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ABSTRACT 

A series of rigid azetidenyl-based methamphetamine analogs were synthesized from 

commercially available N-Boc-azetidinone. The benzylideneazetidine analogs were prepared via 

a Wittig olefination via the ylides generated from the corresponding triphenylphosphonium 

benzylhalide salts. The substituted benzylazetidine analogs were synthesized from the 

corresponding benzylideneazetidienes via hydrogention over palladium and platinum catalysts. 

The benzylideneazetidine and benzyliazetidine analogs were evaluated at monoamine 

transporters as a part of preliminary structure-activity study for the development of novel 

monoamine transporter ligands. The binding affinities of the azetidine analogs were determined 

at dopamine (DAT) and serotonin (SERT) transporters in rat brain tissue preparations. The 

preliminary in vitro binding studies revealed that the rigid scaffold of the azetidine ring system 

was an effective substitution for the 2-aminopropyl group of methamphetamine and led to 

compounds with nanomolar binding affinity at dopamine and serotonin. In general, the 

benzylideneazetidine analogs were more potent than the corresponding benzylazetidine 

analogs. In addition, the azetidine analogs were more selective for the serotonin transporter 

than the dopamine transporter. The 3-(3,4-dichlorobenzylidene)azetidine (24m) was the most 

potent analog of the series with Ki values of 139 nM for SERT and 531 nM for DAT (DAT/SERT 

= 3.8). 

 

 

 

Key words: dopamine, serotonin, norepinephrine, methamphetamine, amphetamine, azetidine, 

psychostimulants  
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INTRODUCTION 

 Psychoactive substances are substances that when taken, alter perception, mood 

and/or consciousness. Humanity has a lengthy history of using psychoactive 

substances for reasons ranging from spiritual to recreational. In today's world, most of 

these substances are prohibited without proper medical oversight. Despite the legal 

prohibition, illicit drugs are a global phenomenon and addiction appears to be pandemic. 

 One group of particular psychoactive substances are amphetamines. The most 

recent SAMHSA reports show that while the use of amphetamine type stimulants (ATS) 

appears to be declining in the US, the UN has recently reported that globally, ATS use 

is increasing.1,2 These stimulants are easily synthesized, cheap, readily available and 

highly addictive. Unlike some other psychostimulants, methamphetamine is known 

possess neuro-toxicity.3 Problems stemming from amphetamine addiction range from 

poor individual health, criminal activity and environmental hazards stemming from meth 

labs. As of this writing, there are no good pharmacotherapies for those seeking 

treatment. 

Addiction  

 Drug addiction is a cyclical condition typified by two major characteristics: the 

compulsion to take the drug and the user's loss of intake control.4 The DSM-IV breaks 

the addiction cycle down further into three stages: preoccupation/anticipation, binge-

intoxication and withdrawal-negative effect.5 Between these stages the user may take 
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larger than intended amounts of the substance and develop tolerance which leads to 

further health complications.  

 Statistically, many more people try psychostimulants than actually become addicted 

to them. Research has shown that there are both genetic and environmental factors 

which influence our ability to become addicted and subsequently, our likelihood for 

relapse. Studies focusing on families and twins have shown genetic influence estimates 

ranging from 30-60%.6 Differences in the dopaminergic network have also been linked 

to impulsivity and drug craving.6,7 The underlying neurochemical bases for certain 

psychiatric conditions (e.g. schizophrenia, bipolar, depression, etc) is often temporarily 

ameliorated by the effects of psychostimulants, however the user also runs a significant 

risk of developing dependence due to habitual self-medication.  

 The chronic exposure to drugs of abuse induces molecular neuroadaptations that 

occur throughout the nervous system as well as in the dopamine receptors in the 

nucleus accumbens.4 These gradual changes in the neural substrate have given rise to 

the theory of addiction as a disease of gradual neural changes that are driven by the 

body's need to maintain homeostasis. As exposure to the drug persists, other 

physiological systems are recruited along with the neuroadaptations causing the 

organism to set new 'normal' parameters termed allostasis.4  

 The prolonged exposure to psychoactive substances alters neuropathways and 

substrates to create a new allostatic physiological state which can have many adverse 

effects to mental and physical health. Since any given physiological parameter (e.g. 

blood pressure) can be controlled by numerous but mutually interacting signals; altering 
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any of these can lead to a multitude of changes in various feedback loops, further 

complicating the system's ability to regulate. Given that many psychostimulants act on 

one or more neuroreceptors, this increasingly complicates the homeostatic picture.  

 Since levels of neurotransmitters and other variables have been significantly altered, 

the system goes into what has been termed an allostatic state. While an individual is in 

this state, their ability to cope with further stress is impaired as the margins for coping 

have decreased due to their altered physiological state.4 The constant stress of the 

system and its impaired ability to relax increase the odds of breakdown and illness. The 

term "allostatic load" is used to describe this physiological tab the body runs while 

performing under such stress. This running tab leads to the quickened deterioration of 

tissues of the brain, skin and/or vital organs. Other side effects are due to the impaired 

judgment of the user, such as needle-sharing, which can easily lead to the spread of 

disease. Users of psychoactive substances often show heightened emotional states and 

compulsive urges to use or get  drugs, making them potential hazards to their 

communities. 

Amphetamine History 

 The story of amphetamines begins with  over 5,000 years ago in China, where 

herbalists and healers used Ephedra as a circulatory stimulant, diaphoretic, antipyretic 

and respiratory aid. Other species of Ephedra were utilized for medicinal value in 

Greece, Russia, India and the Americas.10 Its value as an appetite suppressant, 

respiratory aid and (in the Americas) venereal disease treatment, made it an extremely 

popular medicine. Its dominance as a respiratory aid went virtually without competition 

for many years. Japanese chemists began to study the medicinal quality of the plant in 
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the 19th century. In 1885, Nagayoshi Nagai isolated the alkaloids responsible for 

activity, l-ephedrine ( 1, 40-90% of the total alkaloids), d-pseudoephedrine (2). Two 

other notable alkaloids were isolated, norephedrine (3) and norpseudoephedrine (4), 

which have limited therapeutic use. On the other side of the world in 1887, 

amphetamine (5) was synthesized in Germany. In 1893, Nagai went on to synthesize a 

derivative of ephedrine, methamphetamine (6). 

Figure 1: Ephedrine alkaloids and derivatives 

          

  

 In 1887 a colleague of Nagai named Miura performed various animal studies on l-

ephedrine to demonstrate any pharmaceutical qualities. His findings suggested that the 

drug was "too toxic" for use in the whole animal, but it could be safely used to safely 

(reversibly) dilate the pupils - a stark contrast from atropine (a drug that was commonly 

used at the time, whose effects may last upwards of a week).11 The epinephrine-like 

qualities of the ephedra alkaloids were described by several other chemists, but it was 

not until the 1924 paper by Chen and Schmidt that Western science began to examine 

ephedra. 
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 Their subsequent discoveries of ephedra's side effects - specifically the capillary-

constriction effect offered a unique therapeutic for a common problem - nasal 

decongestion.12 It was introduced into the market in 1926 by Lily and became very 

popular, especially among sufferers of asthma.11,12 Since the active ingredients are 

readily available from nature, many sought to control the import of the plant. The import 

control coupled with the fact that extracts of ephedra contained a significant portion of d-

pseudoephedrine and the 1937 invasion of China by the Japanese (which led to 

ephedra shortages) spurred a surge of research into alternatives.11 It is this search for 

alternatives that ultimately led to the mass production and use of amphetamines.  

 During the 1920s, Gordon Alles was one of those researchers seeking to capitalize 

on ephedra's anti-allergy abilities. His research focused in on the sulfate salt of 

phenylisopropylamine (amphetamine) which he tested on animals and observed it had 

similar effects and was not "terribly toxic."12  In 1929, he tested the compound on 

himself and observed the following: "a feeling of well-being, palpitation, and eventually a 

sleepless night ... in which his mind seemed to race from one subject to another."12 

However, it was amphetamine's usefulness as a bronchodilator and decongestant that 

eventually led to it overtaking ephedra and found Alles with a patent on amphetamine.13   

 Smith, Kline and French filed a separate patent on an amphetamine inhaler called 

"Benzedrine sulfate" in 1933 which was little more than amphetamine in a small tube.12 

A year later, Alles would transfer his patent to Smith, Kline and French who further 

developed the amphetamine salts as drugs. In 1937, Smith, Kline and French received 

the approval from the American Medical Association to advertize benzedrine sulfate for 

conditions ranging from narcolepsy, post-encephalitic Parkinsonism (a condition caused 
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virally that leads to the deterioration of the cells of the substantia nigra and Parkinson's-

like symptoms) and minor depression.13 The popularity of benzedrine (amphetamine) 

eventually led to the marketing and over use of specific stereoisomers and 

methamphetamine (methedrine).  

Global Usage and Addiction of Amphetamines 

 The would-be "golden age" of American meth- amphetamine use could be thought of 

as a period from the late 1920s to around 1970.12,13,14 Even before the onset of World 

War II, the drugs had gained widespread attraction for their ability to increase the 

activity and enhance the mood of the user as well as the drugs' ability to enhance 

weight loss.13 In 1939 benzedrine sulfate (amphetamine sulfate) received FDA approval 

for the treatment of obesity.13 Compared to other methods of treating depression (such 

as the popular frontal lobotomy), amphetamines allowed for a much less intrusive 

treatment of the condition.13 

 The ability of meth- amphetamine to keep people alert for days on end was exploited 

during World War II.12-15 The Allied and Axis sides both rationed out benzedrine 

(amphetamine) to soldiers to help alleviate fatigue and improve mood and 

endurance.14,15 After the war, a paper by Monroe and Drell suggested a link in military 

service and "agitated hallucinating patients" whom were addicted to "eating the contents 

of benzedrine inhalers" (~250 mg of amphetamine).13,16 Both physicians were stationed 

at a military prison and had noted that only 11% of the addicted patients had used a 

form of amphetamine before their military career.13,16 A significant amount (27%) had 

been exposed to amphetamine while in the military, usually by an officer in the form of a 
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pill compared with 5% of non-addicted inmates.13,16 It is estimated that around 16 million 

Americans had been exposed to amphetamine (in the form of benzedrine sulfate) during 

their service in the military.13 Since the benzedrine inhaler was readily available without 

a prescription, this had the effect of a massive "word of mouth" campaign amphetamine 

exposure and potential addiction.   

 By the end of the war in 1945, over 500,000 civilians in the US were using 

amphetamine for everything from weight loss to depression.12-17 Stockpiles of 

amphetamine (and methamphetamine) became more readily available in the years 

following the war, and misuse was becoming more common.12-17  As legal usage 

increased, so did the illicit trade and addiction of amphetamines, though it would take 

years before the addictive properties of the drugs were recognized. The black market of 

amphetamines provided a product for anyone looking to improve his performance either 

in studying or athletically, or looking to stay awake during long-hauls.   

  During the 1950s, the first references to intravenous amphetamine usage appear, 

but was not a widespread practice until the 1960s.14 In the early '60s the government 

began to crackdown on pharmacies which sold injectable amphetamines. This 

crackdown led to illicit production going underground and giving rise to the now 

infamous home laboratories. By the 1970s, the usage of amphetamines declined 

considerably thanks to the DEA crackdowns and FDA scheduling of the drug.14,18 In the 

1990s, the DEA began a crackdown of cocaine which began a resurgence in 

amphetamines thanks to traffickers bringing the drugs from Mexico.  
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 Outside of the US, amphetamine usage has been prevalent since the 1950s and 

1960s.2,12-15,17 Japan has had two amphetamine addiction epidemics. During World War 

II, the Japanese also rationed out methamphetamine to their troops as well as their 

factory workers to increase out-put. During and after the war, supplies of 

methamphetamine  became freely available to the public.2,17,19 At one point, 5% of the 

population of Japan was addicted to meth- amphetamines, around one-tenth of which 

were estimated to have experienced methamphetamine-induced psychotic symptoms.19 

This led to intervention by the government in 1951 when the stimulant control act was 

passed. A resurgence of amphetamine addiction occurred again in the 1980s and is 

ongoing. This second wave of amphetamines are either made in clandestine labs or are 

trafficked in from abroad. Given the problematic history of amphetamines in Japan, in 

2008 a decision was made to ban all amphetamines - including pharmaceutical 

preparations (Adderall).2,20 Travelers now bringing such medications into the country are 

arrested on the spot.20 

 In eastern Asia, methamphetamine abuse has taken over as the most commonly 

abused drug, surpassing heroin, cocaine, opium and cannabis. While many of these 

drugs are manufactured in places such as China, Myanmar or the Philippines, 

methamphetamine seized in places such as Japan and South Korea often can be 

traced to west Africa.2 Western and southern Asia are experiencing a similar situation 

as seizures of amphetamines are increasing and countries which one imported the 

stimulants are now exporters (Iran).2,22 This may change as countries around the world 

are drafting much harsher legislation and are receiving advanced training in the 

detection and prevention of drug production and distribution.21,23    
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 Europe's usage levels of amphetamines appears to be steady.2 Seizures in countries 

such as Germany are increasing, but the overall usage throughout the continent 

remains consistent. Unlike the global trend, amphetamine is much more popular than 

methamphetamine. Amphetamine is usually produced in Poland or the Netherlands, 

whereas the Czech Republic is the main manufacturer of methamphetamine.2,23  

 Detailed knowledge of the production and use of amphetamine-type stimulants in 

Africa is lacking.2 There are three major known sites of production within the continent, 

Egypt, Nigeria and South Africa. Data about lifetime use is limited given the perennially 

stretched resources of most governments in the region. It is known that amphetamine 

production has occurred throughout Egypt since before 2000 but its role as a regional 

supplier is not well understood. A tanker of methamphetamine that had its origins in 

Egypt was recently seized in Saudi Arabia.2 Recent reports from Nigeria present a 

potential epicenter both as a regional manufacturer and a global distributer. 

Methamphetamine from Nigeria has been seized by Japanese authorities in increasing 

amounts since 2009.2 Similarly, South Africa has been implicated as a significant 

supplier of methamphetamine to Australia. While the country continues to strengthen 

legislation controlling the import of important precursors, increasing amounts of 

amphetamines are being seized.23 

 In central and South America, there appears to be an on-going exchange with 

Europe of cocaine for amphetamines. While few labs have been raided, production is 

known to be on-going in places such as Argentina and Brazil. Use of amphetamines is 

highest in countries such as El Salvador (3.3%), Belize (1.4%) and Costa Rica (1.3%).2 
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The current concern is now focused on the increase of production given that countries 

in North America have tightened controls on precursors. 

 As of this writing, amphetamine type stimulants are the second most commonly 

abused drug in the world (behind cannabis) - far outstripping heroin and cocaine.2  

Smuggling is a major issue in many countries, and given that the origins of many seized 

dosages are from unstable or authoritarian regimes, there are legitimate security 

questions (fighting wars, sponsoring terrorism, etc). The physiological and psychological 

toll amphetamines take on the user and his community, these drugs present a global 

sociological hazard. In 1971, the DEA scheduled methamphetamine and amphetamine 

as Schedule II substances.24 

Amphetamine Mode of Action Overview 

 Amphetamines can be ingested orally, intravenously or by smoking. Users describe 

different experiences depending on how the drug is ingested; smoking and injection 

leads to an intense rush that lasts only a few minutes, while snorting and oral routes 

lead to a less intense high. In many countries, amphetamines have become the number 

one illicit injecting drug. The half-life of the drug depends on the method of ingestion, 

where oral administration has an elimination half-life of 10.1 hours and intravenous 

administration has a half-life of 12.2 hours.19,25   

 Peak plasma concentrations also vary by method of ingestion; injection leads very 

quickly to peak concentrations, smoking meth- amphetamines requires a few minutes 

and oral intake gives a peak plasma concentration after around 3 hours.19,25 The high 

attributed to amphetamine usage can dissipate before the blood concentrations of the 
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drug fall substantially, leading many users to ingest very high dosages of the substance 

and further fueling tolerance.26 Typical of stimulant users, amphetamine type stimulant 

users tend to follow a "binge and crash"-type pattern of use where users will be awake 

for days taking the drug before finally 'crashing' (often sleeping for several days).26 

 Once ingested, amphetamines readily cross the blood brain barrier. Once in the 

central nervous system, the drugs are extremely active with the monoaminergic 

(especially dopaminergic) transporters. Generally, the extracellular amphetamines bind 

to the uptake carriers where they are then transported into the cell. Once in the cytosol, 

amphetamines are able to enter the neurotransmitter storage vesicles by bonding to the 

vesicular monoamine transporter (VMAT-2) which begins to exchange the 

neurotransmitter (e.g. dopamine) for the amphetamine.27 The loss of the reductive 

influence of the vesicles results in cytosolic oxidative stress which may also play a role 

in the neurotoxicity typical of methamphetamine.17  In the case of dopamine, as the 

concentration of it increases in the cytosol, the dopamine transporter bonds to the 

cytosolic dopamine and transports it from the terminal into the synaptic space.  

 There has also been some consideration of a 'weak base model' which states that 

amphetamines can redistribute catecholamines from synaptic vesicles by collapsing the 

vesicle proton gradient.17 The proton gradient usually provides the free energy required 

for catechol accumulation, with this gradient disestablished they simply enter the 

synapse. This theory also states that even non-stimulant weak bases should also work 

in this manner.17   
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 There is a great deal of structural similarity between amphetamine (5) and the 

endogenous ligand β-phenylethylamine (7) (Figure 2). Both molecules act as releasers 

of various monoamines (Table 1). The fact that the monoaminergic neurotransmitters 

may serve as releasers may indicate a feedback mechanism as of yet not understood. 

Intoxication from the substance is a result of the 'overflow' of these monoamines. 

Symptoms due to amphetamine intoxication results in tachycardia, hypertension, 

pupillary dilation, profuse sweating, rapid breathing, peripheral hyperthermia, 

hyperpyrexia, light sensitivity, anxiety, headaches, paranoia, delusions, and 

hallucinations.19,25 Users also experience dry mouth, bruxism (teeth grinding - a 

contributing factor to "meth mouth"), the sensation of "bugs" crawling on the skin 

(delusional parasitosis) and sores; which can be attributed to the overabundance of  

norepinephrine.28,29  Long-term effects of meth- amphetamine usage also include 

changes in neuronal structures as well as transporter levels which have been shown to 

persist even after extended periods of abstinence.30,31,32  

Figure 2: SAR Comparison of Amphetamine to β-Phenethylamine 

 

Figure modeled after Palmer.33 
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Table 1: Comparison of DAT, SERT and NET Releasing Activity of 

Neurotransmitters and Amphetamines (EC50)  

Compound Name Structure DAT (nM) SERT (nM) NET (nM) 

8 Dopamine 

 

86.9 Inhibitor 66.2 

9 Norepinephrine 

 

869 Inactive 164 

10 Serotonin 

 

1960 44.4 Inhibitor 

11 Tyramine 

 

119 2775 40.6 

7 β-Phenethylamine 

 

39.5 Inactive 10.9 

12 R-(-)-amphetamine 

 

27.7 - 9.5 

13 S-(+)-amphetamine 

 

8.7 - 10.2 

14 R-(-)-methamphetamine 

 

416 - 28.5 

15 S-(+)-methamphetamine 

 

24.5 - 12.3 

Adapted from Blough.34   
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 The alpha methyl group on meth- amphetamine prevents ready metabolism of these 

compounds and in effect allows them to inhibit monoamine oxidase (MAO).35 Inhibiting 

MAO prevents the metabolism of neurotransmitters, increasing the number of 

neurotransmitter present in the cytosol and allowing them to interact with other 

molecules within the cell. In the dopaminergic cells, this leads to an amphetamine-

induced but dopamine-dependent neurotoxicity where the nerve terminals "burn out" 

and leave the body of the neuron intact.36  The neuronal toxicity of the dopaminergic 

pathways exhibited by amphetamines (especially methamphetamine) is usually 

observed after long term, high dose use.36,37 Sustained high dosages of amphetamines 

in experimental animals produces a persistent depletion of dopamine associated with 

terminal degeneration as well as neuronal chromatolysis in several areas of the brain 

(brain stem, cortex and striatum).17 Compared to continuous high dosage of another 

psychostimulant (cocaine), no terminal degeneration in the frontal cortex or striatum 

was observed.17 The toxicity of methamphetamine has been shown to be inhibited by 

dopamine synthesis inhibitor alpha-methyl-p-tyrosine; dopamine/NDA-receptor 

antagonists an dopamine or serotonin re-uptake inhibitors (which protect their specific 

neurons). There is also a link between the hyperthermia induced by amphetamines, the 

social interactions of its users and potential neurotoxicity.38 

 Amphetamines are neither quickly removed nor metabolized by the body. Both drugs 

and their metabolites are cleared primarily through the urine (Table 2).39,40 In the case of 

orally ingested amphetamine, a study found that over a four day period, 90% of the 

initial dose was excreted.39 Of this, 60-65% was retrieved on the first day, with 30% of 

the mixture being the unchanged drug, 21% benzoic acid (16) and 3% 
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hydroxyamphetamine (17).39 In the case of methamphetamine, the clearance pattern is 

similar, with 90% being recovered over a 4 day period. Unlike amphetamine, 

approximately 50% of the dose recovered was the unchanged drug (22% of which was 

excreted in the urine on day one).40 The other metabolites of methamphetamine are 4-

hydroxymethamphetamine (18) (15% recovered) and several minor metabolites: 

hippuric acid (19), norephedrine, 4-hydroxyamphetamine (17) and 4-

hydroxynorephedrine (20).40 The slow clearance and low-metabolism of these drugs 

allows them to remain active physiologically much longer than the initial high. As a 

comparison, the half-life of cocaine is about 40 minutes and 80-90% of injected cocaine 

(most bioavailable method of ingestion) is rapidly metabolized.41 Only 1-5% of cocaine 

is excreted as the unchanged drug within 6 hours of use.  
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Table 2: Metabolites of Amphetamines39,40 

Compound Name Structure Amount (%) 

5 Amphetamine
*
 

 

>30% 

16 Benzoic acid
*
 

 

 21% 

17 Hydroxyamphetamine
*
 

 

3% 

6 Methamphetamine
**
 

 

50% 

18 4-hydroxymethamphetamine
**
 

 

15% 

19 Hippuric acid
**
 

 

Minor 

3 Norephedrine
**
 

 

Minor 

17 4-hydroxyamphetamine
**
 

 

 

 

Minor 

20 4-hydroxynorephedrine
**
 

 

Minor 

*- Metabolites of amphetamine. **- Metabolites of methamphetamine 
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 It should be noted that while the above lists the physiological effects of long term 

meth/amphetamine use, low dosages under a physician's care can be safe and effective 

for some neurological conditions. One of the most common treatments for ADD/ADHD 

and narcolepsy is Adderall or dexedrine which are amphetamine salts. These drugs can 

both increase attention as well as aid in wakefulness that is desired by both conditions, 

improving quality of life significantly for patients. Blood concentrations of these drugs 

usually are in the range of 0.02-0.05 mg/L, compared to recreational users whose 

concentrations range from 0.01-2.5 mg/L (concentrations above which may be toxic).25  

Monoamines, Their Receptors and Transporters 

 While the roles of the monoamines and their receptors are discussed at length in the 

following, we would like to take the opportunity to discuss some of the shared 

characteristics of their transporters. Monoamine transporters belong to a super-family of 

facilitated transporters, specifically the 12 transmembrane domain neurotransmitter: 

sodium symporter family (NSS).42-44 These transporters are able to translocate their 

substrates across the membrane bilayer by exploiting an ion gradient, which is driven by 

the naturally occurring sodium ion gradient.44 This allows them to operate in two 

directions, depending on concentration gradients/net driving force.42,43 Cotransport of 

chloride ion is also required for the following transporters, with additional (and particular) 

needs for the dopamine and serotonin transporters.  

 These transporters also act similarly by releasing their neurotransmitter (serotonin, 

norepinephrine and dopamine) when binding amphetamines.43 This ability of 

amphetamines to cause efflux while they are being transported into the cell is not 
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adequately explained by the alternate access model. The facilitated exchange diffusion 

model is similarly inadequate as it fails to explain why the transporter would release 

neurotransmitter instead of meth- amphetamine. It has since been suggested that 

monoaminergic transporters operate as counter-transporters in the presence of 

amphetamines.43 Release of neurotransmitter and uptake of amphetamines occurs 

through separate by coupled moieties which are also coupled in changes of the ionic 

gradients.43 A second stimulus by a protein kinase C isoform primes the inward facing 

conformation for outward transport, which accounts for the influx/efflux behavior.43 

Norepinephrine 

 As a neurotransmitter, norepinephrine is principally a excitatory. It is ultimately 

derived from vesicular dopamine through the action of dopamine β-hydroxylase. Almost 

every neural region receives input from these neurons. The cell bodies are located in 

seven regions of the pons, the medulla and one region of the thalamus.45 The locus 

coeruleus-noradrenergic system supplies norepinephrine throughout the central 

nervous system through a far-reaching series of efferent projections.46 Unlike dopamine, 

or serotonin; the release of norepinephrine does not occur at synaptic buttons, but 

rather along axonal varicosities (beadlike swellings along the branches of the 

neuron).45   

 

Norepinephrine Receptors 

 Receptors are sensitive to both epinephrine (secreted by the adrenal medulla) and 

norepinephrine. Two major types of receptors have been described for norepinephrine; 
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the α- and β- types of which there are a total of five subtypes (α1, α2; β1, β2, and β3).
45 

All of these subtypes are found outside of the CNS, and so far the β3 receptor appears 

to be exclusively located outside of the CNS (predominantly in adipose tissue). All of 

these subtypes are able to produce excitatory and inhibitory neural effects, although 

behavioral effects are almost exclusively excitatory.  In the brain, almost all 

autoreceptors appear to be of the α2 subtype. In the brain, α1 receptors are able to 

produce slow, depolarizing effects on the post-synaptic cell membrane (excitatory). 

Alternatively, the α2 receptor produces a slow hyperpolarization (inhibitory). Both β1 and 

β2  neuro-receptors increase the response of post-synaptic neurons to excitatory inputs 

which likely leads to the increased alertness experienced by subjects.45  

 Norepinephrine is known to modulate serotonin and dopamine release, especially in 

the thalamocortical regions.47 The entire system is extremely important in the control of 

concentration, alertness, arousal, mood, sleep/wake cycle, emotions, blood pressure 

and pain regulation.47,48,49 Depression is thought, in part to be caused by dysfunction of 

any of these pathways. It is thought that post-synaptic α1, α2 receptors in the frontal 

cortex play a significant role in mood, attention and comprehension.47  

 

The Norepinephrine Transporter 

 The norepinephrine transporter was isolated in 1991 by expression cloning; the gene 

is located on human chromosome 16q 12.2.49 The amino acid sequence of the 

transporter predicted a protein of 617 amino acid which contain 12 transmembrane 

domains. The structure of the transporter is homologous to other transporters of 

monoamine neurotransmitters (e.g. dopamine, serotonin, etc). This group of 
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transporters are members of a larger group of sodium and chloride dependent transport 

proteins located in neuronal and glial plasma membranes.42,49 The reuptake of 

norepinephrine by the norepinephrine transporter is primarily how the synapse is 

cleared and how the biological effects of the neurotransmitter are ceased. Of the 

synaptic norepinephrine, 70-90% of it is cleared by the transporter while the remaining 

10-30% goes into circulation or spills into extraneuronal tissue.49  In particular, cardiac 

noradrenergic synapses tend to be three times narrower than distances of synapses in 

the vasculature and the extraneuronal uptake (uptake-2) plays only a small role in 

cardiac norepinephrine clearance.49 These observations suggest that the heart is more 

dependent on the norepinephrine transporter for norepinephrine clearance of synapses 

in the vascular beds. It follows that any impairment of the norepinephrine transporter 

should lead to an increase in norepinephrine levels in the synaptic clefts of the heart.49 

 

Serotonin, Receptors and Transporter 

 The behavioral effects of serotonin are complex and its roles range from mood 

regulation, appetite, sleep, arousal, sex, regurgitation, perception, motor function, 

gastrointestinal function, neurotrophism, vascular function, dreaming and regulation of 

pain.45,50 Serotonergic neurons are found in nine clusters in the brain, many of which 

are located within the raphe nuclei of the midbrain, pons and medulla. Two principal 

clusters are the dorsal (D-system) and medial raphe nucleus (M-system). The axons of 

both these clusters project into the cerebral cortex. The dorsal raphe nuclei innervates a 

part of the hippocampal formation called the dentate gyrus. The two systems have other 

distinguishing features as well. 
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 The D-system axonal fibers are thin with spindle-shaped varicosities that appear not 

to form synapses with other neurons. Instead, the varicosities release serotonin that 

then diffuses throughout the system. The M-system axonal fibers are thick and its 

varicosities are rounded - appearing much like beads along a string. Unlike the D-

system varicosities, these appear to be adjacent to post-synaptic membranes forming 

conventional synapses.45  

 

Serotonin Receptors 

 Seven families of serotonin receptors have been described, and along with them 

many subtypes have also been reported. The families are referred to as 5-HT1-7, with 

subtypes being referenced as a letter after the number (e.g. 5-HT1a). All of these 

receptors are metabotropic except for 5-HT3 which is ionotropic.45 It has also been 

observed that these subtypes have further variants due to alternative splicing, leading to 

isoforms. Alternative splicing appears to be fairly common with several of the subtypes 

(5-HT2C, 5-HT4 and 5-HT7).
50 These variants may range from being severely truncated 

and having no obvious function (5-HT2C), to differences in length and composition in the 

carboxyl terminus (5-HT4(a) - 5-HT4(f), 5-HT7(a) - 5-HT7(d)).
50 Further variations of the 5-

HT2C receptor involve RNA editing which was the first G-coupled protein found to be 

edited. These variations of subtypes could present more of a challenge to the 

development drugs targeting these receptors (which isoform to test), but also present 

the possibility of further specification of the drug target for optimum binding. 

 The 5-HT1 has high concentrations of 5-HT1a binding sites and mRNA expression in 

many areas throughout the brain (dorsal raphe nucleus, hippocampal pyramidal cell 
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layer, cerebral cortex).50  All members of the 5-HT1 family tend to have inhibitory effects, 

whether they are pre- or post-synaptic.45 This appears to be accomplished by the 

opening of inwardly rectifying K+ channels or a closing of voltage-gated Ca2+ channels, 

which induces hyperpolarization.50 The 5-HT1b and 5-HT1d serve as presynaptic 

autoreceptors. In both the D- and M-systems, the 5-HT1a receptors serve as 

autoreceptors in the membranes of both the dendrites and somas.  

 All 5-HT2 receptors tend to have slow excitatory effects through a decrease in K+ or 

an increase in non-selective cation conductance.45,50 These effects have been observed 

in various regions throughout the brain from motor neurons to the nucleus accumbens, 

cerebral cortex and the substantia nigra pars reticulata. Studies have shown that these 

receptors have high concentrations of binding sites and mRNA in some regions of the 

forebrain (neocortex, piriform cortex, claustrum and olfactory tubercle).50 Outside of the 

motor nuclei and the nucleus tractus solitarius, these receptors and their mRNA are 

found at low concentration within the spinal cord and brain stem.50  These receptors are 

also highly expressed in the motorneurons of the face. These receptors are also known 

to play an important role in cortical information processing. 

 The 5-HT3 subtype can produce either excitatory or inhibitory effects. 5-HT3 can 

produce an inhibitory effect on postsynaptic potentials through a chloride ion channel. 

The excitatory responses attributed to this receptor are typically rapid onset and rapid 

sensitization (typical of ligand-gated ion channels).50  This subtype can cause inhibition 

in a round-about way by exciting inhibitory interneurons (GABAergic).50  

 The 5-HT4 receptors are found in several regions of the mammalian brain (striatum, 

substantia nigra, olfactory tubercle and hippocampus). Since these regions also show 
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significant levels of 5-HT4 mRNA suggesting that these receptors probably function 

post-synaptically, in order to mediate some actions of serotonin. In the hippocampal 

pyramidal cells of the CA1 region, these receptors have been shown to mediate an 

inhibition of calcium activated potassium current which is ultimately responsible for the 

cells ability to respond to excitatory inputs with "a robust spike activity."50  

 The 5-HT5 receptor appear to be relegated to the central nervous system, though its 

role therein is not well characterized, although some studies suggest that it may play a 

role in neuroendocrine secretion.51 While two subtypes (5-HT5a, 5-HT5b) have been 

found in humans, only one (5-HT5a) appears functional.52 5-HT6 receptors are almost 

exclusively located in the limbic and cortical regions.53 These receptors regulate 

cholinergic and glutamatergic activity and may play some role in cognition, mood, 

seizures and feeding.53  5-HT7 receptors are found in both the central nervous system 

and the peripheral tissues and mediate the relaxation of smooth muscle (cardiovascular 

system and gastrointestinal tract).54 In the central nervous system, these receptors 

appear to play a role in the pacemaker of the circadian rhythm which is located in the 

suprachiasmatic nucleus of the hypothalamus.50 

 

Serotonin Transporter 

 The serotonin transporter is homologous to the norepinephrine and dopamine 

transporters.  The description in 1994 by Lesch et al noted that serotonin transporter 

from the human midbrain raphe complex and that of platelets could be attributed to a 

single copy of a gene located on chromosome 17 (17q11.1-q12).55 The human 

serotonin transporter is comprised of ~630 amino acid residues and contains 12 
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putative transmembrane domains. The human serotonin transporter is 92% homologous 

to that of the rat. Like the other monoamine transporters, its activity is regulated by 

extracellular concentrations of sodium and chloride, and is an anti-porter of potassium 

ions.42,55 Unlike the norepinephrine or dopamine transporters, the activity of the 

serotonin transporter is sensitive to extracellular concentrations of potassium ion. If 

extracellular concentrations of potassium ion increases, or if extracellular concentrations 

of sodium or chloride ions should plummet, the transporter has been noted to reverse 

direction, effluxing substrates and ions.42 

 Genetic polymorphism of the serotonin transporter typically is seen in the promoter 

region of the gene where a person has two copies of the so-called short (s) allele. This 

polymorphism has been associated with decreased serotonin transporter activity in the 

brain as well as decreased serotonin transporter mRNA expression and serotonin 

uptake in lymphoblasts compared to a serotonin transporter with two copies of the long 

(l) allele.55  The debate of whether or not this polymorphism is significant in neuroticism, 

anxiety and other mood disorders is on-going. Early when this polymorphism was 

reported, Lesch et al. had suggested that individuals with this polymorphism displayed 

increased bias towards higher rates of neuroticism and harm avoidance than those with 

two copies of the l-type allele.55 However, further studies and meta-analyses have found 

conflicting results, making it seems likely that these conditions are polygenetic.   

 

Dopamine, Receptors and Transporter 

 The neurotransmitter dopamine serves multiple roles dependent on its location in the 

brain although it appears to always cause a slow postsynaptic effect.56 While there are 
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several systems of dopaminergic neurons throughout the brain, there are three systems 

of major importance that both originate in the midbrain.45 The nigrostriatal system 

originates in the substantia nigra of the midbrain. The nigrostriatal system's axons 

project into the neostriatum (the caudate nucleus and the putamen) which is an 

important part of the basal ganglia. These neurons play an important role in movement 

and Parkinson's disease. The second major dopaminergic system is that of the 

mesolimbic system which originates from the ventral tegmental area (VTA) of the 

midbrain. These neurons project their axons into several parts of the limbic system 

(nucleus accumbens and its shell region, amygdala and hippocampus) which is known 

to play a role in learning, motivation and reward. The third major system is the 

mesocortical system which also originates from the ventral tegmental area. These 

axons are projected to and have an excitatory effect on the prefrontal cortex. They play 

a role in the function of short-term memory, strategizing and problem solving.  

 

Dopamine Receptors 

 There are 5 identified subtypes of the dopamine receptor protein. These can be 

broken into two homologous groups: D1-type, comprised of subtypes D1 and D5; and D2-

type, comprised of subtypes D2, D3, and D4.
57  These two groups are similar in their 

homology as well as the brain regions in which they are found, but have several key 

differences. D1-like receptors are G-protein coupled receptors which are coupled to Gs 

and mediate excitatory neurotransmission. Activation of these receptors activates 

adenylyl cyclase which increases the intracellular concentration of cyclic adenosine 

monophosphate (cAMP). These receptors mostly regulate neuronal growth and 
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development, modulate D2-mediated events and mediate some behavioral responses. 

Of the two D1-like receptors, D1 is the most commonly expressed throughout the brain 

whereas D5 is primarily found in the limbic system.  

 The D2-like receptors are coupled to a different G-protein (Gαi) which directly inhibits 

adenylate cyclase (thereby inhibiting cAMP production). The D2-type transporters are 

found primarily in the nucleus accumbens, the ventral tegmental area and the basal 

ganglia. D2-like receptors mediate inhibitory neurotransmission. Both types of receptors 

are found throughout the body; notably in the cardio-pulmonary system as well as the 

renal system.  

 

The Dopamine Transporter 

  The role of the dopamine transporter is to transport synaptic dopamine into the cell 

body. It is the primary mechanism by which synaptic dopamine is cleared. The 

transporter is a plasma-membrane bound transporter protein with 12 transmembrane 

domains with both the amino- and carboxyl termini within the cytoplasm.5,58 The 

transporter is a symporter, which transports two Na+ ions and one Cl2
- are co-

transported with each molecule of dopamine.59 For each molecule of dopamine 

transported into the cell, two net positive charges will also accompany it (because 

dopamine is positively charged at physiological pH) and it is this movement which 

generates an inward current.59 Once inside of the cell  dopamine is then sequestered 

into vesicles by vesicular monoamine transport protein (VMAT-2). Any dopamine that is 

not sequestered by VMAT-2 is metabolized by monoamine oxidase (MAO), an outer-

membrane bound mitochondrial enzyme. The genetic sequence encoding the dopamine 
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transporter appears to be highly conserved across species (human : monkey, 98%; 

human : rat, 92%, human : bovine, 88%).60 Additionally, the DNA encoding the 

dopamine transporter is very similar to the sequences of other cloned monoamine 

receptors in the rat (norepinephrine transporter similarity 67%; serotonin transporter 

similarity 49%, etc).60  

 

Amphetamines Versus Cocaine 

 Since cocaine and amphetamines are the most popular stimulants globally, it is 

important to compare and contrast their effects on their users. Cocaine shares a past 

similar to amphetamines' parent compound (ephedra), as it was used medicinally for 

thousands of years in the New World. Cocaine is utilized in both the free base ("crack" 

cocaine) and salt forms (cocaine hydrochloride). According to the 2010 UN drug report, 

there are approximately 15.9 million users of cocaine worldwide compared to 13.7 - 

52.9 million users of amphetamine type stimulants.62 Both cocaine and amphetamines 

share similar intoxicating effects on the user due to both acting as dopamine 

agonists.45,63 However, there are some notable differences between the two. 

 

Differences Between Cocaine and Amphetamine Binding and Neuronal Effects 

 Although both drugs act as dopamine agonists, they share several important 

differences in their binding and neuronal effects. Cocaine and amphetamines directly 

interact with monoaminergic neurons.31,63,64 Cocaine tends to bind at the cell surface by 

inhibiting the dopamine transporter (DAT). This inhibition leads to an increased 

concentration of dopamine in the synaptic cleft by preventing the re-uptake of 
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neurotransmitter.31,63,64 Cocaine is not limited to interacting with the DAT, it also binds to 

and inhibits other monoaminergic transporters (norepinephrine and serotonin). 

 Like meth- amphetamines, cocaine also acts on the vesicular monoamine 

transporters (VMAT-2) by enhancing the storage of monoamines inside the synaptic 

vesicles.27 Given more neurotransmitter in each vesicle, this leads to significantly 

greater synaptic dopamine (or other monoamine) upon depolarization of the neuron.31  

 The binding and activity of amphetamines is somewhat dependent on concentration. 

At low concentration, amphetamine is transported by the dopamine transporter into the 

cytosol; whereas at higher concentrations, amphetamines may diffuse into the cell due 

to their lipophilicity.31 Once in the cytosol, amphetamines also bind to VMAT-2; 

however, unlike cocaine, amphetamines alter its function by trafficking the 

neurotransmitters out of the vesicle and into the cytosol.27 At higher concentrations, 

amphetamines may also diffuse into the vesicles. The ability of amphetamines to 

interfere with the synthesis of dopamine is also dependent on concentration. At lower 

concentrations, the drugs boost dopamine synthesis.31 At higher concentrations or 

prolonged exposure, the drugs inhibit tyrosine hydroxylase or decrease the protein's 

levels.31 

 As a weak base, amphetamines are able to accept protons from the acidic 

environment of the vesicles (pH ~5.5) which leads to the alkalinization/collapse of the 

proton gradient of the vesicles. This in turn nixes the active transport of amphetamines 

into the vesicles.31 The weak base effect also explains mitochondrial dysfunction 

induced by amphetamines in the absence of dopamine (collapse of proton gradient 
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which disrupts the mitochondrial potential which may cause a decrease in intracellular 

ATP).31 

 A study by Jones et al in 1999 showed that as the concentration of amphetamine 

inside of the cell increases, this also leads to an increase in the number of inward-facing 

dopamine transporters.65 These transporters then reverse their normal behavior by 

transporting dopamine from the cytosol into the synaptic cleft.31,65 This leads to higher 

concentrations of extracellular dopamine which can lead to neurotoxic consequences.31 

The reversal of transporter direction and subsequent efflux of neurotransmitter is also 

evident in the norepinephrine and serotonin transporters. Interestingly, while studies 

have found methamphetamine-related neurotoxicity in regards to the dopamine and 

serotonin transporters; it appears that the norepinephrine transporter is merely down-

regulated.66,67 

 Whereas amphetamines show a distinct preference for both the norepinephrine and 

dopamine transporters, cocaine binds roughly equally to all three (SERT, DAT and 

NET).68 Cocaine is also readily metabolized by the body and has a much shorter half-life 

than amphetamines; about 0.8 ± 0.2 hours for cocaine compared to around 10.1 hours 

for amphetamines.25 Peak plasma concentrations vary by method of administration and 

range from 0.22 mg/L at 30 minutes for nasal administration; 0.21 mg/L at 1 h for oral 

administration; 0.23 mg/L at 45 minutes for smoking (50 mg dose used).25 This is 

significantly faster than the 2.6-3.6 hours it takes for peak plasma concentrations of 

amphetamines.  
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Long Term Effects of Cocaine versus Amphetamine Use 

 The long-term effects of both drugs are similar with users sharing symptoms such as 

irritability, aggressiveness, stereotyped behavior and a paranoid-like psychosis.63 Like 

meth- amphetamine users, chronic cocaine has been linked to neurological deficits.  

These deficits include: seizures, optic neuropathy, cerebral infarction, subarachnoid 

hemorrhage, intracerebral hemorrhage, multifocal cerebral ischemia, cerebral atrophy  

of the frontal cortex and basal ganglia, myocardial infarction leading to global brain 

ischemia, movement disorders and edema.31,69, Many of cocaine's side effects have 

been reported to be caused by vasoconstriction and subsequent hypoxia, instead of the 

neurotoxic mechanisms seen in amphetamines.31 

 Brain glucose metabolism is positively correlated to neuronal activity and cognitive 

function.69 The dopamine transporter is known to play a role in glucose metabolism of 

the brain, although the precise mechanism has not been discovered.69,70 Cocaine is 

also known to alter brain glucose metabolism, possibly through its interactions with the 

dopamine transporter. Cocaine depresses the level of glucose metabolism in the brain 

both during use and during 'late-phase' abstinence.69 During the first week or so after 

the start of abstinence, the user's brain has a higher than normal (read: non-user) 

glucose metabolism in the medial orbitofrontal cortex and basal ganglia.71 Following this 

period, glucose metabolism will fall below that of normal and persist at this level for 

about three months.71 Levels of glucose metabolism in the dorsolateral prefrontal cortex 

can serve as a predictor for visual and verbal memory scores.72 Glucose metabolism 

levels in the anterior cingulate gyrus were also found to be predictive for 
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attention/executive function (note that these detriments are still considered mild 

compared to other neuropsychiatric conditions, e.g. schizophrenia).72 

 Similarly to meth- amphetamine use, chronic cocaine users also see a marked 

decrease in dopamine receptors. These receptors (D2) are often most severely effected 

in the orbitofrontal cortex and the cingulate gyrus - areas which receive the dopamine 

afferent neurons. This decrease has been noted to persist despite years of abstinence. 

The depletion of these receptors in combination with the decrease in brain glucose 

metabolism is also seen in Parkinson's disease, a condition which has also been 

associated with chronic cocaine use.  

 Methamphetamine use has been shown to decrease striatal glucose metabolism that 

may be reflective of its selective toxicity to dopaminergic neurons.73 Users who 

underwent extended abstinence showed metabolic recovery in the thalamus which may 

indicate neuro-adaptations for the loss of dopamine.73  

 

Mechanism of Amphetamine-Induced Neurotoxicity 

 The chronic use of amphetamines shows profound damage and cell death in areas of 

the brain containing high concentrations of dopaminergic neurons. Dopamine is known 

to be neurotoxic at high concentrations both in vivo and in vitro.31 The combination of 

the abilities of amphetamines to efflux dopamine and inhibit its clearance from the 

synaptic terminal, and the fact that these molecules have a long half-life creates an 

extremely problematic scenario. Dopamine is easily oxidized by both enzymatic and 

non-enzymatic mechanisms which may lead to oxidative stress in the dopaminergic 

neurons as well as surrounding brain tissue (Figure 3 A).31 Auto-oxidation of dopamine 

leads to the production of superoxide ion (O2·
-) and hydrogen peroxide.31 Both hydrogen 
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peroxide and superoxide may then interact with transition metals in a Haber-

Weiss/Fenton reaction to give the hydroxyl radical (·OH). Superoxide can also interact 

with nitric oxide to produce peroxynitrite (ONO2
-), another powerful oxidant. There are 

some neuro-protective enzymes that mediate the toxic effects of these chemicals. 

Hydrogen peroxide can be dulled by glutathione peroxidase which catalyzes one 

molecule of hydrogen peroxide to two molecules of water (Figure 3 B). Superoxide 

dismutase (SOD) catalyzes a reaction which produces diatomic oxygen and hydrogen 

peroxide which may contribute  to the high levels of hydrogen peroxide.  
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Figure 3 - Dopamine Neurotoxicity(A) and Inactivation of Hydrogen Peroxide via 

Glutathione Peroxidase (B) 

A: 

 

B: 

 

GSH = Glutathione monome; GSSG = Glutathione disulfide. 

(B) Adapted from a figure by Tandoğan and Ulusu.74  

 

 Cell death due to reactive oxidizing species is often due to the oxidation of 

macromolecules (amino acids, phospholipids, nucleic acids, etc). In a normal system, 
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acute exposure to hydrogen peroxide leads to apoptopic cell death. In the system of a 

chronic amphetamine user, there is evidence of cell resistance to acute toxicity due to 

higher levels of antioxidant enzymes in several areas of the brain.75  

Developmental Approaches for Pharmacotherapies of Psychostimulant 

Dependence 

 Two major drug classes exist for drugs targeting neuro-transporters, releasers and 

re-uptake inhibitors.76 Releasers work by promoting efflux of a neurotransmitter by way 

of a transporter mediated exchange (e.g. extracellular methamphetamine for 

cytoplasmic dopamine), and also disrupt the storage of neurotransmitters in vesicles, 

increasing their concentration in the cytoplasm.76 Re-uptake inhibitors work by binding 

to the transporter and preventing the reuptake of the neurotransmitter from the synapse 

in order to increase synaptic concentration. 

 There are several approaches in the development of pharmacotherapies for 

psychostimulant addiction. Two major approaches exist; that of an agonist based 

pharmacotherapy and the dual deficit approach.76 The agonist approach involves 

increasing the release and/or concentration of a particular (or several) 

neurotransmitters, which is thought to help with cravings and withdrawal symptoms. 

Two well known antagonists are bupropion (Wellbutrin or Zycam) and modafinil 

(Provigil, Alertec).77,78 Bupropion acts by inhibiting the reuptake of norepinephrine and 

dopamine, of which it is twice as selective in preventing reuptake of dopamine than 

norepinephrine. It has also been implicated as being a dopamine and norepinephrine 

releaser.79 For these reasons, it was recently tested for its possible effectiveness as a 

pharmacotherapy for methamphetamine abuse.77  While the drug was found to be 
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effective in 'light' users, chronic users who would benefit the most, showed no 

effectiveness. Similarly, the narcolepsy drug modafinil also works as a dopamine and 

norepinephrine releaser/reuptake inhibitor. A recent study found no clear evidence of 

any decrease in methamphetamine use when users were taking this drug. Other 

agonists showed a similar trend of failure.76,77,78  

 The major issue with treating psychostimulant addiction with dopaminergic agonists 

is that their mode of action creates abuse liability.76 Activation of the mesolimbic 

dopaminergic while mediating some of the effects of withdrawal, can create similar 

circumstances in the neurocircuitry that may prompt addiction. Research has suggested 

that interplay between dopaminergic and serotonergic systems may hold the key to 

reducing the liability of psychostimulant pharmacotherapies.76  

 The dual deficit approach is an alternative that relies on the action of two 

neurotransmitter systems (serotonin and dopamine), rather than focusing on just one. It 

is centered on the observation of disruption in the serotonergic and dopaminergic 

systems in substance abusers.76 The withdrawal experienced by psychostimulant 

abusers includes symptoms that have underlying causes that are typical of low 

serotonergic and dopaminergic activity (e.g. anhedonia and craving; obsessive thoughts 

and impulsivity, respectively; Figure 4). This observation has been shown to be 

accurate in human brain imaging studies which have shown a marked reduction in 

evoked dopamine release and D2 binding potential in the striatum, as well as 

diminished response in serotonin releasers in abstinent cocaine users.76 By focusing on 

both the dopamine and serotonergic pathways, the increased activation of the 

serotonergic neurons should provide an inhibitory effect on mesolimbic dopamine. This 
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should reduce the abuse liability for these pharmacotherapies, as well as alleviating the 

symptoms of depressed serotonergic activity.76   

 Figure 4 - Schematic of Dual Deficit  

 

Figure based on Rothman, Blough and Baumann.76 

 

Compound Classification, Binding Affinities and Calculation of Inhibition 

Constant  

 Compounds may be classified by their effects once bound to a receptor. Structures 

which bind to the receptor and cause a cellular response are termed agonists. A full 

agonist has maximal effect on the desired receptor. Partial agonists are structures 

which can dampen the effects of the original substrate and can act as antagonists in the 

case of overexposure to the substrate (these compounds have less than a full agonist 
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effect on the receptor). Inverse agonists are compounds which bind to a receptor and 

initiate the opposite response of the agonist. Antagonists are compounds which bind to 

the receptor but cause no cellular response. These compounds have affinity for the 

receptor, but lack efficacy (their only effect is to prevent another substrate from acting).  

 In the case of drugs of abuse, an antagonist is sought to block the receptors from 

binding the ingested drug and therefore preventing the high. In order to evaluate the 

effectiveness of these analogs, either a Ki or IC50 value is used. The Ki value is defined 

as the dissociation constant for the enzyme-inhibitor complex (Figure 5). The smaller 

the value of the Ki; the more potent the inhibitor. Since the Ki value is a rate constant, 

one finds its value by determining enzyme-catalyzed reactions while varying the 

concentrations of substrate and inhibitor.80  In general, the method of establishing the Ki 

value is much more intensive than generating the IC50, although the IC50 may be used 

to calculate a Ki. 

  The IC50 value is a quantitative measurement of the amount of substance needed to 

inhibit a specific enzyme concentration by half. Like the Ki value, a low IC50 number 

means less compound is required to inhibit 50% of the normal activity of an enzyme. 

The IC50 value is determined by using one concentration of enzyme over a range of 

inhibitor concentrations.80 This allows for a much quicker assessment of compounds, 

especially when a series must be tested.  
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Figure 5: Competitive Inhibition 

 

Adopted from Silvermann.81 

 Calculating the Ki of a receptor or enzyme can be achieved by multiplying the 

concentration of inhibitor and enzyme and then dividing the product by the 

concentration of enzyme/inhibitor complex (Figure 6a). In order to calculate the IC50 

from the Ki value, the Cheng-Prusoff equation (Figure 6b) can be used. While using this 

formula  (Figure 6b) provides an only approximate value of Ki, the fact that it is quick to 

calculate allows for a fast screening of many compounds for evaluation.81 

Figure 6: Ki Formulas 

a) Ki = ([E][I])/ [EI]) 

b) Ki =     _IC50_ 
   ( [S]/Km ) 
 
  
* Km is the equilibrium constant for the enzyme/substrate complex. 

 

 

 

Synthetic Targets 
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 Given the structural similarity between amphetamines and other endogenous 

neurotransmitters (Figure 7), we decided to examine the binding affinities for azetidine-

ring based analogs (24 and 25). This template gives a more rigid placement of the 

nitrogen as well as provides a chance to examine the effects of olefination on the 

carbon chain. This also gives a slight difference in the length of the chain as well as a 

slight difference in angle of the nitrogen. The goal was to examine how these changes 

impact binding at the desired transporter.  

Figure 7: 

      

     

 Previous studies have focused on the substituents on the phenyl ring and various 

modifications to the two carbon linkage and the alpha methyl group (Table 3).  
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Table 3: Comparison of Releasing Activity of Amphetamine Analogs 

   EC50 (nm) 

Compound Name Structure DAT NET SERT 

26 Phenylpropylamine 

 

1491 222 - 

27 p-methylamphetamine 

 

44.1 22.2 - 

28 p-chloroamphetamine 

 

68.5 23.5 - 

29 p-fluoroamphetamine 

 

51.5 28 - 

30 m-chloroamphetamine 

 

11.8 9.4 - 

31 m-methylamphetamine 

 

33.3 18.3 - 

36 Phentermine 

 

262 39.4 3511 

Data from Blough34. 

 The modification of the two carbon linkage to that of a three carbon linkage greatly 

increases the amount required for activity at the dopamine and norepinephrine 

transporters. Similarly, an additional methyl group attached at the alpha carbon also 

increases concentrations required for all three transporters' activity. Substitutions on the 

aromatic ring are well tolerated and seem to follow a meta > para preference. 
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 The releasing activity of other, amphetamine-like compounds were also recently 

examined for their releasing activity (Table 4). These compounds have more hindered 

amines, either heterocyclic (33-36, 38), or additional substituents (34, 37) while 

retaining the two carbon linkage of meth- amphetamine. Some of these compounds (34 

and 37) show inhibition activity at the dopamine transporter. This inhibition is desirable 

as the compound shows no releasing activity as well as providing a longer presence of 

dopamine within the synaptic cleft (aiding in withdrawal).  It is hoped that the structure of 

the azetidine analogs are similar enough to share this inhibition as well as inhibition at 

the serotonergic transporter. The evaluation of the azetidine system represents a novel 

structure for this pursuit.    

  



42 
 

Table 4: Comparison of releasing activity of other compounds 

   EC50 (nm) 

Compound Name Structure DAT NET SERT 

33 Phenmetrazine 

 

131 50.4 - 

34 Phendimetrazine 

 

Inhibitor Inhibitor - 

35 Aminorex 

 

49.4 26.4 - 

37 Fenfluramine 

 

Inhibitor 739 79.3 

38 dl-Threo-methylphenidate 

(Ritalin)
**
 

 

17 +/- 2.0 - >1000 

Data from Blough34. 

** - Data from Meltzer et al J Med Chem 2003.83 

 

Synthetic Routes for the Azetidine Ring System 

 Syntheses for the azetidine ring system have been reported since the 1888.84 The 

early syntheses involved extremely low yields (<1%)  and were relatively infeasible for 

library development. Due to the constrained nature of the ring, high yielding procedures 

for azetidine synthesis are a relatively new development in chemistry. The first high 
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yielding azetidine synthesis did not occur until 1967 (Scheme 1).85 Gaertner's synthesis 

focused on primary hindered amines (t-butylamine, 37). While this method offered good 

yields, it suffered from very slow reaction time (2.5 months), as well as being untested 

for secondary amines or for less hindered N-substituted azetidines (e.g. N-benzyl).  

Scheme 1 

 

 In 1968, Chatterjee and Triggle reported a modified version of this synthesis, but 

failed to present any experimental data along with this publication.86 A few years later, 

Anderson and Lok (Scheme 2) in 1972  published a new modification that offered much 

higher yields with a bulky substituent and a significantly faster reaction time (~6 days).87 

Scheme 2 

 

 This procedure is also one pot, but also has the added benefit of a removable 

nitrogen protecting group. This allows not only for easier manipulation at the 3-position, 
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but prevents side product formation at the nitrogen. This also opened the door for future 

modifications at the amine. The down side to this synthesis is the long reaction time as 

well as the fickleness of the starting material to react. Many labs have published slight 

modifications of this reaction claiming faster reaction times and superior results.88-90 

 The generation of the azetidine ring can be accomplished via other methods as well. 

A recent paper by de Kimpe et al published a two step procedure involving the 

formation of the imine and subsequent reduction into the azetidine ring (Scheme 3).91 A 

modification of this procedure was also developed in our labs using benzaldehyde 

starting material.92 These procedures have their strength in the ease in which one can 

generate less-hindered azetidine systems. Both procedures were attempted during the 

course of this work. 

Scheme 3 

 

Synthetic Strategy 

 Our strategy illustrated in Scheme 4, centered around the formation of a key 

intermediate, the N-benzhydrylazetidin-3-one (45). From there, we could perform a 

Wittig olefination to create the benzylidene 46 which would allow us to generate several 

classes of compounds for evaluation and SAR development. From the benzylidene 46, 

a deprotection could allow us to test the 3-benzylidene oxalate series 24 or we could 
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perform a series of N-alkylations to generate N-substituted azetidines 48. The 

benzylidene could also undergo hydrogenation to introduce a bit more conformational 

freedom to afford 3-benzylazetidine derivatives 25.  

Scheme 4 
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RESULTS AND DISCUSSION 

Attempted Synthesis of Azetidine Ring 

 When we first approached this project, we searched for a commercially available 

source for N-benzhydryl-azetidin-3-one (45). Unfortunately, the prices for what was 

available at the time made this unreasonable. So we examined several routes to form 

the azetidine ring. The first of which was an attempt to replicate a method which was 

developed by a previous group member.92 The reaction that was developed in our lab 

used benzaldehyde instead of benzophenone. It had been noted that the N-benzyl-

azetidin-3-one was not as stable as we would have liked, and had a half-life of about 

eight hours at room temperature. It had been shown that the N-benzhydrylazetidin-3-

one was stable for months at a time at room temperature, which made it ideal for library 

development.93 The N-benzhydrylazetidin-3-ol (43) thus became our target.  

Scheme 5: 

 

As illustrated in Scheme 5, we attempted to prepare the N-benzhydryl-3,3-

dimethoxyazetidine 52.  After numerous attempts, we were unable to achieve the  

synthesis of acetal 52. It had been noted in previous studies that excess of the boron 

trifluoride diethyl etherate was deleterious to the reaction yield.92  It had noted that 
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anything more than a few drops negatively impacted yields. So the reaction was 

repeated paying careful consideration to the amount of the catalyst, but after multiple 

attempts there was no improvement in yield. Therefore we abandoned this route and 

examined a similar method put forth by the de Kimpe group (Scheme 6).91  

Scheme 6: 

 

 In the De Kimpe procedure (Scheme 6) magnesium sulfate was used in place of 

boron triflouride diethyl etherate as a Lewis acid catalyst. However, this mild 

modification did not furnish the desired acetal 52.  After this reaction similarly failed, we 

set about to see if perhaps there was some unidentified problem with the method. The 

reaction sequence was repeated (Scheme 5) with benzaldehyde. The  procedure 

afforded the 3,3'-dimethoxyazetidine 44 in good yield.   

 Based upon these results we more closely examined why the benzophenone 

reactions were failing. An NMR study of both reactions was performed. It was clear from 

the NMR that after formation of the imine 51, the reductive alkylation did not take place 

and only benzhydrol was observed resulting for the reduction and hydrolysis of the 

imine 51. At this point, it became clear that the benzhydryl- group was much more easily 
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hydrolyzed than we had originally anticipated; so we searched for new route to achieve 

the desired cyclization.  

 A search of the literature turned up another method, specifically designed for the 

synthesis of benzhydryl azetidinols. Unlike the procedures above, this reaction started 

with benzhydrylamine and epichlorohydrin. The reaction involved  attack of the amine at 

the chloride bearing carbon which takes place over the course of the first three days, 

and subsequent epoxide opening and then azetidine formation. Ultimately, the scheme 

put forth by Anderson and Lok (Scheme 7) proved to be successful in synthesizing the 

N-benzhydrylazetidin-3-ol (41)  in good yield.87 

Scheme 7: 

 

 Unfortunately, this reaction suffered from two major draw backs; variability and long 

reaction times (6-7 days). At times the reaction would give good yields (72%) of a an 

easily purified product. Other times, the reaction would generate only viscous yellow 

residue that despite additional reaction time, yielded none of the desired product.  

Attempts were made to gauge the source of the variability of the reaction; after repeated 

syntheses we determined that impurities in the benzhydrylamine (40) were a key factor. 

The amine that was used in this work has a 97% purity from the vendor. The best 

results had been noted to occur from the use of a newly arrived and freshly opened 
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bottle of the benzhydrylamine. At times, bottles from our vendor would arrive with small 

precipitates formed. We reasoned that these precipitates were normal to the compound, 

and perhaps were un-reacted starting material. We noted that unopened containers of 

the amine in our labs would also form precipitates the longer they sat in our labs. These 

precipitates would grow over time to the point where they would comprise most of the 

sample. Later, we would find that exposure of benzyhdrylamine to carbon dioxide forms 

impurities that are known but not fully characterized by the vendor.  

 These impurities in the starting material further complicated the issue of long reaction 

time. Normally, the long reaction time could be overcome by scaling up the reaction so 

that enough material would be generated for numerous subsequent reactions. Due to 

the variability of this reaction, if a scaled up reaction were to fail, it would take another 

week to run another reaction and yet another if more of the amine had to be ordered. 

This could put work potentially one to two weeks behind, making  scale up an 

improbable and cost ineffective solution to our problem.  

 We looked again at the literature and found that there were some variations of our 

previous method. It was thought that at least one of these methods would dampen the 

interference of impurities in the reaction and perhaps cut down on the reaction time 

needed. These variations altered both solvents and reaction time (Schemes 8-10), but 

these were also ultimately abandoned given their much lower (if any) yields.88-90 

 The first of these modifications was put forth by a patent by Aventis (Scheme 8).90 

The procedure in the patent promised a much shorter reaction time in a one pot 

reaction. The patent starts with freebasing the amine hydrochloride before the addition 
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of epichlorohydrin and subsequent azetidine formation that takes place over the period 

of several hours. The use of the more stable benzhydrylamine salt should have cut 

down on the variability of this reaction. Unfortunately, the only thing we were able to 

produce with this procedure was a brown sludge. The time frame suggested by the 

patent seemed at odds with what we were seeing occur in our flasks (and yield wise), 

so after several failed attempts we pursued other schemes.  

Scheme 8: 

NH2

O

Cl

N

OH

NaHCO3, EtOH+

HCl

53 38 41  

 The next method was published by Okutani et al (Scheme 9).88 This procedure 

breaks the one-pot synthesis of Anderson and Lok into two separate steps with different 

solvents. The first involves the formation of the epoxypropylamine 54 that takes place in 

hexanes over the period of 24 h. After this step in the reaction is completed, the solution 

is evaporated under reduced pressure and then dissolved in acetonitrile and refluxed. 

This part of the synthesis takes 3 days, similar to the Anderson method but takes off two 

days of the initial reaction. We repeated this synthesis several times with yields ranging 

from around 10-59%. Unfortunately, this method also suffered from similar issues of 

variability due to its use of benzhydrylamine and a lengthy reaction time. 
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Scheme 9: 

 

 The last modification we tried was put forth by Oh et al, and it is very similar to the 

Okutani method (Scheme 10).89 Unlike the other methods, this suggested a purification 

of the 2,3-epoxypropylamine (54) before the cyclization with triethylamine. It was 

thought that the inclusion of the purification step would allow for a more easily isolatable 

azetidinol 41.However, we found that at least two columns were required in order to 

successfully purify the 2,3-epoxypropylamine 54. The multiple purifications required to 

isolate 54 resulted in an overall increase in time required for this procedure. This 

resulted in nullifying our goal of a shorter (overall) reaction time. The cyclization of both 

purified and crude materials were attempted and similarly failed. The combination of 

failed azetidine synthesis and a similar lab time (~5 days) led to this route being 

abandoned. 

Scheme 10: 

 

 The reactions that performed the best for us were Anderson and Lok (Scheme 7) and 

Okutani et al (Scheme 9). While the two procedures suffered notable problems, their 
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ability to give good yields and ease of product isolation  were desirable. At this point, 

enough the benzhydrylazetidin-3-ol had been synthesized through various methods that 

we could proceed with the multiple oxidations to the azetidin-3-one (45). The first 

procedure we used was one by Morimoto for the oxidation of 1-diphenylmethylazetidin-

3-ol (Scheme 11).93 They used a variation of the Swern oxidation, the Parikh-Doering, to 

generate the desired N-benzhydrylazetidin-3-one (45). Morimoto and other groups 

claimed fast reaction time (30 min-1.5 h), mild conditions (room temperature), and good 

yield.93,94  

  Unlike Swern oxidation, the Parikh-Doering uses pyridine sulphur trioxide complex 

and DMSO to generate the oxidizing species (alkoxysulfonium ion). The reaction 

involved first adding anhydrous DMSO to a flame dried round bottom flask which 

contained the azetidinol. Triethylamine was then added and allowed to stir at room 

temperature before the addition of pyridine-SO3 complex in DMSO. The appearance of 

a yellow color had been noted as an indicator of the success of the oxidation. While we 

did sometimes observe the appearance of a yellow when the pyridine sulfurtrioxide 

complex was added, subsequent Wittig olefination of the crude generated very little 

product. TLCs of the crude ketone showed multiple spots. Since the ketone 45 has 

been noted to be stable at room temperature, it appeared that that the problem was not 

due to the degradation of 45, but low conversion of the starting material. The scheme 

was repeated with longer reaction times, but yielded similar results. 
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Scheme 11:  

 

 Since the Parikh-Doering procedure failed to yield much of our desired product, we 

decided to try a traditional Swern oxidation (Scheme 12).95,96 The oxidizing species can 

be generated either by the use of trifluoroacetic anhydride or oxalyl chloride. Care must 

be taken to keep the reaction at low temperature (at least -30°C when using TFAA and  

-60°C with oxalyl chloride), as intermediates are known to be unstable. Both reagents 

are extremely reactive to DMSO and without the use of solvent, can be explosive when 

mixed. 

 Keeping this in mind, we fitted a dried reaction flask with anhydrous dichloromethane 

before placing it on a dry ice/isopropanol bath at -78°C. A nitrogen atmosphere was 

established in the flask before the addition of oxalyl chloride. We next added anhydrous 

DMSO drop-wise into the solution. The temperature of the reaction was carefully 

monitored throughout the experiment, especially during the addition of DMSO. After 

allowing the mixture to stir for 20 minutes or so, the alcohol in anhydrous 

dichloromethane was added. This is allowed to stir at -78°C for an hour before 

triethylamine is slowly added. The reaction is then allowed to come up to room 

temperature over night. Using this methodology, the azetidinone was able to be 

generated but was not isolated. The crude was dried under vacuum for several hours 

before being submitted to Wittig olefination. This resulted in a complex mixture of 
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product and side-products and after several columns, we decided to re-evaluate our 

overall synthetic approach.   

Scheme 12: 

 

 Up until this point in time, we had focused on a benzhydrylazetidin-3-one as our key 

intermediate. Our initial searches for a commercial supplier yielded very few actual 

vendors. Of those vendors, their prices for the intermediate were well above what we 

considered reasonable for library development. Now that some time had passed, a new 

search revealed that a new supplier had the N-boc-azetidin-3-one available for a good 

price with high purity (5 g, $125) as opposed to previous suppliers. The decision to use 

commercially available starting material saved substantial lab time and money via the 

elimination of several synthetic steps.  

 With the N-boc-azetidin-3-one in hand, the reaction scheme was considerably 

shortened. Our next target was the synthesis of phosphonium salts (Scheme 13).97 The 

preparation of the Wittig reagent was easily set up and purification was very simple. 

Triphenylphosphorane and the appropriate benzyl bromide were heated to reflux in 

toluene. The reaction was allowed to reflux over night and in the morning, was allowed 

to cool and the precipitate was filtered, washed and dried under reduced pressure. This 

reaction provided excellent yields (72-98%) part of the desired phosphonium salts. 
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Yields were considerably better when the benzyl bromide was used instead of the 

chloride (15% for 3-fluorobenzyltriphenylphosphonium chloride versus 71% for the 

corresponding bromide), although some of the benzyl halides were only available as the 

chloride (4-methoxybenzyl chloride).  The yields of the phosphonium salts are 

summarized in Table 5. 

Scheme 13: 
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Table 5: Summary of triphenylphosphonium salts 57 

Compound X Y Yield (%) 

57a H Br 98 

57b 4-CH3 Br 86 

57c 4-OCH3 Cl 72 

57d 4-CF3 Br 98 

57e 2-F Br 77 

57f 3-F Br 71 

57g 4-F Br 99 

57h 3,4-Cl2 Br 91 

57i 3,5-F2 Br 99 

57j 2-Cl Br 94 

57k 3-Cl Br 94 

57l 4-Cl Br 95 

57m 3,4-Cl2 Br 65 

57n 4-Br Br 97 

57o 4-I Br 77 
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 With both the phosphonium salts 57 and the azetidinone 58 in hand, the olefination 

could proceed (Scheme 14).97 The procedure we used involved the production of the 

dimsyl sodium by heating sodium hydride in DMSO for 1 h. The original publication 

called for the solution to be chilled to 5°C, but we found that at that temperature, the 

entire flask of solution would end up freezing. We found that 10°C was a good 

compromise, as the reaction was cool enough to handle the excess heat produced by 

deprotonation of the phosphonium salt 57, yet the flask was not so cold that the DMSO  

would freeze entirely. After the addition of the phosphonium salt, the solution would 

generally change color to a bright orange. The flask was allowed to stir for 

approximately 15 minutes so that it was uniform in color and any "clumps" would have 

time to break apart. The color would generally change again once the N-boc-azetidin-3-

one 58 was added, usually changing to a clear yellow. After the addition, the mixture 

was allowed to warm back up to room temperature over night.  After an aqueous work-

up, the benzylidenes 59 were obtained in good yields (Table 6). The only problems that 

we experienced running this reaction generally came in the form of high humidity, which 

negatively impacted yields. Fortunately, unlike some of the previous syntheses the 

olefination did not experience much variability at all. So the poor yield of some of these 

reactions could be ameliorated by simply increasing the scale of the reaction. While this 

would not improve the yield appreciably, it would allow for the generation of the desired 

amount of benzylidene for testing or hydrogenation. 

Scheme 14: 
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Table 6: Summary of 3-arylmethylene azetidine carboxylates 59 

Compound X Yield (%) 

59a H 13 

59b 4-CH3 31 

59c 4-OCH3 16 

59d 4-CF3 59 

59e 2-F 63 

59f 3-F 60 

59g 4-F 61 

59h 3,4-F2 18 

59i 3,5-F2 20 

59j 2-Cl 50 

59k 3-Cl 59 

59l 4-Cl 26 

59m 3,4-Cl2 53 

59n 4-Br 43 

59o 4-I 51 
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 Deprotection of the benzylidene (Scheme 15) allowed us to probe a more rigid 

conformation of the azetidine analogs and how our structure would compare with the 

activity of known amphetamine analogs. 

 

 

Scheme 15: 

  

 While the deprotection was fairly straightforward on paper, care had to be taken 

when performing the reaction. It is important for the carboxylate to be dissolved in 

dichloromethane before the addition of the trifluoroacetic acid. It also was beneficial for 

an excess amount of dichloromethane compared to the acid as well. We found that for a 

deprotection of solution concentration of 0.06 M of the carboxylate 59, in 

dichloromethane (5 mL) to 1.5-2 mL of trifluoroacetic acid worked best. Amounts less 

than 1.5 mL of acid deprotected too slowly and allowed the formation of side products. 

Amounts greater than 2 mL reacted quickly, but suffered from increased side product 

formation. Upon the addition of the acid, the solution changed to a brownish color and 

from then on had to be carefully monitored via TLC (1:4 ethyl acetate : hexanes). Most 
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deprotections carried out in this way took about twenty to forty minutes. It is imperative 

that once the deprotection is finished, that the reaction be worked up quickly before 

decomposition products begin to form. After work up, the azetidine is smoothly 

freebased and then the oxalate salt formed.  

 The hydrogenated product 25 introduced a somewhat more flexible substrate for us 

to evaluate (Scheme 16). Like the benzylidene 24, the position of the nitrogen and the 

alpha carbon are more rigidly fixed than that of methamphetamine, but the overall 

geometry is a bit less constrained than that of the benzylidene product. 

Scheme 16: 

  

  Most substituents (F, CF3, CH3) were able to undergo hydrogenation by using 

palladium on charcoal (10%). The chloro- and iodo- substituents required the use of 

platinum oxide to prevent dehalogenation. We had attempted several hydrogenations at 

room temperature using hydrogen balloons, but all of these attempts were unsuccessful 

in any appreciable addition to the double bond. Therefore, we used a Parr hydrogenator 

that allowed us to perform the reaction at 45 psi. Even with the hydrogenator, all of the 

substituents often required at least eight hours for completion. Many benzylidenes were 

very sluggish, often running 8 hours or more.  
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 With a series of benzylidene derivatives 24 and 3-benzylazetidine derivatives 25 in 

hand, the compounds were evaluated for binding affinity at the dopamine and serotonin 

receptors (Table 7). Binding affinities for the dopamine and serotonin transporters were 

determined by the ability of the drug to displace the radiolabeled ligands  [3H]WIN 

35,428, and [3H]citalopram, respectively, from the monoamine transporters obtained 

from rat brain tissue using previously reported assays.98,99 

  



63 
 

Table 7:  Binding affinities for benzylideneazetidine analogs at serotonin (SERT) 

and dopamine (DAT) transporters. 

  

Compound 
Codea X ClogPb 

SERTc 
 Ki 

(nM) 

DATc  
Ki (nM) 

 
DAT/SERT 

24a AF IV 123 H 2.06 TBD TBD TBD 

24b AF IV 109 4-CH3 2.37 TBD TBD TBD 

24c AF IV 133 4-OCH3 1.95 TBD TBD TBD 

24d 
AF IV 49 4-CF3 2.82 

1,220 
± 50 

28,000 ± 
8,800 

23 

24e 
AF IV 51 2-F 2.12 

1,070 
± 342 

3190 ± 
322 

3 

24f AF IV 119 3-F 2.12 TBD TBD TBD 

24g 
AF IV 169 4-F 2.12 

1,840 
± 335 

3,190 ± 
320 

1.7 

24h AF IV 55 3,4-F 2.18 TBD TBD TBD 

24i AF IV 77 3,5-F 2.18 TBD TBD TBD 

24j AF IV 93 2-Cl 2.67 TBD TBD TBD 

24k 
AF IV 57 3-Cl 2.67 

1,330 
± 140 

2,820 ± 
1,080 

2.1 

24l AF IV 105 4-Cl 2.67 TBD TBD TBD 

24m 
AF IV 175 3,4-diCl 3.28 

139 ± 
32 

531 ± 
162 

3.8 

24n 
AF IV 171 4-Br 2.76 

664 ± 
39 

1,520 ± 
260 

2.3 

24o AF IV 121 4-I 2.99 TBD TBD TBD 
aAll compounds were tested as the oxalate salts. TBD To be determined 
bClogP: see reference.100 
c All values are the mean ± SEM of three experiments preformed in triplicate. 
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 Data as to how benzyl substituent position effects the binding affinities is still 

forthcoming as more compounds are being tested. Comparing the binding affinities of 

the two fluoro-substituted analogs; 3-(2-fluorobenzylidene)azetidine oxalate 24e to the 

3-(4-fluorobenzylidene)azetidine oxalate 24g, hints that placement in the ortho position 

may favor binding.  Of the compounds tested, lipophilicity appears to play the larger role 

as the most potent compounds tend to be more lipophilic than their cohorts. The best 

compound in the series was the 3,4-dichloro analog 24m which had the best binding 

affinities displayed thus far, but also showed about a 3-fold preference for the serotonin 

transporter versus the dopamine transporter.  A similar trend was seen with the 4-bromo 

analog 24n, with an almost 50% better selectivity for the serotonin transporter over the 

dopamine transporter.  

 The hydrogenated compounds 25 followed a similar pattern, having better affinities 

for serotonin transporter versus the dopamine transporter (Table 8).  These compounds 

have an overall lower lipophilicity (1.93-3.09 as compared to 1.95-3.28 in the 

benzylidene series) than their corresponding benzylidene counterparts which may 

account for the overall lower affinities. Similar to the benzylidene series, the 

hydrogenated products which have higher lipophilicity display better affinity. The best 

compound in the series so far has been the 4-iodo compound 25j which displays also 

shows a higher affinity for the serotonin transporter than the dopamine transporter. 
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Table 8: Binding affinities of 3-benzylazetidines at DAT and SERT. 

 

Compound Codea X ClogPb SERT Ki 
(nM)c 

DAT Ki 
(nm)c 

DAT/SERT 

25a AF IV 
257 

4-CH3 2.18 TBD TBD TBD 

25b AF IV 
125 

4-CF3 2.63 TBD TBD TBD 

25c AF IV 
251 

2-F 1.93 TBD TBD TBD 

25d AF IV 
207 

3-F 1.93 3,200 ± 
300 

5,200 ± 
1400 

1.6 

25e AF IV 
187 

4-F 1.93 2,730 ± 
460 

7,670 ± 
338 

2.8 

25f AF IV 
81 

3,4-diF 1.98 TBD TBD TBD 

25g AF IV 
179 

3,5-diF 1.98 2,800 ± 50 12,600 ± 
1,400 

4.5 

25h AF IV 
231 

4-Cl 2.48 2,250 ± 
460 

2,240 ± 
310 

0.99 

25i AF IV 
259 

3,4-diCl 3.09 TBD TBD TBD 

25j AF IV 
227 

4-I 2.8 455 ± 55 1,290 ± 
400 

2.8 

aAll compounds were tested as the oxalate salts. 
bClogP see reference.100 
c All values are the mean ± SEM of three experiments preformed in triplicate. 
 

 It is interesting to note that the 3,5-difluoro analog 25g, displays such poor binding 

affinities for both transporters. Comparing the series of products;  the benzylidenes 

provide better selectivity and higher affinities for the dopamine  and the serotonin 

transporters. Of the currently tested compounds, the data suggests that lipophilicity 
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plays a significant role in the binding affinities of these analogs as the more lipophilic 

they are the better their Ki value. 

  

CONCLUSION 

A series of 3-benzylideneazetidines (24) and 3-benzylazetidines (25) were synthesized 

from N-Boc-3-azetidinone. N-Boc-azetidin-3-one was converted into the 3-

benzylideneazetidine carboxylates 59 via Wittig olefination in good yields (13-63%). 

Subsequent deprotection and conversion to the oxalate salt gave the 3-

benzylideneazetidines (24). The 3-benzylazetidines (25) were also prepared from 59 via 

hydrogenation followed by deprotection and conversion into the oxalate salt.  

 Based upon preliminary binding studies at the dopamine and serotonin transporters, 

the 3-benzylideneazetidines (24) and 3-benzylazetidines (25) meet the pharmacophore 

requirements for binding. Although the affinity of some analogues was low, the lipophilic 

analogues (24m, 24n and 25j) indicate that with the proper substituent it may be 

possible to develop more potent ligand. Clearly the results of these studies indicate that 

the azetidine ring system could be a useful scaffold for development of novel 

compounds to explore the binding motifs at monoamine transporters. 
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EXPERIMENTAL SECTION 

 All chemicals were purchased from Sigma Aldrich Chemical Company and used as 

received unless otherwise noted. Proton and carbon NMR were recorded on a Varian 

400 MHz nuclear magnetic resonance spectrometer at ambient temperature in 

deuterated chloroform (CDCl3) from Cambridge Isotope Laboratories Inc, unless 

otherwise noted. 1H NMR chemical shifts are reported as delta values (ppm) relative to 

chloroform-d (7.26 ppm). Melting points (mp) were measured with an Electrothermal R 

Mel-Temp apparatus and are uncorrected. 

 

2,2,3-tribromopropylamine hydrobromide (43)92 

Hexamethylenetetramine (100 grams, 0.71 mol ) was added to a 1 L three-neck round 

bottom flask where it  was dissolved in chloroform (800mL). The flask was fitted with a 

condenser and an addition funnel. The dibromopropene (126 g, 0.898 mol) was added 

drop-wise over a period of 40 min while the mixture was heated to reflux. The solution 

went from clear to a milky yellow color and refluxed for an additional 3 h. The mixture 

was then allowed to cool and stand overnight. The flask was then placed on an ice bath 

to precipitate the salt. The precipitate was then vacuum filtered and the salt was allowed 

to air dry overnight to yield an off-white solid.  

 In a 3 L round bottom flask, 2 liters of ethanol were added along with 480 mL of 12N 

HCl, 400 mL of H2O and the salts stirred for 1 h at room temperature and then allowed 
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to stand for 24 h. This led to a precipitate which was vacuum filtered. The filtrate was 

then concentrated to near 600 mL to precipitate more of the orange salt. The filtrate was 

filtered again before being concentrated to dryness.  This residue was then dissolved in 

300 mL of water and pH adjusted with 6N NaOH to pH 13. This mixture was then 

extracted with ether (3 x 100mL) and the combined ether solutions were dried over 

Na2SO4, filtered and concentrated under reduced pressure. The residue was then 

distilled under reduced pressure to afford the amine as an off-white solid which was 

immediately used in the next step. 

 The amine  (41.8 g, 307 mM) was dissolved in 70 mL of water and cooled to 0 C via 

an ice bath. HBr (48% solution) (40.5 mL, 0.36 mol) was added slowly with stirring, 

followed by slow addition of Br2 (25 mL, 0.49 mol). The mixture was stirred at room 

temperature for 24 h. The mixture was then concentrated under reduced pressure to 

afford the amine salt (43) as an orange-white solid ( 74 g, 49% yield). 1H NMR (400 

MHz, D2O) δ 4.35 (s, 2 H), 3.82 (s, 3 H).  

 Attempted Synthesis of Azetidine 5292 

 

 To a 250 mL round bottom flask, the 2,2,3-tribromopropylamine hydrobromide (4.02 

g, 11 mmol) was added along with a stir bar and 100 mL benzene and 10 mL of water. 
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Next, 4,4’-dichlorobenzophenone (2.78 g, 11 mmol) was added along with 2.5 

equivalents of triethylamine (3 mL, 21.5 mmol). Five drops of boron trifluoride diethyl 

etherate were added to promote the reaction. A Dean Stark trap was fitted to the 

reaction apparatus to siphon off any of the water produced by the reaction, to help drive 

the equilibrium. This reaction was heated to reflux and run overnight and monitored by 

TLC. The reaction was then cooled to room temperature and diethyl ether was added to 

precipitate the ammonium chloride salt which was then filtered. The filtrate was 

concentrated under reduced pressure to afford the crude imine which was then 

immediately utilized in the next step.  

 The crude imine was dissolved in dry methanol and placed in an ice bath under 

Nitrogen. Three equivalents of sodium borohydride(1.13 g, 29.8 mmol) were added, 

portion-wise over a period of forty-five minutes. The mixture was allowed to stir and 

come back up to room temperature before being refluxed over night. Despite numerous 

procedures and manipulations, the reduction failed to yield the acetal and instead 

generated the corresponding benzhydrol.  
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Anderson and Lok Procedure for the preparation of N-benzhydryl azetidin-3-ol 

(41)87 

 

 A stir bar was added to a 250 mL round bottom flask that was then hooked up to a 

condenser and placed on a heating mantle over a stir plate. This was then flushed with 

dry Nitrogen gas for 5 min and wrapped in foil to prevent light from entering the sides of 

the vessel. Benzhydrylamine (3.1 mL, 17 mmol) was added first and then 25-30 mL of 

methanol. Epichlorohydrin (1.4 mL, 17 mmol) was then added to the stirring mixture 

along with an additional 20-25 mL of methanol. Once the epichlorohydrin and methanol 

were added, the solution was allowed to stir at room temperature for 3 d, protected from 

light. After three days, the reaction was heated to reflux for 3 d. After the three days, the 

mixture was evaporated under reduced pressure, revealing a thick, amber residue. The 

residue was washed with acetone (3 x 30 mL) and the solid reserved. The wash can be 

evaporated under reduced pressure and then refluxed in methanol for an increased 

yield, but this was found to give only a fractional percentage increase. The solid was 

then partitioned between ether and a 6 N NaOH solution. The ether was evaporated to 

give N-benzhydryl azetidin-3-ol (41) in 48-60% yield. m.p 85-90°C (sublimation). (lit. 

m.p. 113°C).87 1H NMR (400 MHz, CDCl3) δ 2.86-2.89 (m, 2 H), 3.51-3.55 (m, 2 H), 4.33 

(s, 1 H), 4.46 (s, 1 H), 7.16-7.28 (m, 8 H), 7.37-7.51 (m, 3 H). 13C (400 MHz, CDCl3) 

62.4, 63.6, 78.6, 127.3, 128.6, 142.2. 
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Alternative Method for N-Benzhydryl Azetidin-3-ol (41)88 

 

 To a 250 mL round bottom flask, epichlorohydrin (2 ml, 2.5 mmol) was added slowly 

to benzhydrylamine  (3 mL, 17 mmol) in hexanes (10 mL). This was allowed to stand at 

room temperature for 1 day. After the time was completed, the solvent was removed 

under  reduced pressure and the residue is dissolved in acetonitrile (30mL) and refluxed 

for 3 days. The solution was then evaporated under reduced pressure and partitioned 

between ether and 12 N NaOH. The ether layer was reserved, dried and condensed 

under reduced pressure to reveal the N-benzhydrylazetidin-3-ol (2.4 g, 59%). 
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Alternative Method for the synthesis of N-Benzhydryl Azetidin-3-ol (41)89 

 

 A 250 mL round bottom flask containing benzhydrylamine (1 g, 5.5 mmol) in 

isopropanol (10 mL) under a Nitrogen atmosphere was placed on an ice bath (0° 

C). Epichlorohydrin (0.5 mL, 5.5 mmol) was added drop-wise with stirring. The mixture 

was allowed to warm up to room temperature over night with stirring. After 24 h, the 

solution was concentrated under reduced pressure and the residue purified by flash 

chromatography (SiO2, 10:1 hexanes:ethyl acetate). The epoxyamine 106 is dissolved 

in acetonitrile (36 mL) and then added to a 250 mL round bottom flask. Three 

equivalents of triethyl amine (8 mL, 57 mmol) is added and the solution allowed to reflux 

for 24 h. The reaction was then cooled to room temperature and concentrated under 

reduced pressure. The residue was then purified by column chromatography (2:1 

hexanes: ethyl acetate), but yielded none of the desired product. 
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Alternative Method for N-Benzhydryl Azetidin-3-ol (41)90 

NH2

O

Cl

N

OH

NaHCO3, EtOH+

HCl

53 38 41  

 The benzhydrylamine hydrochloride (0.2 g, 0.9 mmol) was added to a 50 mL round 

bottom flask with stir bar. Ethanol (13 mL) was also added, along with sodium 

bicarbonate (0.14 g, 1.7 mmol) was added and the flask was fitted to a condenser and 

heated to 80°C. After 1 h, the reaction was allowed to cool to 55°C and epichlorohydrin 

(0.2 mL, 2.47 mmol) was added drop-wise. The reaction was allowed to continue stirring 

at 55°C for the next 4 hours. Next, the reaction was allowed to cool to 30°C and toluene 

(15 mL) and water (15 mL) were added. The reaction was allowed to spin for 30 min. 

The water layer was discarded and the organics were washed with unionized water (25 

mL). Hydrobromic acid (48% solution; 4 mL) was added and the flask placed on an ice-

bath to try to aid crystallization, but only a brown sludge was observed. 
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Oxidation of N-Benzhydrylazetidin-3-ol (41) to N-Benzhydrylazetidin-3-one (45) 

Parikh-Doering Oxidation94 

 

To a 100 mL, dry round bottom flask, a solution of dry DMSO (10 mL) and azetidinol 

(0.4 g, 1.7 mmol) was added. Triethylamine (0.6 mL, 4.3 mmol) and the pyridine sulfur 

trioxide complex (0.602 g, 3.8 mmol) in DMSO (10 mL) were added at room 

temperature and the mixture was allowed to stir for 30 min. This was then poured into 

50 mL of ice water and then extracted with ethyl acetate (3 x 30 mL). The organics were 

combined and then washed with water (50 mL) and dried over MgSO4 and concentrated 

under reduced pressure. This reaction failed to yield an appreciable amount of the 

desired azetidinone.  
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Swern Oxidation95,96 

 

 To a flame dried, 250 mL round bottom flask, a stir bar and 10 mL of dry 

dichloromethane were added. This was placed on a dry ice/isopropanol bath (-78°C) 

and allowed to stir while being flushed with dry nitrogen. Oxalyl chloride (0.6 mL, 7 

mmol) was added and allowed to stir before the slow addition of DMSO (0.6 mL, 8.44 

mmol). The mixture was allowed to stir 20 min. Benzhydryl azetidinol (0.66 g, 2.75 

mmol) was weighed out and dissolved in dry dichloromethane before being added drop-

wise to the mixture. After one hour of stirring at -78°C, triethylamine (2 mL, 14 mmol) 

was added slowly. The mixture was allowed to stir and warm up over night. The reaction 

was worked up by diluting it with 25 mL of ethyl acetate and concentrated under 

reduced pressure on low heat. The residue was dried under high vacuum and used as 

the crude in subsequent Wittig olefination. 
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General Procedure A. Synthesis of Benzyl Phosphonium Salts (57)97 

 

The benzyl halide (3 mL, 21.3 mmol) was added to a dry, 250 mL round-bottom flask 

containing 1.1 equivalents of triphenylphosphine (5.5 g, 23.4 mmol). The mixture was 

then dissolved in toluene (70 mL) and refluxed over night. The reaction was cooled to 

room temperature and filtered. The precipitate (usually a white solid) was washed with 

diethyl ether (3x50 mL) and dried thoroughly under vacuum before use. 

(benzyl)triphenylphosphine bromide (57a) 

 

General Procedure A; white solid (5.5 g, 98%). 1H NMR (400 MHz, CDCl3) δ 5.42 (d, 2 

H, J = 12), 7.08-7.14 (m, 4 H), 7.60-7.66 (m, 6 H), 7.71-7.78 (m, 9 H). m.p.  280-292°C. 

(lit. m.p.296-297°C).101 

 

  



77 
 

(4-methylbenzyl)triphenylphosphonium bromide (57b) 

 

General Procedure A; white solid (2.0 g, 86%). 1H NMR (400 MHz, CDCl3) δ 2.25 (d, 3 

H, J = 4), 5.34 (d, 2 H, J = 14), 6.92-6.97 (m, 4 H), 7.61-7.64 (m, 5 H), 7.71-7.79 (m, 

9H). m.p. 254-260°C. (lit. m.p.256-258°C).102 

 

(4-methoxybenzyl)triphenylphosphonium chloride (57c) 

 

General Procedure A; white solid (5.3 g, 72%). 1H NMR (400 MHz, CDCl3) δ 7.78-7.73 

(m, 9 H), 7.63-7.60 (m, 6 H), 7.03-7.00 (m, 2 H), 6.66-6.64 (d, 2 H), 5.43 (d, 2 H), 3.72 

(s, 3 H). m.p. 222-226°C. (lit. m.p. 228-230°C).103 
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(4-trifluoromethylbenzyl)triphenylphosphine bromide (57d) 

 

General Procedure A; white solid (4.1 g, 98%). 1H NMR (400 MHz, CDCl3) δ 5.64 (d, 2 

H, J = 16), 7.29-7.36 (m, 2 H), 7.37 (d, 2 H, J = 8), 7.62-7.66 (m, 6 H), 7.75-7.80 (m, 9 

H). m.p. 225-230°C. 

 

(2-fluorobenzyl)triphenylphosphonium bromide (57e) 

 

 

General Procedure A; white solid (5.6 g, 77%). 1H NMR (400 MHz, CDCl3) δ 5.34 (d, 2 

H, J = 14.4 Hz), 6.81-6.86 (t, 1 H, J = 8.8 Hz), 6.99-7.04 (m, 1 H), 7.42-7.46 (m, 2 H), 

7.64-7.81 (m, 13 H). m.p. 230-242°C. 
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(3-fluorobenzyl)triphenylphosphonium bromide (57f) 

 

General Procedure A; white solid (5.1 g, 71%). 1H NMR (400 MHz, CDCl3) δ 5.53 (d, 2 

H, J = 16 Hz) 6.70 (d, 1 H J = 12), 6.91-6.95 (t, 1 H J = 8), 7.05-7.14 (m, 2 H),  7.63-

7.68 (m, 6 H), 7.75-7.81 (m, 9 H). m.p. 298-308°C. (lit. m.p. 290-292°C).102 

 

(4-fluorobenzyl)triphenylphosphonium bromide (57g) 

 

General Procedure A.; white solid (8.7 g, 99% yield). 1H NMR (400 MHz, CDCl3) δ 5.51 

(d, 2 H, J =14 Hz), 6.78-6.8 (m, 2 H), 7.12-7.16 (m, 2 H), 7.61-7.65 (m, 6 H), 7.79-7.74 

(m, 9H).  m.p. 297-303°C. (lit. m.p. 280-282°C).102 
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(3,4-difluorobenzyl)triphenylphosphonium bromide (57h) 

 

General Procedure A; off-white solid (4.9 g, 91%). 1H NMR (400 MHz, CDCl3) δ 5.46 (d, 

2 H, J = 14.4 Hz), 6.86 (t, 1 H, J = 18.4 Hz), 6.91-6.99 (m, 1 H), 7.65-7.82 (m, 15 H). 

m.p. 312-318°C.  

 

(3,5-difluorobenzyl)triphenylphosphonium bromide (57i) 

 

General Procedure A; white solid (7.0 g, 99%). 1H NMR (400 MHz, CDCl3) δ 5.71 (d, 2 

H, J = 15.2 Hz), 6.58-6.68 (m, 1 H), 6.73 (d, 2 H, J = 8 Hz) 7.62-7.67 (m, 6 H), 7.76-7.85 

(m, 9 H). m.p. 335-344°C. (lit. m.p.> 250°C).104 
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(2-chlorobenzyl)triphenylphosphonium bromide (57j) 

 

General Procedure A; white solid (4.6 g, 94%). 1H NMR (400 MHz, CDCl3) δ 5.69 (d, 2 

H, J = 12 Hz), 7.13-7.22 (m, 3 H), 7.59-7.62 (m, 7H), 7.71-7.81 (m, 8 H). m.p. 197-

201°C. 

 

(3-chlorobenzyl)triphenylphosphonium bromide (57k) 

 

General Procedure A; white solid (5.8 g, 94%). 1H NMR (400 MHz, CDCl3) δ 5.55 (d, 2 

H, J = 14.8 Hz), 6.80 (s, 1 H), 7.09 (t, 1 H, J = 8 Hz), 7.18 (s, 1 H), 7.63-7.66 (m, 6 H), 

7.77-7.88 (m, 9 H). m.p. 296-300°C. (lit. m.p. 310°C).105 
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(4-chlorobenzyl)triphenylphosphonium bromide (57l) 

 

General Procedure A; white solid (4.8 g, 95%). 1H NMR (400 MHz, CDCl3) δ 5.71 (d, 2 

H, J = 12 Hz),6.98 (t, 1 H, J = 8 Hz), 7.52-7.66 (m, 6 H), 7.75-7.86 (m, 10 H). m.p. 270-

275°C. 

 

(3,4-dichlorobenzyl)triphenylphosphonium bromide (57m) 

 

General Procedure A; white solid (3.6 g, 65%). 1H NMR (400 MHz, CDCl3) δ 5.57 (d, 2 

H, J = 14.8 Hz), 6.93 (t, 1 H, J = 2 Hz), 7.194-7.256(m, 2 H), 7.63-7.68 (m, 6 H), 7.77-

7.83 (m, 9 H) m.p. 296-305°C. 
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(4-bromobenzyl)triphenylphosphonium bromide (57n) 

 

General Procedure A; white solid (5.5749 g, 97%). 1H NMR (400 MHz, CDCl3) δ 5.55 (d, 

2 H, J = 16), 7.00-7.06 (m, 2 H), 7.22 (d, 2 H, J =  Hz), 7.60-7.65 (m, 5 H), 7.75-7.90 (m, 

10 H). m.p. 268-272°C. (lit. m.p. 276-277°C).106 

 

(4-iodobenzyl)triphenylphosphonium bromide (57o) 

 

General Procedure A; brown solid (2.2 g, 77%). 1H NMR (400 MHz, CDCl3) δ 6.81-6.84 

(m, 2 H), 7.5 (d, 2 H, J = 16), 7.64-7.69 (m, 12 H), 7.78-7.81 (m, 3 H). m.p. 231-240°C. 

(lit. m.p. 255-256°C).107 
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General Procedure B.  Synthesis of 3-(arylmethylene)-azetidines (59) 

 

To a flame dried, 3-neck 250 mL round bottom flask, 1.1 equivalents of sodium hydride 

(60% dispersion in mineral oil) was added. Nitrogen was continuously blown through the 

flask as 25 mL of anhydrous DMSO was added. The mixture was heated to 80°C for 

about one hour. The mixture was then cooled to 5°C on an ice-bath and allowed to stir. 

The atmosphere was maintained as 1.1 equivalents of the appropriate phosphonium 

salt was added. The mixture was allowed to stir for ten minutes before adding 1 

equivalent of N-Boc-azetidin-3-one. The mixture was allowed to warm to room 

temperature and stir overnight. The reaction was worked up by being poured into an icy, 

saturated sodium bisulfate solution. This was extracted with dichloromethane ( 3 x 50 

mL) and dried over sodium sulfate before being concentrated. The residue was purified 

via column chromatography (SiO2, 1:4 EtOAc:Hexanes). 
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t-butyl 3-(4-fluorobenzylidene)azetidine-1-carboxylate (59a) 

 

General Procedure B; white solid (0.48 g, 55%). 1H NMR (400 MHz, CDCl3) δ 1.57 (s, 9 

H), 4.63 (s, 2 H), 4.80(s, 2 H), 6.22 (s, 2 H), 7.00-7.09 (m, 4 H). 13C NMR (300 MHz, 

CDCl3) 28.4, 35.8, 115.6, 115.8, 128.2, 128.6,  128.7. m.p. 60-69°C. Anal. Calc. for 

C15H18FNO3 : C 68.41; H 6.89; N 5.31. Found: C 77.68, H 10.67, N 2.47. 

 

t-butyl 3-(3-fluorobenzylidene)azetidine-1-carboxylate (59b) 

 

General Procedure B; white solid (0.46 g, 60%) 1H NMR (400 MHz, CDCl3) δ  1.63 (s, 9 

H), 4.82 (s, 2 H), 4.64 (s, 2 H), 6.24 (s, 1 H), 6.77-6.79 (m, 1 H), 6.87-6.94 (m, 2 H), 

7.30-7.32 (m, 1 H). 13C NMR (300 MHz, CDCl3) δ 28.9, 55.9, 114.0, 114.2, 121.6, 

130.4, 135.5. m.p. 75-80°C. Anal. Calc. for C15H18FNO3 : C 68.41; H 6.89; N 5.31. 

Found: C 67.79, H 6.99, N 5.14. 
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t-butyl 3-(2-fluorobenzylidene)azetidine-1-carboxylate (59c) 

 

General Procedure B; off-white solid (0.7 g, 63%) 1H NMR (400 MHz, CDCl3) δ 1.43 (s, 

9 H), 4.20 (s, 2 H), 4.78 (s, 2 H), 6.5 (s, 1 H), 6.99-7.19 (m, 3 H), 7.18-7.21 (m, 1 H). 13C 

NMR (300 MHz, CDCl3) 28.4, 79.9, 114.6, 115.4, 115.8, 124.2, 127.6, 128.6, 128.7. m.p 

49-52°C. Anal. Calc. for C16H18FNO2 : C 68.41, H 6.89, N 5.31. Found: C 68.64, H 7.06, 

N 5.14. 

 

t-butyl 3-(3,4-difluorobenzylidene)azetidine-1-carboxylate (59d) 

 

General Procedure B; white solid, (0.18 g, 18%). 1H NMR (400 MHz, CDCl3) δ 1.55 (s, 9 

H), 4.63 (s, 2 H), 4.78 (s, 2 H), 6.18 (s, 1 H), 6.83-6.99 (m, 2 H), 7.10-7.15 (m, 1H). 13C 

NMR (300 MHz, CDCl3) δ 28.6, 58.8, 115.7, 115.9, 117.7, 177.9, 120.7, 123.4. m.p. 

116-120°C. Anal. Calc. for C16H17F2NO2 : C 64.04; H 6.09; N 4.98. Found: C 63.87, H 

6.21, N 4.94.  
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t-butyl 3-(3,5-difluorobenzylidene)azetidine-1-carboxylate (59e) 

 

General Procedure B; white solid (0.2 g, 20%).1H NMR (400 MHz, CDCl3) δ 1.63 (s, 9 

H), 4.64 (s, 2 H), 4.81 (s, 2 H), 6.2 (s, 1 H), 6.59-6.68 (m, 3 H). 13C NMR (300 MHz, 

CDCl3) δ 31.2, 57.0, 101.6, 101.9, 102.3, 109.7, 109.9, 119.6, 161.6, 164.9. m.p. 118-

125°C. Anal. Calc. for C16H17F2NO2 : C 64.04; H 6.09; N 4.98. Found: C 63.65, H 6.32, 

N 4.83. 

 

t-butyl 3-(4-chlorobenzylidene)azetidine-1-carboxylate (59f) 

 

General Procedure B; white solid (0.42 g, 26%). 1H NMR (400 MHz, CDCl3) δ 7.3 (d, 2 

H), 7.0 (d, 2 H), 6.22 (s, 1 H), 4.8 (s, 2 H), 4.6 (s, 2 H), 1.4 (s, 9 H). 13C NMR (300 MHz, 

CDCl3) 134.8, 131.7, 129.1, 128.5, 121.4, 80.1, 58.9, 28.6. m.p. 130-135°C. Anal. Calc. 

for C15H18NO2Cl : C 64.4; H 6.48; N 5.00. Found: C 64.22, H 6.64, N 4.92. 
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t-butyl 3-(3-chlorobenzylidene)azetidine-1-carboxylate (59g) 

 

General Procedure B; thick, yellow oil ( 0.58 g, 59%). 1H NMR (400 MHz, CDCl3) δ 1.47 

(s, 9 H), 4.64 (s, 2 H), 4.81 (s, 2 H), 6.21 (s, 1 H), 6.98 (d, 1H, J = 4), 7.18-7.28 (m, 2 H). 

13C NMR (300 MHz, CDCl3) 28.6, 58.9, 121.4, 125.4, 130.1. Anal. Calc. for 

C15H18NO2Cl : C 64.4; H 6.48; N 5.00. Found: C 61.56; H 6.47; N 4.57. 

 

t-butyl 3-(2-chlorobenzylidene)azetidine-1-carboxylate (59h) 

 

General Procedure B; yellow oil ( 0.42 g, 50%). 1H NMR (400 MHz, CDCl3) δ 1.49 (s, 9 

H), 4.67 (s, 2 H), 4.78 (s, 2 H), 6.67 (s, 1 H), 7.10-7.18 (m, 3 H), 7.38 (d, 1 H, J= 8 Hz). 

13C NMR (300 MHz, CDCl3) δ 28.6, 58.8, 80.1, 118.9, 127.1, 127.6, 128.5, 130.1, 131.8, 

132.4, 132.5, 133.2, 133.4.   
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t-butyl 3-(3,4-dichlorobenzylidene)azetidine-1-carboxylate (59i) 

 

General Procedure B; white solid, (0.62 g, 53%). 1H NMR (300 MHz, CDCl3) δ 1.55 (s, 9 

H), 4.64 (s, 2 H), 4.8 (s, 2 H), 6.18 (s, 1 H), 6.92 (d, 2 H, J= 7.5 Hz), 7.18 (s, 1 H). 13C 

NMR (300 MHz, CDCl3) δ 28.4, 58.7, 120.5, 126.4, 129.1, 130.9. m.p. 90-105°C. Anal. 

Calc. for C16H17Cl2NO2 : C 57.33; H 5.45; N 4.46. Found: C 54.65, H 5.21, N 4.17. 

 

t-butyl 3-(4-bromobenzylidene)azetidine-1-carboxylate (59j) 

 

General Procedure B; white solid, (0.38 g, 43%). 1H NMR (400 MHz, CDCl3) δ 1.47 (s, 9 

H), 4.62 (s, 2 H), 4.78 (s, 2 H), 6.20 (s,1 H), 6.97 (t, 2 H, J = 8 Hz), 7.45 (d, 2 H, J = 8 

Hz). 13C NMR (300 MHz, CDCl3) δ  28.6, 100.2, 121.5, 128.8, 132.1. m.p. 110-115°C. 

Anal. Calc. for C15H18NO2Br : C 55.57; H 5.60; N 4.32. Found: C 55.28, H 5.45, N 4.35. 

 

t-butyl 3-(4-iodobenzylidene)azetidine-1-carboxylate (59k) 



90 
 

 

General Procedure B; yellowish solid (0.4 g, 51%). 1H NMR (400 MHz, CDCl3) δ 1.45 (s, 

9 H), 4.61 (s, 2 H), 4.77 (s, 2 H), 6.18 (s, 1 H), 6.83 (d, 2 H, J = 8 Hz), 7.65 (d, 2 H, J = 8 

Hz). 13C NMR (300 MHz, CDCl3)  δ 28.4, 58.7, 115.6, 115.8, 128.2, 128.6, 128.7, 135.2, 

162.9. m.p. 78-85°C. Anal. Calc. for C15H18NO2I : C 48.53; H 4.89; N 3.77. Found: C 

50.71, H 5.11, N 3.32. 

 

t-butyl 3-(4-methoxybenzylidene)azetidine-1-carboxylate (59l) 

 

General Procedure B; waxy solid (0.18 g, 16%). 1H NMR (400 MHz, CDCl3) δ 1.47 (s, 9 

H), 3.80 (s, 3 H), 4.61 (s, 2 H), 4.79 (s, 2 H), 6.19 (s, 1 H), 6.86 (d, 2 H, J = 4 Hz), 7.03 

(d, 2 H, J = 8 Hz). 13C NMR (300 MHz, CDCl3) δ 28.6, 29.9, 55.5, 59.1, 114.4, 122.5, 

127.3 (2), 127.6, 128.5, 129.9. m.p. 40-45°C. Anal. Calc. for C16H21NO3 : C 69.79; H 

7.68; N 5.09. Found: C 72.46, H 8.63, N 3.92. 

 

t-butyl 3-(4-methylbenzylidene)azetidine-1-carboxylate (59m) 



91 
 

 

General Procedure B; white solid (0.21 g, 31%). 1H NMR (400 MHz, CDCl3) δ 1.47 (s, 9 

H), 2.33 (s, 3 H), 4.62 (s, 2 H), 4.81 (s, 2 H), 6.22 (s, 1 H), 7.00 (d, 2 H,J = 8 Hz) 7.14 

(d, 2 H, J = 8 Hz) 13C NMR (300 MHz, CDCl3) δ 21.4, 28.6, 29.9, 122.3, 127.3, 129.6, 

133.6, 137.1, 156.5. m.p. 63-65°C. Anal. Calc. for C16H21NO2 : C 74.10; H 8.16; N 5.40. 

Found: C 73.61, H 8.22, N 5.38. 

 

t-butyl 3-(4-trifluoromethylbenzylidene)azetidine-1-carboxylate (59n) 

 

General Procedure B; light yellow solid (0.64 g, 59%). 1H NMR (400 MHz, CDCl3) δ 1.47 

(s, 9 H), 4.66 (s, 2 H), 4.84 (s, 2 H), 6.31 (s, 1 H), 7.20 (d, 2 H, J = 8 Hz), 7.58 (d, 2 H, J 

= 8 Hz). 13C NMR (300 MHz, CDCl3) δ  28.6, 59.0, 121.5, 125.9 (2), 127.4, 134.2.  m.p. 

110-115°C. Anal. Calc. for C16H18F3NO2 : C 56.79; H 5.36; N 4.14. Found: C 61.15, H 

5.81, N 4.39. 

 

t-butyl 3-(benzylidene)azetidine-1-carboxylate (59o) 
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General Procedure B; white solid (0.09g, 13%). 1H NMR (400 MHz, CDCl3) δ  1.48 (s, 9 

H), 4.64 (s, 2 H), 4.83 (s, 2 H), 6.26 (s, 1 H), 7.10 (d, 2 H, J = 4 Hz), 7.20 (t, 1 H, J = 8 

Hz), 7.33 (t, 2 H, J = 8 Hz). 13C NMR (300 MHz, CDCl3) δ  28.6, 58.9, 122.5, 127.3, 

128.9, 136.3, 156.5. m.p. 53-58°C. Anal. Calc. for C15H19NO2 : C 73.43; H 7.80; N 5.70. 

Found: C 73.61, H 8.23, N 5.17.  
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General Procedure C. Syntheis of 3-Benzylideneazetidies 24 

 

The boc-protected azetidine (0.08 g, 0.32 mmol) was added to a 50 mL round bottom 

flask. It was then dissolved in 5 mL of dichloromethane and allowed to stir. 

Trifluoroacetic acid (1.5 mL, 19.6 mmol) was added to the mixture and allowed to stir at 

room temperature. The reaction was monitored by TLC (1:4 EtOAc:Hexanes) for the 

duration of the deprotection. Once the trifluoroacetic salt had formed, the mixture was 

then condensed under reduced pressure without heat.  

 The trifluoroacetate salt was dissolved in water (10 mL) and sodium bicarbonate was 

added slowly. After reaching pH ~9, ammonium hydroxide was added in drop-wise until 

pH 12. The solution was then extracted with dichloromethane (3 x 30 mL) and dried 

over sodium bicarbonate. This was filtered and the organics were condensed under 

reduced pressure at room temperature. The residue was then dissolved in a minimal 

amount of anhydrous diethyl ether. Oxalic acid (0.032 g, 0.352 mmol) was then 

dissolved in ether (5 mL) and added to the solution drop-wise. The salt was allowed to 

precipitate overnight before being triturated and dried under reduced pressure. 
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3-(benzylidene)azetidine oxalate (24a) 

 

General Procedure C; white solid (0.56 g, 98%). 1H NMR (400 MHz, CDCl3) δ 2.07 (s, 1 

H), 4.43 (s, 2 H), 4.61 (s, 2 H), 6.13 (s, 1 H), 7.07-7.09 (m, 2 H), 7.16-7.20 (m, 1 H), 

7.29-7.22 (m, 2 H). 13C NMR (400 MHz, CDCl3) δ 57.2, 57.4, 121.1, 126.6, 128.3, 137.1, 

140.3. m.p.155-165°C. Anal. Calc. for C10H10N●C2H2O4 : C 61.27; H 5.57; N 5.95. 

Found: C 59.94; H 5.51; N 5.80. 

 
3-(4-methylbenzylidene)azetidine oxalate (24b) 

 

General Procedure C; white solid (0.19 g, 95%). 1H NMR (300 MHz, CDCl3) δ 7.16-7.11 

(m, 2 H), 2.17 (s, 1 H), 2.54 (s, 3 H), 4.42 (s, 2 H), 4.60 (s, 2 H), 6.10 (s, 1 H), 6.98 (d, 2 

H, J = 9 Hz), 7.12 (d, 2 H, J = 6 Hz). 13C NMR (300 MHz, CDCl3) δ 57.4, 100.2, 120.9, 

127.2, 129.5. m.p. 133-140°C. Anal. Calc. for C11H13N●C2H2O4 : C 62.63; H 6.06; N 

5.62. Found: 61.30, H 6.21, N 5.17. 
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3-(4-methoxybenzylidene)azetidine oxalate (24c) 

OCH3

N
H

O

HO
OH

O  

General Procedure C; white solid (0.045 g, 99%). 1H NMR (300 MHz, CDCl3) δ 2.18 (s, 

1 H), 3.8 (s, 3 H) 4.42 (s, 2 H), 4.59 (s, 2 H), 6.07 (s, 1 H), 6.85 (d, 2 H, J = 9 Hz), 7.06 

(d, 2 H, J = 12). 13C NMR (300 MHz, CDCl3) δ 57.2, 114.2, 120.4, 128.5. m.p.175-

180°C. Anal. Calc. for C11H13NO●C2H2O4 : C 58.86; H 5.7; N 5.27. Found: C  57.83; H 

5.65; N 5.09. 

 

3-(4-trifluoromethylbenzylidene)azetidine oxalate (24d) 

 

General Procedure C; white solid (0.046 g, 98%). 1H NMR (300 MHz, CDCl3) δ 2.41 (s, 

1 H), 4.46 (s, 2 H), 4.63 (s, 2H), 6.18 (s, 1 H), 7.16 (d, 2 H, J = 9 Hz), 7.54-7.63 (m, 2 

H). 13C NMR (300 MHz, CDCl3) δ 57.2, 57.3, 120.2, 125.7 (3), 125.8,  127.4. m.p. 121-

130°C. Anal. Calc. for C11H10F3N●C2H2O4 : C 51.49; H 3.99; N 4.62. Found: C 49.65; H 

4.00; N 4.59. 

3-(2-fluorobenzylidene)azetidine oxalate (24e) 
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N
H

O

HO
OH

O

F

 

General Procedure C; white solid (0.05 g, 99%). 1H NMR (400 MHz, CDCl3) δ 2.17 (bs, 

1 H), 4.42 (s, 2 H), 4.60 (s, 2 H), 6.07 (s, 1 H), 6.94-6.99 (m, 1 H), 7.05 (s, 1 H), 7.45-

7.53 (m, 1 H), 7.65-7.75 (m, 1 H). 13C NMR (400 MHz, CDCl3) δ 57.2 (2), 119.9, 125.4, 

128.7, 131.8, 138.8, 142.3. m.p. 140-152°C. Anal. Calc. for C10H10FN●C2H2O4 : C 

56.92; H 4.78; N 5.53. Found: C 53.56; H 4.65; N 5.04. 

 

3-(3-fluorobenzylidene)azetidine oxalate (24f) 

 

General Procedure C; white solid (0.0508 g, 98%). 1H NMR (400 MHz, CDCl3) δ 2.17 (s, 

1 H), 4.58 (s, 2 H), 4.75 (s, 2 H), 6.14 (s, 1 H), 6.72-6.89 (m, 4 H).13C NMR (400 MHz, 

CDCl3) δ  29.9, 115.6, 128.7, 128.8, 131.8 (2)m 132.4, 132.6. m.p. 62-75°C. Anal. Calc. 

for C10H10FN●C2H2O4 : C 56.92; H 4.78; N 5.53. Found: C 56.15; H 4.71; N 5.28. 
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3-(4-fluorobenzylidene)azetidine oxalate (24g) 

 

General Procedure C; white solid (0.054 g, 97%) . 1H NMR (400 MHz, CDCl3) δ 2.16 (s, 

1 H), 4.40 (s, 2 H), 4.58 (s, 2 H), 6.09 (s, 1 H) 6.97-7.05 (m, 4 H). 13C NMR (400 MHz, 

CDCl3) δ 29.9 (3), 32.1, 57.1, 115.6, 115.8, 120.0, 128.7, 128.8, 162.8. m.p. 305-312°C. 

Anal. Calc. for C10H10FN●C2H2O4 : C 56.91; H 4.77; N 5.52. Found: C  51.84; H 4.82; N 

4.49. 

 

3-(3,4-difluorobenzylidene)azetidine oxalate (24h) 

 

General Procedure C; white solid (0.051 g, 95%). 1H NMR (400 MHz, CDCl3) δ  2.16 

(bs, 1 H), 4.42 (s, 2 H), 4.57 (s, 2 H), 6.05 (s, 1 H), 6.76-6.88 (m, 2 H), 7.04-7.13 (m, 1 

H). 13C NMR (300 MHz, CDCl3) δ 57.0 (2), 60.6, 115.5, 117.4, 119.3, 123.3 (2) ,123.4. 

m.p. 150-158°C. Anal. Calc. for C10H9F2N●C2H2O4 : C 53.41; H 4.09; N 5.16. Found: C 

52.30; H 4.00; N 5.35. 
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3-(3,5-difluorobenzylidene)azetidine oxalate (24i) 

 

General Procedure C; white solid (0.066 g, 96%). 1H NMR (400 MHz, CDCl3) δ  2.17 (s, 

1 H), 4.17 (s, 2 H), 4.59 (s, 2 H), 6.07 (s, 1 H), 6.56-6.65 (m, 3 H). 13C NMR (400 MHz, 

CDCl3) δ 57.1, 101.6, 101.9, 102.3, 109.7, 109.8, 109.9, 110, 119.6. 170-185°C.  Anal. 

Calc. for C10H9F2N●C2H2O4 : C 53.14; H 4.08; N 5.16. Found: C 43.94; H 3.91; N 6.05. 

 

3-(2-chlorobenzylidene)azetidine oxalate (24j) 

 

General Procedure C; pale yellow solid (0.62 g, 96%). 1H NMR (300 MHz, CDCl3) δ 

1.94 (bs, 1 H), 4.47 (s, 2 H), 4.58 (s, 2 H), 6.55 (s, 1 H), 7.10-7.37. 13C NMR (300 MHz, 

CDCl3) δ 29.9, 57.0, 57.3, 100.2, 117.4, 126.9, 127.7, 127.8, 130.0. m.p. 107-110°C. 

Anal Calc. for C10H10ClN●C2H2O4 : C 53.44; H 4.49; N 5.19. Found: C 50.64; H 4.78; N 

3.70. 
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3-(3-chlorobenzylidene)azetidine oxalate (24k) 

 

General Procedure C; white solid (0.05 g, 94%). 1H NMR (300 MHz, CDCl3) δ  2.17 (s, 1 

H), 4.41 (s, 2 H), 4.58 (s, 2 H), 6.07 (s, 1 H), 6.93-7.17 (m, 4 H). 13C NMR (300 MHz, 

CDCl3) δ 52.8, 55.1, 57.1, 100.2, 125.4, 126.7, 127.7, 128.6, 129.9. m.p. 155-162°C. 

Anal. Calc. for C10H10ClN●C2H2O4 : C 53.44; H 4.49; N 5.19. Found: C 53.61; H 4.85; N 

4.60. 

 

3-(4-chlorobenzylidene)azetidine oxalate (24l) 

 

General Procedure C; cream colored solid (0.06 g, 95%). 1H NMR (400 MHz, CDCl3) δ  

2.17 (s, 1 H), 4.42 (s, 2 H), 4.58 (s, 2 H), 6.09 (s, 1 H), 6.99-7.01 (m, 2 H), 7.26-7.28 (m, 

2 H). 13C NMR (300 MHz, CDCl3) δ  57.2, 119.9, 128.5 (2), 128.9 (2), 132.3, 135.5, 
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141.2. m.p. 163-169°C. Anal. Calc. for C10H10ClN●C2H2O4 : C 53.44; H 4.49; N 5.19. 

Found: C 52.2, H 4.81, N 4.67. 

 

3-(3,4-dichlorobenzylidene)azetidine oxalate (24m) 

 

General Procedure C; white solid (0.54 g, 98%). 1H NMR (300 MHz, CDCl3) δ 2.17 (s, 1 

H), 4.41 (s, 2 H), 4.57 (s, 2 H), 6.03 (s, 1 H), 6.88 (d, 1 H, J = 9 Hz), 7.13-7.18 (m, 1 H), 

7.18 (s, 1 H), 7.34-7.48 (m, 1 H). 13C NMR (300 MHz, CDCl3) δ 57.1 (2), 119.0, 126.4, 

128.9, 130.6, 137.0, 142.9. m.p. 150-165°C. Anal. Calc. for C10H9Cl2N●C2H2O4 : C 

47.39; H 3.64; N 4.60. Found: C 44.42; H 3.95; N 3.86. 
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3-(4-bromobenzylidene)azetidine oxalate (24n) 

Br

N
H

O

HO
OH

O  

General Procedure C; white solid (0.053 g, 99%). 1H NMR (300 MHz, CDCl3) δ 2.17 (s, 

1 H), 4.40 (s, 2 H), 4.57 (s, 2 H), 6.07 (s, 1 H), 6.89-6.93 (m, 2 H), 7.37-7.56 (m, 2 H). 

13C NMR (300 MHz, CDCl3) δ 57.2, 120.1, 120.4, 128.8, 131.9, 135.9, 141.3. m.p. 178-

184°C. Anal. Calc. for C10H10BrN●C2H2O4 : C 45.88; H 3.85; N 4.45. Found: C 46.40; H 

4.18; N 3.90. 

 

3-(4-iodobenzylidene)azetidine oxalate (24o) 

 

General Procedure C; soft yellow solid (0.52 g, 99%). 1H NMR (300 MHz, CDCl3) δ 2.78 

(s, 1 H), 4.43 (s, 2 H), 4.59 (s, 2 H), 6.07 (s, 1 H), 6.82 (d, 2 H, J = 6 Hz), 7.61-7.73 (m, 

2 H). 13C NMR (300 MHz, CDCl3) δ 57.1, 91.9, 120.6, 129.0, 136.3, 137.8 (2), 137.9, 

138,3, 140.4. m.p. 182-188°C. Anal. Calc. for C10H10IN●C2H2O4 : C 39.91; H 3.35; N 

3.88. Found: C 40.05; H 3.31; N 3.81. 



102 
 

General Procedure D. Synthesis of 3-benzyl-azetidines (25) 

 

 To a hydrogenation flask, 10% wt. of palladium on carbon (0.11 g) (or other catalyst 

in cases where noted) was added. The flask was then flushed with dry nitrogen for 10 to 

15 minutes. A nitrogen balloon was placed on the flask and anhydrous methanol (40 

mL) was added. The alkylidene 59 (0.10 g, 0.36 mmol) was then dissolved in dry 

methanol (10 mL) and added to the mixture. The flask was then placed under reduced 

pressure for approximately five minutes and flushed with hydrogen. The hydrogen was 

then released and the flask was evacuated again before being filled with hydrogen (~45 

psi) and the mixture was allowed to stir for 8 h. The catalyst was then filtered on Celite 

and the filter-cake was washed with methanol (3 x 30 mL). The filtrate was then 

evaporated under reduced pressure and dried under vacuum to yield the desired 

compound.  

 In cases where hydrogenation was sluggish or there was concern for dehalogenation 

of the aromatic ring, platinum oxide was used as a catalyst. To a dry, 100 mL round 

bottom flask, platinum oxide (0.015g) and a stir bar were added. The flask was covered 

with a septa and flushed with nitrogen for approximately five min. Dry methanol (20 mL) 

was then added to the flask. The azetidine (0.08g) was dissolved in methanol and 
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added to the flask. The flask was then flushed with hydrogen before being placed under 

a hydrogen atmosphere and heated to 50°C and allowed to stir overnight. 

 In both procedures, hydrogenations were allowed to proceed until a full conversion of 

starting material had occurred. 

 

General Procedure E. Deprotection of Boc Group and formation of oxalate salt 

 

To a dry 50 mL flask, the azetidine (0.036 g, 0.13 mmol) and stir bar were added. The 

azetidine was dissolved in dichloromethane (5 mL) and then trifluoroacetic acid (2 mL) 

was added with stirring. The reaction was monitored by TLC until completion. The flask 

was then condensed to dryness. Water (10 mL) was added to the residue and sodium 

bicarbonate was added until pH ~9. Ammonium hydroxide (~10 mL) was then added 

until pH 12. This was then extracted with dichloromethane (3 x 30 mL). The organics 

were dried with sodium sulfate and condensed at room temperature under reduced 

pressure. The azetidine was then dissolved in a minimal amount of anhydrous diethyl 

ether. Oxalic acid (0.013 g, 0.14 mmol) in diethyl ether was added drop-wise into the 

solution. The salt was allowed to precipitate over night before being triturated and dried 

under vacuum.  
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3-(4-methylbenzyl)azetidine oxalate (25a) 

 

General Procedures D and E; orange, oily wax-like solid (0.03 g, 97%). Boc compound: 

1H NMR (400 MHz, CDCl3) δ 7.09 (d, 2 H), 7.03 (d, 2 H), 3.97 (t, 2 H), 3.63 (t, 2 H), 2.85 

(d, 2 H), 2.79-2.77 (m, 1 H), 2.31 (s, 3 H), 1.43 (s, 9 H). 1H NMR (400 MHz, CDCl3) δ 

7.69-7.48 (m, 3 H)  Anal. Calc. for C11H15N●C2H2O4: C 62.13; H 6.82; N 5.58. Found: C 

52.85, H 8.69, N 0.89. 

 

3-(4-trifluoromethyl)azetidine oxalate (25b) 

 

General Procedures D and E; white solid (0.39 g, 98%). 1H NMR (400 MHz, CDCl3) δ 

7.75-7.73 (m, 1 H), 7.55-7.33 (m, 3 H), 4.02-3.98 (m, 2 H), 3.65-3.48 (m, 2 H), 2.96 (s, 1 

H), 2.87-2.76 (m, 2 H), 1.48 (s, 9 H). m.p. for C10H12ClN●C2H2O4: 115-130°C. Anal. 

Calc. for C11H12F3N●C2H2O4: C 51.15; H 4.62; N 4.59. Found: C 48.98; H 4.80; N 4.36. 
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3-(2-fluorobenzyl)azetidine oxalate (25c) 

 

General Procedures D and E; brownish solid (0.031 g, 97%). 1H NMR (400 MHz, 

CDCl3) δ 2.17 (s, 2 H), 2.91-3.00 (m, 3 H), 3.44 (s, 2 H), 3.66 (s, 2 H), 6.98-7.18(m, 4 

H). 13C NMR (300 MHz, CDCl3)  δ 33.6, 52.9, 115.4, 115.6, 124.3, 130.8. Anal. Calc. for 

C10H12FNO●C2H2O4: C 56.46; H 5.52; N 5.48. Found: C 21.58, H 4.54, N 0.19. 

 

3-(3-fluorobenzyl)azetidine oxalate (25d) 

 

General Procedures D and E, white solid (0.15 g, 95%). 1H NMR (400 MHz, CDCl3) δ 

2.09 (bs, 1 H), 2.81-2.96 (m, 3 H), 3.41 (s, 2 H),3.67 (s, 2 H), 6.82-6.92 (m, 3 H), 7.22-

7.24 (m, 1 H). 13C NMR (300 MHz, CDCl3) δ 53.1, 100.2, 113.0, 113.3, 124.3, 130.1. 

m.p. 50-60°C. Anal. Calc. for C10H12FNO●C2H2O4: C 56.46; H 5.52; N 5.48. Found: C 

55.04, H 5.97, N 4.30. 
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 3-(4-fluorobenzyl)azetidine oxalate (25e) 

 

General Procedures D and E, white solid (0.044 g, 99%). 1H NMR (400 MHz, CDCl3) δ 

1.91 (s, 2 H), 2.86-2.88 (m, 2 H), 2.92-3.02 (m, 1 H), 3.40 (t, 2 H), 3.66 (t, 2 H), 6.93-

6.98 (m, 2 H), 7.07-7.10 (m, 2 H). 13C NMR (400 MHz, CDCl3) δ  29.9, 36.5, 38.8, 53, 

115.3, 115.5, 129.9 (2). m.p.  68-80°C. Anal. Calc. for C10H12FNO●C2H2O4: C 56.46; H 

5.52; N 5.48. Found: C 57.96, H 6.56, N 4.36. 

 

3-(3,4-difluorobenzyl)azetidine oxalate (25f) 

 

Beige solid (0.54 g, 99%). Boc compound: 1H NMR (400 MHz, CDCl3) δ 1.54 (s, 9H), 

2.86 (d, 2 H, J = 6 Hz), 3.98 (t, 2 H, J = 6 Hz), 6.82-6.85 (m, 1 H), 6.90-6.95 (m, 1 H), 

7.02-7.09 (m, 1 H).13C NMR (300 MHz CDCl3) δ 29.9, 53.0, 117.1 (2), 117.4 (2), 124.4.  

m.p. for C10H11F2N●C2H2O4 75-85 °C. Anal. Calc. for C10H11F2N●C2H2O4: C 52.74; H 

4.79; N 5.12. Found: C 58.09, H 7.04, N 3.46. 
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3-(3,5-difluorobenzyl)azetidine oxalate (25g) 

 

General Procedures D and E; yellow solid (0.044 g, 99%). 1H NMR (400 MHz, CDCl3) δ 

1.28 (s, 9H), 2.77-2.80 (m, 1 H), 2.89 (s, 2 H), 3.62 (s, 2 H), 4.01 (s, 2 H), 6.65-6.66 (m, 

3 H). 13C NMR (300 MHz, DMSO) δ 51.0, 54.2, 112.5. m.p. for C15H19F2NO2: 50-58°C. 

m.p. for C10H11F2N●C2H2O4: 100-110°C.  Anal. Calc. for C10H11F2N●C2H2O4: C 52.94; H 

4.44; N 5.14. Found: C 47.06; H 5.44; N 3.52. 

 

3-(4-chlorobenzyl)azetidine oxalate (25h) 

 

General Procedures D and E; white solid (0.1 g, 99%). 1H NMR (400 MHz, CDCl3) δ 

2.05 (s, 1 H), 2.86-2.95 (m, 2 H), 3.28 (m, 1 H), 3.40 (s, 2 H), 3.65 (s, 2 H), 6.99-7.15 

(m, 2 H), 7.19-7.23 (m, 2 H) 13C NMR (300 MHz, CDCl3) 14.3, 22.9, 29.9, 53.1, 128.7, 

129.9. m.p. for C10H12ClN●C2H2O4:  110-120 °C. Anal. Calc. for C10H12ClN●C2H2O4: C 

53.04; H 5.19; N 5.15. Found: C 54.2, H 6.00, N 4.06. 
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3-(4-iodobenzyl)azetidine oxalate (25j) 

 

General Procedures D and E; white solid (0.1 g, 93%). 1H NMR (400 MHz, CDCl3) δ 

1.43 (s, 9 H), δ 1.42 (s, 9 H), 2.75-2.79 (m, 1H), 2.86 (d, 1 H, J = 16 Hz), 3.59-3.64 (m, 2 

H), 3.95-4.00 (m, 2 H), 6.97 (d, 1 H, J=6 Hz), 7.05 (d, 1 H, J = 12 Hz), 7.19 (d, 1 H, J = 8 

Hz), 7.60 (d, 1 H, J = 8 Hz). Anal. Calc. for C10H12IN●C2H2O4: C 39.68; H 3.88; N 3.85. 

Found: C 49.68, H 5.68, N 3.57. 
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