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Abstract 

 Web mashup is a lightweight technology used to integrate data from remote sources 

without direct access to their databases. As a data consumer, a Web mashup application creates 

new contents by retrieving data through the Web application programming interface (API) 

provided by the external sources. As a data provider, the service program publishes its Web API 

and implements the specified functions.  

 In the project reported by this thesis, we have implemented two Web mashup applications 

to enhance the Web site oystersentinel.org: the Perkinsus marinus model and the Oil Spill 

model. Each model overlay geospatial data from a local database on top of a coastal map from 

Google Maps. In addition, we have designed a Web-based data publishing service. In this 

experimental system, we illustrated a successful Web mashup interface that allows outside 

developers to access the data about the local oyster stock assessment. 

 

 

 

 

 

 

KEYWORDS: Web mashup, Oysters, Web application, Web service, Google Maps, OceansMap, Perkinsus 

Marinus, Oil Spill, Fisheries, Databases, Application Programming Interface 
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Chapter 1:  Introduction 

 

 In 2009, Florida, Alabama, Mississippi, Louisiana, and Texas produced 61% of oysters 

for our entire nation’s annual consumption [LWF, 2009]. Oyster Sentinel (oystersentinel.org) is 

a Web-based community monitoring the environmental health of estuaries along the Gulf of 

Mexico. The main purpose of this Web site is to evaluate the freshwater resources needed to 

sustain oysters, control parasites and predators, and support other estuarine-dependent 

organisms. Modeling tools are provided to assess the condition of oysters in stations along the 

Gulf coast. The following features are included among the collection of modeling tools: the 

Habitat and Restoration Suitability Indices that assess the impact of salinity alterations on oyster 

habitat and on reef restoration and the Oyster Sustainability Model that simulates effects of 

fishing on oyster habitat.  

 In the efforts to enhance oystersentinel.org, we have designed and implemented two 

models: the Perkinsus marinus model that assesses the extent of oyster infection by the parasite 

Perkinsus marinus and the Oil Spill model that assesses the impact of oil spills on oyster habitat. 

In building these two capabilities, we have applied Web Mashup techniques and used large 

portions of data that are provided by external resources such as Google Maps, the Louisiana Oil 

Spill Coordinator's Office (LOSCO), the Environmental Response Management Application 

(ERMA), and the National Oceanic and Atmospheric Administration (NOAA). The Web 

Mashup technology gives developers tools to consume external resources, as well as tools to 

create interfaces to internal data. To investigate the latter capability, we have constructed a Web 

interface that will allow the programs developed by third party developers to use 

oystersentinel.org as a data source. 
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Chapter 2:  Background 

2.1 Web application 

A Web application is an application that is accessed over a network and that is essentially 

a user-to-machine communication. It is stored and used from a server and users can access it via 

a Web site. Web applications on oystersentinel.org are implemented using PHP and run on an 

Apache server. 

 

2.2 Web services 

Contrary to a Web application, in which humans interact with a remote program across 

the Internet, a Web service is a machine-to-machine communication. The World Wide Web 

Consortium (W3C) describes a Web service as a software system designed to support 

interoperable machine-to-machine interaction over a network. It allows two remote machines to 

exchange XML formatted messages via HTTP. 

 

2.3 Web mashup 

A Web mashup is a hybrid Web application that fetches data from two or more sources 

and displays it with an entire new intent. IBM describes Web mashups as a genre of interactive 

Web applications that draw upon content retrieved from external data sources to create new and 

innovative services [Merrill, 2006].  

Examples of Web mashups include: 
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-  WeatherBonk.com, which combines Google Maps, WeatherBug, and National 

Weather Service to provide a weather forecaster and traffic reporter. 

- HousingMaps.com, which combines Google Maps and housing posts on Craigslist 

to provide listing of houses for sale or for rent on a detailed map.  

 

2.4 Drupal 

Drupal is open source content management system (CMS). It is Web-based and requires 

an Apache or Microsoft IIS server, PHP (version 5.2 or higher), and a MySQL or PostgreSQL 

database engine to deploy a Web site [Drupal, 2012]. It is mainly used to allow non-Web 

developers to manage Web sites. In its core, Drupal is backed by a database where content, 

metadata, and configuration details are stored. When a request for a Web page is made, Drupal 

fetches the content from the database and builds the page using a template. Figure 1 illustrates 

the main components of a Drupal installation and the interactions between a Web page request 

and a response. 

 

         query 

 request      response         rows 

         HTML 

         Data 

Figure 1 - Drupal Communication Diagram 

:browser 

:index.php 

(dispatcher) 

:handler 

:database 

:template 
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 In a CMS, users’ management, user interface enhancement, and security are elements that 

improve the quality of a Web site. In Drupal, these capabilities are encapsulated in modules. A 

module is an extension or plug-in that adds functionality to a Web site. A collection of modules 

provides additional features to a Drupal installation.  

From an end-user's perspective, Drupal provides an intuitive interface to search for 

modules and install them in one click. From a developer's perspective, Drupal allows 

programmers to create modules in four main steps: create the module folder (path: 

sites/all/modules), create the module file (.module extension), create a <modulename>.info file 

to tell Drupal about the module, and implement hooks, which are PHP functions to facilitate the 

integration of the module into the actions of Drupal core. A module is automatically bound to 

Drupal's database. Many built-in functions are available to configure the module, validate data, 

or query the database. 

  

2.5 Google Maps 

Google Maps is a Web service from Google that allows Web developers to easily add 

maps functionality to a Web site [Google, 2012]. The service can be consumed through its Maps 

JavaScript interface version 3.9, which is the latest version released. With its rich collection of 

classes to manipulate geographic data, Google Maps is a common data source for Web mashups. 

The models on oystersentinel.org primarily use classes from the main library: 

- google.maps.Map to display a map on the Web site. 
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- google.maps.Marker to place stations on the map (Perkinsus marinus & Oil Spill 

models). 

- google.maps.InfoWindow to display additional information about a station. 

- google.maps.Polygon to display oil spills on the map (Oil Spill model). 

Google Maps also provides libraries to compute distances and draw shapes on a map: 

- Geometry library: google.maps.geometry.spherical to compute geodesic distances (Oil 

Spill model), google.maps.geometry.poly to check if a polygon contains a marker (Oil 

Spill model). 

- Drawing library: google.maps.drawing.DrawingManager, google.maps.Circle & 

google.maps.Rectangle to allow users to draw shapes on a map (Fisheries Web-based 

service). 

- Visualization library: google.maps.visualization.HeatmapLayer to show weighted 

markers on a map (Fisheries Web-based service). 

 

2.6 OceansMap 

Developed by RPS - Applied Sciences Associates, OceansMap is an online interactive 

Web-based oil spill simulation and spill response system, which consists of a GIS-based 

graphical user interface, a spatial database and Web services from MapSERVER and the 

Environmental Data Server (EDS) [ASA, 2012]. This service is primarily used to predict the path 

of an oil spill. It can also be used to improve the response to a disaster and minimize the 

damages. Only accessible through the Web site oilmapweb.com, OceansMap has an intuitive 
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interface for users to enter data and run the prediction model. The Web mapping service presents 

the output as a series of projected snapshots of the oil spill. It provides tools to predict and 

analyze an oil spill and is a key component of the Oil Spill model. 

 

2.7 JQuery 

 JQuery is a fast and concise JavaScript Library that simplifies HTML document 

traversing, event handling, animating, and Ajax interactions for rapid Web development [The 

jQuery Foundation, 2012]. It is cross-browser, meaning that it abstracts the JavaScript 

interpreters found in the main browsers. Mozilla, Google, Opera, Internet Explorer and Safari 

have a different JavaScript interpreter on their respective browser and using JQuery in our 

project helps create reliable scripts that will run smoothly on any browser. The Web site 

oystersentinel.org mainly uses handler functions because it allows programmers to implement 

specific behaviors when an action is triggered on a Web page. The main handlers used are: 

- jQuery(<button>).click( function( ){ } ) when a user clicks on a button 

- jQuery(<dropdown>).change( function( ){ } ) when a user selects an option in a 

dropdown list 

- jQuery(<button>).submit( function( ){ } ) when a user submits a form 

- jQuery.ajax( function( ) { } ) when making Ajax calls. An Ajax call is an asynchronous 

HTTP request made to a server. 

 

 



 7

Chapter 3: Design 

 Designing a model involves understanding the components interacting in the system and 

the data passed and returned by each of them. The design also involves the structure of the 

platform, the database schema, and external resources. 

 

 3.1 System Structure 

  3.1.1 Web applications in Content Management System 

  The Web site oystersentinel.org is a platform to inform marine biologists, fishermen, or 

any concerned parties in the states of the Gulf of Mexico about the oysters in the area. In 

addition to periodically updating the content of Web pages, the Web site manager also needs to 

manage news and alerts. However, scientific data and information are often managed by a 

scientist rather than a software engineer. In these cases, using a content management system 

(CMS) provides a solution. A CMS is a system used to manage the content of the Web site 

oystersentinel.org. It allows the content manager to create, edit, and remove content from a Web 

site without needing a technician such as a Web master. The chosen CMS is Drupal. It provides 

management tools and an intuitive user interface for content managers. 

 The Web applications implemented in oystersentinel.org need internal data to be stored 

in a more secure and performing database, and require external data sources to be integrated. 

There are at least two methods to meet this need. One method is to create a Drupal module that 

connects to a database other than Drupal's content database. It would involve setting up an extra 
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server to provide that connection. Figure 2 is the communication diagram of a Drupal installation 

using an extra server to connect to a second database. 

   request     request 

   response     response 

   request       query 

     external data      rows 

 

Figure 2 - Web Applications in Drupal using an extra server and database 

 

 Another method is to use a controller following the MVC design pattern. When a user 

sends a request, Drupal processes it (Figure 1) and creates the HTML page with a template. We 

created a bridge between Drupal and our MVC-designed application by including the controller 

when our modeling tool is requested (see code snippet below). When included, the controller 

builds the view and appends it to Drupal's template. This is a more flexible design approach that 

can facilitate the interaction between the second database and the applications on 

oystersentinel.org. 

<?php 

   if(strpos($_SERVER['REQUEST_URI'], '/?q=areas') !== false){ 

 include 'mvc/controllers/areas_controller.php'; 

   }elseif(strpos($_SERVER['REQUEST_URI'], '/?q=map_stations') !== 

false){ 

 include 'mvc/controllers/stations_controller.php'; 

   } elseif(strpos($_SERVER['REQUEST_URI'], '/?q=stations_data') !== 

false){ 

 include 'mvc/controllers/data_controller.php'; 

   } 

?> 

:external data 

sources 

:database 2 

:server 2 :drupal (figure 1) :browser 
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   3.1.2 A Design following MVC 

 MVC stands for Model – View – Controller and it is a design pattern that aims to 

separate the data, its manipulation, and its presentation. The model is in charge of saving and 

fetching data. The controller manipulates the data fetched by the model and the view presents 

them to the user. Regardless of the type of data storage and the programming language, MVC 

patterns promote code reusability and isolation of business logic from user interface. 

 

 

     request response                 query rows  

include  request  

   HTML        data  

     data  HTML 

     

Figure 3 - Communication Diagram: Drupal & MVC 

 

 The controller is the main component of a MVC structure. It retrieves data via the model 

and uses views to create the Web pages. It fits well with the capabilities we are developing on 

oystersentinel.org. The controller contains the code necessary to interact with the model and the 

:browser 

:external data 

sources 

:controller 

:database 2 

:drupal (Figure 1) 

:view 

:model 
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view, and run the model. To apply this design to the Drupal CMS system, it needs to be invoked 

by client’s request through Drupal’s template (Figure 1).   

  

 3.2 Perkinsus marinus Model 

 Perkinsus marinus is a bio-indicator of mesohaline salinity regimes and is the principal 

parasite of Crassostrea virginica, also called eastern oyster, a species of oyster native to the Gulf 

of Mexico. The primary goal of this model is to help assess the level of infection of oysters along 

the Gulf coast. For data collection, the Gulf of Mexico is divided into eighteen areas in which 

there are more than seventy stations. Each area has at least one station and each station has an 

owner who is a biologist in charge of collecting data. The periodically collected data includes the 

quantity of sampled oysters, their size, and the quantity of sampled oysters infected by Perkinsus 

marinus. Monitoring the health of oysters with this model is vital in order to preserve and 

maintain a sustainable quantity of oysters because a high level of infection could be an indicator 

of oyster mortality. 

 The Perkinsus marinus model can be accessed by different type of users: Website 

administrators, station owners, and general users. In order to maintain a reliable dataset and 

provide proper privileges to each user, it is important to set up an assets manager. This manager 

grants features to users according to their privileges. For example, an owner can add a station, 

edit or delete owned stations, and manage the data. A general user can only view areas, stations, 

and data. The following table shows the action privileges of each type of user. 
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:map 

Figure 3 

Communication Diagram: 

Drupal & MVC 

 Administrator Owner General User 

Area A, E, D, V V V 

Station A, E, D, V A, E*, D*, V V 

Data A, E, D, V A*, E*, D*, V V 

 

Legend: A - Add, E - Edit, D - Delete, V - View;     * only owned station 

 

 

 The assets manager follows the MVC design pattern and each component (Areas, 

Stations, and Data) has a controller that manages a part of the application. Owners are the 

primary source of information in this model. They collect data at their stations and enter them 

into the system. They can also run the model and get a result that is descriptive of the health of 

oysters at their stations. It is imperative to build a user interface that allows them to easily select 

any owned stations and enter the data with a minimum risk of errors. For cases in which areas 

and stations have location coordinates, using a map will enrich the interface and provide a visual 

representation of the managed assets.  

 

      Perkinsus marinus Model  

 

 

 

 

Figure 4 - Perkinsus marinus Model Communication Diagram 

:areas 

:stations 

:data 
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 Figure 4 illustrates the components that are active in the Perkinsus marinus model. The 

system follows the MVC pattern and allows us to implement the Web application without using 

Drupal modules. It also gives us a quicker way to integrate a map from an external data source. 

 

3.3 Oil Spill Model 

The Oil Spill model is a geospatial model that provides a comprehensive set of 

capabilities in data retrieval and is implemented with a focus set on information and decision-

making about oyster habitat environments. After the explosion of Deepwater Horizon in April 

2010, authorities and experts have been trying to implement solutions that will effectively reduce 

the impact of similar disasters in the future. The Deepwater Horizon oil spill released about 5 

million barrels of crude oil in the Gulf of Mexico between April and July of 2010 [Soniat, 2011]. 

It is considered the largest environmental disaster in U.S. history, with extensive damage to 

marine and wildlife habitats in the Gulf of Mexico. The Oil Spill model is to help decision 

makers and domain experts to evaluate impact of oil spills to oyster resources, predict time and 

place of impact, decrease response time, prioritize efforts, and even assist in the determination of 

monetary damages. 

The first step in designing this model is to select the resources. In the event of an oil spill, 

oyster reefs are the assets being monitored. In the design of the Perkinsus marinus model, we 

introduced a second database that is used to store data on oysters and their stations. It is a natural 

choice to get station data from the same database. 

The second step consists of finding reliable data sources about oil spills. When an oil spill 

occurs, many governmental organizations are involved in the process of protecting wildlife and 
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informing the general public. The Louisiana Oil Spill Coordinator's Office (LOSCO), the 

Environmental Response Management Application (ERMA), and the National Oceanic and 

Atmospheric Administration (NOAA) are well known for their efforts in 2010 in the Deepwater 

Horizon oil spill. The Oil Spill model can use them to gather information on an oil spill and its 

progression. With these external data in the model, experts would have access to a more 

comprehensive analysis. The particularity about the Oil Spill model is its prediction feature. 

Domain experts can use this feature to analyze the course of an oil spill and detect the resources 

(oyster reefs) that need to be prioritized. This will reduce response time and help in protecting 

oysters in danger. The prediction tool requires access to weather data such as currents, winds, 

and temperature. It also requires the use of a reliable mathematical equation that will produce the 

path of the oil spill at a specific time. However, developing it in-house would demand extensive 

hours of programming and the outcome might not be efficient. Instead, the Oil Spill model 

would consume a proven and reliable Web service to complement the prediction tool.  

 

 

              request        response         query                  rows 

 

  geo-data       request  |   oil spill    request  

 

 

Figure 5 – Oil Spill model Communication Diagram 

:browser 

:database 2 

:oil spill model 

:oil spill prediction service :map 
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:developer :Fisheries Web-based 

service 

:database 2 

3.4 Fisheries Web-based Service 

 Web mashup techniques promote data reusability by allowing developers to consume 

external data into their Web application. However, a large percentage of Web sites provide data 

on their platform but do not implement interfaces for developers to access those data. This 

limitation negatively affects the development of rich and reliable Web applications. The 

Fisheries Web-based service is designed solely for the purpose of understanding programming 

interfaces and the methods to access them externally. It is not a live interface.  

 The interface will allow outside programmers to use internal data in external applications 

without compromising the reliability and the validity of those data. For security reasons, it is 

imperative to hide the structure of the database. Outside developers do not need to know the type 

of database, the tables, nor the query language used internally. The primary objective of the 

interface is to abstract this information. Its second objective is to grant read-only access to a 

specific set of data. Figure 6 describes how the Fisheries API interacts with the other components 

of the system. 

 

    request    query 

  

      response       data 

 

Figure 6 - Fisheries API Abstract Communication diagram 
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Chapter 4: Implementation 

 Using the design described in chapter 3, we now are to implement each application. It 

involves primarily configuring the system structure and the database, and then writing code for 

each component in the design. 

  

 4.1 System Structure 

 In section 3.1, we described the system structure of oystersentinel.org, the framework 

used, and the solution to deploy our Web applications. For security and performance reasons, the 

Web applications implemented on the Web site are backed by a Microsoft SQL Server (MSSQL) 

database instead of the Drupal's MySQL content database. MSSQL is commonly used for Web 

applications on a Windows platform. It also provides buffer management, transparent data 

encryption, and enterprise-level management tools for developers. With the Web site hosted on a 

Windows server machine, it is a natural choice to use a MSSQL database to store sensitive data 

on oysters. 

 As described in section 3.1.3, the MVC model component handles access to the database. 

It encapsulates the most commonly needed functions such as connecting to the database, running 

a query, getting a specific row, or getting all the rows. Thus, we have implemented a "generic" 

component, model.php, located in the /mvc/models folder. Any PHP function can use this 

component by including this file in it. It contains the following functions: 

  - db_model_connect(): creates a connection to the MSSQL database 
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- runSQL($sql, $params, $id) : takes a SQL query and its parameters and runs it on the 

database. It will return the corresponding rows or a boolean. 

 - get($table, $id): fetches a row in a table with the specified id. 

<?php 

   function get($table, $id){ 

     if($id == 0){ 

  $query = "SELECT TOP 1 * FROM ".$table; 

  $params = array(); 

     } else { 

  $query = "SELECT * FROM ".$table." WHERE id = ?"; 

  $params = array(0 => array('value' => $id, 'type' => PDO::PARAM_INT)); 

     } 

     return runSQL($query, $params); 

   } 

?> 
 

 - getAll($table, $order_by): returns all the rows of a table, and order it if specified. 

<?php  

   function getAll($table, $order_by = ''){ 

     $query = "SELECT * FROM ".$table; 

     if(!empty($order_by)){ 

       $query .= " ORDER BY ".$order_by; 

     } 

     return runSQL($query); 

   }  

?> 
  

 

 4.2 Perkinsus marinus Model 

 The Perkinsus marinus model is built around two major pieces: the assets manager and 

the mapping service. The assets manager provides the forms to manage oysters and handles user 

privileges. Using Drupal's global variable $user, the assets manager can determine the role of a 

user and present the forms granted by the user's privileges. The role of the mapping service lies 
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areas 

stations data 

contain 

many 

in the visual aspect of the application. Google provides maps and directions on their Web site 

maps.google.com and has developed an API that allows developers to use their maps on any 

Web sites. Built with JavaScript, Google Maps API is a client-side service running on the user's 

browser. Any browser with a JavaScript interpreter can run Google Maps. Google Maps has also 

a wide array of classes and functions that developers can use to overlay their data on top of a 

map. 

 The Perkinsus marinus model's main functionalities are for an owner to: add data about 

sampled oysters in a station, run the model, and analyze the level of infection. Figures 7 & 8 

show the complete database structure of this model. 

 

 

 

  

 

 

 

 

 

Figure 7 - Entity-Relationship Diagram- Perkinsus marinus model 

have many 

samples of 
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    1 many             1      many   

 

 

                1 

 

 

             many 

 

 

 

Figure 8 - Schema Diagram - Perkinsus marinus model 

 

The user interface for this model is made up of three pages that will guide the user and minimize 

errors. 
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controller 

File: controllers/ 

area_controller. php 

model  

File: models/area. 

php 

Functions: 

add(data), 

edit(data), 

delete(data), 

validate(data) 

view  

File: views/areas. 

php 

Forms: add, edit, 

delete, view 

stations 

  4.2.1 Areas Selection 

 Before selecting a station, a user first selects its area. To implement the areas page, we 

created a controller, a model, and a view. The interface of the areas page is composed of a map 

from Google Maps showing all the areas currently in the system and all the forms accessible by 

the current user. The following class diagram shows the different components and their actions. 

 

 

 

 

Figure 9 - Areas Class Diagram 

 The controller in this application is invoked from Drupal's template page (Figure 1) and 

its role is to fetch all the areas from the database and handle any form submission (see code 

snippet below).  

 <?php 

// Include areas model which contains functions to interact with the 'areas' 

table 

 include dirname(__FILE__).'/../models/area.php'; 

 $areas = getAll('AREAS', 'name'); // Retrieving all the areas 

  

 // Add an area 

 if(isset($_POST['add_area'])){ 

  $data['name'] = $_POST['add_area_name']; 

  $data['latitude'] = $_POST['add_area_lat']; 

  $data['longitude'] = $_POST['add_area_long']; 

   

  $valid = validate($data); // Validate Data submitted 

  $err = ""; 

  if($valid) add($data); // Save data in database 

  else $err = "&error=true"; 

  header("Location: /?q=areas".$err); 

 }  
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 By including the model, the controller can use the functions getAll(), validate(), and add() 

to fetch and save data in the database. It also uses the edit function when an administrator edits 

an area, or the delete function when an administrator deletes an area.  

 The area model includes the "generic" model as described in section 4.1 and implements 

the functions add() (see code snippet below), edit(), delete(), and validate(). 

<?php 

   include 'model.php'; 

  

   function add($data){ 

     $query = "INSERT INTO AREAS (created, name, latitude, longitude) VALUES 

(?, ?, ?, ?)"; 

     $now = date('Y-m-d G:h:s'); 

     $params = array( 

  0 => array('value' => $now, 'type' => PDO::PARAM_STR), 

  1 => array('value' => $data['name'], 'type' => PDO::PARAM_STR), 

  2 => array('value' => $data['latitude'], 'type' => PDO::PARAM_STR), 

  3 => array('value' => $data['longitude'], 'type' => PDO::PARAM_STR) 

     ); 

     $result = runSQL($query, $params); 

     if(isset($result['error'])) $return = 0; 

     else $return = 1;   

     return $return; 

   } 

?> 
  

 The areas controller only uses one view and all the forms (add, edit, delete, view) are 

appended according to the user's privileges by using Drupal's global variable $user (see code 

snippet below). When a user is registered in the Web site, he/she is assigned a role (poweruser, 

owner, or authenticated user). Drupal stores this information as an array 'roles' in the global 

variable $user that we can access from the MVC controller. 
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<div class="titles"> 

    <div class="titles_item"><p class="expand" id="view"></p><h3>View 

Area</h3></div> 

  <?php if(in_array('poweruser', $user->roles)){ ?> 

  <div class="titles_item"><p class="expand" id="add"></p><h3>Add 

Area</h3></div> 

  <div class="titles_item"><p class="expand" id="edit"></p><h3>Edit 

Area</h3></div> 

  <div class="titles_item last"><p class="expand" 

id="del"></p><h3>Delete Area</h3></div> 

  <?php } ?> 

 </div>  
 

 It is in the view that the external service and data from Google Maps is consumed and 

integrated with the data from the database (see code snippet below). 

 

<script type="text/javascript" src="http://maps.googleapis.com/maps/api/js? 

sensor=false"></script> 

 
<script type="text/javascript"> 

   jQuery(document).ready(function(){ 

     var neworleansLat = 29.951066; 

     var neworleansLong = -90.071532; 

     var myLatlng = new google.maps.LatLng(neworleansLat, neworleansLong); 

     var myOptions = {  

  zoom: 6,  

  center: myLatlng,  

  mapTypeId: google.maps.MapTypeId.HYBRID  

     }; 

     var map = new google.maps.Map( 

  document.getElementById("areas_map"),  

  myOptions 

     );    
 

 

 

 By using a JavaScript API, we can easily mix data from our MSSQL database and 

Google Maps, even though they belong to two different contexts. Data from the database is 

accessible via a PHP array and before the areas page is sent to the client as a HTML file, the 

server interprets the data and makes it accessible to Google Maps (see code snippet below). 
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<?php foreach($areas as $area){ ?> 

     var marker = new google.maps.Marker({  

        position: new google.maps.LatLng( 

  <?php echo $area['latitude']; ?>,  

  <?php echo $area['longitude']; ?> 

   ),  

   map: map,  

   title:"<?php echo $area['name']; ?>",  

   icon: "<?php echo variable_get('file_public_path', conf_path() . 

'/files'); ?>/images/circles_30x30.png" 

     }); 

     marker.setMap(map); 

     google.maps.event.addListener( 

   marker,  

   'click',  

   function() { 

     location.href = "/?q=map_stations&area=<?php echo $area['id']; ?>"; 

   }); 

<?php } ?> 

 

 

 

 

Figure 10 - Areas page 

 



 23 

controller 

File: controllers/ 

stations_controller. 

php 

 

model  

File: models/ 

station.php 

Functions: add(data), 

edit(data), 

delete(data),  

getStationsbyArea(are

a_id), validate(data) 

view  

File: 

views/stations.php 

Forms: add, edit, 

delete, view data 

 Figure 10 is a snapshot of the Areas page when visited by an administrator. The map 

shows markers representing the center of each station and the administrator can use the different 

tabs to view, add, edit, or delete any area.  

 

  4.2.2 Stations Selection 

 After selecting an area in the areas page, the user is taken to the stations page. The 

implementation of the stations page follows the same pattern as the areas page. We created a 

controller, a model, and a view. The class diagram in Figure 11 shows the components and their 

actions. 

 

  

 

 

 

Figure 11 - Stations Class Diagram 

 

 The stations controller is similar to the areas controller. It also uses one view to display 

the forms (add, edit, delete, view) and checks the global variable $user (see code snippet below). 

Only an administrator or an owner is allowed to add, edit, or delete a station. 
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<div class="titles"> 
   <div class="titles_item"> 

 <p class="expand" id="view"></p><h3>View Station</h3> 

   </div> 

   <?php if(in_array('poweruser', $user->roles) || in_array('owner', $user-

>roles)){ ?> 

   <div class="titles_item"> 

 <p class="expand" id="add"></p><h3>Add Station</h3> 

   </div> 

   <div class="titles_item"> 

 <p class="expand" id="edit"></p><h3>Edit Station</h3> 

   </div> 

   <div class="titles_item last"> 

 <p class="expand" id="del"></p><h3>Delete Station</h3> 

   </div> 

   <?php } ?> 

</div>  

 

 

 

 

 

 

 

 

Figure 12 – Stations page (Barataria Bay stations) 
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  4.2.3 Data Page 

 The data page follows the same design pattern as the areas and stations pages but some 

database tables and functions were added. After selecting the area and the station, the user is 

taken to the data page, which is where an owner can enter the number of oysters, their size, and 

disease code. After submitting the form (Figure 13), the controller formats the data and computes 

three critical values: the percent infection, the infection intensity, and the weighted prevalence 

(Figure 14). These values are stored in the database and represent the level of infection in that 

station at the time of sampling (Figure 15).  

 

 

Figure 13 – Add Data form 
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<?php 

//Validate Oysters Data 

$valid_oysters = validate_oysters($data['oysters']); 

 

if($valid_oysters){ 

   $data['percent_infection_c'] = ($oysters[1]['count'] == 0) ? '' : 

($oysters[1]['infected'] * 100) / $oysters[1]['count']; 

    

   $data['infection_intensity_c'] = ($oysters[1]['infected'] == 0) ? '' 

: $oysters[1]['disease'] / $oysters[1]['infected']; 

  

   $data['weighted_prevalence_c'] = ($oysters[1]['count'] == 0) ? '' : 

$oysters[1]['disease'] / $oysters[1]['count']; 

   

   //If Station's data and Oysters data are valid, save all 

   $last_id = add($data); 

   add_oysters($data['oysters'], $last_id); 

}  

?> 

 

Figure 14 - Calculating the percent infection, infection intensity, and weighted prevalence 

 

 

Figure 15 – Data for Stations: Mid Hackberry Bay: minimal level of infection since 2005 (weighted prevalence < 1); 

Mississippi Sound: Overall healthy area besides increase of infection in summer of 2008 (weighted prevalence >= 1 

& < 2 – yellow and weighted prevalence >= 2 – red).  
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controller 

File: controllers/ 

data_controller. php 

model  

File: models/data. php 

Functions: add(data), 

edit(data), 

delete(data), 

validate(data) 

view  

File: views/ 

stations_data.php 

Forms: add, edit, 

delete, view 

 Figure 16 shows the tables and views involve in this piece of the application. Data unique 

to each sample such <station_id> are stored in the table "map_stations_data" in one row. 

However, the number of sampled oysters varies and to normalize the database, oyster data are 

stored in a separate table "map_stations_raw_data". The table "map_stations_data" has a primary 

key <id> that is used as a foreign key <data_id> in the table "map_stations_raw_data". Setting 

up these relational tables helps maintain a consistent dataset and obtain an efficient retrieval of 

data when viewing or editing a row. 

 

 

 

 

Figure 16 - Data Class Diagram 

 The data controller uses one view to display the forms (add, edit, delete, view) and 

checks the global variable $user (see code snippet below) to grant access to each form.  

<div class="titles data"> 

   <div class="titles_item"> 

 <p class="expand" id="view"></p><h3>View Data</h3> 

   </div> 

   <?php if(in_array('poweruser', $user->roles) || (in_array('owner', $user-

>roles) && $user->name == $station[0]['owner'])){ ?> 

   <div class="titles_item"> 

 <p class="expand" id="add"></p><h3>Add Data</h3> 

   </div> 

   <div class="titles_item"> 

 <p class="expand" id="edit"></p><h3>Edit Data</h3> 

   </div> 

   <div class="titles_item last"> 

 <p class="expand" id="del"></p><h3>Delete Data</h3> 

   </div> 

   <?php } ?> 

</div> 
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The Perkinsus marinus model is a 3-step Web application that uses Web mashup 

technology to enrich the user interface. It helps administrators, owners, and general users, in 

understanding the spatio-temporal distribution of the parasite across the Gulf of Mexico. 

 

4.3 Oil Spill Model 

 The Oil Spill model is an application that has been designed but not implemented. For the 

purpose of demonstrating and experimenting Web Mashup technology, we implemented a 

simpler version of the originally designed Oil Spill model. This version of the Oil Spill model is 

built around five main components: the mapping service, the oyster stations, the oil spills 

manager, the prediction tool, and the query tool. 

 

  4.3.1 Mapping service 

 As used throughout the Web site, Google Maps is the mapping service used in the user 

interface of this model. The map helps position stations and place markers for oil spills. It also 

facilitates the representation of the oil spill as it progresses and the different classes provided by 

Google Maps API helps implement the geospatial queries. The following graph shows the role of 

the map relative to the other components of the model. 
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Google Maps API 
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JavaScript environment 

Figure 17 - Components of Oil Spill Model 

 

  4.3.2 Stations 

 As identified in the design section 3.3, oyster stations are the resources that are being 

monitored by the model. They are the same resources that are being managed in the Perkinsus 

marinus model. In consequence, it is a natural choice to use the MVC model 'station.php' 

described in section 4.2.2. It provides a function that fetches the list of all stations and their 

coordinates. The stations will be placed on the map. 

  

  4.3.3 Oil Spills Manager 

 When an oil spill occurs, it is monitored by various official agencies. Administrators of 

oystersentinel.org can use data from these agencies to add basic information about the oil spill. 

Prediction tool 
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oilspills oilspills_prog 

OILSPILLS 

id 

created 
name 

latitude 
longitude 
start_date 
start_time 

water_temp 

OILSPILLS_PROG 

id 

osid 
created 

date 
time 

coord 

 

The basic Information includes name, coordinates, starting date and time, and water temperature. 

Entering this information in the Oil Spills manager helps keep a local record of the oil spill and 

enrich our model. Figures 18 & 19 describe the database structure used.  

 

 

 

 

Figure 18 - Entity-Relationship Diagram- Oil Spill model 

 

 

              1       many             

 

 

Figure 19 - Schema Diagram - Oil Spill model 

 

 The oil spills manager (Figure 20) is a simple Web application that follows the same 

MVC design pattern used in the Perkinsus marinus model.  

 

have many  
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controller 

File: controllers/ 

oilspill_controller. php 

 

model  

File: models/ 

oilspill.php 

Functions: add(data), 

addProg(data), 

edit(data), 

delete(data),  

validate(data), 

getProgressions(id) 

view  

File: 

views/oil_spills.php 

Forms: add, edit, 

delete, view data 

 

Figure 20 - Oil Spills manager 

 

 

 

 

 

 

Figure 21 - Oil Spills manager Class Diagram 
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 Web site administrators can add, edit, or delete any entry in the system. The Oil Spills 

manager also provides an interface to update oil spills. After the start of an oil spill, it is 

imperative to track it, record its progression, and know its latest status. After selecting an oil spill 

on the map, the administrator is taken to the profile page of that oil spill (Figure 22). The profile 

page gives users tools to update the status of an oil spill and visualize the spill. Each update is 

represented in the system as a snapshot. After manually getting data from an official agency, the 

administrator can enter the date and time the snapshot was taken, as well as the polygon 

coordinates forming the updated shape of the oil spill.  

 

Figure 22 - Oil Spill profile page  

 

 Each snapshot is stored in the table <oilspills_prog> (Figure 19) by using the MVC 

model function addProg(data) (see code snippet below).  
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function addProg($data){ 

    $query = "INSERT INTO OILSPILLS_PROG (created, date, time, coord, osid)  

    VALUES (?, ?, ?, ?, ?)"; 

    $now = date('Y-m-d G:h:s'); 

    $params = array( 

      0 => array('value' => $now, 'type' => PDO::PARAM_STR), 

      1 => array('value' => $data['date'], 'type' => 

PDO::PARAM_STR), 

      2 => array('value' => $data['time'], 'type' => 

PDO::PARAM_STR), 

      3 => array('value' => $data['coord'], 'type' => 

PDO::PARAM_STR), 

      4 => array('value' => $data['osid'], 'type' => 

PDO::PARAM_INT) 

  ); 

    $result = runSQL($query, $params); 

    return (isset($result['error'])) ? 0 : 1; 

} 

 

 

 

 After one or more snapshots are recorded, any user can use the Oil Spill viewer. The 

viewer is a piece of the oil spill manager and its role is to provide a visual representation of the 

oil spill from the start to the latest update. The viewer consists of two operations:  

 - View the snapshots chronologically: user can view the evolution of the oil spill.  

 - View the snapshots one at the time: user can view the oil spill at a specific time.  

 

 The list of stations and the oil spill location are shown on the map via JavaScript Google 

Maps API. Google Maps also provides the class "google.maps.Polygon" that handles the 

drawing and manipulation of polygon objects on a map. With oil spills' polygons saved as 

strings, we use a JavaScript function (see code snippet below) to parse the coordinates and create 

a polygon object that represents the oil spill.  

 



 34 

  function setUpPolygon(count, colors, z, paths, stcol, fOpac){ 

 var pathArray = new Array(); 

 

 // Parsing coordinates 

 var p = paths.toString().split(';'); 

 for(var i=0; i<p.length; i++){ 

    var c = p[i].toString().split(','); 

    if(c[1] != '' && c[0] != ''){  

  // Building an array of coordinates 

  pathArray[i] = new google.maps.LatLng(c[1], c[0]); 

    } 

 } 

 return new google.maps.Polygon({ 

   clickable:false,  

   geodesic: true,  

   strokeColor: stcol,  

   strokeOpacity:1.0,  

   strokeWeight:1,  

   fillColor: "#"+colors[count],  

   fillOpacity: fOpac,  

   visible:false,  

   zIndex: z,  

   paths: pathArray }); 

   } 

  

 In its two operations, the Oil Spill viewer uses JQuery and the polygon method 

"setVisible(boolean)" to change the value of the attribute 'visible' and show or hide any polygons 

(see code snippet below). 

/* Handles viewing Oil spill progression */   

jQuery('#os_progressions').change(function(){ 

   for(i=0; i< stations_markers.length; i++){ 

 stations_markers[i].setVisible(true); 

   } 

   index = jQuery(this).val(); 

   if(index == -1) 

 for(i=0; i< polygons.length; i++){ 

    polygons[i].setVisible(true); 

 } 

   else { 

 for(i=0; i< polygons.length; i++){ 

    polygons[i].setVisible(false); 

 } 

 polygons[index].setVisible(true); 

   } 

}); 
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Figure 23 - Oil Spill Viewer 

 

  4.3.4 Prediction Tool 

 The prediction tool is the centerpiece of the Oil Spill model. However, developing it in-

house requires the use of external services to provide weather data (currents, winds, and 

temperature), and a reliable mathematical function to compute the area covered by the oil spill at 

any future time. After extended weeks of research, one existing tool satisfied the criteria set for 

our model: OceansMap. Developed by RPS - Applied Science Associates (ASA), a science and 

technology solutions company with headquarters in Rhode Island, OceansMap is an online 

service that allows registered users to analyze an oil spill and predict its path over the course of a 

scenario.  
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 OceansMap is described as an online interactive Web-based oil spill simulation and spill 

response system, which consists of a GIS-based graphical user interface, a spatial database, and 

Web services from MapSERVER and the Environmental Data Server (EDS). OceansMap 

provides a rich interface that allows users to set up oil spill scenarios, run a trajectory and 

weathering model, and visualize the results of the model. The system also includes interactive 

GIS functions and tools to manage spill planning activities. Figures 24, 25, and 26 are 

screenshots of OceansMap and they are used here to show the different features provided by the 

service. 

 

 

Figure 24 – OceansMap: Creating an Oil Spill scenario (1) (2) 
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Figure 25 - OceansMap: Viewing an Oil Spill scenario (1) (2)  

 

Figure 26 – OceansMap: Other GIS functions available (1) (2) 

(1)
 Courtesy of Applied Sciences Associates (ASA); (2) OceansMap is previously known as OilMapWeb 
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OceansMap 

Application 

OceansMap API 

- setOilSpill( data ) 

- runSimulation( 
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Oil Spill Model 

Prediction Tool 

 OceansMap is a standalone application stored on a Web server. Registered users can 

access it through the Web site oilmapweb.com and as of today, there is no interface available for 

developers to remotely consume it. A direct and full collaboration between RPS - ASA and 

oystersentinel.org is necessary in order to design an interface and implement the services 

available. Even though a full integration of OceansMap with oystersentinel.org is not possible at 

this time, it is important to describe and understand the ideal interface that the Oil Spill model 

would require. 

 

 

 

Figure 27 - OceansMap - Oil Spill Model Communication Diagram 

 

 The interface for OceansMap needs to run as a Web service and the authentication 

protocol is omitted for the purpose of this thesis. Using a Web service has many advantages: 

- Technical specifications such as the platform, the programming languages, and the 

database design are all abstracted. 

- Web service standards are well established. This guarantees the reliability and 

compatibility of the service with remote platforms. 

- Web services are accessed via HTTP requests. This aspect allows developers to 

consume the services in any context whether it is using PHP, Java, or JavaScript. It 

provides flexibility when integrating the service with other applications. 
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From the Oil Spill model's perspective, the interface for OceansMap needs two main 

functions: 

- setOilSpill( name, longitude, latitude, start ) : When using OceansMap, the user first 

enters basic information about an oil spill (Figure 24) or retrieves an oil spill already 

saved in the system. The method "setOilSpill( )" serves that purpose. As parameters, 

it takes the oil spill's name, coordinates, and start date. It then returns an ID. 

- runSimulation( ID, volume, length ): On OceansMap, after entering information on 

the oil spill, the user can run a simulation by providing the volume of oil to be 

released and the desired length of the simulation. OceansMap will run its model and 

show the oil spill and its shape in interval of one and six hours (Figure 25). The 

method "runSimulation( )" has a similar behavior. By supplying the oil spill's id, the 

volume, and the length of the simulation as parameters, the function returns the 

polygons representing the shapes of the oil spill over time.  

 The return object of the function "runSimulation( )" should be formatted as a GML. GML 

is a Geography Markup Language that is similar to XML and tailored specifically for geographic 

data such as polygons. The following sample code illustrates a simple example of a GML 

Polygon element. 

<gml:Polygon> 

    <gml:exterior> 

 <gml:LinearRing> 

     <gml:posList> 

  -89.692383 30.015836 -88.703613 29.539053 -89.450684 28.269553 

-90.74707 29.271066 -90.461426 30.03486 -90.109863 30.129925 -89.692383 

30.015836 

     </gml:posList> 

 </gml:LinearRing> 

    </gml:exterior> 

</gml:Polygon> 
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 The prediction tool will use URLs with GET parameters to access each of these 

methods. Here are examples of URLs to consume OceansMap Web service: 

- http://www.oilmapweb.com:8080/func=setOilSpill&name=oil_spill&long=-

90.0&lat=30.0&start=2012-11-2 

- http://www.oilmapweb.com:8080/func=runSimulation&vol=1000&length=24 

 With the model's components used in the JavaScript environment (Figure 17), it is a 

natural choice to consume OceansMap in JavaScript. To query the service using URLs, the 

Prediction tool can make Ajax calls to oilmapweb.com and retrieve the data in the specified 

format. Ajax calls are asynchronous requests sent to a server using JavaScript. The GML data 

received from running the simulation will be parsed and added to the map via Google Maps 

Polygon class. 

 

Figure 28 - Oil Spill Prediction tool 
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 Figure 28 illustrates a demonstration of the Prediction tool. After running the 

simulation, the Oil Spill model shows projected paths with orange and red colors, in contrast to 

the white and grey colors used for actual paths. Another feature available in the Prediction tool is 

the projection viewer, similar to the Oil Spill viewer described in section 4.3.3. The viewer helps 

users visualize oil spill projections in chronological order or visualize each projection at the time. 

 

  4.3.5 Query Tool 

 The Query tool is another important component of the Oil Spill model. After 

implementing the Oil Spill manager and the Prediction tool, administrators can manage oil spills 

while users can view them. The Query tool is what makes this model valuable. It is a collection 

of queries that users can use to check the stations that are covered by the oil spill or the ones that 

are within a certain radius from the oil spill. Domain experts and marine biologists can use this 

Query tool to prioritize their efforts in the event of an oil spill. With the Prediction tool in place, 

the Query tool can also estimate, for example, the stations that might be covered by an oil spill 

within ten hours or the stations that will be within a one-mile radius from an oil spill in ten hours. 

These queries add more weight in reducing response time and allowing marine wildlife and 

resources to be better protected. 

 The Query tool is implemented in JavaScript. Using data from any component in the 

model is done with fewer overheads and it reduces the server's processing power by running all 

the queries on the users's computer. 

 With the stations and oil spills loaded from our internal database, we can find the 

stations that are overlaid by the oil spill. Google Maps provides the method 

'google.maps.geometry.poly.containsLocation( coord, poly )'. It takes two parameters: the 
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coordinates of a marker/point and a polygon. It returns true if the marker/point is within the 

surface of the polygon. Using an iterative loop, we can enumerate all the stations and retrieve the 

ones that are located within the surface of an oil spill (see code snippet below). 

<?php foreach($stations as $j => $station){ ?> 

    coord = new google.maps.LatLng(<?php echo $station['latitude']; ?>, <?php 

echo $station['longitude']; ?>); 

    var overlaid = new Array(); 

    var d = 0; 

    for(var i=0; i<polygones.length; i++){ 

 if(google.maps.geometry.poly.containsLocation(coord, polygones[i])){ 

    overlaid[i][d] = <?php echo $station['id']; ?>; 

    d++; 

 } 

    } 

<?php } ?>  
 

 After running the simulation, the same Google Maps method is used to find the stations 

that might be overlaid by a projection. Figure 29 is a screenshot demonstrating the query and 

showing the stations that are currently overlaid by an oil spill. 

Figure 29 – Stations currently overlaid by the oil spill 
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 To filter the stations that are within a certain distance from the oil spill, we used the 

Google Maps method 'google.maps.geometry.spherical.computeDistanceBetween (coord1, 

coord2)'. Taking in count the rounded shape of Earth, this method takes the coordinates of two 

shapes as parameters and returns the distance between them. Using a loop, we can enumerate all 

the stations and calculate the distance between them and the oil spill. If the difference is within 

the radius entered in the query, then the station is added to the list (see code snippet below). 

 

jQuery('#q1_run').click(function(){ 

   // Latest shape of oil spill 

   var last = polygones.length - 1; 

   // Distance specified in the query 

   var distance = jQuery('#q1_distance').val() * 1609.344; 

 

   // Stations within distance are added to dropdown list 

   var closest = '<option value="-1">- Closest Stations -</option>'; 

   polygones[last].setVisible(true); 

 

   // Get center of latest oil spill coordinates 

   var polyCenter = getBounds(polygones[last]).getCenter(); 

 

   // Loop through each station 

   for(var i = 0; i < stations.length; i++){ 

 if(google.maps.geometry.poly.containsLocation(stations[i][3], 

polygones[last]) || 

google.maps.geometry.spherical.computeDistanceBetween(polyCenter, 

stations[i][3]) <= distance){ 

 

   // Show station that is within distance 

   stations_markers[i].setVisible(true); 

    // Append station to dropdown list 

   closest += '<option value="'+ i +'">'+ stations[i][0] +'</option>'; 

 } 

   } 

   map.setCenter(polyCenter); 

   jQuery('#q1_closest').empty().append(closest); 

   jQuery('#q1_response').show(); 

   map.setZoom(10); 

}); 
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 Figure 30 is a screenshot demonstrating the query and showing the stations that will be 

within twenty-five miles from the oil spill. 

 

 

Figure 30 – Stations within twenty-five miles of oil spill projection  

  

 The Oil Spill model is a more complex Web mashup than the Perkinsus marinus 

model. In addition to using a rich map from Google Maps, it fetches data from a local database 

and uses a prediction service (i.e. OceansMap) to create a comprehensive application that can 

have a very beneficial role in protecting the oyster resources of the Gulf of Mexico. 
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Disclaimer: Figures 20, 22, 23, 28, 29, and 30 and the information associated do not represent 

actual oil spills. Data used in the Oil Spill model were made up to test and demonstrate its 

capabilities. 

 

 4.4 Fisheries Web-based service 

 Data reusability is the primary goal of Web mashups. It gives developers the ability to 

reuse existing data from external resources. However, a large percentage of Web sites provide 

data on their platform but do not implement interfaces for developers to access those data. One 

example of this limitation is the Oil Spill model currently unable to use the service OceansMap 

as described in section 4.3.4. The Fisheries Web-based service is designed solely for the purpose 

of demonstrating programmatic interfaces and the methods to access them externally. It is not a 

live interface. 

 In addition to monitoring the health of oysters in the Gulf coast, oystersentinel.org also 

monitors the quantity of oysters by type at stock assessment stations in Louisiana. These data are 

collected in stock assessments by Coastal Study Area (CSA) managers and stored in a database. 

Managing these data helps visualize the increase or decrease of a type of oysters in any given 

station. Outside developers will use the Fisheries API to query our database and extract 

information on oysters and stations.  

From its design, the Fisheries Web-based service will serve as a bridge between outside 

developers and our internal database. Developers will have two functions available to retrieve the 

list of stations in the Gulf of Mexico and the quantity of sack oysters in each station. Figure 31 

describes how the Fisheries interface interacts with the other components of the system.  
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Figure 31 - Fisheries API Abstract Communication diagram  

 The database used to store oyster data is the MSSQL database used in the previous 

models. CSA managers collect samples from stations and separate seed, sack, and spat oysters. 

From the samples, they store the average quantity of each type of oyster in the given sample 

area.  
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   Figure 32 – Fisheries API Communication Diagram 
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  4.4.1 Query functions 

Data are stored in relational tables and to query the database. We implemented two query 

functions: 

- getStationsByArea(areaID): It is implemented in the Perkinsus marinus model (Figure 9) 

for the MVC model for stations (section 4.2, figure 11). The function takes an area ID as 

the parameter and returns the stations located in that area. When passed 0 as the area ID, 

the function returns all the stations in the table (see code snippet below).  

 

  function getStationsByArea($area_id = 0){ 
     if($area_id == 0){ 

 $query = "SELECT * FROM MAP_STATIONS ORDER BY name"; 

 $params = array(); 

     } else { 

 $query = "SELECT * FROM MAP_STATIONS WHERE area_id = ? ORDER BY name"; 

 $params = array(0 => array('value' => $area_id, 'type' => 

PDO::PARAM_INT)); 

     } 

     $result = runSQL($query, $params); 

     if(isset($result['error'])) $return = array(); 

     else $return = $result; 

 

     return $return; 

  } 

 

 

- db_model_get_sack_by_station(): Originally implemented for the Oyster Sustainability 

model, this function fetches the average of sack oysters in an area during a certain year. It 

takes as parameters a station ID and a year, and returns an associative array of station ID 

and average quantity.  

 

The query functions form the first layer of abstraction needed to hide our database 

internal structure to the outside world. The second layer is the file 'fisheries.php'. 
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 4.4.2 fisheries.php 

This file, located in the /webservices folder, handles API requests on the server side. It 

checks the GET variables passed with the request, invokes the two query functions implemented 

in section 4.4.1, and returns data as a string (see code snippet below).  

<?php 

 date_default_timezone_set('America/Chicago'); 

  

 // Query 1 - Getting list of stations 

 if(isset($_GET['query']) && $_GET['query'] == 'stations'){ 

  //Get lists of stations 

  include '../models/station.php'; 

  $stations = getStationsByArea(0); 

 

  foreach($stations as $i => $s){ 

       $response[] = 

$s['id'].','.$s['name'].','.$s['latitude'].','.$s['longitude']; 

  } 

  print_r(implode(';', $response)); 

   

 // Query 2 - Getting sack oysters average quantity by station 

 } elseif(isset($_GET['query']) && $_GET['query'] == 'qty') { 

  include '../models/station.php'; 

   

  //Get sack oysters qty of a station 

  $tmp = db_model_get_sack_by_station(2, 2012); 

  foreach($tmp as $t){ 

   $oysters[] = $t; 

  }   

  $stations = getStationsByArea(0); 

  foreach($stations as $i => $s){ 

       if($s['id'] == $_GET['stationID']){ 

   $response = (isset($oysters[$i])) ? $oysters[$i] + 15 : 25; 

   break; 

       } 

  } 

  print_r($response);   

 } 

?> 
 

 

This PHP function is not directly available to outside developers. We implemented a third 

layer of abstraction to represent the public interface.  
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 4.4.3 fisheries.js 

Following Google Maps API design, the Fisheries API will be accessible via the file 

'fisheries.js' located in the /webservices folder. When included, two operations are made 

available for use (see code snippet below): get the list of stations and fetch the average quantity 

of sack oysters given a station.  

   function getStations(){ 
 var stations = new Array(); 

 jQuery.ajax({ 

  type: 'GET', 

  url: 'http://www.oystersentinel.org/webservices/fisheries.php', 

  data: { query: 'stations'}, 

  dataType: "text", 

  async: false, 

  success: function(data){ 

   var temp = data.toString().split(";"); 

   for(var i=0; i<temp.length; i++){ 

    stations[i] = temp[i].toString().split(","); 

   } 

  } 

 }); 

 return stations; 

   } 

 

   function getOystersQty(stationID){ 

 var density = -1; 

 jQuery.ajax({ 

  type: 'GET', 

  url: 'http://www.oystersentinel.org/webservices/fisheries.php', 

  data: { query: 'qty', stationID: stationID}, 

  dataType: "text", 

  async: false, 

  success: function(data){ 

   density = data; 

  } 

 }); 

 return density;  

   }   
 

 Each JavaScript function makes Ajax calls to the file 'fisheries.php'. However, the call is 

asynchronous, meaning that the function will not wait for a response before continuing. To work 

around that limitation, jQuery provides the parameter <async> which, when set to false, waits for 
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the server's response. We also use the GET variables: <query> to specify the type of request, and 

<stationID> to specify the station. The function getStations() does not take any parameter. It 

makes an Ajax call to 'fisheries.php' and receive a string back from the server. It formats it and 

returns an array of stations. The function getOystersSackQty (stationID) takes a station ID as its 

only parameter. After receiving the reply from the Ajax call, it simply returns the density as a 

string. By including the script file 'fisheries.js' in any application, an outside developer is able to 

consume the Fisheries service and create a Web mashup. To demonstrate this Web-based service 

and the JavaScript API, we built two simple Web mashups.  

 

Disclaimer: Due to the sensitive nature of oyster data, these Web mashups use dummy data. 

The stations used in these examples do not represent actual stock assessments stations. The 

average quantities of sack oysters are from the year 2009 and are disassociated from their 

original stations. However, these examples support the primary intent of experimenting Web 

mashup interfaces. 

 

  4.4.4 Examples of Web mashups using the Fisheries API 

The first Web mashup is a Web page that displays the average quantity of sack oysters by 

using a heat map (Figure 33). To create this page, we use the Google Maps and the Fisheries 

APIs (see code snippet below). Google Maps provides the map and methods to create the 

visualization layer for heat maps. The Fisheries API provides the stations and the densities. This 

Web page retrieves data from two external data sources and displays them in a new content, 

which makes it a Web mashup. 
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Figure 33 – Web mashup Example #1 (3) 

 

 The code below is the HTML/JavaScript code used to implement this Web Mashup. An 

outside developer first needs to include the Google Maps API and the <fisheries.js> file. Google 

Maps provides the classes and methods to add a map to the Web page and produce a heat map 

using Google Maps’ visualization library. By using the average quantity of sack oysters as the 

weight for each station, it is possible to assign a heat index (color) to each location and create a 

heat map calling the method ‘google.maps.visualization.HeatmapLayer( )’. The fisheries 

interface provides the functions implemented in section 4.4.3, allowing the developer to get the 

list of stations and the average quantity of sack oysters per station. 

 

(3)
 Not actual average quantity of sack oysters 
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<html xmlns="http://www.w3.org/1999/xhtml"> 
   <head><title>Web Mashup Example #1</title> 

       <meta http-equiv="Content-Type" content="text/html; charset=utf-8"> 

       <script type="text/javascript" 

src="https://ajax.googleapis.com/ajax/libs/jquery/1.8.2/jquery 

.min.js"></script> 

       <script type="text/javascript" 

src="http://137.30.149.37/webservices/fisheries.js"></script> 

       <script type="text/javascript" 

src="http://maps.google.com/maps/api/js?sensor=false&v=3& 

libraries=visualization,drawing"></script> 

   </head> 

  

   <body> 

       <div id="map" 

style="position:relative;height:600px;width:1200px;margin:10px auto 25px 

auto;border:solid 2px; #000000;"> 

       </div>  

 <script type="text/javascript"> 

   jQuery(document).ready(function(){ 

    var myLatlng = new google.maps.LatLng(29.951066, -90.071532); 

    var myOptions = {  

zoom: 6,  

center: myLatlng,  

mapTypeId: google.maps.MapTypeId.HYBRID }; 

    var map = new google.maps.Map(document.getElementById("map"), 

myOptions); 

    var stations = getStations(); 

    var heatData = new Array(); 

    for(var i=0; i<stations.length; i++){ 

     heatData[i] = { 

location: new google.maps.LatLng(stations[i][2], stations[i][3]), 

weight: parseInt(getOystersQty(stations[i][0]), 10)}; 

     } 

    var heatmap = new google.maps.visualization.HeatmapLayer({ 

data: heatData,  

radius: 30,  

map: map,  

opacity: 0.7}); 

     

 });    

        </script> 

   </body> 

</html> 
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The second Web mashup is a more complicated application. The Web application shows 

a map of oyster stations along the Gulf coast. It also allows users to draw rectangles and circles 

on that map and it displays the average quantity of sack oysters in the area selected, as well as 

the stations included in that area. This is another way to utilize our Fisheries API with Google 

Maps API. The code snippet below is the JavaScript code used to consume the Fisheries API. 

 

 var stations = getStations(); 
 var circles = new Array(); 

 for(var i=0; i<stations.length; i++){ 

      circles[i] = new google.maps.Circle({  

   center: new google.maps.LatLng(stations[i][2], stations[i][3]),  

   radius:20000,  

   fillColor:'#A6D2EB',  

   fillOpacity:0.7,  

   strokeColor:'#FFFFFF',  

   strokeWeight:1,  

   strokeOpacity:1.0, 

   visible:true,  

   zIndex: 100}); 

      circles[i].setMap(map); 

   } 

 

  function fetchQty(circles, stations, bounds){ 

var qty;  var total = 0; var count = 0;  

for(var i=0; i<circles.length; i++){ 

    if(bounds.intersects(circles[i].getBounds())){ 

qty = getOystersQty(stations[i][0]); 

 total += parseInt(qty,10); 

 count++; 

 jQuery('#stations').append('<option value="'+ qty +'">'+ 

stations[i][1] +'</option>'); 

    } 

} 

jQuery('#qtyt').val(total/count); 

  } 

 

 

 Google Maps API provides a drawing library to allow users to draw shapes such as 

rectangles and circles on the map (see code snippet on next page).  
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var drawingManager = new google.maps.drawing.DrawingManager({ 
      drawingMode:google.maps.drawing.OverlayType.MARKER, 

      drawingControl: true, 

      drawingControlOptions: { 

        position: google.maps.ControlPosition.TOP_CENTER, 

        drawingModes: [ 

       google.maps.drawing.OverlayType.CIRCLE, 

       google.maps.drawing.OverlayType.RECTANGLE 

        ] }, 

      circleOptions: { 

        fillColor: '#ffff00', 

        fillOpacity: 0.4, 

        strokeWeight: 1, 

        clickable: false, 

        zIndex: 1 

      }}); 

drawingManager.setMap(map); 

  

 Once the shape is completed, we implemented an event handler that will retrieve the 

stations contained in the shape and fetch their density (see code snippet). 

 

var currentShape = null; 

google.maps.event.addListener(drawingManager, 'circlecomplete', 

 function(circle) { 

    if(currentShape != null) 

  currentShape.setVisible(false); 

    currentShape = circle; 

    var bounds = circle.getBounds(); 

    fetchQty(station_markers, stations, bounds); 

 } 

); 

     

google.maps.event.addListener(drawingManager, 'rectanglecomplete', 

 function(rectangle) { 

    if(currentShape != null) 

  currentShape.setVisible(false); 

         currentShape = rectangle; 

    var bounds = rectangle.getBounds(); 

    fetchQty(station_markers, stations, bounds); 

 } 

);  
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Figure 34 – Web Mashup Example #2 

Figure 35 – User selects an area (circle) and gets data on closest stations (3) 

(3)
 Not actual average quantity of sack oysters 
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Figure 36 - User selects an area (rectangle) and gets data on closest stations (3) 

(3)
 Not actual average quantity of sack oysters 



 57 

Chapter 5:  Conclusion 

 In this thesis, oystersentinel.org uses Web Mashup technology to present raw data on 

oysters to interested users with a great level of usability and intuition. Integrating the OceansMap 

service into the Web site would enhance the capabilities of domain experts to handle oil spill 

disasters. In the event of another oil spill occurring in the Gulf of Mexico or anywhere else, 

scientists would share a strong interest in using a comprehensive application such as the Oil Spill 

model. We have also implemented a Web Mashup API that supports third-party developers to 

use the data available at oystersentinel.org. 

 The advantages of the Web Mashup technology to our development are: 

1. We can provide map-rich user interfaces without a map server. 

2. We can reuse existing and reliable applications. 

3. We can provide outside developers an API to access internal data without directly 

interacting with the database. 

 Web Mashup technology also comes with some disadvantages such as security, 

authentication, and scalability. The standards have not yet been set on how to authenticate a user, 

and developers must rely on the external resources to remain available and scalable. Even though 

it is not a complete domain, Web Mashup technology allows rapid application development at a 

reduced cost. 
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