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Abstract 

 

The matrix-inversion-lemma based recursive least squares (RLS) approach is of a recursive 

form and free of matrix inversion, and has excellent performance regarding computation and 

memory in solving the classic least-squares (LS) problem. It is important to generalize RLS for 

generalized LS (GLS) problem. It is also of value to develop an efficient initialization for any 

RLS algorithm.  

In Chapter 2, we develop a unified RLS procedure to solve the unconstrained/linear-equality 

(LE) constrained GLS. We also show that the LE constraint is in essence a set of special 

error-free observations and further consider the GLS with implicit LE constraint in 

observations (ILE-constrained GLS). 

  Chapter 3 treats the RLS initialization-related issues, including rank check, a convenient 

method to compute the involved matrix inverse/pseudoinverse, and resolution of 

underdetermined systems. Based on auxiliary-observations, the RLS recursion can start from 

the first real observation and possible LE constraints are also imposed recursively. The rank of 

the system is checked implicitly. If the rank is deficient, a set of refined non-redundant 

observations is determined alternatively. 

  In Chapter 4, base on [Li07], we show that the linear minimum mean square error (LMMSE) 

estimator, as well as the optimal Kalman filter (KF) considering various correlations, can be 

calculated from solving an equivalent GLS using the unified RLS. 

In Chapters 5 & 6, an approach of joint state-and-parameter estimation (JSPE) in power 

system monitored by synchrophasors is adopted, where the original nonlinear parameter 

problem is reformulated as two loosely-coupled linear subproblems: state tracking and 

parameter tracking. Chapter 5 deals with the state tracking which determines the voltages in 

JSPE, where dynamic behavior of voltages under possible abrupt changes is studied. Chapter 6 

focuses on the subproblem of parameter tracking in JSPE, where a new prediction model for 

parameters with moving means is introduced. Adaptive filters are developed for the above two 



xi 

 

subproblems, respectively, and both filters are based on the optimal KF accounting for various 

correlations. Simulations indicate that the proposed approach yields accurate parameter 

estimates and improves the accuracy of the state estimation, compared with existing methods. 
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Chapter 1: Introduction and Literature Review 

 

1.1 Classification of Linear LS, WLS and GLS 

The principle of least squares (LS), which was first invented independently by a few 

scientists and mathematicians such as C. F. Gauss, A. M. Legendre and R. Adrain 

[Stigler86][Li07], is a classic and standard approach to obtaining the optimal solution of an 

overdetermined system to minimize the sum of squared residuals. 

The most popular and important interpretation of the LS approach is from the application in 

data fitting. That is, the best fitting in the LS sense is to approximate a set of parameters 

(estimands) such that the sum of squared residuals is minimized, where the residuals are 

differences between the measured observation values and the corresponding fitted ones 

[Wiki01]. In addition, the LS problem also has various names in different disciplines [Li07]. 

For instance, in some mathematical areas, LS may be treated as a special minimum l2-norm 

problem [Bjorck96]. In statistics, it is also formulated as a probabilistic problem widely used 

in regression analysis or correlation analysis [Freedman05] [Kleinbaum07]. In engineering, it 

is a powerful tool adopted in parameter estimation, filtering, system identification, and so on 

[Sorenson80] [Ba-Shalom01]. In particular, in the area of estimation, the LS formulation can 

be derived from the maximum-likelihood (ML) criterion if the observation errors are normally 

distributed. The LS estimator can also be treated as a moment estimator [Wiki01]. 

Roughly speaking, LS problems can be classified into linear and nonlinear cases, depending 

on whether the involved observation quantities are linear functions of the estimand or not. It is 

also well known that, with linearization techniques such as Gauss-Newton methods, a 

nonlinear LS problem may be converted to linearized iterative refinements. This dissertation 

focuses on linear LS solutions. 

More generally, the object of the data fitting may be extended to minimize the sum of the 

weighted residual squares, which leads to the definition of least squares with weights. 

According to the features of their weighting matrices, linear LS problems with weights can be 



 2 

largely categorized from the simple to the complex as LS, weighted LS (WLS), and 

generalized LS (GLS), where linear-equality (LE) constraints may be imposed. Note that in 

this dissertation the concept of WLS is limited to the case with a diagonal matrix while the 

GLS has a non-diagonal weighting matrix [Amemiya85] [Greene00] [Wiki02]. In addition, 

linear-inequality constraints may also be involved and can be treated as combinations of LE 

constraints [Lawson95]. 

Note that in some statistics books, “weighted least squares” may be used for LS problems 

with equal weights while those with distinguished weights are named generally- weighted least 

squares. As the equally-weighted LS and the conventional LS has the same solution plus 

mutually-proportional estimation-error covariances, we ignore their difference and follow the 

convention in [Lawson95] [Bjorck96]: WLS is for LS with distinguished (not all-equal) 

weights and GLS is for LS weighted by an arbitrary PD matrix. 

In summary, we use the following LS/WLS categorizing list to present the LS solutions 

from simplest to most complex problem setup: 

� Unconstrained LS � LE-constrained LS 

� Unconstrained/LE-constrained WLS 

  � Unconstrained GLS � LE-constrained GLS  

� Implicitly-LE-constrained (ILE-constrained) GLS 

We focus on the development of the recursive unconstrained/LE-constrained/ 

ILE-constrained LS/WLS/GLS solutions and the related initialization as well as deficient-rank 

processing. The study starts from the conventional RLS and its exact initializations, which are 

reviewed below. 

1.2 Review of Batch LS/WLS/GLS Solutions 

1.2.1 Batch LS/WLS Methods 

As a classic minimization problem, the LS problem has been studied for more than two 

centuries. Many methods and algorithms have been developed and well surveyed in the past. 

Most commonly-recognized methods and algorithms are presented in well-known books, such 
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as [Lawson95] and [Bjorck96]. Among the exiting LS methods and topics, we will review 

those issues related to our research in detail. Roughly speaking, the (unconstrained) linear LS 

approach is to solve the following classic (unconstrained) linear LS problem: 

ˆ arg min J=
x

x  (1.1a) 

with
1
( ) ( ) ( ) ( )

M T T

m m m mm
J z H z H

=
= − − = − −∑ x x z Hx z Hx  (1.1b) 

where [ ]T

n
x=x L L , [ ]T T

m
H=H L L , and [ ]T

m
z=z L L . n

x is the thn to-be-determined 

quantity. m
H and m

z are the coefficient (row vector) and value of the thm observation, 

respectively, and M is the total observation number. Typically, x̂ can be obtained via 

normal-equation solution, QR-decomposition (of H ), Gauss elimination and so on. These 

methods are reviewed as follows.  

The solutions can come from solving the following normal equation: 

ˆ( )T T=H H x H z  (1.2a) 

That is, 

    
1 1

ˆ( )
M MT T

m m m mm m
H H H z

= =
=∑ ∑x   (1.2b) 

Clearly, if and only if (iff) rank( ) N=H , (1.2b) has a unique solution and the batch solution is 

1( )

ˆ

T

T

− =


=

C H H

x CH z
  (1.2c) 

where estimation-error-covariance-like (EEC-like) matrix C is closely related to the covariance 

of estimation errors in engineering applications. Matrix triangularization and diagonalization 

techniques such as Cholesky decomposition (LL
T 

decomposition) can be used to decompose 

TH H  and thus compute C  and x̂  efficiently [Martin&Wilkinson65] [Passino98], where 

the symmetric structure of TH H is advantageous. Several variants, as well as different ways to 

sequencing the CD operations, were discussed in [George81]. Reference [Golub96] also shows 

that LL
T 

decomposition and the QR decomposition method can lead to equal upper triangular 

matrices if H has full column rank. 
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  Actually, x̂ can also be determined directly from the nonsymmetric linear equation =Hx z . 

Gauss elimination with partial pivoting is used to solve =Hx z , and different 

Gauss-elimination based methods are surveyed in [Nobel73]. Among the existing approaches, 

the Peters-Wikinson method is a uniform one. It utilizes the LU factorization to reduce the 

original LS problem to a simplified one with a lower triangular coefficient. Because the 

solution is obtained from the triangularized coefficient and thus suffers less from rounding 

error, this method is numerically more stable than those using the normal equation directly. 

  More popularly, the QR decomposition can be employed to decompose the observation 

coefficient matrix into a product of an orthogonal square matrixQ and an upper triangular 

matrix such that 

 0
T

T T =  H Q R  (1.3) 

where R is an upper triangular square matrix. Correspondingly, the observation-value 

vector z is transformed into 

1 2 
T

T T =  z Q z z% %  (1.4) 

Accordingly, the objective function in (1.1a) becomes as simple as 

    1 1 2 2( ) ( )T T
J = − − +z Rx z Rx z z% % % %  (1.5) 

Then x̂ can be obtained conveniently by solving the following linear equation 

1
ˆ =Rx z%  (1.6) 

The solution can take advantage of the upper-triangular structure of R and can be obtained by 

back substitution efficiently. Accordingly, the computational complexity of solving (1.6), 

which is denoted by the number of the involved floating-point operations (flops), is only as 

low as 2( )O N (order of 2
N ). The computation accuracy is also high because the observation- 

coefficient-matrix decomposition suffers little from rounding errors [Bjorck96] [Golub96]. 

  Subsequently, the major work is on constructing appropriate orthogonal matrixQ . Many 

classic methods have been utilized, such as Householder reflection, Givens rotation, and 

classical or modified Gram-Schmidt [Horn85] [Press07] [Parlett00]. 
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  For instance, in the Householder transformation based method [Golub65a] [Householder58], 

the orthogonal matrix Q is constructed as a product of a sequence of orthogonal matrix: 

1 k N
=Q Q Q QL L  (1.7) 

where diag( , )
k N k k−=Q I Q% . 

k
Q% is a Householder reflection matrix which is designed to satisfy 

    1 2 12
[1   0   0 ]T

k k k N k− +=Q a a% % % L  (1.8) 

and k
a% is a subvector in the thk column of the following transformed intermediate 

observation-coefficient matrix: 

    [ ]
1

1 1
 *

k

k

k

−
−

∗ 
=  
 

R
Q Q H

0 a
L

%
 (1.9) 

Consequently,  

2

2
2 /T

k k k k
= −Q I b b b%  (1.10) 

with 1 2 12
[1   0   0 ]T

k k k N k− += −b a a% % L . 

  In the Givens rotation based method [Givens58], the QRD matrixQ is a product of a series 

of plane-rotation matrices which have a specific form as 

    

1

2

3

cos sin

0 sin 0 cos

0 0

θ θ

θ θ

 
 
 
 =
 

− 
  

I 0 0 0 0

0 0 0

Q 0 0 I 0 0

0

0 0 I

%   (1.11) 

Given a vector a% which has the same size asQ% ’s column and 1 1 2 2 3[     ]T T T T
a a=a a a a% % % , one has 

    1 1 2 2 1 2 3[   cos sin     sin cos   ]T T T T
a a a aθ θ θ θ′ = = + − +a Qa a a a% % % % % %  (1.12) 

It is clear that, if 2 2

2 1 2sin a a aθ = +% % % and 2 2

1 1 2sin a a aθ = +% % % , then 

2 2

1 1 2 2 3[       0  ]T T T T
a a′ = +a a a a% %  (1.13) 

After a sequence of rotations as in (1.12)-(1.13) are applied to the observation coefficient 

matrix H , the upper triangular form in (1.3) can be easily obtained. Particularly, fast Givens 
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rotation methods are also developed [Gentleman73] [Hammarling74] [Lawson79], where the 

multiplication number is reduced by adopting the scaled two-factor form of H . Owing to the 

effect of scaling-factor update, the traditional fast rotations may suffer from underflow 

problems. Correspondingly, self-scaling fast rotations, which can monitor and rescale the size 

of the scaling factors, are developed in [Anda94] to overcome the underflow problems. 

  Both the Householder-transformation based and the Givens-rotation based approaches have 

good properties regarding computation and storage. For instance, the standard Householder 

factorization requires 2 1
( )

3
N M N−  flops while the normal-equation method may use 

21 1
( )

2 3
N M N+  flops. Hence, the Householder transformation method requires roughly the 

same computation as the LL
T 

decomposition based normal-equation one for M N≈  but has 

twice computation for M N�  [Bjorck96]. The standard Givens-rotation method takes more 

computation as 2 1
2 ( )

3
N M N− multiplications. However, the QR-decomposition methods 

have overwhelmingly higher accuracy than the normal-equation ones. They are numerically 

more stable since the solution does not involve ( )TH H but is determined from =Hx z directly. 

The Givens rotations are easy to implement and also have convenient recursive forms (see next 

subsection). 

As surveyed in [Lawson95] [Bjorck96], Gram-Schmidt orthogonalization is also employed 

to produce the orthogonal matrix Q in the QR decomposition. The classic Gram-Schmidt 

method, which first appeared in [Schmidt1908], may lose orthogonality in some ill-conditions 

and is thus a theoretical tool rather than a good base for numerical algorithms. However, the 

modified Gram-Schmidt methods can reduce the risk of loss of orthogonality [Gulliksson95]. 

  In addition, the singular value decomposition (SVD) can also be adopted to solve the LS 

problems. That is, for the LS problem in (1.1), given the SVD of H as  

T 
=  

 

Σ 0
H U V

0 0
 (1.14) 

then the minimum-norm LS solution is 
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1 0

ˆ
0 0

T

−
+  

= =  
 

Σ
x H z V U z  (1.15) 

where superscript “+” stands for the Moore-Penrose pseudo inverse (MP inverse). 

H1diag( , , )
N

σ σ=Σ L , 
i

σ  is the square root of the thi eignvalue of TH H , and Hrank( ) N=H . 

The left and right singular vectors, which are stored in the orthogonal matrices U and V , are 

the corresponding eignvectors of TH H and THH , respectively [Lawson95]. The first stable 

algorithm based on SVD was presented in [Golub65b], where H  is reduced to a bidiagonal 

matrix via Householder transformation of a Lanczos process such that the singular values and 

vectors refer to eignvalues and eignvectors of a special tridiagonal matrix [Bjorck96]. Later, 

adaptation and improvement are made to the QR algorithm [Golub68] [Golub70]. Newer 

Jacobi methods are also developed to improve the relative computation accuracy of the 

singular values in bidiagonal matrices [Kogbetliantz55] [Hestenes58]. Note that, in (1.14), 

HN N≤ . If HN N< , the SVD based solution leads to the minimum-norm LS solution, which is 

a powerful tool for the deficient-rank analysis discussed in Sec. 1.3.2. 

WLS is generalized from LS, in which each observation is assigned a positive weight: 

ˆ arg min J=
x

x  (1.16) 

with
1
( ) ( ) ( ) ( )

M T T

m m m m mm
J z H w z H

=
= − − = − −∑ x x z Hx W z Hx  (1.17a) 

Equivalently, ( ) ( )TJ = − −z Hx W z Hx , (1.17b) 

where diag( ,  , )
m

w=W L L  (1.17c) 

Theoretically speaking, since
m

w can be easily decomposed into
1 1
2 2

m m
w w , problem (1.16) can be 

converted to an equivalent LS one without difficulty. As a result, all the batch LS methods, 

such as the normal-equation based, the QRD based and the SVD based algorithms, are 

applicable. The major issues arise from possible ill conditions deteriorated by significantly 

large weight ratios and special efforts are made to treat the extremely ill-conditioned situations 

[Vavasis94] [Hough94] [Bjorck80] [Duff94] [Gulliksson92] [Gulliksson95] [Anda94].  
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1.2.2 Batch GLS and LE-Constrained LS Solutions 

Compared with WLS, GLS is a further generalized LS problem, where the weight W  can 

be an arbitrary positive definite (PD) matrix. Since a GLS problem can always be converted to 

an equivalent LS form by decomposing W , those methods used for solving LS are all 

applicable to GLS. For instance, the normal equation of GLS is 

ˆ( )T T=H WH x H Wz  (1.18) 

where ( )TH WH  remains symmetric. Then those normal-equation based methods used in LS, 

such as LL
T 

decomposition based ones, can still be utilized.  

Methods based on the decomposition of W are also widely adopted. That is, 

    T=W WW% %  (1.19) 

Based on (1.19), generalized QRD and SVD methods are developed, where the subsequent 

decompositions of H and W% are performed separately to achieve better numerical accuracy 

[Paige90] [Van76]. References [Anderson91], [De92] and [Paige81] further discuss the 

implementation, application and extension of these generalized methods. In addition, how to 

decompose W into the symmetric form (1.19) is also an issue. In principle, W% can be the 

square root of W , which is unique since W is PD. The square root can be obtained by 

orthogonal decomposition, Jordan decomposition, Denman-Beavers iteration, the Babylonian 

method and so on [Higham86]. Particularly, W% can also be a lower triangular matrix. 

Choleksy decomposition can be used. The computation can utilize W% ’s triangular structure. 

  In addition, in practical applications, constraints may be imposed to the LS solutions. For 

example, in curve fitting, inequality constraints related to monotonicity, nonnegativety, and 

convexity and equality constraints related to continuity and smoothness may be involved 

[Zhu&Li07]. In the category of linear LS, linear-equality (LE) constrained problems are 

widely investigated, in which problem (1.1) is subject to a set of consistent LE constraints as 

=Ax B  (1.20) 
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with AN N×∈A �  and (without loss of generality) Arank( ) N=A . One natural way to handle 

the LE-constrained LS is direct elimination, with which x is reduced to a lower dimensional 

vector since the constraints imply that AN components of x are always linear combinations of 

the left AN N− . Correspondingly, the original problem is then converted to an unconstrained 

LS problem with reduced dimensions equivalently [Bjorck67] [Lawson95]. The most popular 

practical methods to solve LE-constrained problems are based on the introduction of Lagrange 

multiplier [Chong07]. The weighting method is also widely adopted, where each LE constraint 

is treated as an observation with a “huge” weight [Anda96]. Although this method is very easy 

to implement, it may lead to poor numerical condition. The LE-constrained LS solution can 

also be obtained using the null-space method [Leringe70], based on which the close form of 

the solution can be: 

ˆ [ ( )] ( )B+ + + += + − −x A H I A A z HA B  (1.21) 

where +A stands for the Moore Penrose generalized inverse of A . If rank([  ] )T T T N=A H , 

(1.21) is the unique solution; otherwise, (1.21) leads to the minimum-norm solution in 

rank-deficient problems [Wei92a] [Wei92b]. [Zhu&Li07] gives another null-space based form 

as in (24), which is a useful tool for the subsequent derivations in this dissertation. In addition, 

other techniques, such as the generalized SVD [Van85], are also introduced to solve and 

analyze the LE-constrained LS problem. In this dissertation, our purpose is to develop 

completely recursive LS which provides solutions (theoretically) identical to the batch ones. 

The above batch methods will provide a solid foundation for the subsequent development. 

1.3 Recursive Approaches 

1.3.1 Recursive Methods 

The above batch methods, such as QRD, SVD and normal-equation methods, can be 

implemented recursively [Apolinario09]. That is, the current solution can be obtained by 

updating the previously-processed one (using old observation data) with new observations. 
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In those observation-coefficient-matrix decomposition based methods, recursive procedures 

mainly aim to construct the orthogonal matrix Q recursively [Gill74]. For instance, in the 

Givens-rotation QRD methods, the rotations of the new observation coefficient can naturally 

take advantage of the existing upper triangular matrix, where the computation complexity is at 

2( )O N  per cycle [Yang92]. The Gram-Schmidt decomposition can also be performed 

recursively in a stable way with ( )O MN  per-cycle computational operations [Daniel76]. The 

recursion is still applicable to SVD, but the updating computation requires 2( )O MN  flops at 

each cycle [Bunch78], which is too much compared with recursive Givens rotation and 

Gram-Schmidt orthogonalization. 

Particularly, the matrix-inversion (MI) lemma based RLS, which is a recursive 

normal-equation method, can obtain C (and x̂ ) in another sequential way [Woodbury50] 

[Chen85]. We will further investigate the MI-lemma-based RLS and generalize it to solve GLS 

problems. The proposed recursive GLS (RGLS) techniques are also applicable to the 

QRD-RLS. 

Concretely, initialized by 

0

0 0 0

1

1
( ) ( )

M T T

M m m M Mm
H H

−
′ ′′=

= =∑C H H  (1.22) 

the EEC-like matrix C of the unconstrained LS problem (1.2c) can be computed exactly by the 

following recursion cycle: 

1

1 1 1 1( 1)T T

m m m m m m m m m
H H H H

−
− − − −= − +C C C C C  (1.23) 

where 0M is the number of initial observations and the recursion/data index 0m M> . ˆ
m

x can 

be calculated concurrently. 

Furthermore, when a set of consistent LE constraints as in (1.20) is imposed, the unique 

solution exists iff rank([  ] )T T T N=A H : 

1

1
[ ( ) ]

ˆ ( )

MT T T

m mm

T

H H
−

=

+ +

 =


= + −

∑C U U U U

x A B CH z HA B
 (1.24) 
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where 1[   ]T T T

M M
H H= =H H L , 1[   ]T

M M
z z= =z z L , U satisfies [ ][ ]T =U U U U I% % and 

col( ) col( )T=U A%  [Zhu&Li07]. Here “ col( )X ” denotes the space spanned by all the columns 

of X . Reference [Zhu&Li07] also shows that, the recursion formula in (1.23) is still applicable 

for the LE case once the LE constraint (1.20) has been imposed on the initialization 

appropriately. For instance, the recursion procedure for the EEC-like matrix should be 

initialized as 

0

0

1

1
[ ( ) ]

MT T T

M m mm
H H

−
′ ′′=

= ∑C U U U U  (1.25) 

where the iff condition 
0

rank([  ] )T T T

M N=A H  is implicitly satisfied. 

In addition, fast RLS methods are also developed [Ljung78] [Cioffi84], where the 

computation is reduced from some convenient properties of the data, such as the involved 

matrices’ Toeplitz structure. 

The RLS is particularly suitable for real-time applications since sequential algebraic 

operations at each cycle require low computation as well as fixed storage [Zhou02]. It has been 

widely applied to such areas as signal processing, control and communication [Mikeles07]. In 

adaptive-filtering applications, “RLS algorithms” are even referred in particular to RLS-based 

algorithms for problems with fading-memory weights [Haykin01]. As a normal-equation 

method, a major disadvantage of the RLS methods is that they have relatively poor numerical 

stability (for getting x̂ ), compared with direct observation-function coefficient factorization 

methods. Fortunately, recursive QRD methods, such as Givens rotations, can be combined to 

improve numerical stability [Proudler88] [Cioffi90a] [Cioffi90b] [Li07]. 

1.3.2 RLS Initialization and Deficient-Rank Problems 

  In the MI-lemma based RLS, to guarantee that the LS solutions at each recursion cycle are 

identical to the corresponding batch ones, the procedure needs to start from an exact LS 

initialization, which leads to the RLS initialization problem. However, although RLS has been 

well studied and applied in the past decades, less attention has been paid to the RLS 

initialization. It is because RLS is mainly applied to low-dimensional and high-redundancy 
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problems in areas such as signal processing, where the calculations for the batch LS solutions 

based on a small number of initial observations may not be so costly in quite a few cases.  

  However, a simple initialization is still desired. In the original work, the following 

approximation is adopted [Albert65]: 

1

0

0
ˆ

α − =


=

C I

x 0
 (1.26) 

whereα is a tiny positive number. With (1.26), the recursion (1.23) for the unconstrained RLS 

can start from the first piece of observation data. It is clear that the recursion initialized by 

(1.26) leads to the exact LS solution iff 0α → . Although it is hard to implement such 

an 1α − exactly, (1.26) is widely adopted where the effect of the approximate α  may be trivial 

when observations keep accumulating. However, in some practical applications, the negative 

effect caused by 0α ≠ may not be ignored and a too small α  may deteriorate numerical 

conditions. In [Hubing91], an exact initialization scheme is studied, which makes full use of 

the special form of the initial observations in recursion-based adaptive filtering: 

    0
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0
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 (1.27) 

Furthermore, recursive QR-decomposition methods can also be used to transform the 

coefficient matrix of initial observations into the upper triangular form, based on which the 

initialization is recursive and easier to be determined [Haykin01]. Reference [Zhou02] 

introduces variants of the Greville formula (order recursion) to develop recursive 

initializations for RLS, where the recursion can also start from the first piece of data. We will 

study a simple recursive exact RLS initialization method using the RLS formulae. We will also 

apply the newly-developed method to solve high-dimensional and low-redundancy problems 

such as power system state estimation, where recursive initialization does play an important 

role in solving the LS state estimation problems. In addition, two accessorial issues should also 

be studied. One is whether and when the foregoing observations can support an exact and 
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unique RLS initialization, namely (parameter) observability analysis (or rank check) in 

engineering. In previous work, observability analysis usually requires extra numerical or 

topological analysis [Chan87] [Chan94] [Monticelli00]. Correspondingly, if all the 

observations can not uniquely determine a LS solution, then it leads to deficient-rank LS 

problems. There are two possible deficient-rank situations: (a) there are no sufficient 

observations, so that some to- be-determined quantities can not be uniquely determined (or the 

estimand is unobservable); (b) although the observations are sufficient in theory, the estimand 

is numerically unobservable due to ill conditions caused by round-off error, e.g., the involved 

matrix inverses exist in theory but can not be computed numerically. The first situation is 

theoretical rank deficiency while the second one is numerical rank deficiency [Stewart84]. In 

addition, the other ill-conditioned case is also treated as numerical rank deficiency, in which 

the observations are not sufficient in theory but still make the estimand observable due to the 

effect of round-off error. Topological analysis can detect theoretical deficiency of observations 

[Monticelli00] while numerical analysis can disclose the implementation details. The latter is 

well investigated in the past. For instance, SVD based method is used to determine the 

numerical rank of a matrix, where the singular values in Σ  reveal the numerical condition of 

the LS problem [Manteuffel81]. Cholesky decomposition and QRD methods, such as 

Householder transformation, Givens rotation and modified Gram-Schmidt orthogonalizations, 

are also used to examine the numerical rank of the LS problem, where column pivoting is 

widely used [Golub65a]. Among these decomposition based methods, the SVD is the most 

reliable one to reveal the matrix rank in general [Bjorck96]. Once numerical rank deficiency is 

detected, caution has to be taken to fix or avoid this ill-conditioned situation [Dongarra79]. 

The second issue is how to handle problems with theoretically insufficient observations. 

Note that, at this stage, the concepts of solving LS problem and performing LS estimation are 

different. For a deficient-rank LS problem, there exist infinitely many feasible solutions to 

minimize the squared sum, among which the one having the minimum norm and a simple 

analytical form in batch is widely adopted [Lawson95] [Zhou02]. However, for LS estimation, 
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a deficient-rank situation means the estimand is not observable and no estimate exists. We 

treat the deficient-rank problem from the viewpoint of LS estimation and introduce a 

reduced-dimensional alternative estimate which is observable and has specific physical 

interpretations.  

1.4 Completely Recursive Least Squares (CRLS) 

The RLS is originally applied to solve unconstrained LS problems [Albert65]. Recently, 

[Zhu&Li07] found that the exact solution of LE-constrained LS can be obtained by the same 

recursion as for the unconstrained problem, provided that the RLS procedure is appropriately 

initialized. Owing to the excellent performance of the RLS regarding efficient real-time 

computation and low memory, it is worthwhile to apply the RLS techniques to perform the 

initialization of RLS recursively. It is also of value to generalize the conventional RLS as well 

as the corresponding recursive initialization method and develop an integrated solution for 

LE-constrained GLS problems. Consequently, there are two major issues worth studing. The 

first issue is how to generalize the RLS method and solve the WLS and GLS problems in 

similar recursive/sequential ways. It is clear that the square-root values of the diagonal 

elements of the diagonal weighting matrix in the WLS can be simply multiplied into the 

coefficient matrices. The WLS problem is thus converted to an LS one. In other words, a 

recursive WLS (RWLS) method can be developed from the RLS easily. Therefore, the major 

focus will be on the development of the recursive GLS (RGLS). The second issue is a 

recursive initialization applicable to all the RLS, RWLS and RGLS. Actually, in the 

RLS/RWLS and the newly-developed RGLS, the determination of exact solutions relies on 

appropriate initializations. We will study a simpler recursive initialization method for the 

RGLS as well as the RLS/RWLS, which is still based on the RLS formulae. In brief, with such 

a generalized RLS approach, the recursion can start from the first piece of data no matter what 

dependence the newly-arriving data have on the old data. The recursion can also be 

implemented for both unconstrained and explicitly/implicitly LE-constrained cases. In these 

senses, the newly-developed approach is named Completely Recursive Least Squares (CRLS). 
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1.5 CRLS, LMMSE and KF 

In statistics and signal processing, the widely-used linear minimum mean-square error 

(LMMSE) estimator is a linear function, in fact, an affine function of the observation that 

achieves the smallest means-square error among all linear/affine estimators [Johnson04]. 

LMMSE estimator is the theoretical fundament of linear filtering: Kalman filtering, LMMSE 

filtering (for nonlinear problems), (steady-state) Wiener filtering, and so on [Li07]. 

As is known in [Li07] that, given a linear data model, an LMMSE estimator with 

complete/partial prior knowledge (i.e., prior mean, prior covariance and the cross- covariance 

between the random estimand and the measurement noise) can always be treated as the 

LMMSE estimator without prior information by unifying the prior mean as extra data. It is also 

true that a linear-data-model-based LMMSE estimator without prior knowledge may be a 

unification of Bayesian and classic linear estimation [Li07]. In other words, a 

linear-data-model-based LMMSE estimator for a random estimand may be mathematically 

identical to a linear WLS/GLS estimator using the PD joint covariance of the estimand and the 

measurement noise as the weight inverse. In addition, the GLS with a positive semi-definite 

(PSD) observation-error-covariance like (OEC-like) matrix has not been well posed, although 

the LMMSE estimator with PSD measurement-noise covariance has been studied. We will 

convert the LS with a PSD OEC-like matrix to an LE constrained GLS with implicit constraint. 

As a result, the linear-data-model-based LMMSE estimation with a PSD measurement-noise 

covariance, or more generally, the linear-data-model-based LMMSE estimator with a unified 

PSD joint covariance of the estimand and the measurement noise can also be obtained by 

solving the corresponding LS problems. 

Furthermore, in the Kalman filter applied to linear systems with linear measurements, the 

prediction is from an LMMSE estimator using the data up to the most recent time while the 

update can be implemented from another LMMSE estimator using all the data up to the current 

time. Owing to the mathematical equivalence between the linear-data-model based LMMSE 

(without prior and with PD measurement error covariance) estimator and the GLS, the CRLS 
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can be applied to: 

1) Verify the optimal Kalman filter accounting for the correlation between the prediction 

error and the measurement noise, which was first derived in the LMMSE sense [Li07]. 

2) Apply the CRLS to improve the sequential data-processing scheme for the optimal 

Kalman filter and to deal with various complicated situations caused by data correlation, PSD 

covariance, etc. 

  Furthermore, we will apply the correlation-accounting KF to develop a series of adaptive 

filtering techniques and to solve practical problems such as power system state estimation and 

parameter estimation. 

1.6 Power System State Estimation and Parameter Estimation 

Power system state estimation, introduced to power systems in 1960s [Schweppe69], is to 

estimate the involved bus voltages of a power system under steady-state conditions using 

real-time voltage/power/current data collected by the supervisor control and data acquisition 

(SCADA) system, where the steady-state system is usually modeled as a single-frequency, 

balanced and symmetric one and the measured quantities, such as voltage magnitude, 

active/reactive branch flow and active/reactive injection power, are all linear/nonlinear 

functions of the bus voltages (system state) [Monticelli00] [Meliopoulos01]. Most of the 

existing power system state estimation (SE) programs are formulated as static WLS problems 

with one-scan data [Monticelli00]. Dynamic state estimation (DSE) is not popularly applied 

due to practical limitations such as the complexity of measurement system and the inaccuracy 

of dynamic and measurement models. Parameter estimation (PE) is responsible for calibrating 

the suspicious measurement model parameters [Abur04], within which the bus voltages of 

interest and the unknown parameters are usually stacked as an augmented state [Zarco00]. 

Correspondingly, dynamic-estimation methods are preferred since they exploit data from 

multiple scans and take advantage of dynamic models [Leite87]. Unfortunately, similar 

obstacles as in the DSE for bus voltages are encountered and the estimation accuracy is not 

guaranteed. These dilemmas can be avoided in power systems metered by synchrophasors. 
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The invention of synchrophasor, also known as synchronized phasor measurement unit 

(PMU), has led a revolution in SE since it yields linear measurement functions as well as 

accurate data within three to five cycles [Phadke93]. In spite of the involved instrumental 

channel errors [Sakis07] and the high cost, PMU has been tentatively used in centralized or 

distributed estimators [Phake86] [Zhao05] [Jiang07] and in bad-data detection [Chen06]. 

We aim at performing accurate parameter and state estimation in complex situations using 

synchrophasor data. An approach of joint state-and-parameter estimation, which is different 

from the state augmentation, is adopted, where the original nonlinear PE problem is 

reformulated as two loosely-coupled linear subproblems: state tracking and parameter tracking. 

First, as a result of the reformulation, the state tracking with possible abrupt voltage changes 

and correlated prediction-measurement errors is investigated, which can be applied to 

determine the voltages in a PE problem or to estimate the system state in a conventional DSE 

problem. Second, the parameter calibration of transmission network is also studied. For this 

high-dimension low-redundancy nonlinear parameter estimation, we propose a balanced 

method which adopts merits from both the extended Kalman filter (EKF) and the particle filter 

(PF). It follows the simple structure of EKF but further accounts for the uncertain effects such 

as involved bus voltages and high-order terms (of Taylor’s expansion) in EKF as pseudo 

measurement errors correlated with prediction errors. Correspondingly, the recently-developed 

optimal filtering technique that can handle correlation is introduced. We also introduce random 

samples from the idea of PF to evolve the pseudo-error ensembles and to evaluate the statistics 

related to the pseudo errors, where the error-ensemble sampling does not rely on the 

measurement redundancy and is much easier to implement than PF. Based on this balanced 

method, the joint state-and-parameter estimation considering complicated behavior of voltages 

and parameters is discussed. 

1.7 Our Work and Novelties 

As reviewed in Sec. 1.3, the RLS is of a recursive form and free of matrix inversion, and 

thus is excellent regarding efficient real-time computation and low memory. It is worthwhile to 
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generalize the above RLS procedure and to solve the unconstrained/LE-constrained GLS 

problem in a similar recursive way. It is also of value to apply the RLS method for all the 

involved RLS initializations. Consequently, the work of this dissertation includes: 1) to extend 

the use of conventional to solve GLS problems in a similar recursive way; 2) to find efficient 

recursive methods to initialize the RLS as well as the newly-developed recursive GLS 

procedures; 3) to use the unified recursive GLS to improve the corresponding 

sequential-data-processing procedures of the optimal KF considering various correlations; 4) 

to exploit correlation-accounting KF based adaptive filtering approaches to perform power 

system state estimation with synchrophasor measurements and treat parameter calibration of 

the transmission network. 

The generalization of the RLS for solving GLS problems is discussed in Chapter 2. Starting 

from the unconstrained/LE-constrained RLS, we will develop a recursive procedure to solve 

the unconstrained GLS, develop a similar recursive procedure applicable to the LE-constrained 

GLS, and show that the LE constraint is in essence a set of special observations free of 

observation errors and can be processed sequentially in any place in the data sequence. More 

generally, we will consider recursive ILE-constrained GLS. A unified recursive procedure is 

developed, which is applicable to ILE-constrained GLS as well as all the 

unconstrained/LE-constrained LS/WLS/GLS. 

  In Chapter 3, a recursive exact initialization applicable to all the RLS, RWLS and RGLS, is 

investigated. This chapter treats the RLS initialization-related issues, including rank check, a 

convenient method to compute the involved matrix inverse/pseudoinverse, and resolution of 

underdetermined systems. No extra non-RLS formula but an auxiliary-observation based 

procedure is utilized. The RLS recursion can start from the first real observation and possible 

LE constraints are also imposed recursively/sequentially. The rank of the system is checked 

implicitly. If the rank is full, the initialization and the subsequent RLS cycles can be integrated 

as a whole to yield exact LS estimates. If the rank is deficient, the procedure provides a 

mapping from the unobservable (original) estimand to a reduced-dimensional set of alternative 
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quantities which are linear combinations of the original quantities and uniquely determined. 

The consequent estimate is a set of refined non-redundant observations. The refinement is 

lossless in the WLS sense: if new observations are available later, it can take the role of the 

original data in the recalculation. 

  As shown in [Li07], the linear-data-model based linear minimum-mean-square-error 

(LMMSE) estimator without prior with PD measurement-error covariance is mathematically 

equivalent to the LS problem weighted by the measurement-error covariance. In Chapter 4, we 

show that the linear-data-model based linear minimum-mean- square-error (LMMSE) 

estimator can always be calculated from solving a unified ILE-constrained GLS. Consequently, 

the recursive GLS can be used to improve the sequential procedure of the optimal KF 

considering various correlations.  

In Chapters 5 & 6, we aim at performing accurate parameter (and state) estimation in 

complex situations using synchrophasor data, based on the optimal KF accounting for the 

correlation between the measurement noise and the prediction error. An approach of joint 

state-and-parameter estimation, which is different from the state augmentation, is adopted, 

where the original nonlinear PE problem is reformulated as two loosely-coupled linear 

subproblems: state tracking and parameter tracking, respectively. 

Chapter 5 focuses on the state tracking, which can be used to determine bus voltages in 

parameter estimation or to track the system state (dynamic state estimation). Dynamic 

behavior of bus voltages under possible abrupt changes is studied, using a novel and accurate 

prediction model. The measurement model is also improved. An adaptive filter based on 

optimal tracking with correlated prediction-measurement errors, including the module for 

abrupt-change detection and estimation, is developed. With the above settings, accurate 

solutions are obtained. 

In Chapter 6, we study the parameter tracking and the techniques dealing with the coupling. 

A new prediction model for parameters with moving means is adopted. The uncertainty in the 

voltages is covered by pseudo measurement errors resulting in prediction-measurement-error 
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correlation. An error-ensemble-evolution method is proposed to evaluate the correlation. An 

adaptive filter based on the optimal filtering with the evaluated correlation is developed, where 

a sliding-window method is used to detect and adapt the moving tendency of parameters. 

Simulations indicate that the proposed approach yields accurate parameter estimates and 

improves the accuracy of the state estimation, compared with existing methods. 

In brief, our contributions include: 

1) Combining RLS formulae with a recursive decorrelation method and developing a recursive 

procedure for GLS; 

2) Showing that an LE constraint is in essence a special observation free of error and can be 

processed using RLS formulae at any place in the observation sequence; 

3) Developing a unified recursive GLS procedure which is also used for ILE-constrained GLS; 

4) Designing a simple auxiliary observation based RLS initialization procedure which allows 

the recursion to start from the first piece of real observation data, where no extra technique 

but the RLS formulae is used; 

5) Inventing a new method to handle a deficient-rank LS problem, with which a set of 

reduced-dimensional alternative estimates is provided for practical use; 

6) When introducing the optimal KF accounting for prediction-measurement-error correlation 

to solve joint state and parameter estimation in power systems monitored by synchrophasors, 

we separate the original nonlinear problem as two coupled linear subproblems of state 

tracking and parameter tracking. 

7) In state tracking, we propose a new pair of prediction model and measurement model; 

Develop a filtering method which can also detect the abrupt change; develop a new adaptive 

filtering algorithm based on optimal tracking with correlated prediction-measurement errors, 

including the module for the abrupt-change detection. 

8) In parameter tracking, a new prediction model accounting for the effect of prior knowledge 

and moving parameter means is proposed; a new adaptive filter is developed, based on the 

optimal filtering with correlated prediction-measurement errors; a sliding-window method is 



 21 

proposed to detect the moving tendency of parameters and adjust the transition matrix 

adaptively; a sample-based method, namely, error-ensemble evolution, is used to evaluate 

the correlation between pseudo measurement errors and prediction errors. 

1.8 Outline 

The rest of the dissertation is organized as follows. In Chapter 2, for the first part of the 

CRLS approach, we will investigate the unified recursive GLS. The second part of CRLS, 

which is on the exact recursive initialization and deficient-rank processing, is presented in 

Chapter 3. In Chapter 4, the CRLS is then applied to verify the optimal KF (based on the 

LMMSE criterion) which can handle the correlation between the prediction error and the 

measurement noise. In Chapters 5 and 6, the correlation-accounting KF is applied to develop a 

series of nonlinear filtering techniques to solve the problem of joint state and parameter 

estimation in power systems metered by synchrophasors, where the original joint problem is 

divided into two coupled subproblems as state tracking and parameter tracking. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 22 

Nomenclature in Chapters 2-3 

 

The major notations used in Chapters 2 and 3 are listed below for quick reference. 

i. Variables and Numbers 

C        estimation-error-covariance like (EEC-like) matrix 

H       (observation) coefficient (vector) in real-observation function 

H       (observation) coefficient (matrix) and mH

 
 =  
  

H

M

M

 

R        observation-error-covariance-like (OEC-like) matrix; weight inverse if PSD 

x        estimand, full-/reduced-dimensional vector of to-be-determined quantities 

z        observation 

z        observation vector containing all z ’s 

 

M       total number of observations 

N       dimension of the estimand, row number of x  

T        total number of constraints 

 

ii. Overlines 

Let X be an original vector/matrix, then 

X̂       estimated X  

X
(

      augmentation from X  

X%       temporarily-used quantities 

X ′      after an LRC decorrelation 

X ′′      related to the maximum-rank PD principal minor 

DX      used in an LRC decorrelation 

X ∗       related to observations excluding implicit constraints 
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X o       related to implicit LE constraints 

iii. Subscripts and Indices 

au       of auxiliary observations 

b        of the (selected) basis of the row space of H
(

 

lec       linear-equality constrained 

left      of the left (undeleted) auxiliary observations 

sim      of a simple basis mapping x to an simx containing udx  

tran      after an equivalent linear transformation 

uc       unconstrained 

 

k        time index in Kalman filter 

m%        recursion index 

m        observation (data) index 

s         auxiliary-observation index 

t         constraint index  

 

In addition, notations not listed here are for temporary use only and are thus explained 

where they first appear. 
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Chapter 2: Completely Recursive Least Squares—Part I: Unified 

Recursive Solutions to Generalized Least Squares 

 

2.1 Background 

It is well known that, if and only if rank( ) N=H , the following LS problem has a unique 

solution: 

ˆ arg min J=
x

x  (2.1) 

with
1
( )( )

M

m m m mm
J z H z H

=
= − −∑ x x  (2.2) 

where estimand x is a vector containing all the N  to-be-determined variables and x̂ the 

estimated x . scalar z is observation and H observation coefficient (vector) in real-observation 

function. Observation-value vector z contains all z ’s and the rows of observation coefficient 

(matrix) H  contain the corresponding H ’s. The total number of observation is M  and m  

is observation (data) index. 

The unique solution can be determined using a recursive procedure described by the 

following fact: 

Fact 1 (Unconstrained RLS [Bjorck96]): In the unconstrained LS problem (2.1), if 

0M M<  and
0

rank( )
M

N=H , the problem has the following recursive solution: 

    1

1 1
ˆ ˆ ˆ( )

T

m m m m m

m m m m m m
z H

−

− −

 = −


= + −

C C K S K

x x K x
 (2.3) 

for 0M m M< ≤ with 

      
1

1

1

1T

m m m m

T

m m m m

H H

H

−

−
−

 +



S C

K C S

≜

≜
 (2.4) 

and 

      
0 0 0

0 0 0 0

1( )

ˆ

T

M M M

T

M M M M

−



C H H

x C H z

≜

≜
 (2.5) 
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where 0M is the number of initial observations uniquely determining the values in (2.5). 

Furthermore, problem (2.1) may be subject to a set of consistent LE constraints as 

=Ax B  (2.6) 

with AN N×∈A �  and (without loss of generality) rank( )
A

N=A . Correspondingly, the unique 

solution, which exists iff rank([  ] )T T T N=A H , can be obtained recursively as follows: 

Fact 2 (LE-constrained RLS [Zhu&Li07]): In the LE-constrained LS problem (2.1) subject 

to (2.6), if 0M M< and
0

rank( )M N=H
(

, the problem has the following recursive solution: 

    1

1 1
ˆ ˆ ˆ( )

T

m m m m m

m m m m m m
z H

−

− −

 = −


= + −

C C K S K

x x K x
 (2.7) 

for 0M m M< ≤ with 

      
1

1

1

1T

m m m m

T

m m m m

H H

H

−

−
−

 +



S C

K C S

≜

≜
 (2.8) 

and 

      
0 0 0

0 0 0 0 0

1[ ]

ˆ [ ]

T T T

M M M

T

M M M M M

−

+ +




+ −

C U U H H U U

x A B C H z H A B

�

�
 (2.9) 

where
00

[  ]M

T T T

M =H A H
(

. 

As shown in [Zhu&Li07], the above two recursive solutions have the same procedure except 

that the initializations are different. As reviewed in Chapter 1, the RLS is of a recursive form 

and free of matrix inversion, so it has efficient real-time computation and low memory storage. 

It is worthwhile to generalize the above RLS procedure and to solve the 

unconstrained/LE-constrained GLS problems in a similar recursive way. It is also of value to 

apply the RLS method for the involved initialization. Consequently, there are two major issues: 

(a) generalization of the RLS to solve GLS problems in similar recursive/sequential ways, 

which is discussed in this chapter; (b) recursive initialization applicable to the unified RLS, 

which is to be handled in Chapter 3. 
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2.2 Problem Formulations 

For the convenience of description and practical applications, rather than the direct 

weighting matrix, an observation-error-covariance-like (OEC-like) matrix is preferred. In 

essence, an OEC-like matrix is the weight inverse if it is positive-definite (PD). In the reverse, 

a positive-semi-definite (PSD) OEC-like matrix means that the constraint data have not been 

explicitly distinguished from the observation data, which leads to the problem of LS with 

implicit LE constraint (ILE constrained LS). 

The discussion begins with GLS with a PD OEC-like matrix. That is, given a PD matrix R , 

the linear GLS weighted by 1−R is to solve 

ˆ arg min J=
x

x  (2.10) 

with 1( ) ( )TJ −= − −z Hx R z Hx  (2.11) 

In general, R can be a non-diagonal matrix. That is, for 1 m M< ≤ , 

1m m

m T

m m

R

R r

− 
=  
 

R
R  (2.12) 

First, when there is no constraint, the solution to problem (2.10) can be determined from the 

following normal equation: 

1 1ˆ( )T T− −=H R H x H R z  (2.13) 

Second, when there is a set of (consistent) LE constraints 

    =Ax B  (2.14) 

with AN N×∈A � and (without loss of generality) rank( )
A

N=A , the normal equation becomes 

  
1 1ˆ( )T T T− −    

=    
    

xH R H A H R z

λA 0 B
 (2.15) 

where λ is a Lagrange multiplier. 

  Subsequently, we aim to solving (2.13) and (2.15) in a recursive way similar to RLS, where 

a recursive decorrelation technique is adopted to perform a last-row-column decorrelation to 
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make 
m

R  diagonal prior to the application of the RLS formulae. Specifically, starting from 

the unconstrained/LE-constrained RLS, we will 

1) Develop a recursive procedure to solve the unconstrained GLS as in (2.13); 

2) Develop a similar recursive procedure applicable to the LE-constrained GLS as in (2.15); 

3) Show that the LE constraint is in essence a set of special observations free of observation 

errors and can be processed sequentially in any place in the data sequence; 

4) More generally, we will consider the GLS with implicit LE constraint (ILE-constrained 

GLS) in which R is PSD. A unified recursive procedure is developed, which is applicable to 

ILE-constrained GLS as well as all the unconstrained/LE-constrained LS/WLS/GLS. 

2.3 Theoretical Foundation and Results 

The theoretical foundations and derivations for the recursive GLS are presented as follows. 

2.3.1 Preliminaries 

The following important identities and lemmas are crucial to the development of the 

recursive GLS. 

Schur’s Identity: If inverses of D , 1( )−G - FD E , G and -1(D - EG F)  are legitimate, then 

   

1−
   

=   
   

D E M N

F G O P
 (2.16) 

where 

     1 1 1 1 1− − − − −= + =M D D EPFD (D - EG F)  (2.17) 

1 1
=

− −= − −N D EP MEG  (2.18) 

1 1− −= − = −O PFD G FM  (2.19) 

1 1 1 1 1( )− − − − −= = +P G - FD E G G FMEG  (2.20) 

This well-known identity can be verified via blockwise elimination [Woodbury50]. 

Particularly, another useful identity, described as matrix inversion (MI) lemma, follows by 

substituting (2.20) into (2.18): 
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MI Lemma: If inverses of matrices D , G and 1( )−G - FD E exist, then 

1 1 1( )− − −= +-1 -1 -1 -1(D - EG F) D D E G - FD E FD  (2.21) 

  The MI lemma has the following important corollary which is the basis of the conventional 

RLS: 

Corollary of MI Lemma: If inverses of matrices D ,G and 1( )T −+G E D E exist, then 

1 1 1 1 1 1 1( )T T T− − − − − − −+ = − +(D E G E) D D E ED E G ED  (2.22) 

Actually, this corollary contains such a bidirectional causal relation as: Given 1−D and 1−
G , 

the existence of 1 1( )T − −G - E D E is equivalent to the existence of 1 1T − −+(D E G E) , which is an 

important basis for Facts 1 and 2 regarding the conventional unconstrained and LE-constrained 

RLS solutions, respectively (see the Introduction). 

2.3.2 Recursive solutions to unconstrained GLS 

First, the recursive solution to the unconstrained GLS is investigated, which is identical to 

the following batch one: 

Fact 3 (Batch solution to unconstrained GLS): Iff rank( ) N=H , the normal equation 

(2.13) has a unique solution: 

1( )

ˆ

T

T

− =


=

C H WH

x CH Wz
 (2.23) 

In general, iff rank( )
m

N=H , the GLS problem with data up to m has a unique solution: 

1( )

ˆ

T

m m m m

T

m m m m m

− =


=

C H W H

x C H W z
 (2.24) 

The batch solutions, as in (2.23) and (2.24), can be computed in the same recursive way as 

the conventional RLS as long as the following decorrelation is applied. 

Definition 1 (Last-row-column (LRC) decorrelation): Given PD
m

R (2.12), the following 

pair of nonsingular matrices
m

Q and T

m
Q can diagonalize the last row and column of 

m
R : 
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T

m m m m
′ =R Q R Q  

1diag{ , }T

m m m m
r D R−= −R  (2.25) 

with
( 1) ( 1)

1

m m m

m T

D− × − − 
=  
 

I
Q

0
 and 1

1m m m
D R

−
−= R  (2.26) 

Equation (2.25) can be easily verified. In addition, using a series of successive LRC 

decorrelations, 
m

R can be transformed into a diagonal matrix, as in Proposition 1. 

Proposition 1 (Inverse decomposition of a PD matrix): Given PD 
m

R (2.12), the 

following equality holds for 1 m M< ≤ : 

    1: 1: 1 2diag{ , , , }T

m m m m
r r r′ ′=Q R Q L  (2.27) 

with 

2

1:

1

0 1

0 0 1

m

m

D D− − 
 
 =
 
 
 

Q

L

M O O

L

 (2.28a) 

        T

m m m m
r r D R′ = −  (2.28b) 

and 1

1m m m
D R

−
−= R  (2.28c) 

A proof of this proposition is given in Appendix A. Note that, although
m

R is transformed 

into a diagonal matrix, the transformation in (2.27) is conceptually different from the 

conventional matrix diagonalization where the pairwise transformation matrices are mutual 

inverses. In fact, the one in (2.27) is in essence an inverse process of the symmetric indefinite 

factorization which is an alternative form of the Cholesky decomposition (factorization) 

[Watkins91] [Ogita12]. In previous work as in [Petkovic09] [Karlsson06], this inverse 

transformation is usually treated as a two-stage procedure of decomposition and inversion 

[Ogita10]. Proposition 1 provides a method to obtain the inverse decomposition directly. 

Actually, as shown in (2.25), the transformation in (2.27) is not only a mathematical inversion 
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process of the Cholesky decomposition. It has specific interpretations of error-correlation 

deduction in practical applications where R is set as observation error covariance (see Chapter 

4). In particular, it is clear that 1:mQ in (2.28a) can be computed recursively as 

  
1

1:( 1) 1:( 1) 1

1:
0 1 0 1

m m m m m

m

D R
−

− − −−  − 
= =   
   

Q Q R
Q  (2.28d) 

which is similar to the recursive (inverse) Cholesky decomposition [Gustavson00] [Bjarne01] 

[Bjarne02]. In fact, the recursive computation in (2.28d) can be further simplified. Applying 

this recursive transformation as well as the RLS formulae to the unconstrained GLS, the 

recursive solution can thus be developed as follows. 

Theorem 1 (Recursive GLS): If
0

rank( )
M

N=H and 0M M< , the unconstrained GLS 

problem (2.10) has the following recursive solution: 

  
1 1

1

ˆ ˆ ˆ( )
m m m m m m

T

m m m m m

z H− −

−

′ ′= + −


= −

x x K x

C C K S K
 (2.29) 

for 0M m M< ≤ with 

    
1

1

1

T

m m m m m

T

m m m m

H H r

H

−

−
−

′ ′ ′ +


′

S C

K C S

≜

≜
 (2.30) 

    

1

1

T

m m m m

T

m m m m

T

m m m m

H H D

r r D R

z z D

−

−

′ ′ ′ −

′ ′ ′−

 ′ ′ ′−

H

z

�

�

�

 (2.31a) 

1:( 1)

1

T

m m m

m m m

R R

D R

−

−

′ =


′ ′

Q

Di�
 (2.31b) 

1:( 1) 1:( 1)

1:
1

m m m

m T

D− − ′− 
=  
 

Q Q
Q

0
 (2.32a) 

1

1

1

1

[  ]

diag( , )

[  ]

T T T

m m m

m m m

T T T

m m m

H

r

z

−

−
−

−

′ ′ ′ =


′=
 ′ ′ ′=

H H

Di Di

z z

 (2.32b) 

and 
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0 0 0 0

0 0 0 0 0

1 1

1

( )

ˆ

T

M M M M

T

M M M M M

− −

−





C H R H

x C H R z

≜

≜
 (2.33a) 

    

0

0 0 0 0

0 0 0

0 0 0

1 1 1

1 2 2 1 2

1 1

1

1:

1:

diag{ , ( ) , ,

                   , ( ) }

T

M

T

M M M M

T

M M M

T

M M M

r r R r R

r R r R

− − −

− −
−

 = −


−


′ =
 ′ =

Di

H Q H

z Q z

K

K
 (2.33b) 

0 0

0

1 1

1 2 1

1:

1

0 1

0 0 1

M M

M

r R R− −
− − −

 
 =  
 
  

R

Q

L

M O O

L

 (2.33c) 

  A proof of this theorem is given in Appendix B. Compared with the conventional RLS in 

Fact 1, the recursive solution to the unconstrained GLS has an additional LRC- decorrelation 

process described by (2.32a) and (2.32b). In reverse, if 
m

R  is diagonal for all m ’s, which 

means 
m

R = 0 , then
m

D′ is always equal to zero. Correspondingly, (2.31a)-(2.32b) can be 

omitted and the recursive procedure is degenerated into Fact 1. In other words, the 

unconstrained RLS is a special case of the solution to the unconstrained GLS. 

2.3.3 Recursive solutions to LE-constrained GLS 

The recursive procedure to the unconstrained GLS in Theorem 1 can be generalized to solve 

the LE-constrained GLS. The corresponding solution is identical to the batch one described in 

the following fact: 

Fact 4 (Batch solution to LE-constrained GLS): Let [  ]T T TH A H
(
� , iff rank( ) N=H

(
, the 

normal equation (2.15) has a unique solution: 

1 1

1

[ ]

ˆ [ ]

T T T

T

− −

+ − +

 =


= + −

C U U H R HU U

x A B CH R z HA B
 (2.34) 

where superscript “+” stands for Moore-Penrose pseudo inverse (MP inverse). U satisfies 

[ ][ ]T =U U U U I% % and col( ) col( )T=U A%  [Zhu&Li07]. “ col( )X ” denotes the space spanned by 
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all the columns of X . A simple proof for Fact 4 is given in Appendix C. Similarly, 

iff rank( )
m

N=H
(

, the LE-constrained GLS (2.10) subject to (2.14) with data up to m has a 

unique solution 

1 1

1

[ ]

ˆ [ ]

T T T

m m m m

T

m m m m m

− −

+ − +

 =


= + −

C U U H R H U U

x A B C H R z H A B
  (2.35) 

These batch solutions (2.34) and (2.35) can be computed recursively, based on the following 

theorem. 

Theorem 2 (LE-constrained recursive GLS): If
0

rank([  ] )T T T

M N=A H and 0M M< , the 

LE-constrained GLS problem defined by (2.10) subject to (2.14), has the following recursive 

solution: 

    
1 1

1

ˆ ˆ ˆ( )
m m m m m m

T

m m m m m

z H− −

−

′ ′= + −


= −

x x K x

C C K S K
  (2.36) 

for 0M m M< ≤ with 

      
0 0 0 0

0 0 0 0 0

1 1[ ]

ˆ ( )

T T T

M M M M

T

M M M M M
B B

− −

+ +




= + −

C U U H R H U U

x A C H z H A

≜
                               (2.37) 

where the involved quantities
m

S ,
m

K ,
m

D ,
m

H ′ ,
m

r′ ,
m

z′ , 1:mQ and so on can be determined by 

(2.30)-(2.32b). A proof is given in Appendix D. Clearly, the recursive solution to the 

LE-constrained GLS problem has the same procedure as the unconstrained one after the 

constraint is properly imposed on the initialization. It is also a method generalized from the 

conventional LE-constrained RLS via applying the LRC decorrelation. In fact, as shown in the 

next subsection, the LE constraint can be treated as a special and simple “observation” and the 

LE-constrained solution can thus be obtained as simply as the unconstrained one. 

2.3.4 Recursive imposition of LE constraints 

Furthermore, the constraint imposition in the LE-constrained GLS can be implemented in a 

more flexible and simpler way, based on the following theorem. 
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Theorem 3 (Recursive LE constraint imposition): Given rank([  ] )T T T N=A H , the 

LE-constrained GLS solution lecC  (and lecx̂ ) in (2.34) has the following properties: 

1) If rank( ) N=H (unconstrained solution ucC thus exists), then 

1

lec uc uc uc uc

1

lec uc uc uc uc

( )

ˆ ˆ ˆ( ) ( )

T T

T T
B

−

−

 = −


= + −

C C C A AC A AC

x x C A AC A Ax
                              (2.38) 

2) If[  ]T T TA H is an N N× matrix, then 

    

1

1

lec lec, 1

1

lec

( [ ] )

ˆ ([  ] ) [  ]

T T

N N

T T T T T T
B

−

−
× −

−

    
=    

    


=

A 0 0
C C A  H

H 0 W

x A H z

�
                         (2.39a) 

3) Given 1 1[  ]=H H A , 1 A1diag( , )=W W W and A1W is PD, if the rows of 1A are all from A , then 

      
1 lec

1 lec
ˆ ˆ

=


=

C C

x x
                                                     (2.39b) 

  where 1x̂ (and 1C ) is the LE-constrained solution which are subject to (2.6) and based on 

observations data having coefficient 1H , weight 1W and value 1 A1[  ]T T T=z z z . The added-in 

auxiliary observation data (See the general definition in Chapter 4) has the same coefficient 

as the constraint related to 1A  but the weight A1W is a given PD matrix. The 

corresponding A1z may be unequal to B . 

4) If 1 2[  ]T T T=A A A and 1rank([  ] )T T T
N=H A , then 

      
lec lec,2

lec lec,2
ˆ ˆ

=


=

C C

x x
                                                    (2.40a) 

with 

1

lec,2 2 lec,1 2 2 lec,1 2 lec,2

lec,2 lec,1 2 lec,2 2

lec,2 lec,1 2 2 2 lec,1

S ,  S

S

ˆ ˆ ˆ( )

T T

T

−


−
 = + −

A C A K C A

C C K K

x x K B A x

� �

�                                 (2.40b) 
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 and 

1 1

lec,1 1 1 1 1

lec,1 1 1 lec,1 1 1

( )

ˆ ( )

T T T

T
B B

− −

+ +

 =


= + −

C U U H R HU U

x A C H z HA
                                 (2.40c) 

where 1 1 1 1[ ][ ]T =U  U U  U I% % and 1 1col( ) col( )T=U A% . 

A proof of Theorem 3 is in Appendix E. In this theorem, Statement 1) provides a formula to 

compute the LE-constrained solution from the corresponding unconstrained solution (if the 

latter exists). Statement 2) presents the specific solution which is exactly determined by the 

observation and constraint. Statement 3) shows that those observations which have the same 

coefficient as the constraint have no effect on the solution. Statement 4) indicates that multiple 

LE constraints can be imposed sequentially.  

In addition, ucC in Statement 1) and lec,1C Statement 4) can both be viewed as special 

initializations for the recursive GLS, within which no constraint or only a part of constraints, 

accompanied by a part of observations, are processed. In Statement 4), the constraints related 

to 2A  can be inserted into any place in the remaining-observation sequence. It is because: the 

observations prior to the constraint 2A plus the existing initialization form a new augmented 

initialization with partial constraints; according to statement 4), after being processed, 

the 2A constraints and the previous observations & constraints compose another new 

initialization. Correspondingly, the fact that the overall procedure leads to the exact GLS 

solution can be shown by Theorem 2. 

In summary, combining Theorems 2 and 3, it can be concluded that the LE constraints can 

be wholly or partially imposed onto the initialization, and they can also be processed posterior 

to the initialization if the corresponding unconstrained solution exists. After the initialization, 

the remaining constraints can be processed sequentially at any place in the to-be-processed 

observation sequence. In other words, an LE constraint plays a role of a special observation 

free of error: 0
A

r = , and the crossing terms between the constraint and other 
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observations/constraints
A

R = 0 . When the constraint is processed in the recursive GLS, 

lec -1 -1 -1
0

limT T T

r
r

→
′ ′= = = +S AC A A C A AC A I                              (2.41) 

where 1−C is the unconstrained/LE-constrained covariance-like matrix prior to the current 

constraint imposition. 

2.3.5 Recursive solution to GLS with Implicit LE constraint 

According to the above observation-constraint unification, the unified observations in the 

LE-constrained GLS problem defined by (2.10) subject to (2.14) has [  ]T T T=H H A
(

 and 

[  ]T T T=z z B
(

, and the corresponding unified weight is  

1diag{ ,[ ]}−= +∞ +∞W R
(

L                                           (2.42a) 

One major challenge using W
(

is that “ +∞ ” may not be exactly expressed in practical 

applications. Alternatively, if we start from the OEC-like matrix 

diag{ , }=R R 0
(

                                                    (2.42b) 

then the unified form of the LE-constrained GLS, as well as the solution, can take advantage of 

the recursive-constraint-imposition formula (2.41) and can thus avoid the possible numerical 

problem caused by infinite weights. 

  More generally, starting from a PSD OEC-like matrix, the unified form of the 

LE-constrained GLS can be extended to resolve some application problems where the LE 

constraint is embedded in the data sequence implicitly. Correspondingly, an equivalent explicit 

GLS formulation and the (recursive) solutions are exploited. This combination of GLS 

formulation and solution is in essence a GLS problem with a set of implicit LE constraints. 

  The recursive solution to the GLS with implicit LE constraint (ILE-constrained GLS) is 

investigated, which is based on the following decorrelation techniques. 

Proposition 2 (LRC decorrelation of a special PSD matrix): Consider the following 

special matrix 
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1 2

2

2 2

a a

a T

a a

R

R r

+ +
+

+ +

 
=  
 

R
R   (Note: not as generic as 1m a= +R )                    (2.43a) 

with
, 1

1

, 1 1, 1

a a a

a T

a a a a

+
+

+ + +

 
=  
 

R R
R

R R
and 2 2 1, 2 

T
T T

a a a a
R R R+ + + +′′ =   , where 2a

r + is a scalar, 1, 1a a+ +R is a 

scalar/square matrix, and vector 2a
R +′′ occupies the same rows as

a
R . If 1a+R is PSD,

a
R is PD, 

and 1rank( ) rank( )
a a+ =R R , then 

1

2 2 2 1 2 2 2diag( ,  )T T

a a a a a a a a
r R R

−
+ + + + + + +′′ ′′= −Q R Q R R

( (
                           (2.43b) 

with

1

2

1

2

1

a a

a

a

T

R
−

+
+

+

′′ −
 =  
  

R
I

Q 0

0

(
. 

This proposition discloses that the last row and column of the PSD matrix 2a+R defined in 

(2.43a) can be diagonalized using
a

R , the leading maximum-rank PD principal minor of 1a+R , 

and the corresponding cross subvector 2a
R +′′ only. A proof is given in Appendix F. 

Furthermore, from [Meyer00], for an arbitrary PSD
m

R as in (2.12), there exists a pair of 

permutation matrices T

m
Q% and

m
Q% with which the orders of the rows and columns of 1m−R  can 

be symmetrically adjusted such that 

1T m m

m m m mT

m m

R

R r

− 
= = 
 

R
Q R Q R

% %
% % %

%
 with 

1

1

*

* *

m

m

−
−

′′ 
=  
 

R
R% , 

and 1 1rank( ) rank( )
m m− −′′ =R R , where

*

m

m

R
R

′′ 
=  
 

% and
m

R′′ comes from the same rows (of 1m−R ) as 

1m−′′R . In other words, 1m−′′R is a maximum-rank PD principal minor of 1m−R  and is promoted 

forwards as in 1m−R%  (with accordance to Proposition 2). All the not-shown terms are marked 

by “* ”. Applying Proposition 2 to
m

R% , we have 

1diag( ,  )T T

m m m m m m m
r−′ ′ ′=Q Q R Q Q R

( (
% % %                                       (2.44) 
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with 1

1

m m

m T

D− −
′ =  

 

I
Q

0

%(
, 

1

1m m

m

R
D

−
−′′ ′′ −

=  
 

R

0
%                                   (2.45a) 

and 1

1

T

m m m m m
r r R R

−
−′ ′′ ′′ ′′= − R                                                  (2.45b) 

Note that the permutation-matrix pair of T

m
Q% and

m
Q% only adjusts the orders of

m
R ’s rows and 

columns and thus turns
m

R and 1m−R into
m

R% and 1m−R% , respectively. The other pair of T

m
′Q

(
 and 

m
′Q

(
 has no effect on the orders of

m
R% ’s rows and columns. Therefore, the reverse pair of 

m
Q%  

and T

m
Q%  can recover the original orders of the adjusted rows and columns of

m
R . Obviously, 

the adjustment also turns 1m−R% into 1m−R . That is, 

1diag( ,  )T T T

m m m m m m m m m
r−′ ′ ′=Q Q Q R Q Q Q R

( (
% % % %                                 (2.46a) 

Namely, 

1diag( ,  )T

m m m m m
r− ′=Q R Q R

( (
                                          (2.46b) 

with 1

1

T m m

m m m m T

D−
 −

′= =  
 

I
Q Q Q Q

0

(
( (

% % .                                       (2.47a) 

Here, the thm row of 
m

Q% has always a form as[  1]T0 , so it can be easily verified that 

        

1

1

1
1

m m

m

m

R
D

−
−′′ ′′ −

 −  
=   

    

R

Q 0

(

%                                         (2.47b) 

In other words, 
m

D
(

is adjusted from
m

D% in such a way: keeping the orders of 1

1m m
R

−
−′′ ′′−R ’s entries 

and inserting these zeros in the “0” of 
m

D%  to those rows which are not occupied by 1m−′′R . 

Actually, these zero rows have no effect on the LRC decorrelation. That is, 

1

1

T T

m m m m m m m m
r r D R r R R

−
−′ ′′ ′′ ′′= − = − R

(
                                      (2.48a) 

Similarly, 

1

1 1 1

1

1 1 1

T T

m m m m m m m m

T T

m m m m m m m m

H H D H R

z z D z R

−
− − −

−
− − −

 ′ ′′ ′′ ′′− = −

′ ′′ ′′ ′′− = −

H R H

z R z

(
�

(
�

                              (2.48b) 
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where 1m−′′H occupies the rows of 1m−H which have the same (row) numbers as those of 1m−′′R  in 

1m−R , so is 1m−′′z . In brief, the last row and column of a PSD matrix
m

R can always be 

diagonalized using a pair of T

m
Q
(

and
m

Q
(

. 
m

D
(

 in
m

Q
(

, as well as
m

D% , depends only on 1m−′′R (a 

maximum-rank PD principal minor of 1m−R ) and the corresponding cross subvector
m

R′′ . To 

determine 1m−′′R , the following proposition can be utilized. 

Proposition 3 (Determination of maximum-rank PD principal minor): Consider the 

following PSD (or PD) matrix 

1

1

1 1

a a

a T

a a

R

R r

+
+

+ +

 
=  
 

R
R  

Suppose that 
a
′′R  is a maximum-rank PD minor of

a
R . Correspondingly, 1a

R + ’s subvector 

1a
R +′′  occupies the same rows as

a
′′R does. If 1

1 1 1 1( ) 0T

a a a a a
r r R R

−
+ + + +′ ′′ ′′ ′′− ≠R� , then 

1

1

1 1

a a

a T

a a

R

R r

+
+

+ +

′′ ′′ 
′′ =  ′′ 

R
R is a maximum-rank PD minor of 1a+R ; otherwise, if 1 0

a
r +′ = , then 

a
′′R  is a 

maximum-rank PD principal minor of 1a+R . 

  A proof of Proposition 3 is given in Appendix G. Using Proposition 3, a maximum-rank PD 

principal minor of each 
m

R  can be determined recursively. The implementation of 

Proposition 3 is presented in Procedure 1 in Sec. 2.4. Based on Propositions 2 and 3, we define 

the generalized LRC decorrelation as follows. 

Definition 2 (Generalized LRC decorrelation): Given a PSD 
m

R  as in (2.12), the pair of 

T

m
Q
(

 and 
m

Q
(

 defined by (2.47a) can perform a decorrelation over the last row and column (as 

in (2.46b)). 

  Clearly, after applying a set of successive generalized LRC decorrelations to
m

R , we can 

draw a conclusion similar to Proposition 1 as follows. 
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Proposition 4 (Inverse decomposition of a PSD matrix): Given PSD 
m

R  as in (2.12) 

with 1 1 0r= ≠R , the following equalities hold for 1 m M< ≤ , 

1: 1: 1 2diag{ , , , }T

m m m m
r r r′ ′=Q R Q

( (
L                                         (2.49) 

with

2

1:

1

0 1

0 0 1

m

m

D D − −
 
 =
 
 
  

Q

( (
L

(

M O O

L

                                          (2.50a) 

where
m

r′ and
m

D
(

are defined as in (2.45b) and (2.47a), respectively. 

It is clear that 1:mQ
(

can be obtained recursively as 

   1:( 1)
1:

0 1

m m

m

D−
 −

=  
 

Q
Q

( (
(

                                              (2.50b) 

which is similar to (2.28d). In addition, it can also be verified that 

    
1: 1 2

1: 1 2

[  ]

[  ]

T T T T T

m m m m

T T T T T

m m m m

z z z

H H H

 ′ ′ ′=


′ ′ ′=

z Q z

H Q H

(
� L

(
� L

                                     (2.51) 

where
m

z′ and
m

H ′ are defined in (2.48b).  

Particularly, if 1 0r = , the decorrelation starts from the first m′with 0
m

r ′ ≠ . 

Based on the above inverse decomposition, the ILE-constrained GLS, which in essence is 

GLS with implicit LE constraints, can be defined as follows. 

Definition 3 (ILE-constrained GLS): For a GLS problem with data z , coefficient H and 

PSD OEC-like matrix R (as in (2.12)), there exists 1:MQ
(

defined as in (2.50a) such that 

    

1: 1: 1 2

1:

1:

diag{ , , , } diag{ }

[ ]

[ ]

T

M M M m

T T T

M m

T T T

M m

r r r r

z

H

 ′ ′ ′ ′= = =
 ′ ′= =
 ′ ′= =

R Q RQ

z Q z

H Q H

( (
K L L

(
L L

(
L L

                      (2.52a) 

Let 

1 2diag{ , , , }
M

r r r ∗
∗ ∗ ∗=R K                                              (2.52b) 
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where sequence 1 2, , ,
M

r r r ∗
∗ ∗
K contains all the nonzero diagonal elements of ′R in the original 

order. ∗z and ∗H store the elements of ′z and ′H from the same rows, respectively. In 

reverse, zo and Ho store the remaining columns of ′z and ′H corresponding to the zero diagonal 

elements of ′R , respectively, where the possible components having all-zero coefficients have 

been ruled out. The solution to the ILE-constrained GLS is then equivalent to solving the 

following LE-constrained problem: 

 1ˆ min( ) ( )

. .  

T

s t

∗ ∗ ∗ − ∗ ∗ = − −


=

x
x z H x R z H x

H x zo o

                                    (2.53) 

It is clear that the problem (2.53) can be solved recursively. Note that, in Sec. 2.3.4, it has 

been shown that (multiple) LE constraints can be processed sequentially in an arbitrary order 

and each piece can be inserted in any place in the observation sequence. Consequently, the 

constraint data (denoted by Hoand zo ) and the observation data (by ∗H , ∗z  and ∗R ) can be 

arranged in the original order as in ′H , ′z , and ′R . Combined with the recursive inverse 

decomposition in Proposition 4, the recursive solution to the ILE-constrained GLS is 

developed as follows. 

Theorem 4 (Recursive ILE-constrained GLS): If
0

rank( )
M

N=H , 0M M< , and the 

LE-constraint coefficient Ho is of full row rank, the ILE-constrained GLS problem described by 

Definition 3 has the following recursive solution: 

1 1

1

ˆ ˆ ˆ( )
m m m m m m

T

m m m m m

z H− −

−

′ ′= + −


= −

x x K x

C C K S K
                                        (2.54) 

for 0M m M< ≤ with 

1

1

1

T

m m m m m

T

m m m m

H H r

H

−

−
−

′ ′ ′ +


′

S C

K C S

≜

≜
                                              (2.55) 

1

1

1

1 1 1

1

1 1 1

T T

m m m m m m m m

T T

m m m m m m m m

T T

m m m m m m m m

r r D R r R R

H H D H R

z z D z R

−
−

−
− − −

−
− − −

 ′ ′′ ′′ ′′= − = −


′ ′′ ′′ ′′− = −
 ′ ′′ ′′ ′′− = −

R

H R H

z R z

(

(
�

(
�

                               (2.56) 

and 
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0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

  1 1

  1

[ ]

ˆ ( )

T T T

M M M M M M M M

T

M M M M M M M M M M

∗ ∗ − ∗ −

+ ∗ ∗ − ∗ ∗ +

 =


= + −

C U U H R H U U

x H z C H R z H H z� � � �
                        (2.57) 

where
0M

∗z ,
0M

∗H ,
0M

∗R ,
0Mzo and

0MHo are the components of ∗z , ∗H , ∗R , zo and Ho in (2.53) which 

are related to the first 0M data pieces (for an initialization). Actually, the term 1

1

T

m m
R

−
−′′ ′′R  in 

(2.56) can also be obtained recursively using reduced computation, which is presented in detail 

by Procedure 2 in Sec 2.4 (see (2.69) and (2.70)). 

  In this theorem, two conditions need to be satisfied, which require Ho  to be of full row rank 

and
0M

H to be of full column rank, respectively. The first one requires that no redundant 

constraint exist in the LE constraint set. Note that, different from Theorem 2, constraint 

redundancy checking is needed in Theorem 4 because the constraint set is implicitly contained 

in data and incorrectly recorded data may cause redundant constraints. Regarding the second 

one, it can be easily shown that 

0 0 0 0 01: [   ]T T T T T

M M M M M

∗=H Q Q H Ho
(

%                                          (2.58) 

So 
0 0 0

rank( ) rank([   ] )T T T

M M M

∗=H H Ho . According to Theorem 2, iff these two conditions are 

satisfied, an exact initialization, as well as the unique ILE-constrained GLS solution, is 

guaranteed. Subsequently, efficient tools for checking the two conditions are also developed: 

The follow-up Theorem 5 can check the constraint redundancy in an easy way; Chapter 3 will 

further handle issues related to the exact initialization, such as: i) how to check the rank of the 

coefficient matrix efficiently, ii) how to perform an exact initialization recursively, and iii) 

how to deal with the deficient-rank situation from a simple practical viewpoint. 

Theorem 5 (Detection of redundant LE constraints): In the LE-constrained GLS defined 

by (2.10) and subject to =Ax B% % with 1 2[  ]T T T
A=A A% , given 1rank([  ] )T T T

N=H A and 

11rank( )
A

N=A , then rank( )
A

N=A %
% iff 

2 0≠S                                                             (2.59) 
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where 2 2 1 2

T
A AS C� , 1 1

1 1 1 1 1 1 1 1[ ( ) ]T T T− −=C U U H R H U U , and 1U satisfies 1 1 1 1[ ][ ]T =U  U U  U I% %  and 

1 1col( ) col( )T=U A% .  

A proof of Theorem 5 is given in Appendix H. This theorem indicates that no extra work but 

simply calculating 
m

S  can tell whether a piece of new LE constraint is redundant with respect 

to the processed ones or not. Once a redundant constraint is detected, a further judgment on 

constraint consistency can be made by comparing 2 1
ˆA x and 2B . That is, if 2 1 2

ˆA B=x , then the 

constraint 2 2A B=x  has already been previously “imposed” and can thus be ignored. 

Otherwise, if 2 1 2
ˆA B≠x , then the constraint is inconsistent with one or more 

previously-imposed constraint. Note that, in practical applications, the constraint inconsistency 

is mostly caused by incorrectly-recorded data. Therefore, data correctness needs to be 

rechecked if an inconsistent LE constraint is found. Finally, it can be verified that the solution 

of the LE-constrained GLS is identical to that of the corresponding ILE-constrained GLS with 

a PSD OEC-like matrix. Therefore, the latter is a unified and generalized recursive GLS. 

2.4 Unified Procedures and Algorithms 

During the course of decorrelating the PSD OEC-like matrix, the LRC decorrelation 

employs only a maximum-rank PD principal minor of the to-be-decorrelated matrix as well as 

the corresponding cross subvector. Therefore, the determination of a maximum-rank PD 

principal minor is crucial. This work can be handled by the following recursive procedure 

efficiently. 

Procedure 1: Determination of maximum-rank PD principal minor 

1) 1m = , 1m
∗ = , 

D

1 1mm
r∗ ′′= = =R R R  ( 1 0r ≠ ) 

R_o 1
m
=  

2) : 1m m= + : 
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Using the row numbers in 1R_o
m− , pick

m
R′′ out of

m
R ; 

1

1

T

m m m m m
r r R R

−
−′ ′′ ′′ ′′= − R  

2.1) If 0
m

r′ = , then 

1m m−′′ ′′=R R  

2.2) If 0
m

r′ ≠ , then : 1m m
∗ ∗= + : 

D

mm
R R∗ ′′=                                                        (2.60a) 

1D m m

m Tm
m m

R

R r
∗

−′′ ′′ 
′′= =  ′′ 

R
R R                                           (2.60b) 

R_o [R_o  ]
m m

m=  

3) Repeat 2) till m M= . 

Here, m
∗ is used to index different recorded maximum-rank PD principal minors. This 

indexing method can bring convenience to the follow-up procedure design. 

  Note that Procedure 1 is mainly for the use of illustrating the determination of
m
′′R . In fact, 

in the recursive ILE-constrained GLS, it is 1

m

−′′R  (or D -1( )
m
∗R identically) that is directly involved 

in the computation. According to Proposition 1, there exists 

D D D 1 D

1 2 1 1

D

1:( )

1 ( )

0 1

0 0 1

m m

m

R R∗ ∗

∗

−

− −
 − −
 
 =
 
 
 

R R

Q

L

M O O

L

- 1（ ）

                          (2.61) 

such that 

D -1 D 1 D 1 D 1 D 

1 21:( ) 1:( )
( ) diag{ , ( ) , , ( ) } T

m m m m
r r r∗ ∗ ∗ ∗
− − −= ⋅ ⋅R Q QK                         (2.62) 

where it can be easily verified that, for 1 i m
∗< ≤ , 

D

i i
r r

∗=                                                            (2.63) 
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Therefore, (2.62) shows that the calculation of D -1( )
m
∗R  can take advantage of the 

previously-processed decorrelations, just as in Theorem 1. In addition, D

1:( )m
∗Q  can also be 

obtained recursively from D

1:( 1)m
∗−

Q and D 1 D

1 1
( )

m m
R∗ ∗

−

− −
R . Both of these facts are adopted in the 

following recursive procedure to solve the ILE-constrained GLS comprehensively: 

Procedure 2: Recursive ILE-constrained GLS  

1) Initialization: 0m M= , 0m M
∗ ∗=                                                                    

    
0

0
ˆ ˆ

m M

m M

=


=

C C

x x
  (Same as in (2.56))                                      (2.64) 

0 0

0

1 D D 1 D

1 2 1

D

1:

1 ( )

0 1

0 0 1

M M

M

r R R∗ ∗

∗

− −

−
 − −
 
 =  
 
  

R

Q

L

M O O

L

                               (2.65) 

0

D

m Mm
∗ ′′ ′′= =R R R                                                    (2.66) 

0

0 00

0 00

1 1 1

1 2

D 

1:

D 

1:

diag{ , , , }
m M

T

M Mm M

T

M Mm M

r r r∗ ∗

∗ ∗

∗ ∗

∗ − ∗− ∗−

∗ ∗

∗ ∗

 =

 ′′= =


′′= =

Di

z Q z z

H Q H H

K

                                         (2.67) 

0
R_o R_o

m M
= ;

0
R_c R_c

m M
=                                         (2.68) 

  where
0

R_o
M

stores the row (and column) numbers of
0M

′′R in
0M

R and
0

R_cM stores all the other 

row numbers in
0M

R . 0M
∗ is dimension of

0M
′′R . Redundant LE constraints have been fixed. 

2) Recursion: : 1m m= +  

2.1) Direct data processing: 

         Using the row numbers in 1R_o
m− , pick

m
R′′ out of

m
R ; 

          

D 

1:

T

m mm

m mm

R R

D R

∗

∗
∗

′ ′′ =


′ ′

Q

Di�
                                               (2.69) 
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T

m m m m

T

m m m m

T

m m m m

r r R D

H H D

z z D

∗

∗

∗

∗

 ′ ′ ′= −
 ′ ′= −

′ ′= −

H

z

                                          (2.70) 

          
1

1

1

T

m m m m m

T

m m m m

H H r

H

−

−
−

′ ′ ′ +


′

S C

K C S

≜

≜
                                        (2.71) 

2.1.1) If 0
m
≠S , 

            
1 1

1

ˆ ˆ ˆ( )
m m m m m m

T

m m m m m

z H− −

−

′ ′= + −


= −

x x K x

C C K S K
                              (2.72) 

2.1.2) If 0
m
=S ( redundant LE constraint), 

            Fix the constraint set recorded by R_c
m

; 

2.2) Reserve-data processing: 

2.2.1) If 0
m

r′ = (constraint), 

            1R_o R_o
m m−= ; 1R_c [R_c  ]

m m
m−=                          (2.73) 

    2.2.2) If 0
m

r′ ≠ (observation), 

          1R_o [R_o  ]
m m

m−= ; 1R_c R_c
m m−=                          (2.74) 

          : 1m m
∗ ∗= +                                              (2.75) 

D D

D 1:( 1) 1:( 1)

1:
1

mm m

m T

D∗ ∗

∗
− −

′ −
=  
  

Q Q
Q

0
                              (2.76) 

          

1

1

1

1

diag{ , }

[  ]

[  ]

m m m

T T T

m m m

T T T

m m m

r

H

z

∗ ∗ −
∗ ∗−

∗ ∗
∗ ∗−

∗ ∗
∗ ∗−

′ =


′=
 ′=

Di Di

H H

z z

                                  (2.77) 

3) Go to 2) till m M= . 

  Particularly, in the Initialization described by step 1), the determination of the initial values 

0M
C  and 

0
ˆ

M
x  in (2.64) can be completed by the work in Chapter 3. 
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2.5 Performance Analysis 

  As a generalized approach, the recursive GLS inherits the recursion-oriented advantages of 

the conventional RLS [Zhu&Li07]. It remains a recursive form. The overall computation is 

free of direct matrix-inverse operation although matrix inverses are involved in both the 

EEC-like matrices and the weight calculations. Particularly, it is also revealed that the LE 

constraint can be recursively imposed as a special and even simplified observation set without 

resorting to MP-inverse operation. Therefore, the recursive GLS has much more reduced 

computational complexity than traditional LE-constrained GLS methods and is thus suitable 

for real-time applications. That is, the number of algebraic operations, as well as that of the 

required memory locations, is of 2( )O m (order of 2
m ) at the thm recursion cycle while the 

corresponding batch solutions can cost as high as 2( )O M N . Note that, because of the 

increment of nonzero elements contained in each 
m

R  (i.e.,
m

R ) amounts to m , the operations 

in each cycle may not remain fixed but increase with m . It is because the terms D 

1:

T

m mm
R R∗′ ′′=Q in 

(2.69) and T

m m m m
H H D ∗

∗′ ′= − H  introduce increasingly more computation during the course of 

data accumulation. In particular, the major computation in the step of reserve-data processing 

as in 2.2) can be handled in two parallel threads since the formulae (2.70)-(2.72) and the 

formulae (2.74)-(2.77) do not rely on each other. 

2.6 Appendix 

2.6.1 Appendix A 

Proof of Proposition 1:  

According to (2.25), for 1 m M< ≤ , we have 

T

m m m m
′=Q R Q R  

So  1 1( )T

m m m m

− −′=R Q R Q                                                 

1 1

1( ) diag{ , }T

m m m m
r

− −
− ′= ⋅ ⋅Q R Q  
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1 1

1 11 1

1

( )
( ) diag{ , }

1 1

T

T m m

m m m mT T
r

− −
− −− −

−

   
′ ′= ⋅ ⋅   

   

Q 0 Q 0
Q R Q

0 0
                    (2.78) 

Further diagonalizing 1m−′R in the similar way, we can get that 

1 1

1: 1 2 1:( ) diag{ , , , }T

m m m m
r r r

− −′ ′= ⋅ ⋅R Q QL                                    (2.79) 

with 

1 1

1 12 1

1:
1

m

m mT T

− −
− −−   

   
   

Q 0 Q 0
Q Q

0 I 0
� L  

Equivalently, 

    
1 2

1:
1

m

m m T T

−   
   
   

Q 0 Q 0
Q Q

0 0 I
� L  

21

0 1

0 0 1

mD D− − 
 
 =
 
 
 

L

M O O

L

                                          (2.80) 

From (2.79), 

1: 1: 1 2diag{ , , , }T

m m m m
r r r′ ′=Q R Q L . Done. 

2.6.2 Appendix B 

Proof of Theorem 1: 

According to (2.78), 

1 1 1

1diag{ ,  } T

m m m m m
r

− − −
− ′= ⋅ ⋅R Q R Q  

Then it can be verified that 

        1T

m m m

−
H R H  

1 1

1 1 1[  ] diag{ ,  } [  ]T T T T T T

m m m m m m m m
H r H

− −
− − −′= ⋅ ⋅H Q R Q H  

     1 1

1 1 1

T T

m m m m m m
H r H

− −
− − − ′ ′ ′= +H R H                                        (2.81) 
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with

1

1 1

1

1

1

1 1

T

m m m m m

T

m m m m m

T

m m m m m

H H R

r r R R

z z R

−
− −

−
−

−
− −

′ = −

′ = −

 ′ = −

R H

R

R z

                                             (2.82) 

Furthermore, the fact that
0

rank( )
M

N=H  ensures the existence of 1m−C (for 0M m M< ≤ ). 

Therefore, similar to the conventional RLS in Fact 1 [Zhu&Li07], we can show from (2.22) 

that 

1 1( )T

m m m m

− −
C H R H�  

1 1 1

1 1 1( )T T

m m m m m m
H r H

− − −
− − − ′ ′ ′= +H R H  

1

1 1 ( )T T

m m m m m m m m m
H H H r H

−
− − ′ ′ ′ ′ ′= − +C C C C  

1 1 1

T

m m m m m m m m
H− − −′= − = −C K C C K S K                                (2.83) 

and 

  1ˆ T

m m m m m

−=x C H R z  

    1 1

1 1 1[  ] diag{ ,  } [  ]T T T T T T

m m m m m m m m m
H r z

− −
− − −′= ⋅ ⋅C H Q R Q z  

1 1

1 1 1[  ] diag{ ,  } [  ]T T T T T

m m m m m m m
H r z

− −
− − −′ ′ ′= ⋅ ⋅C H R z  

1 1

1 1 1

T T

m m m m m m m m
H r z

− −
− − − ′ ′ ′= +C H R z C

 

According to (2.83), 

1 1

1 1 1 1 1 1 1 1( )T T

m m m m m m m m m m m
H

− −
− − − − − − − −′= −C H R z I K C H R z   

1 1
ˆ( )

m m m m
H− −′= −I K x  

1 1 1

1 1 1 1[ ( ) ]T T T T

m m m m m m m m m m m m m m m m
H r z H H H r H H r z

− − −
− − − −′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′= − +C C I C C  

1 1

1 1 1 1( ) [ ]T T T T

m m m m m m m m m m m m m m m
H H H r H H r H H r z

− −
− − − −′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′= + + −C C C C  

m m
z′= K  

As a result, for 0M m M< ≤ , 
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1 1
ˆ ˆ ˆ( )

m m m m m m
z H− −′ ′= + −x x K x  

Eventually,  

    

1 1 1

1 1

1 1

1

ˆ ( )

ˆ ˆ     ( )

( )

T T

M

M M M M M

T T

M M M M M

z H

− − −

− −

− −
−

 =
 ′ ′= + −
 = = −

x H R H H R z

x K x

C H R H C K S K

                                 (2.84) 

which is identical to the batch solution (2.23). 

Furthermore, according to Proposition 1, for1 m M< ≤ , 

    1

1m m m
D R

−
−= R  

       1:( 1) 1 1:( 1)

T

m m m mR− − −=Q Di Q                                      

1:( 1) 1 1:( 1)m m m m m
R D− − −′ ′= =Q Di Q                                        (2.85) 

So in (2.83), 

1

1 1

T

m m m m m
H H R

−
− −′ = − R H 1:( 1) 1 1

T T T

m m m m m m mH D H D− − −′ ′ ′= − = −Q H H  

T

m m m m
r r D R′ ′ ′= − , and 1

T

m m m m
z z D −′ ′ ′= − z  

Correspondingly, 

    
1:( 1) 1:( 1) 1:( 1)

1:
1 1

m m m m m

m T T

D D− − − ′− −   
= =   
   

Q Q Q
Q

0 0
 

and the formulae at 0m M= come from the definitions. 

2.6.3 Appendix C 

Proof of Fact 4: 

Since R is PD, there exists
1
2

−
R such that

1 1
2 2( )T− −=R R and

1 1
2 2 1− − −=R R R . Then (2.15) can be 

rewritten as 

ˆ( )T T T

B

′ ′ ′ ′    
=    

    

xH H A H z

λA 0
                                         (2.86) 

with
1
2

−′ =H R H and
1
2

−′ =z R z . Applying (1.11) (according to [Zhu&Li07]), iff 
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rank([  ] )T T T N′ =A H , (2.86) as well as (2.15) has a unique solution as 

1

1
[ ( ) ]

ˆ ( )

MT T T

m mm

T

H H

B B

−

=

+ +

 ′ ′=


′ ′ ′= + −

∑C U U U U

x A CH z H A
                                      (2.87) 

Here, (2.87) is identical to (2.34). In addition, 

1
2[  ] diag( ,  )[  ]T T T T T T−′ =A H I R A H . 

Therefore, 

rank([  ] ) rank([  ] )T T T T T T′ =A H A H                                     (2.88) 

Fact 4 is thus proven. 

2.6.4 Appendix D 

Proof of Theorem 2: 

Since
0

rank([  ] )T T T

M N=A H , 
m

T ( 1 1( )T T

m m m

− −
U H R H U� ) exists for 0M m M< ≤ . Similar to 

(2.83), we have 

1 1 1

1 1 1

T T T

m m m m m m m m m
H r H

− − −
− − − ′ ′ ′= +H R H H R H  

So 

1 1[ ]T T T

m m m m

− −=C U U H R H U U  

1 1 1

1 1 1[ ]T T T T T

m m m m m m
H r H

− − −
− − − ′ ′ ′= +U U H R H U U U U                          (2.89) 

Applying (2.22) to the matrix inverse in (2.89), we get 

1

1 1 1 1[ ( ) ]T T T T T

m m m m m m m m m
H H H r

−
− − − −′ ′ ′ ′= − +C U T T U UT U UT U  

Note that 1 1

T

m m− −=UT U C . Therefore, 

1

1 1 1 1( )T T

m m m m m m m m m m
H H H r H

−
− − − −′ ′ ′ ′ ′= − +C C C C C  

1

T

m m m m−= −C K S K                                               (2.90) 

According to (2.35),  

1ˆ [ ]T

m m m m m m
B B

+ − += + −x A C H R z H A  
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Similar to the proof of Theorem 1, by substituting
m

C with (2.90), we can show that 

1 1
ˆ ˆ ˆ( )

m m m m m m
z H− −′ ′= + −x x K x                                          (2.91) 

2.6.5 Appendix E 

Proof of Theorem 3: 

Statement 1): 

  This well-known result can be verified from the normal equation (2.15) explicitly. It 

discloses that, if rank( ) N=H , lecC can be computed from ucC ( 1 1( )T − −= H R H ) conveniently 

via “deducting” a constraint-related term. 

Statement 2): 

  Since[  ]T T TA H is a full-rank square matrix, lecx̂ is an exactly-determined GLS solution: 

  1

lec 1 2 1 2
ˆ ([  ] ) [  ] [  ][  ]T T T T T T T T T−= = +x A H B z T T B z TB T z�                   (2.93) 

According to (2.34), we also have 

  1 1

lec lec lec
ˆ ( )T T+ − + −= − +x A C H R HA B C H R z                               (2.94) 

These two lecx̂ ’s are identical for arbitrary z and B , so 

   1

1 lec

T+ − += −T A C H R HA , 1

2 lec

T −=T C H R  

In lec,N N×C defined in (2.39a), replace 1([  ] )T T T −A H with 1 2[  ]T T , then 

   1

lec, 2 2 lec lec

T T

N N

−
× = =C T RT C H R HC                                     (2.95) 

Substituting 1 1[ ( ) ]T T T− −U U H R H U U for lecC , we get 

1 1

lec, lec[ ( ) ]T T T

N N

− −
× = =C U U H R H U U C . 

Similarly, lec, lec
ˆ ˆ

N N× =x x . 

Statement 3): 

  We have  
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    1

1 lec 1 1 1 1[ ( ) ]T T T−=A C A U U H W H U U                                      (2.96) 

where[ ][ ]T =U U U U I% % and col( ) col( )T=U A% .  

Since the rows of 1A are all from A ,  

1 =A U 0 , 1 lec =A C 0 .                                               (2.97) 

Compute 1C from lecC : 

    1 1

1 lec lec 1 1 lec 1 1 1 lec( )T T

A

− −= − +C C C A A C A W A C                              (2.98) 

Taking (2.97) in, we get 

1 lec=C C                                                           (2.99) 

Similarly, 1 lec
ˆ ˆ=x x . End. 

Statement 4): 

  Let
1
2

−′ =H R H and
1
2

−′ =z R z . Then the original LE-constrained GLS is equivalently 

transformed to the following LE-constrained LS:  

ˆ arg min J=
x

x                                                     (2.100a) 

with ( ) ( )TJ ′ ′ ′ ′= − −z H x z H x                                             (2.100b) 

subject to 

    =Ax B                                                          (2.100c) 

Correspondingly, we also have 

1 1 1

lec,1 1 1 1 1 1 1 1 1

lec,1 1 1 lec,1 1 1 1 1 lec,1 1 1

( ) ( )

ˆ ( ) ( )

T T T T T T

T T
B B B B

− − −

+ + + +

′ ′ = =


′ ′ ′= + − = + −

C U U H R HU U U U H H U U

x A C H z HA A C H z H A
          (2.101) 

Then the Statement 2) is equivalent to that 

    
lec lec,2

lec lec,2
ˆ ˆ

′ =
 ′ =

C C

x x
                                                      (2.102) 

A proof of this LS problem will be presented in Chapter 3. 

 



 53 

2.6.6 Appendix F 

Proof of Proposition 2: 

Let
1

, 1

1

a a a a

a T

−
+

+

 −
=  
 

I R R
Q

0 I

(
and 

1 1

, 1 2

1

a a a a a a

T

T

R
− −

+ +′′ − −
 

=  
  

I R R R

Q 0 I 0

0 0

(
. 

Clearly, 1a+Q
(

, 2a+Q
(

andQ
(

all have full rank. We have 

1

1 1 1 1, 1 , 1 , 1diag( ,  )T T

a a a a a a a a a a a

−
+ + + + + + += −Q R Q R R R R R

( (
                      (2.103) 

Since 1rank( ) rank( )
a a+ =R R , 

1

1, 1 1, 1 , 1 , 1

T

a a a a a a a a a

−
+ + + + + +′ = − =R R R R R 0                                  (2.104) 

Furthermore, 

2 1, 1 1, 2

1

1, 2 2 2 2

a

T T

a a a a a

T T T

a a a a a a

R

R r R R

+ + + + +
−

+ + + + +

 
 ′ ′=  
 ′ ′′ ′′− 

R 0 0

Q R Q 0 R

0 R

( (
                         (2.105) 

with 1

1, 2 1, 2 , 1 2

T

a a a a a a a aR R R
−

+ + + + + +′ ′′= −R R  and 1, 1 0
a a+ +′ =R  (from (2.104)). If 1, 2a a

R + +′ ≠ 0 , 

1, 1 1, 2

1

1, 2 2 2 2

rank 2
a a a a

T T

a a a a a a

R

R r R R

+ + + +
−

+ + + + +

′ ′  
≥   ′ ′′ ′′−  

R

R
 

which implies that 1rank( ) rank( ) 2
m m+ ≥ +R R . It is a contradiction. Therefore, 

1

1, 2 1, 2 , 1 2

1

1, 2 2 , 1

T

a a a a a a a a

T T T

a a a a a a

R R R

R R

−
+ + + + + +

−
+ + + +

′ ′′ = − =


′′− =

R R 0

R R 0
                                  (2.106) 

Applying (2.106) to 2 2 2

T

a a a+ + +Q R Q
( (

, (2.43b) is thus proven. 

2.6.7 Appendix G 

Proof of Proposition 3: 

Since 1 0r ≠ , we have 
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1

1 1

1 1 1 11 1

T

a a a

T T T T

a a a a a a

R

R r R R r

+
− −

+ + + +

′′ ′′ ′′       
=       ′′ ′′ ′ ′′ ′′ ′′       

I 0 R 0 I 0 R

R 0 R
 

It is clear that
1

1 1T

a aR
−

+

 
 ′′ ′′ 

I 0

R
is a full-rank square matrix.  

Therefore, if 1 0
a

r +′ ≠ , then 
1

a

T

ar +

′′ 
 ′ 

R 0

0
, as well as

1

1

a a

T

a

R

R r

+

+

′′ ′′ 
 ′′ 

R
, is PD. Thus, 

1

1

1

a a

a T

a

R

R r

+
+

+

′′ ′′ 
′′ =  ′′ 

R
R is a maximum-rank PD principal minor of 1a+R .  

If 1 0
a

r +′ = , then 1a+R can be diagonalized as diag( ,  0)
a

R . Thus, 1rank( ) rank( )
a a+ =R R . 

a
′′R is still a maximum-rank PD principal minor of 1a+R . 

2.6.8 Appendix H 

Proof of Theorem 5: 

1 1 1 1[ ][ ]T =U  U U  U I% % and 1 1col( ) col( )T=U A%  imply that, for an arbitrary row vector
a

A , 

1

T

a
A =U 0 ⇔ 1col( )T T

a
A ∈ A .                                         (2.107) 

First, if A%  has full row rank, then 2 1col( )T T
A ∉ A . According to (2.107), we have 2 1

T
A ≠U 0 . 

As a result, 

1 1

2 2 1 1 1 1 2( ) 0T T T T
A A

− −= ≠S U U H R HU U . 

Second, if A% does not have full row rank but 1A does, then 2 1col( )T T
A ∈ A . So 2 1

T
A =U 0 and 

1 1

2 2 1 1 1 1 2( ) 0T T T T
A A

− −= =S U U H R HU U  

Hence, the theorem is proven. 
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Chapter 3: Completely Recursive Least Squares—Part II: 

Recursive Initialization and Deficient-Rank Processing 

 

3.1 Introduction  

3.1.1 Background 

As reviewed in Chapter 1, a great many methods have been developed to solve the 

fundamental and classic problem of linear LS, among which the matrix-inversion-lemma (MI 

lemma) based recursive least-squares (RLS) is a milestone. The RLS provides LS solutions in 

a sequential way and is thus excellent in computation and storage [Albert65]. It is very suitable 

to real-time LS applications and has been widely applied into such areas as signal processing, 

control and communication [Goodwin77] [Ljung87] [Chen85] [Haykin01] [Passion98] 

[Mikles07]. 

The RLS was originally applied to solve unconstrained LS problems [Albert65], in which 

the equivalency between the recursive and the corresponding batch LS solutions is guaranteed 

once the MI-lemma based recursion starts from an exact LS solution on the full-rank initial 

data. Recently, reference [Zhou&Li07] discovers that the exact solutions of the linear-equality 

(LE) constrained LS problem can be obtained by the same (unconstrained) recursion cycle, 

provided that the RLS procedure is appropriately initialized. We aim to make the 

unconstrained RLS “complete” in two aspects: in Chapter 2 (Part I), a unified recursive 

procedure for all LS, WLS and GLS problems with or without LE constraints is developed, 

where an accompanying recursive decorrelation procedure is utilized; in this chapter, we 

continue discussing appropriate RLS initialization techniques. As reviewed in Sec. 1.4.2, less 

attention has been paid to the RLS initialization in the low-dimensional and high-redundancy 

environment. However, for high-dimensional and low-redundancy applications, such as power 

system state estimation, it is necessary to develop an efficient exact RLS initialization. In the 

existing methods reviewed in Sec. 1.4.2, approximate ones usually are not robust because a 
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better approximation can lead to a poorer numerical condition [Albert65]; it is also not always 

realistic to start the recursion with forgoing data having special observation functions for 

simple exact initializations [Haykin01] [Hubing91] [Albert65]. Reference [Zhou02] introduces 

variants of the Greville formula (order recursion) to develop recursive initializations for RLS. 

We will study a simple recursive initialization method for RLS, where only the RLS formulae 

are used. In addition, two accessorial issues should also be studied. One is whether and when 

the foregoing observations can support an exact and unique RLS initialization, namely 

(parameter) observability analysis (or rank check) in engineering. A good practical 

observability analysis tool is expected to distinguish theoretical rank deficiency and numerical 

rank deficiency (see Sec. 1.4.2). The second issue is how to deal with problems with 

insufficient observations. Although the minimum-norm solution, which is the one (among 

infinitely many feasible estimates) has the minimum norm and also has a simple analytical 

form in batch, is widely adopted in theory [Lawson95] [Zhou02], other choices that may bring 

more convenience in practice should also be considered.  

Exploiting an efficient and exact initialization for RLS, including the implicit rank check 

and deficient-rank processing, is worthwhile and expected to make the RLS more applicable to 

large-dimensional applications where exact initializations are costly. 

3.1.2 Our Work 

This chapter treats the initialization-related issues in the RLS problems, including rank 

check, a convenient method to compute the involved matrix inverse/pseudoinverse, and 

resolution of underdetermined systems. No extra non-RLS formula but an 

auxiliary-observation based procedure is utilized.  

The main ideas include: a) introducing a set of simple auxiliary observations to construct a 

simple fake RLS initialization; b) developing a series of simple tools to detect and remove 

these auxiliary observations as soon as possible (ASAP). More concretely, with our method, 

1) The RWLS recursion can start from the first real observation and possible LE constraints 

are also imposed recursively; 
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2) The rank of the system is checked implicitly. If the rank is full, the initialization and the 

subsequent RLS cycles can be integrated as a whole to yield exact LS solutions; 

3) If the rank is deficient, the procedure provides a mapping from the unobservable 

(original) estimand to a reduced-dimensional set of alternative variables which are linear 

combinations of the original variables and uniquely determined. The consequent estimate is a 

set of refined non-redundant observations. The refinement is lossless in the WLS sense: if new 

observations are available later, it can take the role of the original data in the recalculation. 

4) Furthermore, other simple mapping matrices, which lead to alternative-variable sets 

reserving all the uniquely-determined original variables, can also be easily constructed from 

the output of the procedure. 

With the above settings, our recursive initialization is efficient and the RLS is thus more 

applicable to large-scale applications where exact initializations are costly.  

In addition, this set of techniques is also applicable to the recursive GLS (RLS) discussed in 

Chapter 2 because the proposed initialization is free of the diagonalization process in the GLS. 

3.2 Problem Formulation 

The purpose is to present a series of initialization techniques to complement the RLS and 

solve linear WLS problems with or without LE constraint in a completely recursive manner. 

The deficient-rank case in which the estimand can not be uniquely determined by the 

observation-and-constraint set is also considered. 

3.2.1 WLS and Its Batch Solutions 

In a WLS problem 

1: 1diag( ) diag([   ])
M M

w w= =W w L                                     (3.1a) 

Correspondingly, 

1: 1

1: 1

[   ]

[   ]

T

M M M

T T T

M M M

z z

H H

 = = =


= = =

z z z

H H H

L

L
                                    (3.1b) 

The objective is to solve 
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ˆ min J=
x

x                                                           (3.2) 

with
1
( ) ( )

MT T

m m m m mm
J z H w z H

=
= = − −∑H WH x x                              (3.3) 

where estimand x is a vector containing all the N  to-be-determined variables and x̂ the 

estimated x . H is observation coefficient (vector) in real-observation function, and z  

observation value. Correspondingly, observation coefficient (matrix) H  contains all H ’s and 

observation-value vector z contains all z ’s. The total number of observation is M and m  is 

observation (data) index. 

First, when there is no constraint, the normal equation is 

1 1
ˆ( )

M MT T

m m m m m mm m
H w H H w z

= =
=∑ ∑x                                      (3.4) 

which has a unique solution if and only if rank( ) N=H : 

1 1

uc 1

1

uc uc 1

( ) ( )

ˆ ( )

MT T

m m mm

MT T T

m m mm

H w H

H w z

− −

=

−

=

 = =


= =

∑
∑

C H WH

x H WH H Wz C
                             (3.5) 

Second, when there is a set of (consistent) LE constraints 

B=Ax                                                             (3.6) 

with constraint coefficient T N×∈A � , constant 1TB ×∈� , and (without loss of generality) 

rank( ) T=A , the normal equation is 

  1 1
ˆ( )

M MT T T

m m m m m mm m
H w H H w z

B

= =
    

=    
       

∑ ∑xA

λA 0
                          (3.7) 

which has a unique solution if and only if rank( ) N=H
(

: 

1

lec

lec lec

[ ]

ˆ [ ]

T T T

T
B B

−

+ +

 =


= + −

C U U H WHU U

x A C H W z HA
                                      (3.8) 

where [  ]T T TH A H
(
� . λ is Lagrange’s multiplier. Superscript “+” stands for the 

Moore-Penrose (MP) inverse. U satisfies [ ][ ]T =U U U U I% %  and col( ) col( )T=U A% , where 

“ col( )X ” denotes the space spanned by all the columns of X . 
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3.2.2 RLS Solutions 

The RLS computes the unconstrained WLS solution recursively. That is, the solution in 

(3.5) can be calculated by repeating the following recursion cycle (and increasing m% ) 

sequentially: 

    

0 0 0

0

0 0

1

uc, uc, 1

1

uc, uc, 1 uc,

uc, uc, 1 uc, uc, 1

uc, uc, 1 uc, uc, uc,

ˆ ˆ ˆ( )

T

m m M m m M m M

T

m m m M m

m m m m M m M m

T

m m m m m

H H w

H

z H

−
+ − + +

−
− +

− + + −

−

 +




= + −


= −

S C

K C S

x x K x

C C K S K

ɶ ɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶ ɶ

≜

≜
                             (3.9) 

where
01:rank( )

M
N=H and the initial values are 

0

0

1

uc,0 1

uc,0 uc,0 1

( )

ˆ

M T

m m mm

M T

m m mm

H w H

H w z

−

=

=

 =


=

∑
∑

C

x C
                                         (3.10) 

which are identical to the batch solution with the first 0M data. 

Furthermore, reference [Zhu&Li07] shows that the recursion (3.9) is also exact for (3.8), 

provided that the constraints are imposed initially: 

0

0

1

lec,0 1

lec,0 lec,0 1

[ ( ) ]

ˆ ( )[ ]

MT T T

m m mm

M T

m mm

H w H

B H w B

−

=

+ +

=

 =


= + −

∑
∑

C U U U U

x A C z HA
                          (3.11) 

where
01:rank([  ] )T T T

M N=A H . 

3.2.3 Our Goals 

It is not always easy to find the initial values uc,0C and uc,0x̂ from the forgoing data, and much 

less for lec,0C and lec,0x̂ since lec,0C is positive semi-definite (PSD) and thus the MP inverse is 

involved. The proposed initialization is to overcome these difficulties. It performs 

initializations, imposes LE constraints, and determines the minimal initial data set, in a simple 

and totally recursive way. In addition, the rank of the system is checked implicitly. If the rank 

is full, an exact initialization is obtained. If the rank is deficient, a practical deficient-rank 
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processing method is proposed to provide a set of refined non-redundant observations. 

3.3 Derivations and Developments 

The theoretical foundations and derivations for the recursive initialization are still based on 

those for the RLS, which include the following preliminaries. 

3.3.1 Preliminaries 

As reviewed in Sec. 2.3.1, the Schur’s Identity leads to the matrix-inversion (MI) lemma. 

The MI lemma has a well-known corollary which is the basis of RLS: 

Corollary of MI Lemma: If inverses of matrices D ,G and 1( )T −G - E D E exist, then 

1 1 1( )T T T− − −+ = − +-1 -1 -1 -1(D E G E) D D E ED E G ED                          (3.18) 

Particularly, it contains a bidirectional causal relation: 

Given 1−D and 1−
G , 1 1( )T T− − ⇔ + -1 -1G - E D E (D E G E)  

which is an important base to the subsequent development. 

3.3.2 Development of Recursive Initialization 

In our recursive initialization method, we will first introduce a set of simple auxiliary 

observations to construct a fake initialization which allows the RLS recursion to start from the 

piece of observation data. Then during the course of real observation data processing, we 

delete these auxiliary observations ASAP using the corresponding canceling observations. 

Therefore, to present the recursive initialization, three types of unconventional observations 

are introduced first: 

Simple auxiliary observation (SAO) – a make-up simple observation (direct measurement 

of estimand component) utilized for simplicity. Specifically, N different SAO’s are adopted in 

this chapter, among which the ths one has the following observation coefficient, data, and 

(simple) weight: 

au,sH  ( 1[0 0 1  0 0 ]
s s N

I= � L L ), au,sz , 1

au,s sw p
−=                        (3.19) 

where s is SAO index. 0
s

p > and the values of au,sz and
s

p can be assigned by the user for 
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convenience. 

Canceling observation (CO) – a fake observation utilized to counteract the influence of a 

specific auxiliary or real observation (RO). Specifically, suppose that the coefficient, value and 

weight of the to-be-removed simple observation are H&& , z&&and w&& ( 0> ). Then the corresponding 

simple canceling observation (SCO) are H&& , z&&  and w− && , respectively. 

  Pseudo observation (PO) – an “observation” that corresponds to a LE constraint. 

Specifically, the tht constraint is a PO having
t

b ,  
t

A  and  +∞  as data, observation coefficient 

and weight, respectively. 

 

Basic Tools 

  An observation may be removed from the processed observation set using the RLS-based 

method conveniently [Albert65]. We introduce the concept of CO and further consider 

whether an observation is removable in LE-constrained/unconstrained problems, which leads 

to the following tool. 

Theorem 1 (Observation removal): In the LE-constrained WLS problem (3.2) with (3.6), 

given 1C  ( 1( )T T T−U U H WHU U� ) with 1 1 1 2 2 2

T T T= +H WH H W H H W H , 

2C ( 1

1 1 1( )T T T−
U U H W H U U� ) exists if and only if 1 1

2 1 2 2( )T − −−H C H W  exists. If 2C exists, then 

    1 1

2 1 1 2 2 1 2 2 2 1( )T T − −= − −C C C H H C H W H C                                (3.20) 

Proof: 

In Theorem 1, 1C exits if and only if rank( ) N=H
(

 (see the derivation for (3.8) in 

[Zhu&Li07]). The MI Lemma is applied to expand 2C and the if-and-only-if condition requires 

that rank( )H
(

 remain N after 2 2 2

T
H W H is removed. 

Theorem 1 has the following corollary: 

Corollary 1.1 (Simple observation removal): In the LE-constrained WLS problem (3.2) 



 62 

with (3.6), given 1C ( 1( )T T T−U U H WHU U� ) with 1 1 1 2 2 2

T T T
H w H= +H WH H W H , 

2C ( 1

1 1 1( )T T T−
U U H W H U U� ) exists if and only if 1

2 1 2 2

T
H H w

−≠C holds. If 2C exists, then 

    1 1

2 1 1 2 2 1 2 2 2 1( )T T
H H H w H

− −= − −C C C C C                                 (3.21) 

  Clearly, this corollary is a simplified case of Theorem 1 and is to remove a single 

observation. It indicates that removing a simple observation is equivalent to adding in the 

corresponding SCO with the “negative weight”. It is clear that the theorem and corollary is 

also applicable to the unconstrained WLS problem. This is the key to the unification of the 

unconstrained and LE-constrained RLS. 

 

The Initialization Procedure 

Our recursive initialization utilizes the above basic tools to introduce and remove auxiliary 

observations. Consequently, an initializing procedure, which is the major focus to be 

discussed, is developed to perform a recursive and exact initialization for the LE-constrained 

linear LS. The development takes advantage of the following properties of the LE-constrained 

WLS solutions: 

Theorem 2 (Properties of LE-constrained WLS): Given rank([  ] )T T T N=A H , 

lecC (and lecx̂ ) in (3.8) has the following properties: 

1) If rank( ) N=H ( ucC thus exists), then 

    

1

lec uc uc uc uc

1

lec uc uc uc uc

( )

ˆ ˆ ˆ( ) ( )

T T

T T
B

−

−

 = −


= + −

C C C A AC A AC

x x C A AC A Ax
                              (3.22) 

2) If [  ]T T TA H is an N N× matrix, then 

    

1

1

lec lec, 1

1

lec

( [ ] )

ˆ ([  ] ) [  ]

T T

N N

T T T T T T
B

−

−
× −

−

    
=    

    


=

A 0 0
C C A  H

H 0 W

x A H z

�
                         (3.23a) 

3) Given 1 1[  ]=H H A , 1 A1diag( , )=W W W , and A1W is PD, if the rows of 1A are all from A , 



 63 

then 

      
1 lec

1 lec
ˆ ˆ

=


=

C C

x x
                                                     (3.23b) 

  where 1x̂ (and 1C ) is the LE-constrained solution subject to (3.6) and using real observation 

data having 1H , 1W and 1 A1[  ]T T T=z z z  as the coefficient, weight and value, respectively. 

4) If 1 2[  ]T T T=A A A and 1rank([  ] )T T T
N=H A , then 

       
lec lec,2

lec lec,2
ˆ ˆ

=


=

C C

x x
                                                   (3.24a) 

with 

1

lec,2 2 lec,1 2 2 lec,1 2 lec,2

lec,2 lec,1 2 lec,2 2

lec,2 lec,1 2 2 2 lec,1

S ,  S

S

ˆ ˆ ˆ( )

T T

T

−


−
 = + −

A C A K C A

C C K K

x x K B A x

� �

�                                 (3.24b) 

and 

1

lec,1 1 1 1 1

lec,1 1 1 lec,1 1 1

( )

ˆ ( )

T T T

T
B B

−

+ +

 =


= + −

C U U H WHU U

x A C H W z HA
                                (3.24c) 

where 1 1 1 1[ ][ ]T =U  U U  U I% %  and 1 1col( ) col( )T=U A% . 

A proof of Theorem 2 is given in Appendix A. In fact, this theorem is a corollary of 

Theorem 3 in Part I (Chapter 2), where Statement 1) provides a way to compute lecC from ucC , 

and Statement 2) presents a specific lecC . Statement 3) shows that, if observation coefficient 1H  

and constraint coefficient A have common rows 1A , then the observations related to 1A have 

no effect on the eventual solution. Statement 4) indicates that multiple constraints can be 

imposed recursively (sequentially). Just as Chapter 2 declares, these properties imply that the 

LE constraints can be treated as special observations (POs) with +∞  as weights (or 

equivalently the observation errors are zero). Each constraint can be processed sequentially in 

any place in the overall observation-and-constraint data sequence. Correspondingly, 
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1

lec uc uclim T T

w
w

−

→+∞
= + =S AC A I AC A                                     (3.25) 

In this chapter, for the convenience of description, it is assumed that the LE constraint is 

explicitly given and is imposed in the initialization. In fact, the consequent initialization 

techniques can be applied to solve problems with implicit LE constraints. 

Based on the above theorems and corollaries, an LE-constrained Initialization (LECI) 

procedure is designed to initialize the RLS with LE constraint, which is also applicable to 

unconstrained problems after omitting the Constraint and SCO recursion in its step 2) bellows. 

LECI Procedure 

1) Auxiliary initialization: 0m =% , 0t = , 0m =  

   

1

0 au, au, au, 11

0 au,1 au,

1 b, 0

( ) diag([   ])

ˆ [   ]

Rec_au [0  0] ,  

N T

m s s s Ns

T

m N

N m

H w H p p

z z

−
= =

=

× =

 = =


=


= =

∑C

y

H I

ɶ

ɶ

ɶ

ɶ …

⋯

ɶ⋯

                       (3.26) 

2)  Constraint and SCO (C&S) recursion: : 1t t= +  

  2.1) Constraint imposing: : 1m m= +% %  

       

1

1

1

1 1

1

b, b, 1

 

ˆ ˆ ˆ( )

T

m t m t

T

m m t m

m m m t t m

T

m m m m m

m m

A A

A

C A

−

−
−

− −

−

−






= + −
 = −
 =

S C

K C S

y y K y

C C K S K

H H

% %

% % %

% % % %

% % % % %

% %

% %�

% %% �

%

% % %% %

% %

                                    (3.27) 

  2.2) Conditional SCO processing: 

For s from 1 to N , if Rec_au( ) 1s = and the (current) 's
m

C ɶ
ɶ  ths diagonal entry 

,s s s
c p≠% : : 1m m= +% %  

       

,

1

1 au,

1 au, au , 1

1

ˆ ˆ ˆ( )

m s s s

T

m m s m

m m m s s m

T

m m m m m

c p

H

z H

−
−

− −

−

 −




= + −


= −

S

K C S

y y K y

C C K S K

%

% % %

% % % %

% % % % %

% %�

% %% �

%

% % %% %

                                (3.28a) 
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b, b, 1

au, b,

Rec_au 1,  [  ]

remove out of 

T T T

s m m t

s m

A

H

−
 = =



H H

H

% %

%

% %

%
           (3.28b) 

The C&S recursion is completed at t T= . 

3) RO and SCO (R&S) recursion: : 1m m= +  

3.1) Real-observation (RO) processing: : 1m m= +% %  

       

1

1

1

1

1 1

1

b, b, 1

ˆ ˆ ˆ( )

T

m m m m m

T

m m m m

m m m m m m

T

m m m m m

m m

H H w

H

H

−
−

−
−

− −

−

−

 +




= + −
 = −
 =

S C

K C S

y y K z y

C C K S K

H H

ɶ ɶ

ɶ ɶ ɶ

ɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶ ɶ

ɶ ɶ

ɶ ɶ≜

ɶ ɶɶ ≜

ɶ

ɶ ɶ ɶɶ ɶ

ɶ ɶ

                                   (3.29) 

3.2) Conditional SCO processing: 

         Same as in 2.2) 

The R&S recursion is stopped after Rec_au [1 1]= L or m M= . 

4)  Output Rec_au , M% ( m� ), bH% ( b,mH
%

%� ), ŷ ( ˆ
m

y ɶ≜ ) andCɶ (
m

C ɶ
ɶ≜ ). 

Here, t is constraint index and m% recursion index. 

Analysis (and proof): 

In the LE-constrained WLS, a full column rank [  ]T T TA H%  ⇔  existence of lecC% . Therefore, 

the existence of
m

C ɶ
ɶ  is equivalent to the full rank of 

m
H

%
% ( au,left 1: 1:[   ]T T T T

t mH A H� ). 

In the procedure, step 1) introduces N SAO’s to build an auxiliary initialization with 0 =H I% , 

which starts the RLS recursion from the first constraint or RO. In the constraint-processing, 

T constraints are imposed sequentially according to the statement 2) of Theorem 2. After each 

constraint processing in step 2.1), step 2.2) checks whether one (at most one, shown later) of 

the remaining SAO’s is removable, based on Corollary 1.1. If yes, the corresponding SCO is 

added. Similarly, in the subsequent data-processing recursion, step 3.1) processes a new RO 

while step 3.2) checks (and deletes) a removable SAO.   Note that the checking-and-deleting 

mechanism adopted in both C&S and R&S recursions removes the N auxiliary rows in 0H%  as 
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soon as possible (ASAP), provided that rank( )
m

H
%

%  remains N  for all m% . Therefore, 

before Rec_au flips to all-ones, a recursion cycle to process a new constraint or RO is always 

executable since the MI-lemma conditions for updating 
m

C
%

%  is always satisfied. In particular, 

the “for” loops in 2.2) and 3.2) keep checking all the remaining SAO’s for removable one in 

each cycle. The found SAO is deleted at once. As a result, “ASAP” is guaranteed. In this 

design, b,mH
%

% , which is to store a set of base rows (from
m

H
%

% ) spanning the N-dimensional space, 

can be constructed as follows: 

i) b,0 =H I% with rows from the N SAO’s; ii) When a new constraint or RO is 

processed, b, b, 1m m−=H H
% %

% %  since the rows in 1m−H
%

% are all passed to
m

H
%

% ; iii) Once a SAO is 

removed after a constraint or RO processing, the new row
t

A (or
m

H ) plus the 1N − rows 

(excluding the newly-removed SAO row) in b, 1m−H
%

%  composes a new basis b,mH
%

% . 

In iii), the newly-constructed b,mH
%

% must be a basis. Otherwise, b,rank( ) 1m N= −H
%

%  since 

b,mH
%

%  inherits 1N − base rows from b, 1m−H
%

% , which means that 
t

A  (or
m

H ) is a linear 

combination of the 1N −  base rows. Accordingly, rank( )
m

H
%

% should remain N  if 
t

A (or
m

H ) 

is removed from 
m

H
%

% . However, after the removal, the new
m

H
%

% is equal to a fake 1m−H
%

% formed 

by deleting the SAO row which is undeletable at 1m −% . This is a contradiction. 

The above analysis also implies that no more than one SAO can be removed within each 

C&S or R&S recursion cycle. Thus the “for” loop in steps 2.2) and 3.2) can find at most one 

removable SAO. 

Furthermore, when the overall procedure is terminated, the constraint or RO rows stored in 

bH%  must compose a basis of 1:row([  ] )T T T

M
A H  since the SAO rows left in the eventual

m
H

%
%  

(and so bH% ) are not removable. In particular, if the N  SAO rows are all removed, then 
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bH% contains N  constraint or RO rows and the corresponding 1:[  ]T T T

m
A H  has full column 

rank. End of Analysis. 

Clearly, the above initialization procedure does not require extra work to check the rank of 

H
(

in advance. It gets rank( )H
(

 as a byproduct. In brief, the outputs of the procedure are 

summarized by the following theorems. 

Theorem 3 (Rank check by LECI): In the LECI for the LE-constrained WLS defined by 

(3.2) with (3.6), if the output bH% contains 1N ( N≤ ) constraint or RO rows, then 1rank( ) N=H
(

 

and the 1N ( N≤ ) rows compose a basis of row( )H
(

. 

In the case that rank( ) N=H
(

, we have 

Theorem 4 (Full-rank initialization by LECI): In the LECI for the LE-constrained WLS 

defined by (3.2) with (3.6), if rank( ) N=H
(

, then M% and C% are identical to the minimal 0M  

such that 
01:rank([  ] )T T T

M N=A H  and the corresponding initial estimation error covariance 

like matrix lec,0C (
0 0 0

1

1: 1: 1:( )T T T

M M M

−U U H W H U U� ) exists, respectively. 

In the deficient-rank case (i.e., rank( ) N<H
(

), a reduced-dimensional alternative estimand, 

which comes from the basis of row( )H
(

 and has a dimension of 1N ( N< ), can be determined 

using bH  and C%  conveniently. The corresponding estimate is for a set of refined constraints 

and RO’s. Once new observations are available later, the estimate plus the corresponding 

estimation-error covariance like matrix can take the role of the original data in the 

recalculation (according to the two-step LS [Haupt96]). In this sense, the refinement is lossless 

in WLS processing (see Theorem 5). Actually, this reducing-dimension mapping can provide 

good practical resolutions to the deficient problem which is discussed next. Rather than the 

conventional minimum-norm solution which has great value in theoretical development, the 

proposed reducing-dimension mapping may be directly applied to many practical problems.  
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3.3.3 Deficient-Rank Processing 

To study the deficient-rank WLS, the problem after a linear equivalent transformation is 

first investigated as follows.  

Fact 1: In the LE-constrained WLS defined by (3.2) with (3.6), if T is a nonsingular square 

matrix and tran =x Tx , then 

        
tran

tran lec

ˆ ˆ

T

=


=

x Tx

C TC T
                                               (3.30) 

Here, if tranx is treated as the new estimand, then 1

tran

−=H HT , 1

tran

−=A AT , tran =U TU  

and tran =W W in the new formulation. Using (3.8), (3.30) is verified.  

Base on Fact 1, the following theorem can be derived to estimate the reduced- dimensional 

alternative estimand for a set of refined and lossless constraints and RO’s. 

Theorem 5 (Reduced-dimensional WLS): In the LECI procedure for the LE-constrained 

WLS defined by (3.2) with (3.6), if rank( ) N<H
(

and the rows of arbH
(

 compose the basis 

of row( )H
(

, then arbx ( arbH y
(

� ) is uniquely determined, and 

arb arb arb

arb arb
ˆ ˆ

T =


=

C H CH

x H y

( (
%

( ,                                                  (3.31) 

Clearly, the LECI procedure has provided bH
(

 which stores a basis of row( )H
(

. 

Consequently, the alternative estimand bx which is a set of refined (and constrained) RO’s can 

be easily estimated by Theorem 5. Note that, from (3.52), we also have 

       left left left[  ] [  ]T=C 0 I C 0 I% %                                            (3.32) 

Based on (3.31) and (3.32), it can be easily verified that 

arb arb arb

left left left

  

  

T

    
=     

     

C 0 H H
C

0 C 0 I 0 I

( (

%
%

                                      (3.33) 
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where arb

left

 

 

 
 
 

H

0 I

(

, as well as b

left

 

 

 
 
 

H

0 I

(

, has full rank. From (3.33), it can be stated that, 

given arbH
(

, arbC , left[  ]0 I and the corresponding leftC% , C% can be recovered, based on which the 

LECI can go on whenever new data arrive. Here, the coefficient of the remaining SAO by the 

LECI procedure, which is assumed to be left[  ]0 I  (for simplicity without loss of generality), is 

determined by bH
(

. leftC is also from the output of the LECI. In fact, neither of these conditions 

is mandatory. First, leftC% can be an arbitrary positive diagonal matrix since it is always 

identical to -1

leftW  which is a set of originally-given arbitrary positive numbers (see (3.53)). 

Furthermore, we can construct a different SAO set which has the minimum number of 

elements to augment arbH
(

till full rank. The only difference is that the diagonal elements of 

leftC% will occupy new diagonal positions of (new) C% . Therefore, it can be concluded that the 

refined data according to (3.54) is lossless in the WLS sense. 

Furthermore, due to the rank deficiency of H
(

, some components of x may be uniquely 

determined while some others can not. Denote all the uniquely-determined components as udx , 

and then the next question is: How to find udx and further construct a basis of row( )H
(

, stored 

in simH
(

, to make simx ( simH y
(

� ) contain udx .  

Based on the LECI, the following theorem provides a way to finding udx : 

Theorem 6 (Simple basis determination): In the LECI procedure for the LE-constrained 

WLS defined by (3.2) with (3.6), if rank( ) N<H
(

and the undeletable-SAO-row index-number 

set is leftS , then
i

I ( 1 1 1[0 0  1  0 0 ]
i i i N− +� L L ) ∉ row( )H

(
 if and only if C% ’s entry ,i j

c is not zero 

for at least one j ( leftS∈ ). 
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A proof of Theorem 6 is given in Appendix C. This theorem shows that ,lefti
C = 0  ⇔  

row( )
i

I ∈ H
(

⇔ udi
∈x x . Suppose that udx  contains udN  entries. Then the corresponding 

udN  different
i

I ’s should be in simH
(

. Accordingly, the other 1 udN N− rows of simH
(

 can be 

found from bH
(

as follows: 

a) Delete (from bH
(

) the udN columns storing the coefficients of udx ; b) Delete (from the 

modified bH
(

) the 1-N N columns storing the coefficients of leftx ; c) Find 1 udN N− linearly- 

independent rows in the “shrunk” bH
(

; d) Augment the linearly-independent rows: the 

coefficients of udx are set zero while those of leftx are assigned the original values (in the 

original bH
(

). Note that the rank of the shrunk bH
(

is 1 udN N− after the deleting operations in a) 

and b). Thus the operation to find a basis of brow( )H
(

 is always valid in c). Obviously, with 

this method, finding simH
(

is equivalent to finding the basis of the shrunk bH
(

. In general, the 

latter has a smaller dimension. Existing rank-check methods [Chan87], including the one 

proposed in Theorem 3, can be employed. 

3.4 Overall Algorithm and Implementation 

The overall CRLS algorithm, which includes the initialization, LE-constraint imposition and 

rank check in the LECI procedure as well as the conventional RLS cycles, can obtain the exact 

recursive solutions (up to current data) ASAP. It comprises the following steps: 

1) Auxiliary initialization:  

    Same as step 1) in the LECI procedure; 

2) C&S recursion: 

    Same as step 2) in the LECI procedure;   

3) Initial R&S recursion: 

    Same as step 3) in the LECI procedure, except that the recursion is completed 
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if Rec_au [1 1]= L or m M= . If Rec_au [1 1]= L and m M< , turn to 4); 

if Rec_au [1 1]= L and m M= , turn to 5); if Rec_au [1 1]≠ L , turn to 6). 

4) Conventional RO recursion: : 1m m= + , : 1m m= +% %  

    

1 1

1 1

1 1

1

,  

ˆ ˆ ˆ( )

T T

m m m m m m m m m

m m m m m m

T

m m m m m

H H w H

z H

− −
− −

− −

−

 +


= + −
 = −

S C K C S

y y K y

C C K S K

ɶ ɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶɶ≜ ≜

ɶ

ɶ ɶ ɶɶ ɶ

                             (3.35) 

This recursion is completed at m M= . 

5) Termination. Output lec
ˆ ˆ

m
=x y

%
and lec m

=C C ɶ
ɶ . 

6) Reduced-dimensional processing: 

    
b b,

b b, b,

ˆ ˆ
m m

T

m m m

 =


=

x H y

C H C H

% %

% % %

(

( (
%

                                                (3.36) 

7) Termination. Output bx̂ , bC and b,mH
%

(
. 

In particular, if the numerical condition of the observation set is not poor, 0C%  in step 1) can 

be simply set to the identity matrix I . Otherwise, simple values, which may be close to the 

diagonal numbers in lecC , can be assigned to each
s

p individually, which will guarantee that the 

introduction of SAO’s does not degrade the numerical condition of the RO set. In step 3), if 

the eventual Rec_au [1 1]= L , then the minimal 0M making 
01:[  ]T T T

MA H  full-column-rank is 

thus determined and 0M m= . Otherwise, if Rec_au [1 1]≠ L  after M  RO’s are all processed, 

then the RO set is insufficient to determine x uniquely. Correspondingly, the 

reduced-dimensional estimand bH x
(

can be estimated alternatively in 6). As Theorem 5 

states, bH
(

is not the only mapping matrix. In fact, all the bases of row( )H
(

 are candidates. In 

particular, Theorem 7 provides an easy way to find the uniquely- determined components 

(of x ) stored as udx . Consequently, simx , which contains udx and is identical to bx through an 

equivalent linear transform, can be used as the new reduced- dimensional alternative estimand. 
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Note that step 6) is not necessarily implemented recursively. In essence, it is a batch 

problem and a recursive method could be employed as long as the method has good 

performance in the application. 

3.5 Performance Analysis 

The RLS has well-known advantages in time and storage. Its recursion does not involve any 

matrix inversion operation and thus has a lower computational complexity. In general, without 

considering the initialization, the computation of the RLS is 2( )O N  (order of 2
N ) per cycle 

while those of batch LS algorithms are usually 3( )O N  (or with a lower order but a much larger 

leading coefficient [Stoer02] [Golub96] [Horn85]). In some specific applications, the 

computation of the fast RLS algorithms can even be reduced to ( )O N . Furthermore, both the 

number of algebraic operations and the amount of required memory locations at each cycle are 

fixed. Particularly, the sequential data processing can make use of the time over the 

data-accumulation period flexibly. Thus the RLS is particularly suitable to real-time 

low-dimensional applications where high-redundancy data are involved. 

In the CRLS, via introducing SAO’s, the initialization of the RLS is performed by the 

simple auxiliary initialization plus the minimum C&S and R&S cycles. Clearly, the CRLS 

inherits and enhances good properties of the RLS since the recursion starts from the first piece 

of (real) data and the LE constraints are also imposed recursively. To our knowledge, the 

CRLS initialization is the simplest among the recursive methods to initializing the RLS 

exactly. On the other hand, owing to the recursion, the CRLS initialization has better 

performance than those by batch methods. For instance, Cholesky decomposition (CD) has 

been commonly used as an efficient tool to compute the inverse of a symmetric PD matrix. 

Compared with a batch initialization using the CD-based matrix inversion, the superiority of 

the CRLS (initialization) arises from the following aspects: 

1) The proposed method can distribute the processing time over the data-accumulation 

period while the CD-based batch one usually has to wait till all data are available.  
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2) In general, the computation of processing a RO (or a LE constraint) consists of 23
2

N  

multiplications and 23
2

N  additions per cycle, and that of a SCO requires 21
2

N  multiplications 

and 21
2

N  additions per cycle only. Therefore, without considering the effect of accumulating 

data, the CRLS still has a low computational complexity relative to the CD-based one (see 

[Golub96]). 

3) With the CRLS, the initialization of LE-constrained RLS solution, which (in the batch 

form) usually involves MP inverses, is made as simple as for the unconstrained ones now. 

4) In sparse applications, the CRLS can benefit more from the sparsity because its recursion 

can make full use of the sparse structure of the observation coefficients. 

5) The observability analysis in the CRLS requires no extra computation while the batch one 

usually needs additional pre-processing to check the rank of H (or[  ]T T TA H ). The result by 

the CRLS is numerically consistent with the existence of C in calculation. 

Obviously, the CRLS is still applicable to the traditional RLS problems, such as adaptive 

filtering [Haykin01], which are usually of a low dimension but have high-redundancy data. 

Then the efficiency can be enhanced to some extent since the computation can benefit from a 

generically simpler initialization. 

For high-dimensional WLS applications, partly limited by the costly batch initialization, the 

RLS has not been widely adopted. Particularly, in high-dimensional but low-redundancy cases, 

the initialization procedure can take over most of the processing period and the RLS thus helps 

little. Fortunately, the CRLS now provides a simple and recursive initialization for the RLS 

and starts the recursion from the first RO. Therefore, the CRLS approach, when applied to 

real-time high-dimensional applications can shorten the data-processing period significantly. 

In addition, the concept of auxiliary observations, with which the initialization of the CRLS 

has been simplified significantly, can also be extended and utilized to improve the detection 

and identification of outliers and also to ease a possible wrong-data correction (see [Albert65] 

for details). 
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3.6 Appendices 

3.6.1 Appendix A 

Proof of Theorem 2: 

Statement 1):  

This well-know existing result can be derived from the normal equation (3.7) explicitly. 

Statement 2): 

This statement is a corollary of Statement 2) in Theorem 3 of Part I (Chapter 3) since LS is a 

special WLS with all-one weights. 

Statement 3): 

This statement is a corollary of Statement 3) in Theorem 3 of Part I (Chapter 3). 

Statement 4): 

First, if rank( ) N=H , then lecC is given by (3.22), where 

1 uc 1 1 uc 2

uc

2 uc 1 2 uc 2

T T

T

T T

   
= =   

  

D EA C A A C A
AC A

F GA C A A C A
 

It is clear that D and G are PD since ucC is PD and A , 1A and 2A are of full row rank. We also 

have 

1 1

2 uc uc 1 1 uc 1 1 uc 2[ ( ) ]T T T− −= −G - FD E A C C A A C A A C A  

According to (3.8),  

    1  1

lec,1 1 1 1 1 uc uc 1 lec,1 1 uc( )T T T T− −= = −C U U H WHU U C C A S A Co                      (3.37) 

So 

1 1

2 1 1 1 1 2( )T T T T− −=G - FD E A U U H WHU U A                                 (3.38) 

According to [Meyer00], 

    2 1 2 1 2rank( ) rank( ) dim(Null( ) col( ))T T= − ∩A U A U A                                 

Here, 1 1 1 1[ ][ ]T =U  U U  U I% % , 1 1col( ) col( )T=U A% , and A , 1A  and 2A  are all of full row rank. 
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Thus, 

    1 1 1Null( ) col( ) col( )T T= =U U A%  

Clearly, 1 2col( ) col( )T T T∩ =A A 0 . Therefore, 

    2 1 2rank( ) rank( )=A U A                                               (3.39) 

As a result, 1−
G - FD E is PD. Similarly, we can also show that 1−−D EG F is also PD. 

  Since D ,G , 1−
G - FD E and 1−−D EG F are all PD, Schur’s identity is applicable. That is, 

1

11 121 1 uc 1 1 uc 2

uc

21 222 uc 1 2 uc 2

( )

T T

T

T T

−

−    
= =   

  

T TA C A A C A
AC A

T TA C A A C A
 

with 

 1  1  1  1

11 lec,1 lec,1 1 uc 2 lec,2 2 uc 1 lec,1

T T− − − −= −T S S A C A S A C A So o o o  

 1

22 lec,2

−=T So  

 1  1

12 lec,1 1 uc 2 lec,2

T− −= −T S A C A So o  

 1  1

21 lec,2 2 uc 1 lec,1

T− −= −T S A C A So o  

where 

lec,1 1 uc 1

TS A C Ao
�  (PD, the inverse thus exists) 

     1 1

lec,2 2 uc uc 1 lec,1 1 uc 2( )T T− −− =S A C C A S A C A G - FD Eo o
�  

Substituting 11T , 12T , 21T and 22T into lecC in (3.22) and substituting lec,1C in (3.37) into lec,2C  in 

(3.24), we can verify that 

   lec lec,2=C C                                                        (3.40) 

Second, if rank( ) N<H , then introduce a set of auxiliary observations which have 1A , 1I , 

and 1z as the coefficient, weight and value, respectively. Clearly, 1[  ]T T T=H H A%  has full 

column rank: 
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1

lec,1 1 1 1 1 1 1

1

lec 1 1

[ ( ) ]

[ ( ) ]

T T T T

T T T T

−

−

 +


+

C U U H WH A A U U

C U U H WH A A U U

% �

% �
                               (3.41) 

According to (3.40), lecC% can also be calculated recursively as: 

     lec,1C% � lec,2 lec=C C% %                                                  (3.42) 

Furthermore, since 1A is a part of the constraint coefficient, according to Statement 3, the effect 

of the auxiliary observations “disappear” automatically. That is,  

     
lec,1 lec,1

lec lec

 =


=

C C

C C

%

%
                                                     (3.43) 

Therefore, the following recursive procedure is exact: 

lec,1C% � lec,2 lec=C C                                                (3.44) 

Combining (3.40) and (3.44) yields lec lec,2=C C . Similarly, lec lec,2
ˆ ˆ=x x . This completes the 

proof. 

3.6.2 Appendix B 

Proof of Theorem 5: 

First, suppose that arb b=H H
( (

and bx ( bH y
(

� ) is to be determined. Without loss of generality, 

assuming that the undeleted SAO rows in bH% is left[  ]0 I , then 

      b b

b

left left

 

 

   
= =   
   

H H
H

H 0 I

( (

% , 
b

b b

left

 
= =  

 

x
y H y

x
%                            (3.45) 

Reformulate the WLS problem using by as the estimand: 

b
b yb b yb b

left left b left left left b

yb b

ˆ min ( ) ( )

                   ( ) ( )

s. t.  

T

T

J

B

 = = − −



+ − −
 =

y
y z H y W z H y

z H y W z H y

A y

                     (3.46) 

with yb b =H y Hy , yb b =A y Ay , and left b left=H y x . The rows of H and A are linear combinations 
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of the rows of bH
(

, so yb yb1[  ]=H H 0 , yb yb1[  ]=A A 0 , left left[  ]=H 0 I  (3.47) 

and yb1 yb1rank([  ] ) rank( )T T T =A H H
(

since yb yb b[  ]T T T =A H H H
(

% . Then (3.46) is equivalent to the 

following two independent subproblems that are over and exactly determined, respectively, 

        b
b b yb1 b yb1 b

yb1 b

ˆ min ( ) ( )

s. t.  

T
J

B

 = = − −


=

x
x z H x W z H x

A x
                          (3.48) 

and
left

left left left left left left left
ˆ min ( ) ( )TJ= = − −

x
x z x W z x                               (3.49) 

Apply the RLS to solve (3.48) and (3.46) concurrently. In particular, select bH
(

 and bH%  for 

the initializations, respectively:  

b,0 1

Hb

−

 
=  
 

0 0
C

0 W
, 

b,0

yb,0 1

left

−

 
=  
 

C 0
C

0 W
%                                  (3.50) 

which are based on (3.23). Using (3.9) and (3.47), it is verified that 
b,

yb, 1

left

m

m −

 
=  
 

C 0
C

0 W

%

%
 for 

all m% and eventually 

     
b

yb 1

left

−

 
=  
 

C 0
C

0 W
%                                                  (3.51) 

According to Fact 1, 

b b

yb b b

left

T

T
 

= =  
 

H CH 0
C H CH

0 C

( (
%

% %% %
%

                                     (3.52) 

Thus, 
b b b

1

left left

T

−

 =


=

C H CH

C W

( (
%

%
                                                   (3.53) 

Second, solve arb arb=x H y
(

. Since the rows in both arbH
(

and aH
(

 compose basis of row( )H
(

, 

there exists a nonsingular square matrix T such that arb b=H TH
( (

. According to Fact 1 and 

(3.53),  

arb b arb arb

T T= =C TC T H CH
( (

%                                             (3.54) 

arbx̂ can be verified similarly. 



 78 

3.6.3 Appendix C 

Proof of Theorem 6: 

Without loss of generality, assume that bH% has the same simple form as in (3.45). Now 

recalculate C% from ybC given by (3.51). Since 1 rank( )N N= <H
(

, there exists a
i

I such that 

brow( )
i

I ∈ H%  but row( )
i

I ∉ H
(

. Let 

    b b left[  ]
i i i i i

I = = +α β H α H β H
(

%   

Then b[  ]
i i i

y = α β y , left left left b[  ]= =y x 0 I y . 

According to (3.30), C% ’s cross entries between
i

y and lefty form a vector as: 

       -1

,left b left left[  ] [  ]T

i i i iC = =α β C 0 I β W%  

Clearly, ,lefti
C ≠ 0 ⇔

i
≠β 0 ⇔ row( )

i
I ∉ H

(
. 
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Chapter 4: Linear Minimum Mean-Square Error Estimator and 

Unified Recursive GLS 

 

4.1 Overview of LMMSE Estimation and LS 

4.1.1 LMMSE Estimation 

Following [Li07] closely, the widely-used linear minimum mean-square error (LMMSE) 

estimator can achieve the smallest means-square error among all linear/affine estimators 

[Johnson04]. That is, the LMMSE estimator of a random estimand x is 

  LMMSE
ˆ

ˆ ˆarg min MSE( )
= +

=
x Az b

x x                                            (4.1a) 

which is also equivalent to 

LMMSE
ˆ ˆ

ˆ ˆ ˆarg min mse( ) arg min -
= + = +

= =
x Az b x Az b

x x x x                               (4.1b) 

where z is observation data, and A and b are parameters to be determined. The orthogonality 

principle for a random estimand can be applied to solve problem (4.1), where the 

solution x̂ should be an unbiased estimate first [Li07]. As a result, 

    LMMSE
ˆ ( )= + −x x A z z                                                 (4.2a) 

and A is determined by the following normal equation: 

    xz z− =C AC 0                                                      (4.2b) 

where x and xC  are mean and covariance of x , z and zC  are mean and covariance of the 

observation z , and xzC  is the crosscovariance between x and z . Consequently, in general, 

    +

xz z=A C C                                                          (4.3) 

In most cases, zC is PD. Then the LMMSE estimator becomes 

  -1

LMMSE xz z
ˆ ( z)= + −x x C C z                                              (4.4) 

with which the mean-square error (MSE) matrix is 
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  -1

x xz z xz
ˆMSE( ) T= −x C C C C                                              (4.5) 

Actually, if all the involved mean-and-covariance information is given, then (4.2) is the 

formula of the LMMSE estimator with complete prior (the mean and covariance of x ). 

However, it is also possible that no prior information but only data is available in some 

practical applications. This LMMSE estimator with no prior will be discussed as follows, 

based on the linear data model. 

4.1.2 LMMSE Estimation Based on Linear Data Model 

Furthermore, consider that the data model is linear: 

  = +z Hx v                                                          (4.6) 

where the mean and covariance of observation error v are v and vC and the crosscovariance 

between x and v is xvC . Based on this linear model, the mean, covariance and crosscovariance 

related to data can be derived as 

    z x v xv xv

xz x xv

( )T T

T

= +


= + + +
 = +

z Hx v

C HC H C HC HC

C C H C

                                   (4.7) 

Correspondingly, the LMMSE estimator can be obtained by substituting z , zC and xzC  in 

(4.2a) and (4.2b) with those in (4.7), which is also known as the best linear unbiased 

estimation (BLUE) for an random estimand: 

LMMSE x xv x v xv xv

x x xv x v xv xv

x xv

ˆ ( )[ ( ) ] ( )

ˆMSE( ) ( )[ ( ) ]

                ( )

T T T

T T T

T T

+

+

 = + + + + + − −


= − + + + +
 ⋅ +

x x C H C HC H C HC HC z Hx v

x C C H C HC H C HC HC

C H C

      (4.8) 

In the that zC is PD: 

    

1

LMMSE x xv x v xv xv

1

x x xv x v xv xv

x xv

ˆ ( )[ ( ) ] ( )

ˆMSE( ) ( )[ ( ) ]

                 ( )

T T T

T T T

T T

−

−

 = + + + + + − −


= − + + + +
 ⋅ +

x x C H C HC H C HC HC z Hx v

x C C H C HC H C HC HC

C H C

      (4.9) 

Here, (4.8) is exactly the formula of the BLUE estimator with complete prior of x , where the 
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mean and covariance of x , as well as the crosscovariance xvC , are assumed to be given. When 

x , xC , and xvC are all unknown, the existence of the LMMSE estimator can be checked by the 

following fact [Li03]: 

Fact 4.1: If the prior of an estimand x is unknown, an LMMSE estimator based on linear 

data model = +z Hx v with known E( ) =v v  exists if and only if H has full column rank; if 

exists, the estimator is given by: 

  ˆ ( )= −x K z v                                                        (4.10) 

where K is the solution of the following constrained minimization problem: 

    
v

ˆarg min MSE( )

s. t. 

T = =


=

K
K x KC K

KH I

%

% %

                                       (4.11) 

If the observation-error covariance vC is PD, then 

    -1 1 -1

v v( )T T−=K H C H H C                                                (4.12) 

Correspondingly, 

-1 1 -1

v v
ˆ ( ) ( )T T−= −x H C H H C z v                                           (4.13) 

and -1 1

LMMSE v
ˆMSE( ) ( )T −=x H C H                                            (4.14) 

On the other hand, if vC is PSD, then 

  { [( ) ( )] }+ + + += − − −
v v

K H I C I HH C I HH                                (4.15) 

In fact, as discussed in [Li07], a linear-data-model based LMMSE estimator with complete or 

partial prior can be converted into another one with no prior by treating the prior mean as data 

using the following formula: 

    
′ 

=  
 

x
z

z

(
, 

 
=  
 

I
H

H

(
, ( )

 
=  
 

0
E v

v

(
, 

x x v

x v

′ ′

′

− 
=  − 

v

v

C C
C

C C

(
                    (4.16) 

where ′x contains complete/partial components of x . ′x , x′C and x v′C are prior mean, covariance 

and crosscovariance (between ′x and v ) of ′x , respectively. I and 0 are of the appropriate 
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dimensions. Therefore, it can be concluded that, under a linear data model, the LMMSE 

estimator with no prior is a unification of LMMSE estimators with complete/partial/no prior 

knowledge. 

In addition, it is clear that, under the condition that the observation-error covariance zC  is 

PD, the LMMSE estimator with no prior in (4.12)-(4.14), is mathematically identical to a GLS 

solution which is based on the same linear data model as in (4.6) except that the estimand x  

is nonrandom. Furthermore, it can also be verified that, if zC is PSD, the LMMSE estimator 

with no prior, which is described by (4.15), is mathematically equivalent to the GLS with 

implicit LE constraint (ILE constrained GLS) defined in Chapter 2. Actually, [Li07] has 

presented a quasi-recursive form the LMMSE estimator. It can be shown that, based on the 

linear data model in (4.6), the quasi-recursive form of the LMMSE estimator mathematically 

coincides with the LRC-decorrelation in the recursive ILE-constrained GLS. As a result, the 

solution to a linear-data-model LMMSE estimation without prior is also mathematically 

identical to a unified GLS solution. Therefore, the linear-data-model-based LMMSE 

estimation without prior with a PD/PSD measurement noise covariance, or more generally, the 

linear-data-model-based LMMSE estimator with a unified PD/PSD joint covariance of the 

estimand and the measurement noise can be obtained by solving the corresponding LS 

problems studied in Chapter 2. The calculation can thus take advantage of the recursive 

procedure of the unified GLS. 

4.2 Verification of Optimal Kalman Filter with Various Correlations 

It is well known that LMMSE estimation is the theoretical basis for linear filtering, such as 

Kalman filter, LMMSE filter (for nonlinear problems) and (steady-state) Wiener filter. For 

instance, in the Kalman filter for linear systems with linear measurements, the prediction is 

from an LMMSE estimator using the data up to the most recent time while the update can be 

implemented from another LMMSE estimator using all the data up to the current time. Owing 

to the mathematical equivalence between the linear-data-model based LMMSE and the GLS, 
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the LMMSE estimators, as well as the Kalman filter, can make full use of the improvement of 

the LS computation. The detailed discussion is presented as follows. 

According to [Li07], consider the following stochastic linear discrete-time system, 

    1 1 1 1 1 1k k k k k k k− − − − − −= + +x F x G u Γ w                                   (4.17) 

    
k k k k k k

x= + +z H v E u                                            (4.18) 

where k is time index. x and u are system state and (possible) input, respectively. w and v  are 

process noise and measurement noise, respectively. F ,G and E are transition matrix, input 

gain matrix, and input-output matrix, respectively. H is output (measurement coefficient) 

matrix andΓ is process-noise coefficient matrix. Here, the mean-and- covariance assumptions 

are crucial: 

[ ]

cov( , )

k k

i j i i j

E

δ −

=
 =

w w

w w Q
                                               (4.19) 

,

1     

0     
i j

i j

i j
δ

=
= 

≠
                                                    (4.20) 

0

0

cov( , )

cov( , )

k

k

=


=

x w 0

x v 0
                                                   (4.21) 

[ ]

cov( , )

k k

i j i i j

E

δ −

=
 =

v v

v v R
                                                (4.22) 

and 

cov( , )
i j

=v w 0                                                     (4.23) 

where
i

Q and
i

R are PD matrices. (4.19) means that process noises at different instants are 

uncorrelated. Similarly, (4.22) requires that the measurement noises at different instants be 

uncorrelated. (4.22) and (4.23) indicate that the crosscovariance, such as the one between the 

initial state 0x  and process noise
k

w , between 0x and measurement noise
k

v , and between 

i
v and

j
w , are all zero. When the above assumptions are satisfied, the standard Kalman filter, 
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of which the predictor-and-corrector form is described by the following formulae, can estimate 

the state
k

x optimally in the sense of LMMSE: 

Prediction: 

    

| 1 1 1| 1 1 1 1 1

| 1 | 1

| 1 1 1| 1 1 1 1 1

ˆ ˆ

ˆ ˆ

k k k k k k k k k

k k k k k k k k

T T

k k k k k k k k k

− − − − − − − −

− −

− − − − − − − −

 = + +


= + +


= +

x F x G u Γ w

z H x v E u

P F P F Γ Q Γ

                                 (4.24) 

  Update: 

    
| 1

1

| 1

T

k k k k k k

T

k k k k k

−

−
−

 = +


=

S H P H R

K P H S
                                              (4.25) 

  
| | 1 | 1

| | 1

ˆ ˆ ˆ( )k k k k k k k k

T

k k k k k k k

− −

−

= + −


= −

x x K z z

P P K S K
                                          (4.26) 

In particular, under the given assumptions, the prediction error and the measurement noise 

are also uncorrelated: 

| 1
ˆcov( , )T

k k k k−− =x x v 0                                              (4.27) 

However, it is likely that (4.27) does not hold due to some accidental reasons such 

as cov( , )T

k k
≠w v 0 . Denote that 

| 1
ˆcov( , )T

k k k k k−− = ≠x x v M 0                                           (4.28) 

Then [Li07] shows that Kalman filter still work – both the prediction and the update are 

optimal in the LMMSE sense. 

Theorem 4.1 (Optimal Kalman filter considering prediction-measurement correlation): 

In the linear system described by (4.17)-(4.18), given that the requirements in (4.19)-(4.23) are 

all satisfied up to 1k k= −% and (4.19) and (4.20) are still valid at k k= % , even if at least one of 

the requirements in (4.21) and (4.22) is not satisfied, which leads 

to
| 1

ˆcov( , )T

k k k k k−
− = ≠x x v M 0% % % % % , then the state 

k
x %  can be still estimated optimally in the 

LMMSE sense: 
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Prediction: 

    

| 1 1 1| 1 1 1 1 1

| 1 | 1

| 1 1 1| 1 1 1 1 1

ˆ ˆ

ˆ ˆ

k k k k k k k k k

k k k k k k k k

T T

k k k k k k k k k

− − − − − − − −

− −

− − − − − − − −

 = + +


= + +


= +

x F x G u Γ w

z H x v E u

P F P F Γ Q Γ

% % % % % % % % %

% % % % % % % %

% % % % % % % % %

                                 (4.29) 

  Update: 

    
| 1

1

| 1

( )

( )

T T

k k k k k k k k k k

T

k k k k k k

−

−
−

 = + + +


= +

S H P H R H M H M

K P H M S

% % % % % % % % % %

% % % % % %

                              (4.30) 

  
| | 1 | 1

| | 1

ˆ ˆ ˆ( )
k k k k k k k k

T

k k k k k k k

− −

−

= + −


= −

x x K z z

P P K S K

% % % % % % %

% % % % % %

                                          (4.31) 

In fact, Theorem 4.1 has been shown in [Li07] by treating the update as an LMMSE 

estimator based on the prediction and the current data. We want to verify this theorem using 

the recursive GLS formulae since the LMMSE estimation and GLS (considering ILE 

constraint) are mathematically equivalent. Subsequently, the sequential computation of the 

optimal KF considering correlation can take advantage of the recursive GLS. 

Verification (of the optimal KF considering prediction-measurement correlation): 

Since the requirements in (4.19)-(4.23) are all satisfied up to 1k k= −% and those in (4.19) and 

(4.20) are still valid at k k= % , the prediction should be the same as the standard KF, which is 

given by (4.29). 

The update also comes from an LMMSE estimator based on the current data and the 

predicted estimate which is the prior. According to the unification of LMMSE estimators in 

(4.16): 

| 1k k

k

k

−
′ 

=  
  

x
z

z

% %

%

%

(
, 

k

k

 
=  
 

I
H

H
%

%

(
, ( )

k

k

 
=  
 

0
E v

v
%

%

(
, 

| 1k k

k T

k

−
− 

=  
−  

P M
R

M R

% %

%

%

(
              (4.32) 

Applying Theorem 2.1, we have 

| 1

1

| 1

T

k k k k k k

T

k k k k k

−

−
−

′ ′ ′ = +


′=

S H P H R

K P H S

ɶ ɶ ɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶ ɶ

                                              (4.33) 
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with 

1

| 1

1

| 1

1

| 1 | 1
ˆ

T

k k k k

T

k k k k

T

k k k k k k

−
−

−
−

−
− −

 ′ = +
 ′ = +


= +

H H M P I

R R M P M

z z M P x

% % % %

% % % %

% % % % % %

                                             (4.34) 

which comes from (2.82). Accordingly, 

| 1 | 1

1 1

| 1 | 1
( )

T T T T

k k k k k k k k k k k k k

T T

k k k k k k k k k k

− −

− −
− −

′ ′ ′ = + = + + +


′= = +

S H P H R H P H M H H M R

K P H S P H M S

ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ

                  (4.35) 

which is identical to (4.30). The subsequent (4.31) can be shown similarly. 

Correspondingly, we can apply the CRLS to implement a sequential data processing scheme 

for the optimal KF considering correlation. In addition, we can also use the recursive GLS to 

deal with various complicated situations caused by data correlation, PSD covariance, and so 

on. 

Actually, the formulae of the optimal KF considering correlation can be adopted in 

nonlinear filtering applications where the predicted state and the current measurement error are 

widely correlated due to linearization. For instance, we will apply the optimal KF considering 

correlation to develop a series of adaptive filtering techniques and solve practical problems 

such as power system state estimation and parameter estimation. 
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Nomenclature in Chapters 5-6 

 

Subscripts in Chapters 5-6 are listed below for quick reference: 

c             related to the center of x orp  

k             time index 

| 1k k −        time index for prediction from instant 1k − to k  

|k k          time index for update at instant k  

mn           to-be-calibrated line connecting nodes m and n  

0mn          m side (to the ground) of the line connecting nodes m and n  

p            related to the unknown parameter vector p  

r and i         real and imaginary components 

st            arbitrary line connecting nodes s and t  

0st           s side (to the ground) of the line connecting nodes s and t  

x             related to voltage state x  

Multiple subscripts are separated by a comma.  

In addition, some variables and symbols, which have been adopted in previous Chapters 2-4, 

may be used again but have specific or different interpretations in Chapter 5-6. These specific 

interpretations are used by default unless the variables adopted in Chapters 2-4 are really 

involved in Chapters 5-6. 
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Chapter 5: Joint Estimation of State and Parameter with 

Synchrophasors—Part I: State Tracking 

 

5.1 Introduction 

5.1.1 Background and Motivation 

Most power system state estimation (SE) programs are formulated as static 

weighted-least-squares (WLS) problems with one-scan data [Monticelli00]. Dynamic state 

estimation (DSE) is not popularly applied due to practical limitations such as the complexity of 

the measurement system and the inaccuracy of dynamic and measurement models. In fact, 

parameter estimation (PE) is responsible for calibrating the suspicious measurement model 

parameters [Abur04], within which the bus voltages of interest and the unknown parameters 

are usually stacked as an augmented state [Zarco00]. Correspondingly, dynamic-estimation 

methods are preferred since they exploit data from multiple scans and take advantage of 

dynamic models [Leite87]. Unfortunately, similar obstacles as in the DSE for bus voltages are 

encountered and the estimation accuracy is not guaranteed. These dilemmas can be avoided in 

power systems metered by synchrophasors. 

The invention of synchrophasor, also known as synchronized phasor measurement unit 

(PMU), has led a revolution in SE since it yields linear measurement functions as well as 

accurate data within three to five cycles [Phadke93] [Phadke02]. In spite of the involved 

instrumental channel errors [Sakis07] and the high cost, PMU has been tentatively used in 

centralized or distributed estimators [Phadke86] [Zhao05] [Jiang07] and in bad-data detection 

[Chen06]. 

In Chapters 5 & 6, we aim at performing accurate parameter (and state) estimation in 

complex situations using synchrophasor data. An approach of joint state-and-parameter 

estimation, which is different from the state augmentation, is adopted, where the original 

nonlinear PE problem is reformulated as two loosely-coupled linear subproblems: state 
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tracking and parameter tracking, respectively. This chapter is on the state tracking with 

possible abrupt voltage changes and correlated prediction-measurement errors, which can be 

applied to determine the voltages in a PE problem or to estimate the system state in a 

conventional DSE problem. 

5.1.2 Literature Review 

DSE appeared soon after the static SE was introduced in the 1970s. Reference [Debs70] 

employs the extended Kalman filter (EKF) and uses the random-walk based prediction model 

1k k k−= +x x w                                                       (5.1) 

to predict the state x from time 1k − to k , where the state offset w may be nonwhite. (5.1) is 

later adopted in parameter estimation with w simplified as zero-mean white noise [Zarco00]. It 

has several limitations (see Sec. 5.4.1). Furthermore, an improved model incorporating the 

dynamic nature of the system via forecasting is suggested as 

       1 1 1k k k k k− − −= + +x F x G w                                            (5.2) 

where w is now zero-mean white noise. Coefficients F andG can be determined by the linear 

exponential smoothing method [Leite83]. With this model, EKF is also applicable [Leite87]. 

In addition, [Shih02] improves the robustness of the filtering algorithm using an exponential 

weight function. In [Mandal95] [Sinha99], G  is interpreted as known control actions, and 

[Sinha99] applies artificial neural network (ANN) to estimate G . However, (5.2) can not 

handle a possible abrupt change between instants 1k − and k [Lin03], since F andG only depend 

on the past estimates. References [Lin03] and [Huang04] introduce techniques of fuzzy control 

to relieve this difficulty. Nevertheless, (5.1) and (5.2) are not very applicable (see Sec. 5.4.1). 

We prefer to find an efficient method from a different point of view. 

5.1.3 Our Work 

The purpose is to track the bus voltages using multiple-scan synchrophasor data. 

Contributions of our work are summarized as follows: 

1) The system dynamic behavior is reanalyzed, which results in an improved prediction model. 
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2) A prediction model is proposed, which accounts for the effects of minor shifts and abrupt 

changes comprehensively. 

3) The measurement model is improved via introducing a concept of pseudo measurement 

error for the uncertainty in line parameters. 

4) A method for detecting the abrupt change is proposed. It makes use of an inherent property 

of the filter: estimation-error covariance is independent of the state. 

5) An adaptive filtering algorithm based on optimal tracking with correlated prediction- 

measurement errors, including the module for the abrupt-change detection, is developed. 

The solutions in the above setting yield accurate results and provide a reliable support for 

the parameter tracking presented in chapter 6. The work has been published in [Bian11a]. 

5.2 Formulation and State-Space Models 

5.2.1 State Tracking with Uncertain Parameters 

Multiscan synchrophasor data are used to estimate voltages of interest. Some steady-state 

parameters of transmission lines may also need to be calibrated. A generic measurement model 

(at time k ) can be written as 

( , )
k k k k
= +z h x p v                                                    (5.3) 

where 

z     vector including all one-scan measurements 

x     state containing node voltages of interest, ,1 ,2 ,2 , ,[ ]T

r r i r N i Nx x x x x=x ⋯  

p     vector containing uncertain line admittance, e.g., uncertain admittance of a single line 

(by the -typeπ circuit) is [ ]0 0   
T

mn mn mn mn
g g b b  

mn
g    serial conductance in the -typeπ circuit for a line connecting nodes m and n  

0mn
g    half shunt conductance in the -typeπ circuit for a line connecting nodes m and n  

mn
b     serial susceptance of the -typeπ circuit for a line connecting nodes m and n  
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0mn
b     half shunt susceptance of the -typeπ circuit for a line connecting nodes m and n  

v       vector of total measurement noise 

Assuming that the state and the measured data are in (or have been preprocessed into) the 

rectangular form (see Sec. 5.4.1), the measurement function ( , )h x p contains four types of 

scalar functions (represented by h ) as follows. 

Bus-voltage complex synchrophasors: 

, ,

, ,

r s r s

i s i s

h x

h x

=


=
                                                         (5.4) 

  Branch-current complex synchrophasors: 

, , , , , , 0 , 0

, , , , , , 0 , 0

( ) ( )

( ) ( )

r st r s r t st i s i t st r s st i s st

i st i s i t st r s r t st i s st r s st

h x x g x x b x g x b

h x x g x x b x g x b

= − − − + −


= − + − + +
                        (5.5) 

( , )h x p is nonlinear if x is augmented with p . Our approach treats this nonlinear problem as 

two loosely-coupled linear subproblems, namely, state tracking and parameter tracking. With 

this approach, p is roughly estimated in advance for the use of the state tracking. In other 

words, it is uncertain rather than unknown. To our knowledge, state tracking with uncertain 

line parameters is first discussed in this paper. In addition, the proposed approach can be 

simplified and applied to the conventional cases wherep is exactly known. 

5.2.2 Prediction Model for State Tracking 

We introduce a new prediction model 

, 1 ,k c k k x k−= + +x x u w       (5.6a) 

, , 1c k c k k−= +x x u  (5.6b) 

Substituting (5.6b) into (5.6a), the model is equivalent to 

, ,

, , 1

          

          

k c k x k

c k c k k−

= +


= +

x x w

x x u
                                               (5.7) 

where 
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c
x     mean (center) of x  

x
w    vector of zero-mean white process noise 

u     abrupt change to be detected 

Here, (5.6a)-(5.6b) describe the standard dynamics of the system while (5.7) clearly reveals 

two facts: (a) 
k

x varies around ,c k
x  over time, and (b) ,c k

x may change abruptly. Detailed 

explanation of this model is given in Sec. 5.4.1. 

5.2.3 Measurement Model of State Tracking 

The standard measurement model with known admittance is 

, ,x k x k x k
= +z H x v                                                     (5.8) 

where 

x
H   coefficient matrix derived from (5.4)-(5.5) by treating all conductance and 

susceptance as constants 

x
z     vector of measurements in state tracking 

x
v     vector of measurement noise in state tracking 

Since
x

H may contain uncertain admittance parameters, equation (5.8) can be expressed as 

, , ,x k x k k x k= +z H x vo o                                                   (5.9) 

where 

, , | 1 | 1 ,
ˆ( )x k x k k k k k x k− −= ∆ + ∆ +v H x x vo                                         (5.10) 

, ,x k x x k∆ = −H H Ho , | 1 | 1
ˆ

k k k k k− −∆ = −x x x  

| 1
ˆ

k k−x     predicted x  

x
H

o      (time-dependent) coefficient matrix obtained from
x

H by replacing p with an 

estimate p̂ . 
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Note that the original noises
x

w and
x

v are zero-mean, white Gaussian, and mutually 

independent. 

5.3 Adaptive Tracking of State 

5.3.1 Basic Filter Considering Correlation 

The mean of the (pseudo) measurement noise ,x kvo in (5.10) is not necessarily zero. ,x kvo and 

the prediction error | 1k k−∆x  may be correlated. Thus the following quantities are considered: 

, ,x k x k
E  =  v vo o , , ,cov

x k x k
 =  R vo o                                       (5.11) 

| 1 ,

, , | 1 ,

cov( , )

cov( , )

k k k x k

k

c k c k k x k

−

−

 ∆ 
= =    ∆    

A x v
A

A x v

o

o

(
                                     (5.12) 

The optimal Kalman filter considering the correlation between errors in the prediction and 

the measurements, which is recently developed in [Li07], is used to develop the state-tracking 

procedure (see Appendix A). The following is the algorithm in the predictor-corrector form, 

which is convenient for implementation and coding: 

1) Initialization: 0k =  

    0|0 ,0|0
ˆ ˆ

c
=x x ; 0|0 ,0|0c

=P P                                             (5.13) 

2) Recursion: : 1k k= +  

a) Prediction:  

Assume ˆ
k
=u 0  

| 1 , 1| 1
ˆ ˆ

k k c k k− − −=x x ; , | 1 , 1| 1
ˆ ˆ

c k k c k k− − −=x x                                   (5.14) 

| 1 , 1| 1 ,k k c k k x k− − −= +P P Q ; , | 1 , 1| 1c k k c k k− − −=P P                             (5.15) 

, | 1 , | 1 ,
ˆ ˆ

x k k x k k k x k− −= +z H x vo o                                          (5.16) 

b) Update:  

, | 1 , , , ,( ) ( )T T

k x k k k x k x k x k k x k k−= + + +S H P H R H A H Ao o o o o                     (5.17) 
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1

| 1 ,

1

, , | 1 , ,

( )

( )

T

k k k x k k k

T

c k c k k x k c k k

−
−

−
−

  = +  


 = +  

K P H A S

K P H A S

o

o
                                 (5.18) 

As a result, 

, , , | 1
ˆ

x k x k x k k−∆ = −z z z                                             (5.19) 

| | 1 ,

, | , | 1 , ,

ˆ ˆ
 

ˆ ˆ

k k k k k x k

c k k c k k c k x k

−

−

= + ∆


= + ∆

x x K z

x x K z
                                      (5.20) 

| | 1

, | , | 1 , ,

T

k k k k k k k

T

c k k c k k c k k c k

−

−

 = −


= −

P P K S K

P P K S K
                                      (5.21) 

c) Adaptation:  

        Reset , | 1 , 1| 1
ˆ ˆ ˆ

c k k c k k k− − −= +x x u if ˆ
k

u is detected and estimated; (see Sec. 5.3.2 for details) 

where 

P     covariance of estimation errors in x̂  

c
P    covariance of estimation errors in ˆ

c
x  

S     covariance of measurement prediction error 

K    filter gain 

x
Q    covariance of process noise

x
w , assumed known 

Subscript | 1k k − is time index for prediction from instant 1k − to k and |k k is time index for 

update at instant k . 

In particular, ,x kvo , ,x kRo and
k

A
⌣

are assumed known in the above procedure. An error- 

ensemble-evolution method is used to evaluate these quantities. First, this method generates 

ensembles of random quantities such as 0|0∆x , ,0|0c
∆x , ,x k

w  and ,x k
v using given mean and 

covariance information. Consequently, the ensembles of predicted and updated estimation 

errors evolve as follows: 
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( ) ( )

, | 1 , 1| 1

( ) ( ) ( )

| 1 , | 1 ,

j j

c k k c k k

j j j

k k c k k x k

− − −

− −

∆ = ∆

∆ = ∆ +

x x

x x w
                                            (5.22) 

( )( ) ( ) ( ) ( )

, | , | 1 , , | 1 , ,

( ) ( ) ( )

| | 1 , | 1 , ,( )

j j j j

c k k c k k c k x k k k x k x k

j j j j

k k k k k x k k k x k x k

− −

− −

∆ = ∆ − ∆ + −

∆ = ∆ − ∆ + −

x x K H x v v

x x K H x v v

o o o

o o o
                        (5.23) 

where superscript j is a sample index in ensemble. Second, using (5.10), the ensemble of 

,x kvo can be obtained from the (derived or given) parameter-error ensemble. Finally, sample 

mean and sample covariance are used for ,x kvo , ,x kRo and
k

A
(

, respectively. Details of this method 

and the derivation for (5.22)-(5.23) can be found in Chapter 6. 

5.3.2 Detection and Estimation of Abrupt Change in State 

Two hypotheses are considered for abrupt change detection, and the decided one is used in 

the above filter. That is,  

0 :   0
k

H =u   vs.  1 :  0
k

H ≠ u  

As shown in Appendix B, the possible abrupt change and the different innovations under the 

two hypotheses form an important linear “measurement equation” as 

, , ,x k x k k x k

−∆ = + ∆z H u zo                                                (5.24) 

where
x

−∆z is vector of innovations under 0H , and
x

∆z is under 1H . Consequently, 
k

u is 

estimated as 

1 1 1

, , ,
ˆ [( ) ] ( )T T

k x k k x k x k k x

− − − −= ∆u H S H H S zo o o                                    (5.25) 

Note that
k

S holds the same value under both hypotheses. This important fact comes from the 

property of the Kalman filter: Estimation error covariance is independent of the state. 

Under 0H , ˆ
k

u is approximately Gaussian: 

ˆ ~ (0, )
k

Nu L , with 1 1

, ,[( ) ]T

x k k x k

− −=L H S Ho o                                (5.26) 

Accordingly, a significance test can be performed as 
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    1ˆ ˆT

u k k
T c

−= ≥u L u                                                    (5.27) 

where the test statistic
u

T is chi-square distributed under 0H , the threshold c is determined by 

{ }
u

P T c α≥ =                                                      (5.28) 

andα is the desired probability of false alarm.  

If (5.27) is not satisfied, 1H is rejected and ˆ
k

u is declared to be zero. Otherwise, 0H is 

rejected and ˆ
k

u is estimated by (5.25). 

In addition, calculated
k

S may be affected by ˆ
k

u  through 
k

A
(

 and ,x kRo . Iteration can be 

applied if necessary. 

5.4 Procedure and Performance Analysis 

5.4.1 Explanations on Prediction and Measurement Models 

In essence, the prediction model (5.6) (without
k

u ) is an improved random-walk model. In 

the model of (5.1), the state is 

1 , 0 ,1

k

k k x k x jj− =
= + = = +∑x x w x wL                                    (5.29) 

where the covariance of cumulative noise ,1

k

x jj=∑ w  increases with k . This is inconsistent 

with the fact that the normal state does not deviate far from the nominal center due to the effect 

of the control system. The new model assumes that
k

x varies around a deterministic 

center ,c k
x by ,x k

w . 
k

x  does not deviate far from 1k−x since the noise , , 1x k x k−−w w still has 

constant covariance. Clearly, this model is better over a long time horizon. 

The forecasting model in (5.2) introduces the coefficients
k

F  and
k

G  into the random-walk 

model. However, in power systems, especially in those monitored by synchrophasors, 

measurement redundancy is not high. It is not easy to accurately determine excessive 

additional model parameters since they indirectly reduce the measurement redundancy. As a 

result, a “smooth” but inaccurate trajectory may be obtained with this model. Furthermore, the 
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forecasting model has a risk of instability. In fact, F andG  totally rely on the past data and 

they may mismatch the current true model. In the filtering procedures, the filter also assigns 

increasing weights to the prediction. Thus the past data are over weighted. When the filter 

update does not mitigate a serious mismatch error using new data with incorrectly lower 

weights, F and G are adapted worse. Consequently, the prediction at the next instant deviates 

further away from the true state, especially when there is an abrupt change. In extreme cases, 

the filter will diverge. In contrast, the new model in (5.6) accounts for the effects of the control 

system, the small state shifting and the abrupt state change, which can describe the behavior of 

the realistic system accurately. It also assigns relatively higher weights to new data. Moreover, 

it is much more concise and easier to utilize in the filtering procedure.  

Practical implementations can also take advantage of the conciseness of the new model. For 

instance,
x

Q , the covariance of 
x

w , can be evaluated easily with (5.6): The estimated state 

based on static WLS estimation methods can be used as samples; the sample covariance minus 

the covariance of (static) estimation error is roughly equal to
x

Q . On the contrary, with (5.2) 

and even with (5.1), xQ is not easy to evaluate. Furthermore, ku , which is for an abrupt 

change that exists in reality but was ignored in previous work, also plays a beneficial role. 

Once it is detected correctly, it does compensate the effect of the change. However, even if it 

responds to a false alarm, which ought to be avoided in the design, the misoperations may also 

improve estimation accuracy, especially when the process noise is much larger than 

measurement errors. In addition, the estimated ku can be used to process bad data (see Sec. 

5.4.2). 

To obtain a linear measurement model in (5.8) and simplify the filtering procedure, both the 

bus voltage variables and the measured voltage and current phasors are assumed in the 

rectangular form. The theoretical synchrophasor measurements are inherently in the 

rectangular form [Phadke08]. The IEEE standard C37.118-2005 suggests that synchrophasors 

provide data in both rectangular and angular forms [IEEEStd05]. However, some types of 
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synchrophasors may be manufactured to provide angular-formed data only. Then the 

coordinate transformation for the data and accompanying amplified measurement errors, which 

is investigated in [Bi08], can be employed. Eventually, for the practical use, the estimated state 

can almost be converted into the angular form without loss of accuracy. 

5.4.2 Implementation Issues 

The proposed approach performs DSE for power systems in generic situations where 

uncertain line parameters are involved. The state tracking procedure is depicted in Fig. 5.1. 

The two modules in the dashed box, regarding covariance calculation and parameter tracking, 

will be discussed in Chapter 6. 

In fact, this approach can be simplified to solve conventional DSE problems, where all the 

line parameters are known and no correlation exists between the prediction and the 

measurement errors. That is, ,x k x=H Ho , ,x k x=R Ro , ,x kvo and
k
=A 0

(
. Correspondingly, in Fig. 

5.1, the modules in the dashed box are not needed any more. 

Particularly, the Kalman filter, including the recently-introduced considering-correlation 

one, has another important property which can benefit practical issues related to large system 

scale, observability analysis, bad-data processing and so on. That is, the updated state |
ˆ

k k
x is 

mathematically equivalent to a WLS estimate which takes both ,x k
z and the predicted state 

| 1
ˆ

k k−x  as data. Correspondingly, ,x kvo and | 1k k−∆x are taken as measurement errors. In this sense, 

when the proposed approach is applied to large-scale systems, existing WLS-based distributed 

computation techniques can be applied. For instance, the multiarea state-estimation technique 

in [Conejo07] and [Ebrahimian00] can be employed to complete the update in the filter. 

Moreover, the system now is linear. The distributed estimation can be handled much more 

easily and quickly since iteration may be avoided. Furthermore, the sparsity of ,x k
H  can even 

improve the efficiency more significantly because the measured data now are processed in 

small blocks. 
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Fig. 5.1 State tracking procedure with abrupt-change detection 

 

For systems with hybrid synchrophasor and (conventional) SCADA data or with SCADA 

data only, the proposed dynamic model is still applicable. To preserve the linearity of 

measurements, the SCADA data can be preprocessed by traditional state estimators and the 

estimated voltages can be treated as refined linear measurements [Zhou06]. The proposed 

approach and models are then applied with synchrophasor data plus the refined voltages. For 

SCADA-data only systems, the iterative EKF [Bar-Shalom01], which usually performs better 

than EKF, can be adopted for filtering. With the model in (5.6), the computation at each instant 

is almost the same as that of the static WLS estimation. 

5.4.3 On Observability, Bad-Data Processing and Accuracy 

In the static SE, although the measurement system in design always guarantees the 

observability, sometimes missing data may make the system unobservable. With 



 100

synchrophasors, observability analysis becomes easy since the bus-voltage and branch-current 

phasors are metered directly [Gou01]. The mathematical equivalence between the filter’s 

update and the WLS estimation implies that the requirement for observability in our approach 

is similar to but simpler than that in the static SE. In fact, with the proposed approach, 

observability analysis is almost dispensable. When missing data occur occasionally, a 

predicted state still makes the system state observable at the current time instant. 

Traditional bad-data processing techniques [Monticelli00] [Abur04] are still applicable to 

preprocess the data if the one-scan redundancy is adequate. However, the proposed approach 

itself can reduce the effect of bad data through the estimated change ˆ
k

u . For example, if a 

bad-data situation occurs at time k , it results in a detected ˆ
k

u . At time 1k + , it is very likely that 

another 1
ˆ

k+u , which balances ˆ
k

u out, is detected. If found, the state at time k be recalculated. 

The solutions at each stage are obtained based on the best linear unbiased estimation (BLUE) 

criterion [Li03]: The state estimates are optimal in the sense of linear minimum-mean-square- 

error if there is no abrupt change; if abrupt changes occur and are detected, the overall solution 

is not necessarily optimal but the linear WLS estimates of the changes do improve the 

state-tracking accuracy. 

5.5 Comparative Experiments 

Simulations are performed on a realistic 18-bus system, where comparative experiments 

regarding estimation accuracy and tracking convergence in three scenarios, such as (a) an 

abrupt state change occurs and the line parameters are all known; (b) no abrupt change occurs 

but one branch contains uncertain admittance; and (c) both abrupt state changes and uncertain 

parameters are involved, are carried out. 

In the following examples, the involved parameter estimates do not change. Cases with 

varying parameter estimates will be tested in Chapter 6 where parameter-tracking techniques 

are discussed. The true, measured and estimated (voltage and current) phasors are all in the 

rectangular form and the output (estimates) may be converted into the angular form without 
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loss of accuracy. The true states are simulated by adding zero-mean Gaussian noise to the 

base-case network data. The synchronous measurements of bus voltages and branch currents 

are generated similarly, where the errors outside the3σ region are discarded to exclude the 

effect of bad data. 

The realistic system depicted in Fig. 5.2, which is from a 220kV network supplying power 

for a major city in East China, is employed. The line parameters are listed in Table 5.1. 
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Fig. 5.2 Realistic 18-bus system 

 

In the experiments, bus 1 is designated as the reference bus. The standard deviations of the 

real and imaginary voltage process noises are 0.005 and 0.01, respectively. All the bus 

voltages and branch currents are metered by synchrophasors (SMU-type PMU) and the 

covariance matrices of the errors in voltage and current measurements are 

    6
4 0.4

10
0.4 1

v

− 
= × 
 

R and 6
25 2.25

10
2.25 2.25

c

− 
= × 
 

R  

which are set to be greater than manufacturer’s specifications. 

The classic measure, root mean square errors (RMSE), which evaluates the average 

performance (or accuracy) of the state tracking, is adopted, where
run

N is the total number of 

Monte-Carlo runs: 
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TABLE 5.1 

BRANCH PARAMETERS (18-BUS SYSTEM) 

Br. 1-2 2-3 3-4 1-7 7-8 8-9 9-4 4-5 5-6 7-11 

gmn 23.708 9.084 8.129 8.049 9.552 15.742 16.444 11.978 13.835 12.842 

bmn -106.124 -39.765 -35.744 -35.407 -54.456 -69.619 -72.827 -52.742 -62.466 -57.213 

bmn0 0.0121 0.0316 0.0362 0.0376 0.0036 0.0182 0.0180 0.0249 0.0205 0.0230 

Br. 5-13 11-14 14-12 12-13 13-10 14-15 15-16 13-18 16-17 17-18 

gmn 10.413 7.892 13.893 18.076 27.760 9.157 4.046 6.009 7.380 8.006 

bmn -45.449 -38.169 -60.418 -81.728 -122.667 -45.284 -19.586 -26.422 -32.371 -34.958 

bmn0 0.0288 0.1202 0.0218 0.0250 0.0117 0.1020 0.2427 0.0491 0.0413 0.0380 

gmn, bmn and bmn0 are serial conductance, serial susceptance and shunt susceptance, respectively. Shunt 

conductance is always zero. 

( ) ( )
1

2

| |1

1
ˆ ˆRMSE =

run
TN

k k k k k kj
run

N =

 
− − 

 
∑ x x x x                            (5.30) 

First, branches 4-9 and 12-13 are assumed suspicious. The erroneous admittances, arranged 

in the order of serial conductance, serial susceptance and half shunt susceptance, 

are [15.0 75.0  0.015]T− and[18.0 82.0 0.024]T− , respectively. The corresponding standard 

deviations for the uncertainty are 1.0, 1.2 and 0.002 for branch 4-9 and 1.0, 1.0 and 0.002 for 

branch 13-12. 

The proposed approach considering erroneous parameters’ uncertainty, the one ignoring the 

uncertainty, and the ideal one using the correct parameters are compared. Fig. 5.3 gives 3 sets 

of voltage RMSEs with 200 Monte Carlo runs by different approaches. The results by the 

proposed approach with a sample size of 200 are also presented in Table 5.2. It is seen that the 

trajectory by the proposed approach is a little poorer than the ideal one due to the uncertainty 

of parameters. It is also clear that ignoring the uncertainty in erroneous parameters leads to 

inaccurate estimates. 

Second, abrupt state changes are introduced into the new experiment while branches 4-9 and 

12-13 remain uncertain. The other system and measurement configurations are the same as 

those in the previous case. An abrupt change occurs at 11k = , which is centered at bus 4 and 

affects several adjacent buses. The increment complex-voltage pairs at buses 9, 4, 5, 3 and 8 
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are: 

-0.02500 - 0.01745j ,   0.04000 - 0.03490j ,   0.02000 - 0.01396j , 

-0.01200 - 0.00872j ,   -0.01500 - 0.00872j  

The change-detection threshold is 0.01α = . A simulation with 200 runs is conducted. The 

RMSE results by the proposed one are in Table 5.3. Fig. 5.4 also shows two sets of voltage 

RMSEs using the proposed state tracking and the one without detection and estimation of 

change, respectively.  
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Fig. 5.3 Comparison on effect of parameter uncertainty 

 

At 11k = , the values in the ‘Accounted’ trajectory are much smaller than those in the 

‘Unaccounted’ one. In addition, at instants 5-10, the ‘Accounted’ values, which should 

coincide with the ‘Unaccounted’, are still smaller. It implies that the change-detection-and- 

estimation process has responded to false alarms, as discussed in Sec. 5.4.1. These 

‘unexpected’ operations help improve the estimation accuracy. Thus it is shown that the 
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TABLE 5.2 

RMSES OF FIRST EXPERIMENT (BY PROPOSED APPROACH) 

Time 0 1 2 3 4 5 6 7 8 

Value 0.00942 0.00210 0.00166 0.00191 0.00191 0.00200 0.00201 0.00177 0.00195 

Time 9 10 11 12 13 14 15 16 17 

Value 0.00205 0.00191 0.00184 0.00182 0.00176 0.00198 0.00186 0.00204 0.00170 

 

TABLE 5.3 

RMSES OF SECOND EXPERIMENT (BY PROPOSED APPROACH) 

Time 0 1 2 3 4 5 6 7 8 

Value 0.00910 0.00249 0.00246 0.00224 0.00246 0.00231 0.00213 0.00248 0.00220 

Time 9 10 11 12 13 14 15 16 17 

Value 0.00228 0.00212 0.00206 0.00207 0.00223 0.00223 0.00214 0.00217 0.00201 

 

method of change detection and estimation is necessary and effective. In particular, in this 

most complicated case, the average processing time for each prediction-update cycle (one 

instant) is less than 0.05 second when the approach is implemented via MATLAB on a 

computer with a single-core 3.0GHz CPU. 

Third, the proposed approach accompanied by the newly-introduced dynamic model in (5.6) 

is compared with a traditional approach using the random-walk model in (5.1) and an approach 

using the forecasting model in (5.2). In the forecasting model, the coefficients F  and G are 

determined by the classic linear exponential smoothing method [Leite83].  

The existing approaches do not consider the abrupt state changes and the possible uncertain 

parameters, on which the proposed approach has already won out. To make a ‘fair’ 

comparison, only the case without abrupt changes and uncertain parameters is tested. All the 

other system and measurement configurations are the same as those in the first test of Sec. 

5.5.5. The RMSE trajectories by the proposed approach and the random-walk model based 

approach are presented in Fig. 5.5. The plots indicate that the random-walk model leads to 

results inferior to those by the proposed one. 
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Fig. 5.4 Comparison on effect of abrupt-state-change detection 
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Fig. 5.5 Comparison with random-walk model 

 

Fig. 5.6 plots the RMSE trajectories to compare the proposed approach with the forecasting 

model based approach. The setting for the forecasting model is the same as that in [Leite83]. 

Clearly, the results are consistent with the analysis in Sec. 5.4.1 and the proposed approach has 

better accuracy. In field applications, the PMU accuracy and the number of measurements may 

not be as high as in the simulation setting, and it is also possible that some measured data are 

not valid at some instants. In these realistic situations, the improved performance of the 
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proposed approach over the compared ones in Figs. 5.4, 5.5 and 5.6 will be more significant 

since the estimation accuracy now relies more on the prediction model. 
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Fig. 5.6 Comparison with forecasting model 

 

5.6 Conclusions 

This chapter presents a novel approach to state tracking with correlated prediction- 

measurement errors and possible abrupt state change. Prediction models have been analyzed, 

leading to a new model. An adaptive filtering procedure, accompanied by detection and 

estimation of abrupt changes, has been developed, which also considers the correlation 

between the prediction and the pseudo measurement errors. Simulations illustrate the 

performance of the approach under multiple conditions. High estimation accuracy is achieved 

with this approach. In addition, the approach can be simplified and applied to conventional 

DSE problems with synchrophasor data. It can also be introduced to other state estimation 

problems with conventional SCADA data. 

5.7 Appendices 

5.7.1 Appendix A: Derivation of Filter on Correlated Errors and Noise 

The linear system tracked by the standard Kalman filter (KF) usually assumes whiteness and 

non-correlation. Reference [Li07] presents an optimal KF dealing with various correlations. 

The following derivation, which follows [Li07] and adopts the predictor-corrector form of KF 

[Bar-Shalom01] that is easy for implementation and coding, assumes that the prediction and 
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the measurement errors are correlated. For the system described by 

1

1

, 1

k k k k

k k

c k k k

−
−

−

       
= = + +       

     

x 0 F M w
x x

x 0 F M 0

( (
                               (5.31) 

[ ]
k k k k k k k
= + = +z H x v H 0 x v
( ( (

                                      (5.32) 

with M for a general input and w for zero-mean white noise, one predictor-corrector cycle (at 

one time instant) of the filter includes prediction and update as follows. 

1) Prediction:  

The prediction is exactly the same as that in the standard KF. That is, 

1| 11

| 1

, 1| 11

ˆ
ˆ

ˆ

k kk k

k k

c k kk k
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or | 1 , | 1 1 , 1| 1
ˆ ˆ ˆ

k k c k k k c k k k− − − − −= = +x x F x M                                         (5.33) 

The corresponding mean-square error (MSE) matrix is 

| 1 | 1 1 1| 1 1
ˆcov( ) diag( ,  )T
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where cov( )⋅ is for covariance. 

In other words, 

| 1 , | 1

, | 1 1 , 1| 1 1

k k c k k k
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− − − − −
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=

P P Q

P F P F
                                             (5.34) 

2) Update: 

The update includes the following steps similar to those in the standard KF. 

The predicted measurement is 

| 1 | 1 | 1
ˆˆ ˆ

k k k k k k k k k k− − −= + = +z H x v H x v
( (

                                     (5.35) 

where v is the mean of v . By definition, the innovation is 

| 1
ˆ

k k k k−∆ = −z z z                                                     (5.36) 
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The covariance of the innovation (assuming measurement-prediction-error correlation exits) is 

| 1cov( ) ( )T T

k k k k k k k k k k k−= ∆ = + + +S z H P H R H A H A
( (( ( ( ( (

 

| 1 ( )T T

k k k k k k k k k−= + + +H P H R H A H A                                 (5.37) 

where ( )T

k k k k
+H A H A

( (( (
is introduced by the newly-counted correlation. The filter gain is also 

modified with kA
(

. That is, 
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Then the updated estimate and its MSE matrix are 
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5.7.2 Appendix B: Derivation of Abrupt Change Estimation 

This derivation, inspired by the input estimation approach in [Bar-Shalom01], is based on 

the model in (5.6). Hypotheses 0H and 1H are considered as follows. 

1) 0H : 0
k
=u  

According to (5.14), the prediction is 

| 1 , 1| 1
ˆ ˆ

k k c k k

− −
− − −=x x                                                      (5.42) 

Then the corresponding innovation is 
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ˆ
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−
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2) 1H : 0
k
≠u , 

From (5.14), the prediction is 

| 1 , 1| 1
ˆ ˆ

k k c k k k− − −= +x x u                                                 (5.44) 

The innovation under 1H is  

, , , | 1
ˆ

x k x k x k k k−∆ = −z z H xo  

, , , 1| 1 ,
ˆ

x k x k c k k x k k− −= − −z H x H uo o                                       (5.45) 

Comparing (5.43) with (5.45), and also considering the initial condition , 1| 1 , 1| 1
ˆ ˆ

c k k c k kx
−

− − − −=x , we 

have 

, , ,x k x k k x k

−∆ = + ∆z H u zo                                               (5.46) 

which implies that ,x k

−∆z and ,x k
∆z form a measurement-and-noise pair with respect to

k
u . 

In the filter in Sec. 5.3, the covariance
k

S does not depend on the concrete state values in the 
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filter. Thus ,x k

−∆z and ,x k
∆z have the same covariance. Accordingly, the WLS estimate of

k
u is 

1 1 1

, , , ,
ˆ [( ) ]T

k x k k x k x k k x kz
− − − −=u H S H H S ∆

o o o                                      (5.47) 
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Chapter 6: Joint Estimation of State and Parameter with 

Synchrophasors—Part II: Parameter Tracking 

 

6.1 Introduction 

6.1.1 Previous Work 

In more and more modern power systems, synchrophasors are deployed to meter bus 

voltages directly, and branch-current phasors are also collected to maintain measurement 

redundancy [Phadke02] [Martin08]. Consequently, accurate model parameters are required by 

state estimators. Unfortunately, incorrect parameters exist and their percentage can be up to 

30% in some utilities’ database [Kusic04]. Thus parameter estimation is crucial for power 

system state estimation and other steady-state applications. 

As surveyed by [Zarco00], parameter-estimation methods using residual sensitivity analysis 

or augmenting the parameters into the state vector, with data from a single scan, have been 

proposed [Liu92] [Liu95] [Alsac98]. These static-estimation methods are usually limited 

because the measurement redundancy is inadequate in practice. Dynamic-estimation methods 

using multi-scan data are generally preferred [Debs74]. They have better performance, but 

require accurate dynamic models and relatively more computation. Typically, the dynamic 

state vector is augmented [Debs74] [Slutsker96] and the extended Kalman filter (EKF) is 

applied since the measurement functions are nonlinear. However, EKF-based approaches do 

not perform well if the problems are highly nonlinear or some components of the augmented 

state set are sensitive to measurement noise [Li04]. In addition, although several artificial 

intelligent techniques have been introduced to improve prediction models in state estimation 

[Sinha99] [Lin03] [Huang04], less attention has been paid to the dynamic behavior of the 

involved voltages and parameters in parameter estimation. An inappropriate model may lead to 

serious model mismatch errors, especially for filtering over a long period. 
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In essence, the EKF-based approaches (in power system state estimation) are industrial 

applications of nonlinear filtering techniques which are largely classified into two categories: 

point estimation and density estimation [Debs74]. In addition to EKF, other point estimation 

methods, such as unscented filter [Julier04] and Gaussian filter [Ito00], employ different 

approximation techniques to track nonlinear systems. Their performance is limited if the 

specific system is not well approximated. Density-estimation methods, such as Fokker-Planck 

equation based methods [Ahmed98] and particle filtering (PF) [Djuric03], try to provide exact 

or approximate posterior probability density functions. However, they require sufficient 

one-scan measurements and the computational requirements are demanding, especially in 

high-dimensional cases. 

For high-dimension low-redundancy nonlinear parameter estimation, we propose a balanced 

method which adopts merits from both EKF and PF. It follows the simple structure of EKF but 

further accounts for the uncertain effects such as involved bus voltages and high-order terms 

(of Taylor’s expansion) in EKF as the pseudo measurement errors correlated with the 

prediction errors. Correspondingly, a recently-developed optimal filtering technique that can 

handle correlation [Li07] is introduced (see Chapter 5). We also introduce random samples 

from the idea of PF to evolve the pseudo-error ensembles and to evaluate the statistics related 

to the pseudo errors, where the error-ensemble sampling does not rely on the measurement 

redundancy and is much easier to implement than PF. Based on this balanced method, the joint 

state-and-parameter estimation considering complicated behaviors of voltages and parameters 

is discussed. 

6.1.2 Our Contributions 

The problem of parameter estimation with synchrophasor data is formulated as two 

loosely-coupled subproblems: state tracking (presented in Chapter 5) and parameter tracking. 

This chapter focuses on the parameter tracking, where only line parameters are estimated and 

the involved bus voltages are now treated as uncertain “measurement- function coefficients”. 

The work includes: 
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1) A new prediction model accounting for the effect of prior knowledge and moving 

parameter means is proposed. The measurement model is also improved by introducing a 

concept of pseudo measurement error to cover the uncertainty in the estimated voltages, 

high-order terms and measurement errors. 

2) An adaptive filter is developed, based on the optimal filtering with correlated 

prediction-measurement errors. 

3) A sliding-window method is proposed to detect the moving tendency of parameters and 

adjust the transition matrix adaptively. It is embedded in the adaptive filter. 

4) A sample-based method, namely, error-ensemble evolution, is used to evaluate the 

correlation between pseudo measurement errors and prediction errors. 

5) In addition, a refinery-and-adaptation method is suggested for the use of realistic systems 

where the data-acquisition rate is high. Specifically, with the above setting, parameters from 

different lines can be accurately calibrated in parallel.  

In particular, the work of this chapter has been published in [Bian11b]. 

6.2 Parameter Estimation 

The goal is to calibrate the steady-state parameters in the -typeπ equivalent circuits 

(Pi-Model) of transmission lines using multi-scan synchrophasor data. The bus voltages at the 

nodes connected by these lines, which are included in the measurement function, also need to 

be determined. To obtain accurate estimates of the two voltages, a few adjacent buses usually 

are involved. Accordingly, the overall measurement equation can be written as 

( , )
k k k k
= +z h x p v                                                    (6.1) 

where 

z       vector of measurements forp and x  

p       vector of admittance over to-be-calibrated lines, e.g., admittance of a single line 

(by the -typeπ circuit) is [ ]0 0   
T

mn mn mn mn
g g b b  
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mn
g     serial conductance in the -typeπ circuit for a line connecting nodes m and n  

0mn
g     half shunt conductance in the -typeπ circuit for a line connecting nodes m and n  

mn
b      serial susceptance of the -typeπ circuit for a line connecting nodes m and n  

0mn
b     half shunt susceptance of the -typeπ circuit for a line connecting nodes m and n  

x       bus voltages 

( )⋅h     function (set) relatingp and x with measurements 

v       vector of measurement noise 

In conventional parameter estimation, p and x are solved as an augmented state, which leads 

to a typical nonlinear estimation problem and estimation accuracy is not guaranteed. We 

formulate this problem as two loosely-coupled subproblems: state tracking and parameter 

tracking, incorporated by an error-ensemble-evolution method dealing with the coupling. In 

one (state or parameter) tracking procedure, the other estimand (p or x ) is taken as uncertain 

“coefficients” in measurement function related to the current one. Consequently, the dynamic 

behaviors of the state and the parameters are studied separately since they do act differently in 

reality and the effect of the uncertain coefficients is represented by pseudo measurement 

errors. Specific filters are also developed. Specifically, in parameter tracking, the measurement 

set includes the involved branch-current data only and each current phasor pair is exclusively 

incident to one branch. This implies that parameters from different lines can be calibrated 

separately. 

The state tracking has been presented in Chapter 5. This chapter discusses the overall 

approach and focuses mainly on the adaptive parameter tracking with uncertain voltages and 

the method to evaluate the involved correlation. 

6.3 Formulation of Parameter Tracking 

As discussed in Sec. 6.2, admittances from different transmission lines can be processed in 

parallel. Thus, a single transmission line is considered in the subsequent discussion. 
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6.3.1 Prediction Model 

The dynamic behavior of line parameters is modeled as 

, ,

, , 1( , )

k c k p k

c k c k
f k−

= +


=

p p w

p p
                                                   (6.2) 

where 

c
p      mean (center) of p  

p
w     vector of zero-mean process noise in p , caused by small disturbances (e.g., wind or 

rain) 

( )f ⋅     function for deterministic moving tendency of
c

p  

This prediction model emphasizes two facts: (a) rather than a random walk, the true values 

vary randomly around a deterministic “center”; (b) the center is not necessarily constant. It 

may move over time since the transmission line can shrink or expand from heat, moisture, etc. 

Specifically, an adaptive model is utilized to approximate this moving tendency:  

, , 1 , 1c k p k c k− −=p F p ,                                                    (6.3) 

where transition matrix
p

F is adjusted by the sliding-window method (see Sec. 6.4.2). 

6.3.2 Measurement Model 

The voltages have been estimated using the scheme presented in Chapter 5. Thus only the 

synchronized branch currents through the to-be-calibrated line are considered in the 

measurement set. All the data are in the rectangular form. For those synchrophasors providing 

data in the angular-form only, the coordinate transformation used in [Bi08] can be employed to 

preprocess the data. The measurement model is 

, , ,p k p k k p k
= +z H p v ,                                                  (6.4) 

where 
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H                                 (6.5) 

p
z       vector of branch-current measurements 

p
v       vector of branch-current measurement noise 

x        entry of x  

Note that (6.5) is for two pairs of complex branch currents in reverse directions. For more 

redundant current observations, (6.5) will be extended. Furthermore, since not
k

x but its 

estimate ˆ
k

x  is available, (6.4) is refined as 

, , ,p k p k k p k= +z H p vo o ,                                                  (6.6) 

where ,p kHo is a coefficient matrix obtained from ,p k
H by replacing

k
x with ˆ

k
x . The pseudo 

measurement noise is 

, , | 1 | 1 ,
ˆ( )p k p k k k k k p k− −= ∆ + ∆ +v H p p vo ,                                      (6.7) 

where | 1
ˆ

k k−p is predicted estimate of p . | 1 | 1
ˆ

k k k k k− −∆ = −p p p , , , ,p k p k p k∆ = −H H Ho , and ,p k
∆H  

depends on ˆ
k k k

∆ = −x x x . 

The updated estimate |
ˆ

k k
x is used as ˆ

k
x in this chapter. The process and (original) 

measurement noises are assumed zero-mean, white Gaussian, and mutually independent. 

6.4 Tracking of Line Parameters 

6.4.1 Basic Filter 

The adaptive filter for the parameter tracking is arranged in the predictor-corrector form and 

includes recursive steps as below (also see Fig. 6.1). 

1) Initialization: 0k =  

0|0 ,0|0
ˆ ˆ

c
=p p ; 0|0 ,0|0 c=P P% %                                                 (6.8) 
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2) Recursion: : 1k k= +  

Determine , 1p k−F (see Sec. 6.4.2) 

Prediction: 

| 1 , | 1
ˆ ˆ

k k c k k− −=p p ; , | 1 , 1 , 1| 1
ˆ ˆ

c k k p k c k k− − − −=p F p                                 (6.9) 

| 1 , | 1 ,

, | 1 , 1 , 1| 1 , 1

k k c k k p k

T

c k k p k c k k p k

− −

− − − − −

 = +


=

P P Q

P F P F

% %

% %
                                       (6.10) 

, | 1 , | 1 ,
ˆˆ

p k k p k k k p k− −= +z H p vo o                                          (6.11) 

Update: 

, | 1 , , , ,

T T T

k p k k k p k p k p k k k p k−= + + +S H P H R H A A Ho o o o o% % %%                          (6.12) 

( )
( )

1

| 1 ,

1

, , | 1 , ,

T

k k k p k k k

T

c k c k k p k c k k

−
−

−
−

 = +


= +

K P H A S

K P H A S

o

o

% %% %

% %% %
                                     (6.13) 

      , , , | 1
ˆ

p k p k p k k−∆ = −z z z                                              (6.14) 

Finally, 

| | 1 ,

, | , | 1 , ,

ˆ ˆ
 

ˆ ˆ

k k k k k p k

c k k c k k c k p k

−

−

 = + ∆


= + ∆

p p K z

p p K z

%

%
                                       (6.15) 

| | 1

, | , | 1 , ,

T

k k k k k k k

T

c k k c k k c k k c k

−

−

 = −


= −

P P K S K

P P K S K

%% % % %

%% % % %
                                       (6.16) 

Here, 

P%      covariance of estimation error in p̂  

c
P%      covariance of estimation error in ˆ

c
p  

The following quantities are assumed known: 

p
Q     covariance of parameter process noise

p
w  

p
R     covariance of original measurement noise

p
v  
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In addition, the mean and covariance of ,p kvo ( pvo and pRo ), and the correlation between the 

prediction and the pseudo measurement errors which includes 

| 1 ,cov( , )k k k p k−= ∆A p vo% ,                                            (6.17) 

, , | 1 ,cov( , )c k c k k p k−= ∆A p vo% ,                                          (6.18) 

should be preprocessed. It is discussed in detail in Sec. 6.5. 

6.4.2 Adjustment of Transition Matrix 

Detection of the moving tendency in the parameter center is based on the following fact: As 

opposite to that the mismatched prediction model drives the predicted values farther and 

farther away, the newly-arrived measurements tend to pull the updated values back toward the 

truth. Consequently, a sliding-window method based on evidence from detN successive instants 

is proposed, which contains two hypotheses as 

0H : The center keeps increasing in the current window; 

1H : The center keeps decreasing in the current window. 

In the case that neither 0H nor 1H is correct, the center is assumed to remain constant in the 

current window. 

p
F is usually assumed diagonal and all the diagonal elements can be adjusted in a similar 

way. Let p̂ be a representative element in p̂ and
p

f be the corresponding diagonal entry of
p

F , 

respectively. Three decision rules are designed as follows: 

1) Decide 0H if | | 1
ˆ ˆ 1

k k k k
p p − >  occurs at least 1

0 det2
N N+  times within a window of swN  

instants.  

2) Decide 1H if | | 1
ˆ ˆ 1

k k k k
p p − < occurs at least 1

1 det2
N N+ times within the current window. 

3) Slide the window forward by one step if neither 0H nor 1H is decided. 
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To obtain a smooth parameter-tracking trajectory, we propose a scheme to tune
p

f after 

either 0H or 1H is declared: 

a) 0N and 1N can be set equal, and a small value such as 1, 2 and 3 can be used; 

b) detN is preset according to field experience (by observing the tracking trajectory); 

c)  Past data can be used to reduce the false-alarm probability and eliminate possible delay. 

That is, an adjustment window may have adjN ( detN> ) instants. If 0H  (or 1H ) still holds within 

the adjustment window, continue tuning
p

f ; otherwise, end and move the detection window. 

d) In the adjustment window, 
p

f is turned up (or down) conservatively. For instance, if 

| | 1
ˆ ˆ 1

k k k k
p p − >  occurs tempN  ( 1

0 det2
N N≥ + ) times, 

p
f should be turned up until tempN is reduced 

by 1. This stop criterion is milder than those in 0H and 1H . In addition, the calculated prediction 

covariance at the first instant of the window is multiplied byβ ( 1.0> ) ,  which assigns more 

weight to the data than to the prediction since the prediction model is detected to be inaccurate. 

In fact, the introduction of 0N , 1N , detN , adjN , and β  makes the adjustment flexible to 

handle. The well-fitted trajectory is expected to be smooth. Otherwise, when the tuned
p

f  

vibrates frequently, 0N and 1N have to be turned up to reduce the false-alarm probability; when 

p
f does not vibrate frequently but has abrupt increments, 0N and 1N have to be turned down to 

reduce the missing probability. 

6.5 Error Evolution and Correlation Calculation 

This section deals with the coupling between the state tracking and the parameter tracking. 

Specifically, it calculates pvo , pRo , A% and
c

A% . It also evaluates
x

v
o , A ,

c
A and

x
R

o  for the state 

tracking in Chapter 5. We will not calculate the above quantities analytically. An 

error-ensemble-evolution method is used to evaluate them numerically. The main ideas 
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include: (i) evolve the ensemble of estimation errors for the coupled state and parameter via 

error evolution; (ii) combine two sets of error samples to get the ensemble of pseudo errors; 

and (iii) evaluate the relevant quantities.  

Details of the error evolution are given in the Appendix. The correlation calculation consists 

of the following steps: 

First, perform initialization: 0k =  

a) Obtain ( )

,0|0

j

c∆x by sampling from ,0|0(0, )
c

N P  

b) Obtain ( )

,0|0

j

c∆p by sampling from ,0|0(0, )cN P%  

Second, begin recursion: 

1) Set : 1k k= +  

2) Obtain ( )

,

j

x kvo when | 1
ˆ

k k−p and | 1
ˆ

k k−x are ready: 

a) Obtain ( )

,

j

p kw by sampling from ,(0, )
p k

N Q  

b) Evolve

( ) ( )

, | 1 , 1 , 1| 1

( ) ( ) ( )

| 1 , | 1 ,

j j

c k k p k c k k

j j j

k k c k k p k

− − − −

− −

∆ = ∆

∆ = ∆ +

p F p

p p w
 

c) Obtain ( )

,

j

x kw by sampling from ,(0, )
x k

N Q  

d) Evolve

( ) ( )

, | 1 , 1| 1

( ) ( ) ( )

| 1 , | 1 ,

j j

c k k c k k

j j j

k k c k k x k

− − −

− −

∆ = ∆

∆ = ∆ +

x x

x x w
 

e) Obtain ( )

,

j

x kv by sampling from ,(0, )
x k

N R  

f) Obtain ( ) ( ) ( ) ( )

, , | 1 | 1 ,
ˆ( )j j j j

x k x k k k k k x k− −= ∆ + ∆ +v H x x vo , where ( )

,

j

x k∆H only depends on ( )

| 1

j

k k−∆p  

3) Calculate 

( )

, ,

1 j

x k x kj
sample

N
= ∑v vo o                                                 (6.19) 

( ) ( )

, , , , ,

1
( )( )j j T

x k x k x k x k x kj
sample

N
= − −∑R v v v vo o o o o                                (6.20) 
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( ) ( )

| 1 , ,

1
( )j j T

k k k x k x kj
sample

N
−= ∆ −∑A x v vo o                                     (6.21) 

( ) ( )

, , | 1 , ,

1
( )j j T

c k c k k x k x kj
sample

N
−= ∆ −∑A x v vo o                                   (6.22) 

4) Obtain ( )

,

j

p kvo when | 1
ˆ

k k−p and |
ˆ

k k
x are ready: 

a) Update ( )

|

j

k k∆x via error evolution 

( ) ( ) ( )

, | 1 , ,

j j j

k x k k k x k x k−∆ = ∆ + −z H x v vo o o  

( ) ( ) ( )

, | , | 1 ,

( ) ( ) ( )

| | 1

j j j

c k k c k k c k k

j j j

k k k k k k

−

−

∆ = ∆ − ∆

∆ = ∆ − ∆

x x K z

x x K z
 

b) Obtain ( ) ( ) ( ) ( )

, , | 1 | 1 ,
ˆ( )

j j j j

p k p k k k k k p k− −= ∆ + ∆ +v H p p v
o o , where ( )

,

j

p k
∆H

o depends only on ( )

|

j

k k
∆x , and ( )

,
j

p kv is a 

part of ( )

,

j

x k
v  

5) Calculate 

( )

, ,

1 j

p k p kj
sample

N
= ∑v vo o ,                                               (6.23) 

( ) ( )

, , , , ,

1
( )( )j j T

p k p k p k p k p kj
sample

N
= − −∑R v v v vo o o o o                               (6.24) 

( ) ( )

| 1 , ,

1
( )j j T

k k k p k p kj
sample

N
−= ∆ −∑A p v vo o%                                     (6.25) 

( ) ( )

, , | 1 , ,

1
( )j j T

c k c k k p k p kj
sample

N
−= ∆ −∑A p v vo o%                                   (6.26) 

6) Update ( )

|

j

k k∆p  

( ) ( ) ( )

, | 1 , ,

j j j

k p k k k p k p k−∆ = ∆ + −z H p v vo o o                                         (6.27) 

( ) ( ) ( )

, | , | 1 ,

( ) ( ) ( )

| | 1

j j j

c k k c k k c k k

j j j

k k k k k k

−

−

∆ = ∆ − ∆

∆ = ∆ − ∆

p p K z

p p K z

%

%
                                         (6.28) 
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Here the recursion ends if k reaches the maximum number. j  is the sample index, 
sample

N  

the total sample size, and ( )N ⋅ Gaussian probability density function. 

6.6 Procedures and Performance Analysis 

6.6.1 Parameter Tracking and Overall Procedure 

We have presented three major components of the joint state and parameter estimation. 

From the viewpoint of parameter tracking, the estimated voltages are uncertain “measurement 

coefficients” and the uncertainty is represented by pseudo measurement errors. A similar 

strategy holds when discussed from the viewpoint of state tracking. The error ensemble keeps 

evolving errors for the evaluation of the statistics related to pseudo errors in both tracking 

procedures. 

Furthermore, the dynamic behaviors of the voltages and the parameters are different. The 

former may jump abruptly while the latter may increase (or decrease) slowly but persistently. 

Correspondingly, appropriate detection and adaptation techniques have been developed. 

The overview for the joint state-and-parameter estimation is depicted in Fig. 6.1. The 

proposed method consists of parameter-tracking, state-tracking (in Chapter 5) and 

correlation-calculation. The parameter tracking procedure is located on the left side. 

6.6.2 Accuracy and Complexity 

The filtering is based on the newly-developed optimal Kalman filter considering 

prediction-measurement-error correlation. When the parameter center moves persistently, the 

adaptation mechanism works out (not necessarily optimal yet) accurate results. 

In practice, several detailed modules can still be simplified to save computation. For 

instance, when estimation errors of parameters are large, the related branch-current 

measurements contribute little to the state tracking. If the one-scan measurement redundancy 

allows, the currents can be discarded temporarily to simplify the ensemble evolution. 

Based on the fact that the calibration of the serial and shunt admittance of a transmission 

line only involves the incident branch currents and the bus voltages at two ends, parameters of 
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different branches can be tracked in parallel. In addition, the above fact also implies that the 

estimated voltages from other estimators such as WLS estimators in EMS can be applied 

similarly. Correspondingly, the injection powers and branch flows are now measured data. The 

error-ensemble evolution can be simplified except that estimation accuracy may be poor using 

traditional meters. 
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Fig. 6.1 Joint state and parameter estimation procedure 

 

6.6.3 A Practical Scheme 

For a realistic measurement system with synchrophasors, the data-acquisition rate is as high 

as multiple times per second. Within a short period (e.g., 5 or 10 seconds), the moving effect 

of parameter means as well as the process noise is negligible. As a result, an efficient and 

practical two-step refinery-and-adaptation scheme is suggested as follows. 

First, the prediction model described by (6.2)-(6.3) can be simplified as 

, , 1t c t c t−= =p p p                                                     (6.29) 
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The (simplified) basic filter and error-ensemble evolution can be utilized to roughly 

estimatep using data within each period, where the filter is reinitialized at each first instant to 

release the dependence on the previous period. Second, |
ˆ

t t
p and |t tP% at the last instant of each 

period can be treated as the refined data and put into the adaptive filter (including the 

adaptation mechanism) with the model 

, ,

, , 1 , 1

k c k p k

c k p k c k− −

= +


=

p p w

p F p
                                                (6.30) 

At this step, |
ˆ

t t
p are direct “measurement” of 

k
p and no correlation calculation is needed. 

6.7 Simulations 

The purposes are to show the performance of the parameter tracking, the effectiveness of the 

correlation calculation, and the performance of the overall approach. Tests were carried out on 

a realistic system for comparison. In the tests, the system states and to-be-determined 

parameters at different times were simulated by adding zero-mean Gaussian noise to the 

base-case network data. The synchronously-measured data were also generated in this way. 

6.7.1 Comparisons with Other Approaches 

The proposed approach is compared with an improved EKF approach and an ideal approach 

to be explained next. 

In the standard EKF approach, the predicted values of the augmented state (voltages and 

parameters) are used in the Jacobian matrix during the linearization. In this example, it is 

improved by a stepwise strategy which estimates the voltages and the parameters one by one. 

Then the updated voltages are available to the Jacobian matrix in the parameter tracking.  

In the ideal approach, the system state is assumed to be known “perfectly”, which is not 

feasible in practice but provides a reference for comparison. 

The experiment is on a realistic system depicted in Fig. 6.2. This system is a 550kV bulk 

network supplying power for a major city in China. The line parameters are listed in Table 6.1. 

Bus 1 is the reference bus. The standard deviations of the real and imaginary voltage process 
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noises are 0.003 and 0.006, respectively. All the bus voltages and branch currents are metered 

by synchrophasors (SMU-type PMU) and the covariance matrices of errors in voltage and 

current measurements are 

    6
4 0.4

10
0.4 1

v

− 
= × 
 

R and 6
25 2.25

10
2.25 2.25

c

− 
= × 
 

R , 

which are set to be greater than manufacturer’s specifications. 
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Fig. 6.2 12-bus 500kV system 

 

In the simulation, branches 2-3 and 6-9 have inaccurate admittance. The standard deviations 

of parameter process noises are close to zero. The classic measure of root mean-square error 

(RMSE) 

TABLE 6.1 

PARAMETERS (REALISTIC SYSTEM) 

Quantity Values 

Brn 1-2 2-3 3-4 4-5 5-6 6-7 

gmn 2.5820 3.3731 3.8111 2.6971 1.6613 1.4351 

bmn -50.8697 -59.4294 -64.0039 -52.3099 -31.6074 -27.5095 

bmn0 0.0214 0.0156 0.0142 0.0190 0.0308 0.0359 

Brn 6-8 6-9 9-10 9-11 11-12 12-1 

gmn 2.6627 5.3806 4.6541 3.2204 1.2825 1.8301 

bmn -52.6787 -89.7985 -83.6753 -63.0862 -23.2173 -35.4743 

bmn0 0.0188 0.0109 0.0119 0.0165 0.0422 0.0297 

 



 126

( ) ( )
1

2

| |

1

1
ˆ ˆRMSE =

runN
T

k k k k k k

jrun
N =

 
− − 

 
∑ p p p p                       (6.31) 

is adopted, where
run

N is the total number of Monte-Carlo runs. 

The resultant trajectories averaged over 200 runs are plotted in Fig. 6.3. It shows that the 

proposed approach is much better than the improved EKF approach. The RMSE values from 

the proposed approach converge faster. The difference between the proposed and the ideal 

trajectories, caused by the uncertainty in the state estimates, is not large. 
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Fig. 6.3 Performance comparison with EKF 

 

6.7.2 Practical Two-Step Implementation of the Approach 

This part contains a particular test on the practical refinery-and-adaptation scheme discussed 

in Sec. 6.6.3. The experiment is implemented on the realistic system in Fig. 6.2, where the 

centers of line parameters move persistently. All the other system and measurement 

configurations are the same as those in Sec. 6.7.1. The data-acquisition rate is 5 times per 

second, and the observation interval covers 25 minutes. That is, 7500 pieces of data are 

recorded. Specifically, the line parameter in branch 6-9 moves at rates of 0.99999, 0.99997 and 

0.99998 over intervals 1500-3200, 3201-4600 and 4601-6000, respectively. 

First, the parameters are refined every 20 instants by the simplified tracking procedure using 

the model (6.29) and the error ensemble evolution method. Second, the simplified adaptive 
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tracking procedure with the model (6.30) is applied with the 375 pieces of refined data. The 

lengths of windows are det 20N = and adj 30N = , respectively. The thresholds are 0 1 2N N= = . 

The amplification rate is 1.02β = . In contrast, another tracking procedure ignoring the 

possible center moving is also applied. 

Fig. 6.4 plots the comparison results by the two approaches. In practice, the ratio of 

estimation errors to the true values may also be interested. As a result, the RMSE measure 

defined in (6.31) is modified: each component of |
ˆ

k k k
−p p is divided by the corresponding true 

value and the eventual result is averaged over the components. Fig. 6.5 is a zoomed-in version 

of Fig. 6.4. Clearly, the ‘Proposed’ trajectory can reach as low as 0.2% and is significantly 

better than the ‘Ignored’ one. 

In addition, the processing time is less than 0.01 second per instant on a computer with a 

single-core 3.0GHz CPU. 
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Fig. 6.4 Practical scheme based on 12-bus system 
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Fig. 6.5 Practical scheme based on 12-bus system (zoomed in) 

 

6.8 Conclusions 

Chapters 5-6 present an approach to jointly and dynamically estimate the transmission-line 

parameters and the bus voltages of interest. It contains two loosely-coupled procedures, 

namely state tracking and parameter tracking. An error-ensemble-evolution method is 

responsible for dealing with the coupling. Accurate models are studied separately. An adaptive 

filtering procedure has been developed to estimate the voltage state, accompanied by the 

detection and estimation of abrupt changes. Another adaptive filter including the adjustment of 

transition matrix has also been developed for the parameter tracking. Both filters are based on 

the generic (optimal) Kalman filter conditioned on prediction-measurement-error correlation. 

Simulations illustrate the performance of the whole approach under normal operation 

conditions and under the condition that abrupt state changes occur. The necessity of the 

error-ensemble evolution, and the accuracy and superiority of the proposed approaches have 

also been verified. The overall approach, as well as the two procedures, can be applied to other 

state and parameter estimation problems with traditional SCADA data. 

6.9 Appendix:  

Error Evolution Formulae 

From the dynamic model for the parameter in (6.3), we get 

, ,k c k p k
= +p p w ; , , 1 , 1c k p k c k− −=p F p                                       (6.32) 
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According to (6.9), the prediction at time k is 

| 1 , | 1 , 1 , 1| 1
ˆ ˆ ˆ

k k c k k p k c k k− − − − −= =p p F p .                                         (6.33) 

Then the prediction errors are 

, | 1 , , | 1
ˆ

c k k c k c k k− −∆ = −p p p , 1 , 1 , 1| 1
ˆ( )

p k c k c k k− − − −= −F p p  

, 1 , 1| 1p k c k k− − −= ∆F p ,                                               (6.34) 

| 1 | 1
ˆ

k k k k k− −∆ = −p p p   

, , , | 1 , | 1 ,
ˆ

c k p k c k k c k k p k− −= + − = ∆ +p w p p w .                              (6.35) 

From (6.15) and (6.16), the updated parameters at time k is 

| | 1 ,

, | , | 1 , ,

ˆ ˆ

ˆ ˆ

k k k k k p k

c k k c k k c k p k

−

−

 = + ∆


= + ∆

p p K z

p p K z

%

%
.                                             (6.36) 

Then the corresponding estimation errors are 

| |
ˆ

k k k k k
∆ = −p p p | 1 ,

ˆ
k k k k p k−= − − ∆p p K z% ( )| 1 , | 1 ,

ˆ ˆ
k k k k p k p k k p k− −= − − − −p p K z H p vo o%  

( )| 1 , | 1 ,
ˆ

k k k p k p k p k k p k− −= ∆ − + − −p K H p v H p vo o o o%
| 1 | 1 , ,( )k k k p k k p k p k− −= ∆ − ∆ + −p K H p v vo o o%  

( ), | , | 1 , | 1 , ,
ˆ

c k k c k k c k p k k p k p k− −∆ = ∆ − ∆ + −p p K H p v vo o o%  

In summary,  

( )

, | 1 , 1 , 1| 1

| 1 , | 1 ,

, | , | 1 , | 1 , ,

| | 1 | 1 , ,( )

c k k p k c k k

k k c k k p k

c k k c k k c k p k k p k p k

k k k k k p k k p k p k

− − − −

− −

− −

− −

∆ = ∆

∆ = ∆ +

∆ = ∆ − ∆ + −
∆ = ∆ − ∆ + −

p F p

p p w

p p K H p v v

p p K H p v v

o o o

o o o

%

%

                          (6.37) 

Similarly, for the bus-voltage state in Chapter 5, we can get 

( )

, | 1 , 1| 1

| 1 , | 1 ,

, | , | 1 , | 1 , ,

| | 1 | 1 , ,( )

c k k c k k

k k c k k x k

c k k c k k c k x k k x k x k

k k k k k x k k x k x k

− − −

− −

− −

− −

∆ = ∆

∆ = ∆ +

∆ = ∆ − ∆ + −
∆ = ∆ − ∆ + −

x x

x x w

x x K H x v v

x x K H x v v

o o o

o o o

                           (6.38) 
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Chapter 7: Summary and Future Work 

 

The least-squares (LS) principle, including the weighted least-squares (WLS), is widely 

introduced to various scientific and technological fields. A great many methods have been 

developed to solve the fundamental and classic LS problem, among which the 

matrix-inversion-lemma based recursive least-squares (RLS) is a milestone. The RLS is of 

recursive form and free of matrix inversion, and thus has excellent performance regarding the 

efficient real-time computation and low memory storage. We generalize the RLS procedure 

and to solve the unconstrained/ LE-constrained generalized LS (GLS) problem in a similar 

recursive way. We also apply the RLS method for all the involved initializations. The 

newly-developed methods are integrated as completely-recursive LS (CRLS). 

Correspondingly, in Chapter 2, the generalization of the RLS for solving GLS problems is 

discussed. Concretely, starting from the unconstrained/LE-constrained RLS, we develop 

recursive procedures applicable to the unconstrained/LE-constrained GLS, and show that the 

LE constraint is in essence a set of special observations free of observation errors and can be 

processed sequentially in any place in the data sequence. More generally, we also treat the 

ILE-constrained GLS. A unified recursive procedure is developed, which is applicable to 

ILE-constrained GLS as well as all the unconstrained/LE-constrained LS/WLS/GLS. 

  In Chapter 3, a recursive exact initialization applicable to all the RLS, RWLS and RGLS, is 

investigated. This chapter treats the RLS initialization-related issues, including rank check, a 

convenient method to compute the involved matrix inverse/pseudoinverse, and resolution of 

underdetermined systems. No extra non-RLS formula but an auxiliary-observation based 

procedure is utilized. The RLS recursion can start from the first real observation and possible 

LE constraints are also imposed recursively; the rank of the system is checked implicitly. If the 

rank is full, the initialization and the subsequent RLS cycles can be integrated as a whole to 

yield exact LS solutions. If the rank is deficient, the procedure provides a mapping from the 

unobservable (original) estimand to a reduced-dimensional set of alternative variables which 
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are linear combinations of the original variables and uniquely determined. The consequent 

estimate is a set of refined non-redundant observations. The refinement is lossless in the WLS 

sense: if new observations are available later, it can take the role of the original data in the 

recalculation. 

In summary, the CRLS approach has the following good properties: The proposed method 

can distribute the processing time (including the initialization) over the data-accumulation 

period; The CRLS has a low computational complexity; With the CRLS, the initialization of 

LE-constrained RLS solution, which (in the batch form) usually involves MP inverses, is made 

as simple as for the unconstrained ones now; In sparse applications, the CRLS can benefit 

more from the sparsity because its recursion can make full use of the sparse structure of the 

observation coefficients; The observability analysis in the CRLS requires no extra 

computation. The result by the CRLS is numerically consistent with the existence ofC in 

calculation. 

In Chapter 4, we demonstrate the mathematical equivalence between the linear-data-model 

based linear minimum-mean-square-error (LMMSE) estimator and the ILE-constrained GLS. 

We also suggest to use the recursive ILE-constrained GLS to improve the sequential procedure 

of the optimal KF considering prediction-measurement-error correlation. 

In Chapters 5 & 6, we perform accurate parameter (and state) estimation in complex 

situations using synchrophasor data, based on the optimal KF considering the correlation 

between the measurement noise and the prediction error. An approach of joint 

state-and-parameter estimation, which is different from the state augmentation, is adopted, 

where the original nonlinear PE problem is reformulated as two loosely-coupled linear 

subproblems: state tracking and parameter tracking, respectively. 

An error-ensemble-evolution method is responsible for dealing with the coupling between 

the state tracking and the parameter tracking. Accurate models are studied separately. An 

adaptive filtering procedure has been developed to estimate the voltage state, accompanied by 

the detection and estimation of abrupt changes. Another adaptive filter including the 
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adjustment of transition matrix has also been developed for the parameter tracking. Both filters 

are based on the optimal KF conditioned on prediction-measurement-error correlation. 

Simulations illustrate the performance of the whole approach under normal operation 

conditions and under the condition that abrupt state changes occur. The necessity of the 

error-ensemble evolution, and the accuracy and superiority of the proposed approaches have 

also been verified. The overall approach, as well as the two procedures, can be applied to other 

state and parameter estimation problems with traditional SCADA data. 

As declared in this dissertation, we have great interest in applying the newly-developed 

CRLS approach to solve practical applications. For instance, the joint-state-and-parameter 

estimation in power system based on synchrophasors is an application of the optimal KF 

considering prediction-measurement-error correlation, where the filter can be verified and the 

corresponding sequential procedure can be improved by the CRLS. In the future, we also aim 

to utilizing the proposed recursive RLS initialization technique to solve high-dimensional and 

low-redundancy practical problems. For instance, the application to power system state 

estimation with synchrophasors is quite attractive. 
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