0.05) in % IA and ∆ L after 7 h of incubation 

(Fig. 4.2A-D).  This species-treatment interaction was highly significant (P < 0.0001) for % M, 

FPS, and % IA, but represented a trend (P = 0.08) for ∆ L.  There was no interaction (P ≥ 0.05) 

between domestic cat sperm phenotype (normospermic versus teratospermic) and myxothiazol 

treatment. 

Figure 4.1  Absolute values for percent motility (A), forward progression (B), acrosomal integrity (C), and 
lactate production (D) in normospermic cat (white bar; n = 6), teratospermic cat (lined bar; n = 6), and 
cheetah (gray bar; n = 8) control sperm samples.  Assessments at 0 h were made < 5 min after sperm 
washing and resuspension in cMTF medium.  Error bars illustrate least-squares means ± standard errors.. 
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Substantial decreases in % M, FPS, % IA, and ∆ L were only observed (P < 0.05) in 

domestic cat ejaculates exposed to the highest concentration (16 µM) of myxothiazol (Fig. 4.3A-

D).  These declines became more severe (P < 0.05) over time, with the exception of ∆ L (due to 

larger standard errors).  Absolute values for control samples in this treatment group (data not 

shown) were similar (P ≥ 0.05) to those from domestic cats in the previous treatment group (Fig. 

1). 

 

 

Figure 4.2  Percent motility (A), forward progression (B), acrosomal integrity (C), and lactate production 
(D) in normospermic cat (white bar; n = 6), teratospermic cat (lined bar; n = 6) and cheetah (gray bar; n = 8) 
sperm samples incubated with 0.16 µM myxothiazol.  Assessments at 0 h were made < 5 min after sperm 
washing and resuspension in cMTF with myxothiazol.  Data are expressed as percentages of control values 
(dashed line).  Within each time point and animal group, bars with an asterisk (*) differ from controls (P < 
0.05).  Error bars illustrate least-squares means ± standard errors. 
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Mitochondrial membrane potential and sperm morphometrics 

Sperm fluorescence after MitoTracker-staining (which is directly proportional to 

mitochondrial membrane potential, MMP) was substantially lower (P < 0.0001) in the cheetah 

compared to the normospermic and teratospermic domestic cat.  In contrast, sperm % M, FPS, 

and the percentage of structurally abnormal cells were similar (P ≥ 0.16) in cheetahs compared to 

normospermic and/or teratospermic cats (Fig. 4.4).  Fluorescence analysis of individual sperm 
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Myxothizol concentration: 160 nM 1.6 µM 16 µM

Figure 4.3  Percent motility (A), forward progression (B), acrosomal integrity (C), and lactate production 
(D) in domestic cat sperm samples (n = 4) incubated with increasing concentrations of myxothiazol to inhibit 
mitochondrial function.  Assessments at 0 h were made < 5 min after resuspending centrifuged sperm in 
cMTF medium with myxothiazol.  Data are expressed as percentages of control values (dashed line).  Within 
each time point, bars with an asterisk (*) differ from controls (P < 0.05).  Error bars illustrate least-squares 
means ± standard errors. 
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morphotypes determined that the 

influence of cellular structure on MMP 

was consistent among normospermic cats 

(Fig. 4.5A), teratospermic cats (Fig. 

4.5B), and cheetahs (Fig. 4.5C).  

Specifically, in both species, the 

presence of a retained cytoplasmic droplet 

at the midpiece was associated with a 3- to 

5-fold increase (P < 0.05) in MMP 

compared to structurally normal 

spermatozoa (Fig. 4.5 A-C).  Flagellar 

droplet and spermatid morphotypes demonstrated MMP values that were similar (P ≥ 0.20) to 

midpiece droplet morphotypes and, in the teratospermic cat and cheetah, also were similar (P ≥ 

0.20) to structurally normal cells.  Sperm MMP values in cells classified as ‘other’ were similar 

(P ≥ 0.20) to normal and/or midpiece droplet morphotypes, depending on the animal group, 

which was expected given the diversity of abnormalities within this category.  The use of the 

camera system to analyze MMP allowed determining that, although associated with increased 

fluorescence, retained sperm cytoplasm did not fluoresce in either species (Fig. 4.6 A-C). 

Based on earlier data from teratospermic men [7], we anticipated that reduced sperm MMP 

activity could be associated with a shorter sperm midpiece.  In contrast to this expectation, the 

midpiece was ~10% longer (P < 0.05) in the cheetah compared to the domestic cat spermatozoon 

(Table 4.1).  Other sperm dimensions were similar (P ≥ 0.14) between species (Table 4.1). 
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Figure 4.4  Sperm mitochondrial membrane potential (MMP) 
in normospermic cat (open bar; n = 2), teratospermic cat (lined 
bar; n = 3), and cheetah (shaded bar; n = 7) sperm samples in 
relation to percent motility (MOT), forward progressive status 
(FPS; scale, 0 – 5), and percent normal morphology (N).  To 
allow presenting metrics on a single scale, values were 
increased 10× for FPS and decreased 1,000× for MMP.  
Within each metric and among animal groups, bars with 
different superscripts differ (P < 0.05).  Error bars illustrate 
least-squares means ± standard errors. 
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Figure 4.5  Sperm mitochondrial membrane potential (MMP) in normospermic cat (A; n = 2), teratospermic 
cat (B; n = 3), and cheetah (C; n = 7) ejaculates in relation to cellular morphotype.  Note the difference in 
scale between the two graphs.  Among sperm morphotypes and within each species, bars with different 
superscripts differ (P < 0.05).  Error bars illustrate least-squares means ± standard errors. 
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Figure 4.6  Representative fluorescence (left column) and phase-contrast images (right 
column) (400×) of Mitotracker-stained normospermic cat (A), teratospermic cat (B), and 
cheetah spermatozoa (C). 

C. 

B. 
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Table 4.1.  Dimensions of domestic cat† and cheetah‡ spermatozoa.  Values represent least-squares means ±  
standard errors.  

Sperm Dimension (µm) Domestic Cat Cheetah 

Head length 4.54 ± 0.15 4.38 ± 0.15 

Head width 2.22 ± 0.10 2.36 ± 0.10 

Midpiece length 7.68 ± 0.13a  8.47 ± 0.13b 

Midpiece width 0.80 ± 0.01 0.79 ± 0.01 

Principal piece length 40.06 ± 0.76 40.12 ± 0.76 

Total length 52.29 ± 0.88 52.96 ± 0.88 
†n = 5 males (1 ejaculate per male).  
‡n = 7 males (1 ejaculate per male).   
a,bWithin rows, values with different superscripts differ (P < 0.05).  
 

 

4.5 Discussion 

This was the first study of oxidative metabolism in felid spermatozoa, and we made three 

significant discoveries.  First, oxidative metabolism was required to maintain sperm motility and 

viability in both the domestic cat and cheetah.  Thus, certain mechanisms of sperm energy 

production in felids appear similar to those in the boar [40] and human [2, 3], but are different 

from those in the mouse [16] and dog [41, 42] (referenced in [43]).  Second, fluorescence of 

MitoTracker-stained spermatozoa, an indicator of mitochondrial membrane potential (MMP), 

was markedly lower in the cheetah compared to both the normospermic and teratospermic 

domestic cat.  This species-specificity was not explained by a reduction in sperm midpiece 

length, which in the human is associated with fewer mitochondrial gyres, asthenospermia, and 

male infertility [7].  On the contrary, the midpiece of the cheetah spermatozoon actually was 

longer than that of the cat counterpart.  Finally, common sperm malformations were associated 

with elevated mitochondrial activity in both species, which may help explain why reproductive 
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physiologists have long been perplexed by the inability of certain traditional quality metrics (e.g., 

MMP, motility) to accurately predict sperm fertilizing ability [44]. 

An advantage of our research approach was the cross-species comparative assessment 

that allowed us to discover a 100-fold increased sensitivity to electron transport inhibition and 

evidence for a remarkably low MMP in the cheetah spermatozoon compared to the domestic cat.   

While fluorescence of MitoTracker-stained spermatozoa is directly proportional to MMP, it is 

important to note that this species difference also could be related to uncontrolled factors 

influencing the dye’s accumulation in the mitochondrion, such as the degree of binding to 

cellular structures, facilitated diffusion, or complex ion interactions [45].  However, given our 

standardization of MitoTracker and sperm concentrations, extended incubation time, use of the 

same cellular medium, and, particularly, the 20-fold magnitude of the MMP difference, we 

believe that this finding indicated that there was a functional difference in membrane potential 

between the species.  Combined with the relative sensitivity to OXPHOS inhibition, these 

observations provided evidence for mitochondrial dysfunction in cheetah spermatozoa.  This 

may well represent the mechanism underpinning the functional abnormalities observed in 

teratospermic felid ejaculates, including reduced sperm longevity in vitro [46], poor motility 

[47], disrupted protein tyrosine phosphorylation [25], delayed capacitation [26], compromised 

acrosomal function [26], and low IVF success [48].  Interestingly, however, sperm MMP and 

sensitivity to oxidative inhibition were similar between the normospermic and teratospermic 

domestic cat, even though sperm lactate production was previously found to be compromised in 

a large set of ejaculates from the latter group [21].  This observation may indicate that the 

assemblage of genes involved in teratospermia differs between the domestic cat and cheetah 

[49], a reasonable hypothesis given that the trait presumably arose in the former species after a 
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severe population contraction that occurred ~10,000 years ago [50], long after the evolutionary 

divergence from other felids ~6,000,000 years ago [51]. 

In contrast to our previous study [21], lactate production of control sperm samples was 

reduced by only 20% or less in teratospermic compared to normospermic domestic cats, a trend 

that was insignificant.  Although perhaps due to our overall smaller sample size in the present 

study, we suspect that this observation reflected physiological differences among the males used 

in the two investigations.  Substantial variation in sperm motility and longevity in vitro 

commonly occurs among teratospermic domestic cats, and it is likely that such variation is 

driven by differences in metabolic function and, ultimately, the genes causing this condition.  

Interestingly, analogous differences in ejaculate quality are commonly detected among 

teratospermic cheetahs, even though we have observed little variation in metabolic function 

within this genetically monomorphic species [21, 22]. 

It was noteworthy that, although sperm mitochondrial activity was ~95% lower in the 

cheetah compared to the domestic cat, cellular percent motility and forward progression were 

similar between species.  This may have indicated that lower sperm MMP in the cheetah was 

indeed ‘normal’ and not representing metabolic dysfunction.  If so, glycolytic metabolism could 

compensate for relatively low mitochondrial activity.  In this context, our previous finding that 

GAPDH inhibition causes less severe motility declines in cheetah versus cat spermatozoa [22] 

could be interpreted as evidence that the glycolytic pathway is comparatively more robust in 

cheetah ejaculates.  It also is possible that energy demand was reduced in cheetah compared to 

domestic cat spermatozoa, perhaps due to differences in the efficiency of microtubule sliding or 

ATP transport along the flagellum [52].  However, we suspect that the most likely explanation 

for similar sperm motility traits between species was that the low MMP of cheetah spermatozoa 
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was just above the threshold required to support sperm function, and that the rapid losses in 

motility commonly observed in these ejaculates [21, 47, 53] resulted from unsustainable ATP 

consumption.  In this case, our previous observations of reduced sensitivity of cheetah ejaculates 

to glycolytic inhibition [22] could indicate that this pathway is simply less active in the cells of 

this species. 

While determining that the low MMP in cheetah spermatozoa was unrelated to midpiece 

length, we also had the opportunity to compare other cellular dimensions.  Such data are rare for 

wild felids, although we discovered that the cheetah spermatozoon had a shorter and narrower 

(~30%) head than a previous report for the tiger (Panthera tigris) [54], and a shorter (~30%) 

midpiece than for the leopard (Panthera pardus) [55], both of which are considered 

normospermic species.  No doubt the size metrics of the cheetah spermatozoon more closely 

resembled those of the domestic cat because these species are more genetically similar compared 

to the tiger or leopard [51]. 

Also related to sperm morphology was its interesting link to MMP, an association that 

was remarkably consistent between the two species.  A spermatozoon with retained cytoplasm is 

a common pleiomorphism in the cat [18, 21] and cheetah [21, 28] as well as certain other 

species/populations that experience teratospermia [46, 56-67].  We discovered in the present 

study that this malformation was associated with substantially increased MMP.  To a lesser, but 

nonsignificant extent, increased MMP also was observed in spermatozoa with retained cytoplasm 

in the flagellar region, suggesting that the proximity of the droplet to the midpiece influenced its 

ultimate impact on MMP.  The relationship between a retained droplet and enhanced 

mitochondrial function was unexpected because in human, mouse, stallion, and boar, this 

residual cytoplasm is rich in lysosomal enzymes (e.g., 15-lipoxygenase;15-LOX) that degrade 
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organelles, including mitochondria via phospholipid peroxidation [68, 69].  We have identified 

three possible mechanisms by which retained cytoplasm could confer increased MMP, the first 

being that there simply could be functional mitochondria in the residual droplet that causes the 

fluorescence.  Although such sperm cytoplasm in mammals generally does not contain 

mitochondria [43, 68], a recent study documented intact mitochondria embedded in the retained 

cytoplasm of sperm from Alox15 knock-out mice lacking the 15-LOX enzyme [58].  This 

possibility was unlikely in our current study because cytoplasmic droplets did not fluoresce after 

MMP staining, indicating an absence of functional mitochondria.  Another alternative is that the 

retained droplets may be a source of metabolic substrates.  For example, in the bull [70], ram 

[70], boar [71], rabbit [70], rat [72], and hamster [73], the droplet contains an abundance of 

membranous elements, which may be remnants of Golgi bodies or the endoplasmic reticulum, 

and could provide substantial energy in the form of lipid [68].  A final option is that the 

preserved cytoplasm may contain factors that increase metabolic efficiency by directly 

stimulating mitochondrial activity or increasing the availability of existing substrates [74].  For 

example, glycolytic enzyme activity in free-lying (i.e., unattached to a spermatozoon) 

cytoplasmic droplets from bull, ram, and boar ejaculates can be up to 5-fold higher than in the 

spermatozoon itself [74].  If felid spermatozoa containing cytoplasmic droplets are enriched in 

enzymes involved in lipid/glycerol metabolism, a higher concentration of oxidative substrate 

may be available to the mitochondrion.  Because the current study provides compelling evidence 

that oxidative metabolism plays a key role in felid sperm motility, we predict that the link 

between cytoplasmic droplets and increased MMP is related to the increased abundance or 

availability of lipid as a mitochondrial substrate. 
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Our observation of an association between a retained cytoplasmic droplet and increased 

MMP likely would confound mitochondrial-based estimates of sperm quality, as there is strong 

evidence that mammalian sperm function is compromised by residual cytoplasm [48, 75-80].  

Although normally shed soon after ejaculation [81], retained droplets are known to reduce 

plasma membrane integrity [78], disrupt nuclear maturation [82], and decrease IVF success [78] 

in humans.  Cytoplasmic retention also reduces sperm-ovum interaction in vitro in the mouse 

[79] and appears to perturb capacitation in the dog [80].  Domestic cat spermatozoa with retained 

cytoplasm fail to penetrate the oocyte’s inner zona pellucida and, therefore, are incapable of 

fertilization [48].  While felid spermatozoa with retained cytoplasm may demonstrate high MMP 

soon after ejaculation, these values could quickly decrease as lysosomal enzymes assault 

mitochondrial and plasma membranes, resulting in the rapid loss of viability.  We suspect that 

this scenario may occur in many felid species because residual cytoplasm is a highly common 

anomaly in the Felidae taxon.  Prevalence can range from ~10% to ~70% of ejaculated 

spermatozoa in the domestic cat  [21], cheetah [21, 28], puma (Puma concolor) [60], leopard cat 

(Prionailurus bengalensis) [61], clouded leopard  [62, 63], snow leopard (Panthera uncia) [64], 

Iberian lynx (Lynx pardinus) [65], fishing cat (Prionailurus viverrinus) [46], and sand cat (Felis 

margarita) [66].  Although several genes have been linked to cytoplasmic droplet retention using 

mouse knockout models [43, 57, 83], spermatozoa from these individuals commonly have other 

structural abnormalities (e.g., a hairpin bend in the neck or flagellum) that are rarely observed in 

felids [21, 28, 46, 60-66].  It is unlikely that the 15-LOX gene is being disrupted in the cat or 

cheetah, because we observed no functional mitochondria in spermatozoa with retained droplets.  

Thus, we suspect that there remains a yet-to-be-determined genetic mechanism(s) by which 

sperm cytoplasmic droplet migration can become compromised in felids. 
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In conclusion, the results of this study demonstrated the value of a comparative approach 

to understanding sperm metabolic mechanisms related to distinctive species physiology versus 

teratospermia.  Oxidative phosphorylation appears to be a critical pathway for supporting sperm 

motility in felids, yet the cheetah spermatozoon may operate at or below the minimum threshold 

of aerobic metabolism required to maintain cellular function.  We predict that identifying sperm 

metabolic deficiencies that are driven by species-specific mechanisms or related to teratospermia 

will be the first step to developing effective strategies for mitigation.  Given the remarkable 

differences in gamete physiology observed between these two closely-related taxa (domestic cat 

and cheetah), it is clear that improving the success of assisted reproduction will require methods 

tailored to the unique physiology of the target species.  By understanding and addressing sperm 

physiological disruptions at the fundamental level of energy production, we may be able to 

simultaneously overcome multiple functional deficiencies (e.g., poor motility, delayed 

capacitation) that arise from a common metabolic defect.  This basic knowledge will provide a 

valuable foundation for future studies on the importance of sperm metabolism and teratospermia, 

with broad interest and, importantly, application to preserving fertility in humans and an array of 

domestic and wildlife species [84, 85]. 
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CHAPTER 5: DIFFERENT PATTERNS OF METABOLIC CRYO-DAMAGE IN 
DOMESTIC CAT (FELIS CATUS) AND CHEETAH (ACINONYX JUBATUS) 

SPERMATOZOA 
 

5.1 Abstract 

Felid spermatozoa are sensitive to cryopreservation-induced damage, but functional 

losses can be mitigated by post-thaw swim-up or density gradient processing methods that 

selectively recover motile or structurally normal spermatozoa, respectively.  Despite the 

importance of sperm energy production to achieving fertilization, there is little knowledge about 

the influence of cryopreservation or post-thaw processing on felid sperm metabolism.  We 

conducted a comparative study of domestic cat and cheetah sperm metabolism after 

cryopreservation and post-thaw processing.  We hypothesized that freezing/thawing impairs 

sperm metabolism and that swim-up, but not density gradient centrifugation, recovers 

metabolically-normal spermatozoa.  Ejaculates were cryopreserved, thawed, and processed by 

swim-up, Accudenz gradient centrifugation, or conventional washing (representing the 

‘control’).  Sperm glucose and pyruvate uptake, lactate production, motility, and acrosomal 

integrity were assessed.  Mitochondrial membrane potential (MMP) was measured in cat 

spermatozoa.  In both species, lactate production, motility, and acrosomal integrity were reduced 

in post-thaw, washed samples compared to freshly-collected ejaculates.  Glucose uptake was 

minimal pre- and post-cryopreservation, whereas pyruvate uptake was similar between 

treatments, due to variation in the data.  In the cat, swim-up, but not Accudenz processing, 

recovered spermatozoa with increased lactate production, pyruvate uptake, and motility 

compared to controls.  Although confounded by differences in non-specific fluorescence among 

processing methods, MMP within treatments was positively correlated to sperm motility and 

acrosomal integrity.  Cheetah spermatozoa isolated by either selection method exhibited 
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improved motility and/or acrosomal integrity, but remained metabolically compromised.  

Collectively, findings revealed a metabolically-robust subpopulation of cryopreserved cat, but 

not cheetah, spermatozoa, recovered by selecting for motility rather than morphology. 

 

5.2 Introduction 

Despite extensive research to optimize sperm cryopreservation protocols for the domestic 

cat [1] and various wild felids [2], freezing/thawing causes significant damage to these cells [3-

6].  The degree of cryo-injury is particularly severe in the cheetah and other species that produce 

teratospermic ejaculates (i.e., those containing high proportions of sperm pleiomorphisms) [7-

12].  In such cases, thawed spermatozoa consistently exhibit reduced motility and decreased 

proportions of cells with intact acrosomes [3-12].  This cellular damage is linked to disruption of 

sperm membranes from osmotic stress during feezing, thawing, and/or cryoprotectant removal 

[9, 13, 14].  It also is possible that the physiological stress experienced by spermatozoa during 

cryopreservation disrupts cellular metabolism.  For example, one recent investigation of 

epididymal spermatozoa from the domestic cat determined that mitochondrial membrane 

potential (MMP) declined rapidly after cryopreservation and post-thaw washing [15].  Sperm 

MMP also is impaired in frozen-thawed ejaculates from the human [16], boar [17], ram [18], 

stallion [19], bull [20], and elephant [21].  Such published observations reinforce the need to 

explore the impact of cryopreservation on metabolic function of felid spermatozoa.  Our recent 

studies of the domestic cat and cheetah have provided an understanding of baseline sperm 

metabolism in felids and have revealed intriguing species differences in metabolic function [22-

24].  In both species, sperm glucose metabolism was minimal, while rates of pyruvate uptake and 

lactate production were correlated positively to cellular function [22].  Sperm MMP was 
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essential for lactate production [24], and these metabolic indicators were substantially reduced in 

cheetah compared to domestic cat ejaculates [22, 24]. 

Although being a potential source of osmotic stress, post-thaw removal of sperm 

cryoprotectant [25] provides an opportunity to isolate functionally-normal spermatozoa.  For 

example, sperm ‘swim-up’ into fresh medium increases the proportions of motile, structurally 

intact cells in cat ejaculates [26, 27] and improves sperm morphology in cryopreserved cheetah 

samples [28].  Evidence in other mammals indicates that, in addition to improved motility and/or 

morphology, spermatozoa isolated by selective processing also exhibit high metabolic rates.  In 

the ram, density gradient processing of thawed ejaculates improves sperm MMP [18], whereas 

swim-up processing has the same influence on bull sperm [20] and increases oxygen 

consumption by ~20-fold in freshly-ejaculated human semen [29].  While either approach could 

enhance metabolic function in thawed felid ejaculates, swim-up processing (targeting vigorous, 

motile cells with high rates of ATP production) [30-32] might be expected to recover the most 

metabolically-robust spermatozoa.  By contrast, density gradient processing (targeting cells with 

normal morphology) may be less effective, because it is known that metabolism can be impaired 

in structurally normal cheetah spermatozoa [22]. 

Our general aim was to determine the impact of cryopreservation and post-thaw 

processing on the metabolic function of felid spermatozoa.  This novel approach compared two 

species (domestic cat and cheetah) for which baseline patterns of sperm metabolism are well-

characterized [22, 23].  Because felid sperm metabolism is influenced both by teratospermia [22] 

and species physiology [22-24], domestic cats producing low proportions of structurally normal 

spermatozoa were included for comparison with the teratospermic cheetah.  To assess the 

influence of cellular function versus morphology, metabolism was assessed in thawed 
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spermatozoa selected on the basis of motility (swim-up) or normal morphology (density 

gradient).  We hypothesized that the metabolism of cat and cheetah spermatozoa, specifically 

rates of pyruvate and lactate utilization, would be impaired by cryopreservation.  Considering the 

known differences in cryo-sensitivity and baseline metabolism in spermatozoa from these 

species, we expected sperm metabolic cryo-damage to be more severe in the cheetah compared 

to the domestic cat.  We also predicted that a subpopulation of thawed spermatozoa in each 

species would exhibit robust metabolic function (similar to baseline values) and would be 

recovered more effectively by isolating motile rather than normal-appearing cells. 

 

5.3 Materials and Methods 

5.3.1 Animals 

All animal procedures were approved by the National Zoological Park’s Animal Care and 

Use Committee (ACUC) and similar committees of the WOCC and the SDZSP.  

Electroejaculates were collected from domestic cats and cheetahs using methods described 

below.  For the former, a total of 16 semen samples was recovered from five adult males (ages, 

1.5 – 8 yr) that were known to consistently produce either normospermic or teratospermic 

ejaculates [22-24].  Teratospermia has been described previously in felids and is defined as the 

ejaculation of < 40% structurally normal spermatozoa [33].  Three normospermic cats were used 

to produce five ejaculates (1 – 2 per individual) and two teratospermic males produced five 

samples (2 – 3 per individual).  Three additional ejaculates were collected from one male in each 

group for the optimization of Accudenz density gradients (described below).  The management 

protocol for domestic cats maintained at the Smithsonian Conservation Biology Institute (SCBI; 

Front Royal, VA) has been described in detail [22]. 
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Electroejaculates (1 per individual) were collected from eleven adult cheetahs (ages, 2.5 – 

10 yr).  These animals were managed at the Cheetah Conservation Fund (CCF; Otjiwarongo, 

Namibia; n = 9), White Oak Conservation Center (WOCC; Yulee, FL; n = 1), or the San Diego 

Zoo Safari Park (SDZSP; Escondido, CA; n = 1).  Males at CCF and the WOCC were wild 

caught and captive born, respectively, and maintained under previously described protocols [22, 

28].  The male at SDZSP was captive born and managed with two male siblings off exhibit in a 

1,300-m2 outdoor enclosure and fed a commercial carnivore diet (Natural Balance Pet Foods 

Inc., Pacoima, CA).  

 

5.3.2 Semen Collection  

 A surgical plane of anesthesia was induced in domestic cats and cheetahs according to 

protocols determined by institutional veterinarians for these species [28, 34].  Semen was 

collected using a rectal probe of 1 cm (domestic cat) or 1.9 cm (cheetah) in diameter and an 

electrostimulator (P.T. Electronics, Boring, OR) as described previously [22, 35].  A sample of 

raw semen containing ~2 × 105 spermatozoa was fixed in 0.3% glutaraldehyde in phosphate-

buffered saline for assessment of sperm morphology according to previous descriptions for our 

laboratory [9, 22, 35].   

 

5.3.3 Sperm Processing and Metabolic Assessments 

Each ejaculate was diluted immediately with an equal volume of a chemically-defined, 

protein-free, modified mouse tubal fluid medium (cMTF) [36] supplemented with 2% polyvinyl 

alcohol (PVA) [37].  The cMTF medium was prepared as described previously [22] and 

contained 98.4 mM NaCl, 4.78 mM KCl, 1.19 mM MgSO4, 1.19 mM KH2PO4, 25 mM 
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NaHCO3, 1.71 mM CaCl2, 1 mM glucose, 1 mM Na-pyruvate, 25 mM 3-(N-morpholino) 

propanesulfonic acid (MOPS) buffer and 0.02 mg/mL phenol red.  Sperm concentration was 

determined using a Nucleocounter SP-100 (Chemometec, Allerød, Denmark) [38].  Osmolality 

of the final cMTF medium (300 – 345 mOsm) was determined using a vapor pressure osmometer 

(Wescor, Inc, Logan, UT) and was within 10% of the physiological value of domestic cat semen 

(323 mOsm). 

A sample containing ~3 × 106 motile spermatozoa was removed from each diluted 

ejaculate, washed by centrifugation for 8 min (× 300 g for domestic cat; × 100 g for cheetah), 

resuspended in fresh cMTF, and then incubated (37oC) in the dark in a microcentrifuge tube (3 × 

106 motile sperm/ml) under oil to prevent evaporation, as described previously [22].  

Assessments of sperm percentage motility (% M), forward progression (FPS), and acrosomal 

integrity were made at 0, 1, 3, 5, and 7 h of incubation.  However, the low percentages of 

spermatozoa recovered in samples processed by swim-up or gradient centrifugation (see below) 

precluded sampling at more than three time points.  Therefore, data obtained at 1 and 5 h were 

omitted from analysis.  Motility was assessed visually (200 ×), and FPS was rated on a 0 to 5 

scale, with a rating of 5 equivalent to most rapid, linear progress [35].  A sperm motility index 

was calculated using the formula (% M + [FPS × 20] ÷ 2) [27].  Spermatozoa (~2 × 105 cells) 

were fixed in 4% paraformaldehyde and stained with Coomassie Blue G-250 (Fisher Biotech, 

Springfield, NJ) to evaluate acrosomal integrity, as described previously [7, 39].   

Glucose and pyruvate uptake and lactate production also were assessed at each time point, and 

metabolic rates were calculated from substrate concentrations at 0, 3, and 7 h of incubation.  To 

determine metabolic substrate concentrations, medium samples (110 µl) were centrifuged for 8 

min (× 1,000 g) through a CoStar Spin-X 0.22-µm nylon filter tube (Corning Incorporated, 
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Corning, NY) and stored at –80oC until analysis using a HK/G6PDH (glucose), or LDH 

(pyruvate and lactate) fluorescence assay, as described previously [22, 40].  Rates of substrate 

utilization were calculated as the change in medium substrate concentration over time, divided 

by sperm concentration. 

 

5.3.4 Sperm Cryopreservation 

 After removing a sperm sample for metabolic assessment, the remainder of each diluted 

ejaculate was cryopreserved in 4% glycerol as described previously [7, 28].  Briefly, each diluted 

ejaculate was centrifuged for 8 min (× 300 g domestic cat; × 100 g cheetah), resuspended in 

TEST-yolk buffer (TYB) refrigeration medium without glycerol (Irvine Scientific, Santa Ana, 

CA), and cooled slowly (~3.5 h) in a water bath from ambient temperature (19 – 22oC) to 4oC.  

After cooling, an equal volume of TYB containing 8% glycerol (prepared as a 1:2 mixture of 

refrigeration medium and TYB with 12% glycerol; Irvine Scientific) was added in a step-wise 

manner over 30 min (¼ volume at 0 min, ¼ volume at 15 min, and ½ volume at 30 min).  

Samples were loaded into 0.25-ml plastic straws (Veterinary Concepts, Spring Valley, WI) with 

a final sperm concentration of ~60 × 106 motile spermatozoa/ml, frozen in liquid nitrogen vapor 

(1 min at ~7.5 cm and 1 min at ~2.5 cm above liquid nitrogen), and then plunged directly into 

liquid nitrogen.  Samples were stored in liquid nitrogen until thawing (2 days to 30 mo).  

 

5.3.5 Comparison of Post-Thaw Processing Methods 

 Cryopreserved straws were thawed individually for 10 sec in air (19 – 22oC) followed by 

immersion in a 37°C water bath for 30 sec [7, 28].  Each straw was dried, and its contents 

emptied into a sterile microcentrifuge tube.  After thorough mixing, sperm motility, acrosomal 
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integrity, and morphology were assessed as described above.  Each sample was divided among 

three processing treatments: 1) wash; 2) swim-up; and 3) Accudenz density gradient.  For wash 

and swim-up treatments, 100 µl of the thawed sample was diluted to 1 ml by the slow, drop-wise 

addition of cMTF medium [28].  Each washed sample was centrifuged for 8 min (× 100 g), the 

supernatant removed, and the pellet resuspended in 500 µl of cMTF medium.  Each swim-up 

sample was centrifuged as above, the supernatant removed, and the sperm pellet gently overlaid 

with 100 µl of cMTF medium.  These samples were maintained at ambient temperature for 45 

min in the dark to allow motile spermatozoa to enter the supernatant.  The top 90 µl of 

supernatant was removed and diluted to 500 µl in fresh cMTF.   

For the Accudenz treatment, 100 µl of thawed sperm solution was gently layered on top 

of a 4% to 10% (wt/vol) discontinuous density gradient in cMTF (except for domestic cat 

samples, described below) [28].  The Accudenz gradient was created by layering 100 µl of 10% 

solution underneath 500 µl of 4% solution in a microcentrifuge tube.  After adding the sperm 

sample, each gradient was centrifuged for 8 min (× 100 g).  The entire suspension formed three 

distinct layers after centrifugation: 1) the top layer (predominantly composed of TYB); 2) the 

interphase layer containing motile spermatozoa (except for domestic cat samples, described 

below); and 3) the bottom layer containing non-motile cells.  The interphase (~80 µl) was 

removed and diluted to 500 µl.  To recover sufficient Accudenz and swim-up processed 

spermatozoa for metabolic assessments, treatments were replicated in separate microcentrifuge 

tubes (3 – 5 replicates/treatment for each thawed ejaculate, depending on the ejaculate volume 

available) and combined before determining sperm concentration.  For each processing 

treatment, the combined sample was diluted to a standard concentration (3 x 106 motile 

spermatozoa/ml), and final volumes ranged from 0.5 ml to 1.4 ml.  Processed samples were 
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incubated (37°C) and motility, forward progression, acrosomal integrity, and metabolic rates 

were evaluated at 0, 3, and 7 h, as described above.  A volume of sample (containing ~2 × 105 

cells) was removed at the start of incubation for assessment of sperm morphology, as described 

above. 

 Sperm mitochondrial membrane potential (MMP) of domestic cat samples was evaluated 

immediately post-thaw and after processing at 0, 3, and 7 h of incubation.  Cheetah sperm MMP 

was not assessed because too few spermatozoa were recovered from swim-up and Accudenz 

treatments.  Additionally, a recent study from our laboratory demonstrated that MMP values of 

fresh cheetah ejaculate are extremely low [24], suggesting that it would be impossible to detect 

differences among post-thaw treatments for this species.  At each time point, 48 µl of domestic 

cat sperm suspension were removed, combined with 2 µl of 12.5 nM MitoTracker® Red 

CMXRos (Molecular Probes, Inc., Eugene, OR) in cMTF (0.5 nM final concentration), and 

incubated (1 h at ambient temperature) in the dark.  To quantify MMP, 100 spermatozoa per 

ejaculate were individually analyzed (400 ×) using a BX40 fluorescence microscope (Olympus 

America Inc., Center Valley, PA; 555 nm excitation) and a Sensicam qe high performance 

camera (Cooke Corp., Romulus, MI) and IP Lab v4.04 software (BD Biosciences, Rockville, 

MD).  Sperm with MMP values below the background fluorescence threshold were considered to 

have non-functional mitochondria.  The presence of sperm structural abnormalities in MMP 

samples was recorded as described previously [24], with each spermatozoon classified as being 

one of the following five morphotypes: structurally normal, midpiece droplet, flagellar droplet, 

spermatid, and ‘other.’  The ‘other’ category included less common abnormalities (head 

deformities, malformation of the midpiece or flagellum) that collectively represented ≤ 10% of 

sperm in each species.    
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5.3.6 Accudenz Gradient Optimization for Domestic Cat Spermatozoa 

 Initial attempts to process domestic cat samples by Accudenz density gradient 

centrifugation resulted in very low sperm recovery (< 5%), compared to percentages of cheetah 

spermatozoa recovered by the same method in this study and previously (~25%) [28].  This 

double layer gradient (4% – 10%) centrifugation for 8 min (× 300 g) method resulted in a high 

concentration of motile spermatozoa in the pellet, suggesting that the density of the medium was 

below that needed to localize these cells in the target interphase layer.  Therefore, we tested the 

efficacy of a triple layer gradient (4% – 10% – 30%) and reduced centrifugation speed (100 g).  

This higher concentration was chosen because a 12% to 30% discontinuous Accudenz gradient 

has been successfully used to recover motile spermatozoa in the chicken, with the cells isolated 

from the interface between the two layers [41, 42].  Cryopreserved sperm samples from two 

domestic cats (one normospermic, the other teratospermic, n = 3 ejaculates per male) were 

thawed as above.  Each thawed sample was mixed thoroughly, and the total volume (90 – 150 µl) 

was divided equally among three centrifugation treatments: 1) double gradient at 300 g; 2) triple 

gradient at 300 g; and 3) triple gradient at 100 g.  Double gradients were prepared as described 

above.  Triple gradients were prepared using 200 µl each of 4%, 10%, and 30% (wt/vol) 

Accudenz in cMTF.  The solutions were added to the microcentrifuge tube in order of increasing 

density, with each new layer added underneath the previous.  After centrifugation, each layer 

was transferred to a new tube (in the order of interphase, top, and bottom layer) and assessed for 

sperm motility index and percent recovery.  Sperm morphology and acrosomal integrity also 

were evaluated in the interphase layer.  The interphase was considered to be the volume at the 

interface of the 4% and 10% solutions for the double gradient or the 10% and 30% solutions for 

the triple gradient. 
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5.3.7 Chemicals 

All reagents were purchased from Sigma Aldrich (St. Louis, MO) except enzymes (LDH, 

GPT, HK, and G6PDH) that were obtained from Roche Applied Science (Indianapolis, IN) and 

Accudenz, which was from Accurate Chemical and Scientific Corporation (Westbury, NY).    

 

5.3.8 Statistical Analyses 

Data were analyzed with statistical analysis software (SAS) version 9.1 (SAS Institute, 

Cary, NC), and percentage data were arcsine-transformed before evaluation.  Within species, the 

influence of post-thaw processing method was assessed at each time point using a General Linear 

Model (GLM) [43], with sperm motility index, acrosomal integrity, metabolic rates, percent 

normal morphology (0 h only), mean MMP (domestic cat only), and mean percent non-

functional mitochondria (domestic cat only) included as response variables.  Differences in 

MMP (0 h only) among sperm morphotypes were assessed using a GLM with data for all 

processing treatments combined.  Accudenz gradient optimization data were analyzed using a 

separate GLM for each gradient layer (top, interphase, and bottom).  Gradient type and male 

were considered class variables, and sperm percent recovery, motility index, acrosomal integrity 

(interphase only), and morphology (interphase only) were included as response variables.  When 

treatment effects were significant, differences among means were evaluated using Duncan’s 

Multiple Range Test.  Pearson’s correlation was used to evaluate the relationships among sperm 

motility index, acrosomal integrity, and metabolic metrics.  Results were considered significant 

at P < 0.05. 
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5.4 Results 

5.4.1 Accudenz Density Gradient Optimization for Domestic Cat Spermatozoa 

 Motile spermatozoa were recovered from all layers of each gradient.  However, most (≥ 

73%) of these cells in the gradients centrifuged at 300 × g were isolated from the pellet-

containing bottom layer (Table 5.1).  Compared to these treatments, the percentage of 

spermatozoa recovered from the target interphase layer of the 100 × g triple gradient was 

increased (P < 0.05) ~3 to 20-fold (Table 5.1).  Reduced centrifugation speed also was associated 

with a ~50% improvement (P < 0.05) in sperm motility index (SMI) compared to the double 

gradient (Table 5.1).  Acrosomal integrity (% IA) and percentages of structurally normal sperm 

were not different (P > 0.05) among gradient treatments (Table 5.1).  Primary head abnormalities  

 
Table 5.1.  Characteristics of domestic cat* post-thaw sperm samples recovered from Accudenz density gradients.  
Values represent least-squares means ± standard errors.                

 Density gradient 
Parameter Double† Triple† Triple, low speed‡ 
Interphase (target layer)    

Sperm recovered (%) 4 ± 7a 24 ± 7a 70 ± 7b 

Sperm motility index 32 ± 5a 40 ± 5a,b 48 ± 4b 

Acrosomal integrity (%) 34 ± 6 43 ± 6 43 ± 6 

Normal sperm morphology (%)  54 ± 4 65 ± 4 52 ± 4 

Macro/microcephaly (%) 12 ± 1a 4 ± 1b 3 ± 1b 

Top layer     

Sperm recovered (%) 2 ± 4a 3 ± 4a 18 ± 4b 

Sperm motility index 35 ± 7 25 ± 7 39 ± 7 

Bottom layer and sperm pellet     

Sperm recovered (%) 94 ± 7a 73 ± 7a 12 ± 7b 

Sperm motility index 53 ± 5 42 ± 5 44 ± 5 
*n = 2 males, 3 ejaculates per male.  
†8 min at 300 g; ‡8 min at 100 g. 
a, bWithin rows, values with different superscripts differed (P < 0.05).  
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(i.e., macro/microcephaly) were more prevalent (P < 0.05) in the double versus either triple 

gradient (Table 5.1).  Other malformations did not differ (P < 0.05) among gradient treatments 

(data not shown).  There was no interaction (P > 0.05) between male and gradient treatment.   

 

5.4.2 Comparison of Post-Thaw Processing Methods  

Domestic Cat 

Cryopreservation and post-thaw washing of domestic cat spermatozoa resulted in 

decreased (~30 – 70%, P < 0.05) SMI, % IA, and lactate production (∆ L) compared to freshly-  
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Figure 5.1  Sperm motility index (A), acrosomal integrity (B), lactate production (c), and pyruvate uptake (D) in 
domestic cat ejaculates before cryopreservation (open bar) and after post-thaw processing by swim-up (lined bar), 
Accudenz (gray bar), or wash (black bar) method.  Within each time interval, bars with different superscripts 
differed (P < 0.05).  Error bars illustrate least-squares means ± standard errors. 
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collected ejaculates (Fig. 5.1A-C).  Although values of pyruvate uptake (∆ P) were lower in 

washed versus freshly-collected samples, this difference was non-significant (P > 0.05) due to 

large variation in the data (Fig. 5.1D).  Consistent with previous findings [22], sperm lactate 

production was correlated positively (P < 0.05) to SMI and % IA (Table 2), whereas glucose 

uptake (∆ G) was minimal and was not influenced (P > 0.05) by cryopreservation or post-thaw  

processing (Sup. Fig. 5.1A).  Swim-up processing recovered metabolically-robust cells with 

SMI, ∆ L, and ∆ P that were increased (P < 0.05) relative to washed samples and similar to (P > 

0.05) or greater than (P < 0.05) corresponding values for freshly collected ejaculates (Fig. 5.1A, 

C, & D).  There was no change (P > 0.05) in ∆ L and ∆ P of swim-up samples after 3 h, 

indicating that normal metabolic function was maintained for an extended time period (Fig. 5.1C 

& D).  Although swim-up processing increased (P < 0.05) % IA relative to washed samples, this 

improvement was not (P > 0.05) sustained after 0 h, and values remained substantially reduced 

(P < 0.05) compared to fresh ejaculates (Fig. 5.1B).  In contrast to spermatozoa isolated by 

swim-up, the subpopulation recovered by density gradient centrifugation experienced impaired  
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Figure 5.2  Sperm mitochondrial membrane potential (A) and percentages of cells with non-functional 
mitochondria (B) in domestic cat ejaculates after cryopreservation and post-thaw processing by swim-up (lined 
bar), Accudenz (gray bar), or wash (black bar) method.  Error bars illustrate least-squares means ± standard errors. 
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cellular function (SMI, % IA, ∆ L, and ∆ P) similar (P > 0.05) to washed samples (Fig. 5.1A-D).    

 Post-thaw processing did not 

influence (P > 0.05) sperm MMP or the 

percentage of cells with non-functional 

mitochondria (% NFM) (Fig. 5.2A & B).  

This likely was because of substantial 

variation within the data set due, at least in 

part, to an increase in non-specific 

fluorescence of spermatozoa in washed and 

Accudenz treatments relative to swim-up 

samples (Sup. Fig. 5.2A-C).  We suspected 

that non-specific fluorescence was related to 

the amount of cryopreservation buffer (TYB) carryover, which likely was minimal in swim-up 

samples.  We also observed high percentages (85 – 100%) of spermatozoa with non-fluorescent 

mitochondria immediately post-thaw (data not shown), suggesting that high concentrations of 

TYB inhibited MitoTracker® staining.   

 When data from all sperm treatments were combined, both MMP and % NFM were 

correlated (positively and negatively, respectively; P < 0.05) to sperm motility and acrosomal 

integrity, although the relationship between MMP and motility represented a trend (P = 0.07; 

Table 5.2).  Compared to sperm lactate production, MMP and % NFM were less accurate 

predictors of motility and acrosomal integrity (Table 5.2), likely due to the confounding 

influence of non-specific fluorescence after MitoTracker® staining.  Sperm MMP and % NFM 
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Figure 5.3  Sperm mitochondrial membrane potential 
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post-thaw processing treatments combined.  Among 
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were better correlated to motility and acrosomal integrity when treatment groups were analyzed 

individually (Table 5.3), although certain relationships became non-significant due to the smaller 

sample sizes.  Finally, consistent with previous findings in freshly collected cat and cheetah 

ejaculates [24], MMP was greater (P < 0.05) in spermatozoa with a retained cytoplasmic droplet 

at the midpiece or flagellum compared to other cellular morphotypes (Fig. 5.3).   

 

Table 5.2.  Correlation coefficient (r) values for metabolic indicators versus domestic cat† or cheetah‡ 
sperm quality metrics after cryopreservation. 

Metabolic indicator Sperm motility index Intact acrosomes (%) 
Domestic cat   

Lactate production (nmol/106sperm/h) 0.54c 0.55c 

Mitochondrial membrane potential 0.25a -0.28b 

Non-functional mitochondria (%) 0.33b -0.27b 

Cheetah   

Lactate production (nmol/106sperm/h) 0.41c 0.25b 
†n = 5 males, 10 total ejaculates; ‡n = 11 males, 11 total ejaculates. 
a P = 0.07; b P < 0.05; c P < 0.0001. 

 
Table 5.3.  Correlation coefficient (r) values for mitochondrial function versus domestic cat† sperm quality. 

 Mitochondrial membrane potential Non-functional mitochondria (%) 
Treatment SMI % IA SMI % IA 

Wash NS 0.56a NS -0.60a 

Swim-up 0.63a 0.48a -0.63a -0.47a 

Accudenz 0.59a 0.44b -0.51a NS 
†n = 5 males, 10 total ejaculates.   
NS = not significant (P > 0.05). 
a P < 0.05; b P = 0.07. 

 

Cheetah 

The influence of cryopreservation and post-thaw washing on cheetah spermatozoa was 

consistent with results for the domestic cat.  Sperm SMI, % IA, and ∆ L in washed samples was 
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markedly reduced (~30 – 70%, P < 0.05) compared to freshly-collected ejaculates (Fig. 5.4A-C), 

and, although ∆ P also was decreased, this difference was non-significant due to data variation  

(P > 0.05; Fig. 5.4D).  Similar to results for cat spermatozoa, cheetah sperm ∆ G was minimal 

before and after cryopreservation (Sup. Fig. 5.1B).  Selective processing by swim-up and 

Accudenz methods increased (P < 0.05) SMI compared to washed samples, but values remained 

decreased (P < 0.05) relative to fresh ejaculates, and this improvement was not maintained after 

3 h (Fig. 5.4A).  Similarly, Accudenz centrifugation improved (P < 0.05) % IA compared to 

washed samples, but after 3 h there were no differences (P > 0.05) among processing treatments  
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Figure 5.4  Sperm motility index (A), acrosomal integrity (B), lactate production (c), and pyruvate uptake 
(D) in cheetah ejaculates before cryopreservation (open bar) and after post-thaw processing by swim-up 
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(Fig. 5.4B).  Sperm ∆ L and ∆ P were similar (P > 0.05) among all three processing treatments 

(Fig. 5.4C & D).  Finally, ∆ L was correlated positively with SMI and % IA (Table 5.2). 

 

5.5 Discussion 

Our investigation of cellular metabolism in cryopreserved felid spermatozoa yielded four 

significant discoveries.  First, conventional cryopreservation protocols for felid spermatozoa not 

only impaired sperm motility and membrane integrity (as determined previously [7, 8]), but also 

disrupted pathways of cellular metabolism, as demonstrated by decreased rates of lactate 

production.  Second, despite an overall reduction in metabolic function of post-thaw ejaculates, a 

subpopulation of domestic cat spermatozoa appeared to be unaffected by cryopreservation, as 

indicated by high rates of pyruvate uptake and lactate production.  Third, in contrast to the 

domestic cat, cheetah spermatozoa were unable to sustain baseline metabolic profiles after 

thawing (despite using an identical cryopreservation protocol), indicating species-specificity in 

metabolic cryo-sensitivity.  Perhaps the mechanistic basis of this finding is related to the more 

overt deficits of spermatozoa from this genetically impoverished species [44-46].  Finally, we 

determined that it was possible to isolate the most metabolically-robust domestic cat 

spermatozoa post-thaw by targeting motile rather than structurally normal cells.  Given the link 

between sperm metabolism and cellular function [22-24], we predict that this subpopulation of 

thawed cells has the greatest chance of achieving fertilization. 

Although the extent of injury was different between domestic cat and cheetah 

spermatozoa, our observations revealed that both species routinely experience sperm metabolic 

cryo-damage.  Therefore, felids appear to be similar to other mammalian species, including in 

the human [16], boar [17], ram [18], stallion [19], bull [20], and elephant [21], that produce 
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ejaculates exhibiting impaired post-thaw metabolism.  The exact origin of this disruption remains 

to be elucidated.  However, it was important to consider that cryopreservation-induced stress to 

plasma membranes could cause leakage of sperm glycolytic enzymes [47].  Therefore, we 

postulated that sperm metabolic rates (measured by changes in medium glucose, pyruvate, and 

lactate concentrations) might falsely appear to be increased post-thawing due to greater activity 

of enzymes released into the medium.  Cytoplasmic droplets (a common abnormality in cat and 

cheetah spermatozoa [22, 46]) are particularly susceptible to post-thaw LDH leakage [47], and 

this could confound the use of lactate production as an indicator of cellular quality in thawed 

ejaculate.  Nonetheless, there was no evidence of glycolytic enzyme leakage from cat or cheetah 

spermatozoa.  On the contrary, rates of pyruvate and lactate metabolism were reduced (non-

significantly in the case of pyruvate), and glucose uptake remained minimal post-thaw.  

Furthermore, rates of lactate production were correlated positively to sperm motility, acrosomal 

integrity, and MMP.  This finding provides strong support of our previous studies [22-24] and 

indicates that lactate production is a reliable metric of sperm function in both the domestic cat 

and cheetah. 

Although rates of lactate production revealed metabolic cryo-damage in both the 

domestic cat and cheetah, we also identified an important species difference in the extent of 

cellular injury.  Unlike the domestic cat, metabolic function in cheetah spermatozoa was 

uniformly impaired by cryopreservation and not improved by selective processing via swim-up 

or density gradient centrifugation.  Therefore, future efforts to improve the post-thaw function of 

cheetah spermatozoa should focus on preventing damage to the freshly-collected cells, perhaps 

by testing alternative cryoprotectants (e.g., non-permeating sugars [48]) or preservation 

approaches (e.g., vitrification [49]).  Regardless, the revealed differences re-emphasize the value 
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of conducting cross-species comparisons, and, for felids, the importance of the domestic cat as a 

research model [8, 22-24, 27, 34, 50, 51].  Besides determining what reproductive mechanisms 

are conserved, this comparative approach can identify unique traits for a given species that 

eventually may permit large-scale, systematic cryo-banking of germplasm.  Because the present 

study demonstrated that a proportion of domestic cat spermatozoa survived cryopreservation 

with their metabolic machinery intact, this cellular subpopulation could be especially useful for 

future research studies designed to understand the key biological factors that contribute to sperm 

cryo-survival.  

The relatively high rates of substrate utilization in cat ejaculates processed by swim-up 

versus Accudenz centrifugation confirmed our suspicion that post-thaw sperm metabolic 

function was more closely linked to cellular motility than morphology.  Although impaired in 

teratospermic felids, sperm lactate production also is compromised in freshly-collected cheetah 

ejaculates that contain high proportions of structurally normal spermatozoa [22].  We have 

speculated [22] that disrupted metabolism could explain why even structurally normal 

spermatozoa from teratospermic ejaculates often are incapable of fertilization [26].  Furthermore, 

we previously discovered important differences in sperm glycolytic [23] and oxidative 

metabolism [24] between the cat and cheetah that were related to species physiology rather than 

sperm morphology.  For example, sperm MMP was ~95% lower in the cheetah compared to both 

normospermic and teratospermic domestic cats [24].  Based on these collective observations, it 

makes sense that metabolically-robust spermatozoa are recovered post-thaw by isolating cells on 

the basis of motility rather than structural integrity.  Furthermore, results of the present study 

suggested that structurally normal cells were as susceptible to metabolic cryo-damage as their 

abnormal counterparts.  However, because only structurally intact spermatozoa are capable of 
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achieving fertilization [26], cellular morphology remains an important consideration for 

optimizing post-thaw sperm fertilizing potential.  Indeed, it now appears that the most effective 

cryopreservation and processing protocols should yield post-thaw samples containing high 

proportions of structurally normal, motile, and metabolically-robust cells. 

 In conclusion, our findings confirmed that important differences existed in gamete 

physiology among felids and in the inherent ability of spermatozoa to retain metabolic function 

after cryopreservation.  In this case, cheetah spermatozoa, well known for a high incidence of 

structural pleiomorphisms [44, 46, 52, 53], was particularly susceptible to metabolic cryo-

damage.  In contrast, a proportion of domestic cat spermatozoa retained normal metabolism after 

thawing, and perhaps this cellular subpopulation can provide clues for improving sperm cryo-

survival in other species or populations with less vigorous ejaculate quality.  Finally, our results 

confirmed that sperm metabolism, specifically the rate of lactate production, was a reliable 

metric of cellular quality that can be applied to evaluate and enhance sperm cryo-survival. 
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CHAPTER 6: GENERAL DISCUSSION 
  

6.1 Metabolic Profiles of Cat and Cheetah Spermatozoa 

Teratospermia is an intriguing reproductive phenomenon common among felid species 

facing extinction risk [1], including the cheetah [2-4].  Although multiple energy-dependent 

processes are compromised in spermatozoa from teratospermic ejaculates [1], sperm cellular 

metabolism has not been previously investigated in wild felids.  Through comparative studies of 

the cheetah and domestic cat, this dissertation aimed to elucidate the mechanisms of felid sperm 

energy production, including the influences of species physiology, teratospermia, and sperm 

cryopreservation.  Access to biological samples from a rare species (i.e., the cheetah) required 

extensive collaboration with conservation institutions in the United States and in southern Africa.  

This collaborative approach was facilitated by access to the Smithsonian Conservation Biology 

Institute’s Mobile Research Laboratory and a novel, field-friendly strategy to quantify sperm 

metabolic rates (described in Chapter 2).   

Because there was almost no previous knowledge about sperm metabolism in felids, 

understanding the impacts of teratospermia and sperm cryopreservation required first identifying 

‘normal’ metabolic profiles for each species (Chaper 2).  Patterns of metabolic substrate 

utilization were remarkably similar between cat and cheetah spermatozoa: glucose uptake was 

minimal, but spermatozoa imported pyruvate and produced lactate at comparatively high rates.  

These results were enigmatic because the opposite pattern of substrate utilization was expected, 

i.e., high rates of glucose uptake, corresponding with total glycolytic activity, and lower rates of 

lactate production, proportional to anaerobic glycolysis.  The investigation of sperm function in 

the presence/absence of exogenous substrates (Chapter 3) elucidated this finding through the 

discovery that cat and cheetah spermatozoa produced lactate independently of glycolysis and 
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ATP production via the reduction of exogenous pyruvate.  Furthermore, cellular function 

(motility and viability) was maintained in a substrate-free culture medium, indicating the active 

metabolism of endogenous substrates.  Intriguingly, the activity of the glycolytic enzyme 

GAPDH was required for sperm motility, even in the complete absence of exogenous and 

endogenous (i.e., glycogen) sources of glucose.  These findings suggested that glycerol (most 

likely derived from endogenous lipid) was an important metabolic substrate in felid spermatozoa 

and hinted at a key role of lipid oxidation in cellular energy production.  The results of Chapter 4 

supported this model by confirming the essential role of oxidative metabolism in felid sperm 

function.  Collectively, the studies described in Chapters 2 through 4 generated informative 

sperm metabolic profiles for the cat and cheetah.  Felid spermatozoa appeared to be fueled 

primarily by the metabolism of endogenous lipid, with the glycolytic pathway serving an 

essential role in the breakdown of glycerol rather than glucose.  The consistency of findings in 

the cat and cheetah increases confidence in the proposed model of sperm energy production and 

will provide an excellent starting point for future studies to elucidate these mechanisms in other 

felid species. 

 

6.2 Metabolic Indicators of Sperm Function 

Initial assessments of metabolic profiles in cat and cheetah spermatozoa (Chapter 2) 

suggested that rates of pyruvate uptake and lactate production were accurate predictors of sperm 

function.  Because higher variation was observed among pyruvate data, subsequent studies 

focused primarily on lactate as a sperm quality indicator.  Lactate production was impaired 

(together with cellular motility and viability) by chemical inhibition of metabolism (Chapters 3 

and 4) and following cryopreservation (Chapter 5).  Although the link between lactate production 
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and sperm function had been identified previously in the boar [5] and donkey [6], the current 

studies were the first to reveal an indirect relationship between lactate and sperm energy 

production.  Given the important role of oxidative metabolism established in Chapter 4, it is 

likely that the link between lactate and sperm function is the mitochondrial production of 

NADH, a coenzyme required for the formation of both ATP (via OXPHOS) and lactate.   

The results of Chapter 3 determined that rates of lactate production were largely 

dependent on sperm medium composition (specifically the presence of pyruvate), and chemical 

inhibition of this process did not impair sperm function.  The influence of medium composition 

highlights the critical importance of a standardized, chemically-defined cellular environment for 

generating reliable conclusions about sperm metabolism.  Given the findings of Chapter 3, the 

link to sperm function must be validated before lactate is applied as a cellular indicator in 

different culture media.  But despite this caveat, lactate production can provide an objective, 

quantitative indicator of cellular function at relatively low-cost (e.g., compared to Computer 

Assisted Sperm Analysis) and offers exciting possibilities for future research.  

 

6.3 Influence of Species Physiology 

Although sperm metabolic profiles were generally similar in the cat and cheetah, results 

of Chapters 2 through 4 revealed two intriguing differences between the species.  First, higher 

rates of glucose uptake (Chapter 2) combined with increased sensitivity to GAPDH inhibition 

(Chapter 3) indicated that glycolytic metabolism was more active in domestic cat compared to 

cheetah spermatozoa.  Secondly, low mitochondrial membrane potential combined with extreme 

sensitivity to OXPHOS inhibition (Chapter 4) suggested that sperm oxidative metabolism was 

impaired in the cheetah.  Although minimal rates of oxidative metabolism could be considered 
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normal for cheetah spermatozoa, this trait is likely to limit sperm fertilizing ability since 

OXPHOS appears to be the primary pathway of energy production.   

 

6.4 Influence of Teratospermia 

An important strength of this project’s comparative design was the ability to distinguish 

between sperm metabolic differences related to species physiology versus those resulting from 

teratospermia.  These comparisons centered on the teratospermic domestic cat (Fig. 6.1) – a 

valuable model for studying reproductive physiology in humans and wild felids.  Initial 

assessment of sperm metabolic profiles (Chapter 2) revealed that rates of pyruvate uptake and 

lactate production (Chapter 2) were decreased in teratospermic cats and cheetahs compared to 

normospermic cats.  This discovery supported the prediction that sperm metabolism was 

impaired in teratospermic ejaculates.  Given the apparent link between lactate production and 

mitochondrial activity (described above), it was expected that sperm mitochondrial membrane 

potential (MMP) also would be reduced in teratospermic ejaculates.  But in contrast to the 

cheetah, sperm MMP was robust in the teratospermic cat (Chapter 4).  This unexpected finding 

suggested that other factors (e.g., LDH activity) also contribute to depressed lactate production in 

Teratospermia

Species physiology

Figure 6.1  Animal groups included in each study (from left to right: normospermic domestic cat, teratospermic 
domestic cat, and cheetah).  The two levels of comparison among these groups are indicated by double-ended 
arrows. 
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felid spermatozoa.  Such an interpretation is supported by the observation that sperm lactate 

production was more severely depressed in the cheetah than in the teratospermic cat.  Thus, 

teratospermic felids may share a common mechanism of impaired lactate production, while the 

low MMP of cheetah spermatozoa exacerbates this defect.  Although requiring further study, 

these findings illustrate the importance of the domestic cat model for identifying physiological 

consequences of teratospermia in felids, particularly in species such as the cheetah that lack a 

normospermic ‘control’ population.  

 

6.5 Influence of Sperm Cryopreservation 

Consistent with previous studies [7-9], cryopreservation of cat and cheetah spermatozoa 

resulted in reduced post-thaw motility and severe losses in acrosomal integrity (Chapter 5).  

These cells also exhibited decreased rates of lactate production, providing the first evidence of 

metabolic cryo-damage in felid spermatozoa.  The same pattern was observed with respect to 

pyruvate uptake, but differences were obscured by the large variation in those data.  Although 

lactate production was markedly reduced following cryopreservation, it was unclear whether 

metabolic machinery was impaired directly (e.g., mitochondrial damage) or indirectly (e.g., 

increased plasma membrane permeability) – an intriguing question for further study. 

Evaluation of post-thaw processing methods revealed that a metabolically-robust sperm 

subpopulation could be recovered in the domestic cat by selectively isolating highly motile 

spermatozoa.  In contrast, metabolic function remained compromised in spermatozoa isolated on 

the basis of morphology, suggesting that structurally normal cells are as susceptible to metabolic 

cryo-damage as their abnormal counterparts.  Results of post-thaw processing were similar 

between normospermic and teratospermic domestic cats (data were presented as a single group to 



145 
 

increase sample size).  In the cheetah, sperm lactate production remained compromised after 

thawing, regardless of processing method.  This key finding indicated that, in contrast to the 

domestic cat, a metabolically ‘normal’ subpopulation of cheetah spermatozoa did not exist after 

cryopreservation.  Therefore, efforts to improve the fertilizing potential of cryopreserved cheetah 

ejaculates should focus on preventing, rather than mitigating metabolic cryo-damage.  Finally, 

because metabolically-robust cells were recovered from the teratospermic cat, but not the 

cheetah, the mechanism allowing certain felid spermatozoa to retain metabolic function post-

thaw appears to be species-specific. 

 

6.5 Conclusions and Recommendations 

 Preserving and/or enhancing ejaculate quality in felids requires understanding the sperm 

metabolic pathways that support, directly or indirectly, every individual process required for 

fertilization.  Both glycolysis and oxidative phosphorylation were essential for sperm motility 

and viability in the cat and cheetah, but the role of each pathway in other cellular processes (e.g., 

capacitation) should be investigated.  Felid spermatozoa actively metabolized endogenous 

substrates, but this energy source may be limited, especially in poor quality ejaculates.  Various 

forms of lipid (e.g., phospholipid) should be evaluated as supplemental energy sources to 

optimize sperm culture conditions.  Furthermore, differences in the amount or composition of 

substrates stored intracellularly may contribute to the significant variation in ejaculate quality 

observed within felid species.  Therefore, the characterization of sperm lipid profiles in felid 

ejaculates is a high research priority.  Mitochondrial activity was particularly important for 

sperm energy production, but unidentified compounds present in the cryopreservation medium 

interfered with mitochondrial probes, presenting a challenge to post-thaw evaluation of MMP.  A 
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chemically-defined sperm cryopreservation medium is needed to overcome this challenge and 

elucidate the mechanisms of metabolic cryo-damage.  Cheetah spermatozoa were unable to 

survive cryopreservation with metabolic function intact, indicating a need to further optimize 

freezing/thawing protocols.  However, certain domestic cat spermatozoa (even those from 

teratospermic ejaculates) somehow were able to escape metabolic cryo-damage.  Identifying the 

factors that cause these cells to respond to freezing/thawing differently from other sperm 

populations could generate innovative strategies for improving cryopreservation success. 

Overall, this project emphasizes the importance of domestic models and comparative 

research for understanding complex biological phenomena in rare animal species.  Similarities in 

sperm metabolic profiles between the cat and cheetah generated reliable conclusions about 

energy production in felid spermatozoa.  Yet even more exciting were the differences revealed 

by these comparative studies.  Teratospermia and species physiology influenced sperm 

metabolism and/or cryosensitivity in unexpected, but important ways.  These intriguing 

differences provide an excellent starting point for future studies of felid sperm physiology that 

can ultimately benefit both wildlife conservation and human health. 
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APPENDIX A 
 

 

  

A.

C.

B.

D.

Supplemental Figure 2.1.  Common sperm abnormalities in felids.  
Domestic cat spermatozoa exhibiting normal morphology (A); a bent 
midpiece encompassing a cytoplasmic droplet (B); an abnormal 
acrosome and a proximal cytoplasmic droplet (C); and a bent flagellum 
encircling a cytoplasmic droplet (D).  
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APPENDIX B 
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Supplemental Figure 5.1.  Sperm glucose uptake in domestic cat (A) and cheetah (B) ejaculates 
before cryopreservation (open bar) and after post-thaw processing by swim-up (lined bar), Accudenz 
(gray bar), or wash (black bar) method.  Error bars represent means ± SEM. 
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Supplemental Figure 5.2.  Representative phase-contrast (left panel) and fluorescence (right panel) 
images of domestic cat sperm in swim up (A), Accudenz (B), and washed (C) samples after incubation 
with MitoTracker®.  Images illustrate differences in the degree of non-specific fluorescent staining 
among sperm processing treatments. 

A. 

B. 

C. 
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