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Abstract

Digitized acoustical signals of Byzantine music performed by Iakovos Nafpliotis are
used to extract the fundamental frequency of each note of the diatonic scale. These empir-
ical results are then contrasted to the theoretical suggestions and previous empirical find-
ings. Several parametric and non–parametric spectral parameter estimation methods are
implemented. These include: (1) Phase vocoder method, (2) McAulay–Quatieri method,
(3) Levinson–Durbin algorithm, (4) YIN, (5) Quinn & Fernandes Estimator, (6) Pisarenko
Frequency Estimator, (7) MUltiple SIgnal Characterization (MUSIC) algorithm, (8) Peri-
odogram method, (9) Quinn & Fernandes Filtered Periodogram, (10) Rife & Vincent Esti-
mator, and (11) the Fourier transform. Algorithm performance was very precise.

The psychophysical aspect of human pitch discrimination is explored. The results
of eight (8) psychoacoustical experiments were used to determine the aural just noticeable
difference (jnd) in pitch and deduce patterns utilized to customize acceptable performable
pitch deviation to the application at hand. These customizations [Acceptable Performance
Difference (a new measure of frequency differential acceptability), Perceptual Confidence
Intervals (a new concept of confidence intervals based on psychophysical experiment rather
than statistics of performance data), and one based purely on music–theoretical asymphony]
are proposed, discussed, and used in interpretation of results.

The results suggest that Nafpliotis’ intervals are closer to just intonation than Byzan-
tine theory (with minor exceptions), something not generally found in Thrasivoulos Stanitsas’
data. Nafpliotis’ perfect fifth is identical to the just intonation, even though he overstretches
his octave by fifteen (15) cents. His perfect fourth is also more just, as opposed to Stanitsas’
fourth which is directionally opposite. Stanitsas’ tendency to exaggerate the major third
interval A4–F4 is still seen in Nafpliotis, but curbed. This is the only noteworthy depar-
ture from just intonation, with Nafpliotis being exactly Chrysanthian (the most exaggerated
theoretical suggestion of all) and Stanitsas overstretching it even more than Nafpliotis and
Chrysanth. Nafpliotis ascends in the second tetrachord more robustly diatonically than
Stanitsas. The results are reported and interpreted within the framework of Acceptable
Performance Differences.

Keywords: statistical spectral estimation, fundamental frequency estimation, sta-
tistical signal processing, Fourier transform, autocorrelation, autoregression, autocovariance
sequence, autoregressive moving average (ARMA) estimation, psychoacoustics, pitch dis-
crimination, just noticeable difference (jnd), Yule–Walker equations, windows, Byzantine,
uncertainty principle

xi



Chapter 1

Introduction

1.1 Background

This is not a primer on Byzantine music and therefore only the bare music theory
essentials will be provided here as an aid to the reader in understanding the purpose. One
of the differences between Byzantine and Western music that is relevant to this dissertation
is the completely different nature of scale intervals. It is explained below. For a discussion
on the history of Byzantine Music and some technical aspects in English see Wallesz (1961)
[88]; in Greek see Chrysanthos (1832) [18], Patriarchal Byzantine Music Committee (1883)
[52], Panagiotopoulos (1981) [53]. Tsiappoutas (2004) [85], a masters thesis leading to this
dissertation, gives more background on some technical aspects relevant to this research,
as well insight into methodology of data collection and analysis, psychoacoustics of pitch
discrimination, and general discussion on the topic of comparing theoretical Byzantine music
intervals to those extracted empirically.

1.1.1 Western and Byzantine Music Intervals

In the well-tempered scale of Western music theory, frequencies within a scale are
allowed to change only by discrete frequency quanta called semitones. Any musical interval
is an integer multiple of this semitone. Two semitones make a tone. Three semitones make
a tone and a half. For discussion on major and minor Western scales, please see Surmani et
al. (2004) [83].

Think of a piano keyboard. Given any white key, the smallest frequency amount by
which one chooses to go up or down the musical scale is the semitone. For example, pressing
the black key above the white reference key causes the melody to increase in frequency by a
semitone.

In Byzantine music there are no such uniformly fixed, equidistant quanta. One can
choose to ascend by a fraction of a semitone—or any other variable frequency change for
that matter. Clearly, then, a piano cannot play a Byzantine tune. It is possible for a violin
to play a Byzantine tune, although Byzantine music is never performed nor accompanied by
any other musical instrument but the human voice.

1



1.1.2 Current Debates

This dissertation’s attempt to experimentally quantify Byzantine music intervals and
compare them to the suggested theoretical intervals, is at the heart of an ongoing debate
between schools of thought: the traditionalists and the progressivists. The traditionalists be-
lieve that true Byzantine music scale intervals are transmitted exclusively and solely though
oral tradition specifically from chanters that have been the recipients of formal musical train-
ing in the conservatories of the Orthodox Christian Patriarchate of Constantinople. This
stringent requirement limits the sample space of properly trained chanters considerably. It is
argued that there are but a few remaining chanters able to perform the theoretically proposed
musical intervals accurately.

The progressivists, on the other hand, can be further subdivided into two categories:
the “westernizers” and the followers of Simon Karas. The westernizers believe that Byzan-
tine music can be performed with the known well-tempered musical intervals without loss
of fidelity. An example of that would be the use of musical instruments like the organ in
Greek Orthodox Churches in North America. Simon Karas, on the other hand, is a contem-
porary music theorist and practitioner who contributed to many genres of traditional Greek
and ethnic music. He had no significant formal training in any traditionalist–approved con-
servatory. According to his theory microtonal intervals exist, but are not the same as the
traditional ones. It is worth noting that some of his proposed intervals are not discernible
by the human ear—let alone performable by human voice.

1.1.3 Extant Theoretical Literature

The oldest printed Byzantine Music book is that of Bishop Chrysanthos of Madytos
dating back to 1818, although subsequent editions (Chrysanthos (1832) [18]) are available as
reprints in the market today (Koultoura Editions is credited with reprinting many long out–
of–print Byzantine Music books). In his book, detailed mathematical accounts of how the
musical intervals should be quantified are presented. The different scales that can be theoret-
ically formulated are over 200 and all of them are performable by experienced chanters. The
main ones, however, are probably less than ten, each of them employing unique microtonal
intervals outside the semitone structure of Western music.

In 1883, the Ecumenical Patriarchal Committee of Byzantine Music matters devised
an instrument that could play microtonal scales and refined the theoretical scales based not
only on mathematical methods dating back to Pythagoras, but also based on their practical
perception of the newly designed instrument which in essence provided a method for them to
physically measure string lengths and construct ratios which then were linearized by means
of logarithmic transformations (Patriarchal Byzantine Music Committee (1883) [52]).

The Byzantine Music theory bibliography expanded dramatically during the latter
part of the 19-th century and later on. There are hundreds of books on the subject, most of
them based more or less on the older ones.

In this dissertation we are using the intervals produced by the Patriarchal Committee
of 1883.

2



1.2 Research Objective

The purpose of this research is to empirically quantify the microtonal intervals of
Byzantine Music and compare them to theoretical intervals, though review and implemen-
tation of a number of classical and modern fundamental frequency tracking methods.

Other sound physical and perceptual characteristics are explored, such as human abil-
ity to resolve the acoustical discrepancies between theory and practice, perceptual brightness,
and “jaggedness”—spectral irregularity.

1.3 Formulation of Problem

Traditionally (Kinsler et al. (1999) [34]), a continuous-time one-dimensional mechan-
ical wave is represented by

∂2y

∂x2
=

1

c2

∂2y

∂t2

where the constant c2 is T
ρL

with T being the tension, ρL the linear density of a string
vibrating, and x and y indicate displacements on a two–dimensional Cartesian place. By
analogy, the solutions to the above partial inhomogeneous differential equation are the same
ones for a mechanical acoustic wave traveling in space at some time t and are generally
complex x = Aeiω0t, where ω0 = 2πf is the initial angular velocity, and A = a + ib is the
complex amplitude.

Since only real–valued functions are practical for acoustical applications, only the real
part of the x will be considered here. In other words,

Re{x} = a cosω0t− b sinω0t

reduces to
x = A cos(ω0t+ φ) (1.1)

by means of visualizing a phasor A =
√
a2 + b2 in magnitude rotating counterclockwise in

the complex plane and forming a phase angle φ = tan−1(b/a) from the (positive) real axis.

Equation (1.1) is central to classical methods of fundamental frequency estimation.
It can be modified to represent a more specific acoustical signal which can then be digitized
and analyzed by means of some Fourier Transform or Autocorrelation technique (this aspect
will be explored further in Chapter 2).

A complex acoustical tone, i.e., a tone comprising more than one superimposed
sinusoid—not complex in the sense of having a real and an imaginary part—will in gen-
eral behave like a sum of weighted or warped sinusoids. Our purpose in this case is to
estimate (instantaneously or track over time) the lowest of those frequencies of the tone,
namely, the fundamental frequency f0.

The fundamental frequency is the physical characteristic of a musical tone that ac-
counts or explains most of what our ears perceive as pitch. But frequency is not the only
physical aspect that affects how we perceive a tone’s pitch. Other variables include how
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loud or intense the sound is or how smooth, periodic, transient, (wide-sense) stationary,
and deterministic it can be made. Even if all the conditions are experimentally controlled
and clinically optimized so that f0 and pitch have a perfect positive correlation, the human
ear will not perceive a tone“outside the existence region” of approximately 20 Hz – 20 kHz
(Pressnitzer et al. (2001) [59]). Nevertheless, f0 seems to be so overwhelmingly the most
important predictor of pitch1, that the two are sometimes used interchangeably—terms like
fundamental frequency estimation or tracking mean the same as pitch detection algorithms
(Hess (1983) [29]).

Equation (1.1) can be customized in a manner more suitable for formulating the prob-
lem at hand (Beauchamp (2007) [2]). Consider the following modification as a fundamental
musical sound model. The signal s(t) is a sum of properly weighted sinusoids with time–
varying amplitudes, frequencies, and phases. Some additive noise is incorporated into the
model so as to make it more realistic and it too is time-varying, white Gaussian, and zero
mean—although it does not have to be.

s(t) =

K(t)∑
k=1

Ak(t) cos[θk(t)] + n(t) (1.2)

where

θk(t) = 2π

∫ t

0

fk(τ)dτ + θk0 (1.3)

and
t = time.
Ak(t) = amplitude of the kth frequency component (partial or sinusoid) at time t.
k = partial number
K(t) = number of sinusoidal partials (integer), which is a time-dependent quantity
θk(t) = phase of partial k at time t.
fk(t) = frequency of partial k at time t.
θk0 = θk(0) = initial phase of partial k (phase at time = 0).
n(t) =additive noise signal, whose short–term spectrum varies with time.

Note that the the initial phase of any given partial k, i.e., θk(0) = 2π
∫ 0

0
fk(τ)dτ+θk0 =

θk0 , i.e., since the integral evaluates to zero, the initial phase is independent of the partial
frequency, as noted above. Also, the phase derivative is the frequency, or dθk(t)/dτ =
2π fk(t) = ωk(t), that is to say, the angular frequency of the partial k at time t—a more
direct link to Equation (1.1). Consequently, the phase is known for all times if we have
knowledge of the initial phase and the frequency at that specific instant in time. This result
holds only when the time-frequency scale is not altered; if it is, the phases among the different
harmonics will also change.

1Many renowned researchers make this claim (that f0 and pitch goes hand in hand over a wide range of
theory and application), but this effect has never been quantified in the sense that “if you consider a number
of variables that are known to affect how we perceive pitch, f0 accounts for n% of it”. An interesting
psychoacoustics experiment would be to apply predictive modeling to both perceptual and physical variables
in a controlled environment so that finally a number of shared variance is associated with f0 predicting pitch
with all other variables held constant.
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In some synthesis applications the noise term n(t) is left out due to the need for time
expansion or stretching. In this case we assume that the noise is embedded in the amplitude
and frequency functions for that particular partial we time-stretched. Incorporating the
above into one model we have

s(t) =

K(t)∑
k=1

Ak(t) cos[2π

∫ t

0

fk(τ)dτ + θk0 ]. (1.4)

and the formulation problem is reduced to estimating the parameters in Equation (1.4),
namely, K(t), Ak(t), fk(t), and θk0 for 1 ≤ k ≤ K.

Chapter 2 presents a number of ways tailored to specifically estimate fk(t) either
tracking it as a function of time, or pinpointing average and/or instantaneous f0 estimates.

1.4 Contribution of Dissertation

The main contribution of this work is to empirically extract the music scale intervals
of traditional Byzantine chant (acoustic signal) through implementation of a collection of
established statistical spectral parameter estimation pitch detection algorithms. Secondary
contributions include the comparison between empirical and theoretical music intervals and
the use of pitch perception literature to determine if those differences are discernible by
human ear.

1.5 Data Sample

The music to be analyzed is performed by Iakovos Nafpliotis. The choice of this par-
ticular person is not accidental. He is indisputably the most renowned chanter of Byzantine
music caught on tape. In this respect, this is the one person whose performance—and hence
music intervals—will not be brought into question neither by the traditionalist nor by the
progressivists. Since the choice of the performer is crucial to the generalization of the results,
a signal sampling method must be devised to capture these intervals without resorting to
new recordings. Both of these are discussed below.

1.5.1 The Chanter

Iakovos Nafpliotis (1864–1942) was born on the island of Naxos, Greece and moved
to Istanbul, Turkey at the age of seven. He quickly distinguished himself as a music prodigy
on accounts of his musical memory and voice. By the age of 14 (after having served as a
student in St. Nikolaos church) he was extended an offer and ordained as a Canonarches of
the first order in the official cathedral of the Ecumenical Patriarchate of Constantinople, the
center of Orthodox Christianity. He served in the Patriarchal Church for 60 years under 14
Patriarchs2, assuming every position within the hierarchy up to the ultimate title of First

2A Patriarch in the Eastern Christian Church is the equivalent of a Pope in Western Roman Catholic
Church. As a matter of fact, the two titles were one and the same up until The Great Schism of 1054.
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Arch–chanter of the Great Church of Christ3. After his retirement, since he was not a citizen
of Turkey, he returned to Athens, Greece where he died at the age of 78.

Probably what makes Iakovos indisputably the golden standard of Byzantine music
chant is the fact that he was taught the music from teachers who had knowledge of the old
paleographic system of Byzantine music notation which was largely committed to memory.
Iakovos himself is said to have received partial training on old notation, which took up to 20
years of apprenticeship. This link of the old and new along with the fact that he has always
served in the Patriarchal Church—where by doctrine no music other than the approved was
chanted—would give Iakovos a clear advantage over other chanters. This must be why even
progressivists reference Iakovos’ performances.

1.5.2 The Recordings

In 2008, Professor Antonios E. Alygizakis released five (5) Compact Disks (Alygizakis
(2008) [1]) accompanied by a monograph summarizing his research on Iakovos Nafpliotis’
legendary recordings. This monumental audio remastering is a result of a nearly two decades
of working with the original 78 RPM phonograph records. The sound fidelity and quality
of these Compact Disks is far better than that of the tapes that have been circulating in
Byzantine music circles.

The original vinyl records were recorded during the period of 1914–1926 by a German–
based music production company named Blumental Record and Talking Machine—Orfeon
Record later known as Odeon Records.

1.5.3 The Signal Sampling Method

This section deals with the method of sampling snippets of sound from an already
digitized signal, as described in Subsection (1.5.2). It does not describe the analogue–to–
digital conversion, in which the term “sampling” has a different meaning (in the usual digital
signal processing sense). The sampling frequency for the already digitized signal (Alygizakis
(2008) [1]) is 44,100 Hz.

The sampling method is simple. First a music piece in the scale of interest is chosen.
Ideally, it is one that the master chanter is chanting alone, without other accompanying
voices. Each time the voice passes through a note of the scale, that snippet of sound is
kept. A piece can yield between twenty (20) and forty (40) such snippets which are then
concatenated to produce a signal of the same note, anywhere from one to two seconds
long. This concatenated acoustical signal is what is fed through the algorithms presented in
Chapter 2.

Of course, the sampling is not random, but with the scarcity of data one can hardly
expect that our sample space for each note is expansive enough to afford the luxury of
randomly selecting tone snippets. The time between the snippets in the actual music piece
is not a constant, but this is irrelevant for our purposes.

3Translation from Greek “ ΄Αρχον Πρωτοψάλτης της Μεγάλης του Χριστού Εκκλησίας.”
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The issue of human perception in choosing which snippets are which tone is called
into question. It would be better, one may think, to have the machine choose them and
categorize them into “tone categories.” But for this to be done, we first need to know the
frequency of each tone, and this is the topic of this dissertation. There is no real answer
for the issue of human perception in the data sampling, other than the ability of the data
collector to distinguish acoustically which tone is which and, of course, his/her scientific
integrity.

1.6 Frequencies, Cents, and Atoms

Throughout this dissertation frequency estimates will be given as either pure frequen-
cies (in Hertz or radians/second), cents (a well known measure of frequency differential),
or atoms (a measure closely related to cents, but used in Byzantine Music literature). A
discussion on how to practically go from one to another is warranted.

A doubling in frequency creates the perception of the same tone being one octave
higher. In a well-tempered scaled, this frequency doubling is divided into twelve (12) in-
tervals, called semitones. A chromatic scale4 is one for which all semitones enclosed by the
upper and lower frequencies of a scale are played in progression. Or one could combine
some of the semitones to create tones and progress in such a fashion that a diatonic scale5 is
created. A diatonic scale, then, could be constructed as an upward and then downward pro-
gression of T—T—S—T—T—T—S, where a T denotes a tone and an S denotes a semitone.
For example, let’s denote the tone C4 as our initial frequency f0. Then we have the mapping
C4 7−→ f0, D4 7−→ f1, E4 7−→ f2, F4 7−→ f3, G4 7−→ f4, A4 7−→ f5, B4 7−→ f6, C5 7−→ f7. Let
f0 be the fundamental frequency. In a well-tempered scale, then, a semitone would advance
the fundamental by a factor of 12

√
2, i.e., by about 1.059463094, or 6%.

We, humans, are not thinking in terms of frequencies, however; we think in terms of
logarithms of frequencies. We seem to have the ability to distinguish between high and low
frequencies and we tend to think of them as high and low as well6. Western music scores can
be thought of as a plot with a logarithmic y-axis and time on the x-axis. While frequencies are
multiplicative, log frequencies are additive, and here hinges their great perceptual advantage.
It is more convenient to visualize the frequency space—f0 to f7—as being divided in 1200
equal parts, each semitone enclosing 100 of those parts rather than thinking of a 12

√
2 factor

which if raised to the 12th power gives a 2 : 1 frequency ratio. When the octave is divided
into 1200 parts those parts are called cents ; when divided into 72 (or, sometimes 68) parts
we call them atoms7.

4This is the definition of a chromatic scale in Western music. In Byzantine music the definition is
dependent upon the different microtonal intervals within the two bounding frequencies, which are well-
defined by theory. The Byzantine chromatic scale will not be used in this dissertation.

5As with the chromatic scale, the term diatonic has a different meaning in Byzantine than in Western
music. Here we are using diatonic in its Western sense.

6This is not the case with hue, for example. We never call one hue shorter or longer than another one,
even though wavelength is the corresponding physical aspect of the perceived hue.

7In Greek, it is called morion (<GR μόριον) literally meaning “molecule.” But atom is adopted here
since the Greek term implies a particle that cannot be further divided.
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The following should come handy when transforming between frequencies, cents, and
atoms:

∆parts = γ log2

(
f1

f0

)
∆parts

γ︸ ︷︷ ︸
α

= log2

(
f1

f0

)
︸ ︷︷ ︸

β

(1.5)

where, if parts is cents, then γ = 1200 and if parts is atoms, then γ = 72. Note that the
logarithm is to the base two to denote the doubling of frequency8.

1.7 Organization of Dissertation

The rest of the dissertation is organized as follows. Chapter 2 presents the mathe-
matical theory of a number of frequency estimation algorithms along with mathematical for-
mulations of some interesting psychoacoustical phenomena. Chapter 3 provides an abridged
account of psychoacoustics in regards to human ability to resolve frequencies. Chapter 4
tabulates the results of the algorithms implemented in Chapter 2, provides discussion, and
concludes this dissertation.

8Most scientific calculators do not offer the logarithm to the base two function, but almost all have the
natural logarithm function (to the base e). A useful trick is to think of the above exponent as 2α = β, take
natural logarithms of both sides so that ∆parts = γ lnβ/ln2.
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Chapter 2

Algorithms and Methods

2.1 Introduction

This chapter provides the theory behind the algorithms used to both track the fun-
damental frequency and give physical insight into the psychophysical aspect of the analysis.

The theory herein is kept to a minimum; enough mathematics are given to emphasize
the concepts. A conscious effort has been made to keep the mathematics simple and intuitive.
Following Hamming’s

“The Purpose Of Computing Is Insight, Not Numbers”

this chapter’s motto would be

“The Purpose Of Algorithms Is Insight, Not Mathematics”.

Even though the material is presented as coherently as possible, please keep in mind
that it originated from diverse sources. Notation is oftentimes kept as in the original papers,
but when bits and pieces are put together to make a point within a context, notation may
be modified. Sometimes material from an article is omitted—if it does not enhance our
knowledge, or if it is too cumbersome mathematically—and sometimes equations outside
the scope of the article but relevant to our subject are inserted to solidify understanding.
Since part of the contribution of this dissertation is an overview of concepts tailored to the
singing voice and no original algorithm was architected, all of this customization is to a point
necessary. The author is trying to take an authoritative look into the algorithms—to the best
of his ability—and the material is sometimes presented within a lens of constructive criticism.
This approach should not be taken as negative criticism towards any of the algorithms, but
merely as an attempt to illustrate the algorithms’ usability and practicality for the problem
at hand and maybe demonstrate the author’s effort towards understanding the algorithm
more deeply. However, mostly positive criticism will be encountered, because if the algorithm
was relevant and suitable enough to be included here, a bias has already been realized.

The chapter starts off with the Fourier transform and quickly moves to the two algo-
rithms implemented by the same open source code: phase vocoder and McAulay–Quatieri
methods. A section devoted to general historical and current findings on fundamental fre-
quency (pitch) detection is followed by a number of interesting approaches to analyzing
the singing voice beyond frequency tracking. The chapter concludes with a brief outline of
another twelve (12) frequency estimators.
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2.2 The Fourier Transform

The Fourier transform is at the heart of many algorithms on frequency tracking and
estimation, primarily due to its core property of enabling us to go from the time domain to
the frequency domain.

Fourier transformation happens in pairs, in such a way that an original function in
the time—or space1—domain can be transformed to another function whose independent
variable is frequency. Traditionally (Bracewell (2000) [12]), the Fourier transform pair is
denoted by

f(x) ⊃ F (s)

where f(x) is the original function in x and F (s) is the transform of the original function
in the frequency variable s. The above symbolism is made more concrete by the continuous
Fourier integral transform definition

F (s) =

∫ +∞

−∞
f(x)e−i2πxs dx

f(x) =

∫ +∞

−∞
F (s)e+i2πxs ds (2.1)

which conveys the reversibility of the transformation, i.e., the +i transform of the −i trans-
form is the original function2. There is much to be said about the theoretical properties
of the Fourier transform, so much that whole books have been and continue to be devoted
to its remarkable powers as a fundamental analysis tool, but there are outside the scope of
this dissertation. Two classic and, in my humble opinion, unsurpassed sources on the theory
and application of the Fourier transform are Bracewell (2000) [12] and Papoulis (1962) [54];
an excellent more recent publication that emphasizes more the practical applications of it is
Lyons (2009) [39].

Throughout this dissertation, only digitals signals are analyzed, not their analogue
counterpart. The Discrete Fourier Transform3 or DFT

F (ν) =

N/2−1∑
τ=−N/2

f(τ∆t)e−i2π(τ∆t)(ν∆f)∆t

f(τ) =

N/2−1∑
ν=−N/2

F (ν∆f)e+i2π(τ∆t)(ν∆f)∆f (2.2)

1Traditionally, engineers use time as the independent variable in the domain that the signal originally
was sampled from and, even though this convention fits the needs of this dissertation perfectly, here we will
adopt the one–dimensional space notation, i.e., the x–axis. This is a more general case easily extended to
accommodate not only time but planes like pictures, for example.

2Note that with this notation reversibility is achieved no matter if f(x) is even [f(x) = f(−x)] or odd
[f(x) = −f(−x)].

3Not to be confused with the Discrete–Time Fourier Transform or DTFT, which is not a replication of
one period but a transformation of the entire time–series (Lyons (2009) [39]).
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is the one used here in lieu of the continuous transform due to the digital nature of modern
computers. By using this slightly modified version of the DFT given in Bracewell (2000) [12],
the frequency in Hertz would be ν

N∆t
for −N

2
≤ ν < +N

2
, where ∆t is the sampling interval,

∆f is the frequency resolution, and ∆t∆f = 1
N

. This last term could be used to simplify the
exponent of Equation (2.2) by replacing ∆t∆f by 1

N
. Please notice the periodic behavior of

f(τ) and F (ν) along their respective independent variables τ and ν, which is at the heart of
the DFT concept just like other operations like the autocorrelation and cyclic convolution.
The DFT is implemented in commercial software like MATLAB R©4 by means of a Fast Fourier
Transform algorithm which greatly reduces the number of flops5 by making use of symmetries
and cyclic properties of the DFT (Bracewell (2000) [12]).

2.3 Phase Vocoder—Harmonic Filter Analysis

Following Beauchamp’s work (Beauchamp (2007) [2], Beauchamp (1975) [5], Beauchamp
(1993) [6], and Beauchamp, Maher, and Brown (1993) [7]), a phase vocoder can be visualized
as a series of band–pass filters, each allowing a sinusoid of a certain frequency to go through,
with each sinusoid a multiple integer of the lowest frequency. This lowest frequency is usually
the fundamental, but not necessarily. It can be any frequency. Only, if it is too far from
the fundamental, the phase vocoder idea will not hold. Let’s call this lowest frequency the
analysis frequency or fa. Then, since the upper harmonics (or partials6) are multiple integers
of the basis, analysis frequency, a well–behaved tone (like the ones used in this dissertation)
should be able to pass through this model without loss of its general characteristics. For this
to happen, however, not only the signal has to be well–behaved in the sense that it possesses
nice, clear partials of the form fk = kfa for k = 1, ..., K7, it does not vary too much in time,
has decent signal–to–noise ratio, and its noise is independent and identically distributed and
normal with a small standard deviation clustered around the mean, but fa must be chosen
so that it is as close as possible to the empirical f0

8, otherwise this asymphony between the
two will render the vocoder of little practical use.

Each filter is basically a window Wk(f − fk) and its maximum is a unit vector at
the center, i.e., f = kfa, and it goes to zero away from the center for f ≤ (k − 1)fa and
f ≥ (k + 1)fa, like a Gaussian. If the input to the model is periodic and has f0 = fa and
fixed partial amplitudes Ak, the output would be a sinusoid

sk(t) = Ak cos[2πkfat+ θk0 ] (2.3)

with frequencies at fk = kfa and amplitude Ak which is an idealized case of Equation (1.4),
i.e., constant parameters.

4MATLAB R© is a registered trademark of MathWorks, Inc.
5One flop (floating point operation) is equivalent to one complex multiplication and one complex addition;

flops (floating point operation per second) is number of complex multiplications and complex additions per
second.

6The terms harmonic and partial are sometimes used interchangeably, but strictly speaking the first
harmonic is the second partial.

7K − 1 is the number of harmonics, or, equivalently, K is the number of partials.
8This is one of the reasons the Fourier Transform of the signal is taken first, so that the f0 obtained

there can be used in the phase vocoder.
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2.3.1 Frequency Deviation

In practice, however, amplitudes and frequencies do vary with time. Equation (1.4)
accommodates this given that the frequencies of the partials are not that far away from
the model partials kfa and that the amplitudes are confined also within a close range of its
median. To have a measure of how closely the phase vocoder models reality we can define a
frequency deviation as

∆fk(t) = fk(t)− kfa (2.4)

which can be made relative to the partial number k

∆fk(t)

k
=
fk(t)

k
− fa (2.5)

or even normalize it by the frequency analysis like

∆fk(t)

fak
=
fk(t)

fak
− 1. (2.6)

These equations come in handy for quick numerical checks that can enhance con-
ceptual understanding. For example, each partial frequency can be thought of as whatever
the model analysis frequency output is at any given bin or time adjusted by the frequency
deviation

fk(t) = kfa + ∆fk(t), (2.7)

or use the normalized frequency deviation formula to see by how much the frequency of a
given partial varies about its model–predicted “ideal” value as a fractional deviation and
express that in cents or atoms. For example, since we have seen on page 8 that a semitone
is about a 6% change in frequency, if the ∆fk/kfa is about ±0.06 then we know that the
frequency of the kth partial fluctuates about its central frequency kfa by about a semitone.
Using Equation (1.5) we can express this fractional deviation in cents or atoms as a function
of time (or instantaneously) as

∆cents(t) = γ · log2

(
∆fk(t)

kfa

)
. (2.8)

Filter bank analysis or phase vocoder is not like a Monte Carlo simulation where data
are sometimes produced and then compared to empirical results or subjected to statistical
requirements to yield a predetermined dataset. The vocoder is an idea, a construct that
signals are fed through and then automatically compared to the model. This theory–to–
practice comparison is central to this dissertation. The same idea is used with music theory
and empirical practice. A set of metrics is then constructed to gauge how much practice
matches the theory, or how well the ideal situation models the data. Another such metric is
inharmonicity.
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2.3.2 Inharmonicity

If all partials track one another perfectly in integer multiples such that

∆fk(t) = k∆f1(t) (2.9)

a tone is harmonic at each instant of time. A sound is then said to be inharmonic if
inharmonicity

Ik(t) =
∆fk(t)

k∆f1(t)
− 1, (2.10)

deviates from zero, with larger numbers in general giving larger inharmonicity. In practice,
though, the first partial is not always the one possessing most of the energy or having a
very prominent amplitude, which could lead to a poor inharmonicity estimate. Define the
“relative–amplitude–weighted sum of the harmonic–normalized first five harmonic frequency
deviations”,

∆fc1(t) =

∑5
k=1Ak(t)∆fk(t)/k∑5

k=1 Ak(t)
(2.11)

which is based on two experimentally validated facts (Moore, Glasberg, and Peters (1985)
[47]): (1) In most musical sounds the first five partials are the stronger ones, i.e., the first five
harmonics interfere in such a way that a weighted average (weighted based on experimental
knowledge, not theory) of them is what usually determines our perception of pitch, and
(2) the structure of this relative dominance of the lower five harmonics is known at least
collectively from empirical data.

A closer look into Equation (2.11) will help us point out one fundamental limitation
of the harmonic filter bank analysis method. First imagine that all Ak=constant ∀ t and
k = 1, ..., K, that is to say, each partial has a constant amplitude and also amplitudes are
equal to each other. Then Equation (2.11) reduces to a straight average since there are no
amplitude weights. If we let the amplitudes take on different values in time so that are
not equal to each other, then the stronger amplitudes will be weighted accordingly. Further
assume that the ∆f1 is taken to be large with respect to the central fa. This will cause k∆f1

to deviate further from the respective harmonic analysis frequency, kfa, or the kth bin. Now,
a frequency component is input into the model, and we are faced with the decision of whether
we should slot this experimental fk into the kth or the (k + 1)st bin. We can devise a rule,
that is really statistical in nature, even though it is not spelled out or viewed that way within
Beauchamp’s framework, and decide that the frequency will belong to the (k + 1)st bin, if
that one “datum” frequency deviation of the first partial but in the kth harmonic is greater
than half the analysis frequency, i.e., decide (k + 1)st bin if

k∆f1 ≥ 0.5 fa (2.12)

or the kth bin otherwise. This argument could be developed into a more formal statistical
statement of binary hypothesis testing, but it is not necessary here. Please refer to Kay
(1998) [31] for an excellent discussion on the issue of statistically setting up decision rules
for hypothesis testing. What is important to note is that even though a “false” decision has
been made due to the large frequency deviation, the output of the kth bin will also include
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the effects of the (k − 1)st partial. This means that even small deviations will affect upper
harmonics (in our case, so high that it does not pose a problem). With large experimental
deviation from the central ideal analysis frequency, however, even the lower harmonics could
be adversely affected when it comes to estimation accuracy. This is a fundamental limitation
of the phase vocoder method that is in fact of little or no consequence to our purposes, due
to the well–behaved nature of the acoustical signal.

2.3.3 Precision and Accuracy

Precision refers to variability in the data sample; the lower the variance in the data
the higher the precision. Accuracy9 refers to the distance between the sample mean and a
standard, be it the population mean or that note A4 should be tuned to 440 Hz.

The sample collection methodology of concatenating signal snippets really takes care
of both of these issues, which are especially central to the robustness of the phase vocoder
(and most other algorithms). We could think of k∆f1 as a measure of precision and how
close is kfa to fk as a measure of accuracy. The fact that the snippets are all of the same
tone is really an attempt to minimize the spectral variability of k∆f1, that is to say, keep
the frequencies in the spectrum close to each other and hopefully clustered closely around its
mean value, which optimally would be the “true” frequency of the tone. This is relevant to
the precision, reproducibility, or internal validity of the data. Now, how much that precise
central frequency is close to the true standard is a question of accuracy. The issue of accuracy
is addressed in three ways: again through the sample collection methodology, through the use
of the Fourier transform (and later on with other methods) to establish what the fa should
be for the phase vocoder, and through common knowledge of both the absolute frequencies
of each tone itself or relative fractional deviations (or microtonal representation in cents and
atoms) within the musical scale boundary values of doubling the frequency to achieve the
perception of octave and also knowledge of the segmentation of this range, i.e., where the
intervals fall.

Therefore, the method of concatenating snippets of sound is responsible for most of
the good nature of the data sample. If instead a whole piece was fed into this particular
model (or most models presented in this dissertation for that matter), we would have to rely
on the machine to distinguish where one tone stops and where the next one begins, and the
machine was not really trained to do this task in any meaningful or reliable way. This goes
back to the discussion in section (1.5.3) and how human perception is involved in collecting
the sample. This philosophical discussion will be omitted10.

2.3.4 Heterodyne–Filter Analysis Method

An implementation of the harmonic filter bank is the heterodyne–filter analyzer
(Beauchamp (1966) [3], Beauchamp (1969) [4]) which is rooted in classic Fourier analysis.

9Accuracy is really the Effect Size, i.e., (µsample − µstandard)/σsample, even though literature does not
like to associate the two. The effect size could be normalized in units of standard deviation (because the
units of variance are the sample units squared) or it could be just the straight mean difference.

10This issue could be a paper in its own right. Machine learning and artificial intelligence is a very
interdisciplinary topic that touches at least physics, psychology, and engineering.

14



Let us think what operations need to be performed on the signal s(t). Each harmonic com-
ponent of the vocoder of s(t) has to be shifted to zero along with all frequencies around this
component, i.e., kfa along with any other frequencies must be centered at f = 0. This is an
attempt to “align” the real frequencies in the signal to the frequencies of the phase vocoder.
This is done using the first partial of s(t). By how much each signal upper partial will be
“out of alignment” depends on how inharmonic that signal upper partial is relative to its
respective vocoder partial. Then any frequencies above fa/2 must be filtered out. The shift
operation is achieved via a customized Fourier transform and the filtering via convolution
with a low–pass filter which can be any of the known window functions.

Symbolically, the heterodyne (multiplication) operation

šk(t) = e−i2πkfats(t)

of the signal with a complex exponential shifts the frequency components on and around
zero and convolution of the heterodyned signal with a window w(t)

c̃k(t) = w(t) ∗ šk(t),

with this symbol “∗” denoting convolution, achieves the low-pass filtering. We also know
that, by the convolution theorem (Bracewell (2000) [12]), convolution in the time domain is
equivalent to multiplication in the Fourier domain and the above is equivalent to

C̃k(f) = W (f)Šk(f)

where functions in capital letters denote Fourier transforms of the corresponding lower letter
functions; in other words, s(t) and w(t) are the signal and the impulse response of the
low–pass filter and S(f) and W (f) are the signal spectrum and the frequency response,
respectively.

By design only frequencies below fa/2 pass through the filter which means that the
frequency range is ±1

2
fa about the analysis frequency—not only for the fundamental fre-

quency but for each partial. Since S(f) takes on values only within the ±1
2
fa band about

kfa, C̃k(f) is the equivalent of a symmetric band–pass filter around kfa. We can rewrite the
above equation to reflect this symmetry as

C̃k(f) = W (f)Šk(f) = W (f)S(f + kfa). (2.13)

It should be clear that the heterodyne–filter analysis method is nothing more than
taking a windowed Fourier transform of the signal s(t), as given in Equation (1.4), customized
for the kth harmonic and using the analysis frequency in the complex exponential, because
this is what the idea of phase vocoder is modeling. More explicitly, the complex amplitude
of the kth partial of the input signal s(t) is

c̃k(f) =

∫ ∞
−∞

w(t− τ)s(τ)ei2πkfaτdτ. (2.14)
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Since windowing is an important aspect of the heterodyne–filter method, a brief
account of four window options is presented below.

2.3.4.1 Window Functions

Windows give a “window” into the signal, a glance on a portion of the signal since
part of what windows do is cut off any information outside a range. If we are in time
domain, for example, anything outside a time interval 2T can be brought to nothingness
by a multiplicative window, essentially a rule that says all but when |t| ≥ T must be zero.
Cutting up a piece of signal to work with is not all that windows do for us. Used in
convolution, they can also smooth functions around the center of the window (and therefore
signal) or multiplicatively bring the signal down to zero11 nicely without creating any jump
discontinuities which in turn create spectral leakage problems and scalloping loss (Lyons
(2009) [39]).

Typically, the absolute value of the frequency responses of the windows of interest,
or magnitude responses |W (f)|, is plotted across frequency to reveal information about the
window’s performance. With such a plot the main lobe and the sidelobes can be seen,
but more visual detail is possible if the magnitude responses are plotted on a logarithmic
(decibel) scale. Therefore, the power (or energy)

|WdB(f)|2 = 20 · log10

[
|W (f)|
|W (0)|

]
(2.15)

is most commonly used to show the spectral energy, where it can be seen that each window’s
plot is normalized so that its main lobe peak is zero decibels. Windows are even functions
of time, i.e., w(t) = w(−t), which makes them symmetric both in the time and frequency
domains (which is why only the positive axis is usually plotted in conventional magnitude
response plots); their energy phase responses are also zero and their Fourier transforms are
real.

The width of the main lobe and the height of the sidelobes provide information on
the frequency resolution vs spectral leakage trade–off. Narrower main lobe width indicates
better resolution in frequency than wider ones and shorter sidelobes indicate lower spectral
leakage than higher ones. A host of windows have been proposed to fit the digital filter
design needs of various applications. Excellent sources are Harris (1978) [27] and Nuttall
(1981) [51], but here we follow Beauchamp’s discussion (Beauchamp (2007) [2]) on the basic
windows employed in the heterodyne–filter method of analysis. Section (2.4.2) takes a closer
look into window design and time–frequency trade–offs.

The rectangular window is nothing more than multiplication of the entire signal by a
normalized height train of impulses within a range and zeros outside that range. Its area is
one, so to customize it to our case at hand we define its height to be fa and its base 1/fa,
i.e.,

w(t) =

{
fa, |t| ≤ 0.5/fa
0, |t| > 0.5/fa

, (2.16)

11Actually, it doesn’t have to be zero. If the amplitude value of the first and last DFT point is the same
low value, the spectral sidelobes will be minimized.
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which effectively retains one fundamental period Ta = 1/fa. The rectangular window is
probably the worst choice at least for our purposes. Its sidelobes roll off very slowly and
therefore excessive leakage is left to deal with. Its response is inferior to other useful windows
for f > fa. However, it is worth noting that it provides the best frequency resolution.

A better choice is the von Hann12 window with a smoother bell–shaped curve that
gives practically no discontinuity at the ends of the sampling interval (it brings the signal
down to zero and has a zero first derivative there also). Its resolution is no better than that
of the rectangular window, but then again, none of the non–rectangular windows’ frequency
resolutions are—in fact, non–rectangular windows degrade the windowed DFT resolution by
about a factor of two. The von Hann window is

w(t)

fa
=

{
cos2(0.5πtfa) = 0.5 + 0.5 cos(πtfa), |t| ≤ 1/fa
0, |t| > 1/fa

. (2.17)

The Hamming window looks like a von Hann window only its peak is shorter and its
tails do not bring the signal to a halt, but are raised above zero. Its two terms look like this

w(t)

fa
=

{
0.5 + 0.426 cos(πtfa), |t| ≤ 1/fa
0, |t| > 1/fa

. (2.18)

The Blackman–Harris window is a 4–term more sophisticated window option with
window width 4/fa and a peak amplitude at 0.6969fa:

w(t)

fa
=

{
.25 + .3403cos(.5πtfa) + .0985cos(πtfa) + .0081cos(1.5πtfa), |t| ≤ 2/fa
0, |t| > 2/fa

.

(2.19)

All the above windows can be put in one general form as

w(t)

fa
=

{ ∑P−1
p=0 αp cos(2πpfat/P ), |t| ≤ P

2fa

0, |t| > 0
(2.20)

where P is the number of terms in the window13 and α0 = 1/P . We also keep in mind that
the window functions are normalized by fa and all areas under the curve are normalized to
one. A general expression for the frequency responses of the above windows can be obtained
by direct Fourier transformation of the general expression in Equation (2.20), i.e,

W (f)

fa
=

∫ +∞

−∞
w(τ)e−i2πftdτ

=
P−1∑
p=0

αp

∫ P
2fa

− P
2fa

cos(2πpfaτ/P )ei2πfτdτ (2.21)

12Named after Julius von Hann and erroneously oftentimes referred to as the “Hanning window.”
13For the rectangular window P = 1, for the Hamming and von Hann windows P = 2, and for the

Blackman–Harris window P = 4.
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which is again normalized by fa. The above Fourier transform can be written in terms of
sinc(πx) functions, where sinc(πx) = sin(πx)

πx
, as

W (f)

fa
=
P

2

P−1∑
p=0

αp

{
sinc

[
π
(Pf
fa

+ p
)]

+ sinc
[
π
(Pf
fa
− p
)]}

. (2.22)

Readers familiar with the classic papers of Harris (1978) [27] and Nuttall (1981) [51]
will notice that the coefficients of the Hamming and Blackman–Harris windows do not add
up to unity, as it is the usual practice. Instead they are expressed as a percent of the analysis
frequency. In the case of the Hamming window in Equation (2.18), for example, the peak
amplitude (which is the same as the central ordinate mentioned in Bracewell (2000) [12], since
the windows are all centered about the origin) is 0.926fa. The areas under the windows
in both domains are still all unity nevertheless. This discrepancy is due to Beauchamp’s
(2007) [2] choice to make the width and the peak of the windows a function of fa. Here
we adopt Beauchamp’s convention, since this section is devoted to phase vocoder, but some
basic notes on the equivalence of the two approaches (normalized versus traditional windows)
are provided below.

To show that the area under the windows and their response curves are equal to unity,
we borrow the idea of equivalent width from Bracewell (2000) [12], where in page 167 he notes
“The equivalent width of a function is equal to the reciprocal of the equivalent width of its
transform,” i.e., ∫

w(t)dt

w(0)
=

W (0)∫
W (f)df

, (2.23)

where the limits of integration in our case will be the actual window limits. If we manage to
show that the central ordinates of the two domains are equal, then their integrals must be
equal. Evaluating the area under the window curve in one domain, say time, will then tell
us what the area under the curve is in the frequency domain.

First we show that the central ordinates in the time and frequency domain are equal.
Directly from Equation (2.20) and Equation (2.22) for a 2-term window we obtain

w(0)

fa
= α0cos(0) + α1cos(0) = α0 + α1 (2.24)

and
W (0)

fa
= α0sinc(0) + α1sinc(0) = α0 + α1 (2.25)

since cos(0) = sinc(0) = 1, and in general the result for two terms

w(0)

fa
=
W (0)

fa
= α0 + α1

will hold for many terms.
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The area under the time window curve, again for a 2–term window, is

1

fa

∫ + 1
fa

− 1
fa

w(t) dt =

∫ + 1
fa

− 1
fa

α0 dt+

∫ + 1
fa

− 1
fa

α1cos(πfat) dt

= α0 t

∣∣∣∣∣
+ 1

fa

− 1
fa

+
α1

πfa
sin(πfat)

∣∣∣∣∣
+ 1

fa

− 1
fa

=

[
α0

fa
−
(
− α0

fa

)]
+

α1

πfa

[
sin
(πfa
fa

)
− sin

(
− πfa

fa

)]

and since sinπ = 0, the second term will always be zero. The same will be the case for all
the terms past the first one for the more general cases of windows with many terms. Finally,

α0

fa
+
α0

fa
=

2α0

fa
=
w(t)

fa

and since for this particular 2–term α0 = 1
P

,

w(t)

fa
=

2

2fa
→ w(t) =

fa
fa

= 1.0.

This is the case for any n–term window due to our choice of α0 = 1
P

and because all sinusoids
in the time domain vanish. By Equation (2.23) the area under the response function is also
unity.

2.3.4.2 Harmonic Corruption & Window Limits

The brief discussion on windows above leads to the concepts of harmonic corruption
and harmonic limits of windows. In what follows notation has been changed considerably
from the source.

As we said before, when f0 = fa the empirical and theoretical are completely aligned
and the phase vocoder will yield perfectly accurate (and hopefully precise) frequency esti-
mates. All the unwanted frequency components will be rejected by the model and none will
make it into the output spectrum. When f0 6= fa, each harmonic will be shifted in frequency
by the frequency difference ∆f and this shift will cause the vocoder to be less than perfect
in canceling out unwanted frequency components. We need a measure of how the model
rejects unwanted components.

Let ∆f = f0 − fa. Then the analytical and fundamental frequencies of the partial
k are f ik = k∆f out of tune, where the index i = −1, 0, 1 will denote the position of the
frequency component in question (0), and its immediate two neighboring partials (“−1”
indicates the one below it and “+1” the one above it) for that particular k partial. So, if fa
is detuned from f0 by ∆f we can say that the amount that the kth harmonic deviates from
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f0 for the wanted component and the two immediately adjacent undesired components is

f 0
k = k∆f

f−1
k = (k − 1)(fa + ∆f) (2.26)

f+1
k = (k + 1)(fa + ∆f)

It should be intuitively clear that if the two immediately adjacent undesired compo-
nents f−1

k and f+1
k are not removed (again, due to large ∆f) they will corrupt the accuracy

of the estimation of the desired component f 0
k . That’s one thing. By how much the accuracy

will be adversely affected, though, is another thing and it has to do with the energy of the
neighboring components relative to the central one we want to pick up clearly. One could
argue that a decent measure of this contamination is the energy differential between adjacent
components, which is true. But windows, on the other hand, are responsible for what makes
it into the final signal to be transformed and how much that energy is curbed. It turns out
that taking amplitude differentials is equivalent to comparing the Fourier transforms of the
windows, only the latter is more convenient computationally. Therefore, we will use the fre-
quency response differentials W (f 0

k )−W (f−1
k ) and W (f 0

k )−W (f+1
k ) as a metric of harmonic

contamination. The greater ∆W (f ik) is, the greater the likelihood for rejecting undesirable
components. Table (2.1) in the next subsection contains the windows specs (harmonic win-
dow limits) for each of the three harmonics f ik and their frequency response differentials for
comparison. Since this model is central to my dissertation, a practical example is given using
the four windows presented in the previous section (2.3.4.1).

2.3.4.3 Example of Window Limits

One of the characteristics of the harmonic–filter analysis at least as implemented by
heterodyning a signal by kfa is that lower harmonics are resolved much better than higher
harmonics. From personal experience using this method and due to its flexibility in isolating
individual harmonics, the model resolution for lower partials (including the fundamental14)
is superb. Fortunately, the first half a dozen or so harmonics are the ones responsible for
most of what we perceive as a tone, hence our decision to weigh only the first five harmonics
in Equation (2.11).

Suppose that no prior empirical knowledge of the fundamental frequency exists. Based
on general music theory we know that the reference tone is A4 at f1 = 440 Hz. We also
know from Byzantine music theory that the tone D4, the f0 to be estimated, is 42 atoms
below the reference A4, i.e., ∆atoms = 42. A quick calculation from Equation (1.5) shows

14The topics discussed here are beyond strict fundamental frequency estimation. It’s noteworthy that the
whole spectral content of the signal is considered and analyzed in conjunction to psychoacoustic empirical
results. However, the term is established enough to be adopted here.
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Table 2.1 – Harmonic Analysis Limits for a hypothetical example with k = 3 and ∆fD4 =
0.03fa for four commonly used window functions.

Window Type WdB for
f0

3 = 0.09fa

WdB for
f−1

3 = −0.94fa

WdB for
f+1

3 = 1.12fa

W (f0
3 )−

W (f−1
3 )

W (f0
3 )−

W (f+1
3 )

Rectangular −0.1 −24.0 −19.6 23.9 19.5
von Hann −0.2 −32.2 −32.3 32.0 36.1
Hamming −0.2 −38.6 −44.1 38.4 43.9
Blackman–Harris −0.4 −70.5 −92.1 70.1 91.7

that the theoretical fundamental frequency for D4 should be

∆atoms = 72 · lnβ
ln2

ln2 · 42

72
= ln

(
f1

f0

)
0.404336 = loge

(
f1

f0

)
e0.404336 =

f1

f0

f0 =
440

e0.404336

⇒ fD4
0 = 293.6647 Hz

which is what western theory frequency tables would show (Benson (2006) [11], pg. 379).
Figure (2.1) shows why the Byzantine and Western D4 agree. Since no prior knowledge
exist on the fundamental frequency of D4, fD4

0 , we make the analysis frequency for the
phase vocoder purposes equal to the fundamental, i.e., fD4

0 = fD4
a = 293.665 Hz. The phase

vocoder method is then used to identify the fundamental frequency of the signal. Since
∆fD4 = 0 and the signal is well–behaved, the accuracy of the f0 estimate is as good as it
can possibly be (within the framework of phase vocoder).

Let us assume, however, that empirical spectrum analysis of the data suggests that
the complex tone D4 has a “true” fD4

0 = 302 Hz, about 3% higher than what was used for
the phase vocoder. The accuracy of the estimate then becomes a function of not only this
∆fD4 = 0.03fa, but also the harmonic number and the frequency resolution and spectral
leakage of the window of our choice. Following Beauchamp (2007) [2] the harmonic analysis
limits are tabulated below for this hypothetical yet realistic example.

Let us now consider the case of a higher harmonic, for example k = 10, with the same
∆fD4 and window functions for comparison. The results are shown in Table (2.2).

The window response difference columns (last two columns of the table above) are
a measure of relative rejection of undesired components; the higher the number, the better
that window “resolves” that harmonic in the sense that it rejects the undesired adjacent
harmonics adequately enough (results here are for the ∆f of about half a semitone we have
been using). Note, however, that if the ∆f is large enough, the harmonics above it are
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Figure 2.1 – Byzantine vs Western scale. Within interval boxes the upper bold number
denotes atoms and the lower cents. Numbers outside the boxes are frequencies in units of
Hz. Of all Byzantine music scales, the diatonic is the closest to the Western intervals. The
subtle differences are shown in the two different frequencies (left) which create four different
intervals. In fact, even though frequencies will differ as the scale progresses periodically
in the upper or lower tones, the atoms, cents, or frequency ratios will be identical to the
first tetrachord, the first four notes which enclose three intervals. A tetrachord, having a
just intonation ratio of 4 : 3, is a perfect fourth, i.e., D4 7→ G4. Along with the connecting
interval G4 � A4 it forms a perfect fifth, a 3 : 2 ratio. Perfect intervals are consonant, that
is why no matter if you are in a Byzantine or a Western scale D4 will always be 293.665
Hz with respect to the reference tone A4.

(hopefully) happening periodically in frequency, and at some point the ∆f , if incremented
just right, will coincide with a higher harmonic that is just an “echo” of the lower.

Direct comparison of the two tables gives at least three practical insights. First, notice
how much smaller the frequency response difference numbers are for k = 10 as opposed to
k = 3, i.e., higher harmonics are more difficult to isolate since the relative rejection of the
neighboring corrupting components is difficult. Second, notice how WdB for f−1

k is higher
than WdB for f+1

k , which means that the contribution of f−1
k in corrupting f 0

k is much higher
than the corruption effect of f+1

k . This is due to the relevant proximity of the frequency to be
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Table 2.2 – Harmonic Analysis Limits for a hypothetical example with k = 10 and ∆fD4 =
0.03fa for four commonly used window functions.

Window Type WdB for
f0

10 = 0.09fa

WdB for
f−1

10 = −0.94fa

WdB for
f+1

10 = 1.12fa

W (f0
10)−

W (f−1
10 )

W (f0
10)−

W (f+1
10 )

Rectangular −1.3 −9.7 −13.7 8.4 12.4
von Hann −2.1 −14.4 −35.3 12.3 33.2
Hamming −2.5 −17.7 −61.8 15.2 59.3
Blackman–Harris −4.9 −33.4 −115.7 28.5 110.8

resolved and the adjacent components. If ∆f is positive the above is true; if it’s negative, the
reverse is true (which means that f+1

k is much closer to f 0
k ). Third, the more sophisticated

the window, the better the phase vocoder model isolates partials. Again, higher difference
numbers means higher likelihood to get rid of unwanted neighboring frequencies, and clearly
the relationship between window sophistication and better isolation is at least directionally
in agreement with this statement.

Which window is best depends on (1) which partial needs to be resolved, (2) ∆f
(assuming the signal is well–behaved with clear partials at integer multiples of the funda-
mental), and, in general, (3) the spectral properties of the tone. From the above discussion,
it would seem reasonable to use a more sophisticated window than not. But apart from
computational expense, Hamming and von Hann windows lend themselves to better rejec-
tion due to their having a narrower frequency domain width (2/fa compared to 4/fa for
the Blackman–Harris window). This has to do with corruption of f 0

k from components that
are not strictly adjacent to it. A direct comparison between the Hamming and von Hann
windows shows that von Hann is even better than Hamming when it comes to rejecting
non–immediate components. On a related note, the Blackman–Harris window’s main lobe
width starts out narrower compared to the other windows which makes it more sensitive
for appreciable ∆f . Coupled with its wide window in the time domain (time-resolution is-
sues), the Blackman–Harris window makes for a good option only for a handful of specialized
situations. The Hamming window was the one implemented in SNDAN.

In our case we want ∆f → 0 to avoid having to analyze algorithm accuracy using
limits. This is achieved by having a priori knowledge of the f0 and setting that equal to fa.

2.3.5 Analysis Step Implementation

This section describes some basic implementation aspects of the heterodyne–filter
analysis, the implementation of phase vocoder. Since the input signal is already digitized at
a sampling frequency of fs = 44, 100 Hz15, we have a time–series of s(n/fs) = s(n∆t) = s(τ)

15Standard compact disc quality. Frequencies up to the upper human hearing limit 20,000 Hz are repre-
sented.
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samples at n = 0, 1, 2, 3, . . . . Using Equation (2.20), Equation (2.14) can be expressed as

c̃k(t) = fa

∫ t+ P
2fa

t− P
2fa

w(t− τ)

fa
s(τ)ei2πkfaτdτ

= fa

P−1∑
p=0

αp

∫ t+ P
2fa

t− P
2fa

cos(2πpfa(t− τ)/P )s(τ)ei2πkfaτdτ. (2.27)

We need to sample this equation with the ultimate goal of estimating its parameters.
The input signal is divided up into i time frames with a frame rate of fa/2. Using integer
sample indices n and m we introduce discrete times at tn = n/fs and τm = m/fs which
replace the corresponding continuous variables in Equation (2.27) above to give the sampled
version

c̃k(n/fs) = fa

n+N/2−1∑
m=n−N/2

w′[(n−m)/fs]e
−i2πkfam/fas(m/fs)/fs (2.28)

where w′(·) = w(·)/fa is the usual normalized window and N ∼= Pfs/fa is the window length
(in samples). If Equation (2.14) gives the complex amplitude of the kth partial, Equation
(2.28) gives the sampled complex amplitude of the kth partial.

To simplify the above formula we make the following reasonable substitutions:

c̃k(n/fs)← c̃k(n)

w′[(n−m)/fs]← w′[(n−m)]

s(m/fs)← s(m)

to obtain

c̃k(n) = fa/fs

n+N/2−1∑
m=n−N/2

w′[(n−m)]e−i2πkfam/fas(m) (2.29)

=
P

N

n+N/2−1∑
m=n−N/2

w′[(n−m)]e−i2πPkm/Ns(m). (2.30)

A couple of other considerations about Equation (2.30) seem necessary. The limits of
the summation suggest an asymmetry about the median sample point. This is easily fixed
by shifting the window function by half a point. Since the fast Fourier transform is used
to implement the DFT of Equation (2.30), if N , the window length, is a power of two the
computations will be more efficient16. For this reason, the signal must be resampled [Smith
& Gossett (1984) [76] offer a flexible sampling–rate conversion method which is used in this
implementation. To avoid aliasing due to undersampling, the new sampling rate f ′s must be
higher than the regular fs. We let

N = 2M = 2ceil[log2(Pfs/fa)],

16Note that this is not necessary, but it is more computationally efficient.
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where ceil(·) is the ceiling function17, so that

f ′s =
Nfa
P

. (2.31)

As an example, suppose the tone D4 is to be fed into the phase vocoder. The analysis
frequency is fD4

a = 293.665 Hz, the sampling frequency is fs = 44, 100 Hz, and the 2–term
Hamming window of width 2/fa is used, i.e., P = 2. Then

N =
Pfs
fa

=
2 · 44, 100 Hz

293.665 Hz
= 300

and the next power of two is 29 = 512, which when used in Equation (2.31) gives a new
sampling rate of f ′s = 66, 969.6 Hz. If fG4

a = 391.995 Hz, then N = 225 and the next power
of two is 28 = 256, which makes f ′s = 50, 175.36 Hz. All these are taken care of automatically
based on the fa to be analyzed.

2.4 McAulay–Quatieri—Frequency–Tracking Analysis

The phase vocoder method postulates an ideal model that experience is then refer-
enced against. It does not lend itself to analyses where practical considerations prevent the
signal from being less than perfect. For example, in voice signals particularly, a partial may
or may not exist for the entire duration of the tone. It may “die” or a new one may be
“born.” This is particularly true of higher harmonics that do not carry much energy but are
certainly audible and help form the quality of the sound. Another practical consideration
is that harmonics are not likely to always be perfect integer multiples of the fundamental.
It would be nice to have a way to reject all the unwanted components based on perfect
harmonicity requirements (like the phase vocoder does), but it would also be nice to have a
more realistic tool which will track the real components of a signal even with variable ratios
among them.

The McAulay and Quatieri (1986) [43] method of frequency tracking provides this
flexibility. It was designed for speech signals and it was later adopted to music applications
by Smith and Serra (1987) [77]. Subsection (2.4.1) provides the algorithm. Subsection (2.4.2)
discusses resolution issues for this method. Subsection (2.5) gives some information about
the SNDAN user interface.

2.4.1 McAulay–Quatieri—Frequency–Tracking Algorithm

This section gives a brief outline of the actual frequency–tracking algorithm based on
McAulay and Quatieri (1986) [43]. The idea is simple: pick the peak frequencies for each
of the Discrete Fourier Transforms (DFTs) of each overlapping frame and then concatenate
them to form frequency–vs–time plots. Along the way, the amplitude Ak and phase θk of

17The ceiling and floor functions map a real number to the smallest following or largest previous integer
with respect to its argument.
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each partial is also retained and used for other calculations or plots within the SNDAN user
interface.

Since this is an established method for frequency estimation, extensive documentation
exists in the literature. Some good references include McAulay and Quatieri (1986) [43],
Smith and Serra (1987) [77], Serra (1989) [72], Beauchamp’s book (2007) [2] and some of his
papers, for example, Beauchamp (1993) [6], Beauchamp (1966) [3], Beauchamp (1993) [7],
Beauchamp (1975) [5], Fitz, Walker, and Haken (1992) 18 [24], and Maher & Beauchamp
(1994) [41]. Figure (2.2) summarizes the algorithm.

2.4.2 Time–Bandwidth Product—The Uncertainty Principle

Subsection (2.3.4.1) alluded to time–frequency trade–offs. A more detailed account is
given here. The discussion starts out more generally with Bracewell (2000) [12], and Stoica &
Moses (2005) [80], and concludes with some practical implications from Beauchamp (2007) [2]
and Smith & Serra (1987) [77].

The window’s length, M , is responsible for the energies in main lobe width and
the sidelobes of the windows amplitude response. This limitation introduces the notion
of frequency resolution and statistical variance trade–off. The window’s shape introduces a
trade–off between smearing and spectral leakage. It should be clear that there is always some
kind of trade–off between the time and the frequency domains. We need a mathematical
framework to help us discuss the balancing of these two domains. This well–known framework
goes by several different names, comes in different notations, and gives insight into just how
one can start thinking about optimizing a situation at hand given some concrete constants.

The uncertainly relation says that

∆t ∆f ≥ 1

4π
, (2.34)

where (∆t)2 is the second moment (or variance19 of the square modulus of a function in
t, |f(t)|2, and (∆f)2 is the variance of the square modulus of the Fourier transform of the
function, |F (f)|2. So the product of the variances of the energies of the time domain and
the frequency domain cannot be smaller than a constant. This is in terms of energies (or
powers, which is basically like the energies, only the influx of energy within a time window).

18Fitz et al. (1992) present an interesting idea in regards to how one puts together the consecutive DFT’ed
frames. This tracking hysteresis claims that the final n–point of a frame (the end of a window frame as it
is chosen based on various proposed algorithms) is not truly a final end N–point (the point that really is or
should be the final point of a window frame to yield minimum leakage or distortion), unless it is persistent for
a number of frames. So, it is not about the analysis of a signal, but how it is synthesized back to a coherent
form after it has been processed. This made me think about cognitive theories for mildly autistic children.
Maybe it is not all about parallel processing. Maybe it’s as simple as a mismatch of putting together serial
information after the input has been analyzed correctly. One can clearly see that the information is there
somewhere, only the children seem confused about small portions of the information and where in time are
situated.

19More precisely, the second moment is <x2>, whereas the variance is the normalized (x − <x>)2 =
<x2> − <x>2. However, it is common practice to subtract the signal mean from the signal to make the
second moment and the variance equal (see discussion in Bracewell (2000) [12], page 159).
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McAulay–Quatieri Frequency–Tracking Algorithm

1. Calculate successive, overlapping Discrete Fourier Transforms (DFTs).
Windowing and zero–padding for optimal partial isolation is used.

2. Identify each frame’s spectral peaks. Each peak is determined by
fitting a quadratic to the log of three DFT magnitudes Aξ−1, Aξ,
Aξ+1and the kth peak frequency is

fk = (ξ + p)∆fDFT (2.32)

where

p = 0.5
log(Aξ−1Aξ+1

log(Aξ−1Aξ+1/A
2
ξ)
. (2.33)

The Ak and θk for each peak are also computed using the real and
imaginary parts of the transform. Parameters on each frame are
stored for analysis and other FFT bin information is discarded. A
logic based on an absolute or frequency–covarying amplitude thresh-
old (Serra (1989) [72]) for picking global and not every local maximum
is applied.

3. Peak frequencies of consecutive frames are concatenated. This is the
algorithm’s most crucial step as there is no perfect way of identifying
“deaths” and “births” of frequency trajectories. A “link” index κk,i de-
termines where the connection should happen. All indexing and time
information are retained for frequency plots and further calculations.
A track is thus formed.

4. Information on peak data for each track is stored in a file.

Figure 2.2 – McAulay–Quatieri Frequency–Tracking Algorithm.

In terms of the Discrete Time Fourier Transforms (DTFTs), the uncertainly relation can be
simplified outside the boundaries of periodicities (if we felt that 1/4π is too cumbersome for
the eye) and say that the product of the equivalent duration and equivalent bandwidth is
exactly one

∆t ∆f = 1 (2.35)

or put in another usually encountered notation

Ne βe = 1 (2.36)

where

Ne =

∑M−1
t=−(M−1)w(t)

w(0)
(2.37)
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and

βe =
1

2π

∫ +π

−π W (s)ds

W (0)
(2.38)

where W (s) is the Fourier transform of w(t) and M is the window length (as opposed to
N which is the sequence length). Equation (2.36) will always be unity for all functions no
matter their mathematical properties, but Equation (2.35) only assumes its minimum value
with Gaussian functions.

Once the window length has been determined there are not much we can vary but
the window’s shape. Since the window’s length is so important, we can also think about
Equation (2.35) as

∆t ∆f =
1

M
(2.39)

and the interdependence becomes more apparent. We can see, for example, that the equiva-
lent bandwidth ∆f is on the order of 1/M which is the equivalent length in the time domain,
i.e. ∆f = O

(
1
M

)
. The frequency resolution is 1/M , but the second moment is proportional

to M/N [for a derivation of this result and a discussion please refer to Stoica & Moses
(2005) [80], Section (2.5.1) and Section (2.6.1)]. Therefore, the window length binds both
the spectral resolution and the variance and the two are inversely proportional. This is why
we said before that the window length should be chosen to optimize the choice of these two.

At the same time, with M fixed, w(0) is also fixed and the area under the curve of
the Fourier transform of the window equals the central ordinate of the original function,
that is to say, w(0) =

∫∞
−∞W (s)ds = 1. This imposes another limitation: the main lobe

width and sidelobes cannot be reduced simultaneously once M is set. But the main lobe
width is associated with the windows frequency resolution which when allowed to become
coarser leads to smoothing, or smearing; the sidelobe height is associated with the leakage
of the window frame to be transformed. We then turn to the window’s shape to address this
trade–off. The more smoothly the data are weighted down to zero in one domain the more
concentrated its energy will be in the other domain. That is why we said before that the
shape of the window should be chosen with regard to the smearing vs leakage trade–off.

In practice, the signal is decimated into i bins. To accommodate this into our dis-
cussion we say that for two adjacent frequencies, say f0 and f1, to be resolved they must be
apart by a frequency difference of ∆fw or more, where ∆fw is the bandwidth of the window
and is defined as

∆fw = Bw
fs
M

= Bw∆fb, (2.40)

where Bw is the bandwidth of the window in number of bins, ∆fb is the bin separation
frequency, M is the number of samples in the window, and fs is the sampling frequency.
∆fw is also the lowest harmonic in a signal that can be adequately isolated, because the
next harmonic will be twice this value (since fa is set, then fk = kfa). We will assume that
each spectral peak corresponds to a sinusoidal frequency component in the signal. Experience
(see, for example, Beauchamp (2007) [2] and Smith & Serra (1989) [77]) shows that a 3–
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bin bandwidth separation is enough to adequately resolve adjacent partials at a low enough
frequency to fit our needs20.

Since 3–bin frequency units resolve peaks in the magnitude spectrum accurately
enough, we can take a look at a typical scenario where fs = 44, 100 Hz and M = 210 = 1024.
The time duration of the window is N/fs = 23 ms. The bin separation frequency is
∆fb = fs/N = 43 Hz and ∆fw = Bw · ∆fb = 129 Hz, that is to say, if the lowest fun-
damental in the signal is about 130 Hz then the McAulay–Quatieri method should analyze
it accurately. This is well below the lowest frequency analyzed for our purposes. The re-
quirement Bw = 3 limits the maximum number of peaks Ki that can be detected within each
bin i to fs/(6∆fb). The window length must be chosen according to how much of a peak
separation we would like the model to resolve. Assume that a desired minimum value of
peak separation is 20 Hz. Since this minimum is spread over 3 bins, the real bin separation
is 20/3=6.67 maximum. If the software automatically uses an M = 213 = 8192 with the
same fs = 44, 100 Hz, then a bin separation of 5.38 Hz is achieved. This in turn gives the
new bin separation of 16.15 Hz (which is below the minimum of 20 Hz we required). Finally,
the algorithm can resolve up to a 8192/6 ≈ 1, 365 peaks.

2.5 SNDAN

Now that the phase vocoder and the McAlay–Quatieri frequency tracking methods
have been presented, we devote a section on explaining their computational implementation
code, SNDAN, and also provide some illustrative examples of its analysis using a sound snip-
pet from Nafpliotis’ recordings. Other analysis examples will follow in subsequent sections.

SNDAN: Musical Sound Analysis, Graphics, Modification, And Resyn-
thesis Routines For Unix is an extremely powerful and versatile tool owing its devel-
opment to Professor James Beauchamp of the University of Illinois at Urbana-Champaign.
The author of this dissertation started using this tool in 2005. It is basically a library
of routines written in C, and can be run from a UNIX or a Windows MSDOS prompt
command. A couple of Graphical User Interface versions of SNDAN exist, but the steep
learning curve of running the original code is well compensated by its tremendous flexibility.
Here, only a very small portion of it is demonstrated and used. Other applications include
resynthesizing the sound after it has been decomposed by either the phase vocoder or the
McAlay–Quatieri frequency tracking method, applying smoothing filters specifically designed
for vibrato, creating an impressive number of graphs and calculations, exporting data after
operations for analysis in other software, etc. It is ideal for demonstrating sound engineering
principles in the classroom. It has been used for other Ph.D. dissertations and Master’s
theses. The code, documentation, and everything one needs to get started can be found
here http://ems.music.uiuc.edu/beaucham/. Another attractive feature of SNDAN is its
extensive documentation on the mathematical theory behind the computations in books and

20In fact, Bw = 2P with P being the terms in the window. But even more practically, taking a look
at the zero crossings of the window response plot will confirm that for the rectangular, Hamming and Von
Hann, and Blackman–Harris windows the Bw values are 2, 4, and 8 respectively. That we settled on Bw = 3
is more of a practical consequence (computationally cheap).
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articles (some of them have been cited previously). A short history of its origins by James
Beauchamp is quoted below.

The Origins and Development of SNDAN

SNDAN is an outgrowth of work that I did as early as 1966, when I gave my first
paper at the AES on music sound analysis. Then I co–edited a book entitled “Music
by Computers” in 1969 which contained a chapter by me on sound analysis/synthesis
using main frames. I continued to use main frames for analysis/synthesis and small
off-line computers for A/D and D/A until we first set up the Computer Music Project
here in 1984–85. Back in the mainframe days, the analysis/synthesis package was
called TONEAN and it was written in FORTRAN. Rob Maher arrived in 1985 to
work on a doctorate in electrical & computer engineering, which dovetailed very nicely
with the arrival of our first desktop Unix computers. I held a course for musically–
inclined engineers and programmers in 1985, and out of that came several very useful
products, all written in C, which we are still using, including Music 4C and g raph, our
graphics package. In the meantime, as part of his doctorate, Rob wrote the MQ and
PV software, which, in a certain sense, is the most important part of SNDAN. (Rob left
in 1989, and I still miss him, as he was probably the best assistant I ever had.) I wrote
most of the stuff in add syn, sig, and view an (where monan resides). George Chaltas
wrote g raph in 1985 for the Tektronix protocol. Camille Goudeseune and I ported
g raph for EPS, and in 1996–97, Tim Madden extended the graphics considerably for
the 3D (‘pp’) and 2D (‘ftc’) spectrum graphs, including the use of color to differentiate
harmonics (3D) and to indicate intensity (2D). During 1991–93 Andrew Horner wrote
several programs for sound analysis/synthesis based on PV output, most notably using
the method of the Genetic Algorithm. Music 4C instruments for Spectral Dynamic
Synthesis (Beauchamp and Horner) and, very recently, for Piano Wavetable Synthesis
(Zheng Hua) have been developed based on analysis using SNDAN.

As of this writing, 318 people have down–loaded SNDAN. Some people have used it for
their academic theses. For example, Rebekah Brown at Indiana University used it for
her doctoral thesis on intonation of violin performances in 1996 and John Hajda used
it for his Ph.D. dissertation on musical instrument timbre in 1999. Jochim Krimphoff
used it for his masters thesis on instrument timbre at IRCAM(Paris) in 1994, and it
has been used by others in Stephen McAdams’ Music Perception/Cognition group at
IRCAM since then. It is also being used extensively by Andrew Horner at HKUST for
sound analysis/synthesis projects which have been documented by many publications
by him and other authors in JAES and CMJ since 1993.

Two GUI versions of SNDAN have been written, both at UIUC. AnView was written
for the black NeXT environment by Chris Gennaula and Camille Goudeseune in 1992–
93. Armadillo was written for the MacOS/PPC environment in 1998–99. Instructions
for obtaining these can be accessed via my web page at http://ems.music.uiuc.edu/
people/beauchamp. These are not 1–to–1 implementations. They lack many things
that SNDAN has, and they do some things that SNDAN doesn’t do. Needless to say,
for the unitiated user, they are a lot easier to use than SNDAN is.

James Beauchamp

University of Illinois at Urbana-Champaign

21st January 2000
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The next subsections interject empirical insight into the so far theoretical treatment.
A word about the demonstration data. A snippet of sound from one of Iakovos Nafpliotis’
recordings is used as demonstration data. The tone is A4 and preliminary analysis on this
snippet shows f0 ≈ 445 Hz, the fs = 44, 100 Hz, the duration is 1.707 seconds and it was
chosen specifically because it contains three distinct syllables: “me—nos—pros.” The first
two syllables have a musical duration of one beat and the last one of two beats, that is to
say, had this been a 4/4 meter (which, in reality it is not21) the first two syllables would
have been assigned a duration of 1/4 and the last one 2/4.

2.5.1 Visual Comparison of Phase Vocoder and McAlay–Quatieri Methods

The phase vocoder analysis was implemented using pvan and the McAlay–Quatieri
analysis was implemented using mqan, both standard packages of SNDAN. Analysis data
were dumped into an ASCII flat file using andump and were then analyzed in SAS R©22. Plots
were created using the monan and mqplot libraries and antomq was used to prepare data for
one of the above analysis methods or to change formats from an to mq.

The analysis log informs us that the signal was segmented into 1591 frames each with
a duration of 0.001124 seconds23. Forty-nine harmonics were resolved and fa = 445 Hz (like
we requested it to be). Figure (2.3) shows the two spectra for visual inspection. Forty–
nine harmonics on top of f0 ≈ 445 Hz implies a maximum resolved frequency of 21,805 Hz,
which is above the rough upper frequency capability of human resolution and about half of
fs/2 = 44, 100/2 = 22, 050 Hz. This indicates that the work on cleaning up the analogue
vinyl records was superb—one does not get that high a quality in digital audio unless the
analogue is nearly perfect. This fact in itself, should make us feel very comfortable analyzing
this sample in terms of spectral content available. It may be beyond what we really need for
estimating f0, but higher harmonics are crucial for a host of perceptual analysis. The best
samples of Nafpliotis’ recordings analyzed before the release of Alygizagis’ CDs (2008) [1]
did not contain any frequencies above 3.5 kHz.

21This is another distinction between Western and Byzantine music metronomy. In Byzantine it is allowed
to insert unequal meters among otherwise normal rhythm to emphasize prosodic meaning at the expense of
broken rhythmic continuity. Along with scale intervals, this distinction is also approaching extinction under
progressivistic trends. Future research on Byzantine music rhythm is also possible, along with frequency
research. A good reference for research on metronomic tonality using spectra is Sethares (2007) [73].

22SAS R© is a registered trademark of SAS Institute Inc.
23Remember that the phase vocoder uses either the phase spectrum or the provided fa to fine tune

where to look for f0 and this compensates the coarse ∆f of a DFT with the same sampling rate, fs, and
FFT window length, N . For example, in DFT we can use ∆f ∆t = 1

N , with ∆t = 1
fs
≈ 2.26 × 10−5sec,

N = NTOT

frames ≈ 47samples/frame, to estimate ∆f ≈ 938Hz, which is coarse. Here the vocoder is using

fa. Had fa not been provided, the vocoder could have used fn = (φ2−φ1)+2πn
2π(t2−t2) , where φi is the phase of

the sinusoid at ti. The times could be selected to match those where the frequency peak is the maximum,
or even closest to fa (if fa is known). If fa is not provided, the vocoder chooses the fn closest to the real
frequency peak in the spectrum. This exploitation of phases dramatically improves f0 estimation due to
the powerful connection it reveals between time and frequency. The SNDAN implementation uses phases to
suggest corrections on a user–provided fa by least squares prediction. Note that the time resolution ∆t is
not compromised because the window length has not been increased at all. Sethares (2007) [73] provides a
good discussion of this on page 118.
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(a) Phase Vocoder Spectrum.

(b) McAlay–Quatieri Spectrum.

Figure 2.3 – Visual Comparison of Phase Vocoder and McAlay–Quatieri Spectra for the
sample “me–nos–pros.”

Note the “idealistic” nature of the phase vocoder spectrum as opposed to the “re-
alistic” McAlay–Quatieri spectrum. The McAlay–Quatieri spectrum picks up every single
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frequency. In doing so, notice how consonant sounds like “n” and “s” show up in the spec-
trum (see syllables below the spectrum). For example, “n,” which is a voiced nasal (dental,
alveolar) consonant, preserves 6 harmonics approximately in the 2.3 to 3.5 kHz range as if
the nasal cavity didn’t have much to do with altering the formant at this point in time,
only a band–pass filter was applied by the tongue touching the palate. The fact that the
“n” harmonics are holding up so well in the spectrum could be due to the fact that these
syllables are sung, not spoken. Also, notice how stable the fundamental shows (second line
in spectrum, the first one is an echoed subharmonic) even during the “n” sound. It’s not
up until “s” is uttered that the fundamental breaks—and for good reason. The voiceless
(alveolar) fricative consonant “s” carries no vibrations from the vocal cords in it and conse-
quently its frequency content is much more erratic, inharmonic and almost white–like than
“n.” Then, what is f0 for “s”?

(a) Phase Vocoder Distribution. (b) McAlay–Quatieri Distribution.

Figure 2.4 – Visual Comparison of Phase Vocoder and McAlay–Quatieri Distribution.
Frequencies are in units of Hertz.

Figure (2.4) shows the distribution of the fundamental frequencies for the two meth-
ods. For “n” both algorithms should pick the fundamental frequency with no problem, but
the McAlay–Quatieri method automatically sets the lowest instantaneous frequency within
a frame equal to the fundamental. This means that for the fundamental of the “s” sound
is in the thousands24 and is also a non-integer multiple of the fundamental. Since this is
undesirable, we first filter the data and then plot the McAlay–Quatieri frequency distribu-
tion. Also note that even with smaller sample size, the McAlay–Quatieri method exhibits
reduced standard deviation compared to the phase vocoder, from about 30 to about 20 Hz.
The dashed line shows a Gaussian curve fit to the data even though a Kolmogorov–Smirnov
normality test indicates significant departure from Gaussianity (D=0.055; p ≤ 0.01).

The realistic nature of McAlay–Quatieri method is preferable when looking for spec-
tral patterns in the signal, but the idealistic nature of the phase vocoder is robust to hard–

24The peak picking method of McAlay & Quatieri could be thus improved, in my humble opinion, with
an additional iterative step that first detected the overall f0 and then filtered out any components that are
clearly outliers via a 3σ method, some kind of confidence interval, or by a distributional tail.
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(a) “n” Sound.
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(b) “s” Sound.

Figure 2.5 – Visual Comparison of Phase Vocoder “n” and “s” Spectra.

to–handle parts of spectrum like consonants. Figure (2.5) shows a snapshot of how the
consonants “n” and “s” are handled by the phase vocoder. Where the McAlay–Quatieri
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method would have no components for “s” and only a couple for “n,” the phase vocoder
seems to be handling both of these consonants well despite their different spectral behavior.
The f0 for both can easily be detected in these examples, even though we see that for “s”
the fundamental is quite irregular. As a visual comparison for how phase vocoder resolves
vowels please refer to Figure (2.6).
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Figure 2.6 – Spectrum of the vowel “o” from the syllable “pros.” Notice the semi–periodic
vibration of f0.

In these zoomed–in spectrograms (or sonograms rather) we can clearly see the effect
of the convolution which made each partial bandlimited by half a bin around the analysis
frequency. For example, since our fa = 445 Hz the 3rd harmonic, or second partial, f2 =
1, 335 Hz has no content outside the f2± 222.5 Hz interval, i.e., outside [1112.5, 1557.5] Hz.
Again, this is another layer of “idealism” on top of the concept of preserving only clear–cut
integer multiples of the fundamental: the partials don’t overlap at all. The effect of this
truncation seems to have no effect in the resynthesized version of the signal (at least to the
best of my ability to see differences in the spectra of the original vs the synthesized signal
or or by listening to the two). Computationally, however, it is an advantage when we need
to deal with messy and noisy signals.

Figure (2.7) shows a three–dimensional representation of the amplitude–harmonic–
time where we can see that most of the energy of this signal is in the first eight harmonics.
Subsequent pictures break down each harmonic amplitude across time.

Note how the first harmonic carries most of the vowel energy with big dips where the
consonants occur and how the ninth harmonic in the 2 kHz range carries most of the energy
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Figure 2.7 – Amplitude (vs Harmonic Number) vs Time. (a) Amplitude vs Harmonic
Number vs Time; (b)–(j) Amplitude vs Time for the first nine harmonics of the snippet
“me nos pros.”

of the final “s” sound. As a matter of fact, a close examination of Figure (2.3b) will reveal
that the ninth line is the first partial of the final “s” (tracking it almost all the way through
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the end of time) and it also touches a little on the “s” sound of the syllable “pros.” That’s
why the amplitudes in Figure (2.7j) are very large for the final “s” and reasonably large for
the middle “s” sound. Higher partials have their amplitudes larger during these two instances
of the fricative. Another example is the sound “o” in both consecutive syllables “nos pros”
in the second harmonic shown in Figure (2.7b) where only the “o” regions carrying energy
and with the rest of the consonants and the vowel “e” repressed25.

These and other interesting observations can be made by inspecting the amplitude
of the harmonics over time. But now we move to another interesting concept, the Spectral
Centroid.

2.6 Spectral Centroid

The root–mean–square amplitude (RMS) of a signal

Arms(t) =

√√√√ K∑
k=1

A2
k(t), (2.41)

is a well–known measure if its internal energy variability. Suppose now that each harmonic is
weighted by a coefficient that is time–varying and normalized by the sum or total amplitude
at every given point in time. Such a weight could be

αk(t) =
Ak(t)∑K
k=1 Ak(t)

, (2.42)

which is basically a ratio of the harmonic to the total amplitude of the signal over time. If
we weigh each harmonic by this value

BR(t) =
K∑
k=1

αk(t)k, (2.43)

=

∑K
k=1 kAk(t)∑K
k=1Ak(t)

(2.44)

we have built a metric known as the spectral centroid, a measure traditionally associated with
perceptual brightness (McAdams et al., (1999) [42]). Many instruments exhibit discernible

25Keeping in mind that the f1 formant of vowel “o” is in the 400–600 Hz region, a case for Nafpliotis’
singer’s formant could easily be made, but this is a topic large enough for a paper on its own. Actually,
another interesting phenomenon is how Nafpliotis projects his voice and how his formants have been sculpted
from singing for 60 years in an architecturally peculiar acoustic environment. Just like an opera singer
distributes the vowel frequencies in such a way to prevail over orchestral instruments, I suspect that a
chanter needs to distribute his spectral power such that cancellations work out to deliver the vowels clearly
and over greater distances. This is one example of why instantaneous frequencies are not a reliable measure of
the overall tone and also why the tone length cannot be very short. This intentional formant–tone frequency
adjustment makes the signal almost approach non–stationarity over longer time intervals, in the sense that
statistics are intentionally altered slightly over time.
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brightness differences across times, even though similar research on singing voice is less
understood.

Instrumental brightness could be used as a benchmark to gauge Nafpliotis’ brightness.
Table 2.3 below tabulates some indicative instrumental centroid values. We see, for example,
that Nafpliotis is not perceived as bright as a clarinet, but is brighter than a violin.

Table 2.3 – Normalized spectral centroids of some instrument sounds for comparison with
Nafpliotis’ voice.

Sound Source Average Centroid Maximum Centroid Value

Clarinet 6.4 11.1
Flute 3.4 11.2
Harp 1.6 15.2
Harpsichord 7.9 31.0
Nafpliotis 5.5 10.6
Saxophone (Alto) 4.1 9.8
Violin 4.6 7.5

If we plot the normalized centroid vs time [Figure (2.8a)] we observe that the “s”
sound is clearly brighter than the rest of the signal where sounds like “n” and “r” are the
least bright. Low–pass filtering the signal to keep only the first, say, six (6) harmonics,
compromises the brightness of the “s” sound [Figure (2.8b)].
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Figure 2.8 – Spectral Centroid vs Time. (a) All forty-nine harmonics used in calculation.
(b) Only the first six harmonics used in calculation.

Note how the sound “o” of the last syllable “pros,” which occupies the last half of the
duration (last two out of four time beats) is brighter for the first beat than the second. This
is exactly what a seasoned chanted would anticipate to see. There are two reasons for this:
(1) The first of the last two beats is pronounced more emphatically than the second due to
rhythm and (2) the way the lips close in preparation for pronouncing the fricative “s” change
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the quality of the second part of “o” making it more like an “ah” sound. Previously, we
alluded to the clarity of this signal (CDs compared to older renditions on vinyl records) and
how its spectral richness provide for a variety of spectral observations that are associated
with sound perception. This is a good example of that.

2.7 Normalized Centroid vs RMS Amplitude

The root–mean–square amplitude (RMS) of Equation (2.41), with its time compo-
nent, can be plotted against the brightness of the sound “s”. The spectral centroid dis-
tribution over the RMS in Figure (2.9a) reveals a high brightness at low amplitude at the
beginning of time, which then atones and slowly raises again towards the end of time, an
indication that harmonics pick up more power as time progresses. This can be seen in Figure
(2.9b).
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Figure 2.9 – Brightness of fricative “s”. (a) Normalized Centroid vs RMS Amplitude.
(b) Amplitude vs Harmonic Number vs Time. Note how low-harmonic amplitudes grows
in energy as time progresses.

While the spectral centroid is perceptually associated with brightness, the timbre of
the sounds seems to be associated with another metric, spectral irregularity.

2.8 Spectral Irregularity and Inharmonic Partials

There is no direct evidence to tie spectral irregularity to a sound’s timbre empirically,
even though Horner et al. (2004) [30] found that if the average random spectral error was
kept to 24%, listeners could distinguish a sound that has been spectrally altered to increase
irregularity 78%–90% accurately. McAdams et al. (1999) [42] used spectrally smoothed data
(basically, low–pass filtering the spectrum) and had subjects listened to the smoothed and
original versions. The timbre in the smoothed version was altered enough so that only 4% of
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the sounds were judged as identical. Even though there is a connection between perceptual
timbre and spectral irregularity, the latter is often called a measure of “jaggedness” (e.g.,
Beauchamp (2007) [2]).

Let us define the spectrally smoothed harmonic amplitude as

Āk(i) = [Ak−1(i) + Ak(i) + Ak+1(i)]/3

which is nothing more than the average of three consecutive amplitudes in a given ith analysis
frame. To obtain an equation for spectral irregularity (SIR), let us further weigh the modulus
of the original and smoothed differential with the amplitude sum over all harmonics but the
fundamental and also normalize this metric by Arms(i) so that its value lies within the [0, 1]
interval (i.e., independent amplitude scaling), that is to say,

SIR(i) =

∑K−1
k=2 Āk(i) ‖ Ak − Āk(i) ‖
Arms(i)

∑K−1
k=2 Āk(i)

(2.45)

Since spectral irregularity is the average absolute difference between the average of
a harmonic amplitude and its two nearest neighbors and the harmonic amplitude itself,
it is in essence a comparison of a spectrum to its smoothed version. We can artificially
make SIR(i) approach zero by averaging adjacent harmonics. Figure (2.10a) shows the
spectral irregularity content over the entire time of our trisyllabic sound snippet and Figure
(2.10b) shows an irregularity–reduced version. The author of this dissertation could clearly
distinguish between the two versions when listened to.
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Figure 2.10 – Spectral Irregularity vs Time. (a) Spectral Irregularity vs Time. (b) Re-
duced Spectral Irregularity vs Time by averaging three adjacent harmonic amplitudes.

The idea of the phase vocoder is tightly tied with signal with harmonic partials.
In practice, however, not all sounds (even musical ones) posses this property. Chimes,
marimbas, xylophones, vibraphones, and cymbals are but a few indicative examples of partial
inharmonicity. This dissertation will not discuss how models are generalized to include
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situations like these. But even with harmonic musical signals, like piano, for instance, there
exist some reasonable deviation or variance from the ideal partial. There is not much research
on this specific topic for the singing voice, let alone Byzantine chant. In the case of piano,
however, Lattard (1993) [35] and Fletcher (1964) [25] give modal frequency equations of a
struck string (a plucked one would behave the same in this case) as

fk = kf0

√
1 +Bkk2 ≈ kf1[1 + (Bk/2)(k2 − 1)] (2.46)

where f1 and f0 are the fundamental and string frequency, respectively, and Bk is the so–
called constant of inharmonicity. Let us define this deviation as usual by ∆fk = fk − kf1

and solve for the constant to obtain

Bk =
2∆fk

(k2 − 1)kf1

, k > 1. (2.47)

As a loose benchmark, let us use Bk ranges for piano signals, which fall between 0.0001 and
0.001 if the fundamental is below 1 kHz and between 0.001 and 0.01 if the fundamental is
above 1kHz. For our signal, B3 = 0.0015917 and B5 and B6 have slightly lesser values 26.
Considering that the human voice is not by no means as controlled 27 as a plucked string,
these values reveal greater insight on Nafpliotis’ level of vocal singing mastery.

2.9 Steady Harmonics vs Vibrato sounds—The Singing Voice

Instruments like the piano are not able of producing vibrato sounds, but the singing
voice and some other instruments like the violin are. Excessive vibrato “masks” the average
frequency value of partials over time and makes the task of frequency trackers more laborious.
The two frequency estimators we have considered so far, namely the phase vocoder and the
McAulay–Quatieri methods, have been presented as “idealistic” and “realistic,” respectively.
The realistic one accounts for so much detail that sometimes tracking under certain conditions
(consonant sounds, for example) is more challenging. However, due to its ability to threshold
out spectral peaks below a given amplitude level (Figure (2.2) item 2), and thus in essence
de–noising the signal, is attractive when accounting for frequency and amplitude rapidly
changing signals. Figure (2.11) below shows the amplitude for the first four harmonics for
both methods over time. Figure (2.12) shows their normalized frequency deviation over time.

First notice that due to applying an amplitude threshold below which spectral peaks
are ignored for the McAulay-Quatieri method, amplitudes are nullified at places [Figure
(2.11)]. This compromise comes with a desirable return, however, i.e., frequency becomes
much more legible and stable for the same method [Figure (2.12)] 28. Also notice the stability
of the normalized deviations among the various harmonic numbers in Figure (2.12)—they

26These values are not producible by SNDAN. Raw data were exported and analyzed in other software.
27The choice of the word “controlled” was intentional. There are factors other than the vocal folds at

work affecting the final frequencies of a singer’s envelope, and these alterations might be very intentional.
In a sense, human voice frequencies have more “degrees of freedom” than mechanically induced frequencies.

28There is another reason for this fortunate result: the McAulay–Quatieri method uses a wider spectral
window by definition.
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Figure 2.11 – Harmonic Amplitude vs Time of vowel “oh.” (a), (c), (e), (g)—Phase
vocoder method; (b), (d), (f), (h)—McAulay–Quatieri method.
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Figure 2.12 – Harmonic Frequency Deviation (∆f/f) vs Time of vowel “oh.” (a), (c),
(e), (g)—Phase vocoder method; (b), (d), (f), (h)—McAulay–Quatieri method.
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(a) (b)

Figure 2.13 – Generalized Linear Model. Regression line (solid) and 95% confidence
intervals (dashed) for frequencies (left vertical axis) and frequency residuals (right vertical
axis). (a) Line of best fit for the McAulay-Quatieri method; (b) Line of best fit for the
phase vocoder method.

are almost identical. Just by looking at these two graphs we should be convinced that the
McAulay–Quatieri method is superior to the phase vocoder for singing voice applications
such as this. As a matter of fact, the same is concluded by Beauchamp (2007) [2] where
the data analyzed were a tenor’s voice singing the vowel “ah” in G3 (192 Hz) for about 3
seconds.

The fact that the McAulay–Quatieri method outperforms the phase vocoder for vowel
snippets was hinted—even though not spelled out—back in Figure (2.4) and the discussion
that went with it. It was seen there that the variance of this method is reduced by about a
third with respect to that of the phase vocoder. We could take this idea and turn it around on
itself to help us answer the interesting question “which analysis frequency fa minimizes the
frequency variance?” One could plot the residuals over a generic time index (generic because
the peaks in Figure (2.12) have been filtered out), fit a least squares line to it which in turn
would be used to “suggest” what value of fa minimizes the least squares. This regression
is shown on Figure (2.13) and it is also encouraged by SNDAN’s online documentation. In
fitting the line of best fit and averaging over the entire time the suggested values for fa for the
McAulay–Quatieri and the phase vocoder methods are 445.1795 and 460.9782, respectively
29. This parameter is another metric that points to the superiority of the McAulay–Quatieri
method, but is not bias-reducing strictly speaking, even if it may be tempting for some to call
it that. I would disagree with the suggestion to re–do analysis using this new, “suggested” fa.
These two numbers help enhance our understanding by very little compared to the standard
deviations we calculated earlier; both metrics are indicative of variability alone. Here it may
be a good time to refer back to our discussion on precision and accuracy (see section (2.3.3).
Strictly speaking, minimizing the residuals to fit another fa that would lead to less variance

29 f̂mq = 438.8781 + 0.028889 · (time index) and f̂pv = 446.9851 + 0.002647 · (time index)
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is certainly technically feasible (we just did, actually). However, this is similar to using a
“self–predicting variable” to forecast future values. The variance explained by it is internal
and inherent to the model to begin with, it does not add any new information nor it picks
up any left–off variance in the system to account for. The information we should be looking
for at this point should be bias–reducing, not merely variance–reducing. To reduce the bias
(which is tantamount to increasing accuracy) one could look into external analysis (outside
the model one has built), like for example, other spectral methods that would give us a
better idea of where in the distribution fa should fall.

Singing voice is capable of inducing vibrato effects, even though traditional Byzantine
chant makes use of it much differently. Western music uses vibrato more frequently, more
methodically (part of curriculum), and more prominently (larger frequency modulation)
than Byzantine chant. In the context of singing voice, Byzantine chant is more steady
than classical Western singing 30. SNDAN offers the vibrato reducing package fv, which in
effect replaces harmonic frequency deviations with kfa, and a spectral irregularity reducing
package ri, which applies smoothing filtering in a frame–by–frame fashion that could result
in artificial vibrato reduction also. These packages will not be presented in this dissertation.

This concludes the presentation of mathematical theory of algorithms and methods
that are related to SNDAN. The rest of this chapters presents algorithms that are more
statistical in nature rather than time–varying.

2.10 Autoregression Models

Following the discussion of Stoica & Moses (2005) [80], an autoregressive moving
average signal, abbreviated as ARMA(n,m), can be modeled as

y(t) =
B(z)

A(z)
e(t), (2.48)

where e(t) is normally distributed noise with zero mean and some variance σ2 and B(z) and
A(z) are polynomials in the unit delay operator z−k operating on the signal y(t) by means
of lagging it by some constant k as in z−ky(t) ≡ y(t− k) expressible as

A(z) = 1 + a1z
−1 + a2z

−2 + · · ·+ anz
−n

B(z) = 1 + b1z
−1 + b2z

−2 + · · ·+ bnz
−m,

where n and m give the order of the polynomial. Letting any one of the two polynomials
be unity, by nullifying there order, results in either an autoregressive signal or a moving
average signal, traditionally abbreviated as AR(n) and MA(m), respectively. If, therefore,
B(z) ≡ 1, then the system is modeling an AR(n) signal, which is the topic of this section.
The autoregressive model can be viewed as an all–pole infinite impulse response filter with

30Traditional chant is also more economical on amplitude variations as well. Some amplitude modula-
tion exist naturally (due to lyric emphatics mostly), but dynamics usually ranging in Western music from
pianissimo to fortissimo are not part of Byzantine music theory.
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white noise as its input. Writing it in terms of a straight forward sum on the time–series
signal we obtain

y(t) =
m∑
i=0

ai y(t− i) + εt. (2.49)

Isolating the f0 of a tone that is quasiperiodic and well–behaved in general, is often
equivalent to resolving its spectral peak which, luckily, happens to be narrow–band—the
peak one is trying to model is a narrow spike. This is why AR(n) models are useful in
practice, because B(z) ≡ 1 is already restricted and zeroes of A(z) are placed inside the
unit circle 31. To estimate the AR(n) coefficients, it is more convenient to introduce the
autocovariance sequence of y(t) as r(k) = E{y(t) ·y∗(t−k)} and write a covariance structure
equation for ARMA(n,m) as

r(k) +
n∑
i=1

air(k − i) = 0, ∀ k > 0. (2.50)

The next two subsections provide an AR(n) model parameter estimation method and
an algorithm for its recursive solution.

2.10.1 Yule–Walker Equations

Short proofs that the Yule–Walker or normal equations is a solution to the AR(n)
model can be readily found in Stoica & Moses (2005) [80], Kay (1993) [32], and Shumway &
Stoffer (2006) [74], to mention a few, and therefore it will not be shown here. These are


r(0) r(−1) . . . r(−n)

r(1) r(0)
...

...
. . . r(−1)

r(n) . . . r(0)




1
a1
...
an

 =


σ2

0
...
0

 . (2.51)

We can re–write Equation (2.51) as

Rn+1

[
1
an

]
=

[
σ2

0

]
(2.52)

to show explicitly that we are solving for the parameters an and σ2.

2.10.1.1 Levinson–Durbin Algorithm

Since the order n of the model is not a known fact, but rather a trial–and-error process,
one needs to test and assess model performance in a way that is both computationally efficient

31Given the impulse response function H(z) = 1/A(z), any value of z that makes H(z)→∞ is a pole of
H(z) at that locus. Hence the name all–pole filter, since there is not way to obtain zeroes for H(z).
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Levinson–Durbin Algorithm

Initialize
a1 = −ρ1

ρ0
= k1

σ2 = ρ0 − |ρ1|2/ρ0

For n = 1, . . . , nmax, do:
kn+1 = −{ρn+1 + r̃∗nan}/σ2

n

σ2
n+1 = σ2

n(1− |kk+1|2)

an+1 =

[
an
0

]
+ kn+1

[
ãn
1

]
Notational conventions:

ρk means either r(k), the unbiased autocovariance sequence, or
r̂(k), the biased autocovariance sequence.

x̃ = [x∗n, . . . , x
∗
1]T

(·)∗ means the complex conjugate of a scalar, or the conjugate
transpose of a vector.

ki are the reflection coefficients, and
−ki are the partial correlation coefficients.

Figure 2.14 – Levinson–Durbin Algorithm.

and optimized to find the best model order. If one starts solving the Yule–Walker methods
starting from an order of one and keep doing that iteratively up to a predefined maximum
order, the computation will be cumbersome, in the order of n4

max flops 32. The Levinson–
Durbin algorithm is to the Yule–Walker Equations as the Fast Fourier Transform Algorithm
is to the Fourier Transform: It reduces the machine calculation of {an, σ2}n=nmax

n=1 from about
n4
max to n2

max flops, i.e., by two orders of magnitude. The algorithm is presented in Figure
(2.14).

2.11 YIN

de Cheveigné & Kawahara (2002) [21] introduced the YIN algorithm based on the
interplay of autocorrelation and cancellation and named after the oriental “yin and yang”
philosophy of natural balance. The term “cancellation” refers to de Cheveigné’s earlier au-
ditory neural modeling work (de Cheveigné (1998) [20]) which presented a case of excitatory–
inhibitory concurrence of signals (artificially replacing “coincidence” with “anti–coincidence”)
that when lagged successfully result in a “cancellation model of pitch perception” which

32Here nmax is some predefined value for the model order and by flops we mean number of complex
multiplications and complex additions computed by the machine.
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The YIN Algorithm

1. Take autocorrelation of signal xt

rt(τ) =

t+W∑
j=t+1

xjxj+τ

where τ is the lag, W is the window size, and t is the time index.

2. Minimize the difference function

dt(τ) =

W∑
j=1

(xj − xj+τ )2

with respect to the lag τ by taking first derivative and setting to zero.

3. Calculate the cumulative mean normalized difference function

d′t(τ) =

{
1 if τ = 0,

dt(τ)/[τ−1
∑τ

j=1 dt(j)] otherwise

4. Impose an absolute threshold to avoid “octave errors.” Find the small-
est lag τ that also minimizes d′t and also require that the partial is
deeper than the given threshold. If this does not exist over a range,
replace this local with the global minimum of the function.

5. Parabolic interpolation of each local minimum of d′t and its immediate
neighbors is fit by a parabola to optimize selection of dips.

6. Best local estimate replaces unstable d′t values due to non–stationarity
of data. This search for better f0 estimates within short time intervals
screens the spectrum for statistically unstable estimates and replaces
them with an optimum one (not an average).

Figure 2.15 – The YIN Algorithm.

makes direct analogies to neural networking and autocorrelation algorithms. The algorithm
gained well–deserved (in my humble opinion) popularity due to its flexibility of acoustic
signals that can analyze (speech, music, underwater, etc.) and also due to the author’s deep
and remarkably unique inside into human perception and psychophysics. The YIN algorithm
is presented in Figure (2.15).

Whereas the autocorrelation function maximizes the product of the signal with a
delayed version of itself, the difference function minimizes the squared differences of the
original and lagged signal. This reduced the error rates from about 10% to about 2% in the
empirical demonstration of the paper using speech signals. Step 3 attempts to de–emphasize
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erroneous higher harmonic picking instead of the fundamental (“octave errors,” which the
author rightfully deems as an unfortunate popular term, because, even though we are hopeful
the partial above the fundamental is an integer multiple of it, in practice we often see it is not)
and step 4 attempts to reduce the error of picking up subharmonics by means of a threshold
which echoes the one used in the McAuley-Quatieri method (see Figure (2.2) Item 2).

2.12 Quinn & Fernandes Estimator

Before this ARMA–based frequency detection algorithm is presented, some funda-
mental definitions may prove useful; most of them come directly from Kay (1993) [32].

The expected value (mean) of an unbiased estimator θ̂ is the “true” θ for all possible
values of θ, i.e.,

E(θ̂) = θ ∀ θ. (2.53)

An estimator θ̂ is consistent if the asymptotic probability that it is biased is zero,
i.e., asymptotically unbiased. In other words, in the limit as the sample size increases, a
consistent estimator is unbiased, in the sense that θ̂ approaches the “truth” (θ), loosely
symbolically shown as θ̂ → θ. More precisely,

lim
N→∞

Pr{|θ̂ − θ| > ε} = 0 ∀ ε > 0, (2.54)

which says that as sample size N grows without bound, the probability that the difference
between the estimate and the “truth” (biasedness) is more than a positive number, is iden-
tically null; there is no chance that truth and estimation will not be exactly aligned as we
consider more and more samples.

An efficient estimator meets the following two criteria asymptotically, i.e., as N →∞:

E{θ̂} → θ (2.55)

var{θ̂} → CRLB, (2.56)

that is to say, the estimator is asymptotically unbiased (consistent) and approaches the
Cramér–Rao Lower Bound (CRLB). An efficient unbiased estimator achieves the CRLB,
i.e., it is a Minimum Variance Unbiased (MVU) estimator. In practice, the CRLB may not
always be achievable, but if the MVU estimator exists, it is usually preferred, no matter if
it is efficient or not. As a matter of fact, efficiency is measured by how close θ̂ comes to the
CRLB. But to quantify efficiency further, we need to define the bound.

The Cramér–Rao Lower Bound is a theoretically derived variance for an unbiased
estimator, below which empirically is impossible to go. It is the lowest possible variance
the unbiased estimator can ever achieve. This mathematical device is useful in a number
of practical ways: in the best case scenario we experimentally derive the variance of an
estimator and it happens to be the same as the theoretical (CRLB) for all the values of the
measurable parameter; then we know we found the minimum variance unbiased estimator.
In the worst case scenario we compute the variance of the unbiased estimator from the data
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and we find that it is really far away from the theoretical minimum (CRLB); in that case we
know that this unbiased estimator is far from efficient, and the CRLB gives us a benchmark
of how low it needs to go to start approaching reasonable efficiency (reasonableness here
dictated by the application at hand). It can be defined as follows: The variance of any
unbiased estimator θ̂ cannot be less than a lower bound I(θ)−1, i.e.,

var{θ̂} ≥ 1

I(θ)
(2.57)

and I(θ) is the Fisher information, that is to say, knowledge extracted from the data about
the estimated parameter. It is the negative of the expected value of the second derivative of
the log–likelihood function with respect to the unknown parameter, i.e.,

I(θ) = −E
[
∂2ln p(x; θ)

∂θ2

]
, (2.58)

where p(x; θ) is the likelihood function, i.e., a probability density function that is comprised
of a fixed data sample vector x and the parameter θ is unknown. The only condition that
must be satisfied for the CRLB to be derivable (if it exists) is that this probability density
function p(x; θ) is regular, i.e., the first derivative with respect to the unknown parameter
of its logarithm exists and that its expectation value is zero over the whole range of the
parameter.

Back to defining efficiency more succinctly, within the framework of the CRLB, effi-
ciency is the ratio of the inverse of the Fisher information criterion and the variance of the
estimator, or

efficiency(θ̂) =
I(θ)−1

var(θ̂)
(2.59)

and it obviously cannot be more than unity.

Off–the–shelf frequency estimation techniques based on ARMA models are more often
than not asymptotically biased, i.e., inconsistent (for a proof see Quinn and Hannan (2002)
[61]). In cases were the model is tweaked to be consistent, it is not likely at all it will be
efficient. This is because the maximum likelihood estimators for frequency in general yield
variances that are in general lower compared to ARMA–based frequency estimators by two
orders of magnitude. Quinn and Fernandes (1991) [62] attempted to remedy some of the
inconsistency and inefficiency drawbacks by starting out with an ARMA(2,2) model and
trying to equate the two coefficients by iteratively making them closer and closer to each
other.

The original model could be written as

y(t)− βy(t− 1) + y(t− 2) = x(t)− αx(t− 1) + x(t− 2) (2.60)

and we are trying to make α → β or, if possible, equate them. Assuming that α is fixed
and β is unknown, we estimate it by means of a Gaussian maximum likelihood function by
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The Quinn & Fernandes Algorithm

1. Initialize α1 = 2cosλ̂1, with λ̂1 being initial estimate of true λ0.

2. Calculate ξ(t) = y(t) +αjξ(t− 1)− ξ(t− 2), for j ≥ 1, t = 0, . . . , T − 1
where initial ξ(t) = 0 for t < 0.

3. Calculate βj = αj + hT (α), where

hT (α) = 2

∑T−1
t=0 y(t)ξ(t− 1)∑T−1
t=0 ξ2(t− 1)

4. If |βj − αj | < ε, where ε is sufficiently small, then λ̂ = cos−1(βj/2).
Otherwise, let βj = αj+1 and return to Step (2).

Figure 2.16 – The Quinn & Fernandes Algorithm.

minimizing
T−1∑
t=0

x2
α,β =

T−1∑
t=0

[ξ(t)− βξ(t− 1) + ξ(t− 2)]2 (2.61)

with respect to β where we assumed that x(t) is independent and identically distributed.
Upon minimizing this quadratic in β (which may or may not minimize depending on the
nature of the data), we set α = α + hT (α) and the step is repeated until α and β are
“sufficiently close.” To put this into physical context, we use a trick that ties ARMA models
and periodic signals. The ARMA(2,2) model

y(t)− 2cosλ y(t− 1) + y(t− 2) = x(t)− 2cosλ x(t− 1) + x(t− 2)

can filter out selected frequencies from a sinusoid

y(t) = Acos(λt+ φ) + x(t) (2.62)

and a representation of that would be the poles and zeroes placed on a complex plane unit
circle diagram. In a sense, the autoregressive part acts like an infinite impulse response filter,
and the moving average part like a finite impulse response filter; zeroes and poles are placed
over the frequencies one wishes to filter out. If a time–series sequence y(t) can be described
by the sinusoid above, it also satisfies the ARMA model above. Then we can estimate λ in
α = α + hT (α) using α = 2cosλ 33. Figure (2.16) summarizes the algorithm.

33Doubling the amplitude of this sinusoid (and of Step (2) in the algorithm) was an experimental, not
theoretical, suggestion.
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Pisarenko’s Algorithm

1. Calculate the eigenvector x of the matrix C corresponding to its small-
est eigenvalue.

2. Find the zeros of x1 + x2z + x3z
2.

3. Assuming that these form a complex pair, estimate the fundamental
frequency λ by the argument which is positive.

Figure 2.17 – Pisarenko’s Algorithm.

2.13 Pisarenko Frequency Estimation

Pisarenko (1973) [55] is interesting in itself, as an idea, because it utilizes the au-
tocovariance matrix of an autoregression of order two model [AR(2)] directly to derive the
fundamental frequency. Consider the AR(2) model

y(t) + β1y(t− 1) + β2y(t− 2) = x(t)

with Yule-Walker estimates for β = [β1 β2]T being

β̂ = −
[
C0 C1

C1 C0

]−1 [
C1

C2

]
.

If our sequence is of the form of Equation (2.62), then it can be shown (Quinn & Hannan
(2003) [61]) that

Cj →
A2

2
cos(jλ) + γj (2.63)

where γj is the autocovariance sequence. In vector terms, if Cj is a matrix of the form

C =

C0 C1 C2

C1 C0 C1

C2 C1 C0


then it almost surely converges to

A2

2

 1 cosλ cos(2λ)
cosλ 1 cosλ
cos(2λ) cosλ 1

+

γ0 γ1 γ2

γ1 γ0 γ1

γ2 γ1 γ0

 .
Pisarenko’s method is based on observations on the eigenvalues and eigenvectors of
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the first matrix above, which happens to be non–negative definite 34. Its eigenvalues are
0, 2sin2λ, and 1 + 2cos2λ. The first eigenvalue of 0 has a corresponding eigenvector of
ψ = [1 − 2cosλ 1]T which can be written as a polynomial in z like 1 − 2z cosλ + z2.
The zeros of this polynomial are e±iλ. The algorithm, which suggests itself from these
observations, is summarized in Figure (2.17).

Pisarenko’s algorithm detects frequencies from multiple sinusoids and the dimension
n of the autocovariance matrix is one more than twice the number of sinusoids to be detected
present in the signal. So, for the example above, 2 sinusoids will be picked up. Additionally,
if the eigenvector ψ above is also an eigenvector of the autocovariance matrix, Pisarenko’s
method yields consistent estimators for frequencies. For this to be the case, the sequence
x(t), usually considered—but need not be—the noise e(t), is a stationary white Gaussian
independent and identically distributed process with zero mean and σ2 variance. That the
consistency can be guaranteed in the limit is a particularly fortunate result with important
practical implications (for details see Quinn & Hannan (2003) [61]). Even though the sample
y(t) is always zero–corrected (mean subtracted from it) before the sample autocovariance
sequence is calculated, in this method it has no asymptotic effect. The estimator was origi-
nally developed to detect direction of arrival of a signal (bearing) in echolocation simulations
where multiple collinear receptors collect time–series data.

2.14 MUltiple SIgnal Characterization (MUSIC)

Schmidt (1981) [68], and Schmidt (1986) [69] improved on Pisarenko’s method, again
leveraging the eigenvector structure of the sample autocovariance matrix. If Pisarenko’s
method used an autocovariance matrix of order nPIS ≥ 2α + 1, where α is the number of
sinusoids present in the signal to be detected, MUSIC uses nMUSIC ≥ 2α. In other words,
MUSIC is a more general method where nPIS = nMUSIC + 1.

In a logic similar to the one in section (2.13), let

e(λ) = [ 1 eiλ . . . ei(nMUSIC)λ ]

= [ 1 eiλ . . . ei(K−1)λ ]

and let P̂k be the normalized eigenvector of the autocovariance matrix Γ(K−1). Then the
local minimizers of

K∑
k=2r+1

|e∗(λ) P̂k|2 (2.64)

are the MUSIC frequency estimators. The reciprocal of Equation (2.64) is the celebrated
MUSIC spectrum, with peaks denoting estimated frequencies. Figure (2.18) shows the MU-
SIC spectrum of our sample snippet data set used throughout this chapter.

Note that the heights of the peaks do not possess any physical meaning, since Equation
(2.64) is rid of all amplitude information.

34Same as positive semidefinite, i.e., any matrix A which satisfies α∗Aα ≥ 0, where (·)∗ denotes the
conjugate transpose for complex or just the transpose for real matrices. If ≥ is replaced with >, A is positive
definite, in that is definitely positive, no chance of being non–negative, which includes zero.
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Figure 2.18 – Music Spectrum of the trisyllable “me–nos–pros” data sample used through-
out this chapter for illustration.

2.15 Periodogram

In classic spectral estimation theory (see, for example, Stoica & Moses (2005) [80]),
the periodogram, so named for its ability to uncover “hidden periodicities,” (a term coined
by Schuster A. (1898) [71]) is often derived directly from the fundamental definition of
nonparametric power spectral density functions. For a derivation, discussion on its (high)
variance, and possible modifications of it the reader is referred to Stoica and Moses, 2005 [80].

Another interesting approach on deriving the periodogram within the framework of
the general linear model (that is more familiar to the statistician as opposed to the usual
method that should resonate more with the engineer) is given in Quinn & Hannan (2003) [61].
It is common ground that all statistical models that observe linearity and additivity fall
within this framework of the general linear model (see, for example, Tabachnick & Fidell
(2007) [84] Chapter 17). This approach will be briefly outlined here primarily because it
ties the periodogram with a host of other statistical methods used within and outside the
natural sciences.

Consider a model that uses sinusoids as additive independent variables to predict the
single dependent variable y(t), with some white Gaussian noise added to it:

y(t) = µ+ α cos(ωt) + β sin(ωt) + ε(t),

54



where µ is the overall grand mean of the series 35 , ω = 2πf is the angular frequency, and
ε(t) is noise. When ω is fixed (and for our purposes it is relatively unvarying) this is simply a
univariate (in the sense of one criterion) linear regression model with sinusoidal co–variates
36.

Since this is a linear model, estimators can be given using the usual least squares
method. It isµ̂α̂
β̂

 =

 N
∑N−1

t=0 cos(ωt)
∑N−1

t=0 sin(ωt)∑N−1
t=0 cos(ωt)

∑N−1
t=0 cos2(ωt)

∑N−1
t=0 sin(ωt)cos(ωt)∑N−1

t=0 sin(ωt)
∑N−1

t=0 sin(ωt)cos(ωt)
∑N−1

t=0 sin2(ωt)

 ∑N−1
t=0 y(t)∑N−1

t=0 y(t)cos(ωt)∑N−1
t=0 y(t)sin(ωt)


or more succinctly  µ̂

α̂

β̂

 = D−1(ω) E(ω).

The sum of squares of the residuals is then given by

SS(ω) =
N−1∑
t=0

y2(t)− ET (ω) D−1(ω) E(ω)

and upon maximizing this quantity with respect to the frequency ω and simplifying using

N−1∑
t=0

= eiωt =

{
eiωN−1
eiω−1

if eiω 6= 1,

N if eiω = 1

the regression sum of squares becomes

p̂(ω) =
2

N

[
N−1∑
t=0

y(t)cos(ωt)

]2

+

[
N−1∑
t=0

y(t)sin(ωt)

]2

=
2

N

∣∣∣∣∣
N−1∑
t=0

y(t) eiωt

∣∣∣∣∣
2

, (2.65)

35I never explicitly talked about mean–correcting the series before obtaining statistics like the autoco-
variance sequences or fitting models like ARMA(n,m), but this is the term that is subtracted from the data
during the mean–correction stage. This grand mean, or “DC” term, is the one that shows as the annoying
spike at the origin of spectra or makes the models asymptotically unstable. Its removal may have substantial
effects on nonparametric but more often than not on parametric modeling. On non mean–corrected data,
an ARMA model with parameters is equivalent (in the limit) to a mean–corrected ARMA model without
parameters, especially when it comes to model efficiency. This topic is large enough for a dissertation to be
dedicated to it alone and it will not be discussed in this paper.

36Quinn does not discuss the role of multicollinearity (how much more new prediction is added by adding
the predictors in a step–wise, hierarchical fashion) in his book, but in my humble opinion, this is a topic
that deserves some attention. A sine is but a shifted cosine, and there is bound to be significant overlap in
the variance explained by one with respect to the other.
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the well–known periodogram, which is in effect the sample–scaled square modulus of the
discrete Fourier transform (of Equation (2.2)) of the series {y(t) ; t = 0, 1, 2, . . . , N − 1}.

Figure (2.19) shows the periodogram for the trisyllable sound snippet used throughout
this chapter. The frequency axis was scaled to 2000 Hz for better visibility.

2.16 Quinn & Fernandes Filtered Periodogram—κN(λ)

The periodogram in Equation (2.65) is not robust to initial ω0 estimation errors; if the
fundamental frequency is erroneously estimated when p̂(ω) is maximized via a usual method
(line Newton’s), the plot of p̂(ω) over ω would exhibit sidelobes next to the fundamental.

Quinn & Fernandes (1991) [62], whose work was also used in section (2.12), windowed
the periodogram, thus creating a smoother version of it that does not depend on N (or T
in the original notation), has the same asymptotic behavior (central limit theorem) as the
periodogram itself, and is more robust to initial inaccuracies of the fundamental. The result
is better estimation with a smoothed, cleaner plot.

The filtered periodogram can be expressed through convolution with a window µ(ω)

κT (λ) =

∫ π

−π
p̂(ω) µ(λ− ω) dω (2.66)

where

µ(ω) =
∞∑
k=1

cos(kω)

k
= −1

2
log
[
4 sin2

(ω
2

)]
; ω 6= 0. (2.67)

Figure (2.19) shows the κ′T (ω) estimates and the filtered periodogram for the trisyl-
lable sound snippet used throughout this chapter. The frequency axis was scaled to 2000 Hz
for better visibility.

2.17 Quadratic Interpolation and Rife & Vincent Estimator

The Cooley–Tuckey (1965) [19] fast Fourier transform Radix 2 algorithm reduces the
complex multiplications from an order of O(N2) to an order of O(NlogN), but still both
real and imaginary parts are kept in storage. When large amounts of data need to be stored,
analyzed, and reported through displays (sonograms, spectrograms, etc.) or tabulated tables,
it would be efficient to find a way to store half of the complex Fourier coefficients, i.e., their
moduli. Quadratic interpolators try to fit a parabola through the actual empirical curve
using three or more points on the actual curve.

Let the complex coefficients be symbolized by w(ωj) and the modulus of this se-
quence be |w(ωj)|2. Also note that the Fourier coefficients are calculated at discrete Fourier
frequencies {

2π
j

N
; j = 0, 1, 2, . . . , N − 1

}
.
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Figure 2.19 – The signal (Xt), the periodogram (IT (ω)), the κ′T (ω) estimates (a nor-
malized, non–smoothed version of the filtered periodogram estimates), and the filtered
periodogram [κT (ω)] of the trisyllable “me–nos–pros” data sample used throughout this
chapter for illustration.

Let us now pick three of these coefficients, the second one being at the origin of the index j
and fit a quadratic through them, or in symbols(

j,

∣∣∣∣w(2π
m̂N + j

N

)∣∣∣∣2
)

; j = −1, 0, 1 (2.68)

where m̂N is the local 37 maximizer of F
(
2πm

N

)
, where F (·) denotes the Fourier transform

in general. Equation (2.68) is known as a quadratic interpolator, and it can be shown that
its bias is no better than than of the periodogram maximizer itself, in the order of O(N−1);
its consistency is no better than that of the periodogram either.

One method that uses this kind of interpolation is that of Rife and Vincent (1970) [66].
Useful and extensive discussions on the analysis, application, interpretation, and statistical
behavior of this algorithm can be found in Quinn (1997) [60] and Quinn & Hannan (2001) [61].
Consider the usual regression sinusoidal model

Xt = µ+ αcos(ωt+ φ) + εt ; t = 0, 1, 2, . . . , N − 1

37Local for the frame, but since this is a parabola, also global in the general sense.
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Rife & Vincent Algorithm

1. Initialize kN = |Y 2
j |, for 1 ≤ j ≤ [(N − 1)/2].

2. If |YkN+1|2 > |YkN−1|2 then make α̂ = 1 and −1 otherwise.

3. The estimator of ω is ω̂ = 2π(kN + δ̂)/N ,
where

δ̂ =
α̂RN

1 +RN

RN =

∣∣∣∣YkN+α̂

YkN

∣∣∣∣

Figure 2.20 – Rife & Vincent Algorithm.

where the parameter to be estimated is the frequency ω. Define two Fourier transforms, one
for the model criterion and one for the model noise, which is white Gaussian as usual:

Yj =
N−1∑
t=0

Xt e
−i2πjt/N

Uj =
N−1∑
t=0

εt e
−i2πjt/N .

Figure (2.20) uses the two definitions above to summarize the algorithm.

2.18 Conclusions

This Chapter presented a brief anthology of methods and algorithms found in the
classical and more recent literature that either estimate the fundamental frequency or give
useful quantitative insight into an otherwise vastly qualitative subject—sound perception.

Ten fundamental frequency algorithms were presented: (1) Phase vocoder, (2) McAulay–
Quatieri, (3) Levinson–Durbin Algorithm, (4) YIN, (5) Quinn & Fernandes Estimator, (6)
Pisarenko Frequency Estimator, (7) MUltiple SIgnal Characterization (MUSIC), (8) Peri-
odogram, (9) Quinn & Fernandes Filtered Periodogram, and (10) Rife & Vincent Estimator.

Mathematical constructs and non–mathematical concepts that facilitate psychoa-
cousitcal discussion include: (1) Frequency deviation, (2) Inharmonicity, (3) Precision and
Accuracy, (4) Spectral centroid, (5) Normalized centroid versus root mean square amplitude,
(6) Spectral irregularity, (7) inharmonic partials, and (8) Steady harmonics versus vibrato
sounds on the singing voice.
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The next Chapter deals with psychoacoustics, and its data–driven theoretical foun-
dation on the pitch perception of musical tones. This will provide a basis of interpreting the
fundamental frequency estimates tabulated in Chapter 4.
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Chapter 3

Psychoacoustics

3.1 Introduction

This chapter addresses a fundamental question that is at the core of this dissertation:
“For musically trained humans, what is the minimum distinguishable frequency difference.”
The previous chapter provided the theory of how to detect the fundamental frequency (a
physical aspect) of sound. The next chapter will provide the experimental fundamental
frequencies (still, a physical aspect) that were obtained from music chanted by Iakovos
Nafpliotis and compare them to what music theory suggest chanters should be chanting. The
question addressed in this chapter, therefore, links the two in the sense that any differences
between theory and practice below the discernible frequency difference cut–off, have no real
effect because the listener cannot distinguish them anyhow. The same argument goes for the
performer. If the differences between the theory and practice are so minute that a trained
musician cannot differentiate, clearly we cannot expect a performer to chant them. A similar
argument could be made for differences between tone snippets across time as well.

Psychoacoustics, a child of psychophysics, is an interdisciplinary science at the inter-
section of physics and psychology. It is heavily empirical and data–driven, as opposed to
some other branches of psychology that rely more on theory than experimentation. It has
its roots in the early 19th century, save for the ancients, who touched on many of the topics
discussed today, but not from the modern approach that we have become accustomed in this
branch.

Relevant to our discussion on fundamental frequency versus pitch perception, psy-
choacoustics makes a clear distinction between the two: frequency lives in the space of
physics, whereas pitch in the realm of humans’ brains. The two are not the same by any
stretch of the imagination, even though early physicists equated the two and even today
some persist in doing so. Frequency is directly observable, pitch is indirectly measured (even
with physiological experiments directly on the basilar membrane or ear bone conductivity).
The variance of frequency observations is bound to be small (limited only by the instruments
and calculation methods), whereas the variance of pitch is bound to be larger (not only from
several measurements from one subject at one time or across time, but also inter–subject
reliability becomes an issue as with any other perceptual measurement). The issue of low
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data reliability leads to poor generalization of the results, that is to say, when in this dis-
sertation inferences and conjectures are made based on pitch, those are all subject to high
scrutiny and justified suspicion. In other words, even though one is forced to consider human
perception when it comes to a topic such as the one explored in this dissertation, one must be
aware of the plethora of drawbacks and pitfalls the concept of pitch inherently and naturally
carry. With this word of caution in mind, we proceed carefully and based on data (rather
than theory) to the best of the author’s ability. Some basic perception theory, however, is
presented briefly.

3.2 Theories of Pitch

What became collectively known as theories of pitch for some authors (for example,
Rossing et al. (2002) [64], Stevens & Davis (1983) [79]), or theories of hearing for others (for
example, Gulick (1971) [26]), refer to theories on how the ear physiologically resolves sound,
that is to say, when air is excited, how do our brains perceive it as a sound.

It is customary to refer to the ear’s ability to discriminate pitches in terms of the
largest amount a frequency can deviate from itself and still be considered as the same tone.
For example, if we take a tone of frequency fbase and we start frequency–modulating that
tone up or down (call it fmod), at some point a listener will identify fmod as a different tone.
The difference between these two (fmod non–inclusive, of course) is what is known as the just
noticeable difference (jnd) or in older literature as difference limen.

Basic physiology is needed to facilitate further discussion on theories of pitch. A
mechanical sound wave enters the ear canal causing the eardrum to vibrate. The vibrations
on the eardrum are conducted through the middle ear via the ossicles—three tiny bone
structures, the last of which are the stapes. The stapes, in turn, oscillate the oval window
which signify the beginning of the cochlea in the inner ear. The cochlea is filled with fluid,
and the sound mechanical vibrations are now hydraulic mechanical vibrations. The cochlea
has a membrane in it, called the basilar membrane, which takes these hydraulic pressures
and transforms them into electrical pulses, firing with specific neurological patterns in what’s
known as the organ of Corti. The leap from the mechanical to the electrical happens by
means of hair cells (celia) getting bent from the hydraulic pressure on the membrane which
causes them to fire the electrical pulses. These pulses are then migrated into the brain via
the auditory nerve, and electrochemical synapses are involved so that a sound perception is
formed.

There are two classical theories of pitch, one known as the frequency theory and the
other known as the time theory. There are a number of modern theories, as well. The next
two subsections, briefly talk about both and their relevance to this dissertation.

3.2.1 Classical Theories of Pitch

The frequency (or place) theory of pitch has to do with where on the basilar membrane
the excitation occurred (Gulick (1971) [26]). It is said to have originated from Helmholtz’s
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monumental work on cochlear experiments. The basilar membrane is divided into 24 regions,
called critical bands, with each region being about 1.3 mm long and containing about 1300
neurons; each band acts as a unit for collecting sound data. The membrane itself is wider
and loose at one end (close to the oval window) and narrow and stiff towards the other end
(apex). Low frequency tones excite the wide portion of it and high frequency tones excite the
narrow portion of it. The critical bands themselves have different frequency discrimination
limits as well. The bands close to the wide, loose part have wider limits, thus making pitch
discrimination of low–frequency tones less accurate than bands that pick up higher pitch
tones at the other end of the membrane which happen to have smaller frequency deviation
limits around the band’s center frequency point. In other words, jnd is a function of at least
one physical factor dictated by physiology, the frequency of the tone1. This theory views the
ear as a spectrum analyzer.

The time (or periodicity) theory of pitch wants a time–series analysis applied to the
firing pattern of the electrophysiological impulses in the organ of Corti (Gulick (1971) [26]).
Shouten was not convinced that the frequency theory explains well–known phenomena like
the case of the missing fundamental 2, the ear’s ability to resolve the fundamental frequency
and the brain’s ability to process that information and “know” what the pitch of a tone is,
even when the fundamental frequency was physically intentionally left out of the musical
complex tone3 (Rossing et al. (2002) [64]). Shouten called this missing lower part of the
spectrum the “residue,” and in a series of monumental experiments (in the first half of the
1940’s) convinced the scientific community that it is not merely the physiological place on
the basilar membrane that matters, but there must be some way for the brain to process
the electrophysiological impulses from the organ of Corti and further into the brain. This
pattern analysis was done in time, hence the name of the theory.

This means that there must exist a centralized unit in the brain that processes the
signal in both domains. This centralized unit must be selectively using either frequency
(spectra) or time (autocorrelation) data depending on the situation. It has been suggested
that lower tones are processed primarily by the time domain analyzer and that higher tones
are processed by frequency analyzers, with checks and balances between the two (modern
theory). Echolocation, for example, could have an effect on how the time–frequency analyzers
weigh input/output from one another. An interesting field, called auditory computation has
since risen dealing with the mathematical neuromodeling of acoustic nerve firing patterns,
but which in general encompasses a wide variety of models, from sound to perception. A
short account of this fascinating field will be provided below.

1An interesting psychoacoustics experiment would be to quantify vibrato for lower and higher tones.
One would expect that since the ear is less fine–tuned at the lower frequency span, that vibrato would be
wider there compared to higher tones (directly proportional to the bandwidths). I also always thought that
another consequence of this physiology would be that singing voice would be prone to more vibrato at the
lower spectrum compared to instruments like violin at the same low frequencies, because a violinist can use
his finger to “correct” this paradoxical limitation of her brain, but a vocalist has only but his ear to correct
his ear. The signal does not pass through another “self–correcting” loop.

2This phenomenon was demonstrated about 100 years before by Seebeck (1841), but the paper is in
German which I unfortunately do not speak. Shouten’s work is what made this case widely known in the
world of psychophysics.

3Complex here refers to many (hopefully harmonic) partials, as opposed to a pure tone which is only
one wave with nothing above it.
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3.2.2 Modern Theories of Pitch

Logic would suggest that from smaller axioms, lemmas, or theorems a scientist should
be looking for a higher–level, unifying, or universal theory that would encompass the smaller
parts of knowledge units and generalize them in as much simplicity as it is possible. At the
same time (a second criterion, if you will) these general theories should be based on observa-
tion. In optics, the once distinct doctrines of corpuscle (Newton) and wave (Huygens) light
theory were unified to what now explains most reality as the dual nature of light. Professor
A. Einstein moved towards this unifying direction, albeit unsuccessfully, by attempting a
“unified field theory,” a theory that would bring gravity, nuclear forces, and electromagnetic
theory under one umbrella4.

It is, therefore, very unclear why modern theories of pitch perception (mainly those
originating in the area of cognitive psychology) fixated on theories that not only do not
seem to follow the logical idea of parsimonious unification and generalization, but also do
not explain all of the phenomena we observe in empirical data (Rossing et al. (2002) [64]).

Since psychoacoustics is a vehicle for understanding the results of this dissertation
and not the main topic of it, modern pitch theories en masse will not be discussed. One,
however, will be outlined, that of Moore (2003) [45]. It follows Occam’s razor and explains
most observations, compared to competing theories.

Loven (2009) [36] is probably one of the sources that simplify and tailor Moore’s
theory (Moore (2003) [45]) in a practical way that fits our needs. It is a three–layer theory
with frequency, time, and adjustment as its three layers. The first two layers have two levels
each and the single–level final is a consideration of other variables to adjust the different
weights for the first two layers in addition to considering some new information. The theory
is summarized in Figure (3.1).

3.3 Auditory Computation

We attempt to present oversimplified aspects of the so–called auditory computation
in hopes that this will illustrate how classical signal processing methods are used in signal
transmission models constructed by this relatively new branch of psychoacoustics (Hawkins
(1996) [28]). Topics are restricted to the limited physiology presented so far.

We talked about how the frequency or place theory requires to model excitation
patterns on the basilar membrane. The spatiotemporal patterns of displacement along this
membrane, then, could be modeled via a convolution of the time signal and a linear impulse
response of the “cochlear filter.” The notation usually uses the subscripts s and t to denote
spatial and temporal components. Thus, the displacements y(t; s) at locus s and time t can
be approximated by

y(t; s) = h(t; s) ∗ x(t), (3.1)

where x(t) is the input signal and h(t; s) is the impulse response of the cochlear filter.

4Professor Einstein’s ideas on this topic can be found in a compilation of some of his speeches in Out of
My Later Years (1950), Philosophical Library, New York.
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Moore’s (2003) Modern Theory of Pitch

Frequency Theory Layer

1. Critical band mechanism. Center frequencies of critical bandwidths are
set equal to frequency components in the spectrum of the incoming
signal.

2. Neural transduction. Critical bands along the basilar membrane (don’t
have to be adjacent) fire electric pulses for the duration of the signal’s
excitation on that place, with some bands being turned on or off de-
pending how much energy has accumulated within each band. Think
of it as a very dynamic situation where mechanical excitation happens,
a critical cut–off is reached, a specific neurophysiological structure is
fired, and then the band comes to rest. Bands engage in this dynamic
on/off pattern continuously.

Time Theory Layer

3. Spike rate analysis. Time–series analysis of neural response by means
of autocorrelation is performed on each pattern across critical bands.
Each band codes its activity in neural memory.

4. Spike rate comparison. Coded firing rate patterns are analyzed as new
ones continue to flow in, and a backwards–time model keeps updating
registries of activities, but this time across bands.

Adjustment & Decision Theory Layer

5. Adjust existing info and incorporate new. If similar firing rate codings
are found along the membrane, and this is most probably the case, the
brain adjusts how much the frequency components should adjust to
compensate for the time analysis’ indecisiveness. Memory, cognition,
experience, attention characteristics, etc. of the listener as well as
stimuli–driven variables are all integrated here. This part of the model
has higher order cognitive characteristics, like parallel processing and
ability to learn and adapt continuously as data flows in. In other
words, if the first two layers were pure analysis steps that drew upon
time–frequency domain theory, the model is drawing from artificial
intelligence and machine learning theory, in the sense that it teaches
itself to become better with more data flow.

Figure 3.1 – Moore’s (2003) Modern Theory of Pitch. The input to this model is a music
tone and the output is pitch perception.
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These mechanical waves need to be converted into electric firing impulse trains dur-
ing the transduction stage. The bending of the celia by the hydraulic forces exerted upon
them that are proportional to y(t; s), allow ionic currents to flow into the hair cells through
nonlinear chemical channels (celia coupling), which in turn generate receptor potentials. To
model those potentials mathematically, let us define c(t) as the impulse response of the celia
coupling stage, so that its convolution with the spatiotemporal displacements y(t; s) will
yield the so–called output of the fluid–celia coupling, i.e., yc(t; s) = y(t; s) ∗ c(t). Further,
let w(t) to be a temporal smoothing window acting as a low–pass filter as a result of the
hair–cell membrane and some function g(·) be an instantaneous nonlinearity that can take
on the form of any nonlinear function depending on the emphasis the model wants to assign
to it. The receptor potentials are then

r(t; s) = g[yc(t; s)] ∗ w(t). (3.2)

The above equation can be modified to reflect detailed experimental models, for example, and
enhanced to include stochastic firing patters on the auditory nerve with linear or nonlinear
adaptations.

3.4 Factors Affecting Pitch Perception

We hinted above that frequency is one factor that affects jnd’s and, therefore, pitch
perception. It is also by far the strongest predictor of pitch, even though there are no
experimental evidence on its relative strength compared to other factors. The second most
influential factor for pitch perception seems to be sound intensity, even though more recent
experiments seem to diminish the once higher emphasis intensity was given with respect to
pitch perception.

3.4.1 Frequency and Pitch Perception

Frequency is by far the most influential component when humans judge the pitch of
a musical tone. An example of how strong of a predictor the fundamental frequency is in
perceiving a tone’s pitch is shown in Figure (3.2). The data is partially based5 on Zwicker
et al. (1957) [91] and is also cited in Rossing et al. (2002) [64].

The dashed line is what was given in the original data. It makes sense to see that
at higher frequencies the jnd’s (indicated here by ∆f in units of Hertz) are slightly larger.
For example, approximately speaking, at 300 Hz the jnd is 2.5 Hz, but at 800 Hz the jnd is
4 Hz. This is in accordance to the critical bands being more finely tuned at the higher end
of the frequency spectrum. Of course, we need to think about it proportionally, in relative
terms. In absolute terms, one would be tempted to think that at higher frequencies our ears
are doing a worse job discriminating frequencies than at lower frequencies. After all, from
about 200 Hz to 1,000 Hz, jnd’s increase approximately linearly.

5By “partially” we mean that only the frequencies of interest to us were retained in this view. This would
justify the use of another researchers’ data under the “fair use” of copyright law, otherwise permissions had
to be obtained to display them here.
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Figure 3.2 – Pure tone ear frequency resolution—One Study. Solid line shows human ear
resolution (just noticeable differences or difference limens) of pure tones in units of atoms
as a function of frequency at a constant sound level of 80 dB. Dashed line shows the same
data, but as frequency differences in units of Hertz as a function of frequency. (Source:
Dashed line is based on partial data from Zwicker, Flottorp, and Stevens (1957) [91]. Solid
line is a direct transformation of the dashed line.)

We said before that we, humans, do not think in terms of jnd’s or difference limens,
but in terms of atoms or cents. We need to take the linearity out of this function my means
of anti–logarithms. When we plot jnd’s in terms of atoms, we used the usual formula of
Equation (1.5) to plot the same data in a more friendly way. This is shown in Figure (3.2)
as the solid line. We observe that our ability to discriminate pitch improves exponentially
as a function of increased frequency.

This plot is used as an illustration of the effect of frequency on pitch perception
and how a simple transformation renders the same data more understandable. A more
comprehensive review will be given in a subsequent section of this chapter.

3.4.2 Intensity and Pitch Perception

Experiments by Stevens (1983) [79] as early as the mid–1930’s found that as intensity
ranged from 40 to 90 dB, a modest increase, pitch perception was altered by as much as 12%,
two whole semitones. If this were true, the effects of orchestral dynamic changes would be
detrimental to the average listener. It is now widely known that even for pure tones intensity
has a much lesser effect, and for complex tones the effect is even smaller (Rossing et al.
(2002) [64]). It is immaterial to explore intensity in detail, because it cannot be controlled
for the purposes of our sample data. The intensity can be, of course, altered digitally for the
sake of experimentation, but this would not help with our pitch detection objective. It is
however, interesting to note that in large cathedrals where reverberation is very prominent,
pipe organ music has reportedly changed pitch in a way that is proportionately inverse to
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loudness. This is in accordance with what became known as Stevens’ rule, who in his early
experiments found that if intensity is increased, low–frequency tones seem to fall and high–
frequency tones seem to rise in pitch. In the case of the pitch of pipe organ music, after loud
chord ends (which signifies an abrupt drop in intensity), pitch seemed to have risen (Rossing
et al. (2002) [64]).

3.4.3 Duration and Pitch Perception

If the signal duration is below 10 ms it is perceived as a click; even when the duration
is up to 25 ms, the pitch perception is weak (Rossing et al. (2002) [64]—the data are partially
based on experiments by Bürck, Kotowski, and Litchte (1935), but the paper is German,
which I do not speak.). This implication should not affect our methodology of snippet
concatenation, first because no snippet duration is even close to the 25 ms (the shorter ones
are longer by about a factor of ten), and second, even if snippets were short, here we do
not directly use them for pitch perception. Rather the concatenation of snippets constitute
sound long enough for our detectors to reliably estimate the fundamental.

3.4.4 Other Factors Affecting Pitch Perception

Some subjects reported that some tones have an apparent “largeness” or “extensive-
ness” and this is termed by Stevens & Davis (1983) [79] as volume. Stevens also discusses
another sound quality that might affect pitch, density, a feeling that a tone is “compact” and
“tight.” Brightness is another factor discussed in Stevens, which we attempted to quantify
in section (2.6) by way of the spectral centroid. Timbre, a feeling that a sound has a certain
“warmth” or “softness” to it, is yet another qualitative factor that some sound analysts
attempt to quantify using special spectral envelops.

It should be mentioned, however, that none of the above factors affect pitch perception
significantly enough to justify psychoacoustical investigation within the boundaries of this
dissertation. In the next section we concentrate on frequency as the main factor affecting
pitch discrimination.

3.5 Just Noticeable Difference in Psychoacoustic Literature

This section directly addresses the question we posed in the introduction to this
Chapter, namely, “For musically trained humans, what is the minimum distinguishable fre-
quency difference.” Our quest to answer this question took us on a century–long journey,
from Helmholtz (1863) to the 1970’s. As scientific method matured and more educated
questions were formed, technology was catching up providing the means to perform more
refined experimentation. The interplay between experimental design and technological ad-
vances saturated in the 1970’s, at least from my limited understanding of the issue, and the
issue is now considered sufficiently resolved. Or at least, until a more precise definition of
pitch discrimination is formulated and direct measurements on human brains is permissively
non–invasive for scientist to pursue. I believe that only with this level of accuracy one will
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be satisfied with a numerical answer to this question; of course, if that level of accuracy is
achieved based on very refined methods, the definition of pitch discrimination itself—and
its practicality—will become restrictive. It seems that with issues of this nature, as the
empirical approaches the theoretical sufficiently closely, the trade–off between evidence and
its practical use becomes harder to define.

3.5.1 Literature Review

In the previous paragraph it was stated that evidence in the 1970’s are sufficient
to answer the posed question. This doesn’t mean that there is no more to be done to
enhance our understanding of pitch discrimination; it means, however, that from post 1980’s
literature, to the best of the author’s ability, no empirical evidence could be found to justify
any significant addition to the already existing knowledge.

There are many experiments that could be performed on pitch discrimination, es-
pecially with complex tones in non–controlled settings. It is possible to analyze existing
Byzantine music pieces and deduct valuable psychoacoustical results. Such analysis does
not even require experimentally controlled data collection from subjects in the traditional
way6.

The following books were carefully reviewed and even though few of them cite or
present for the first time evidence that could be useful to answering our question, most of
them either cite the same older sources or paraphrase the results in one way or another (as
we will do in this dissertation later).

1. O’Callaghan, C., and Nudds, M. (Editors) (2009). Sounds and perception—New philo-
sophical essays, Oxford University Press.

2. Benson, D., J. (2008). Music—A mathematical offering, 3rd printing, Cambridge Uni-
versity Press.

3. Yost, W., A. (2007). Fundamentals of hearing—An Introduction, 5th Edition, Aca-
demic Press.

4. Lass, N. J. and Woodford, C., M. (2007). Hearing Science Fundamentals, Mosby
Elsevier, St. Louis, MO.

5. Fastl, H., Zwicker, E. (2007). Psychoacoustics—Facts and Models, 3rd Edition, Springer,
New York.

6. Plack et al. (2005). Pitch—Neural coding and perception, Springer Handbook of Au-
ditory Research, New york.

7. Neuhoff, J. G. (Editor) (2004). Ecological Psychoacoustics, Elsevier Inc., of Elsevier
Academic Press, London.

6Due to my background in Quantitative Psychology, I appreciate the statistical elegance experimental
design affords. Generalizability of results is also a positive outcome. There are practical situations, however,
that could justify observational (versus experimental) results.
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8. Plomp, R. (2002). The intelligent ear—On the nature of sound perception, Lawrence
Erlbaum Associates, Publishers, London.

9. Hall, D, E. (2002). Musical Acoustics, 3rd Edition, Brooks/Cole, California.

10. Howard, D., M. and Angus, J. (2001). Acoustics and Psychoacoustics, 2nd Edition,
Focal Press, Woburn, MA.

11. Warren, R., M. (1999). Auditory perception—A new analysis and synthesis, Cambridge
University Press.

Along with the above books, many journal articles were considered over the course of the
last six years7. Other than those cited explicitly, none of them was used directly.

3.5.2 Pure vs Complex Tones

About complex tones we know much less compared to what we know about pure
tones. This is a universally known and accepted fact that is usually mentioned only casually
in most sources. Also commonplace seems to be the fact that for (musical or harmonic)
complex tones pitch discrimination is much better than for pure tones. Plomp (1967) [58]
(the same Plomp that published the book above, which provides discussions on his earlier
findings) found that the first five harmonics of complex periodic sounds are most important
in determining its pitch (actually for the range of frequencies we are interested in it is
more like the second, third, and forth). A similar theoretical result from Moore et al.
(1985) [47] was used in constructing the definition of weighted inharmonicity in Equation
(2.11)8. The fact that complex tones yield lower jnd’s is a fortunate one for us and it does
make intuitive sense theoretically. The higher harmonics fall in the more finely tuned critical
bands (whose bandwidths are narrower, closer to the apex of the membrane) and since the
ear is back–fitting from the first five harmonics to form the perception of pitch, the perception
is also more accurate as opposed to just using the one pure fundamental. This has special
significance for us, because most of psychoacoustics data at our disposal are on pure tones.

Unfortunately, there is no data on pitch discrimination for complex tones usable for
our purposes here. Moore et al. (2006) [46] worked on complex tone pitch discrimination,
but the frequencies used were all above 2,000 Hz. Micheyl et al. (2010) [44] investigated pitch

7Pitch discrimination never went out of interest. A recent study (Dai, H. and Micheyl, C. (July 2011),
Psychometric functions for pure–tone frequency discrimination, J. Acoust. Soc. Am. 130 (1), 263–272), for

example, concluded that linear fit on the d′ =
(

∆f/f
α

)
versus ∆f function is good enough, and previous

papers that did not test for nonlinearities didn’t really need to do so. This result actually directly supports
my results in Figure (3.2). It is actually the reverse of what we did here: here we used exponents (or
algorithms) to delineate the function, in this paper they use them to force–fit it as linear, with β being the
slope of the line.

8In our signal we observe forty–nine (49) harmonics. We mentioned earlier that older recordings (before
Alygizakis’ CDs [1]) only a handful were present. This doesn’t mean that it would not be possible to track
the fundamental in the old recording. After all, the fundamental itself was there. But, we are missing out
on the higher harmonics which convey information about the signal that were sporadically mentioned in
Chapter 2.
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discrimination based on the fundamental versus virtual pitch (the inclusion of higher har-
monics, with or without the fundamental present), and concluded that difference limens for
complex tones do approximate the fundamental perception well and that harmonic complex
tones produced a more consistent sensation of pitch than inharmonic ones. An interest-
ing approach was taken by Feth (1974) [23], which was unfortunately inconclusive due to
limited data and (in my opinion) methodological limitations that might have hindered sta-
tistical power. As if the issue was put to rest from a psychophysical standpoint, others tried
to tackle pitch of complex tones on a neurophysiological level, by measuring neural activity
spike patterns in the auditory nerve (Cedolin (2005) [16]). Of course, it is possible to conduct
a meta–analysis on extant literature and extrapolate some approximate values for complex
tone jnd’s customized to fit our needs in this dissertation, but the uncertainty of that kind
of study would be greater than simply using the literature for pure tones as a benchmark.

Since we know complex tones make for better pitch discrimination relative to pure
tones, we can use the pure tone results as a “worst case scenario” benchmark. Think about
it as our own special “pure tone higher bound,” a pun for the Cramér–Rao Lower Bound.
Discrimination cannot get worse for complex tones that what it already is for pure tones,
and pure tones are all we have to rely on. The jnd’s cannot be larger, thus the “higher
bound.”

3.5.3 Experimental Results

Pitch discrimination psychometric curves from different independent experiments are
reported in Weir et al. (1977) [90] and Moore (2003) [45]. They are shown in Figure (3.3)
along with the data from Zwicker et al. (1957) [91] (also cited by Rossing et al. (2002) [64]),
which we displayed in Figure (3.2). Two points to notice: (1) The same transformation
of Figure (3.3) was applied in Figure (3.2) as well; and, (2) The results from Weir et al.
(1977) [90] are widely cited even in very recent papers on pitch discrimination theoretical
and mathematical modeling formulation. The fact that Moore (2003) [45] himself uses these
results is an indication of its prominence9.

Casual inspection of Figure (3.3) reveals the tremendous variation in the jnd’s of the
lower frequencies (250 Hz in the graph) and appreciable variance at the higher frequencies
(1,000 Hz in graph). Maybe critical bands in the higher frequencies possessing more discrim-
inatory power accounts partly for that. But even so, the variance10 between experimental
results is just too high for something that sounds so simplistically straight–forward as a jnd.
The next subsection attempts to provide supporting information as to why this might be
happening.

9This is a personal and therefore subjective opinion, that is why I put it in a footnote. Brian C. J.
Moore (University of Cambridge, UK) is arguably the most prominent psychoacoustician alive and definitely
a pioneer and leader in this field for the last 50 years. His book is packed with data–driven inferences, along
with a wealth of actual data results drawn from his research, that again, has been dominant in this field for
half a century now, along with the most reliable information from contemporary colleagues. Note how the
lowest jnd curve is from his 1973 experiments. He continues to pursue the difficult task of complex tone pitch
perception to this day. This is not the same Moore who co–authored Thomas Rossing’s latest book [64].

10By variance here we do not mean the statistical variance, but the variability in practical terms. Older
experiments (1931) exhibit a 19–cent jnd, which is about a fifth of a semitone.
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Figure 3.3 – Pure tone ear frequency resolution—Meta–analysis. Lines show human ear
resolution (just noticeable differences or difference limens) of pure tones in both atoms and
cents (see section (1.6) for more details) as a function of frequency at different sound levels
that have been constant for each experiment. All data except for Zwicker, Flottorp, and
Stevens (1957) [91] are taken from Moore (2003) [45] and Weir et al. (1977) [90]. The
data is only partial (original graphs include a wider range of frequencies and more data
points even within the 250–1,000 Hz range we display here and transformed to our needs
(using Equation (1.5)—see text for explanation). The dashed horizontal line shows a single
number jnd cut–off. However, a more reasonable measure would be frequency–adaptive,
similar to the idea of critical bands of the frequency theory.

3.5.3.1 Factors Affecting Differences Among Pitch Discrimination Experiments

Differences between experimental results is a function of many parameters. Each
experiment shown in Figure (3.3) used a different combination of these parameters. Some
obvious ones are mentioned here, without claiming this to be a comprehensive meta–analytic
review of psychoacoustical literature. Moore et at. (2003) [45], Gulick (1971) [26], and
Plomp (2002) [57] provide many examples of psychoacoustical experiments with different
parameters. For experimental design in general, Keppel & Wickens (2004) [33] is a good
reference.

Please keep in mind that any mix of these parameters might have been employed by
the experimenter. Each parameter has two or more levels that an experimental psychologist
can vary. In general, the newer rather than the older literature seems to be more complex in
the sense of combinations of these levels. This can be a good and a bad thing. It is an advan-
tage in the sense that since pitch is a highly subjective construct, susceptible to effects of such
different parameter levels, the more comprehensive the inclusion of those levels, the more
variance in the perception one can account for experimentally (and statistically in the data
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analysis stage). The main disadvantage is that the more parameter levels the experimenter
decides to include in the design a priori, the more noise is introduced weakening the signal
to be detected and analyzed—signal here is the perception of pitch and what “really” drives
this experimental design model and noise is all the participant inputs to the experiment that
add no significant value to our understanding of pitch perception. A secondary disadvantage
is the lack of agreement between experimental design and the statistical method used to
analyze data obtained by the design. Typically, statistics are dictated (enhanced or limited)
by the design. This is especially true in social science in contrast to natural science. There
is abundant literature on the differences between observational and experimental data, and
there is a great interest in the corporate world to leverage the various powerful experimental
methods (typically used in social and financial settings) using purely observational data.
The reason for that is the fact that in the industry observational data is everywhere and
typically experimental data is nowhere.

Experimental methods changed longitudinally, and even at time cross–sections there
are no golden industry standards. The way the individual signals are randomized across
trials and across subjects, the way the tones (temporal or spectral portion of tones) are
masked intentionally, the signal–to–noise ratio and if this was randomized across trials and
subject as well as if it was white or colored noise, smooth transition from tone to tone by
phase–locking or sinusoidal transition (to avoid Gibbs oscillations which alter perception),
if signals are presented sequentially or simultaneously with one tone constant and the other
frequency–modulated, how the intensity level is defined and how the cut-offs of this level
were constructed in regards to how many dB above intensity level were used, if intensity was
constant or varied across different tones and how it was randomized, were tones produced
mechanically or electronically, was the audition monaural or binaural, and if binaural was
it with phase or time differences between the onset of the stimuli, was the experiment two–
alternative forced–choice or not, are but a few factors that affect results. Statistical methods
are also another class of factors contributing to the huge variability in the results among ex-
periments. Not only poor experimental design can hinder statistical inference in general (to
the point of results being unusable when inferences about the population are built on sam-
ples), but small samples of subjects and/or trials can influence statistical power. A far less
sophisticated example is the arbitrary decision of where exactly a difference in frequency is
concluded as the “real” jnd. Early experiments (including psychophysical giants like Stevens,
for example) decided that a jnd is where 50% of the subjects can identify tonal difference.
Later on it was decided that since 50% is really like a coin flip decision (completely by
chance), a 75% level would be more appropriate since it is halfway between chance and per-
fect agreement among subjects11. Inter–subject variability as well as intra–subject variability
are so obvious that they do not warrant explanation, but by no means less important. All
these classes of factors are of basic (albeit, fundamental) level that a person with no formal
training in psychophysics (such as myself) can understand and provide here.

11It is interesting to see how long it takes practitioners to get on–board with with statistical theory. At
the time that Stevens, again, a giant of his time and a leading authority in psychoacoustics, only to be
matched in stature by Brian Moore maybe, was conducting his landmark experiments, the decision to use
a purely–by–chance “point of inflection” was unjustified. A decade or more before all this the famous feud
between Pearson and Fisher (circa 1925) about hypothesis testing and levels of significance should have been
a very good guideline to follow.
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One conclusion became clear enough throughout this research: There is no one single
jnd cut–off number. The dashed line in Figure (3.3) is of conceptual, not practical, signifi-
cance. But, a jnd criterion is still needed in practice. The most reasonable option is to adopt
the lowest jnd among all pitch discrimination experiments at each frequency (as opposed to
an average, median, or some other point estimate) as our proposed jnd solution. The logic
is twofold: (1) Experimental results are based on pure tones, which we know impede pitch
discrimination ability; and, (2) the assumption that the experiments yielding higher jnd’s
(the ear is doing worse in discriminating) is due to experimental limitations (be it method-
ological, statistical, technological, or any other kind). The first one is clear. It becomes even
more evident when we think about Plomp’s (1967) [58] experiment, and that the second to
the fifth harmonic are bound to be in the more fine tune place on the basilar membrane.
The second one is an assumption that actually works against what we were set to show (that
differences among theory and practice are insignificant since they cannot be discriminated).
We have full knowledge of the restrictive nature of this choice. However, one may start with
a low baseline benchmark and reassess it to more liberal standards, as it is the case in many
practical application of statistics, like the subjective critical region of a normal distribution,
for example, in hypothesis testing and even statistical inference.

3.6 Just Noticeable Difference Proposed Customizations

The results of Figure (3.3), as we discussed above, vary greatly. Our decision to
take the lowest of the experimental jnd’s as our benchmark was the most sensible decision
considering the data, but it does make for an extremely narrow jnd to work with especially
with singing voice signals.

We feel it was the most sensible decision because adopting a larger than the minimum
experimental jnd would be completely out of place and arbitrary, because finer results are
usually associated with more sophisticated experiments. This may or may not be the case,
but it is hard to argue against this point12. Arbitrary selection of a greater jnd benchmark
should be put under intense scrutiny, and justifiably so. One would need to look into the
actual methods and analyses that make the different experiments vary so greatly. This was
only superficially touched upon in Subsection (3.5.3.1) with the intension to demonstrate
how involved such an analysis would be. A deep meta–analysis of this sort would be not
only outside the scope of this dissertation, but also not as fruitful as one would think might
be in justifying conclusively why an experiment yielding greater jnd’s is more suitable for
our very specific application at hand. Probably the best way to address a customized jnd
for the singing voice of Nafpliotis is to perform an experiment using Nafpliotis’ voice as the
signal. With the new advances in voice analysis and synthesis (with phase vocoder being
one of them), this is not at all out of reach in the future.

The reason such narrow jnd’s make it especially hard to use when our input signal is
human voice is partly due to the inherent difficulty to estimate fundamental frequencies for
human voice since it is such a complex sound generating system. The issue becomes even

12I believe that this is not the case, but convincing a dissertation committee would be extremely hard.
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more complicated if one takes into account how the first handful of harmonics are processed
by the brain to decide on a pitch value.

We feel it necessary to propose two measures that may partially alleviate some of
the limited applicability of such narrow experimental jnd’s. The first, called perceptual
confidence intervals, is an idea and it is deeply rooted in the concept of critical bands
found in psychoacoustic theory. The second, called acceptable performance difference, is a
metric based Nafpliotis’ data. Both aim to provide more reasonable jnd’s customized for
this dissertation which are not arbitrary.

3.6.1 Perceptual Confidence Intervals

We often talk about statistical confidence intervals at some level, like 95% or 99%.
The idea is that, given that our vector is normally distributed, and we have good reasons
to believe it will be with large enough sample size due to the central limit theorem, we are
“confident” a point estimate like the mean will fall within these intervals that much percent
of the time.

We introduce the concept of perceptual confidence intervals at the level of x cents or
atoms, or even x% of some ∆f/f , limited exclusively and solely by experiment. Whereas the
concept of statistical confidence intervals is purely statistical, perceptual confidence intervals
form an empirical concept. In the former we let the data decide how much variance exists
in the normal distribution, how narrow or wide it is; in the latter we let human perception
decide how wide or narrow we let those perceptual intervals be. The wider you let them be,
the more incapable we claim humans are in being “confident” that a fundamental frequency
detected by some engineering algorithm really falls within those intervals. The opposite is
also true. Figure (3.4) shows a schematic representation of this concept. The shaded areas
represent the perceptual confidence intervals and are not drawn to scale. The scale of those
shaded areas should be whatever Figure (3.3) wants them to be. For example, at the lower
end, around D4 at 295 Hz, the jnd could be about 4 cents, or 21% of an atom, really, a tiny
60% of 1 Hz. At the upper end close to D5 (590 Hz) the jnd would be about 3 cents, or
17.5% atoms, or about 1 Hz. These intervals, as one can clearly see, are very strict. They
are so strict, that their practicality is limited in two ways.

The first limitation of using such low perceptual confidence intervals is technical:
atoms were passed down to us through Byzantine music theory in integer values. There was
no need for anything more precise. Recall that in the explanation of Figure (2.1), we said
“Perfect intervals are consonant, that is why no matter if you are in a Byzantine or a Western
scale D4 will always be 293.665 Hz with respect to the reference tone A4.” However, tones
E4 and B4 can never form a perfect interval with any other tone (in Byzantine music; in
Western they can). This is what the little black squares wanted to denote in the graph. For
perfect intervals, the number in atoms is either exact or very close to the integer (depending
on the temperament). For non–perfect, dissonant intervals, this may become a problem,
since our jnd are so strict they range from about a fifth of such an atom down to 17.5%.

The second practical limitation has to do with the intended use of this jnd, in other
words, for whom does this jnd apply? For example, is it for the performer himself, for trained
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Figure 3.4 – Perceptual Confidence Intervals. Consistent with the idea of critical bands of
the place theory in psychoacoustics, and borrowing elements from the statistical concept of
statistical confidence intervals, perceptual confidence intervals give us a rough guideline of
how confident we should be that a perceived frequency of a tone (the solid line separating
the tonal boxes) is acceptably perceived as the same or at least not dissonant when com-
pared to another tone differentiated by any frequency which falls within the shaded areas
in the schematic above. Notice how the perceptual confidence intervals are a function of
frequency (critical band concept).

chanters in Byzantine music, for trained vocalists in Western music, for instrumentalists, for
people that were regulars at the cathedral where this person performed, or for the general
public? It may sound as a trivial question, but it is not. Strict perceptual confidence intervals
are more suitable for people trained in microtonal music cultures. Less restrictive intervals
may be more realistic for people of no musical education13.

13This is a subjective, anecdotal observation, that is why I put it in a footnote. I happened to have a
conversation with a formally trained vocalist in Western music, a university professor and vocal coach of more
than 30 years, who got involved with Byzantine music for the last 10. We were talking about scales and he
performed what he believed to be the Byzantine chromatic scale, which happens to be a hard one to master.
His intervals were clearly Westernized to me and I performed the scale his way and then the Byzantine
way. He said that he can clearly hear the difference, but he would not be able to perform it in accordance
to Byzantine standards. This example demonstrates a couple of situations where perceptual confidence
intervals may need to be tailored for different cases. First of all, he could hear it, but not perform it. The
jnd for hearing pitch discrimination, is not the same as the jnd for performing pitch discrimination. If such
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3.6.2 Acceptable Performance Difference

During the course of our investigation on multiple musical performances by Nafpliotis,
it quickly became evident that a tone one octave above is not exactly at a 2 : 1 frequency
ratio. Usually the tone one octave above, f1, is slightly higher than double the fundamental,
f0, that is to say f1 > 2f0 instead of the expected f1 = 2f0. That the perception of the
octave has a physical representation of a 2 : 1 frequency ratio is universally accepted, not
only in Western, but also in non–Western cultures (Burns & Ward (1978) [14]). This octave
equivalence is what inspired music theorists around the globe to use only eight musical tone
names and use numbers or primes to indicate their octave positions on the musical staff
(like A3, A4, A5, etc.). The pitch perception scale of mel (Stevens & Davis (1983) [79]), a
psychometric function that shows how perceptual pitch varies as a function of frequency, was
constructed on the premise of subjects modulating the frequency of a tone till it sounded
half or double the pitch. However, it is also well known that under certain conditions octave
stretching (Ward, (1954) [89]) or pitch shift (Smith et al., (1983) [75]) can alter the perception
of octave equivalence.

Moreover, with singing voice especially, artistic license may grant the performer tem-
porary permission to microtonally exaggerate an octave not only due to the performer’s
wish to project a vowel of low natural frequency over longer distances, but also due to the
performer’s wish to evoke certain feelings due to such exaggeration. What is noteworthy is
that literature on octave stretching is usually based on listening, not performing subjects.
It is, therefore, particularly interesting to find such an agreement between psychoacoustic
results based on ear performance and their corresponding voice performance14.

Whatever the cause of this octave stretching might be, it is found in Nafpliotis’ data.
The performer feels that this frequency deviation is within musical limits and it does not
produce melodic disruption or dissonance. This may or may not be a phenomenon more
prominent in singing voice signals, or even Byzantine music chant signals. Nevertheless, this
frequency deviation is produced by the same performer within the same musical piece that
is used to derive the frequencies of the musical scale. Whatever it is, is real and as valid as
any other tone measurement. At the very minimum, we can assert with a certain degree of
certainty that the performer is not appalled by this frequency deviation, no matter if it is
intentional, unintentional, perceivable, or non–perceivable by him or the other listeners. We
are not by any stretch of the imagination suggesting that this is the minimum this particular
performer can perceive as a frequency deviation, that is his ear jnd. But we are making the
claim that this amount of deviation is acceptable by the performer.

The next basic question should be “is this performing deviation more than the hearing
jnd?” The answer to the above question is “yes.” A typical example would be the base tone
D4 at about 302 Hz and D5 not at 604 Hz, but at about 616 Hz15. In atoms this difference
is about 2.0 and in cents it is about 34.0, a whole third of a semitone, which is substantially

subtleties exist within musically trained vocalists, you can imagine how wide the spectrum of possibilities is
for untrained ears.

14Also interesting would be an experiment using musical instruments which can perform mictrotonal
intervals, like the violin, and see if this ear–voice affinity is also valid for ear–instrument.

15Here the typical formula for octave stretching is used, namely, Ω = f2−2f1
2f1

.
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larger than all of the aural jnd’s of Figure (3.3) let alone our low benchmark of about
3 cents or a fifth of an atom around 600 Hz. Remember the variability or difference in
the experimental results were as high as about a fifth of a semitone and as high as this
might seem, the discrepancy between Nafpiotis’ performable deviation and aural jnd’s is
larger. Ironically, Nafpliotis’ performable deviation is closer to older, coarser aural jnd
measurements. It is tempting to think that maybe the aural jnd is not the best benchmark
for comparing Nafpliotis’ frequency deviations against. Maybe Nafpliotis’ own allowable
frequency deviations should be a benchmark for all Byzantine music chanters, since he is the
most acclaimed Byzantine music performer caught on tape.

We propose a new term, the acceptable performance difference (apd), directly based
on the idea of octave stretch as in Ward (1954) [89], and defined as

Ω =
f2 − 2f1

2f1

. (3.3)

Due to the practical reasons outlined in this section, we decided to use this measure as our
criterion for deciding if a frequency is deemed as acceptably different of not, in accordance
with the idea of perceptual confidence intervals presented in Figure (3.4). Results in Chapter
4 will be interpreted using this definition.

It is important to note that octave stretching might very well be intentional, as we
noted above, due to artistic license or due to any other reason. The acceptable performance
difference may or may not apply to all kinds of intervals. As we will see in Chapter 4,
the results suggest that for solid intervals, like a perfect fifth, Nafpliotis’ performance is
in agreement with the theoretical suggestions (41.9 versus 42 atoms, respectively, for one
music piece analyzed, for example). However, similar stretching (which would lessen the
agreement between theoretical and experimental) has been found in other intervals than the
octave, like in perfect fifths or complete tetrachords. Some times an experienced listener can
identify the performer’s intent to overshoot the interval and this effect does evoke certain
emotions. Think about a dramatic theatrical performer. In an attempt to convey feelings of
distress the performer may utilize different ways of projecting the voice, like timber, intensity,
voice cracking, loud pronunciation of proclamations like “alas” with intentional loose vowel
elocution, etc. Many of these effects could be utilized by a Byzantine music vocalist as well,
and some of them may affect the frequency directly (performer doing it intentionally) or
indirectly.

3.7 Conclusions

This Chapter explored psychoacoustics literature on pitch discrimination to address
the question “For musically trained humans, what is the minimum distinguishable frequency
difference.” Figure (3.3) gives the psychometric curves for jnd’s in atoms and cents over
the most predictive factor of pitch, the frequency. Since most reliable experiments that are
relevant to our frequency range are based on pure tones, the issue of complex tones rendering
themselves to better discrimination was used to make a case for using the most reasonable
approach in adopting a jnd benchmark.
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The restrictive nature of the lowest experimental aural jnd and the lack of a convincing
explanation in it and of itself for using any other more liberal jnd, led to the definition of
more customized measures of what should be an acceptable frequency deviation, namely
the concept of acceptable performance difference. Within this framework, the concepts of
perceptual confidence intervals and acceptable performance difference were introduced in
parallel. All of these will be discussed in connection with results presented in Chapter 4 as
to illustrate the practical advantage of apd’s over aural ind’s.

There is no single jnd or even acceptability metric adopted in this dissertation as a
benchmark, simply because there is very little research on complex tones and specifically on
singing voice (and none on Byzantine music chant). To rush into selecting one metric over
another it would simply be naive. Much research remains to be done on the issue.

The next Chapter presents the fundamental frequencies of the tones of the Byzantine
diatonic scale and provides discussion on theory versus practice.
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Chapter 4

Results and Discussion

4.1 Introduction

The main focus of this Chapter is the tabulated presentation the results, i.e., the
fundamental frequencies of the diatonic scale of Byzantine music as performed by Iakovos
Nafpliotis. It starts out with some additional methodological information, beyond that given
in Chapter 1, on the data collection, data preparation, and algorithm implementation. A
general discussion on algorithm performance follows the actual results and some discussion
on pitch discrimination based on information presented in Chapter 3 is also provided. The
dissertation concludes after a general discussion on experimental versus theoretical scale
intervals and suggested future research.

4.2 Methodology

A brief insight into the methodology was given in Chapter 1. Here we give more
detail, even though some overlap exists.

Our samples come exclusively from the 5–CD publication of Professor Alygizakis
(2008) [1], even though more than one music piece was analyzed. The old vinyl recordings
were masterfully digitized and provide the most comprehensive as well as best preserved
audio collection of Nafpliotis’ music ever made available to the general public.

4.2.1 Data Preparation

Prior to collecting the data, the usual exploratory data analysis was performed. Even
though the author of this dissertation has had experience with analyzing Byzantine music
data from Nafpliotis’ tape recordings that have been circulating in Byzantine music circles,
some issues that existed in the older recording still exist now with Alygizakis’ CD’s. This is
not necessarily a disadvantaged as we will see soon, however.

For example, in older tape recordings the frequency of the music piece (and therefore
any tone of the musical scale to be tracked) gradually, but not linearly, decays over time.
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This is easily verified by comparing the frequencies of a tone snippet from the beginning of
the performance and another snippet of the same tone at the end (both of sufficient length,
see notes on sampling below). Depending on the length of the piece, the frequency difference
can be substantial. For example, for a piece about 3 minutes long a drop in frequency of
about 15–20 Hz can be observed.

Of course the reason for this downward frequency shift over time in a non–linear
fashion is due to the mechanical means by which the sound was originally recorded. Since
the gramophone was not electrically powered, but rather by means of a mechanical spring,
the force exerted by the spring to rotate the original record to be imprinted with Nafpliotis’
voice was dissipating non–uniformly (at the beginning the force dissipates less, and the more
the spring unwinds, proportion–wise, the force becomes weaker and weaker). This will cause
the angular frequency to slow down in a manner proportional to the force dampening and
the result is the drop in frequency1.

We mentioned earlier that this anomaly in the data is not necessarily a disadvantage.
Aligizakis’ decision not to remedy this frequency drop is actually beneficial for our purposes.
There are a number of methods that will stretch or compress the signal to achieve pitch
shifts2, but extreme care has to be taken as to the how the corrections will be applied,
hopefully by reverse engineering the effect of the non–linear force dissipation to obtain the
exact function. At any rate, it is better to have non–pitch–corrected data to extract pitches
from instead of pitch–corrected data, even if accurate documentation of the corrections
are available. No pitch correction was applied for the purposes of the data used in this
dissertation.

We mentioned above that not only one, but multiple pieces of music were analyzed.
The reason for that is partly this variable frequency shift. In general terms, any music piece
will not have noticeable frequency dissipation rate within the first minute or so (frequency
drops are in the order of a tenth or a hundredth of 1 Hz). We decided to analyze multiple
pieces using only that initial segment of the recordings whose spectra are more stable. Other
reasons for adopting this method is comparing consistency of the same performer across
performances of the same scale. Remember that some performances were years apart in
time. Nafpliotis’ is extremely consistent across time3.

Calculating and plotting frequency distributions for fundamental frequencies similar
to the ones shown in Figure (2.4), is another exploratory data analysis way of becoming more

1Prior to acquiring Aligizakis’s CD’s I was always hopeful that this downward frequency shift would be
due to the low mechanical quality of the second gramophone that later was used to transfer the signal to the
magnetic tape. Unfortunately, however, it was the original recording which shifted downward; the shift still
exists.

2One method of pitch correction is our familiar phase vocoder, specifically its synthesizing capabilities,
which is also implemented in Beauchamp’s SNDAN software. Not only can one adjust the hop–in and
hop–out sizes to time–stretch, but additional control on tempo is also allowed.

3Frequency differences for each tone across different music pieces were on average less than 1 Hz. Ironi-
cally, Nafpliotis was much more accurate in preserving interval values over time (preserving for 60 years what
his teachers had taught him) than the cutting–edge sound technology of his time (the gramophone couldn’t
preserve it for more than a minute). I suspect he still is more accurate than the cutting-edge psychoacoustics
knowledge of my time. This limits technology as well. Because no matter how accurately we can estimate
the fundamental frequency, pitch still seems to be an elusive concept.
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familiar with one’s data. Distributions from different tones, different time blocks within one
piece, across different estimators, and across music pieces are all useful in learning more
about frequency point estimates and their variances.

There are at least two kinds of frequency variances for this particular sample space4,
for any single tone: (1) frequency variance between snippets, and (2) frequency variance
within one snippet. The first kind indicates how precise Nafpliotis’ performance was (as
opposed to how accurate he is, which requires comparison with the theoretical frequencies;
see Section (2.3.3) for more details). The second would indicate merely the magnitude of
vibrato Nafpliotis used in that snippet, similar to the examples we gave in Figure (2.4)
for the trisyllable “me–nos–pros.” A typical between–snippet standard deviation is about
±4 Hz and a typical within–snippet standard deviation is about the same5. The fact that
the between–snippet variation is about the same as the within–snippet variation in the data
should provide some (weak) reassurance about the selection of the right snippets to represent
the right tones, since as we pointed out in Chapter 1, this is still a subjective process.

4.2.2 Data Collection

Our data collection method is simple, but time–consuming. It basically consists of
semi–subjectively deciding which snippet of music represents the corresponding tone one
needs to extract or estimate the fundamental frequency from, saving it as a separate uncom-
pressed sound file of the same high fidelity as the original CD signals, and then concatenating
all of those snippets together in MATLAB R©6.

Above the term “semi–subjectively” was used, and even though “semi” implies about
half of this process is subjective, it may be more than that. However, it is not entirely
subjective. To facilitate a more practical discussion on what is meant here by subjectivity in
data collection, let us ask the following question: “When the data collector selects a specific
snippet of sound to be part of the space of a specific tone, how does he know that that
tone really is part of the space?” In other words, are we creating a data collection process
that will inevitably render our analysis adversely selected against? The data collector is the
judge of what snippet makes it into the sample space. There is, therefore, an asymmetry
of information between the space and the snippet. To know if a snippet should be in the
sample, one needs to know its spectral content, but the content is not available until after the
snippet was selected into the sample and analyzed. If we go about this problem the reverse
way, that is collect the snippet, analyze it, and reassess if it should be in the sample or not,
then we are running the danger of using the spectral content as an integral part of the data
collection process, and this is an adverse effect, because the content is what the unknown to
be estimated. In other words, if we reverse the process, we decrease information asymmetry,

4Since the data population (or universe) is the entirety of Alygizakis’ CD’s, formally speaking the sam-
ple space is the music piece of which the sound sample snippets originated, and samples are the actual
concatenated snippets. Here I use the more friendly term “piece” instead.

5Using about a third of the standard deviation and then halving it since it is theoretically half above
and half below the mean. If the vibrato was produced by a violin, say, instead of voice, then we would not
need to half the standard deviation.

6MATLAB R© is a registered trademark of MathWorks, Inc.
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but at the expense of collection bias—only the snippets that should be in the sample are in
the sample. The the accuracy, not the precision, of the results are compromised.

For example, the collector is in the decision process of whether a snippet that was just
heard should be included in the sample space for estimating the frequency of tone F4=349.22
Hz. The collector knows subjectively that this must be the tone F4 since Nafpliotis’ voice
clearly is on that tone. Assume the tone is a clean vowel with no vocal embellishments, no
rapid frequency changes, no glissando between tones, no vibrato, and no abrupt energy or
amplitude fluctuations in the time domain. The collector “cuts” the snippet and includes it
in a space with another 35 snippets. The the concatenated signal is analyzed. The collector
sees that this tone is substantially lower than the average, let us say for example, about
346 Hz. Can the collector remove that snippet or not? If he does, he is using spectral
information to decide what the spectrum should be. Equivalently, imagine we devised an
algorithm that collects snippets for F4=349.22 Hz, similar to musical instrument tuning
software, that a note is played and the software detects its fundamental value and suggests
adjustments. But when an instrument is tuned, the tuner starts out with no spectral content
and wants to align his spectrum with the one suggested by the software. In existing pieces,
the spectrum is there and a decision should be made on whether a tone belongs within the
range of acceptable frequencies. In other words, even if an algorithm for data collection was
created, it would not at all be likely to perform the collection better than a human collector,
because the parameters of the algorithm are still input by the human.

One could argue that we can use a music score to see exactly when the performer’s
voice “passes through” the tone of interest and use every one of those tones in the resulting
concatenated signal. This is practically impossible for several reasons.

First, there is no music score to accurately represent what Nafpliotis is chanting. He
was, of course, taught the music using a music score, but the kind of music scores Nafpliotis
was using (unlike some more analytical newer versions) were not accounting for all the
detailed embellishments of the voice. They were more of a rough sketch of melodies and
the chanter had the artistic freedom to deviate as long as his deviations were traditional,
not arbitrarily7. One could devise an experiment where multiple chanters with experience in
transcribing music to paper would do so and if the agreement between those was significant,
an agreed–upon music manuscript could be used for this purpose.

Second, even if an accurate manuscript existed, not every time the voice passes
through the tone of interest a reliable enough snippet is produced. Many of the snippets are
contaminated with consonant sounds like “m” or “n”, or fricatives like “s.” Moreover, about
half the time a tone is touched by the voice, the time duration is too short. A snippet cannot
be infinitely small, for mathematical reasons. Since the Discrete Fourier Transform is at the

7This is another interesting topic, i.e., music memory. The older notation, the one Nafpliotis was taught
partially but did not use throughout his career, was almost purely retained by memory. A symbol could
mean an entire music line (called thesis) that could take several lines of today’s notation to be written out.
With the more simplified music notation that Nafpliotis was using, an accurate enough melodic line was
written out (by means of notational characters of quantity) along with the addition of a plethora of signs to
indicate not only by how much to go up or down the scale, but how to perform the line once there (notational
characters of quality). The notation we are using today is the same as the one Nafpliotis used, but more
detailed. So over the years, notation reduced the amount of memory storage needed.
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heart of many fundamental frequency estimators presented in Chapter 2, let us remember
how sampling in the time and frequency domain works.

Assume a snippet containing a clear vowel of the tone F4=349.22 Hz (see Figure
(2.1)) of our diatonic Byzantine music scale was selected to make it into the final sample.
Its duration is Ts = 0.5 sec. The sampling frequency of the music sample is a conventional
fs = 44, 100 Hz. The time resolution is therefore ∆t = 1/fs ≈ 2.267× 10−5 sec. The length
of the snippet sequence in samples (or bins) is M = fs · Ts = 22, 050. If we choose a window
length of N = 211 = 2048 samples8, the snippet will be segmented in M

N
≈ 11 frames. The

window “fundamental” period, then, would be TN = ∆t · N ≈ 0.0464 sec. The frequency
resolution is ∆f = 1/(N∆t) = T−1

N ≈ 21.53 Hz, which means that the amplitude spectrum
of the DFT will show amplitudes or energies at frequency bins separated by roughly 21.5 Hz
each. The first DFT frequency bin will show how much energy is contained in the snippet
that has 0 Hz (DC term), the second frequency bin (let us say n = 2 or at the 2/2048–th
position) will show how much energy there exist in the signal at the frequency 21.5 Hz, the
third at 43 Hz and so on and so forth. This will go on till n = N/2 and then the frequencies
for which energy is shown for will descend down to zero, that is to say, only values up
to fs/2 = 22, 050 Hz9, the Nyquist frequency, can potentially be represented spaced by a
resolution of 21.5 Hz. If our tone to resolve was a pure tone of 43 Hz, for example, the DFT
amplitude spectrum would should a spike at the third frequency bin (or frequency band),
assuming of course that our frequency resolution was 21.5 Hz exactly, not just rounded to
that number like we did here. If a tone’s frequency to be detected, however, does not coincide
exactly with any of the 1024 different frequencies represented in our N–point DFT output,
then the energy of that tone will be diffused over the entire window sample, what we referred
to in Section (2.3.4.1) as spectral leakage, the effects of which we hope to attenuate (or taper)
by windowing in the time domain before taking the transform.

The tone whose frequency we hope to estimate is F4=349.22 Hz. The 16–th frequency
bin would show the energy of a tone that happens to be at exactly 344 Hz and the 17–th
frequency bin would show the energy of a tone that happens to have be at exactly 365.5 Hz.
Our tone is, unfortunately, falling in between these two bins and thus we will have it diffused
across the entire window. However, it is closer to the 16–th bin, off only by 5.22 Hz. This
is about half of the worst case scenario which would have been a difference of ∆f/2=10.75
Hz. But still, the inaccuracy of this hypothetical scenario is 1.56 atoms or 26.1 cents.

We would like to be able to increase the frequency resolution substantially. By in-
spection of the formula

∆f =
1

N∆t
=

1

TN
=
fs
N

(4.1)

there are not many parameters to manipulate. One choice would be to decrease the sampling
frequency, fs, but that would limit how many partials would be included in our spectrum,
since half of this value is the cut–off for the maximum frequency to be included. This is
not detrimental for our purposes. We are tracking fundamental frequency, not the 49–th
frequency. Even for psychoacoustic operation specific to pitch (not other phenomena) the

8Modern FFT algorithms do not require the window length to be a power of two, but choosing it to be
so cannot hurt computational efficiency.

9That is an adequate maximum frequency since our ears cannot resolve anything more than that.
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Table 4.1 – Window length N in sample points, frequency resolution ∆f in Hertz, and
window duration TN in seconds. The following quantities are assumed constant: sampling
frequency fs = 44, 100 Hz; signal duration (individual snippet or concatenated snippets)
Ts = 0.5 seconds. The table illustrates the frequency–time resolution trade–off as a function
of window length, ceteris paribus. Since to accurately estimate the fundamental frequency
of a tone one complete fundamental window period must exist in the data, the duration
of the sequence must be longer than the duration of the window, Ts > TN = 0.5 sec. If
only powers of two are used as the FFT length, the best we can resolve in frequency for a
snippet of this duration is 2.69/2 ≈ 1.34 Hz. Please note that this is the resolution that
two peaks can be resolved, not how well we can pinpoint where a peak is. Zero padding
would fill in the spectrum and potentially help with locating the location of the peak more
accurately.

N [samples] ∆f [Hz] TN [seconds]

2048 21.53 0.046
4096 10.77 0.093
8192 5.38 0.186
16, 384 2.69 0.372
32, 768 1.34 0.746
65, 536 0.67 1.492

first handful of partials is enough. But, in general, we want to avoid band–passing our signal
by downsampling.

Another thing we could be doing is increase the window length N . This will help
our resolution indeed, but only if we collect more data samples so our snippet becomes
meaningfully larger, that is to say, adding new information to the spectrum. Zero–padding
(appending zeros at the right of the sequence) will not increase the frequency resolution
at all. It will make the DFT approximate the DTFT better, but the increase is artificial,
no new intelligence is added by adding more zeros. In other words, if we zero pad in the
time domain, in the Fourier domain there will be more frequency bins on the exact same
transform, but the width of the transform will not be narrower. The resolution is essentially
the same.

If it wasn’t for the uncertainty principle (see Section (2.4.2)) the solution would be
easy: infinitesimally increase the window size until the resolution in the frequency domain
approaches a continuous function. But then the resolution in the time domain would be
horrible. Not only the time resolution is useful for practical reasons, like for example calcu-
lating between–snippet variance (because one needs to be able to see when things happen
in time, like when a new snippet starts and the old one ended), but as a rule, one need to
keep a complete fundamental period in the snippet window if one wants to be comfortable
with the precision of the fundamental frequency estimate. As a consequence, the length of
the window (in units of time) cannot exceed the length of the sequence, i.e., TN ≤ Ts. This
is why the data collector cannot include a snippet of very small time duration.

In our example above the window length we chose allows for 11 fundamental periods,
the same number as frames. This is because the ratio of the length of the entire concatenated
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signal to the window length is the same in units of samples or units of time. So we can use
this trade–off between time and frequency resolution to make the best out of an imperfect
situation. As we saw above in Equation (4.1), time and frequency resolution are inversely
proportional to one another with the window length as a factor to be adjusted (we also
pointed out that downsampling is possible, but not a usual option in practice). If we increase
N by powers of two (at least initially), we see from Table (4.1) that the Ts > TN = 0.5 sec is
at window size 16,384 samples, which provides a frequency resolution of about 2.69/2 ≈ 1.34
Hz. Since powers of two are not required with more modern FFT algorithms, we still have
some leeway to fine–tune our frequency–time resolution. A window length of 22,000 samples
yields a frequency resolution of 2.00/2 ≈ 1.00 Hz with a window duration of 0.498 sec which
is theoretically still lower than the snippet length of 0.5 sec. Remember this is for illustration
purposes. In practice, it is preferable to include two or three periods, not barely one and
this check was performed on every concatenated signal that was analyzed.

It is important to note that Equation (4.1) assumes that the discrete transform’s
dimensions are as shown in Equation (2.2). Different notational conversions in textbooks
sometimes assume that either ∆f = 1 and ∆t = 1/N , or ∆f = 1/N and ∆t = 1, hence the
1/N factor in front of the forward or backward transform. But dimensional analysis dictates
that for the units to be correct, if Equation (4.1) is used to calculate the above relationships,
then Equation (2.2) must be used to calculate the DFT. This does not mean that different
program packages that utilize equivalent DFT definitions will not produce the same results.
It means that Equation (2.2) assumes Equation (4.1) for units to come out correctly.

4.2.3 Algorithm Implementation

The phase vocoder and McAuley-Quatieri algorithms were implemented in SNDAN
(see Section (2.5) for details). In many occasions output data from SNDAN were exported
and analyzed in SAS R©10. The rest of the algorithms whose results are included here were
implemented in MATLAB R©. Program code for the latter was either written by the author of
this dissertation, found at the appendices of books or articles that have been cited in Chapter
2 at the respective places where the mathematics of the different algorithms were used, or
were found and used directly or modified from the MATLAB R© Central File Exchange Web
site which can be found here http://www.mathworks.com/matlabcentral/fileexchange/.

Indicatively, information on SNDAN algorithm implementation was found partly in
Beauchamp (2007)11 [2], and for the rest of the algorithms in Quinn & Hannan (2001) [61],
and Stoica & Moses (2005) [80]. Again, this is not an abridged reference citation.

4.3 Results

This section presents the results obtained by implementing the following eleven algo-
rithms: (1) Phase vocoder, (2) McAulay–Quatieri, (3) Levinson–Durbin Algorithm, (4) YIN,

10SAS R© is a registered trademark of SAS Institute Inc.
11I would like to thank Professor James W. Beauchamp for helping me with initial set–up of his software

and file structure back in 2005.
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(5) Quinn & Fernandes Estimator, (6) Pisarenko Frequency Estimator, (7) MUltiple SIgnal
Characterization (MUSIC), (8) Periodogram, (9) Quinn & Fernandes Filtered Periodogram,
(10) Rife & Vincent Estimator, and (11) the Fourier transform itself.

Subsection (4.3.1) presents results of all eleven algorithms for sample data collected
from one musical piece for comparison. Subsection (4.3.2) gives a comprehensive table in-
cluding results of this dissertation, results from Tsiappoutas (2002) [85], a thesis leading to
this dissertation, and theoretical suggestions of what the frequencies of the diatonic scale
should be according to the two major theoretical schools of thought in Byzantine Music,
i.e., that of the Patriarchal Byzantine Music Committee (1883) [52] and that of Chrysanthos
from Madytos (1832) [18].

4.3.1 Algorithm Precision

Consistent with our definition of precision in Subsection (2.3.3), this subsection
presents fundamental frequency estimates for all eleven (11) pitch detection algorithms pre-
sented in Chapter 2.

Strictly speaking, the accuracy of the estimates cannot be determined in absolute
frequency terms. For example, the tone A4 seems to be at a frequency of 449.6 Hz, and there
is no industry standard to compare that against. In relative terms, however, upon taking
ratios between tone frequencies (or atoms or cents, for that matter), one can readily make
comparisons between scales that were extracted from data of different pieces of music. This
aspect will be explored more in the next section, where frequencies are shifted so that their
point of reference, tone A4, is at the same frequency of 440 Hz.

Algorithm performance in terms of computational efficiency was hinted throughout
Chapter 2. Algorithm performance in terms of accuracy cannot be determined, strictly
speaking, since, as we noted above, there is no standard to compare each one against. For
example, if the fundamental frequency of the signal were known a priori, one could devise
metrics to show distances between the standard and each estimate. In our case, however, f0

is the unknown parameter to be estimated.

The data in Table (4.2) are from one music piece only, which is entitled, “erhomenos o
Kyrios,” which roughly translates to “when the Lord was coming.” Casual inspection of the
frequency estimates themselves shows very precise measurements, within 80% of one Hertz.
We believe this estimation precision to be sufficient for our purposes. Remember that a ∆f
of one Hertz around the lower range of the tone frequencies, say 300 Hz, is about 0.34 of an
atom or about 5.7 cents. At about 600 Hz this difference is about 0.17 of an atom or about
2.88 cents.

We see here, and we will keep this in mind throughout the presentation of the results in
this Chapter, that algorithm precision is limited by our perception. This is a very justifiable
benchmark, just like the well accepted fs = 44.1 kHz which is imposed by our inability to
perceive any frequencies higher than half the sampling rate.
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4.3.2 Tabulated Results

The results are tabulated in Table (4.4). At the highest level, the table is sectioned
in three parts: (1) Frequencies in Hertz. These are the experimentally extracted frequencies
shown in Table (4.2), center–shifted so that the tone A4 is at 440 Hz. This enables us to
use tone A4 as a reference tone to ascend or descend along the scale space using atoms,
cents, or frequency ratios. The reasoning behind our decision to center–shift is mostly
practical: (1a) most of us are accustomed to thinking of A4 at 440 Hz as a yardstick that
makes tones of perfect intervals fall at exactly the same locations as Western music intervals
do. Shifting origins just makes comparisons more intuitive; and (1b) it makes it easier to
compare frequencies in cases where one chanter is contrasted with another. In this case, for
example, Nafpliotis with Stanitsas can be compared even at intervals that are not perfect;
(2) Atoms. These are given in both theoretical scales used here, i.e., that of the Patriarchal
Byzantine Music Committee (1883) [52] (labeled as “Committee”) and that of Chrysanthos
from Madytos (1832) [18] (labeled as “Chrysanth”); (3) Cents. These are basically a mere
transformation of the values in (2) solely to facilitate understanding of the table results for
readers not used to the Byzantine units of atoms.

The acceptable performance differences (apd’s) shown in Table (4.4) deviate signifi-
cantly from the jnd’s proposed by psychoacoustical experiments presented in Figure (3.3).
The reasons for this decision are multiple, as presented in Chapter 3. Most importantly it
was the restrictive nature of the narrowness of the most conservative findings among ex-
perimentalists. However, the pattern of the curves in Figure (3.3) were used in conjunction
with our two proposed customizations, specifically (1) the acceptable performance differences
presented in Subsection (3.6.2), which incorporates the notion of (2) Perceptual Confidence
Intervals presented in Subsection (3.6.1). For example, using the formula given by Ward
(1954) [89], namely, Ω = (f2− f1)/(2f1), and the fact that in this particular piece Nafpliotis
is stretching the octave by about 5 Hz, we can extrapolate that value downward one octave
using the lowest two values from Figure (3.3) as a guide12.

Table (4.4) compares two theoretical intervals on top of the two experimental ones. A
measure of how the two theoretical intervals compare to each other is not easy to construct,
but perhaps the use of just intonation intervals would shed light on some of the intervals in
Byzantine music that happen to be perfect, like a perfect fifth and a perfect fourth. The
same comparisons could be made with major (and minor) thirds, but to a lesser extend. Per-
fect intervals are universally understood as fundamental building blocks of scales for many
cultures. They are extremely fundamental to the harmonic structure of the scale. Major
and minor intervals, on the other hand, are also consonant, but may not exist purely as
independent and self–sufficient scale building units for other cultures. Table (4.3) compares
the two theoretical scales used in this dissertation, namely that of the Patriarchal Byzan-
tine Music Committee (1883) [52] (labeled as “Committee”) and that of Chrysanthos from
Madytos (1832) [18] (labeled as “Chrysanth”).

12The two lowest values in this case were that of Moore (1973) at the lower end (about 0.24 Chrysanthian
atoms) and that of Harris (1952) at the higher end (about 0.13 Chrysanthian atoms). A linear downward
relationship was assumed, for simplicity.
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Table 4.3 – Just Intonation vs Theoretical Scales. The Pythagorian perfect fifth and
fourth as well as the major third interval are contrasted to two Byzantine music theo-
retical guidelines. The better agreement between just intonation and Byzantine music as
compared to the less accurate representation of the major third may be indicative of not
only the fundamental nature of the perfect intervals, but also the theorists’ intent to rep-
resent those perfect intervals as accurately as possible. Percent differences are normalized
row–wise, i.e., each with respect to its corresponding interval (not a whole scale omnibus
normalization), and it should be interpreted as such.

Above it was mentioned that multiple pieces were analyzed. The results in Table (4.4)
are exclusively from the sound track entitled “erhomenos o Kyrios,” even though results from
at least one other track (“esose laon”) yield very close intervals.

4.4 Discussion

There are several points of interest in the results presented in Table (4.4). Most no-
tably, how well experimental results approach the theoretical suggestions. Before we discuss
this aspect of the results, however, some discussion on the theoretical aspect of intervals
alone should prepare us better appreciate the subtle differences between experimentation
and theory.

4.4.1 Theoretical vs. Theoretical

The need for establishing just noticeable differences in pitch discrimination was emi-
nent throughout this research. As seen in Table (4.2), the fundamental frequency estimates
are precise enough for us to feel comfortable using their output as valid data to compare
experiment to theory. Pinpointing how much is sufficiently enough, has been typically seen
(throughout this dissertation) as a function of our perception: if one cannot perceive a fre-
quency difference, clearly the performer is not expected to perform it and the listener is not
expected to distinguish it, even if it was produced my electronic means.

During this research, however, we have presented data on pure tones (that usually
yield worse pitch discrimination as compared to complex tones) that were limiting our ability
to make any meaningful judgments for the application at hand of the singing voice. The
great variability in the psychoacoustics literature led us to believe that maybe only some
experiment methods were applicable to our specific needs, but we also commented that the
justification of using one experiment over another would be a subjective point to argue
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for or against. Consequently, the author of this dissertation proposed a departure from
psychoacoustical experimentation towards other measures of pitch discrimination that are
not based on psychoacoustics per se, but on a hybrid of Nafpliotis’ data and experimental
patterns. In this section we see yet another source of possible jnd’s derivation: pure music
theory, with no connection to human experiments or deduction from human performance.

Table (4.3) presents some clear asymphony among just intonation intervals, the com-
mittee’s suggested intervals, and Chysanthian intervals. We alluded earlier to the fact that
atoms were rounded up to the nearest integer and that could be a source of slight disagree-
ment. If the theoreticians were not concerned about giving distinctions finer than one atom,
then maybe one atom was intended to be a theoretical jnd. Of course, the more atoms one
includes in the scale, the finer the distinctions would be made, so each situation should be
viewed in a normalized fashion, or in some ratio representation that makes each unit relevant
to its total. This argument is not very convincing, in our opinion. It seems that practicality
was the main concern of theoreticians.

4.4.1.1 Just Intonation vs Byzantine Intervals

Just intervals are considered the clearest theoretical definition for perfect intervals.
From Table (4.3) we see that in general the Committee’s intervals are closer to just intonation.
This can readily be seen by the magnitudes of the normalized percent differences (signs
indicate over– or under–shoot of the theoretical as compared to the just intonation intervals).

This could be an intentional goal of the Committee or a result of using their perception
of tonal intervals during the implementation of the special instrument they have devised and
used to determine their ratios. In the case of the first assumption, the closer proximity
between the Committee and the just is less interesting for the purposes of this dissertation
than the second assumption.

4.4.1.2 Committee vs Chrysanth

Even beyond single–atom disagreements, we see that for a major third Chrysanth’s
scale falls short from the just interval for more than one atom, about 2.11 atoms. The
Committee’s interval is closer to just major third, even though both of them exaggerate the
third with their full blown “ditone13.” In terms of percentage points, the Chrysanthian scale
wants the third about 8.8% greater than the just and the Committee’s scale wants it only
about 3.4% greater.

The disagreement between the two theoretical scales could be a stand–alone jnd. The
reasoning behind this proposal is the following: If two of the most influential interval theories
are in disagreement about a standard interval like the major third, it would imply that either
one of them was very wrong about their suggestions, or a difference of more than 5% of the
major third is not that significant to argue over.

13This fact in it and of itself is noteworthy. I always thought of the Patriarchal style exaggerating the
major third and from what we see in the experimental results, it is.
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In Byzantine music circles (except for very specialized discussions that are not part
of the every day practicing chanter’s activity), such differences are not really discussed. We
cannot help but to conclude that accuracy of the theoretical scales were not the primary
priority of theoreticians. The exact performance of intervals is based on verbal teaching, not
in the numbers displayed on a page. A teacher might point to a number and remind the
student to adjust some of the intervals during lessons, but the aural input is valued much
more than the visual.

4.4.2 Experimental vs. Theoretical

Experimental results as shown in Table (4.4) are in good agreement with the theo-
retical. Probably the only exception would be the A4–F4 major third, which is exaggerated
by both chanters, even though Nafpliotis is closer to the theoretical guidelines than Stan-
itsas is. More specifically, the theoretical suggestion is 24 atoms, Stanitsas performs this
third at an astonishing 26.8 atoms whereas Nafpliotis yields a 25.5–atom major third (both
measurements are in Committee’s atoms).

The second noticeable difference between the two chanters would be the A4–C4 inter-
val, which in the Western scale it would have been a minor third, but in the Byzantine scale
it is what the two theoretical guidelines give us (see Table (4.4)). A suggested 18–atom in-
terval, Stanitsas undermines it by about 1.5 atoms at 16.5 atoms, and Nafpliotis exaggerates
it by 70% of an atom, i.e., at 18.7 atoms. This may have something to do with the fact that
Nafpliotis stretches his octave slightly. Of course, anything more said on this issue would be
purely subjective.

In the lower tetrachord, the interval E4–F4 is diminished to accommodate the stretched
major third.

4.4.3 Nafpliotis vs Stanitsas

In Tsiappoutas et al. (2004) [85]) it is noted that Stanitsas’ performance of F4 is
substantially lower than the theoretical. We see evidence now that Nafpliotis is not so low
as Stanitsas in this respect. However, they both exaggerate this major third to some extent.

In the second tetrachord, Nafpliotis seems to be more robust in the lower than in the
upper end. His upper end is exaggerated slightly by about one Committee atom, or about
5 Hz, an octave stretch that may be the result of either perceptual pitch shift or intentional
artistic license. The interval A4–B4 is for both chanters over the theoretical suggestion,
but Stanitsas’ first step into the tetrachord is not as decisive. Even greater differences are
exhibited in the midst of the second tetrachord, with interval B4–C4 showing Nafpliotis’ clear
intentions to either undermine the pure C4–D5 tone, or overstretch it. He does the latter.

In the first tetrachord upwards we observe a very good agreement between the two
chanters, at the expense of theory. The interval E4–F4 is consistently lower than both
theoretical suggestions, with both chanters being within 0.3 atoms of each other. This could
be (and probably is) a side–effect of the over–stretched major third above. The interval
D4–E4 is also very stable among chanters and in very good agreement with theory as well.
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The interval A4–D4, the perfect fifth, which theoretically in the just intonation space
should be at a clear 1.5 factor, Nafpliotis achieves an astonishingly accurate 1.50017. This
fact alone should make us feel very comfortable about the performer and the algorithms.
The two perfect fourths, one in each tetrachord, are very well established as well, with the
lower one being at a factor of 1.327 and the overstretched upper one being in a factor of
1.344. The upper perfect fifth is also overstretched, at 1.519.

4.4.4 Thesis vs Dissertation

In general, the work done for the dissertation research was both broader and deeper
than the work done for the thesis research. First, where only the Fourier transform was
utilized in the thesis research, there were ten (10) additional algorithms used in the disser-
tation research. The assurance we achieved by the close results of the several algorithms is
very comforting. Any one algorithm output would be always suspicious, but such general
agreement between algorithms cannot happen by chance.

There were several psychoacoustical findings, comments, theory, practical results that
were part of this dissertation, but probably outside of the scope and comprehensiveness of
a thesis work. Even though these additional bits and pieces were not directly related to the
detection of fundamental frequencies, they did offer insight into the qualitative aspects of
Nafpliotis’s voice through quantitative findings.

4.5 Conclusions

Comparisons (and some conclusions) among theoretical scales have been provided
earlier. Theoretical comparisons are insightful for understanding what a person performs
in practice, because they reveal the suggested foundations upon which a piece should be
performed. On the other hand, empirical comparisons, especially from renowned chanters
like Nafpliotis, are not the foundation of theory, but it is arguable if they should be. In
other words, there is an obvious one–way process–flow between theoretical and empirical,
but the reverse is not necessarily true, unless the empirical is performed by such an authority
on the subject that outweighs the theoretical. To support this notion, one could also argue
that the empirical is what survived through the centuries in reality, and the theoretical
might have been off due to many factors, one of them being the technological limitations
of the times. Whatever framework conclusions are placed in, comparisons among music–
theoretical suggestions for the same genre could have been made without the contribution
of this dissertation, which concentrates on setting the foundations for reliably and precisely
estimating the diatonic scale empirically. Therefore, purely theoretical comparisons will be
left to other, more capable researchers, like ethnomusicologists. In this section we concentrate
on the empirical conclusions, with direct references to the theoretical comparisons.

There are five (5) moving parts to the following conclusions. The empirical informa-
tion on the diatonic scale is due to (1) Nafpliotis and (2) Stanitsas; the theoretical information
on the same scale is due to (3) Chrysanth, (4) Patriarchal Committee, and (5) just intona-
tion. It was found that breaking down the conclusions by interval of interest is the most
insightful way to present. The following subsections do this. The final subsections point out
some high–level, general conclusions.
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4.5.1 Octave

The octave is universally accepted as the most perfect of all intervals, save for the
unison itself. It is the easiest to hear and to perform. Most psychophysical experiments have
had subjects double or half the frequency of a modulated tone, indicating the octave above
or below. It is this apparent and universal perfection of the octave that makes it especially
difficult to interpret Nafpliotis’ tendency to overstretch it by fifteen (15) cents14.

Inconsistencies between the experimental and theoretical such as these, justify our
decision to use eleven (11) different algorithms for the extraction of the diatonic interval
fundamentals. Otherwise it might seem an apparent data glitch or algorithmic oversight.
Special care was taken to rule out most controllable possibilities for such mistakes, both in
data collection and in algorithm implementation. The algorithm consistency alone should
provide comfort in these results.

Methodology and algorithms aside, one could conjecture that this inconsistency be-
tween theory and practice is due to the performer’s poor delivery of the performance or
inadequate musical education. This justifies our decision to choose Nafpliotis as our uni-
verse space. Anyone with moderate understanding of who the performer is should find it
very easy to dismiss such arguments in a moment’s thought. But let us not impose on
the reader’s ability to judge the sample, let us form another question that could help an-
swer if the inconsistency is due to poor performance. If this were true, then other intervals
which are universally accepted as fundamental building blocks of scales would inevitably be
underperformed, as, for example the perfect fifth.

4.5.2 Perfect Fifth

Nafpliotis performs the perfect fifth interval A4–D4 astonishingly accurately15 with
reference to the just intonation suggestion. The just intonation suggestion for a perfect fifth
is about 702 cents; the Committee’s suggestion is 700 cents; and Chrysanth wants his perfect
fifth to be 705.9 cents. Nafpliotis chooses to perform it closest to the just, with 702.2 cents.
In regards to just intonation, the difference between theoretical and experimental is minute.
It is about twenty (20) times below the sensory just noticeable difference of about 4 cents
(that was deemed by us too narrow to have any practical meaning) and 150 times below the
acceptable performance difference of 30 cents.

We will operate on the safe principle that such accurate results do not happen by
chance. A poor performer is not likely to achieve such perfection by accident. In reference
to the previous section, we can then ask, “was the octave overstretch erroneous?” We can
relatively safely answer “No” based on the following argument: it is highly unlikely that
Nafpliotis performs the perfect fifth, which is harder to perform than the octave, with such
accuracy and overstretches (consistently, the octave was not once understretched across
pieces) the octave by such a gross amount.

14This fact was not only true to this specific music piece analyzed for this dissertation. Nafpliotis seems
to overstretch his octaves even by more than 15 cents in other diatonic pieces as well, not presented here

15Here we are allowed to use the word “accurate” instead of “precise,” because we refer to intervals, which
are relevant to each other’s frequencies, not absolute frequencies.
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The validity of Nafpliotis’ performance is an important point to establish, because
this is the basis of our proposed acceptable performance difference measure. Had Nafpliotis’
performance been proven unreliable, which it has not, then methodology and algorithmic
precision should be also questioned.

Stanitsas overstretches his fifth significantly at 721.7 cents, even though it is below the
acceptable performance difference of 30 cents16. Clearly, the two chanters (an experimental
vs experimental comparison) have perceptible yet musically acceptable differences.

4.5.3 Perfect Fourth

The perfect fourth is not so consistent with theory. The Committee (as well as
Western music) wants this interval at 500 cents; Chysanth at 494.1 cents. Nafpliotis performs
is at 491.1 cents and Stanitsas at 512.9 cents. The difference between the two chanters (which
is the widest range possible among all theoretical and experimental values, that is to say,
the most extreme values relevant to the fourth) is 21.8 cents, more than two thirds of the
apd. Again, acceptable musically17, but different significantly for the trained ear.

Again, we see Nafpliotis closer to Chrysanthian and just tonality. Just intonation,
long considered as the preferred suggestion for all vocalists (Western and Byzantine alike)
wants the fourth shorter than the Western. Chrysanth minimizes it even more. And Nafpli-
otis places it even shorter. Stanitsas is directionally opposite of all theoretical trends (that
span from 500 cents to 494.1 cents).

4.5.4 Major Third

The major third is the only interval exhibiting such huge difference between the just
and Byzantine suggestions. The just intonation gives this interval a depth of 386 cents,
whereas the Committee (and also Western) want it at 400 cents and Chrysanth is again
overstretching it at 423.6 cents. Nafpliotis is remarkably close to the Chrysanthian sugges-
tion, while Stanitsas exaggerates the already stretched Chrysanthian interval.

This is the only noteworthy time that Nafpliotis departs significantly from just and
abides more with Byzantine, specifically Chrysanth. This may be one of the trademark
intervals for the Byzantine diatonic scale, so uniquely situated by Chrysanth.

16Remember, this is the acceptable difference. It implies that differences greater than this threshold are
not acceptable, based on Napliotis’ overstretched octave.

17Maybe a clarification is in order on the term “musically acceptable.” We do not mean it in the sense
that in Byzantine music values below the apd are acceptable. To the contrary, in Byzantine music, a music
based on microtonal intervals, a much smaller value is what is considered traditional. Musically acceptable
here is meant in regards to producing dissonance. This point in it and of itself is worth another whole
dissertation. The determination of what is traditionally unacceptable even though it is consonant is a very
interesting topic. Traditional chanters like Nafpliotis are not forgiving of the slightest deviation from the
norm. Yet, other traditionalists, like Stanitsas (of lesser stature, to be sure) do perform intervals differently.
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4.5.5 Second

The interval G4–F4, a major second, is overstretched by Stanitsas by almost an entire
apd. The Committee and Chrysanth assign 200 and 211.8 cents, respectively. Nafpliotis
performs it at 214.1 cents, in good agreement with Chrysanth, and Stanitsas at 237.5 cents.

This was one of the major findings of Tsiappoutas et al (2004) [?], in connection
with Stanitsas’ overstretched major third. As we see now clearly, this is the reason why his
third is stretched as much as it is, due to this second, not the one above it. A very peculiar
departure from reasonable expectations, indeed.

4.5.6 Second Tetrachord

In the second tetrachord Nafpliotis ascends very decisively and assertively from the
outlet. His B4–A4 is a surprising 180 cents, far above his own E4–D4 of 167.5 cents, which
is in good terms with the Committee (166.7 cents) and less with Chrysanth (158.8 cents).
His second interval into the upper tetrachord is also in good agreement with the Committee
and a good deal higher than his corresponding second interval of the lower tetrachord.

This tonal behavior (at least the ascending side of the scale) is sometimes described
as “real diatonic,” in the sense that the exaggeration is in accordance with the diatonic
character of the scale.

Additionally, this kind of very aggressive entrance into the second tetrachord might be
preparing the grounds for the octave overstretch that we discussed in an earlier subsection.

4.5.7 General Conclusions

In general terms, Nafpliotis seems to be more just than Byzantine most of the times,
and he is Byzantine, Chrysanth is his preferred structure, at least in the first tetrachord of
the diatonic scale. The major third is one of the very prominent exceptions, which renders
this interval uniquely Byzantine in theoretical terms.

Stanitsas’ tendency to exaggerate the major third interval A4–F4 is still evident in
Nafpliotis’ results, but to a lesser extent. Nafliotis ascends in a more robust and diatonic
manner in the second tetrachord than Stanitsas.

Nafpliotis’ over–stretched octave has given rise to a newly defined just noticeable dif-
ference definition, which is a hybrid of psychoacoustical experimental results and Nafpliotis’
data. The concepts of acceptable performance differences (Subsection (3.6.2)) and Percep-
tual Confidence Intervals (Subsection (3.6.1)) were both used as a final metric of acceptable
performance deviation. Other ways of presenting or conceptualizing jnd’s or acceptability
measures suitable for the application at hand were explored along the way.

Overall, the author of this dissertation is satisfied with the agreement among differ-
ent algorithms in detecting and estimating the fundamental frequency of acoustical signals
from Nafpliotis’ recordings. The psychoacoustics aspect of providing a clear–cut acceptable
frequency deviation, however, is not as straightforward as the author had hoped it would be
when this effort started several years ago.
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4.6 Future Research

Suggested future research has to do more with the psychoacoustics portion of this
dissertation and the inclusion of more diverse data rather than the pure detection and esti-
mation of signals.

Frequency estimation is an established field with many different tools to choose from
for different applications. For the estimation of frequencies from a singing voice acoustical
signal, several have been utilized in this dissertation, and certainly the list of the algorithms
included was not exhaustive. Of course, there is always the possibility of future research on
more customized algorithms than the ones currently known, but we feel that the precision
of the estimates we achieved as presented in Table (4.2) is satisfactory for our case. Any
better precision is limited by our perception.

When it comes to establishing an authoritative apd’s specifically tailored for the
singing voice for microtonal intervals, there is no black and white answer. Several ways of
defining such metrics were proposed in this dissertation research, but it would be outside the
scope of this paper to explore this aspect more. Probably the most promising way for estab-
lishing an apd specific to our situation would be a combination of psychoacoustics literature
and data directly based on Nafpliotis’ performance. For example, one could construct tones
from resynthesized signals from Nafpliotis’ voice and have subjects not only distinguish aural
jnd, but also reproduce performable apd’s.

One distinction we made specific to jnds was between aural and performable. A
series of experiments could explore differences between subjects that have musical training
in Byzantine music vs not musically trained. A combination of pure and complex tones
based on resynthesized signals from Nafpliotis’ voice could shed more light on the issue of
pure vs complex tones jnd, both aural and performable.

Furthermore, the octave overstretch of 15 cents found in this piece will not be the
same across all pieces by Nafpliotis, or across chanters. Maybe a normalized value can be
formalized for future benchmarking.

Another interesting aspect to explore is if this octave overstretch was intentionally
or unintentionally done. A factor into all these might be the architectural acoustics of the
cathedral which echo the voice in complex ways. Maybe chanters in cathedrals and opera
singers do not behave similarly when it comes to octave stretches.

The groundwork done in this dissertation lends itself as a foundation for a host of data
analyses from chanters of different schools of thought (see discussion relevant to progressivists
and traditionalists in Section (1.1.2). Performers representative of one school of though
can be analyzed to establish an acceptable variation in fundamental frequencies within one
group, and that variance could be compared to variation within another school of thought.
Of course, direct mean differences could also be compared and analyzed statistically.
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