
University of New Orleans University of New Orleans

ScholarWorks@UNO ScholarWorks@UNO

University of New Orleans Theses and
Dissertations Dissertations and Theses

Fall 12-15-2012

Application of Web Mashup Technology to Oyster Information Application of Web Mashup Technology to Oyster Information

Services Services

Christian Chuindja Ngniah
University of New Orleans, cchuindj@uno.edu

Follow this and additional works at: https://scholarworks.uno.edu/td

 Part of the Aquaculture and Fisheries Commons, Databases and Information Systems Commons, and

the Other Computer Sciences Commons

Recommended Citation Recommended Citation
Chuindja Ngniah, Christian, "Application of Web Mashup Technology to Oyster Information Services"
(2012). University of New Orleans Theses and Dissertations. 1568.
https://scholarworks.uno.edu/td/1568

This Thesis is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with
permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright
and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-
holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the
work itself.

This Thesis has been accepted for inclusion in University of New Orleans Theses and Dissertations by an
authorized administrator of ScholarWorks@UNO. For more information, please contact scholarworks@uno.edu.

https://scholarworks.uno.edu/
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/etds
https://scholarworks.uno.edu/td?utm_source=scholarworks.uno.edu%2Ftd%2F1568&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/78?utm_source=scholarworks.uno.edu%2Ftd%2F1568&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=scholarworks.uno.edu%2Ftd%2F1568&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=scholarworks.uno.edu%2Ftd%2F1568&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uno.edu/td/1568?utm_source=scholarworks.uno.edu%2Ftd%2F1568&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uno.edu

Application of Web Mashup Technology to Oyster Information Services

A Thesis

Submitted to the Graduate Faculty of the
University of New Orleans
in partial fulfillment of the

requirements for the degree of

Master of Science
in

Computer Science
Database Systems and Distributed Applications

by

Christian Chuindja Ngniah

B.S. University of New Orleans, 2010

December, 2012

 ii

Acknowledgment

Foremost, I would like to express my sincere gratitude to my advisor Professor Shengru Tu for

the continuous support of my Masters Study and research, for his patience, motivation, and

enthusiasm.

I would also like to thank my thesis committee: Dr. Mahdi Abdelguerfi and Dr. Thomas Soniat

for their encouragement and guidance, and Ms. Susan Colley Theodosiou.

I thank my fellow lab mates working with me on the Oyster Sentinel project: Nathan Cooper and

Janak Dahal for the stimulating discussions and for all the fun we have had in the last eighteen

months. Also I thank my friends: Siegfried Kamga, Herbert and Arlene Twase, and Claire

McDaniels for their support.

I would like to specially thank Mr. Stephen Sontiag at Applied Sciences Associates for his

assistance.

Last but not the least, I would like to thank my family: my parents Michel and Ruth Ngniah, for

giving birth to me at the first place and supporting me spiritually throughout my life. Much

consideration also goes to my siblings: Jean-Claude, Bertrand, Guy, Melanie, and Valery for

their advices and my dear niece Myriam.

 iii

Table of Contents

List of Figures ...v

Abstract ... vii

Chapter 1: Introduction ...1

Chapter 2: Background ...2

 2.1 Web application ..2

 2.2 Web services ...2

 2.3 Web mashup..2

 2.4 Drupal ...3

 2.5 Google Maps ...4

 2.6 OceansMap ...5

 2.7 jQuery ...6

Chapter 3: Design ...7

 3.1 System Structure ..7

 3.1.1 Web applications in content management systems7

 3.1.2 A design following MVC ...9

3.2 Perkinsus marinus Model ..10

3.3 Oil Spill Model ...12

3.4 Fisheries Web-based Service ..14

Chapter 4: Implementation ...15

 4.1 System Structure ...15

 4.2 Perkinsus marinus Model ...16

 4.2.1 Areas selection ...19

 4.2.2 Stations selection ...23

 4.2.3 Data page ...25

 4.3 Oil Spill Model ...28

 iv

 4.3.1 Mapping service ...28

 4.3.2 Stations ...29

 4.3.3 Oil spills manager ..29

 4.3.4 Prediction tool ..35

 4.3.5 Query tool ..41

 4.4 Fisheries Web-based Services...45

 4.4.1 Query functions ..47

 4.4.2 fisheries.php ...48

 4.4.3 fisheries.js ..49

 4.4.4 Examples of Web mashups using the Fisheries API50

Chapter 5: Conclusion..57

References/Bibliography..58

Vita ...60

 v

List of Figures

Figure 1 – Drupal Communication Diagram ...3

Figure 2 – Web Applications in Drupal using an extra server and database8

Figure 3 – Communication Diagram: Drupal & MVC ..9

Figure 4 – Perkinsus marinus Model Communication Diagram11

Figure 5 – Oil Spill model Communication Diagram ..13

Figure 6 – Fisheries API Abstract Communication diagram ...14

Figure 7 – Entity-Relationship Diagram- Perkinsus marinus model.................................17

Figure 8 – Schema Diagram - Perkinsus marinus model ..18

Figure 9 – Areas Class Diagram ..19

Figure 10 – Areas page ..22

Figure 11 – Stations Class Diagram...23

Figure 12 – Stations page (Barataria Bay stations) ..24

Figure 13 – Add Data form ..25

Figure 14 – Calculating the percent infection, infection intensity, weighted prevalence ..26

Figure 15 – Data for Stations ...26

Figure 16 – Areas Class Diagram ..27

Figure 17 – Components of Oil Spill Model ...29

Figure 18 – Entity-Relationship Diagram- Oil Spill model ...30

Figure 19 – Schema Diagram - Oil Spill model ..30

Figure 20 – Oil Spills manager ..31

Figure 21 – Oil Spills manager Class Diagram ...31

Figure 22 – Oil Spill profile page ..32

Figure 23 – Oil Spill Viewer ..35

Figure 24 – OceansMap: Creating an Oil Spill scenario ...36

Figure 25 – OceansMap: Viewing an Oil Spill scenario ...37

 vi

Figure 26 – OceansMap: Other GIS functions available ...37

Figure 27 – OceansMap - Oil Spill Model Communication Diagram38

Figure 28 – Oil Spill Prediction tool ..40

Figure 29 – Stations currently overlaid by the oil spill ..42

Figure 30 – Stations within twenty-five miles of oil spill projection44

Figure 31 – Fisheries API Abstract Communication diagram ...46

Figure 32 – Fisheries API Communication Diagram ..46

Figure 33 – Web mashup Example #1 ...51

Figure 34 – Web Mashup Example #2 ..55

Figure 35 – User selects an area (circle) and gets data on closest stations55

Figure 36 – User selects an area (rectangle) and gets data on closest stations56

 vii

Abstract

 Web mashup is a lightweight technology used to integrate data from remote sources

without direct access to their databases. As a data consumer, a Web mashup application creates

new contents by retrieving data through the Web application programming interface (API)

provided by the external sources. As a data provider, the service program publishes its Web API

and implements the specified functions.

 In the project reported by this thesis, we have implemented two Web mashup applications

to enhance the Web site oystersentinel.org: the Perkinsus marinus model and the Oil Spill

model. Each model overlay geospatial data from a local database on top of a coastal map from

Google Maps. In addition, we have designed a Web-based data publishing service. In this

experimental system, we illustrated a successful Web mashup interface that allows outside

developers to access the data about the local oyster stock assessment.

KEYWORDS: Web mashup, Oysters, Web application, Web service, Google Maps, OceansMap, Perkinsus

Marinus, Oil Spill, Fisheries, Databases, Application Programming Interface

 1

Chapter 1: Introduction

 In 2009, Florida, Alabama, Mississippi, Louisiana, and Texas produced 61% of oysters

for our entire nation’s annual consumption [LWF, 2009]. Oyster Sentinel (oystersentinel.org) is

a Web-based community monitoring the environmental health of estuaries along the Gulf of

Mexico. The main purpose of this Web site is to evaluate the freshwater resources needed to

sustain oysters, control parasites and predators, and support other estuarine-dependent

organisms. Modeling tools are provided to assess the condition of oysters in stations along the

Gulf coast. The following features are included among the collection of modeling tools: the

Habitat and Restoration Suitability Indices that assess the impact of salinity alterations on oyster

habitat and on reef restoration and the Oyster Sustainability Model that simulates effects of

fishing on oyster habitat.

 In the efforts to enhance oystersentinel.org, we have designed and implemented two

models: the Perkinsus marinus model that assesses the extent of oyster infection by the parasite

Perkinsus marinus and the Oil Spill model that assesses the impact of oil spills on oyster habitat.

In building these two capabilities, we have applied Web Mashup techniques and used large

portions of data that are provided by external resources such as Google Maps, the Louisiana Oil

Spill Coordinator's Office (LOSCO), the Environmental Response Management Application

(ERMA), and the National Oceanic and Atmospheric Administration (NOAA). The Web

Mashup technology gives developers tools to consume external resources, as well as tools to

create interfaces to internal data. To investigate the latter capability, we have constructed a Web

interface that will allow the programs developed by third party developers to use

oystersentinel.org as a data source.

 2

Chapter 2: Background

2.1 Web application

A Web application is an application that is accessed over a network and that is essentially

a user-to-machine communication. It is stored and used from a server and users can access it via

a Web site. Web applications on oystersentinel.org are implemented using PHP and run on an

Apache server.

2.2 Web services

Contrary to a Web application, in which humans interact with a remote program across

the Internet, a Web service is a machine-to-machine communication. The World Wide Web

Consortium (W3C) describes a Web service as a software system designed to support

interoperable machine-to-machine interaction over a network. It allows two remote machines to

exchange XML formatted messages via HTTP.

2.3 Web mashup

A Web mashup is a hybrid Web application that fetches data from two or more sources

and displays it with an entire new intent. IBM describes Web mashups as a genre of interactive

Web applications that draw upon content retrieved from external data sources to create new and

innovative services [Merrill, 2006].

Examples of Web mashups include:

 3

- WeatherBonk.com, which combines Google Maps, WeatherBug, and National

Weather Service to provide a weather forecaster and traffic reporter.

- HousingMaps.com, which combines Google Maps and housing posts on Craigslist

to provide listing of houses for sale or for rent on a detailed map.

2.4 Drupal

Drupal is open source content management system (CMS). It is Web-based and requires

an Apache or Microsoft IIS server, PHP (version 5.2 or higher), and a MySQL or PostgreSQL

database engine to deploy a Web site [Drupal, 2012]. It is mainly used to allow non-Web

developers to manage Web sites. In its core, Drupal is backed by a database where content,

metadata, and configuration details are stored. When a request for a Web page is made, Drupal

fetches the content from the database and builds the page using a template. Figure 1 illustrates

the main components of a Drupal installation and the interactions between a Web page request

and a response.

 query

 request response rows

 HTML

 Data

Figure 1 - Drupal Communication Diagram

:browser

:index.php

(dispatcher)

:handler

:database

:template

 4

 In a CMS, users’ management, user interface enhancement, and security are elements that

improve the quality of a Web site. In Drupal, these capabilities are encapsulated in modules. A

module is an extension or plug-in that adds functionality to a Web site. A collection of modules

provides additional features to a Drupal installation.

From an end-user's perspective, Drupal provides an intuitive interface to search for

modules and install them in one click. From a developer's perspective, Drupal allows

programmers to create modules in four main steps: create the module folder (path:

sites/all/modules), create the module file (.module extension), create a <modulename>.info file

to tell Drupal about the module, and implement hooks, which are PHP functions to facilitate the

integration of the module into the actions of Drupal core. A module is automatically bound to

Drupal's database. Many built-in functions are available to configure the module, validate data,

or query the database.

2.5 Google Maps

Google Maps is a Web service from Google that allows Web developers to easily add

maps functionality to a Web site [Google, 2012]. The service can be consumed through its Maps

JavaScript interface version 3.9, which is the latest version released. With its rich collection of

classes to manipulate geographic data, Google Maps is a common data source for Web mashups.

The models on oystersentinel.org primarily use classes from the main library:

- google.maps.Map to display a map on the Web site.

 5

- google.maps.Marker to place stations on the map (Perkinsus marinus & Oil Spill

models).

- google.maps.InfoWindow to display additional information about a station.

- google.maps.Polygon to display oil spills on the map (Oil Spill model).

Google Maps also provides libraries to compute distances and draw shapes on a map:

- Geometry library: google.maps.geometry.spherical to compute geodesic distances (Oil

Spill model), google.maps.geometry.poly to check if a polygon contains a marker (Oil

Spill model).

- Drawing library: google.maps.drawing.DrawingManager, google.maps.Circle &

google.maps.Rectangle to allow users to draw shapes on a map (Fisheries Web-based

service).

- Visualization library: google.maps.visualization.HeatmapLayer to show weighted

markers on a map (Fisheries Web-based service).

2.6 OceansMap

Developed by RPS - Applied Sciences Associates, OceansMap is an online interactive

Web-based oil spill simulation and spill response system, which consists of a GIS-based

graphical user interface, a spatial database and Web services from MapSERVER and the

Environmental Data Server (EDS) [ASA, 2012]. This service is primarily used to predict the path

of an oil spill. It can also be used to improve the response to a disaster and minimize the

damages. Only accessible through the Web site oilmapweb.com, OceansMap has an intuitive

 6

interface for users to enter data and run the prediction model. The Web mapping service presents

the output as a series of projected snapshots of the oil spill. It provides tools to predict and

analyze an oil spill and is a key component of the Oil Spill model.

2.7 JQuery

 JQuery is a fast and concise JavaScript Library that simplifies HTML document

traversing, event handling, animating, and Ajax interactions for rapid Web development [The

jQuery Foundation, 2012]. It is cross-browser, meaning that it abstracts the JavaScript

interpreters found in the main browsers. Mozilla, Google, Opera, Internet Explorer and Safari

have a different JavaScript interpreter on their respective browser and using JQuery in our

project helps create reliable scripts that will run smoothly on any browser. The Web site

oystersentinel.org mainly uses handler functions because it allows programmers to implement

specific behaviors when an action is triggered on a Web page. The main handlers used are:

- jQuery(<button>).click(function(){ }) when a user clicks on a button

- jQuery(<dropdown>).change(function(){ }) when a user selects an option in a

dropdown list

- jQuery(<button>).submit(function(){ }) when a user submits a form

- jQuery.ajax(function() { }) when making Ajax calls. An Ajax call is an asynchronous

HTTP request made to a server.

 7

Chapter 3: Design

 Designing a model involves understanding the components interacting in the system and

the data passed and returned by each of them. The design also involves the structure of the

platform, the database schema, and external resources.

 3.1 System Structure

 3.1.1 Web applications in Content Management System

 The Web site oystersentinel.org is a platform to inform marine biologists, fishermen, or

any concerned parties in the states of the Gulf of Mexico about the oysters in the area. In

addition to periodically updating the content of Web pages, the Web site manager also needs to

manage news and alerts. However, scientific data and information are often managed by a

scientist rather than a software engineer. In these cases, using a content management system

(CMS) provides a solution. A CMS is a system used to manage the content of the Web site

oystersentinel.org. It allows the content manager to create, edit, and remove content from a Web

site without needing a technician such as a Web master. The chosen CMS is Drupal. It provides

management tools and an intuitive user interface for content managers.

 The Web applications implemented in oystersentinel.org need internal data to be stored

in a more secure and performing database, and require external data sources to be integrated.

There are at least two methods to meet this need. One method is to create a Drupal module that

connects to a database other than Drupal's content database. It would involve setting up an extra

 8

server to provide that connection. Figure 2 is the communication diagram of a Drupal installation

using an extra server to connect to a second database.

 request request

 response response

 request query

 external data rows

Figure 2 - Web Applications in Drupal using an extra server and database

 Another method is to use a controller following the MVC design pattern. When a user

sends a request, Drupal processes it (Figure 1) and creates the HTML page with a template. We

created a bridge between Drupal and our MVC-designed application by including the controller

when our modeling tool is requested (see code snippet below). When included, the controller

builds the view and appends it to Drupal's template. This is a more flexible design approach that

can facilitate the interaction between the second database and the applications on

oystersentinel.org.

<?php

 if(strpos($_SERVER['REQUEST_URI'], '/?q=areas') !== false){

 include 'mvc/controllers/areas_controller.php';

 }elseif(strpos($_SERVER['REQUEST_URI'], '/?q=map_stations') !==

false){

 include 'mvc/controllers/stations_controller.php';

 } elseif(strpos($_SERVER['REQUEST_URI'], '/?q=stations_data') !==

false){

 include 'mvc/controllers/data_controller.php';

 }

?>

:external data

sources

:database 2

:server 2 :drupal (figure 1) :browser

 9

 3.1.2 A Design following MVC

 MVC stands for Model – View – Controller and it is a design pattern that aims to

separate the data, its manipulation, and its presentation. The model is in charge of saving and

fetching data. The controller manipulates the data fetched by the model and the view presents

them to the user. Regardless of the type of data storage and the programming language, MVC

patterns promote code reusability and isolation of business logic from user interface.

 request response query rows

include request

 HTML data

 data HTML

Figure 3 - Communication Diagram: Drupal & MVC

 The controller is the main component of a MVC structure. It retrieves data via the model

and uses views to create the Web pages. It fits well with the capabilities we are developing on

oystersentinel.org. The controller contains the code necessary to interact with the model and the

:browser

:external data

sources

:controller

:database 2

:drupal (Figure 1)

:view

:model

 10

view, and run the model. To apply this design to the Drupal CMS system, it needs to be invoked

by client’s request through Drupal’s template (Figure 1).

 3.2 Perkinsus marinus Model

 Perkinsus marinus is a bio-indicator of mesohaline salinity regimes and is the principal

parasite of Crassostrea virginica, also called eastern oyster, a species of oyster native to the Gulf

of Mexico. The primary goal of this model is to help assess the level of infection of oysters along

the Gulf coast. For data collection, the Gulf of Mexico is divided into eighteen areas in which

there are more than seventy stations. Each area has at least one station and each station has an

owner who is a biologist in charge of collecting data. The periodically collected data includes the

quantity of sampled oysters, their size, and the quantity of sampled oysters infected by Perkinsus

marinus. Monitoring the health of oysters with this model is vital in order to preserve and

maintain a sustainable quantity of oysters because a high level of infection could be an indicator

of oyster mortality.

 The Perkinsus marinus model can be accessed by different type of users: Website

administrators, station owners, and general users. In order to maintain a reliable dataset and

provide proper privileges to each user, it is important to set up an assets manager. This manager

grants features to users according to their privileges. For example, an owner can add a station,

edit or delete owned stations, and manage the data. A general user can only view areas, stations,

and data. The following table shows the action privileges of each type of user.

 11

:map

Figure 3

Communication Diagram:

Drupal & MVC

 Administrator Owner General User

Area A, E, D, V V V

Station A, E, D, V A, E*, D*, V V

Data A, E, D, V A*, E*, D*, V V

Legend: A - Add, E - Edit, D - Delete, V - View; * only owned station

 The assets manager follows the MVC design pattern and each component (Areas,

Stations, and Data) has a controller that manages a part of the application. Owners are the

primary source of information in this model. They collect data at their stations and enter them

into the system. They can also run the model and get a result that is descriptive of the health of

oysters at their stations. It is imperative to build a user interface that allows them to easily select

any owned stations and enter the data with a minimum risk of errors. For cases in which areas

and stations have location coordinates, using a map will enrich the interface and provide a visual

representation of the managed assets.

 Perkinsus marinus Model

Figure 4 - Perkinsus marinus Model Communication Diagram

:areas

:stations

:data

 12

 Figure 4 illustrates the components that are active in the Perkinsus marinus model. The

system follows the MVC pattern and allows us to implement the Web application without using

Drupal modules. It also gives us a quicker way to integrate a map from an external data source.

3.3 Oil Spill Model

The Oil Spill model is a geospatial model that provides a comprehensive set of

capabilities in data retrieval and is implemented with a focus set on information and decision-

making about oyster habitat environments. After the explosion of Deepwater Horizon in April

2010, authorities and experts have been trying to implement solutions that will effectively reduce

the impact of similar disasters in the future. The Deepwater Horizon oil spill released about 5

million barrels of crude oil in the Gulf of Mexico between April and July of 2010 [Soniat, 2011].

It is considered the largest environmental disaster in U.S. history, with extensive damage to

marine and wildlife habitats in the Gulf of Mexico. The Oil Spill model is to help decision

makers and domain experts to evaluate impact of oil spills to oyster resources, predict time and

place of impact, decrease response time, prioritize efforts, and even assist in the determination of

monetary damages.

The first step in designing this model is to select the resources. In the event of an oil spill,

oyster reefs are the assets being monitored. In the design of the Perkinsus marinus model, we

introduced a second database that is used to store data on oysters and their stations. It is a natural

choice to get station data from the same database.

The second step consists of finding reliable data sources about oil spills. When an oil spill

occurs, many governmental organizations are involved in the process of protecting wildlife and

 13

informing the general public. The Louisiana Oil Spill Coordinator's Office (LOSCO), the

Environmental Response Management Application (ERMA), and the National Oceanic and

Atmospheric Administration (NOAA) are well known for their efforts in 2010 in the Deepwater

Horizon oil spill. The Oil Spill model can use them to gather information on an oil spill and its

progression. With these external data in the model, experts would have access to a more

comprehensive analysis. The particularity about the Oil Spill model is its prediction feature.

Domain experts can use this feature to analyze the course of an oil spill and detect the resources

(oyster reefs) that need to be prioritized. This will reduce response time and help in protecting

oysters in danger. The prediction tool requires access to weather data such as currents, winds,

and temperature. It also requires the use of a reliable mathematical equation that will produce the

path of the oil spill at a specific time. However, developing it in-house would demand extensive

hours of programming and the outcome might not be efficient. Instead, the Oil Spill model

would consume a proven and reliable Web service to complement the prediction tool.

 request response query rows

 geo-data request | oil spill request

Figure 5 – Oil Spill model Communication Diagram

:browser

:database 2

:oil spill model

:oil spill prediction service :map

 14

:developer :Fisheries Web-based

service

:database 2

3.4 Fisheries Web-based Service

 Web mashup techniques promote data reusability by allowing developers to consume

external data into their Web application. However, a large percentage of Web sites provide data

on their platform but do not implement interfaces for developers to access those data. This

limitation negatively affects the development of rich and reliable Web applications. The

Fisheries Web-based service is designed solely for the purpose of understanding programming

interfaces and the methods to access them externally. It is not a live interface.

 The interface will allow outside programmers to use internal data in external applications

without compromising the reliability and the validity of those data. For security reasons, it is

imperative to hide the structure of the database. Outside developers do not need to know the type

of database, the tables, nor the query language used internally. The primary objective of the

interface is to abstract this information. Its second objective is to grant read-only access to a

specific set of data. Figure 6 describes how the Fisheries API interacts with the other components

of the system.

 request query

 response data

Figure 6 - Fisheries API Abstract Communication diagram

 15

Chapter 4: Implementation

 Using the design described in chapter 3, we now are to implement each application. It

involves primarily configuring the system structure and the database, and then writing code for

each component in the design.

 4.1 System Structure

 In section 3.1, we described the system structure of oystersentinel.org, the framework

used, and the solution to deploy our Web applications. For security and performance reasons, the

Web applications implemented on the Web site are backed by a Microsoft SQL Server (MSSQL)

database instead of the Drupal's MySQL content database. MSSQL is commonly used for Web

applications on a Windows platform. It also provides buffer management, transparent data

encryption, and enterprise-level management tools for developers. With the Web site hosted on a

Windows server machine, it is a natural choice to use a MSSQL database to store sensitive data

on oysters.

 As described in section 3.1.3, the MVC model component handles access to the database.

It encapsulates the most commonly needed functions such as connecting to the database, running

a query, getting a specific row, or getting all the rows. Thus, we have implemented a "generic"

component, model.php, located in the /mvc/models folder. Any PHP function can use this

component by including this file in it. It contains the following functions:

 - db_model_connect(): creates a connection to the MSSQL database

 16

- runSQL($sql, $params, $id) : takes a SQL query and its parameters and runs it on the

database. It will return the corresponding rows or a boolean.

 - get($table, $id): fetches a row in a table with the specified id.

<?php

 function get($table, $id){

 if($id == 0){

 $query = "SELECT TOP 1 * FROM ".$table;

 $params = array();

 } else {

 $query = "SELECT * FROM ".$table." WHERE id = ?";

 $params = array(0 => array('value' => $id, 'type' => PDO::PARAM_INT));

 }

 return runSQL($query, $params);

 }

?>

 - getAll($table, $order_by): returns all the rows of a table, and order it if specified.

<?php

 function getAll($table, $order_by = ''){

 $query = "SELECT * FROM ".$table;

 if(!empty($order_by)){

 $query .= " ORDER BY ".$order_by;

 }

 return runSQL($query);

 }

?>

 4.2 Perkinsus marinus Model

 The Perkinsus marinus model is built around two major pieces: the assets manager and

the mapping service. The assets manager provides the forms to manage oysters and handles user

privileges. Using Drupal's global variable $user, the assets manager can determine the role of a

user and present the forms granted by the user's privileges. The role of the mapping service lies

 17

areas

stations data

contain

many

in the visual aspect of the application. Google provides maps and directions on their Web site

maps.google.com and has developed an API that allows developers to use their maps on any

Web sites. Built with JavaScript, Google Maps API is a client-side service running on the user's

browser. Any browser with a JavaScript interpreter can run Google Maps. Google Maps has also

a wide array of classes and functions that developers can use to overlay their data on top of a

map.

 The Perkinsus marinus model's main functionalities are for an owner to: add data about

sampled oysters in a station, run the model, and analyze the level of infection. Figures 7 & 8

show the complete database structure of this model.

Figure 7 - Entity-Relationship Diagram- Perkinsus marinus model

have many

samples of

 18

AREAS

id

created
name

latitude
longitude

MAP_STATIONS

id

created

name

latitude

longitude

area_id

owner

MAP_STATIONS_DATA

id

created
station_id

t
s

percent_infection_j
infection_intensity_j

weighted_prevalence_j
percent_infection_c

infection_intensity_c
weighted_prevalence_c

date_collected
date_cultured

date_examined
tissue

comments

MAP_STATIONS_RAW_DATA

id

data_id

length
code

comments
type

 1 many 1 many

 1

 many

Figure 8 - Schema Diagram - Perkinsus marinus model

The user interface for this model is made up of three pages that will guide the user and minimize

errors.

 19

controller

File: controllers/

area_controller. php

model

File: models/area.

php

Functions:

add(data),

edit(data),

delete(data),

validate(data)

view

File: views/areas.

php

Forms: add, edit,

delete, view

stations

 4.2.1 Areas Selection

 Before selecting a station, a user first selects its area. To implement the areas page, we

created a controller, a model, and a view. The interface of the areas page is composed of a map

from Google Maps showing all the areas currently in the system and all the forms accessible by

the current user. The following class diagram shows the different components and their actions.

Figure 9 - Areas Class Diagram

 The controller in this application is invoked from Drupal's template page (Figure 1) and

its role is to fetch all the areas from the database and handle any form submission (see code

snippet below).

 <?php

// Include areas model which contains functions to interact with the 'areas'

table

 include dirname(__FILE__).'/../models/area.php';

 $areas = getAll('AREAS', 'name'); // Retrieving all the areas

 // Add an area

 if(isset($_POST['add_area'])){

 $data['name'] = $_POST['add_area_name'];

 $data['latitude'] = $_POST['add_area_lat'];

 $data['longitude'] = $_POST['add_area_long'];

 $valid = validate($data); // Validate Data submitted

 $err = "";

 if($valid) add($data); // Save data in database

 else $err = "&error=true";

 header("Location: /?q=areas".$err);

 }

 20

 By including the model, the controller can use the functions getAll(), validate(), and add()

to fetch and save data in the database. It also uses the edit function when an administrator edits

an area, or the delete function when an administrator deletes an area.

 The area model includes the "generic" model as described in section 4.1 and implements

the functions add() (see code snippet below), edit(), delete(), and validate().

<?php

 include 'model.php';

 function add($data){

 $query = "INSERT INTO AREAS (created, name, latitude, longitude) VALUES

(?, ?, ?, ?)";

 $now = date('Y-m-d G:h:s');

 $params = array(

 0 => array('value' => $now, 'type' => PDO::PARAM_STR),

 1 => array('value' => $data['name'], 'type' => PDO::PARAM_STR),

 2 => array('value' => $data['latitude'], 'type' => PDO::PARAM_STR),

 3 => array('value' => $data['longitude'], 'type' => PDO::PARAM_STR)

);

 $result = runSQL($query, $params);

 if(isset($result['error'])) $return = 0;

 else $return = 1;

 return $return;

 }

?>

 The areas controller only uses one view and all the forms (add, edit, delete, view) are

appended according to the user's privileges by using Drupal's global variable $user (see code

snippet below). When a user is registered in the Web site, he/she is assigned a role (poweruser,

owner, or authenticated user). Drupal stores this information as an array 'roles' in the global

variable $user that we can access from the MVC controller.

 21

<div class="titles">

 <div class="titles_item"><p class="expand" id="view"></p><h3>View

Area</h3></div>

 <?php if(in_array('poweruser', $user->roles)){ ?>

 <div class="titles_item"><p class="expand" id="add"></p><h3>Add

Area</h3></div>

 <div class="titles_item"><p class="expand" id="edit"></p><h3>Edit

Area</h3></div>

 <div class="titles_item last"><p class="expand"

id="del"></p><h3>Delete Area</h3></div>

 <?php } ?>

 </div>

 It is in the view that the external service and data from Google Maps is consumed and

integrated with the data from the database (see code snippet below).

<script type="text/javascript" src="http://maps.googleapis.com/maps/api/js?

sensor=false"></script>

<script type="text/javascript">

 jQuery(document).ready(function(){

 var neworleansLat = 29.951066;

 var neworleansLong = -90.071532;

 var myLatlng = new google.maps.LatLng(neworleansLat, neworleansLong);

 var myOptions = {

 zoom: 6,

 center: myLatlng,

 mapTypeId: google.maps.MapTypeId.HYBRID

 };

 var map = new google.maps.Map(

 document.getElementById("areas_map"),

 myOptions

);

 By using a JavaScript API, we can easily mix data from our MSSQL database and

Google Maps, even though they belong to two different contexts. Data from the database is

accessible via a PHP array and before the areas page is sent to the client as a HTML file, the

server interprets the data and makes it accessible to Google Maps (see code snippet below).

 22

<?php foreach($areas as $area){ ?>

 var marker = new google.maps.Marker({

 position: new google.maps.LatLng(

 <?php echo $area['latitude']; ?>,

 <?php echo $area['longitude']; ?>

),

 map: map,

 title:"<?php echo $area['name']; ?>",

 icon: "<?php echo variable_get('file_public_path', conf_path() .

'/files'); ?>/images/circles_30x30.png"

 });

 marker.setMap(map);

 google.maps.event.addListener(

 marker,

 'click',

 function() {

 location.href = "/?q=map_stations&area=<?php echo $area['id']; ?>";

 });

<?php } ?>

Figure 10 - Areas page

 23

controller

File: controllers/

stations_controller.

php

model

File: models/

station.php

Functions: add(data),

edit(data),

delete(data),

getStationsbyArea(are

a_id), validate(data)

view

File:

views/stations.php

Forms: add, edit,

delete, view data

 Figure 10 is a snapshot of the Areas page when visited by an administrator. The map

shows markers representing the center of each station and the administrator can use the different

tabs to view, add, edit, or delete any area.

 4.2.2 Stations Selection

 After selecting an area in the areas page, the user is taken to the stations page. The

implementation of the stations page follows the same pattern as the areas page. We created a

controller, a model, and a view. The class diagram in Figure 11 shows the components and their

actions.

Figure 11 - Stations Class Diagram

 The stations controller is similar to the areas controller. It also uses one view to display

the forms (add, edit, delete, view) and checks the global variable $user (see code snippet below).

Only an administrator or an owner is allowed to add, edit, or delete a station.

 24

<div class="titles">
 <div class="titles_item">

 <p class="expand" id="view"></p><h3>View Station</h3>

 </div>

 <?php if(in_array('poweruser', $user->roles) || in_array('owner', $user-

>roles)){ ?>

 <div class="titles_item">

 <p class="expand" id="add"></p><h3>Add Station</h3>

 </div>

 <div class="titles_item">

 <p class="expand" id="edit"></p><h3>Edit Station</h3>

 </div>

 <div class="titles_item last">

 <p class="expand" id="del"></p><h3>Delete Station</h3>

 </div>

 <?php } ?>

</div>

Figure 12 – Stations page (Barataria Bay stations)

 25

 4.2.3 Data Page

 The data page follows the same design pattern as the areas and stations pages but some

database tables and functions were added. After selecting the area and the station, the user is

taken to the data page, which is where an owner can enter the number of oysters, their size, and

disease code. After submitting the form (Figure 13), the controller formats the data and computes

three critical values: the percent infection, the infection intensity, and the weighted prevalence

(Figure 14). These values are stored in the database and represent the level of infection in that

station at the time of sampling (Figure 15).

Figure 13 – Add Data form

 26

<?php

//Validate Oysters Data

$valid_oysters = validate_oysters($data['oysters']);

if($valid_oysters){

 $data['percent_infection_c'] = ($oysters[1]['count'] == 0) ? '' :

($oysters[1]['infected'] * 100) / $oysters[1]['count'];

 $data['infection_intensity_c'] = ($oysters[1]['infected'] == 0) ? ''

: $oysters[1]['disease'] / $oysters[1]['infected'];

 $data['weighted_prevalence_c'] = ($oysters[1]['count'] == 0) ? '' :

$oysters[1]['disease'] / $oysters[1]['count'];

 //If Station's data and Oysters data are valid, save all

 $last_id = add($data);

 add_oysters($data['oysters'], $last_id);

}

?>

Figure 14 - Calculating the percent infection, infection intensity, and weighted prevalence

Figure 15 – Data for Stations: Mid Hackberry Bay: minimal level of infection since 2005 (weighted prevalence < 1);

Mississippi Sound: Overall healthy area besides increase of infection in summer of 2008 (weighted prevalence >= 1

& < 2 – yellow and weighted prevalence >= 2 – red).

 27

controller

File: controllers/

data_controller. php

model

File: models/data. php

Functions: add(data),

edit(data),

delete(data),

validate(data)

view

File: views/

stations_data.php

Forms: add, edit,

delete, view

 Figure 16 shows the tables and views involve in this piece of the application. Data unique

to each sample such <station_id> are stored in the table "map_stations_data" in one row.

However, the number of sampled oysters varies and to normalize the database, oyster data are

stored in a separate table "map_stations_raw_data". The table "map_stations_data" has a primary

key <id> that is used as a foreign key <data_id> in the table "map_stations_raw_data". Setting

up these relational tables helps maintain a consistent dataset and obtain an efficient retrieval of

data when viewing or editing a row.

Figure 16 - Data Class Diagram

 The data controller uses one view to display the forms (add, edit, delete, view) and

checks the global variable $user (see code snippet below) to grant access to each form.

<div class="titles data">

 <div class="titles_item">

 <p class="expand" id="view"></p><h3>View Data</h3>

 </div>

 <?php if(in_array('poweruser', $user->roles) || (in_array('owner', $user-

>roles) && $user->name == $station[0]['owner'])){ ?>

 <div class="titles_item">

 <p class="expand" id="add"></p><h3>Add Data</h3>

 </div>

 <div class="titles_item">

 <p class="expand" id="edit"></p><h3>Edit Data</h3>

 </div>

 <div class="titles_item last">

 <p class="expand" id="del"></p><h3>Delete Data</h3>

 </div>

 <?php } ?>

</div>

 28

The Perkinsus marinus model is a 3-step Web application that uses Web mashup

technology to enrich the user interface. It helps administrators, owners, and general users, in

understanding the spatio-temporal distribution of the parasite across the Gulf of Mexico.

4.3 Oil Spill Model

 The Oil Spill model is an application that has been designed but not implemented. For the

purpose of demonstrating and experimenting Web Mashup technology, we implemented a

simpler version of the originally designed Oil Spill model. This version of the Oil Spill model is

built around five main components: the mapping service, the oyster stations, the oil spills

manager, the prediction tool, and the query tool.

 4.3.1 Mapping service

 As used throughout the Web site, Google Maps is the mapping service used in the user

interface of this model. The map helps position stations and place markers for oil spills. It also

facilitates the representation of the oil spill as it progresses and the different classes provided by

Google Maps API helps implement the geospatial queries. The following graph shows the role of

the map relative to the other components of the model.

 29

Google Maps API

Stations

Query tool

Oil Spills Manager

UI MVC

Database 2

Prediction Web

service

JavaScript environment

Figure 17 - Components of Oil Spill Model

 4.3.2 Stations

 As identified in the design section 3.3, oyster stations are the resources that are being

monitored by the model. They are the same resources that are being managed in the Perkinsus

marinus model. In consequence, it is a natural choice to use the MVC model 'station.php'

described in section 4.2.2. It provides a function that fetches the list of all stations and their

coordinates. The stations will be placed on the map.

 4.3.3 Oil Spills Manager

 When an oil spill occurs, it is monitored by various official agencies. Administrators of

oystersentinel.org can use data from these agencies to add basic information about the oil spill.

Prediction tool

 30

oilspills oilspills_prog

OILSPILLS

id

created
name

latitude
longitude
start_date
start_time

water_temp

OILSPILLS_PROG

id

osid
created

date
time

coord

The basic Information includes name, coordinates, starting date and time, and water temperature.

Entering this information in the Oil Spills manager helps keep a local record of the oil spill and

enrich our model. Figures 18 & 19 describe the database structure used.

Figure 18 - Entity-Relationship Diagram- Oil Spill model

 1 many

Figure 19 - Schema Diagram - Oil Spill model

 The oil spills manager (Figure 20) is a simple Web application that follows the same

MVC design pattern used in the Perkinsus marinus model.

have many

 31

controller

File: controllers/

oilspill_controller. php

model

File: models/

oilspill.php

Functions: add(data),

addProg(data),

edit(data),

delete(data),

validate(data),

getProgressions(id)

view

File:

views/oil_spills.php

Forms: add, edit,

delete, view data

Figure 20 - Oil Spills manager

Figure 21 - Oil Spills manager Class Diagram

 32

 Web site administrators can add, edit, or delete any entry in the system. The Oil Spills

manager also provides an interface to update oil spills. After the start of an oil spill, it is

imperative to track it, record its progression, and know its latest status. After selecting an oil spill

on the map, the administrator is taken to the profile page of that oil spill (Figure 22). The profile

page gives users tools to update the status of an oil spill and visualize the spill. Each update is

represented in the system as a snapshot. After manually getting data from an official agency, the

administrator can enter the date and time the snapshot was taken, as well as the polygon

coordinates forming the updated shape of the oil spill.

Figure 22 - Oil Spill profile page

 Each snapshot is stored in the table <oilspills_prog> (Figure 19) by using the MVC

model function addProg(data) (see code snippet below).

 33

function addProg($data){

 $query = "INSERT INTO OILSPILLS_PROG (created, date, time, coord, osid)

 VALUES (?, ?, ?, ?, ?)";

 $now = date('Y-m-d G:h:s');

 $params = array(

 0 => array('value' => $now, 'type' => PDO::PARAM_STR),

 1 => array('value' => $data['date'], 'type' =>

PDO::PARAM_STR),

 2 => array('value' => $data['time'], 'type' =>

PDO::PARAM_STR),

 3 => array('value' => $data['coord'], 'type' =>

PDO::PARAM_STR),

 4 => array('value' => $data['osid'], 'type' =>

PDO::PARAM_INT)

);

 $result = runSQL($query, $params);

 return (isset($result['error'])) ? 0 : 1;

}

 After one or more snapshots are recorded, any user can use the Oil Spill viewer. The

viewer is a piece of the oil spill manager and its role is to provide a visual representation of the

oil spill from the start to the latest update. The viewer consists of two operations:

 - View the snapshots chronologically: user can view the evolution of the oil spill.

 - View the snapshots one at the time: user can view the oil spill at a specific time.

 The list of stations and the oil spill location are shown on the map via JavaScript Google

Maps API. Google Maps also provides the class "google.maps.Polygon" that handles the

drawing and manipulation of polygon objects on a map. With oil spills' polygons saved as

strings, we use a JavaScript function (see code snippet below) to parse the coordinates and create

a polygon object that represents the oil spill.

 34

 function setUpPolygon(count, colors, z, paths, stcol, fOpac){

 var pathArray = new Array();

 // Parsing coordinates

 var p = paths.toString().split(';');

 for(var i=0; i<p.length; i++){

 var c = p[i].toString().split(',');

 if(c[1] != '' && c[0] != ''){

 // Building an array of coordinates

 pathArray[i] = new google.maps.LatLng(c[1], c[0]);

 }

 }

 return new google.maps.Polygon({

 clickable:false,

 geodesic: true,

 strokeColor: stcol,

 strokeOpacity:1.0,

 strokeWeight:1,

 fillColor: "#"+colors[count],

 fillOpacity: fOpac,

 visible:false,

 zIndex: z,

 paths: pathArray });

 }

 In its two operations, the Oil Spill viewer uses JQuery and the polygon method

"setVisible(boolean)" to change the value of the attribute 'visible' and show or hide any polygons

(see code snippet below).

/* Handles viewing Oil spill progression */

jQuery('#os_progressions').change(function(){

 for(i=0; i< stations_markers.length; i++){

 stations_markers[i].setVisible(true);

 }

 index = jQuery(this).val();

 if(index == -1)

 for(i=0; i< polygons.length; i++){

 polygons[i].setVisible(true);

 }

 else {

 for(i=0; i< polygons.length; i++){

 polygons[i].setVisible(false);

 }

 polygons[index].setVisible(true);

 }

});

 35

Figure 23 - Oil Spill Viewer

 4.3.4 Prediction Tool

 The prediction tool is the centerpiece of the Oil Spill model. However, developing it in-

house requires the use of external services to provide weather data (currents, winds, and

temperature), and a reliable mathematical function to compute the area covered by the oil spill at

any future time. After extended weeks of research, one existing tool satisfied the criteria set for

our model: OceansMap. Developed by RPS - Applied Science Associates (ASA), a science and

technology solutions company with headquarters in Rhode Island, OceansMap is an online

service that allows registered users to analyze an oil spill and predict its path over the course of a

scenario.

 36

 OceansMap is described as an online interactive Web-based oil spill simulation and spill

response system, which consists of a GIS-based graphical user interface, a spatial database, and

Web services from MapSERVER and the Environmental Data Server (EDS). OceansMap

provides a rich interface that allows users to set up oil spill scenarios, run a trajectory and

weathering model, and visualize the results of the model. The system also includes interactive

GIS functions and tools to manage spill planning activities. Figures 24, 25, and 26 are

screenshots of OceansMap and they are used here to show the different features provided by the

service.

Figure 24 – OceansMap: Creating an Oil Spill scenario (1) (2)

 37

Figure 25 - OceansMap: Viewing an Oil Spill scenario (1) (2)

Figure 26 – OceansMap: Other GIS functions available (1) (2)

(1)
 Courtesy of Applied Sciences Associates (ASA); (2) OceansMap is previously known as OilMapWeb

 38

OceansMap

Application

OceansMap API

- setOilSpill(data)

- runSimulation(

params)

Oil Spill Model

Prediction Tool

 OceansMap is a standalone application stored on a Web server. Registered users can

access it through the Web site oilmapweb.com and as of today, there is no interface available for

developers to remotely consume it. A direct and full collaboration between RPS - ASA and

oystersentinel.org is necessary in order to design an interface and implement the services

available. Even though a full integration of OceansMap with oystersentinel.org is not possible at

this time, it is important to describe and understand the ideal interface that the Oil Spill model

would require.

Figure 27 - OceansMap - Oil Spill Model Communication Diagram

 The interface for OceansMap needs to run as a Web service and the authentication

protocol is omitted for the purpose of this thesis. Using a Web service has many advantages:

- Technical specifications such as the platform, the programming languages, and the

database design are all abstracted.

- Web service standards are well established. This guarantees the reliability and

compatibility of the service with remote platforms.

- Web services are accessed via HTTP requests. This aspect allows developers to

consume the services in any context whether it is using PHP, Java, or JavaScript. It

provides flexibility when integrating the service with other applications.

 39

From the Oil Spill model's perspective, the interface for OceansMap needs two main

functions:

- setOilSpill(name, longitude, latitude, start) : When using OceansMap, the user first

enters basic information about an oil spill (Figure 24) or retrieves an oil spill already

saved in the system. The method "setOilSpill()" serves that purpose. As parameters,

it takes the oil spill's name, coordinates, and start date. It then returns an ID.

- runSimulation(ID, volume, length): On OceansMap, after entering information on

the oil spill, the user can run a simulation by providing the volume of oil to be

released and the desired length of the simulation. OceansMap will run its model and

show the oil spill and its shape in interval of one and six hours (Figure 25). The

method "runSimulation()" has a similar behavior. By supplying the oil spill's id, the

volume, and the length of the simulation as parameters, the function returns the

polygons representing the shapes of the oil spill over time.

 The return object of the function "runSimulation()" should be formatted as a GML. GML

is a Geography Markup Language that is similar to XML and tailored specifically for geographic

data such as polygons. The following sample code illustrates a simple example of a GML

Polygon element.

<gml:Polygon>

 <gml:exterior>

 <gml:LinearRing>

 <gml:posList>

 -89.692383 30.015836 -88.703613 29.539053 -89.450684 28.269553

-90.74707 29.271066 -90.461426 30.03486 -90.109863 30.129925 -89.692383

30.015836

 </gml:posList>

 </gml:LinearRing>

 </gml:exterior>

</gml:Polygon>

 40

 The prediction tool will use URLs with GET parameters to access each of these

methods. Here are examples of URLs to consume OceansMap Web service:

- http://www.oilmapweb.com:8080/func=setOilSpill&name=oil_spill&long=-

90.0&lat=30.0&start=2012-11-2

- http://www.oilmapweb.com:8080/func=runSimulation&vol=1000&length=24

 With the model's components used in the JavaScript environment (Figure 17), it is a

natural choice to consume OceansMap in JavaScript. To query the service using URLs, the

Prediction tool can make Ajax calls to oilmapweb.com and retrieve the data in the specified

format. Ajax calls are asynchronous requests sent to a server using JavaScript. The GML data

received from running the simulation will be parsed and added to the map via Google Maps

Polygon class.

Figure 28 - Oil Spill Prediction tool

 41

 Figure 28 illustrates a demonstration of the Prediction tool. After running the

simulation, the Oil Spill model shows projected paths with orange and red colors, in contrast to

the white and grey colors used for actual paths. Another feature available in the Prediction tool is

the projection viewer, similar to the Oil Spill viewer described in section 4.3.3. The viewer helps

users visualize oil spill projections in chronological order or visualize each projection at the time.

 4.3.5 Query Tool

 The Query tool is another important component of the Oil Spill model. After

implementing the Oil Spill manager and the Prediction tool, administrators can manage oil spills

while users can view them. The Query tool is what makes this model valuable. It is a collection

of queries that users can use to check the stations that are covered by the oil spill or the ones that

are within a certain radius from the oil spill. Domain experts and marine biologists can use this

Query tool to prioritize their efforts in the event of an oil spill. With the Prediction tool in place,

the Query tool can also estimate, for example, the stations that might be covered by an oil spill

within ten hours or the stations that will be within a one-mile radius from an oil spill in ten hours.

These queries add more weight in reducing response time and allowing marine wildlife and

resources to be better protected.

 The Query tool is implemented in JavaScript. Using data from any component in the

model is done with fewer overheads and it reduces the server's processing power by running all

the queries on the users's computer.

 With the stations and oil spills loaded from our internal database, we can find the

stations that are overlaid by the oil spill. Google Maps provides the method

'google.maps.geometry.poly.containsLocation(coord, poly)'. It takes two parameters: the

 42

coordinates of a marker/point and a polygon. It returns true if the marker/point is within the

surface of the polygon. Using an iterative loop, we can enumerate all the stations and retrieve the

ones that are located within the surface of an oil spill (see code snippet below).

<?php foreach($stations as $j => $station){ ?>

 coord = new google.maps.LatLng(<?php echo $station['latitude']; ?>, <?php

echo $station['longitude']; ?>);

 var overlaid = new Array();

 var d = 0;

 for(var i=0; i<polygones.length; i++){

 if(google.maps.geometry.poly.containsLocation(coord, polygones[i])){

 overlaid[i][d] = <?php echo $station['id']; ?>;

 d++;

 }

 }

<?php } ?>

 After running the simulation, the same Google Maps method is used to find the stations

that might be overlaid by a projection. Figure 29 is a screenshot demonstrating the query and

showing the stations that are currently overlaid by an oil spill.

Figure 29 – Stations currently overlaid by the oil spill

 43

 To filter the stations that are within a certain distance from the oil spill, we used the

Google Maps method 'google.maps.geometry.spherical.computeDistanceBetween (coord1,

coord2)'. Taking in count the rounded shape of Earth, this method takes the coordinates of two

shapes as parameters and returns the distance between them. Using a loop, we can enumerate all

the stations and calculate the distance between them and the oil spill. If the difference is within

the radius entered in the query, then the station is added to the list (see code snippet below).

jQuery('#q1_run').click(function(){

 // Latest shape of oil spill

 var last = polygones.length - 1;

 // Distance specified in the query

 var distance = jQuery('#q1_distance').val() * 1609.344;

 // Stations within distance are added to dropdown list

 var closest = '<option value="-1">- Closest Stations -</option>';

 polygones[last].setVisible(true);

 // Get center of latest oil spill coordinates

 var polyCenter = getBounds(polygones[last]).getCenter();

 // Loop through each station

 for(var i = 0; i < stations.length; i++){

 if(google.maps.geometry.poly.containsLocation(stations[i][3],

polygones[last]) ||

google.maps.geometry.spherical.computeDistanceBetween(polyCenter,

stations[i][3]) <= distance){

 // Show station that is within distance

 stations_markers[i].setVisible(true);

 // Append station to dropdown list

 closest += '<option value="'+ i +'">'+ stations[i][0] +'</option>';

 }

 }

 map.setCenter(polyCenter);

 jQuery('#q1_closest').empty().append(closest);

 jQuery('#q1_response').show();

 map.setZoom(10);

});

 44

 Figure 30 is a screenshot demonstrating the query and showing the stations that will be

within twenty-five miles from the oil spill.

Figure 30 – Stations within twenty-five miles of oil spill projection

 The Oil Spill model is a more complex Web mashup than the Perkinsus marinus

model. In addition to using a rich map from Google Maps, it fetches data from a local database

and uses a prediction service (i.e. OceansMap) to create a comprehensive application that can

have a very beneficial role in protecting the oyster resources of the Gulf of Mexico.

 45

Disclaimer: Figures 20, 22, 23, 28, 29, and 30 and the information associated do not represent

actual oil spills. Data used in the Oil Spill model were made up to test and demonstrate its

capabilities.

 4.4 Fisheries Web-based service

 Data reusability is the primary goal of Web mashups. It gives developers the ability to

reuse existing data from external resources. However, a large percentage of Web sites provide

data on their platform but do not implement interfaces for developers to access those data. One

example of this limitation is the Oil Spill model currently unable to use the service OceansMap

as described in section 4.3.4. The Fisheries Web-based service is designed solely for the purpose

of demonstrating programmatic interfaces and the methods to access them externally. It is not a

live interface.

 In addition to monitoring the health of oysters in the Gulf coast, oystersentinel.org also

monitors the quantity of oysters by type at stock assessment stations in Louisiana. These data are

collected in stock assessments by Coastal Study Area (CSA) managers and stored in a database.

Managing these data helps visualize the increase or decrease of a type of oysters in any given

station. Outside developers will use the Fisheries API to query our database and extract

information on oysters and stations.

From its design, the Fisheries Web-based service will serve as a bridge between outside

developers and our internal database. Developers will have two functions available to retrieve the

list of stations in the Gulf of Mexico and the quantity of sack oysters in each station. Figure 31

describes how the Fisheries interface interacts with the other components of the system.

 46

:developer :API

- get_stations()

- get_stations_

sack_qty()

:database

request query

response data

Figure 31 - Fisheries API Abstract Communication diagram

 The database used to store oyster data is the MSSQL database used in the previous

models. CSA managers collect samples from stations and separate seed, sack, and spat oysters.

From the samples, they store the average quantity of each type of oyster in the given sample

area.

 include

 Ajax calls

 formatted data ajax call

 strings

 invoke data

 SQL query rows

 Figure 32 – Fisheries API Communication Diagram

:fisheries.php

:MSSQL database

:fisheries.js

getStations()

getOystersSackQty(stat

ionID)

:web mashup

:query functions

db_model_get_sack_by_station(stationID, year)

getStationsByArea(areaID)

 47

 4.4.1 Query functions

Data are stored in relational tables and to query the database. We implemented two query

functions:

- getStationsByArea(areaID): It is implemented in the Perkinsus marinus model (Figure 9)

for the MVC model for stations (section 4.2, figure 11). The function takes an area ID as

the parameter and returns the stations located in that area. When passed 0 as the area ID,

the function returns all the stations in the table (see code snippet below).

 function getStationsByArea($area_id = 0){
 if($area_id == 0){

 $query = "SELECT * FROM MAP_STATIONS ORDER BY name";

 $params = array();

 } else {

 $query = "SELECT * FROM MAP_STATIONS WHERE area_id = ? ORDER BY name";

 $params = array(0 => array('value' => $area_id, 'type' =>

PDO::PARAM_INT));

 }

 $result = runSQL($query, $params);

 if(isset($result['error'])) $return = array();

 else $return = $result;

 return $return;

 }

- db_model_get_sack_by_station(): Originally implemented for the Oyster Sustainability

model, this function fetches the average of sack oysters in an area during a certain year. It

takes as parameters a station ID and a year, and returns an associative array of station ID

and average quantity.

The query functions form the first layer of abstraction needed to hide our database

internal structure to the outside world. The second layer is the file 'fisheries.php'.

 48

 4.4.2 fisheries.php

This file, located in the /webservices folder, handles API requests on the server side. It

checks the GET variables passed with the request, invokes the two query functions implemented

in section 4.4.1, and returns data as a string (see code snippet below).

<?php

 date_default_timezone_set('America/Chicago');

 // Query 1 - Getting list of stations

 if(isset($_GET['query']) && $_GET['query'] == 'stations'){

 //Get lists of stations

 include '../models/station.php';

 $stations = getStationsByArea(0);

 foreach($stations as $i => $s){

 $response[] =

$s['id'].','.$s['name'].','.$s['latitude'].','.$s['longitude'];

 }

 print_r(implode(';', $response));

 // Query 2 - Getting sack oysters average quantity by station

 } elseif(isset($_GET['query']) && $_GET['query'] == 'qty') {

 include '../models/station.php';

 //Get sack oysters qty of a station

 $tmp = db_model_get_sack_by_station(2, 2012);

 foreach($tmp as $t){

 $oysters[] = $t;

 }

 $stations = getStationsByArea(0);

 foreach($stations as $i => $s){

 if($s['id'] == $_GET['stationID']){

 $response = (isset($oysters[$i])) ? $oysters[$i] + 15 : 25;

 break;

 }

 }

 print_r($response);

 }

?>

This PHP function is not directly available to outside developers. We implemented a third

layer of abstraction to represent the public interface.

 49

 4.4.3 fisheries.js

Following Google Maps API design, the Fisheries API will be accessible via the file

'fisheries.js' located in the /webservices folder. When included, two operations are made

available for use (see code snippet below): get the list of stations and fetch the average quantity

of sack oysters given a station.

 function getStations(){
 var stations = new Array();

 jQuery.ajax({

 type: 'GET',

 url: 'http://www.oystersentinel.org/webservices/fisheries.php',

 data: { query: 'stations'},

 dataType: "text",

 async: false,

 success: function(data){

 var temp = data.toString().split(";");

 for(var i=0; i<temp.length; i++){

 stations[i] = temp[i].toString().split(",");

 }

 }

 });

 return stations;

 }

 function getOystersQty(stationID){

 var density = -1;

 jQuery.ajax({

 type: 'GET',

 url: 'http://www.oystersentinel.org/webservices/fisheries.php',

 data: { query: 'qty', stationID: stationID},

 dataType: "text",

 async: false,

 success: function(data){

 density = data;

 }

 });

 return density;

 }

 Each JavaScript function makes Ajax calls to the file 'fisheries.php'. However, the call is

asynchronous, meaning that the function will not wait for a response before continuing. To work

around that limitation, jQuery provides the parameter <async> which, when set to false, waits for

 50

the server's response. We also use the GET variables: <query> to specify the type of request, and

<stationID> to specify the station. The function getStations() does not take any parameter. It

makes an Ajax call to 'fisheries.php' and receive a string back from the server. It formats it and

returns an array of stations. The function getOystersSackQty (stationID) takes a station ID as its

only parameter. After receiving the reply from the Ajax call, it simply returns the density as a

string. By including the script file 'fisheries.js' in any application, an outside developer is able to

consume the Fisheries service and create a Web mashup. To demonstrate this Web-based service

and the JavaScript API, we built two simple Web mashups.

Disclaimer: Due to the sensitive nature of oyster data, these Web mashups use dummy data.

The stations used in these examples do not represent actual stock assessments stations. The

average quantities of sack oysters are from the year 2009 and are disassociated from their

original stations. However, these examples support the primary intent of experimenting Web

mashup interfaces.

 4.4.4 Examples of Web mashups using the Fisheries API

The first Web mashup is a Web page that displays the average quantity of sack oysters by

using a heat map (Figure 33). To create this page, we use the Google Maps and the Fisheries

APIs (see code snippet below). Google Maps provides the map and methods to create the

visualization layer for heat maps. The Fisheries API provides the stations and the densities. This

Web page retrieves data from two external data sources and displays them in a new content,

which makes it a Web mashup.

 51

Figure 33 – Web mashup Example #1 (3)

 The code below is the HTML/JavaScript code used to implement this Web Mashup. An

outside developer first needs to include the Google Maps API and the <fisheries.js> file. Google

Maps provides the classes and methods to add a map to the Web page and produce a heat map

using Google Maps’ visualization library. By using the average quantity of sack oysters as the

weight for each station, it is possible to assign a heat index (color) to each location and create a

heat map calling the method ‘google.maps.visualization.HeatmapLayer()’. The fisheries

interface provides the functions implemented in section 4.4.3, allowing the developer to get the

list of stations and the average quantity of sack oysters per station.

(3)
 Not actual average quantity of sack oysters

 52

<html xmlns="http://www.w3.org/1999/xhtml">
 <head><title>Web Mashup Example #1</title>

 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">

 <script type="text/javascript"

src="https://ajax.googleapis.com/ajax/libs/jquery/1.8.2/jquery

.min.js"></script>

 <script type="text/javascript"

src="http://137.30.149.37/webservices/fisheries.js"></script>

 <script type="text/javascript"

src="http://maps.google.com/maps/api/js?sensor=false&v=3&

libraries=visualization,drawing"></script>

 </head>

 <body>

 <div id="map"

style="position:relative;height:600px;width:1200px;margin:10px auto 25px

auto;border:solid 2px; #000000;">

 </div>

 <script type="text/javascript">

 jQuery(document).ready(function(){

 var myLatlng = new google.maps.LatLng(29.951066, -90.071532);

 var myOptions = {

zoom: 6,

center: myLatlng,

mapTypeId: google.maps.MapTypeId.HYBRID };

 var map = new google.maps.Map(document.getElementById("map"),

myOptions);

 var stations = getStations();

 var heatData = new Array();

 for(var i=0; i<stations.length; i++){

 heatData[i] = {

location: new google.maps.LatLng(stations[i][2], stations[i][3]),

weight: parseInt(getOystersQty(stations[i][0]), 10)};

 }

 var heatmap = new google.maps.visualization.HeatmapLayer({

data: heatData,

radius: 30,

map: map,

opacity: 0.7});

 });

 </script>

 </body>

</html>

 53

The second Web mashup is a more complicated application. The Web application shows

a map of oyster stations along the Gulf coast. It also allows users to draw rectangles and circles

on that map and it displays the average quantity of sack oysters in the area selected, as well as

the stations included in that area. This is another way to utilize our Fisheries API with Google

Maps API. The code snippet below is the JavaScript code used to consume the Fisheries API.

 var stations = getStations();
 var circles = new Array();

 for(var i=0; i<stations.length; i++){

 circles[i] = new google.maps.Circle({

 center: new google.maps.LatLng(stations[i][2], stations[i][3]),

 radius:20000,

 fillColor:'#A6D2EB',

 fillOpacity:0.7,

 strokeColor:'#FFFFFF',

 strokeWeight:1,

 strokeOpacity:1.0,

 visible:true,

 zIndex: 100});

 circles[i].setMap(map);

 }

 function fetchQty(circles, stations, bounds){

var qty; var total = 0; var count = 0;

for(var i=0; i<circles.length; i++){

 if(bounds.intersects(circles[i].getBounds())){

qty = getOystersQty(stations[i][0]);

 total += parseInt(qty,10);

 count++;

 jQuery('#stations').append('<option value="'+ qty +'">'+

stations[i][1] +'</option>');

 }

}

jQuery('#qtyt').val(total/count);

 }

 Google Maps API provides a drawing library to allow users to draw shapes such as

rectangles and circles on the map (see code snippet on next page).

 54

var drawingManager = new google.maps.drawing.DrawingManager({
 drawingMode:google.maps.drawing.OverlayType.MARKER,

 drawingControl: true,

 drawingControlOptions: {

 position: google.maps.ControlPosition.TOP_CENTER,

 drawingModes: [

 google.maps.drawing.OverlayType.CIRCLE,

 google.maps.drawing.OverlayType.RECTANGLE

] },

 circleOptions: {

 fillColor: '#ffff00',

 fillOpacity: 0.4,

 strokeWeight: 1,

 clickable: false,

 zIndex: 1

 }});

drawingManager.setMap(map);

 Once the shape is completed, we implemented an event handler that will retrieve the

stations contained in the shape and fetch their density (see code snippet).

var currentShape = null;

google.maps.event.addListener(drawingManager, 'circlecomplete',

 function(circle) {

 if(currentShape != null)

 currentShape.setVisible(false);

 currentShape = circle;

 var bounds = circle.getBounds();

 fetchQty(station_markers, stations, bounds);

 }

);

google.maps.event.addListener(drawingManager, 'rectanglecomplete',

 function(rectangle) {

 if(currentShape != null)

 currentShape.setVisible(false);

 currentShape = rectangle;

 var bounds = rectangle.getBounds();

 fetchQty(station_markers, stations, bounds);

 }

);

 55

Figure 34 – Web Mashup Example #2

Figure 35 – User selects an area (circle) and gets data on closest stations (3)

(3)
 Not actual average quantity of sack oysters

 56

Figure 36 - User selects an area (rectangle) and gets data on closest stations (3)

(3)
 Not actual average quantity of sack oysters

 57

Chapter 5: Conclusion

 In this thesis, oystersentinel.org uses Web Mashup technology to present raw data on

oysters to interested users with a great level of usability and intuition. Integrating the OceansMap

service into the Web site would enhance the capabilities of domain experts to handle oil spill

disasters. In the event of another oil spill occurring in the Gulf of Mexico or anywhere else,

scientists would share a strong interest in using a comprehensive application such as the Oil Spill

model. We have also implemented a Web Mashup API that supports third-party developers to

use the data available at oystersentinel.org.

 The advantages of the Web Mashup technology to our development are:

1. We can provide map-rich user interfaces without a map server.

2. We can reuse existing and reliable applications.

3. We can provide outside developers an API to access internal data without directly

interacting with the database.

 Web Mashup technology also comes with some disadvantages such as security,

authentication, and scalability. The standards have not yet been set on how to authenticate a user,

and developers must rely on the external resources to remain available and scalable. Even though

it is not a complete domain, Web Mashup technology allows rapid application development at a

reduced cost.

 58

References/Bibliography

Applied Sciences Associates (ASA). 2012. Welcome to OceansMap. [Online] Available at:

http://www.oilmapweb.com [Accessed 21 October 2012]

Booth David, Haas Hugo, McCabe Francis, Newcomer Eric, Champion Michael, Ferris Chris,

Orchard David. 2004. Web Services Architecture. [Online] (Updated 11 February 2004)

Available at: http://www.w3.org/TR/ws-arch/ [Accessed 15 August 2012]

Drupal. 2012. About Drupal. [Online] Available at: http://drupal.org/about [Accessed 25 October

2012]

Google. 2012. Google Maps Developer Documentation. [Online] (Updated 12 October 2012)

Available at: https://developers.google.com/maps/documentation/ [Accessed 22 October 2012]

Louisiana Department of Wildlife & Fisheries (LDWF). 2009. Oyster stock assessment report of

the public oyster areas in Louisiana seed grounds and seed reservations. Louisiana Department of

Wildlife and Fisheries. Baton Rouge, LA. Pages i - x

 59

Merrill, Duane. 2006. Mashups: The new breed of Web app. [Online] (Updated 24 July 2009)

Available at: http://www.ibm.com/developerworks/xml/library/x-mashups/index.html [Accessed

21 August 2012]

Ogrinz, Michael. 2009. Mashup Patterns: Designs and Examples for the Modern Enterprise.

Understanding Mashup Patterns. Addison-Wesley Professional. Chapter 1, 1 - 51

The jQuery Foundation. 2012. jQuery – Documentation. [Online] Available at:

http://docs.jquery.com/ [Accessed: 25 October 2012]

Soniat, Thomas M., Sarah M. King, Matthew A. Tarr, Megan A. Thorne. 2011. Chemical and

physiological measures on oysters (Crassostrea virginica) from oil-exposed sites in Louisiana.

Journal of Shellfish Research, Vol. 30, No 3, 713-717

Rouse Margaret. 2011. Content Management System. [Online] (Updated January 2011)

Available at: http://searchsoa.techtarget.com/definition/content-management-system [Accessed

30 October 2012]

 60

Vita

The author was born in Yaounde, Cameroon. He obtained his Bachelor’s Degree in computer

science from the University of New Orleans in 2010. After a year of professional work, he came

back to the University of New Orleans to join the Computer Science graduate program to pursue

a Masters in database systems and distributed applications. He served as a graduate assistant and

worked on the Oyster Sentinel project under the supervision of Dr Abdelguerfi and Dr Tu from

the computer science department, and Dr Soniat from the biology department.

	Application of Web Mashup Technology to Oyster Information Services
	Recommended Citation

	Microsoft Word - 319223-text.native.1354121684.docx

