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ABSTRACT 

 

The mitochondrial control region (MCR) has played an important role as a population 

genetic marker in many taxa but sequencing of complete eukaryotic genomes has revealed that 

nuclear integrations of mitochondrial DNA (numts) are abundant and widespread across many 

taxa. If left undetected, numts can inflate mitochondrial diversity and mislead interpretation of 

phylogenetic relationships. Comparative analyses of complete genomes in humans, orangutans 

and chimpanzees, and preliminary studies in gorillas have revealed high numt prevalence in 

great apes, but rigorous comparative analyses across taxa have been lacking. 

The present study aimed to systematically compare the evolutionary dynamics of MCR 

numts in great apes. Firstly, an inventory numts derived from the region containing the MCR 

subdomains was carried out by genomic BLAST searches. Secondly, presence/absence of 

each candidate numt was determined in great ape taxa to estimate numt insertion rate. Thirdly, 

alternative mechanisms of numt insertion, either through direct mitochondrial integration or post-

insertional duplications, were also assessed. Fourthly, the effect of nuclear and mitochondrial 

environment on patterns of nucleotide composition and substitution was assessed through 

sequence comparisons of nuclear and mitochondrial paralogous sequences. Finally, numts in 

the gorilla genome were identified through two experimental methods and their use as 

polymorphic genetic markers was then evaluated in a sample of captive gorillas from U.S. zoos. 

A deficit of MCR numts covering two particular mitochondrial subdomains was detected 

in all three apes examined, and is largely attributed to rapid loss of mitochondrial and nuclear 

sequence identity in the mitochondrial genome. Insertion rates have varied during the great ape 

evolution and exhibit substantial differences even between related taxa. The most likely 

mechanism of numt insertion is direct mitochondrial integration through Non-Homologous-End-

Joining Repair. Transition/transversion ratios differed significantly between both mitochondrial 

and nuclear sequences and between numts from coding and non-coding mitochondrial regions. 

A previously documented upward bias in the GC content of the primate mitochondrial genome 

was confirmed and the extent of this bias relative to the corresponding numt sequences 

increased with numt age. Five gorilla-specific numts were isolated, including three exhibiting 

insertional polymorphisms that will be used in future population genetic studies in free-range 

gorilla.  Keywords: nuclear translocation, mitochondrial DNA, numt, great ape, primate, 

evolution, conservation genetics. 
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GENERAL INTRODUCTION 

 

The story of mitochondrial colonization of the nuclear genome 

 

The origin of the mitochondrion and genetic exchange with the nucleus. Once free-

living prokaryotes, α-proteobacteria gave rise to mitochondria through endosymbiosis with 

eukaryotic cells (Gray & Doolittle 1982). Since then, an intensive communication process 

between this organelle and the nucleus has involved exchange of molecules including genetic 

material that has persisted up to these days (Timmis et al. 2004). Endosymbiosis resulted in 

loss of genes that were no longer needed such as those for synthesis of the bacterial cell wall 

(Adams & Palmer 2003). While some genes were also lost because of their functional 

redundancy, other genes were relocated to the nucleus where they are expressed to serve 

mitochondrial requirements or where they evolved new functions (Adams & Palmer 2003; 

Timmis et al. 2004). An exceptional case is the proton-translocating ATPase of the fungus 

Neurospora crassa, which is still expressed by both the nuclear and mitochondrial genomes 

(van den Boogaart et al. 1982). Also, recent transfer of functional mitochondrial genes to the 

nuclear genome has been shown in flowering plants (Boore 1999; Leister 2005; Adams et al. 

2000). However, the translocation of functional genes seems to have ceased in animals due to 

changes in the mitochondrial genetic code relative to the universal code of the nucleus, leading 

to a loss of gene function once animal mitochondrial genes are relocated in a nuclear context 

(Gray 1999; Boore 1999; Adams et al. 2000). Therefore, the majority of functional nuclear genes 

in animals that originated through mitochondrial translocations may be traced to a period prior to 

the divergence of plants and animals. 

With the exception of the Mitochondrial Control Region (MCR), intergenic regions and 

introns have been expelled from the mitochondrial genome of animal taxa. The number of 

genes has stabilized at only 12 to 13 protein coding genes, 22 tRNAs and 2 rRNAs (Boore 

1999; de Grey 2005), revealing a steady evolutionary trend toward size reduction (Selosse et al. 

2001; Bensasson et al. 2001). One hypothesis that explains contraction of the mitochondrial 

genome states that the high mutation rate in the animal mitochondrion, lack or limited 

recombination and the four-fold reduction in effective population size of the mitochondrion 

relative to the nuclear genome can enhance random fixation of deleterious mutations and 

magnify the effect of potential disadvantageous mutations (Blanchard & Lynch 2000; Selosse et 
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al. 2001). This contrasts with nuclear genes where recombination and selection could purge 

deleterious mutations more effectively. A different trend is observed in plant mitochondria whose 

mutation rates are much lower than in the nucleus, recombination between heterotypic 

mitochondrial genomes is frequent and mitochondrial genomes remain relatively larger (Henze 

& Martin 2001). An alternative explanation for the small size of the animal mitochondrial 

genome, aside from the lack of any introns and intergenic regions, suggests that organelles with 

small genomes may replicate their genomic material faster and consume less energetic 

resources, leading to a more economical and selectively advantageous cell (Berg & Kurland 

2000; Selosse et al. 2001). 

 

The journey from the mitochondrion to the nucleus 

 

Escape of DNA from the mitochondrion. The trend towards a reduced size of animal 

mitochondrial genomes in conjunction with the contrasting plasticity of nuclear genomes to 

accommodate DNA with no apparent functional or structural roles paved the road for the 

integration of fragments of mitochondrial DNA (mtDNA) into nuclear genomes, commonly known 

as numts or nuclear copies of mtDNA (Lopez et al. 1994). But the journey of a mtDNA fragment 

to the nucleus involves several steps starting with the release of mitochondrial fragments 

followed by their escape to the cytoplasm, importation into the nucleus and finally integration 

into the nuclear genome.  

As part of the natural mitochondrial dynamics, the organelle suffers cycles of fission and 

fusion (Twig et al. 2008a; 2008b). After fission, fragments that have been depolarized due to 

defective functioning or programmed differentiation are targeted for degradation through a 

process of mitochondrial turnover called mitophagy (Abeliovich 2007; Kanki & Klionsky 2010). 

Increased mitophagy has been shown in yeast as a mechanism for removing damaged 

mitochondria under conditions of cell stress that may also increase the chance of mtDNA 

escape (Thorsness & Fox 1993; Shafer et al. 1999; Mijaljica et al. 2007). Mutations in a group of 

nuclear genes collectively called yeast mitochondrial escape or YME have been shown to affect 

mitochondrial morphology, impair vacuolar degradation of mitochondria and promote an 

elevated rate of mtDNA escape to the nucleus (Campbell & Thorsness 1998; Shafer et al. 1999; 

Priault 2005; Park et al. 2006; Abeliovich 2007). Increased mitochondrial escape to nucleus has 

also been shown in HeLa (cancer) cells and rat hepatoma cells (Corral et al. 1989; Shay & 
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Werbin 1992) and it has been shown to be correlated with an overproduction of mtDNA in brain 

tumors (Liang 1996). These observations suggest the disruption of physiological mechanisms of 

the cell that is possibly associated with incomplete degradation of mitochondrial debris and 

breaches in the vacuolar membrane. But the connections between the mentioned nuclear 

mutations, mitochondrial disfunction and transit of mtDNA to the nucleus remain to be 

uncovered (Thorsness & Weber 1996). However, the experimental data necessary for 

understanding the mechanisms and molecules involved in targeting specific mitochondria during 

the mitophagy of higher eukaryotes is still scarce and identification of genes orthologous to YME 

or other nuclear genetic variants accounting for the escape of mtDNA to the nucleus remain to 

be identified (Goldman et al. 2010; Kanki & Klionsky 2010). 

It is well established that sperm mitochondria in most species with sexual reproduction 

are eliminated early during the embryogenesis. They are marked with ubiquitin and degraded by 

proteasomes and lysosomes (Sutovsky et al. 1999; Rawi et al. 2011; Sato & Sato 2011). But 

incomplete degradation of mtDNA caused by failure to efficiently mark paternal mitochondria or 

activate the process of autophagocytosis could be the first step in the process of release and 

transit of paternal mtDNA to the nucleus (Woischnik & Moraes 2002). In fact, occasional 

“leakage” of paternal mitochondria has been reported in a wide variety of taxa such as mussels 

(Zouros et al. 1992), flies (Kondo et al. 1990), birds (Kvist et al. 2003), and mammals 

(Gyllensten et al. 1991; Schwartz & Vissing 2002). Since numts have to be acquired within the 

germline in multicellular organisms in order to be inherited, sperm mitochondria could be a 

feasible source of numts (Willett-Brozick et al. 2001). How uptake of nucleic acids into the 

nucleus takes place is not clear. However, several scenarios could be hypothesized including 

DNA passage through transient membrane gaps or illicit importation, direct contact of 

mitochondrial and nuclear membranes and encapsulation of mitochondrial compartments inside 

the nucleus (Thorsness & Weber 1996; Shafer et al. 1999; Hazkani-Covo et al. 2010). 

Nucleic acids are thought to migrate to the nucleus in the form of genomic DNA or cDNA 

(Nugent & Palmer 1991; Henze & Martin 2001). Protein-coding genes in plants often have 

introns that are absent in nuclear copies of these genes indicating that mitochondrial integration 

is mediated by cDNA derived from spliced mRNAs (Nugent & Palmer 1991; Henze & Martin 

2001; Adams & Palmer 2003). However, mitochondrial introns in plants can be mobile and 

nuclear translocations may have occurred at a time when the genes did not possess introns 

(Malek et al. 1997; Henze & Martin 2001). In contrast, direct DNA transfer has been 

experimentally demonstrated in yeast and higher eukaryotes, as evidenced by the presence of 
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numts extending across two or more genes or derived from non-coding mitochondrial regions, 

collectively suggesting that any portion of the mitochondrial genome can be transferred to 

nucleus (Thorsness & Fox 1990; Henze & Martin 2001; Woischnik & Moraes 2002). 

 

Mitochondrial DNA becomes part of the nuclear genome. Once in the nucleus, the 

chromosomal integration of imported mtDNA is thought to take place through two possible 

mechanisms. Mitochondrial fragments are thought to opportunistically insert in double strand 

breaks (DSB) in the nuclear genome guided by microhomologies between fragments that are 

then ligated through a mechanism called Non-Homologous End-Joining Repair (NHEJR) 

intended to repair such DSBs (Blanchard & Schmidt 1996; Yu & Gabriel 1999; Willett-Brozick et 

al. 2001; Jackson 2002; Hazkani-Covo & Covo 2008). Secondly, trans-replication slippage may 

also mediate the integration of mtDNA in the nuclear genome but this seems to be an exception 

more than the predominant mechanism (Chen et al. 2005). In this case, the 3’ end of a broken 

strand in the nuclear DNA (nDNA) dissociates from the template strand and misaligns with a 

mtDNA molecule via trans-sequence homology which is subsequently used as replication 

template. Then the primer strand dissociates from the mitochondrial template and re-anneals to 

the nuclear template strand via trans-sequence homology of short direct repeats. 

In addition to these two mechanisms, an apparent close proximity of Transposable 

Elements (TEs) to numts supports the idea that TEs might also mediate numt insertion (Farrelly 

& Butow 1983; Ricchetti et al. 1999; 2004; Mishmar et al. 2004; Lascaro et al. 2008). In humans 

for instance, Mishmar et al. (2004) found that a particular family of TEs called Long Interspersed 

Elements (LINEs) integrate within 150bp of numts. However, these findings contrast with more 

recent studies that have revealed an apparent deficit of TEs within 200bp of numt loci (Gherman 

et al. 2007; Jensen-Seaman et al. 2009). Interestingly, LINE-1 (or L1), which are the most 

abundant retrotransposons in the human genome, have the ability to transduce genomic regions 

on the 3’ flank thus allowing their duplication and insertion elsewhere in the genome (Moran et 

al. 1999; Pickeral et al. 2000; Goodier et al. 2000; Deininger et al. 2003; Xing et al. 2006). Numt 

duplication through L1 3’ transduction is supported by the predominant non-contiguous genomic 

location of numt duplicates and partial evidence showing the physical association of LINEs and 

numts (Hazkani-Covo et al. 2003; Bensasson et al. 2003; Triant & DeWoody 2007). Although 

this mechanism of insertion implies an elevated proportion of numt duplications vs. independent 

mitochondrial integrations, as it has been reported in several studies (Lopez et al. 1994; Collura 

& Stewart 1995; Tourmen et al. 2002; Antunes & Ramos 2005; Pamilo et al. 2007; Behura et al. 



5 
 

2007; Triant & DeWoody 2007; Hazkani-Covo et al. 2003), overall evidence suggests that most 

numts are generated through direct mitochondrial integration (see Mishmar et al. 2004). 

Bioinformatic and wet-bench experiments have shown that numts are scattered 

throughout the chromosomes in mammals (Gherman et al. 2007). Like LINEs, numts also insert 

preferentially in non-coding regions with GC-poor isochores (Mishmar et al. 2004), suggesting 

selective pressure against structural and functional disruption of active genes (Saccone et al. 

2002; Lascaro et al. 2008; Mishmar et al. 2004). However, deleterious effect of numts can still 

be detected in a limited number of recent human numts inserted into functional parts of the 

genome. Examples of this are: 1) a 41bp mitochondrial fragment inserted at the breakpoint 

junction of a reciprocal constitutional translocation, segregating in a family with bipolar disorder 

(Willett-Brozick et al. 2001). 2) a 251-bp insertion causing a bleeding disorder (Borensztajn et al. 

2002). 3) A de novo mitochondrial insertion of 72bp that causes a rare condition of 

developmental disorders called Pallister-Hall syndrome (Turner et al. 2003). 4) A 93bp insertion 

that results in mucolipidosis type IV, a disorder characterized by delayed psychomotor 

development and visual impairment (Goldin et al. 2004). 5) A 36bp insertion that causes a type 

of deaf-blindness called Usher syndrome (Ahmed et al. 2002; Chen et al. 2005). 6) At least 

three numt polymorphisms inserted in known genes (Ricchetti et al. 2004). 

 

Numts are not equally abundant in all genomes 

 

Since the initial recognition of nuclear mitochondrial sequences in the mouse genome 

over four decades ago (Du Buy & Riley 1967), numts have been found in abundance in a wide 

range of taxa (Adams et al. 2000; Bensasson et al. 2001; Richly & Leister 2004; Triant & 

DeWoody 2007; Sacerdot et al. 2008; Nergadze et al. 2010) (see Figure i). With the advent of 

technological advances in massive genomic sequencing and advances in bioinformatic tools, 

several research groups have estimated the prevalence of numts in individual genomes and 

made comparisons across taxa (Richly & Leister 2004; Triant & DeWoody 2007; Hazkani-Covo 

et al. 2010; Lang et al. 2011). Recent comparisons of numt content across all major eukaryotic 

taxa revealed a positive correlation between genome size and numt content (Hazkani-Covo et 

al. 2010). Since non-coding DNA accounts for major differences in the genome size in 

eukaryotes (Kidwell 2002), one would expect to find not only more non-coding DNA but also 

more numts in larger genomes (Bensasson et al. 2001; Hazkani-Covo et al. 2010). Although 
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evidence from humans has shown that numts are occasionally found in coding or regulatory 

regions, they randomly insert across the genome (Gherman et al 2007), suggesting that larger 

genomes would confer more opportunities for numts to insert. 

Surprisingly, a great deal of variation in numt content has been observed between 

related taxa of several animal groups, including mosquitoes (Anopheles gambiae and Aedes 

aegypti) (Pamilo et al. 2007; Black IV & Bernhardt 2009), carnivores (dogs and cats) (Triant & 

DeWoody 2007; Antunes 2007); rodents (mice and rats) (Triant & DeWoody 2007) and Old 

World primates (macaques and chimpanzees) (Triant & DeWoody 2007). Such disparities may 

stem from different demographic histories (Gherman et al. 2007), species-specific mechanisms 

controlling mitochondrial escape or differences in the stability of the nuclear genome (Richly & 

Leister 2004; Leister 2005). Interspecific differences in numt content could also be an artifact 

caused by different genomic search strategies. In general, estimates of numt content will 

increase with more relaxed parameter settings since ancient, highly divergent or small insertions 

may be particularly hard to detect. However, this strategy easily leads to spurious associations 

and thus false numt hits. Even independent numt searches conducted at different times in the 

same species may yield striking differences in numt counts (see Figure i), which again may be 

caused by different parameter settings or the completeness of the genomic database under 

study. For instance, an increase in human numt content from 279Kbp in 2004 (Richly &Leister) 

to 406Kbp in 2007 (Hazkani-Covo & Graur) indicates either further numt discoveries as 

sequencing of the reference genome progressed or relaxation of settings in the numt search. 

But a reduction to 264Kbp in 2010 (Hazkani-Covo et al.) is mostly explained by the use of more 

stringent parameters in the numt search of this last study.  Due to the limitations of bioinformatic 

tools, further validation of candidate numts should be done. For instance, match of a nuclear 

sequence with two or more mitochondrial regions is an indication that at least one of the 

matches could be spurious. Whenever possible, regions containing low-score hits such as small 

or highly divergent sequences should be aligned with related genomes to verify that putative 

numts match these insertions (Zischler et al. 1995b; 1998; Hazkani-Covo & Graur 2007). 

 

Pros and cons of numts in evolutionary population studies 

 

Contamination of mitochondrial databases. Recent or highly conserved numt 

sequences usually exhibit great similarity with modern mtDNA and pose an imminent risk of 
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inadvertent amplification with mitochondrial primers and contamination of mitochondrial 

databases (Zhang & Hewitt 1996a; Jensen-Seaman et al. 2004; Richly & Leister 2004; Pamilo 

et al. 2007; Triant & DeWoody 2007). Since mitochondrial sequences are heavily used in 

population genetics and systematics, misidentification of numts as mitochondrial sequences has 

led to overestimation of mitochondrial diversity (Garner & Ryder 1996; Song et al. 2008; 

Moulton et al. 2010; Bertheau et al. 2011), incorrect phylogenetic analyses (Hedges & 

Schweitzer 1995; van der Kuyl 1995) and misdiagnosis of mitochondrial genetic disease (Hirano 

et al. 1997; Wallace et al. 1997). 

The risk of amplifying numts using mitochondrial primers is worsened by multiple factors 

starting with the primers themselves. The potential of generic, also called universal, primers to 

amplify conserved mitochondrial regions in non-target species is undeniable (Kocher et al. 

1989; Naidu et al. 2012), but they should be used with caution since they also tend to anneal 

with nuclear pseudogenes. Since nuclear copies usually mutate at slower rates than their 

mitochondrial paralogs and represent ancient mitochondrial lineages they are also known as 

mitochondrial “molecular fossils” (Perna & Kocher 1996). As a consequence, numts may 

compete or even impede amplification of mitochondrial templates during the PCR (Arctander 

1995; DeWoody et al. 1999; Thalmann et al. 2004; Grosso et al. 2006; Podnar et al. 2007).  

Another complication comes from the type and storage of the biological tissue used as source of 

DNA. Genetic studies of wildlife frequently make use of hair, feces and museum specimens but 

it has been observed that depending on the tissue, environmental/storage conditions or DNA 

extraction protocol, stability of mitochondrial and nuclear DNA may decay at different rates 

(Wallace et al. 1997; Berger et al. 2001; Castella et al. 2006). It has been determined that 

mtDNA generally disintegrates faster in feces or poorly stored hair and soft tissues (Berger et al. 

2001; Roon et al. 2003; Foran 2006; Soto-Calderón et al. 2009), hence increasing the nuclear-

to-mitochondrial ratio and the chance of amplifying nuclear templates. Greenwood and Pääbo 

(1999) have shown in elephants for instance that primers intended to amplify MCR do so from 

blood DNA but preferentially amplify nuclear copies from hair DNA. 

 

The potential use of numts in systematics and population genetics. Numts also 

exhibit several properties that can be exploited for evolutionary studies. As numts represent 

“fossilized” copies of ancestral mtDNA haplotypes, they may serve as outgroups in phylogenetic 

analysis where other suitable outgroups are unavailable (Bensasson et al. 2001; Zischler et al. 

1995b; Hay et al. 2004). Also, numt loci may also be useful as phylogenetic or population 
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genetic markers (Zischler et al. 1998). Similar to TEs, numts occasionally exhibit insertional 

polymorphisms with great potential as binary markers in systematics (Ray et al. 2006; Herke et 

al. 2007), markers for forensic identification of species (Walker et al. 2003) or as population 

genetic markers (Perna et al. 1992; Watkins et al. 2003; Schmitz et al. 2005). 

Contrary to other codominant markers such as microsatellites and RFLPs, TEs and 

numts are considered free of homoplasy as once inserted they are rarely excised from the 

nuclear genome. Therefore identical insertions may additionally be considered identical by 

descent (Batzer & Deininger 2002). Since the ancestral allele is considered to be the absence 

and the derived allele the presence, these binary markers could also be used to assess not only 

intensity but also directionality of migrational patterns in natural populations (Thomas et al. 

1996; Batzer & Deininger 2002). Identification of geographic structure in variable human numts 

has paved the road for their use in the study of human evolution (Giampieri et al. 2004; Yuan et 

al. 1999; Lang et al. 2011). This is illustrated by frequency gradient of a 540bp human numt in 

populations around the world (Thomas et al. 1996), which reveals a pattern that is consistent 

with the hypothesis of African origin of human populations and their subsequent dispersal to 

Eurasia and the Americas. 

A mitochondrial fragment inserted in a specific genomic location represents a snapshot 

of a past insertional event that involved a particular mitochondrial haplotype and a specific 

genotype of the flanking region, both coexisting in a geographical region at the time of the 

insertion.  This association may give clues about the ancestral co-distribution of both 

mitochondrial and nuclear variants, geographic origin of numts and the historical structure in 

ancient populations (Hazkani-Covo 2010). Apart from humans and a few other taxa (Thomas et 

al. 1996; Nergadze et al. 2010; Miraldo et al. 2012), the utility of numts in evolutionary studies 

has been underexplored but future advances in genome sequencing as well as development 

and implementation of molecular tools will certainly allow a wider use of these genetic elements. 

 

Isolation and avoidance of numts. Given the widespread distribution of numts, their 

similarity to authentic mitochondrial sequences and their inadvertent amplification in studies of 

mtDNA, it is necessary to implement quality control methodologies aimed at systematically 

avoiding amplification of such copies or contrarily, attain their effective isolation and 

characterization. 
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Overlapping peaks in sequencing profiles of mitochondrial genes frequently indicate co-

amplification with nuclear pseudogenes and/or heteroplasmy (i.e. multiple populations of 

mtDNA) (Chinnery et al. 2000; Thalmann et al. 2004; McLeod & White 2010). When 

translocated to the nucleus, numts escape from mitochondrial selective pressures (Smith et al. 

1992; Bensasson et al. 2001; Schmitz et al. 2005) and accumulate mutations that are rarely 

observed in functional mtDNA. In the case of protein-coding mitochondrial genes, nuclear 

copies suffer missense and non-sense mutations as well as indels. Also, co-occurrence of two 

or more different mitochondrial genomes, a phenomenon called heteroplasmy, can be caused 

by mutation in the female germline, paternal mitochondrial “leakage” or direct maternal 

inheritance (Gyllensten et al. 1991; Jenuth et al. 1997; Chinnery et al. 2000; Kvist et al. 2003; 

Calloway et al. 2000). Isolation of several mitochondrial-like sequences from the same individual 

is also evidence of numts or heteroplasmic mtDNA (Garner & Ryder 1996; Mundy et al. 2000). 

As numts diverge from mitochondrial sequences both in the pattern and rate of nucleotide 

substitution (Arctander 1995; Lopez et al. 1997; Schmitz et al. 2005), unusually long branches in 

mitochondrial phylogenetic analysis may actually correspond to unexpected co-amplification of 

numts sequences (Zischler et al. 1998; Jensen-Seaman et al. 2004). Occasionally, additional 

PCR recombinants of mitochondrial and nuclear templates may also be co-amplified with native 

templates and increase the diversity of products (Saiki et al. 1988; Pääbo et al. 1990; Anthony 

et al. 2007a). This happens when the polymerase switches between different templates, and 

may be exacerbated by excessively long PCR programs and primer depletion (Judo et al. 1998; 

Thalmann et al. 2004). Amplification of these chimerical products is stochastic so that the same 

sequence generally fails to amplify more than once. Multiple amplification trials under varying 

cycling conditions can then be tried to identify or even isolate these sequences. Also, 

recombination detection methods have proved effective in detecting candidate recombinants in 

a pool of mitochondrial sequences (Anthony et al. 2007a). 

Several laboratory methods are currently available to avoid numts and distinguish them 

from mitochondrial sequences. Mitochondrial enriched DNA samples may be obtained through 

CsCl gradients or commercial DNA isolation kits (Zhang & Hewitt 1996b; Ibarguchi et al. 2006 

for details), but this should be complemented with further methods to attain specific mtDNA 

amplification. Since the size of most numts is below 500bp one can amplify (Richly & Leister 

2004; Pamilo et al. 2007; Gherman et al. 2007), even from extracts of total DNA, several 

thousand base pairs of mtDNA through Long-Range PCR (LR-PCR) and then use internal 

primers for nested PCR or direct sequencing (Thalmann et al. 2004; Calvignac et al. 2011). 

Because of the greater ratio of mitochondrial to nuclear DNA in fresh samples, serial dilutions of 
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DNA extracts are expected to dilute out nDNA and favor amplification of mitochondrial 

templates (Ibarguchi et al. 2006). Finally, RT-PCR may also be considered for specific 

amplification of mitochondrial cDNA given the presumed lack of transcriptional activity of animal 

mitochondrial pseudogenes (Sunnucks & Hales 1996). 

Alternatively, isolating numts is desired when the interest is for example estimating numt 

prevalence, numt mechanisms of insertion, sequence divergence from mtDNA or testing the 

distribution of polymorphic insertions in a population. BLAST searches are probably the most 

straightforward way to identify and map numts. But comprehensive databases are only available 

for a limited number of taxa and they are solely based on one individual so complementary 

bench experiments are needed to increase the chance of capturing numts with insertional 

polymorphisms absent in reference genomic databases. One alternative is cloning and 

sequencing PCR products of mtDNA which allows the identification of potential numts and 

assessment of primer specificity (Mundy et al. 2000; Vallinoto et al. 2000; Thalmann et al. 2004; 

Moulton et al. 2010). In fact, amplification with generic or degenerate primers has been used to 

deliberately promote co-amplification of mitochondrial and nuclear products and can be an 

effective way to recover numts (Sunnucks & Hales 1996; Bensasson et al. 2000; Mundy et al. 

2000; Williams & Knowlton 2001; Thalmann et al. 2004). Also, Fluorescent In Situ Hybridization 

(FISH) has been used as an approach to detect and visualize the distribution and abundance of 

numts in chromosomes (Gherman et al. 2007). But the limitation of all these approaches 

however is the inability to map the genomic location of amplified sequences and therefore 

discriminate allelic variants of one locus from amplification of independent loci. Although a wide 

suite of methods have been successfully used in the past for the identification of sequences 

flanking target genetic elements, they have been underexploited in the case of numts. These 

include chromosome-walking methods (Ochman et al. 1988; Jones & Winistorfer 1992; Zischler 

et al. 1995b; 1998; Yuanxin et al. 2003; Tan et al. 2005; Ray et al. 2005; Ren et al. 2005) and 

methods based on next-generation sequencing (Mardis 2008; Hudson 2008; Mason et al. 

2011). 

 

Numts in Old World primates 

 

Sequenced genomes of Old World primates such as macaques and great apes have a 

high abundance of numts (chimpanzees, humans, orangutans, gibbons and gorillas) (Vartanian 
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& Wain-Hobson 2002; Jensen-Seaman et al. 2004; Anthony et al. 2007a; Chung & Steiper 

2008; Hazkani-Covo 2009; see also Figure i). Multiple factors make this group key in the study 

of numts. First, the availability of genomic databases of great apes in particular has facilitated 

the identification of numts, which is of great utility in the study of mitochondrial-nuclear 

communication, modes of mitochondrial integration in the nucleus and numt evolution. Also, 

numt prevalence has been shown to be elevated in the genome of multiple primate taxa to the 

point that profuse contamination of mitochondrial databases, as is the case of gorillas, has led 

to questioning the reliability of these databases. This leads to several questions of interest and a 

few could be stated the following way: why are numts so common in primates? What are the 

causes of differences between closely related species? How common are numts in 

unsequenced or partially sequenced genomes? How fast do numts and mitochondrial paralogs 

diverge? What is the actual risk of numt amplification with reported primers? 

 

Figure i. Numt content (Kbp) in animal genomes. Bars indicate the range in the 
estimated numt content from independent studies (a-k). These ranges are wider in genomes 
that seem to have greater numt content (E.g. human, chimpanzee and domestic cat).  
 

 

(a) Bensasson et al. 2001; (b) Richly & Leister 2004; (c) Triant & DeWoody 2007; (d) 
Hazkani-Covo 2007; (e) Hazkani-Covo 2010; (f) Antunes 2007; (g) Pereira and Baker 2004; (h) 
Pamilo et al. 2007; (i) Black IV & Bernhardt 2009; (j) Sacerdot et al. 2008; (k) Lenglez et al. 
2010 
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Estimating the rate of numt insertion. The number of numts is a combination of de 

novo integration or post-integration duplication of existing numt loci. Several studies argue that 

the rate of numt insertion has been constant during the diversification of Old World primates 

including great apes (Mourier et al. 2001; Hazkani-Covo et al. 2003), whereas others indicate 

this rate has varied reaching a peak early during diversification of Old World and New World 

primates (Bensasson et al. 2003; Gherman et al. 2007).  

But several factors that deserve to be mentioned here may affect the estimation of 

insertion rates. First, estimation of ancient insertion rates is challenging due to the loss in 

identity of old numts relative to contemporary mitochondrial sequences and the cumulative 

effect of genomic reorganizations and deletions that can potentially erode any trace of the 

original insertion. In humans for instance, an observed deficit in the number of MCR numts 

compared to other mitochondrial regions could stem from detection bias arising from the high 

mutation rate of MCR and its rapid loss in sequence identity with nuclear copies (Saccone et al. 

1991; Sbisà et al. 1997; Mourier et al. 2001). Since MCR is the only mitochondrial region that 

does not transcribe (Sbisà et al. 1997; Fernandez-Silva et al. 2003), a correlation between 

abundance of mitochondrial transcripts and the number of nuclear copies could in principle 

explain the deficit of MCR numts. Although tempting, this hypothesis is unlikely as such 

correlation does not seem to exist in humans (Woischnik & Moraes 2002). Alternatively, the 

elevated mutation rate of the mitochondrial MCR and its rapid loss of sequence identity could 

explain the MCR numt observed deficit (Mourier et al. 2001; Woischnik & Moraes 2002). This 

might also mean that the true impact of mitochondrial transfers in shaping the architecture of the 

nuclear genome could be easily underestimated; an effect that has not been fully evaluated. 

In contrast to old numts, the rate of recent numt insertion may be directly estimated from 

their prevalence in each species. However, this seems to vary even between closely related 

taxa suggesting an effect of factors intrinsically associated with physiological mechanisms or the 

demographic history of a given species (Hazkani-Covo & Graur 2007; Hazkani-Covo 2009). 

That is the case of a historical bottleneck that is deemed to have caused a reduced genetic 

diversity in human populations as compared with chimpanzees and other great apes with larger 

historical effective population sizes (Kaessmann et al. 2001; Gherman et al. 2007; McEvoy et al. 

2011). Also, differences in mechanisms of mitochondrial integration or genome reorganization 

might hypothetically cause the apparent differences in numt prevalence across species but 

further evidence of the role of these factors remain to be gathered. 
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Numts may be the product of independent integration of mitochondrial fragments or 

duplication of established numts (Collura & Stewart 1995; Lopez et al. 1996; Stupar et al. 2001; 

Bensasson et al. 2003). Identification of duplication events should be straightforward when the 

identity between two numts can be traced to the flanking regions as in the case of duplicated 

chromosomal fragments (Lopez et al. 1994; Bensasson et al. 2003; Hazkani-Covo & Graur 

2007). But partial duplication of an internal numt fragment may be particularly hard to distinguish 

from independent integrations of similar or identical mitochondrial haplotypes (Bensasson et al. 

2003). That a long and a short numt appear as sister taxa in a phylogenetic analysis may 

indicate that the long numt gave rise to the short numt (Hazkani-Covo et al. 2003), but the same 

pattern may also be obtained from independent integrations of related mitochondrial haplotypes 

(Bensasson et al. 2003). 

Phylogenetic methods have also been widely used to place numts in a reference 

mitochondrial phylogeny and in this way infer times and rates of insertion  (Collura & Stewart 

1995; Bensasson et al. 2003; Hazkani-Covo et al. 2003; Gherman et al. 2007). But this practice 

is problematic since the location of a numt duplication in the tree will be influenced by the age of 

the original integration rather than the date of the duplication event. Rates and patterns of 

nucleotide substitution are substantially different in mitochondrial and nuclear sequences 

(Arctander 1995; Lopez et al. 1997; Schmitz et al. 2005), and their incorporation in the same 

phylogenetic analysis may be therefore misleading and result in incorrect placements, assigning 

numts to taxa where it is not present and creating unexpectedly long branches connecting to 

numts in the tree (Graur & Li 2000; Schmitz et al. 2002; 2005; Podnar et al. 2007). Additionally, 

numts generally contain insufficient phylogenetic information to accurately place their time of 

insertion due to their small size (usually <500bp) and slow substitution rate (Jensen-Seaman et 

al. 2009). Therefore, caution should be used when origin of a numt is assigned through 

phylogenetic inference and complementary methods such as direct inspection of 

presence/absence  patterns in target taxa should be used whenever possible (Ray et al. 2005; 

2006). 

 

Evolution of homologous sequences in two different cell compartments. The 

nuclear and mitochondrial genomes differ in many aspects including topological organization, 

mode of replication, patterns of selection and the types of repair mechanisms among other 

aspects (Fernández-Silva et al. 2003; Meiklejohn et al. 2007). The transplantation of 

mitochondrial sequences to the nucleus sets up the conditions for a natural experiment for 
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assessing the effect of two different intracellular environments on the evolution of homologous 

sequences. The mitochondrial genome of Old World primates for instance, has an upward bias 

in GC content that exceeds the levels observed in other mammals and is apparently led by 

lineage-specific mutational pressure (Schmitz et al. 2002). Also, the elevated substitution rate 

and strong transition-biased nucleotide substitution pattern are common trends of the vertebrate 

mitochondrial genome that combined lead to saturation in the number of transitions and 

underestimation of transition/transversion (Ts/Tv) ratios (Arctander 1995; Lopez et al. 1997; 

Purvis et al. 1997; Yang & Yoder 1999). In contrast, nuclear copies remain relatively conserved 

(Brown et al. 1982; Graur & Li 2000; Haag-Liautard et al. 2008), and their escape from the 

mutational bias may make them behave as snapshots of the mitochondrial sequence that reflect 

the GC content at the time of translocation (Perna & Kocher 1996; Bensasson et al. 2001; 

Zischler et al. 1995b). 

 

The case of numts in gorillas. Since the formation of numts seems to be an ongoing 

process in Old World primate genomes, the resemblance of recent numts to contemporary 

mitochondrial genomes poses a potential risk of contamination of mitochondrial databases 

(Song et al. 2008; Calvignac et al. 2011). But nowhere is this problem worse than in gorillas as it 

turns out that numerous sequences originally reported as MCR are actually nuclear 

translocations (Jensen-Seaman et al. 2004; Thalmann et al. 2004; 2005; Anthony et al. 2007a). 

This problem is aggravated by the apparently high incidence of in vitro recombinants of 

mitochondrial and nuclear templates that have also been misdiagnosed in previous studies 

(Anthony et al. 2007a). For instance, although the mitochondrial sequences corresponding to 

the first hyper-variable domain (HVI) of the western gorilla Rok and the lowland eastern gorilla 

Muk were recovered through LR-PCR, an additional number of mitochondrial-like sequences 

were amplified from the same individuals using standard PCR methods (Thalmann et al. 2004). 

Phylogenetic analyses of HVI sequences from gorillas across their range have recovered three 

different numt clusters (I – III) that are interspersed with four mitochondrial haplogroups A - D 

(Clifford et al. 2004; Anthony et al. 2007a; 2007b). Interestingly, the nuclear and mitochondrial 

copies of HVI exhibit high similarity and both bear a poly-C domain that is unique to gorillas 

emphasizing a burst in the origin of nuclear copies after the divergence of this taxon. All gorilla 

numt sequences obtained so far have been recovered through non-specific amplification with 

primers originally designed to amplify mtDNA, thus limiting the ability to amplify particular loci, 

assess numt diversity and reconstruct the steps of mitochondrial integration (Garner & Ryder 
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1996; LaCoste et al. 2001; Jensen-Seaman et al. 2004; Thalmann et al. 2004; 2005). Therefore, 

future advances in the gorilla genome project and numt mapping will allow a detailed 

characterization of these genetic elements (Zischler et al. 1998; Scally et al. 2012). 

 

Introduction to the following chapters 

 

In the following chapters I address several aspects of the evolutionary dynamics of 

nuclear translocations of mtDNA in great apes. As presented above, these fragments are widely 

distributed in great apes and pose an imminent contamination threat for mitochondrial 

databases (Richly & Leister 2004; Jensen-Seaman et al. 2004; Triant & DeWoody 2007; 

Anthony et al. 2007a). Preliminary studies in gorillas suggest that the MCR translocation rate is 

much higher in this species than either chimpanzees or humans (Thalmann et al. 2005). 

However, a systematic inventory and rigorous comparative analysis across these closely related 

taxa is presently lacking. Since, MCR has been extensively used as molecular marker in 

population genetics, identification and characterization of MCR numts is essential in designing 

quality control measurements that prevent contamination of mitochondrial databases. The main 

goal of this thesis is therefore to compare the evolutionary dynamics of nuclear copies of the 

MCR in great apes (chimpanzees, humans, gorillas and orangutans). 

 

Chapter 1. Factors affecting the relative abundance of nuclear copies of the 

mitochondrial control region (numts) in hominoids. Although genomic sequencing and 

experimental evidence have shown an elevated prevalence of numts representing all portions of 

the mitochondrial genome in great apes, the MCR seems to be underrepresented in the nuclear 

genome of humans relative to other mitochondrial regions (Mourier et al. 2001). Whereas this 

observation may be the consequence of an actual deficit in the number of translocations of this 

region, the most likely explanation of this apparent numt deficit is rapid loss of identity between 

mitochondrial and nuclear copies that would be caused by the elevated rate of evolution of this 

mitochondrial region. In this chapter I address the question of whether the apparent deficit in 

MCR numts observed in humans is a conserved pattern in other great apes. Since the erosion 

of sequence identity could account for the apparent deficit of numts from MCR, the same bias 

might also be evident for numts from more highly variable sub-domains within MCR. To answer 

these questions, BLAST was used to identify MCR numts in the reference sequenced genomes 
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of humans, chimpanzees and orangutans. The insertion point of each numt was then inferred in 

the reference hominoid phylogeny based on the presence/absence pattern in each taxon and 

this information was used to estimate the rate of MCR numt insertion in each lineage. Lastly, the 

numt prevalence across the four MCR sub-domains (HV1, CCD, HV2 and MCRF) was assessed 

to test the hypothesis that an apparent deficit in MCR numts is an artifact of rapid loss of 

sequence identity. If this is the case, the most variable sub-domains should exhibit the smallest 

number of detected numts. 

 

Chapter 2. Nucleotide composition, sequence evolution and mechanisms of 

insertion of nuclear copies of mitochondrial DNA in great apes (Hominoidea). Once 

mtDNA fragments colonize the nuclear genome, they experience an environment that is 

substantially different from the conditions of native mitochondrial sequences, providing an 

unparalleled opportunity to compare the evolution of homologous sequences in mitochondrial 

and nuclear contexts. There are many structural and selective differences between these two 

genomes including selective pressures and different rates of nucleotide substitution (Fernández-

Silva et al. 2003; Meiklejohn et al. 2007). As the effect of the genomic context is expected to be 

cumulative over time, comparisons of homologous sequences in these two genomes require not 

only the identification of a target numt population but previous knowledge of their age. Previous 

studies have only made use of a limited number of loci to address the effect of the two genomic 

contexts on the structure and evolution of nuclear and mitochondrial paralogous sequences. In 

this chapter, I build on a dataset of 83 numts inserted at different times in great apes since their 

divergence from the macaque lineage. The insertion point of each numt in a reference 

phylogeny was inferred from their presence/absence patterns in all major great ape taxa. 

Differences in GC content and the observed ratio of transition and transversions (Ts/Tv) for each 

numt and its mitochondrial copy were then examined.  Since TEs may potentially elicit 

duplication of flanking regions, concordance in the insertion time of numts and neighboring TEs 

was also studied as a means of gathering indirect evidence of the potential role of TEs in numt 

duplication. In the previous chapter, I assessed the hypothesis that unusually high rates of 

sequence evolution in MCR account for the apparent deficit of numts in this region in great 

apes. Continuing with this idea, I evaluate in this chapter the hypothesis that more conserved 

mitochondrial genes should exhibit a relatively larger number of nuclear copies. To test this 

idea, complete mitochondrial genomes and number of numts derived from mitochondrial genes 

were compiled from previous publications. 
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Chapter 3. Isolation of novel nuclear insertions of mitochondrial DNA (numts) in 

gorillas and their potential as population genetic markers. Accidental amplification of HVI 

numts and in vitro recombinants has been so common in gorillas that validity of mitochondrial 

databases has been questioned (Jensen-Seaman et al. 2004; Thalmann et al. 2004; 2005). 

Three groups of gorilla numts have been described in both eastern and western gorillas 

suggesting a wide distribution of multiple numts. As no numts have been directly mapped, 

amplification of specific numts remains incidental and this impedes further analysis of numt 

diversity and implementation of measures to prevent numt contamination. The main purpose of 

this chapter is to isolate gorilla numts and determine whether the nuclear origin of previously 

inferred numt sequences can be confirmed in this way. The genomic location of each numt was 

characterized through three complementary methodologies: 1) Numt BLAST searches of the 

draft of the reference gorilla genome using the whole mitochondrial genome as query sequence; 

2) Screening of a commercial genomic library of gorilla contained in Bacterial Artificial 

Chromosomes (BACs) and; 3) Anchored PCR from a sample of five unrelated gorillas enriched 

for nDNA. In addition to numt isolation, specific primers were designed to determine the 

polymorphic status of each numt in a sample of western lowland gorillas captive in US zoos and 

explore their potential utility as nuclear molecular markers for future population genetic studies. 
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CHAPTER 1 

 

FACTORS AFFECTING THE RELATIVE ABUNDANCE OF NUCLEAR COPIES OF THE 

MITOCHONDRIAL CONTROL REGION (NUMTS) IN HOMINOIDS. 

 

Abstract 

 

Although nuclear copies of mitochondrial DNA (numts) can originate from any portion of 

the mitochondrial genome, evidence from humans suggests that nuclear insertions of the 

mitochondrial control region (MCR) are less abundant than translocations from other 

mitochondrial regions. This apparent deficit might arise from the erosion of sequence identity in 

numts originating from rapidly evolving sequences such as the MCR. The same bias may also 

be evident for numts from more highly variable sub-domains of the MCR. However, the extent to 

which sequence properties of different portions of the mtDNA impact estimates of numt 

abundance has not been rigorously evaluated. To address this question, we first conducted an 

exhaustive BLAST search of MCR numts in the three well-studied hominoid genomes (human, 

chimpanzee, and orangutan) and assessed numt prevalence across the four MCR sub-

domains. The date of numt insertion in the hominoid phylogeny was then assessed by BLAT or 

cross-species PCR of other hominoid genomes. Results indicate a marked deficit of numts from 

the second hyper-variable region and subdomain proximal to the tRNA-Phenylalanine in all 

three species. Both MCR subdomains exhibited the highest proportion of variable sites and 

lowest average number of detected numts/site. Variation in MCR insertion rate between 

lineages was observed with a pronounced burst in recent insertions within the chimpanzee and 

the orangutan. Lastly, the most variable subdomains are under-represented in ancient numts 

(older than 25 Mega-annum; Ma). Consequently, most species-specific numts closely resemble 

their mitochondrial counterparts, further underlining the risk of their inadvertent incorporation 

into mitochondrial datasets of primates. 
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Introduction 

 

Fragments of mitochondrial DNA (mtDNA) translocated into the nucleus (numts) are 

present in a wide range of eukaryotes (Du Buy & Riley 1967; Corral et al. 1989; Bensasson et 

al. 2001; Hazkani-Covo et al. 2010). Once integrated into the nucleus, numts escape from 

mitochondrial selective constraints and are thought to mutate at rates that resemble other 

nuclear loci, which are around one order of magnitude slower than the mitochondrial average 

(Brown et al. 1982; Haag-Liautard et al. 2008). For this reason, numts are usually considered 

“fossilized” copies of ancient mitochondrial lineages (Perna & Kocher 1996; Bensasson et al. 

2001; Zischler et al. 1995b), whose inadvertent amplification can potentially contaminate 

mitochondrial databases (Greenwood & Pääbo 1999; Jensen-Seaman et al. 2004; Anthony et 

al. 2007a). This problem is particularly acute for the mitochondrial control region (MCR) given its 

widespread use as a population genetic marker in many vertebrate taxa including great apes 

(Sbisà et al. 1997; Jensen-Seaman and Kidd 2001; Arora et al. 2010). However, the prevalence 

of MCR insertions in many of these taxa is poorly understood yet could have important 

implications for the use and interpretation of population genetic datasets. 

A numt search in an early draft of the human genome showed an apparent deficit in the 

number of MCR numts compared to other mitochondrial regions (Mourier et al. 2001). Two 

possible explanations have been proposed to explain this observation. One states that if numts 

are predominately derived from RNA transcripts then untranscribed portions of the mitochondrial 

genome, such as the MCR, will be under-represented in the nuclear genome. Although such a 

mechanism of genetic transfer to the nucleus has been previously shown in plants (Nugent & 

Palmer 1991; Henze & Martin 2001), it remains to be shown that this is also the case in animals 

(Lopez et al. 1994; Henze & Martin 2001; Mourier et al. 2001). Alternatively, the deficit of MCR 

numts might be due to a detection bias arising from the high mutation rate of MCR and hence 

rapid loss in sequence identity relative to other portions of the mitochondrial genome (Saccone 

et al. 1991; Sbisà et al. 1997). 

The MCR is the only non-coding region in the mitochondrial genome and because of this 

might be more tolerant of indel events and nucleotide substitutions (Sbisà et al. 1997). 

Additionally, the MCR has a high prevalence of nucleotide repeats (i.e. low DNA complexity), 

which are known to have an elevated mutation rate (Bodenteich et al. 1992; Sbisà et al. 1997; 

Zardoya & Meyer 1998). Over time, these properties of the MCR domain might erode the 

mitochondrial sequence identity of the nuclear copies and thus explain the apparent numt 
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deficit. Similarly, within the MCR, nucleotide variability and levels of DNA complexity are likely to 

differ among the four MCR sub-domains, potentially leading to differences in their apparent 

abundance in the nuclear genome. Specifically the vertebrate MCR domain is comprised of two 

hyper-variable regions (HV1 and HV2), a conserved central domain (CCD) and a terminal 

portion adjacent to the tRNAF (MCRF). In the mitochondrial genome of mammals, the sub-

domains HV2 and MCRF exhibit considerable variation in not only nucleotide sequence 

composition and length but also in the proportion of repeat motifs (Sbisà et al 1997). If those 

mitochondrial regions with greater variation in great apes also exhibit a greater deficit in the 

number of numts relative to less variable regions, then the disparity in the abundance of numts 

from different mitochondrial regions might be explained by the greater difference in sequence 

identity between these mitochondrial domains and their nuclear copies. 

The rate of transfer of mtDNA to the nuclear genome is also thought to have varied 

during primate evolution (Bensasson et al. 2003; Gherman et al. 2007). The fact that some 

numts exhibit insertional polymorphism also suggests that nuclear integration is an ongoing 

process in many species (Thomas et al. 1996; Ricchetti et al 2004; Anthony et al. 2007a). A 

critical step in gauging insertion rates is the reliable inference of numt age. Although 

phylogenetic methods have been traditionally used to date numts and estimate insertion rates in 

great apes (Bensasson et al. 2003; Hazkani-Covo et al. 2003), such approach can be 

misleading since numts are small (<500bp) and usually contain insufficient phylogenetic 

information to accurately place their time of insertion (Jensen-Seaman et al. 2009). 

Furthermore, estimating the time of insertion of numt loci is problematic when both 

mitochondrial and nuclear loci are combined into the same phylogeny due to striking differences 

in patterns and rates of nucleotide substitution between the nuclear and mitochondrial genomes 

(Graur & Li 2000; Schmitz et al. 2002; 2005). Alternatively, the approximate time of insertion of 

candidate loci in a reference phylogeny can be estimated by either conducting BLAST surveys 

of taxa which have whole genomic sequences available or via cross-species PCR amplification 

of candidate loci from taxa that presently lack a comprehensive genomic database (Zischler et 

al. 1998; Jensen-Seaman et al. 2009).  

Given our present lack of understanding of the molecular evolutionary dynamics of great 

ape MCR numts and the importance of these genetic elements in mitochondrial genetic studies, 

the present study set out to conduct a rigorous inventory of MCR numts from reference genomic 

databases of human, chimpanzee and orangutan. These data were then used to compare the 

prevalence of numts from different sub-domains within the MCR in order to test the hypothesis 
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that heterogeneity in the number of numts across MCR sub-domains could be explained by 

differential loss of sequence identity between mitochondrial and nuclear copies. If true, the 

preponderance of numts from each sub-domain would be negatively related to the proportion of 

variable sites and positively related to DNA complexity. The MCR numt loci obtained from this 

study were then used as query sequences in genomic surveys of other great ape taxa (gorilla 

and gibbon) in order to estimate their approximate time of insertion and test the hypothesis that 

the rate of numt insertion has been constant throughout the evolution of great apes 

(Hominoidea). These data were also used to determine whether more variable sub-domains are 

proportionally under-represented in more ancient numts. This research will ultimately contribute 

to a better understanding of the factors determining the apparent abundance and distribution of 

mitochondrial fragments in the nuclear genome of great apes and may have important 

implications for population genetic analyses of mtDNA where detection and elimination of numt 

contaminants is an issue.  

 

Materials and Methods 

 

Relative abundance of MCR numts in the genome of humans, chimpanzees and 

orangutan. The BLASTn algorithm (Altschul et al. 1990) was used to carry out an exhaustive 

search for MCR numts in reference genome databases from human (build 36.3; 2006), 

chimpanzee (build 2.1; 2006) and orangutan (P_pygmaeus2.0.2;2007) assemblies. The MCR 

query sequence was taken from reference mitochondrial genomes of the corresponding species 

(NC001807.4 for human, NC001643.1 for chimpanzee and D38115.1 orangutan) and contains 

four sub-domains: the two hyper-variable regions (HV1 and HV2), the conserved central domain 

(CCD) and the sub-domain proximal to tRNAF (MCRF). The query sequence employed in the 

present study also contained the two 500bp flanking regions, defined here as MTP and MTF, 

where the former comprises tRNAP, tRNAT and 32% of the CYTB gene, and the latter comprises 

tRNAF and 45% of 12S rRNA. A fragment of 81bp was found to be missing from the HV1 region 

of the mitochondrial reference sequence for the orangutan and so was replaced by another HV1 

sequence reported in the same species (AJ586559.1). The filters and mask options of BLAST 

searches were clicked off; search parameters were relaxed to a word size of 7; match/mismatch 

scores of 1/-1 were adopted and gap creation and extension penalties of 3 and 1 were applied, 

respectively. Only hits of either i) at least 100bp in length and 60% identity or ii) a size of 

between 50 and 99bp with identity greater than 70% were considered. As preliminary analyses 
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indicated that expect-values for discontiguous numt hits did not exceed 0.39, this value was 

used as an upper limit above which hits were rejected. This search strategy allowed us to 

recover all previously reported numts of at least 50bp in size as well as a number of unreported 

MCR numts. 

 

Abundance of MCR numts across the different sub-domains. The mitochondrial 

sequences of the four major taxa in the Hominidae, i.e. human, chimpanzee, orangutan 

(D38115.1-AJ586559.1) and gorilla (NC001643.1) were aligned using MEGA v4 (Tamura et al. 

2007). Two fragments of 96 and 20bp in the HV2 and MCRF, respectively appear to have been 

historically deleted from the mitochondrial genome of orangutans but are present in both 

humans and chimpanzees. The proportion of variable sites (PVS), consisting of both indels and 

substitutions between species, was then calculated for the four MCR sub-domains and the two 

flanking regions using the program DnaSP v5 (Librado & Rozas 2009). The average number of 

numts per nucleotide position (numts/site) was estimated for each region. Regression analysis 

was used to compare the relationship between PVS and numts/site in order to test the effect of 

sequence variation on the number of detected numts. 

Additionally, an index of DNA complexity was calculated by dividing the size in base 

pairs of each region by the number of base pairs considered to be part of nucleotide repeat 

blocks. Such blocks were determined by the program MSATFINDER v2.0 (Thurston & Field 

2005) and defined as stretches of at least 5 tandem repeats of mononucleotides or at least 3 

tandem repeats of longer motifs (2 to 6 nucleotides). Numt abundance was calculated as the 

number of numts partially or entirely derived from a particular region weighted by the size of the 

region. The relationship between DNA complexity and numt abundance was assessed through 

regression analysis in order to assess the effect of potential mutational hotspots in repetitive 

blocks (low complexity) on the ability to detect numts from different sub-domains. 

 

Insertion rate of MCR numts in the Hominoidea. The presence of human, 

chimpanzee and orangutan MCR numts in other Hominoidea and an outgroup macaque 

(rheMac2, Jan 2006) was first determined by genomic BLAT surveys (Kent 2002) of reference 

genomic databases or by BLAST analyses of trace files and shot-gun genomic reads from the 

white-cheeked crested gibbon (Nomascus leucogenys, ADFV00000000; September 2010) and 

western lowland gorilla (Gorilla gorilla gorilla, CABD00000000, November 2009). In cases 
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where genomic sequences from gorilla and gibbon were not available or the location of 

orthologous regions was ambiguous, the presence/absence of a given MCR numt in these 

species was determined by cross-species PCR amplification of genomic DNA from western 

lowland gorilla or white-handed gibbon (Hylobates lar) using primers specific to the numt flanks 

(Appendix A). The probable age of each numt was then deduced by mapping the first 

appearance of a given insertion to the relevant inter-nodal position in the reference Hominoidea 

phylogeny, as proposed by Goodman et al. (1998). According to this phylogeny, the 

Cercopithecoidea (Old World monkeys including macaque) diverged from Hominoidea around 

25Ma ago. The lineage leading to the gibbon then diverged 18Ma ago, followed by the 

divergence of Pongo (orangutan) 14Ma ago, Gorilla 7Ma ago and then the separation of the two 

terminal taxa Homo (human) and  Pan (chimpanzee and bonobo) around 6Ma ago. 

 

Figure 1.1. Absolute number of numts per site in the MCR and 500bp flanking regions of 
human, chimpanzee and orangutan. Sub-domains within the MCR are the first Hyper-variable 
region (HV1), the conserved central domain (CCD), the second Hyper-variable region (HV2) 
and the terminal sub-domain adjacent to the phenylalanine tRNA (MCRF). The two 500bp 
flanking regions, MTP and MTF, begin with the proline tRNA and phenylalanine tRNA, 
respectively. 
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The insertion rate of MCR numt loci was estimated as the total number of fragments that 

first appeared in a given inter-nodal region divided by the age difference between nodes. We did 

not attempt to conduct a rigorous distinction between independent mitochondrial translocations 

and post-integration duplications owing to the difficulty of unambiguously differentiating the two. 

However, several duplication events could be confirmed in cases where multiple numts 

exhibited the same boundaries and identity along their flanking regions (e.g. see panY8000 

series in Appendix A). 

 

Figure 1.2. Relationship between the proportion of variable sites (PVS) in the four MCR 
sub-domains and the two flanking regions and the average number of numts per nucleotide 
position (numts/site) in the human, chimpanzee and orangutan genomes. Regression equations 
are y = -60.933x + 51.497, y = -68.296x + 62.066 and y = -65.06x + 53.418 in human, 
chimpanzee and orangutan, respectively. 
 

 
 

Results 

 

BLAST searches recovered a total of 97 human, 122 chimpanzee and 100 orangutan 

putative MCR numt loci. There was a pronounced deficit in numts originating from the HV2 and 

MCRF relative to the other two sub-domains (Figure 1.1). The relative proportion of numts by 

MCR sub-domain was similar in all three great ape taxa. 
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Structure of mtDNA sequence and the number of traceable numts. There was a 

negative relationship between the proportion of variable sites (PVS) and the number of 

numts/site in all three genomes (Figure 1.2). This relationship was highly significant for 

chimpanzees (Pearson=-0.83; d.f.=4; p=0.041; R2=0.69) and orangutans (Pearson=-0.93; 

d.f.=4; p=0.007; R2 = 0.87), but only marginally significant for humans (Pearson=-0.78; d.f.=4; 

p=0.063; R2 = 0.62). On the other hand, there was a positive relationship between DNA 

complexity and numt abundance in humans, chimpanzees and orangutans (Figure 1.3). 

However, this relationship was only significant for chimpanzees (Pearson=0.87; d.f.=4; p=0.025; 

R2=0.75) and marginally significant for humans (Pearson=0.78; d.f.=4; p=0.065; R2=0.62). 

 

Figure 1.3. Relationship between DNA complexity and numt abundance in humans and 
chimpanzees. Regression equations in chimpanzees and humans are y = 0.0028x + 0.123 and 
y = 0.0026x + 0.089, respectively. 
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Insertion rate of MCR numts. Genomic database surveys and cross-species PCR 

assays succeeded in placing the origin of 62 MCR numts in the hominoid phylogeny along with 

22 additional numts derived from the two flanking regions MTP (12) and MTF (10) (Figure 1.4). 

MCR translocations include eight that originated prior to the divergence of orangutans, 25 

specific to chimpanzees, 20 specific to orangutan and two specific to humans (see Appendices 

A and B for detailed information). Presence/absence status of five additional candidate numts 

could not be unambiguously determined in macaque due to gaps in the reference genome 

database or chromosomal deletions containing the target region. From these data, we estimated 

an average rate of insertion of 1.38 MCR numts per Ma in the hominoid genome, although this 

is likely to be slightly biased as numts in the lineages of gibbon and gorilla were missed. 

Different rates were found among taxa, with an outstandingly high rate in chimpanzee (4.17 

numts/Ma) that contrasts with those in human (0.33 numt/Ma; the sister taxon) and orangutan 

(1.43/Ma). 

Figure 1.4 a. Phylogeny of Hominoidea and macaque showing the number of MCR  
numts inserted during particular internodal time periods, the insertion rate (numts/Ma) 

and the sequence identity (%) with the mitochondrial query sequence. The numt family 
panY8000 was excluded from calculations of identity in chimpanzee since they are known to be 
duplications of an ancient numt and therefore do not represent the sequence identity in the 
chimpanzee lineage. 
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Figure 1.4 b. Hominoidea-specific numts derived from the region containing the MCR 
(HV1, CCD, HV2 and MCRF) and 500bp of the flanking regions (MTP and MTF). They are 
organized in four groups depending on whether they are shared by multiple taxa (Hominoidea) 
or taxon-specific (human, chimpanzee or orangutan). Relative size and region of mitochondrial 
origin are depicted by gray boxes. Dashed boxes represent regions absent from the orangutan 
mitochondrial genome. See Appendix B for insertion time and specific chromosomal location of 
each numt. 
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Under-representation of the MCR sub-domains with largest sequence variation (HV2 

and MCRF) relative to other sub-domains was not observed in hominoid-specific numts, 

meaning that the overall numt deficit in those sub-domains is mostly determined by older numts. 

In general, sequence identity between mitochondrial sequences and their numt copies steadily 

decreased with numt age from nearly 90% in the human-chimpanzee ancestor to 75% in the 

hominoid ancestor, although this trend did not hold true for humans, where the two species-

specific numts exhibited an identity of only 78% to one another (Figure 1.4 a). 

Although we did not intend to make a rigorous distinction between direct integrations of 

mitochondrial fragments and duplications of previous integrations, we found multiple cases of 

recent MCR numt duplications nested in larger duplications of chromosomal fragments, 

interestingly all located in the Y chromosome. These comprise the two human-specific MCR 

numts (hY_77 1 and 2), which exhibit identical size, sequence and high identity along both 

flanks. Likewise, 15 of the 26 chimpanzee-specific numts were nested in chromosomal 

duplications; all located the Y chromosome (panY8000). They share identities of over 88% with 

one another and are derived from an ancient mitochondrial integration of ~8000bp that inserted 

over 25Ma ago in the Hominoidea ancestor. Altogether, panY8000 numts accounts for over 1.2 

x 105 bp of mitochondrial sequences in the chimpanzee nuclear genome. 

 

Discussion 

 

The resulting list of MCR numts from our BLAST search recovered 40 human and 34 

chimpanzee numts previously reported for these taxa (Mourier et al. 2001, Hazkani-Covo & 

Graur 2007, Lascaro et al. 2008, Ricchetti et al 2004, Zischler 1998, MITOMAP 2008), along 

with a large number of loci reported here for the first time including 7 in human and 23 in 

chimpanzee. Our study also identified 27 numt loci exclusive of the orangutan genome and 

provides the first comprehensive report of MCR numts in this taxon. The availability of three 

previous studies of human numts (Mourier et al. 2001; Hazkani-Covo & Graur 2007; Lascaro et 

al. 2008), enabled us to make a comparison with our own search and address the relevance of 

numt size and identity on the ability to detect extant numts. In particular for hominoid-specific 

MCR numts present  in humans, numts found here and in one or more previous studies share 

on average 87 to 88% of sequence identity with their current mitochondrial genomes (Table 1). 

However, larger numts were more easily detected and are therefore more prevalent in earlier 

reports than smaller numts. In contrast, numts reported herein for the first time exhibit 
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substantially smaller values of both average size (121bp) and sequence identity (73%) than 

previously reported numts. Overall, our results show that our search strategy recovered not only 

all previously described numts but also proved effective in uncovering additional numts with 

relatively small size and sequence identity. Although relaxing the search parameters in a BLAST 

survey is expected to increase the number of spurious associations, it is certainly useful in 

detecting real numts whose authenticity can be proved by amplifying these loci using primers 

targeted against the nuclear flanks in order to establish presence/absence comparisons 

between taxa. Such approach to numt detection could also prove useful in identification of 

cryptic numts in other species as one step in avoiding their inadvertent incorporation in future 

studies. 

 

Table 1. Number of Hominoidea-specific numts derived from MCR and 500bp flanking 
regions reported in previous searches in the human genome. Table shows the number of loci 
(n) as well as size and identity for numts reported by previous studies: Mourier et al. 2001 (a); 
Hazkani-Covo & Graur 2007 (b); Lascaro et al. 2008 (c). 
 

Previous 
studies 

n 
Average 

Numt size (bp) 
% Identity 

a, b, c 9 2954.8 88.4% 

a, b or b, c 8 200.9 88.0% 

b 4 140.8 87.0% 

Newly reported 7 120.6 73.0% 

 

A relative deficit in the number of numts derived from HV2 and MCRF of the MCR was 

observed in humans, chimpanzees and orangutans. The strong negative relationship between 

mitochondrial PVS and the number of numts/site supports the hypothesis that elevated rate of 

sequence evolution in the mtDNA erodes sequence identity and leads to an apparent deficit in 

the amount of mitochondrial sequences detected in the nuclear genome. The positive 

relationship between complexity and numt abundance in humans and chimpanzees indicates 

that the loss of sequence identity and our ability to detect numts can be partially explained by 

elevated mutation rates in low complexity regions of the mitochondrial genome (Bodenteich et 

al. 1992; Sbisà et al. 1997; Zardoya & Meyer 1998). In other words, numts are less likely to be 

detected if they contain regions of the mitochondrial genome of higher mutation rate and 

repetitive sequence content. This then might also explain the apparent deficit of MCR numts 

relative to insertions from other parts of the mitochondrial genome (Mourier et al. 2001). 
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Additionally, recent deletions in mitochondrial genomes used as query sequences, such as the 

case of two fragments deleted from the mtDNA of orangutans, may also result in limited 

detection of numts that originated prior to the mitochondrial deletion. Overall, future search 

strategies should experiment with using query sequences either derived from consensus 

sequences of multiple taxa or from an inferred ancestral mitochondrial sequence of Hominoidea 

in order to determine whether more divergent nuclear translocations or translocations derived 

from regions no longer present in the mitochondrial genome can be detected in this way. 

Several pieces of evidence point to the possibility that previous analyses based on 

humans have underestimated the rate of insertion in other great apes. Firstly, humans are 

known to have reduced genetic diversity relative to other apes due to a past population 

bottleneck (Zhao et al. 2000; Kaessmann et al. 2001; Mathews et al. 2003) which, as shown 

here, might have led to a numt deficit relative to other apes. Secondly, BLAST surveys of 

genomic databases based on a single individual are likely to underestimate the frequency of 

recent insertions that have not yet become fixed in the species (Schmitz et al. 2005). Lastly, 

although our search identified previously unreported numts in the hominoid genome, either 

partially or entirely derived from the MCR, our estimated rate is still likely to be a conservative 

value due to our deliberate exclusion of numt hits shorter than 50bp. Taken together, findings 

from this study provide strong evidence that MCR numts may be generally underestimated in 

most genomic surveys of existing genomic databases of great apes. In order to combat this 

problem, we recommend incorporating as many individual genomes as become available in 

future genomic surveys, combined with previous suggestions such as relaxing parameters in 

BLAST searches and the use of alternative query sequences. 

There was also substantial variation in the rate of insertion among different taxa included 

in this study. Such differences are unlikely to result from a systematic bias in the BLAST 

methods used here since these were the same in all three taxa. Rate heterogeneity among 

lineages cannot be attributed to a bias introduced by gaps in genome projects since the slowest 

rate of insertion was found in the human genome whose sequencing project is the most 

comprehensive. The outstanding difference between humans and chimpanzees, despite the 

relatively recent divergence of these two taxa is also in agreement with previous reports of a 

larger number of numts in the chimpanzee genome (Hazkani-Covo & Graur 2007; Hazkani-

Covo 2009). The observed deficit in humans is consistent with the historically low levels of 

genetic variation in humans, presumed to have arisen as a result of a historical bottleneck in this 
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species as evidenced by high levels of neutral genetic variation still present in other apes 

(Kaessmann et al. 2001; Gherman et al. 2007). 

Our results also indicate that the deficit of numts from particular MCR sub-domains is 

mostly due to loss of mitochondrial identity in numts inserted before the diversification of 

Hominoidea. This is supported by the fact that no obvious under-representation of HV2 and 

MCRF was detected in numts originating during the last 25Ma, despite the relatively rapid 

divergence of these sub-domains. Also, the fact that the relative abundance of numts between 

MCR sub-domains exhibits similar patterns in all three hominoids studied here suggests a long 

history of mitochondrial migration into the nucleus prior to the divergence of hominoids. 

In contrast, recent numts exhibit an increased sequence identity with current 

mitochondrial genomes. An exception to this was the relatively low identity between the human-

specific numts and the mitochondrial genome but this is likely due to a sampling error since only 

two MCR numts were detected in humans and they are identical to one another. Overall, the 

high resemblance between the sequence of mitochondrial and nuclear copies may be 

potentially problematic and lead to misidentification of recent numts as mitochondrial sequences 

in population genetic studies (Jensen-Seaman et al. 2004). In these cases, inventories of 

species-specific numts characterized through either BLAST surveys of existing genomic 

databases or cross-species PCR assays will help identify instances of numt contamination and 

ensure that mitochondrial sequence databases are error-free. 

Our findings showed a recent accumulation of numt duplications in the Y chromosome of 

the Hominoidea. The majority of species-specific MCR numts found in chimpanzees and the 

only two found in humans were located in the Y chromosome, nested within recent duplications 

of larger chromosomal segments. Unfortunately, comparisons with orangutan are not possible 

since sequence data of the Y chromosome are not available in the current version of the 

genome project. A concentration of numts in the Y chromosome despite its small size is also 

supported by data from an early draft of the human genome where an excess of human-specific 

numts relative to the chromosomal size was found in this chromosome (Ricchetti et al. 2004). 

The Y chromosome is known to have unusually repetitive content, whose reduced gene density 

and relaxed functional constraints provide the basis for numerous chromosomal changes 

including deletions, integrations and duplications (Foote et al. 1992; Tilford et al. 2001). 

Moreover, the greater number of cell divisions in the male germ line can also facilitate a vast 

accumulation of chromosomal rearrangements (Erlandsson et al. 2000). Future sequencing of 

multiple conspecific genomes and completion of other ongoing genome projects may shed light 
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on whether the observed concentration of recent numts in the Y chromosome is common to 

other primates or varies between populations and subspecies. If that is the case, then 

duplications of chromosomal fragments may prove useful as cytogenetic markers in future 

population genetic studies. 

  



33 
 

CHAPTER 2 

 

NUCLEOTIDE COMPOSITION, SEQUENCE EVOLUTION AND MECHANISMS OF 

INSERTION OF NUCLEAR COPIES OF MITOCHONDRIAL DNA IN GREAT APES 

(HOMINOIDEA) 

 

Abstract 

 

The widespread distribution of copies of mitochondrial DNA (mtDNA) in the nuclear 

genome of great apes, also called numts, provides an unparalleled opportunity to compare the 

evolution of mitochondrial sequences and their paralogous copies in the nuclear genome. While 

it is generally acknowledged that patterns of nucleotide substitution, sequence composition and 

selection will differ between mitochondrial and nuclear environments, comparative data are 

lacking. Similarly, knowledge is also lacking on the potential mechanisms of nuclear integration 

and their relative importance across multiple taxa. Here, we built on a large dataset (n=83) of 

great ape-specific numts and their mitochondrial paralogs to: (1) quantify differences in 

transition/transversion ratios and GC content between mitochondrial sequences and their 

corresponding numts; (2) explore the extent to which sequence stability of human mitochondrial 

genes might affect their identity to nuclear copies and the ability to detect the latter in genomic 

databases (3) examine the relative importance of different mechanisms of numt insertion in 

great ape genomes. In general, transition/transversion ratios differed significantly between both 

mitochondrial and nuclear sequences and between numts derived from coding and non-coding 

mitochondrial regions. The previously documented upward bias in the GC content of the primate 

mitochondrial genome was confirmed and the extent of this bias relative to the corresponding 

numt sequences increased with numt age. Conserved human mitochondrial genes maintain a 

higher identity with nuclear copies and because of this, appear to be over-represented in human 

numt databases. Lastly, comparison of alternative mechanisms of numt insertion revealed that 

non-homologous end joining repair is the most likely mechanism of numt integration in great 

apes. 
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Introduction 

 

Comparative analysis of whole genomes has unveiled a great abundance of 

mitochondrial DNA (mtDNA) sequences inserted in the nuclear genome (numts) of many 

eukaryotes (Bensasson et al. 2001; Hazkani-Covo 2010). In great apes, numts are particularly 

widespread at levels that apparently surpass those found in other mammals (Clifford et al. 2004; 

Jensen-Seaman et al. 2004; Richly & Leister 2004; Triant & DeWoody 2007; Anthony et al. 

2007a). This poses a real problem for evolutionary studies of these species due to the high risk 

of incorporating numts into downstream mitochondrial analyses (Thalmann et al. 2004; Jensen-

Seaman et al. 2004; Anthony et al. 2007a). However, the prevalence of numts in great apes 

(Hominoidea) also provides an unrivaled opportunity to study how nuclear integration affects the 

molecular evolutionary dynamics of mitochondrial sequences. This can best be accomplished 

through a systematic comparison of the sequence properties of a large suite of mitochondrial 

sequences with their corresponding nuclear paralogs taken at different time points during the 

evolution of great apes. 

Once mitochondrial fragments escape to the nucleus they become non-functional 

sequences and as such are released from selective mitochondrial constraints. As a result, it is 

thought that these integrations mutate at rates that resemble non-coding nuclear loci, which are 

around one order of magnitude slower than the mitochondrial average (Brown et al. 1982; Graur 

& Li 2000; Haag-Liautard et al. 2008). For this reason, numts can be considered to be 

“molecular fossils” of ancient mitochondrial lineages that retain the sequence composition of 

mitochondrial genomes at the time of insertion (Perna & Kocher 1996; Bensasson et al. 2001; 

Zischler et al. 1995b).  

Of particular interest to the present study is the observation that the mitochondrial 

genome of Old World primates has an intrinsic upward elevational bias in GC content (Schmitz 

et al. 2002), hypothesized to have arisen as a result of lineage-specific mutational pressure 

(Schmitz et al. 2002; Gibson et al. 2004). Following translocation, great ape numts escape from 

this GC mutational pressure and exhibit a GC content that is lower than their current 

mitochondrial counterparts (Schmitz et al. 2002). This difference in GC content between nuclear 

and mitochondrial copies is likely to be greater in numts that transferred earlier into a nuclear 

environment than those that have only recently been translocated. We therefore predict that a 

positive relationship exists between the age of the insertion and the magnitude of the difference 

in the GC content and that such relationship may be used to estimate the rate at which GC 
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content increases in the mitochondrial genome. However, such relationship remains to be 

explored. 

Previous studies of sequence evolution in primate pseudogenes have also shown that 

high regional GC content and the presence of GC dinucleotides may affect the mutational 

dynamics of neighboring nucleotide positions by boosting the number of transitions, resulting in 

an elevated proportion of transitions (Ts) over transversions (Tv), or Ts/Tv ratio (Bulmer et al. 

1986, Hess et al. 1994). Since primate numts have a tendency to be GC rich, it is thus possible 

that they also have intrinsically large Ts/Tv ratios. The mitochondrial genome also exhibits a 

strong transition-biased nucleotide substitution pattern and elevated substitution rate that 

frequently results in saturation in the number of transitions and underestimation of Ts/Tv ratios 

(Arctander 1995; Lopez et al. 1997; Purvis et al. 1997; Yang & Yoder 1999). In contrast, Ts/Tv 

ratios in numts are thought to be less sensitive to saturation given the low substitution rate of 

the nuclear genome. Only a few studies, mostly based on a limited number of numts derived 

from confined mitochondrial regions have addressed differences in Ts/Tv ratios between 

mitochondrial and nuclear copies (Lopez et al. 1997; Zischler et al. 1998; Mundy et al. 2000; 

Schmitz et al. 2005). 

With respect to rates of translocation of different mitochondrial fragments into the 

nuclear genome, early numt searches in humans and other great apes have shown that numts 

originating from the non-coding mitochondrial control region (MCR) are poorly represented in 

the nuclear genome (Mourier et al. 2001). Two alternative hypotheses have been proposed: 

First, a transfer of genetic material to the nucleus might be preferentially mediated by mRNA 

thus explaining the deficit of numts from non-coding regions such as MCR. Although such a 

mechanism has been demonstrated in plants (Henze & Martin) it remains to be shown in 

animals. Secondly, the apparent deficit in the number of numts from the MCR might be caused 

by the elevated mutation rate of this region and its subsequent rapid loss of identity with the 

translocated nuclear copies (Sbisà et al. 1997; Pesole et al. 1999; Mourier et al. 2001; Soto-

Calderón et al. in review). In contrast to the MCR, we predict that more conserved mitochondrial 

genes should maintain a relatively high identity with nuclear copies. This effect may then lead to 

an apparent elevation in the number of detectable nuclear copies of such genes relative to 

nuclear copies of more variable mitochondrial genes. 

In addition to studies of the nucleotide properties of numts, there has been considerable 

interest in the mechanisms by which mtDNA colonizes the nuclear genome. Three potential 

mechanisms of insertion have been proposed. The first is based on Non-Homologous End-
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Joining Repair (NHEJR), where base complementarity of one to seven bases (or 

microhomologies) between two sequences can often facilitate recognition between the 

mitochondrial fragment and its nuclear background (Blanchard & Schmidt 1996; Jackson 2002). 

Although microhomologies are not a necessary requirement for NHEJR to occur, their presence 

is likely to be a signature of this mechanism. Secondly, trans-replication slippage has been 

postulated to play a role in integration of mitochondrial fragments into the nuclear genome (see 

Chen et al. 2005). This mechanism, first described by Chen et al. (2005), relies on a complex 

sequence of events whose outcome is distinguished by the presence of a nucleotide motif in 

both endings of the mitochondrial insertion and the integration site. Lastly, it has also been 

suggested that Transposable Elements (TEs) might mediate integration of mtDNA into the 

nucleus since these two elements are frequently found in close proximity (Farrelly & Butow 

1983; Ricchetti et al. 1999; 2004; Lascaro et al. 2008). For instance, Mishmar et al. (2004) 

found that members of a particular family of TEs called Long INterspersed Elements (LINEs) are 

preferentially integrated within 150bp of numts in the human genome, suggesting a non-random 

association of TEs and numts. Conversely, more recent studies have revealed an apparent 

deficit of TEs within 200bp of numt loci (Gherman et al. 2007; Jensen-Seaman et al. 2009).  

Interestingly, a particular group of LINEs named LINE-type 1 (LINE-1 or L1) could potentially 

facilitate the retrotransposition of flanking non-LINE elements resulting in simultaneous 

duplication of both a LINE-1 and the flank (Moran et al. 1999; Pickeral et al. 2000; Goodier et al. 

2000; Deininger et al. 2003). However, the contribution of such a mechanism to duplication of 

flanking numts and its frequency relative to other hypothesized modes of numt dissemination 

has not yet been systematically compared. 

Here, we make use of 83 dated numts across the entire Hominoidea phylogeny to 

assess differences in nucleotide composition and patterns of substitution between mitochondrial 

and numt sequences of various ages and mitochondrial regions. In order to test the hypothesis 

that sequence stability in mitochondrial genes is positively related to numt prevalence, we also 

compare the proportion of variable sites in 15 mitochondrial genes in humans (Ingman & 

Gyllensten 2006) to the prevalence of their nuclear pseudogenes (Triant & deWoody 2007). 

Lastly, we examine the flanking sequences of all 83 great ape numts to evaluate the relative 

importance of NHEJR, trans-replication slippage and TEs in the numt insertion process.  
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Materials and Methods 

 

Selection of numt loci and estimation of insertion time. We assembled a database 

of 83 hominoid numt loci exclusively present in great apes comprising 47 derived from MCR and 

36 from other mitochondrial regions (non-MCR). Exclusive presence of a numt in Hominoidea 

was inferred by verifying its absence from the macaque genome (rheMac2, Jan 2006), a 

member of the sister group Cercopithecoidea, using the BLAT tool in the UCSC Genome 

Browser (Kent et al. 2002). The numts used in this study were either retrieved from previous 

genomic BLAST searches in the human, chimpanzee, and orangutan reference genomes (Soto-

Calderón et al. in review), or reported in other studies (Hazkani-Covo et al. 2007; Jensen-

Seaman et al. 2009) (Appendix C). In order to estimate the approximate age of each numt, 

presence/absence was determined in the reference genomes of human, chimpanzee and 

orangutan using the BLAT tool. Presence/absence in gibbon and gorilla was determined 

through BLAST searches against the partial genomic databases of Nomascus leucogenys 

(ADFV00000000; September 2010) and Gorilla gorilla gorilla (CABD00000000, November 

2009), respectively. Whenever orthologous regions were absent from a reference genomic 

database, locus-specific primer pairs were designed from human and chimpanzee alignments of 

the corresponding region and used to amplify the target locus from gorilla and/or gibbon 

genomic DNA. These amplified PCR products were sequenced using the Big-Dye version 1.1 

(ABI) and run on an ABI 3100 genetic analyzer (Appendix D). Based on its presence/absence 

pattern in the reference genomes, the approximate time of insertion of each numt was then 

inferred by mapping the time of its first appearance onto an internodal time period in a reference 

Hominoidea phylogeny (see Figure 2.1; Goodman et al. 1998). In this way, divergence times 

were defined as follows: Human/Chimpanzee - 6.5Ma; Human/Gorilla and Chimpanzee/Gorilla - 

10.5Ma; Human/Orangutan, Chimpanzee/Orangutan and Gorilla/Orangutan - 16Ma and; 

Human/Gibbon, Chimpanzee/Gibbon, Gorilla/Gibbon and Orangutan/Gibbon - 21.5Ma. 

 

Patterns of nucleotide substitution in Hominoidea numts and their mitochondrial 

counterparts. Sequences were aligned using the ClustalW algorithm (Larkin et al. 2007) 

implemented in the program MEGA v4.0 (Tamura et al. 2007). The program DnaSP 5.10 

(Librado & Rozas 2009) was used to estimate the average GC content in each numt and its 

mitochondrial paralog. Due to the GC bias in contemporary mitochondrial genomes, a one-tailed 

paired t-test was then used to test for an excess in the average GC content (GC) in 
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mitochondrial relative to nuclear sequences. Regression analysis and Spearman’s rho 

correlation tests were used to assess the relationship between pair-wise GC differences and 

numt-mitochondrial divergence time. The program PAUP v4.0b10 (Swofford 2002) was used to 

estimate the average observed Ts/Tv ratio for each numt present in at least two taxa (n=36) and 

for their corresponding mitochondrial sequences. The relationship between the natural logarithm 

of Ts/Tv ratios and GC content was assessed using a Pearson’s rho correlation tests. The Ts/Tv 

ratios obtained from pair-wise sequence comparisons between taxa were estimated for MCR 

and non-MCR numts and differences were assessed using a two-tailed paired t-test. 

 

Selection on mitochondrial genes and the apparent prevalence of nuclear copies. 

We tested the correlation between the proportion of variable sites (PVS) of 15 human 

mitochondrial genes with the number of numts derived from the same genes in the human 

genome. To do this, we made use of 100 mitochondrial genomes from human populations 

around the world available through the Human Mitochondrial Genome Database (Ingman & 

Gyllensten 2006; see Appendix E) and an inventory of human numts found through BLAST 

searches for the 13 protein-coding and the 2 rRNA mitochondrial genes in humans, as reported 

by Triant & deWoody (2007). PVS and a proportion of the average number of numts per 

nucleotide position (numts/site) were calculated as in the previous chapter for the 15 

mitochondrial genes. The relationship between PVS and numts/site was assessed using a 

Pearson correlation test. 

 

Mechanisms of numt insertion. We inferred the boundaries of the putative pre-

integration site of each numt locus from the next most basal taxon in the phylogeny lacking the 

numt in question (Hazkani-Covo & Covo 2008; Jensen-Seaman et al. 2009). We then compared 

the termini of each numt with that of the sequence lacking the numt to survey for the presence 

of microhomologies on one or both flanks (see Jensen-Seaman et al. 2009). Presence of 

microhomologies in either flank was considered as indirect evidence of NHEJR. Presence of the 

same microhomology motif on both numt endings was assumed to be a signature of trans-

replication slippage. In addition to these two mechanisms of direct mitochondrial integration, the 

potential role of transduction via TE-LINE1 in numt duplication was also assessed. A signature 

of this mechanism would be the adjacent location of a target numt and a TE that arose within 

the same inter-nodal period in the reference phylogeny. This association was determined 

through a search of TEs located within 500bp of each target numt and assessing their 
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presence/absence in the reference genomes of human, chimpanzee and orangutan. TEs were 

tracked using the program REPEATMASKER-Open 3.0 (Smit et al. 1996-2007), available 

through the UCSC Genome Browser (Kent et al. 2002). Finally, we assessed whether there is 

any evidence that human numts are preferentially associated with one or more families of TE 

(i.e. Alu, LINE-1, MIR, LTR and LINE-2). To do this, we identified TEs integrated within the 

same or previous time period of a human numt located within 500bp and used a 2 test to 

compare their proportions with the distribution of TE families in the whole human genome 

(Deininger & Batzer 2002). 

 

Figure 2.1. Relationship between time of numt insertion and the difference in GC 
content between numts and mtDNA. The divergence time was defined as the mid-point of the 
internodal time period basal to the node connecting the sequences under comparison. 

 

 

 

Results 

 

Differences in rates and patterns of nucleotide substitution between numts and 

their mitochondrial counterparts. A comparison between mitochondrial regions revealed that 

the GC content in the MCR (48.1%) of Hominoidea was 3.5% higher than the mitochondrial 

average (44.6%). Also, GC content was significantly lower in numts (43.31% ± 1.14) than the 
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mitochondrial counterparts (45.50% ± 1.10; paired t0 = 5.96; p<0.001; d.f. = 82). The GC 

between the nuclear and the mitochondrial genome increased with species divergence time 

(Spearman=0.288; p=0.008) (Figure 2.1) at an approximate rate of 2% every 10Ma. The 

observed pair-wise Ts/Tv ratio in mitochondrial alignments decreased with time of divergence 

between taxa whereas in numts this ratio tends to increase with time. The pair-wise Ts/Tv ratio of 

MCR numts was significantly greater (paired t0 = 5.68; p<0.001; d.f. = 15) than the Ts/Tv ratio of 

non-MCR numts (Figure 2.2). GC content and the average Ts/Tv ratio in numts showed a 

positive relationship, although this was not significant (Figure 2.3). 

 

Table 2. Microhomologies between clusters of adjacent numts. 
 

Cluster 1  

h4_236  No microhomologies. 

h4_60   GATTAAAATT 

h4_316     TTAAAATTATAC 

h4_3525  No microhomologies. 

h4_1345  No microhomologies. 

Cluster 2  

8_68(1)  

8_68(2) No microhomologies. 

Cluster 3  

h17_13321  CATATT 

17_232    TATTGA 

Cluster 4  

h3_109  TACCCC 

3_76     CCCTG……TCGGG 

3_136              GGGTG 

Cluster 5  

hX_749  AATAT 

hX_284    TATTG………AATCATA 

hX_554              TCATAACCC 

Cluster 6  

pan6_85 No microhomologies. 

pan6_105  

Cluster 7  

pgo4_569(1) TTGATCCTGTTTCGTGTAGAAATAGGAGGTGTAGGGTTGTTAGAGCT 

pgo4_569(2)   GATCCTGTTTCGTGTAGAAATAGGAGGTGTAGGGTTGTTAGAGCTAG 

Cluster 8  

pgo11_544(1) GCCCACCCAGATAAAA 

pgo11_544(2)   CCACCCAGATAAAAAT 
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Selective patterns in mitochondrial protein coding genes and number of numts. 

Analysis of the 15 mitochondrial genes in humans revealed that the average number of numts 

derived from each nucleotide site decreased with the proportion of variable sites in each gene 

(Figure 2.4). This results in a negative logarithmic relationship between PVS and numts/site 

(Pearson = -0.64; p = 0.010; d.f. = 13). For instance, the gene 16S has the smallest PVS 

(0.030) and one of the greatest proportion of numts per site (23.6, whereas the gene ATP8 has  

a relatively high PVS value of 0.09 and a proportion of numts/site of only 6.64. 

 

Figure 2.2. Ts/Tv ratios of MCR and non-MCR numts. 

 

 
 

Mechanisms of numt insertion. Inspection of junction sites between numt termini and 

their corresponding flanking nuclear sequences revealed the presence of microhomologies in 75 

(45%) out of 166 numt boundaries. The remaining numt junctions comprised 82 cases where 

microhomologies were not present and 9 cases where the numt boundary could not be 

identified due to gaps in reference sequences. Microhomology size ranged from 1 to 13 

nucleotides, plus one special case where an unusual homology of 42 nucleotides was detected 

in an orangutan numt of over 1080 bp long (pgo3_1085). Perfect and imperfect 

 

non-MCR 

MCR 
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microhomologies were present in 61 and 14 numt junctions, respectively. There was also an 

overall decline in the frequency of each microhomology class with size of motif. For numts 

where both junctions were characterized, 26% of all cases exhibited microhomologies in the two 

junctions, 47% in only one and 27% in none. In no instance was the same polynucleotide motif 

observed on both endings. 

 

Figure 2.3. Relationship between the average pairwise Ts/Tv ratio in 33 numt loci 
present in at least three taxa and their GC content. y = 0.0321x - 0.4667; R² = 0.0287. 
 

 
 

Microhomologies were also found between adjacent numt fragments inserted during the 

same inter-nodal period in the reference phylogeny (Appendix C; Table 2). A total of eight numt 

loci were made up of multiple tandemly-arranged numt fragments including six cases with 

microhomologies between contiguous mitochondrial insertions. Homology in these complex 

numts ranged from one to 45 nucleotides. Of these six cases, two numts were made of three 

fragments that displayed microhomologies in all boundaries between them. The most extensive 

microhomology was a stretch of 45 nucleotides present in both pgo4_569(1) and pgo4_569(2). 

Inspection of nuclear flanking sequences 500bp either side of a numt yielded three 

cases where the time of insertion coincided with the insertion of nearby TEs. The first case is 

numt 2_592, inserted 18 - 14 Ma ago and located within 10bp of an array of one TE-Alu element 

and two consecutive TE-MIRs (mammalian-wide interspersed repeats). The second case is the 
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numt h4_179, located 150bp from a TE-Alu inserted within the same time period 18 - 14 Ma 

ago. The intervening sequence corresponds to the remnant of a TE-LTR (Long Terminal 

Repeat) already present at the time of the insertion of the two other elements. The third case 

corresponds to the numt pgo2a_182 which is associated with a TE-LTR exclusively present in 

orangutan and separated by 460bp from an older TE-LTR. In all other surveys, TEs were either 

absent from the 500bp regions flanking a target numt or integrated at different time periods. 

Additionally, the frequency distribution of TE families (Alu, LINE-1, MIR, LTR and L2) in the 

500bp neighboring human numts did not differ from the observed distribution in the whole 

human genome (2 = 8.72; p = 0.069; d.f. = 4), indicating that numt duplication is not associated 

with any particular TE activity. 

 

Figure 2.4. Relationship between the proportion of variable sites (PVS) in 15 
mitochondrial genes in humans and the average proportion of numts per site (numts/site) for a 
given gene size. The regression equation is y = -15.09ln(x) - 30.325. 
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Discussion 

 

We combined multiple loci derived from coding and non-coding mitochondrial domains 

and show that the observed GC content of sequences in the mitochondrial genome exceeds 

that of their nuclear copies, in agreement with the hypothesis of genome-wide mutational 

pressure in the mitochondrial genome of the Hominoidea (Schmitz et al. 2002; Gibson et al. 

2004).  The accumulation of differences in GC content with divergence time indicates that 

mutational bias in mtDNA has been an ongoing process at least since the origin of 

diversification of the Hominoidea. Schmitz et al. (2002) previously found a GC bias in 

mitochondrial sequence composition in both synonymous and non-synonymous sites, 

consistent with a genome-wide directional mutational mechanism. Indeed, this bias is not limited 

to primates since a comparison of mammalian mitochondrial genomes has shown that all codon 

positions and rRNAs within the same DNA strand are affected by the same compositional 

changes (Gibson et al. 2004). However, this compositional bias can vary between 

phylogenetically related taxa suggesting a “switch” that can change mutational direction in one 

or another. The factors that affect this bias are not well understood but elevated levels of C and 

low levels of T in the L-strand are associated with the time spent as single strand during 

mitochondrial replication (Gibson et al. 2004), which in turn is correlated with mutation rates 

across the mitochondrial genome (Broughton & Reneau 2006). Thus, an excess of C, and 

therefore GC content together with a deficit of AT bases might be determined to some extent by 

variation in the mechanism of mitochondrial replication. 

In numts, Ts/Tv ratios vary with the depth of divergence of the sequences under 

comparison and the genomic context in which these comparisons are made. The observed 

negative relationship between Ts/Tv ratios and divergence time of mtDNA but not numts is likely 

a consequence of the elevated substitution rate of the former. This leads to saturation in the 

number of transitions at higher levels of genetic divergence and underestimation of Ts/Tv ratios 

(Yang & Yoder 1999). Compared to mitochondria, the Ts/Tv ratio in numts increased slightly with 

time of divergence and remained within the range previously reported for other non-coding 

regions (Zhang et al. 2007). 

The Ts/Tv ratio in numts from the MCR was significantly higher than numts from other 

mitochondrial regions. As numts are non-functional and randomly distributed in all the 

chromosomes, the detected differences in substitution patterns between numts are most likely 

due to the nucleotide composition of each group (Leister 2005; Gherman et al. 2007). Genomic 
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regions rich in GC usually exhibit elevated Ts/Tv ratios and (Bulmer et al. 1986; Hess et al. 

1994), as shown here, GC content of the MCR is larger than the mitochondrial average, which 

could explain the greater Ts/Tv ratio in numts derived from the MCR relative to other numts. 

The comparison between PVS and numt abundance in humans allowed us to conclude 

that mitochondrial genes with relatively conserved sequences and probably under stronger 

stabilizing selection may maintain their identity with nuclear copies much more than those 

evolving under a model of drift. As a result, these sequences may be much less divergent from 

their nuclear copies and consequently appear to be more prevalent in the nuclear genome.  

The presence of one or more microhomologies between individual numt termini and their 

corresponding integration site was observed in nearly half of all studied mitochondrial - nuclear 

junctions, suggesting that NHEJR is a predominant mechanism of numt integration. This result 

reaffirms previous studies suggesting that mitochondrial fragments frequently insert into sites 

with double strand breaks, which are then subsequently ligated through NHEJR (Blanchard & 

Schmidt 1996; Ricchetti et al. 1999; Hazkani-Covo and Covo 2008; Jensen-Seaman et al. 

2009). Microhomology abundance might actually be underestimated since substitutions in the 

numt boundaries or in the mitochondrial sequence will tend to blur the composition of both 

mitochondrial and nuclear sequences at the time of integration. Although microhomologies are 

prevalent, the present study found no evidence for identical nucleotide motifs in both numt 

endings, indicating that trans-replication slippage is likely to be unimportant as a mechanism of 

integration.  Previous work has found two instances where this mechanism may have played a 

role in numt integration (Chen et al. 2005). However, instances of trans-replication slippage are 

likely to be rare as it requires the co-existence of a very specific set of conditions (see Chen et 

al. 2005). 

Microhomologies were also observed between mtDNA fragments tandemly located in 

certain numt loci and inserted during the same inter-nodal period. The insertion of multiple 

fragments within the same time period suggests that insertion of such fragments likely 

happened as part of a single event. Furthermore, the presence of microhomologies between 

adjacent mitochondrial fragments indicates that their assembly in the nuclear genome is not 

random but it is likely guided by specific recognition between fragments through two potential 

mechanisms: non-homologous recombination (Farrelly & Butow 1983) or NHEJR of isolated 

fragments imported into the nucleus during episodes of occasional mtDNA “leakage” or 

intensive mitochondrial degradation (Kamimura et al. 1989). 



46 
 

Our study is the first to test for the temporal concordance in insertions of mitochondrial 

fragments and TEs. In order to identify cases where a TE-LINE1 transduced a numt, both 

elements need to have the same approximate age and be located adjacent to one another. 

Individual analysis of over 80 great ape numts failed to find any signature of TE-LINE1 3’ 

transduction in the duplication of numts, strongly suggesting that this mechanism is unimportant 

in the insertion of numts in Hominoidea. In a few cases, TEs were found to match the age of a 

flanking numt but these events were very rare. Thus, these observed TE-numt matches may not 

reflect any real association since the prevalence of TE families surrounding the insertion site of 

numts in the human genome reflects their prevalence across the whole genome. 

In summary, this study provided valuable information on three important aspects of numt 

molecular evolutionary dynamics which we summarize here: 1) An excessive Ts/Tv ratio in 

numts derived from non-coding mitochondrial regions of the mitochondrial genome, i.e. MCR, 

that could be attributable to the relatively large GC content of this mitochondrial region. This 

suggests that the large GC content in MCR numts could affect patterns of nucleotide 

substitution and favor an increase in the number of transitions over transversions. However, 

further studies should address this issue in more detail. 2) An observed excess in the number of 

numts from mitochondrial genes under strong stabilizing selection and an apparent deficit of 

numts from the non-coding MCR (Soto-Calderón et al. in review) shows that comparisons of 

rates of insertion of fragments originating from different parts of the mitochondrial genome 

should take into account the rates of nucleotide substitution in the mitochondrial genome. 3) 

NHEJR is the most predominant mechanism of integration across multiple taxa and our ability to 

date times of insertion allows us to definitively rule out the importance of TEs and trans-

replication slippage in expanding the numt population in great apes. 
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CHAPTER 3 

 

ISOLATION OF GORILLA-SPECIFIC NUCLEAR INSERTIONS OF MITOCHONDRIAL 

DNA (NUMTS) AND THEIR POTENTIAL AS POPULATION GENETIC MARKERS. 

 

Abstract 

 

Although the mitochondrial control region (MCR), and specifically the First Hyper-

Variable domain (HVI), has been a widely used as molecular tool in population genetics, 

rampant amplification of nuclear translocated copies (numts) in gorillas has compromised the 

reliability of mitochondrial sequence databases. Previous studies of MCR variation in gorillas 

indicate that all putative MCR HV1 numts fall into three distinct classes (I, II and III) which 

appear to be entirely gorilla-specific. However, the identity, number and location of these loci in 

the gorilla genome is completely unknown, thus preventing the systematic study of numt 

diversity and design of locus-specific primers. In order to address these questions, we 

conducted BLAST searches of the gorilla genome by using the whole mitochondrial genome as 

query sequence and by screening two types of genomic libraries with HVI MCR numts. Five 

gorilla-specific numts were isolated and mapped. Four of these loci contain HVI (Numt 1_1, 

Numt 2_1, Gcl18_1 and CABD5746) and one (Go11_188) contains other MCR sub-domains 

and pseudogenes flanking this domain. Both Numt 1_1, Numt 2_1 contain the entire HVI and 

showed high similarity with numt classes IIb and I, respectively. Amplification of all five loci from 

captive zoo animals with locus-specific primers allowed the identification of insertional 

polymorphisms for three of them (Numt 1_1, Numt 2_1, Gcl18_1). Preliminary data also indicate 

their potential utility as nuclear molecular markers for future tests of phylogeographic models 

inferred from mitochondrial markers and morphological data. 

 

Introduction 

 

For decades, studies of population genetics and systematics have relied heavily on 

mitochondrial DNA (mtDNA). However, the unintentional amplification of nuclear copies of 

mtDNA (numts) can mislead mitochondrial analyses either through the overestimation of genetic 
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diversity (see Garner & Ryder 1996) or through erroneous phylogenetic inference (Song et al. 

2008). Assembly of comprehensive animal genomic databases has shown that the number of 

numts varies among taxa (Hazkani-Covo 2010). Although numts are rare in some animal taxa 

such as Anopheles mosquitos, chickens and rats (Richly & Leister 2004), they appear to be 

widespread in many primates including African great apes (Triant & DeWoody 2007). 

Nowhere is the problem of numt contamination of mitochondrial databases more acute 

than in gorillas (Jensen-Seaman et al. 2004; Calvignac et al. 2011), leading some to question 

the reliability of mitochondrial sequences in this taxon (Thalmann et al. 2004; 2005). This 

problem is all the more complex because of the apparently high incidence of in vitro 

recombinants which have also been misdiagnosed in earlier studies (Anthony et al. 2007a). As 

most primate numts are usually <500b, it may be possible to avoid their inadvertent 

amplification in regular polymerase chain reaction (PCR) amplifications through the use of long-

range PCR (Thalmann et al. 2004). However, this approach is not always feasible as degraded 

samples from feces or museum specimens are frequently the only source of DNA for gorilla 

genetic studies. 

Previous phylogeographic studies of the first hyper-variable (HV1) domain of the 

mitochondrial control region (MCR) in gorillas have identified four major mitochondrial 

haplogroups (A - D) and three different numt classes (I - III) that overlap this region (Anthony et 

al. 2007a; 2007b). Whereas mitochondrial haplogroups A and B are restricted to east mountain 

(G. beringei beringei) and east lowland (G. beringei graueri) gorillas,  haplogroups C and D are 

only found in western gorillas (G. gorilla) and are also restricted in their geographical 

distribution: Haplogroup C is largely limited to Nigeria and Cameroon whereas haplogroup D is 

found in Gabon, Equatorial Guinea, The Republic of the Congo and the southern tip of the 

Central African Republic (CAR) (Gagneux et al. 1999; Grubb et al. 2003; Clifford et al. 2004; 

Anthony et al. 2007a). With respect to numt classes I - III, group I has to date only been found in 

western gorillas whereas class II and class III numts are present in both east lowland and 

western gorillas (Thalmann et al. 2004). All of these MCR numts appear to have inserted very 

recently, making them difficult to distinguish from authentic mitochondrial sequences. Therefore, 

a definitive characterization of these numt loci and their distribution among major geographic 

haplogroups in gorillas requires mapping their location in the gorilla genome and sequencing 

their nuclear flanks (Zischler et al. 1995b; Thomas et al. 1996). 

Identification of locus-specific primers will also allow the specific amplification and 

analysis of insertional polymorphisms of recent numts. A survey of the pattern of these 
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insertional polymorphisms in samples of different geographic origin will also provide important 

information on their potential as population genetic markers. In contrast to other polymorphic 

markers (e.g. STR’s, AFLPs, SNPs), loci with insertional polymorphisms such as transposable 

elements (TEs) and numts are considered homoplasy-free markers because they are rarely 

excised from the genome and allow the ancestral (absence) and derived (presence) states to be 

inferred (Batzer & Deininger 2002). In the past, insertional polymorphisms in Transposable 

Elements have been intensively used to study historical demography of human populations 

(Perna et al. 1992; Batzer et al. 1994; Batzer & Deininger 2002; Herke et al. 2007). With the 

advent of whole genome sequencing, numerous polymorphic numts have now been identified in 

humans (Thomas et al. 1996; Lang et al. 2011). These markers have proved useful in assessing 

previous phylogeographic hypotheses based on mtDNA and as a means of assessing levels of 

genetic admixture between populations. Despite these advances in human genetics, few studies 

if any have addressed the utility of numts as population genetic markers in gorillas and non-

human primates. By adopting a systematic survey of numt loci either through available genomic 

resources or more conventional library based approaches, it is now possible to identify and 

characterize numt loci in gorillas and in so doing (i) conduct quality control of HVI databases (ii) 

identify potentially polymorphic loci that can be used as nuclear markers and (iii) complement 

previous phylogeographic studies based on mtDNA (Jensen-Seaman et al. 2001; Anthony et al. 

2007a; 2007b). 

To do this, we carried out genomic BLAST searches of the current gorilla scaffold and 

combined this with targeted screens from a BAC library. As both methods are only based on 

one individual, we also made use of an anchored PCR survey of genomic DNA enriched from 

multiple unrelated individuals in order to capture any additional loci that may not have been 

present in the initial screens. The main goals of this study were therefore to: (1) isolate and map 

all gorilla-specific numts present in the public database of the gorilla genome; (2) screen a 

commercial BAC library and survey nuclear enriched genomic DNA obtained from 5 individual 

gorillas through an anchored PCR assay (A-PCR) in order to isolate additional MCR numts; (3) 

examine the prevalence of these numts in previous published databases (Garner & Ryder 1996; 

LaCoste et al. 2001; Jensen-Seaman et al. 2004; Thalmann et al. 2004; 2005); (4) assess 

patterns of insertional polymorphism in a sample set of captive gorillas of known mitochondrial 

haplogroup association and; (5) provide recommendations on how such markers could be 

employed in future studies of gorilla phylogeography. 
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Materials and Methods 

 

BLAST search. The entire gorilla mitochondrial genome (X93347) was used as a query 

sequence in BLASTn searches (Altschul et al. 1990) of the partially assembled reference 

genome (Gorilla gorilla gorilla, CABD00000000.2, November 2009) and the original trace files 

(Gorilla_gorilla_WGS) of the western gorilla Kamilah. Only hits of either i) at least 100bp in 

length and 60% identity or ii) a size of between 50 and 99bp and an identity greater than 70% 

were considered for further analyses. Flanking sequences of positive numt hits were aligned 

with the reference genome of humans (build 36.3; 2006) and chimpanzees (build 2.1; 2006) 

available through the UCSC website (http://genome.ucsc.edu/cgi-bin/hgGateway), to map their 

genomic location and determine whether these insertions were unique to the gorilla (i.e. 

absence in humans and chimpanzees). 

 

BAC library screens. Nine different radiolabeled probes designed from the gorilla MCR 

and flanking tRNA sequences were hybridized to a genomic BAC library derived from the 

western gorilla Frank (library CH255, obtained from the Children’s Hospital Oakland Research 

Institute, Oakland, CA). Thirty-two positive BACs were subsequently grown up and 

characterized in an effort to isolate gorilla-specific numts. The BAC-ends were sequenced and 

mapped to the human genome sequence. Those BACs that overlapped with a known human 

numt were not further characterized. Those that did not overlap were deemed likely to contain a 

gorilla-specific numt and were further characterized with internal sequencing, primer walking, 

and/or sub-cloning in order to determine the complete numt sequence along with the flanking 

unique nuclear sequence. 

 

Isolation of nuclear-enriched gorilla DNA and Anchored PCR. Several 

complementary strategies were adopted in order to bias amplification of nuclear copies relative 

to mtDNA. Firstly, we took advantage of the rarity of BglII (A↓GATC↑T) recognition sites in the 

gorilla mitochondrial genome to favor amplification of nuclear targets. This is because linker 

ligation and subsequent PCR amplification of target DNA during A-PCR (see below) requires 

restriction enzyme digestion. We surveyed for the presence of BglII sites in the entire 

mitochondrial genome of eight different gorilla fibroblast cell lines (Coriell Institute for Medical 

Research, Camden, NJ) by amplifying the entire mitochondrial genome in three overlapping 
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fragments through long-range PCR with the enzyme LA Taq polymerase (TaKaRa Bio Inc., 

Mountain View, CA). Primers employed in this step are listed in Table 3.1 a. PCR products were 

then digested with BglII (NEB) and five individuals that lacked BglII restriction sites were then 

used for the following steps of nuclear DNA (nDNA) enrichment (see a list of selected gorillas in 

Figure 3.1). 

 

Figure 3.1. Reduction in the ratio of mtDNA to nDNA in gorilla fibroblasts grown in the 
presence of 2’,3’-dideoxycytidine(ddC). The ratio of mitochondrial to nuclear amplification 
products is shown relative to untreated controls for each time point for each of five gorilla 
fibroblast cell lines (C: Chipua [PR00622]; E: Billy [PR00671]; F: JimmyJr [PR00943]; G: Chaka 
[PR01013], H: Kimya [PR01023]). 
  

 

 

The five selected cell lines were then treated with 2’,3’-dideoxycytidine (ddC), which 

impairs mtDNA replication resulting in a progressive dilution and virtual loss of mtDNA in 

cultured cells (Ashley et al. 2005). To do this, each cell line was cultured in fibroblast culture 

medium containing 10% fetal bovine serum (FBS), 0.9X Eagle's minimal essential medium 

(EMEM), supplemented with 10 μM ddC and 205 μM Uridine. Cell cultures were grown at log 

phase at 37˚C in a humidified 5% CO2 incubator changing the culture medium regularly. 

Treatment continued for four weeks at which time DNA was extracted from cell lines using the 

Blood & Cell Culture DNA Maxi Kit (Qiagen, Valencia, CA). This kit recovers high-molecular-

weight DNA with an average length of 50-100 Kbp, further reducing the abundance of any 
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remaining mtDNA (~16.5 Kbp). The ddC treatment and preferential extraction of nDNA led to a 

reduction of 90% in the relative copy number of mtDNA vs nDNA in treated cells as compared 

with untreated cells (Figure 3.1). The copy number of mtDNA relative to nDNA was estimated by 

quantitative PCR of two reporter genes, the mitochondrial cytochrome b gene and the nuclear 

tumor suppressor gene p53, amplified with the specific primer pairs CytbGor F / CytbGor R and 

p53iiPrim F / p53ii-R respectively, using the SYBR® Green PCR Master Mix in a ABI 

StepOnePlus™ Instrument (Table 3.1 a). 

 

Table 3.1 a.  List of primers used to: (i) Amplify the complete mitochondrial genome 
through long-range PCR of three overlapped segments; (ii) Estimate the relative copy number of 
mitochondrial vs. nuclear DNA (qPCR); (iii) amplify gorilla-specific numts (Numts) and an 
internal PCR standard (PCR control); (iv) sequence the HVI subdomain. 
 

Primer F Primer R 

(i) Mitochondrial long-range PCR: 

mt10261 Fa atcaacacaaccacccacagccta mt726 R ggctacaccttgacctaacgtctt 

mt551 F actgctcgccagaacactacgagc mt7969 R ggtaagcctaggattgtgggggca 

mt7022 F tgcagcgcaagtaggtctacaaga mt12400 R gctgatttgcctgctgctgctagg 

(ii) qPCR: 

CytbGor F taacggcgcctcaatattct CytbGor R gtaggaggatgatgccgatg 

p53iiPrim F ggagcactaagcgaggtaagc p53ii R ggaaagaggcaaggaaaggt 

(iiia) Numts: * 

Numt1_1 Fa attacagacgcacgccacca Numt1_1 Ri tagcattgcgaaacgctggaacc 

Numt2_1 F2 tgatgcccctcctccaatctgtg Numt 2_1 Ri tttcgacgggctcacatcaccc 

Numt2_1 F1 ccagtcattgagcatgtacttccct Numt2_1 R2 ttggggcaaatattggtctctg 

Gcl18_1 F gatctctcttcttttccattggtc Gcl18-1 R gaggcattccattacccaac 

Gcl18_1 Fi cgacctgcctcctacaaaag  Gcl18-1 R 

CABD5746 Fi cgattgctgtacgtgcttgt CABD5746 R2 cagtttgggtttggtttgct 

Go11_188 F catgctcttatgggcctgaa Go11_188 Ri cggcatctggttcttacttgag 

Go11_188 Fi cagatgccggatacagttcatt Go11_188 R cctctgattctcttgcaggttg 

(iiib) PCR Control: 

TP53 F aagggtggttgggagtaga P53ii R ggaaagaggcaaggaaaggt 

p53 3F cactggaagactccaggtcag P53ii R 

(iv) HVI sequencing primers: 

mt15365 F ccttccaagggcatattcag mt15888 R ttaaggggaacgtgtgaagc 

 
(*) Numt primers were combined with the primers TP53 F / P53ii R, which were used to 

amplify an internal standard. The only exception was the case of Numt 2_1 F1 / Numt 2_1 R2, 
where the internal standard was amplified using the primers P53 3F and P53ii R. 
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Table 3.1 b. The two parts of the Y-linker and the LNP primer used in the anchored PCR 
(A-PCR). 

 

A-PCR oligos: 

BglII-top gatcgaaggagaggacgctgtctgtcgaagg 

Bottom gagcgaattcgtcaacatagcatttctgtcctctccttc 

LNP gaattcgtcaacatagcatttct 

 

The nuclear-enriched DNA samples obtained from the five treated cell lines were 

subsequently pooled in equivalent proportions and completely digested with BglII to generate 

fragments with 5’-GATC overhangs. Digested DNA was then ligated to a compatible Y-linker 

made of two partially complementary oligos (BglII-top and bottom; Table 3.1 b), modified from 

Ray et al. (2005). Fragments containing the MCR were selectively amplified through an A-PCR 

assay using one of several MCR primers in combination with the LNP primer (Figure 3.2; see 

Ray et al. 2005 for details). During the first PCR round, the MCR primer binds to a given 

fragment containing a numt leading to the extension of the first strand (Figure 3.2). This creates 

a binding site for the LNP primer at the 3’ end of this new strand, allowing the amplification of 

the complementary reverse strand. This step is followed by a semi-nested PCR using the same 

LNP primer and an internal MCR primer to increase the specificity of the PCR amplification.  

A-PCR amplifications were carried out in 20l reactions containing 1U LA Taq 

polymerase, 0.4mM dNTPs, 0.2M of each primer, 1X buffer and 20-30ng DNA. Cycling 

consisted of initial denaturation at 94C, followed by 35 cycles of 94C for 15 s and 68C for 15 

min, with a final extension at 72C for 2 min. PCR products were then cloned into the pCR®2.1 

vector using the TOPO TA-cloning kit (Invitrogen) and sequenced with the Big-Dye v1.1 (ABI). 

These sequences were then aligned with the gorilla mitochondrial genome to determine the 

extent of the 5’ portion of the numt and its adjacent nuclear flank. Numt sequences were then 

BLATed (Kent 2002) against the human and chimpanzee reference genomes to identify the 

genomic location of the orthologous locus, infer the sequence of the second flank and determine 

whether the corresponding numt was unique to gorillas. Lastly, primers flanking the numt were 

designed to amplify the remaining part of the numt. 
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Figure 3.2. Representation of the anchored PCR protocol used to select and amplify 
genomic regions containing numts. Compatible 5’ overhangs are shown in both the Y-linker 
(solid black lines) and digested DNA fragments containing a numt (dotted lines). Recognition 
sites of mitochondrial LNP primers and direction of DNA replication are shown with dotted 
arrows. 
 

 

 

Identity of mapped HVI numts and previous numt reports. In order to determine the 

identity of the gorilla MCR numts obtained in the study, the portion of these loci that 

encompassed the first hyper-variable region (HVI) was aligned with a set of 41 previously 

reported gorilla HV1 MCR numts (Classes I, II and III) (Anthony et al. 2007a). Sequences were 

aligned using the Clustal W program as implemented in MEGA v5 (Tamura et al. 2005). A poly-

cytosine stretch of 26bp that is prone to error during polymerase amplification was deleted from 

the sequence alignment prior to phylogenetic analysis. A stretch of 90bp unique to the mapped 

numt CABD5746 was also removed from the alignment. The program jModelTest v.0.1.1 

selected TPM3uf+G model as the most likely model of nucleotide substitution (Posada 2008). 

This model of substitution was used to construct a Neighbor-Joining tree in PAUP* v.4.0b10 

(Swofford 2002), using an alpha shape parameter value set to 0.375 and no invariable sites. 

Bootstrap support for individual branches was estimated with 1000 replicates, retaining 

branches with 50% support or greater. 
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Figure3.3. Relative location and orientation of the primers (arrows) used to amplify 
gorilla-specific numts (gray boxes). 
 

 

 

Analysis of insertional polymorphisms. Once flanking sequences were obtained for 

all gorilla MCR numts, their presence/absence was assessed using a panel of 68 DNA samples 

donated by US zoos and collaborators (Appendices F and G). All genomic DNA was extracted 

from peripheral blood using the DNeasy Blood & Tissue Kit (Qiagen). Where possible, primers 

were designed to amplify the entire region containing the numt. This approach allows the 

discrimination of individual genotypes whose alleles can be separated by size i.e. a larger 

product indicating a numt insertion (+) in one or both alleles or a smaller product (-) indicating 

the absence of the insertion. Amplification of the entire region containing a numt was not always 

possible for all loci due to the large size of the target region or potential primer disparities with 

the annealing site. In such cases primers were designed to amplify a portion of the numt and 
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one of its flanks (Figure 3.3). In these cases, only the presence or absence of the numt was 

then possible (see Numt1_1 in the Results section). To safeguard against false negatives (i.e. 

failure of the PCR reaction), all PCR reactions were carried out using an internal standard 

based on co-amplification of a conserved region in the housekeeping tumor-suppressor gene 

p53 (Table 3.1 a). A human sample was also amplified in each experiment as a negative 

control. Each 20l PCR reaction contained 0.5U of Taq DNA polymerase, 2.5mM MgCl2, 200M 

dNTPs, 250M each primer and 20-30ng DNA and 1X PCR buffer (Invitrogen). Cycling 

consisted of 2 min of initial denaturation at 94C followed by 35 cycles of 94C for 30s, 58-64C 

for 30s and 72C for 50s - 2 min, with a final extension at 72C for 2 min. PCR products were 

run in 2-4% agarose gels.  

 

Table 3.2. Description of the five mapped gorilla-specific numts.  

 

Numt 
Name 

Isolation method 
Numt 
Size 

Mt position 
(X93347) 

Sample 
Size 

Polymorphic 
Status 

Numt1_1 
BAC screening 

BLAST - Trace files 
1400 14806-16150 62 Yes 

Numt2_1 
BAC screening 

BLAST - Trace files 
2500 141-16412; 1-14060 65 Yes 

Gcl18_1 A-PCR 450 15530-15993 58 Yes 

CABD5746 BLAST - Contigs 450 * 15615-15904; 8430-8466; 10 Fixed 

Go11_188 BLAST - Trace files 2350 15788-16412; 1-1720 14 Fixed 

(*) This includes a fragment of 90bp lost from the gorilla mitochondrial genome. 
 

As the mitochondrial haplogroups of gorillas exhibit geographical affiliation, the 

mitochondrial lineage of wild gorillas was used to discern potential geographical differences in 

the natural distribution of polymorphic numts. To do this, we identified 17 wild-born captive 

gorillas and one whose ancestors possessed the same mitochondrial lineage. The HVI 

haplogroup of these gorillas or a relative with the same maternal lineage (Wharton 2007) was 

established by mitochondrial sequencing. In order to obtain these HVI sequences, we first long-

range-PCR amplified 6,880bp of the mitochondrial region containing the HVI sub-domain using 

specific primers (mt10261 Fa / mt726 R; Table 3.1). Both strands of the PCR products were 

then sequenced using primers flanking the HVI sub-domain (mt15365 F / mt15888 R) and Big-

Dye kit v1.1 (ABI). Sequences were then combined with a reference HVI sequence database 

(n=166) from Anthony et al. (2007b) and an additional sequence dataset of free-range gorillas 
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and captive gorillas generated for the present study. A total of 231 gorilla HVI sequences were 

aligned in MEGA5 (Tamura et al. 2011) and the nucleotide substitution model was selected with 

jModelTest v.0.1.1 (Posada 2008). The program jModelTest v.0.1.1 selected TPM1uf+G which 

was used with an alpha shape parameter of 0.360 to construct a Neighbor-Joining tree in 

PAUP* v.4.0b10 (Swofford 2002). Only nodes with bootstrap support values of 50% (500 out of 

1000 repetitions) or greater were retained. Clustering of the target captive gorillas with the 

traditional mitochondrial haplogroups allowed their assignment to a specific mitochondrial 

lineage. 

 

Results 

 

A total of 22 putative gorilla-specific numts were found with one or more searching 

strategies (Table 3.2; Appendix H). Seventeen of these putative gorilla numts either failed to 

amplify or appeared to be absent in the captive gorilla sample set available (Table 3.2). The five 

remaining numts successfully amplified from the gorilla genomic DNA panel. These comprised 

four loci containing the HVI sub-domain (Numt 1_1, Numt 2_1, Gcl18_1 and CABD5746) and 

one (Go11_188) that contained other MCR sub-domains as well as additional mitochondrial 

sequence (gorilla mitochondrial genome X93347: 15788-16412; 1-1720). Two loci (Numt 1_1 

and Numt 2_1) were found in both the BAC library screens and BLAST searches of the original 

short reads (trace files) of the gorilla genome. Gcl18_1 was identified through an A-PCR 

approach whereas CABD5746 and Go11_188 were only found through BLAST searches of 

gorilla contigs and trace files, respectively (see Table 3.2 for details). 

Numt1_1 is an insertion of ~1,400bp that contains most of the MCR including HVI, the 

Central Conserved Domain (CCD) and an extensive portion of the second hyper-variable region 

(HV2). Neighbor Joining analysis of HVI numts showed that Numt1_1 was very similar, if not 

identical to representatives of Class IIb numts found in both western and eastern lowland 

gorillas (Anthony et al. 2007b) (Figure 3.4; Appendix I). Sequences showing the highest identity 

with this numt include AY530149, isolated from a wild gorilla in Lobéké, Cameroon (Clifford et 

al. 2004); L76766, from the captive gorilla Carolyn, captured in the Congo region (Garner & 

Ryder 1996) and Rok8 from the captive gorilla Rok (Thalmann et al. 2004), which with the 

exception of a 4bp gap showed perfect identity with Numt1_1. Despite the great similarity of 

these two numts, our data showed that Numt1_1 is not present in the gorilla Rok, indicating that 
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Rok8 and Numt1_1 may represent different alleles. Perfect identity with Numt1_1 was also 

observed with two numts found in two different eastern lowland gorillas including AF240455 

(LUT2DTA9) (Lutunguru, Democratic Republic of Congo; Jensen-Seaman et al. 2004) and 

Muk5 (Thalmann et al. 2004). 

 

Figure3.4. Neighbor-Joining tree of a sequence database showing the relationship of 
mapped HVI numts (Numt1_1, Numt2_1, Gcl18_1 and Numt5746) and 41 reference numt 
sequences in Classes (I – III), as defined by Anthony et al. (2007b). This phylogeny was built 
using a TPM3uf+G model (alpha = 0. 0.375). Numbers indicate bootstrap support values 
(≥50%). 
 

 

 

Numt2_1 is an insertion of ~2,500bp that contains the entire MCR region. The HVI 

portion of this numt sequence clustered with Class I numts and exhibited sequence identities of 

99% with the eastern lowland gorilla sequences AF240456 (LUT2DTA10) and AF240448 
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(LUT2DTA1) (Appendix I) (Jensen-Seaman et al. 2004). This numt also exhibited high 

sequence identity (97%) with L76760, from the western gorilla Jojo (Garner & Ryder 1996). 

Curiously, Numt2_1 also shared elevated sequence identity (99%) with a western lowland 

gorilla sequence AY530145 (BEL1a), considered to be an in vitro recombinant between 

mitochondrial and class I nuclear templates. Both of class I numts and western gorilla 

sequences are very similar in composition (see Anthony et al. 2007b), making them particularly 

easy to misidentify. 

The numt Gcl18_1 is a ~460bp insertion that encompasses the entire CCD along with a 

section of both HVI and HV2 (Appendix I). It does not show close resemblance with any other 

HVI numt previously described. The HVI portion of this numt shared sequence identity as high 

as 95% with the class IIc numts Muk4, Muk6 and Muk7, amplified from a single eastern lowland 

gorilla (Muk), and Rok5 amplified from the western gorilla Rok (Thalmann et al. 2004). 

The numt CABD5746 consists of an insertion of 250bp made up of two non-contiguous 

mitochondrial fragments, including one containing a portion of HVI and the CCD and another 

one 7,450bp apart in the mitochondrial genome. Although CABD57646 is exclusive to gorillas, it 

contains a 90bp section of mtDNA that is no longer present in the mitochondrial genome of 

contemporary gorillas but still found in all the other great ape taxa. Like Gcl18_1, CABD57646 

could not be assigned to any predefined numt class and it is substantially different from 

previously reported HVI numts (<85% identity). 

Finally, the longest gorilla numt found in this study is Go11_188. This mitochondrial 

insertion of ~2,350bp contains all MCR subdomains other than HVI as well as copies of the 

mitochondrial 12S and 16S rRNA genes and the phenylanine and valine tRNAs. 

A detailed comparison between Numt1_1 and Numt2_1 sequences and their 

corresponding mitochondrial sequences was also carried out in order to assess the extent to 

which existing mitochondrial primers would be expected to co-amplify the corresponding nuclear 

copy (see Figure 3.5). The following primer pairs have been previously used in earlier studies: 

MirRev4/ProFor2 and D-441/D88 (Jensen-Seaman et al. 2004); H402/L91 (Garner & Ryder 

1996); H16498/L15926 (Thalmann et al. 2004); and MTD1AS/MTD1S (LaCoste et al. 2001). We 

also note that H16498 is the same primer as MTD1AS. The nuclear regions that align with these 

primers are virtually identical in the mitochondrial and nuclear copies and in no case favor 

amplification of the mitochondrial over the nuclear copy. In four cases, the primer sequences 

were identical to both the mitochondrial and the nuclear copies (H16498, MidRev4, D-441 and 

ProFor2). In two cases there was only one internal mismatch between the primer and 
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mitochondrial/nuclear copies (H402 and MTD1S). In the remaining three primers, mismatches 

with mitochondrial and nuclear target sequences were observed in three (D-88), four (L91) and 

seven (L15926) nucleotide positions. However, in the latter case all mismatches were 

concentrated in the 5’ region that is not as critical as the 3’ in terms of primer specificity. 

 

Figure 3.5. Alignment of 5’-3’ sequences from mtDNA (X93347.1), gorilla numts 
containing the entire HVI region (numt1_1 and numt2_1) and primers used by previous authors 
to amplify the mitochondrial copy of this region in gorillas. 
 
X93347.1 CCTGAAGTAGGAACCAGATGCCGGATACAGT    

Numt1_1 ....................T..........    

Numt2_1 ...............................    

H16498/MTD1AS .................... 

MidRev4        ........................ 

 

X93347.1 CGGGATATTGATTTCACGGAGGATGGTGTTC 

Numt1_1 ............................... 

Numt2_1 ............................... 

D-441 ...................... 

H402       .....A................... 

 

X93347.1 GTCTCCCCATGAAAGAACAGA-GAATAGT 

Numt1_1 .....................-....... 

Numt2_1 .....................A....... 

D-88 * .CT..................-. 

L91 * ...................A.-.CT.... 

 

X93347.1 GGTGGAGTCGAGGACTTTTTCTCTG 

Numt1_1 ......................... 

Numt2_1 ......................... 

ProFor2 * ......................... 

 

X93347.1 AGCTTTGGGTGCTGATGGTGGAGTCGAGGACTTTTTCTCTG 

Numt1_1 ......................................... 

Numt2_1 ......................................... 

MTD1S * .............A...... 

L15926 *               ...................AGCT.TGA 

 
(*) Reverse primer sequence. 

 

From the five gorilla numts mapped in this study, only Numt1_1, Numt2_1 and Gcl18_1 

were found to be polymorphic in captive western gorillas. Both CABD5746 and Go11_188 were 

always found to be present and are probably fixed, at least in western gorillas (see Table 3.2 

and Appendix G). A total of 18 captive gorilla DNA samples were found to either have been 

derived from parents of the same haplogroup (n=1) or were known to be wild-born (n=17). 

These samples possessed haplogroups belonging to four out of five previously defined 
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mitochondrial lineages in haplogroups C (C1 and C2) and D (D2, D3) (see Table 3.3; Figure 

3.6). Interestingly, another previously undescribed sub-lineage (C3; Figure 3.6) was also 

represented in this sample. Despite the limited sample size, some noticeable differences in 

numt insertional polymorphisms were observed between samples from different mitochondrial 

haplogroups. For instance, Numt1_1 was only found in two out of 15 individuals in all the 

mitochondrial haplogroups. Numt2_1 is present in half of the assessed individuals and is mainly 

associated with the sub-haplogroups C1 and D3, but it is absent in C2 and D2. Finally, Gcl18_1 

was found in 13 out of 17 individuals and seems to be the most prevalent of all three numts as it 

is present in all the gorillas with sub-haplogroups C1, C2 and D2, in three out of four individuals 

with D3 and is only absent in representatives of C3. Again, this analysis is based on a small 

sample where the apparent differences in the prevalence of these numts among lineages may 

be influenced by sampling errors. These results nevertheless highlight the polymorphic nature of 

these numts and indicate differences in their prevalence among geographic regions. 

 

Table 3.3. Proportion of individuals bearing each of the three gorilla-specific numt loci 
(n=18). Proportion of total assessed chromosomes is shown in parentheses. See Appendix G 
for a detailed description of gorilla identity and genotypes. 

 

 

C1 C2 C3 D2 D3 Total 

Numt1_1 1/3 0/3 1/3 0/2 0/4 2/15 

Numt2_1 5/5 (7/10) 0/3 (0/6) 1/3 (1/6) 0/3 (0/6) 3/4 (4/8) 9/18 (12/36) 

Gcl18_1 5/5 (6/10) 3/3 (4/6) 0/3 (0/6) 2/2 (3/4) 3/4 (4/8) 13/17 (17/34) 

 
 

Discussion 

 

We successfully identified and characterized five MCR numts unique to the gorilla 

genome. Despite the numerous reports of putative gorilla numts from HVI, this is the first study 

that combines experimental and bioinformatic tools to directly isolate nuclear translocations of 

the mitochondrial genome in gorillas and in so doing determine the size, region of mitochondrial 

origin and polymorphic status of these numts. The potential for these methods to effectively 

retrieve more loci of interest was nonetheless constrained by several factors. Firstly, the 

relatively low frequency of BglII restrictions sites in the gorilla genome (~ one site every  
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Figure 3.6. Neighbor-Joining tree of 231 gorilla HVI sequences comprising a database 
of 166 sequences (Anthony et al. 2007b) and 65 additional sequences generated in this study, 
including 51 captive gorillas (asterisks) and 14 free range gorillas from Cameroon. This 
phylogeny was built using a TPM1uf+G model (alpha = 0.36). All the nodes in this phylogeny 
exhibit bootstraps support values of over 50%. Mitochondrial haplogroups A and B are restricted 
to east gorillas (G. beringei), whereas haplogroups C and D are only found in western gorillas 
(G. gorilla) (Anthony et al. 2007a). 

 

 

 
 

5,460bp; NEB 2004) may have limited the retrieval of numt fragments via A-PCR. Secondly, 

gaps in the gorilla current genome data base may have included as yet undetected numts 

(Scally et al. 2012). Lastly, even though we attempted to survey multiple individuals in our A-
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PCR numt search, we may have missed rare numts whose detection might require screening a 

larger sample of gorillas. 

Despite these caveats, previous reports of high HVI numt richness in gorilla sequence 

databases might be flawed due to errors introduced during amplification and subsequent cloning 

of PCR products in bacterial vectors. Taq polymerase error rate should always be taken into 

account in determining whether or not two given sequences are significantly different (Williams 

& Knowlton 2001; Frey & Frey 2004; Thalmann et al. 2004; Song et al. 2008). Such PCR and 

cloning errors may amplify differences between PCR clones as well as obscure our ability to 

recover sequences previously obtained from a given sample (e.g. Williams & Knowlton 2001; 

Jensen-Seaman et al. 2004; Thalmann et al. 2005). This problem may be exacerbated by the 

use of degraded samples such as feces, shed hair (Clifford et al. 2004) and ancient museum 

specimens (Jensen-Seaman et al. 2004) as source of genetic material, where poor amplification 

and low-quality genotyping profiles could lead to poor quality of sequence data. Slight 

differences between sequences may also stem from allelic variation at the same locus or 

tandem post-integration duplication, which could explain the high diversity of Numt class II loci 

so far detected in gorillas. The high similarity between some numt classes and their 

corresponding mitochondrial copies could also complicate identification of numts (Anthony et al., 

2007a), making confirmatory studies in the nuclear genome vital. Furthermore, the high number 

of near-identical numt sequences within a given individual is also likely to be partly due to a 

combination of allelic variation or duplicated loci and not necessarily due to multiple 

independent inserts of mitochondrial fragments (Clifford et al. 2004; Jensen-Seaman et al. 

2004; Thalmann et al. 2004). Future progress in numt detection, including sequencing of whole 

genomes (see Lang et al. 2011) and mapping of candidate numts to one or more reference 

genomes will permit identification of other putative numts not found in the present study, such 

as those in numt Classes IIa, IIc and III. 

In this study we gathered experimental evidence for at least two classes of gorilla numts 

that have been shown to be prevalent in other PCR-based studies of gorilla genetic variation 

(Garner & Ryder 1996; LaCoste et al. 2001; Jensen-Seaman et al. 2004; Thalmann et al. 2004; 

2005; Clifford et al. 2004; Anthony et al. 2007a). The high similarity between mitochondrial and 

nuclear primer binding sites also makes co-amplification of both template types and 

recombinant types very likely. In addition to these numts, we also identified three additional 

numts containing a partial segment of the gorilla MCR, two of which (Gcl18_1 and CABD5746) 

are partially overlapping with the HVI mitochondrial domain. Of these two, only Gcl18_1 
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indicated high similarity to previously diagnosed numt classes. However, unlike Numt1_1 and 

Numt2_1, it is unlikely that this locus would be inadvertently amplified with standard HVI primers 

since it only contains a truncated portion of this mitochondrial region. CABD5746 is made of two 

non-contiguous mitochondrial fragments, a phenomenon that has been frequently observed in 

other primate numts (Kamimura et al. 1989; Soto-Calderón et al. In Preparation). This numt 

seems to be a relatively old integration in the gorilla lineage as inferred from its dissimilarity from 

all the other gorilla HVI numts again making its inadvertent amplification unlikely. Interestingly, it 

is also probable that this sequence represents an older molecular fossil of a pre-existing 

mitochondrial haplotype that was subsequently lost during gorilla evolutionary history. 

Both the inadvertent amplification of numt loci and generation of mosaic sequences due 

to template switching during the PCR can also lead to biased estimates of mitochondrial 

diversity (Song et al. 2008; Chung & Steiper 2008). However, numt identity may only be 

established with certainty when entire sequences of nuclear integrations are available. As we 

showed here, differences between mitochondrial and nuclear copies in the regions of primer 

alignment may be so minor as to allow co-amplification of both templates (Garner & Ryder 

1996; LaCoste et al. 2001; Jensen-Seaman et al. 2004; Clifford et al. 2004; Thalmann et al. 

2004; Anthony et al. 2007a). As a consequence, specific amplification of gorilla mitochondrial 

HVI is impracticable using existing sets of primers. Fresh tissue should be used when possible 

as a source of genetic material in order to take advantage of the high number of mitochondrial 

copies and favor its amplification over nuclear copies. Although fecal material and museum 

specimens are frequently the only accessible source of genetic material, mtDNA easily 

degrades in this kind of sample thus increasing the nuclear-to-mitochondrial ratio and 

consequently the chance of amplifying nuclear templates with conventional mitochondrial 

primers (Greenwood & Päävo 1999; Berger et al. 2001; Foran 2006; Soto-Calderón et al. 2009). 

Under these circumstances, we recommend the use of long-range PCR to bias against numts 

(Thalmann et al. 2004; Triant & DeWoody 2007; Song et al. 2008; Calvignac et al. 2011) and 

implementing quality control tools such as the use of phylogenetic methods to differentiate 

nuclear insertions from mitochondrial sequences (Jensen-Seaman et al. 2004; Anthony et al. 

2007a). 

Finally, the demonstration that several numts are polymorphic in western lowland gorillas 

and evidence of geographic structuring highlights the potential utility of these insertions as 

population genetic markers in future studies of gorilla genetic variation. The phylogenetic 

placement of numt loci in relation to major mitochondrial haplogroups also provides some 
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interesting insights into the divergence history of eastern and western gorillas. Previous studies 

have shown that the divergence time of western and eastern gorillas and historical gene flow is 

much more recent that was previously thought (Anthony et al., 2007b; Thalmann et al. 2007; 

2011; Scally et al. 2012). Although the class III numt group is sister to the eastern lowland 

gorilla mitochondrial haplogroup, it is present in both east lowland and western gorillas 

(Thalmann et al. 2004), suggesting that the transmission of this numt copy to western gorillas 

occurred relatively recently. This hypothesis is also backed up by the presence of class II numts 

in eastern lowland and western gorillas. Remarkably however, mtDNA haplogroups are never 

shared between eastern and western gorillas, providing support for  male mediated east-to-west 

gene flow (Thalmann et al. 2004; 2007) and greater philopatry in female gorillas (Douadi et al. 

2007). Combined analyses of craniometric and mitochondrial variation have also provided 

compelling evidence of ancestral gene flow between western and eastern gorillas and between 

eastern gorilla subspecies (Ackermann & Bishop 2009). Future work should attempt to relate 

the distribution of numt polymorphisms to the distribution of major mitochondrial haplogroups in 

geo-referenced DNA samples from natural populations in order to assess whether patterns of 

gene flow inferred from presence/absence of numts reflect what is known of gorilla 

phylogeographic history. 
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GENERAL CONCLUSIONS 

 

The results from this dissertation have revealed a heterogeneous rate of numt insertion 

in great apes that varies even between closely related taxa. This observation may be explained 

by factors such as historical demographic events although differences in the mechanisms that 

mediate integration and duplication of mitochondrial fragments in the nucleus cannot be 

ignored. However, this study highlights an underestimation of the rate of insertion relative to 

previous studies due to a failure to identify numts from highly divergent mitochondrial regions 

such as MCR and genes under variable or relaxed selection. Comparative analysis of nuclear 

and mitochondrial paralogous sequences also found evidence of different patterns of nucleotide 

substitution between mtDNA and their nuclear copies. Interestingly, the potential for numts to 

behave as “nuclear fossils” was demonstrated as they seem to retain the GC composition of 

mitochondrial sequences at the time of the translocation to nucleus, thus revealing signs of a 

gradual historical process of GC content accumulation in the mitochondrial but not the nuclear 

genome of great apes. A contrast of orthologous genomic regions representing sequences 

before and after numt insertion provided evidence that rejects a significant role of TEs in the 

pathway of numt integration and/or duplication while favoring NHEJR as a recurrent mechanism 

of numt integration. Lastly, the integrated use of bioinformatic searches and experimental 

isolation of numt sequences in gorillas unveiled several recent mitochondrial insertions in this 

taxon including several loci with insertional polymorphism that could be used as population 

genetic markers in future studies. Chapters 2, 3 and 4 describe and discuss in detail the context 

that led to these findings, which are condensed in the following paragraphs. 

I initially compiled a comprehensive database of numts derived from the MCR and 

present in reference sequenced genomes of humans, chimpanzees and orangutans. A 

comparison of numt prevalence for each nucleotide position within the MCR and flanking 

regions revealed a sharp heterogeneity in the number of numts between different MCR 

subdomains that was partially explained by the distribution of variable sites and unstable 

repetitive motifs in the MCR. This shows that the apparent deficit of numts from particular MCR 

subdomains such as HV2 and MCRF, and to a lesser extent HV1, is largely due to rapid loss of 

sequence identity between mitochondrial and nuclear paralogs. However, an analysis of numt 

loci that inserted before and after the origin of Hominoidea, revealed that whereas the deficit of 

numts derived from HV2 and MCRF was independent of time of insertion, the deficit of numts 

from HV1 was only evident in older numts. This indicates that substitution rate in HV2 and 
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MCRF has been so high relative to HV1 during the evolution of Hominoidea as to blur the 

identity of recent insertions. In contrast, substitution rate of HV1 seems to have been lower than 

the two other subdomains in recent times. Although the effect of differential rates of 

translocation to nucleus between mitochondrial regions on the observed differences in numt 

prevalence was not directly assessed, the fact that numts are underestimated due to the loss of 

sequence divergence is supported by data in this study. Such a hypothesis is also supported by 

the pattern obtained from the inverse relationship observed between Ka/Ks and the number of 

numts from protein-coding genes, in that those genes under stronger purifying selection (low 

Ka/Ks), and therefore more conserved, exhibit a larger number of numts. These lines of evidence 

from MCR and protein coding mitochondrial genes, added to the fact that this study identified 

previously unreported numt sequences, also highlights an underestimation in the rate of numt 

insertion reported in previous studies. 

Notable differences in the rate of numt formation were found between great ape taxa. 

The two most extreme values were found in humans and chimpanzees, which curiously are two 

of the most recently diverged great ape taxa. The rate in chimpanzees was over 12 fold larger 

than the estimated value in humans. This result not only points to an excess of numts in 

chimpanzees but also suggests a great permeability of this genome to accept new integrations, 

as shown by the great extent of segmental duplications and high rate of structural mutation of 

this genome (Ventura et al. 2011). Demographic factors have probably played a crucial role in 

the differences between humans and chimpanzees. It is well established that human 

populations have been constrained by a historical bottleneck that has eroded genetic diversity 

as evidenced by reduced levels of genetic variation in several neutral markers (Zhao et al. 2000; 

Kaessmann et al. 2001; Mathews et al. 2003; Gherman et al. 2007; McEvoy et al. 2011). This is 

evidenced by data presented here as species with relatively high historical effective population 

sizes such as chimpanzees and orangutans also surpass humans in the number of numts. 

Therefore other great apes with larger effective sizes such as gorillas could also have fixed 

more numts than the observed number in humans (Kaessmann et al. 2001). 

Estimates of approximate numt age, sequence comparison of orthologous numts across 

taxa and an examination of the extent of divergence between contemporary mitochondrial 

sequences and their nuclear copies provided an unrivaled opportunity to conduct a retrospective 

assessment of the relative effect of genomic context on the evolution of homologous 

sequences. It has been hypothesized that mutational bias in the mitochondrial genome has led 

to substantial increase in the GC content of mitochondrial genomes in great apes (Schmitz et al. 
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2002; Gibson et al. 2004). Such phenomenon is evidenced by the elevated GC content of 

contemporary mitochondrial genomes relative to numt sequences. Once a mitochondrial 

fragment migrates to the nucleus it is thought to escape from the organellar mutational pressure 

and behave as a “molecular fossil” of the original mitochondrial sequence that retains its 

properties and nucleotide composition (Brown et al. 1982; Graur & Li 2000; Haag-Liautard et al. 

2008). Such a property of numts was demonstrated here after comparisons of numts sequences 

of varying ages with their corresponding mitochondrial sequences in contemporary genomes. In 

fact, the difference in GC content between nuclear and mitochondrial sequences increased with 

numt age, which reveals a non-random variation in the GC content of the mitochondrial genome 

with a trend towards an excess of GC. These results underscore the potential utility of numts as 

“molecular fossils”, not only in rooting phylogenies as shown elsewhere (Perna & Kocher 1996; 

Zischler et al. 1995a,b) but also as witnesses of functional evolutionary changes in the 

mitochondrial genome. 

As expected, Ts/Tv ratios differed significantly between mitochondrial and nuclear 

sequences as a consequence of differences in patterns and rates of nucleotide substitution. The 

observed Ts/Tv ratio in mtDNA showed a negative relationship with time of divergence between 

taxa, a characteristic signature of saturation in the number of transitions at higher levels of 

genetic divergence that results in underestimation of Ts/Tv ratios (Yang & Yoder 1999). In 

contrast, Ts/Tv ratio in numts barely changed with time of divergence and remained within the 

range previously reported for other non-coding regions (Zhang et al. 2007). Although numts 

derived from coding and non-coding (MCR) mitochondrial regions are both non-functional and 

randomly insert in all the chromosomes, they differ in patterns of nucleotide substitution, 

presumably as a consequence of their differences in the intrinsic nucleotide composition. It has 

been shown for instance that the probability of a given site in the nuclear genome undergoing a 

transition may be boosted by elevated levels of regional GC content and presence of GC 

dinucleotides, a phenomenon called “neighbor effect” (Bulmer et al. 1986, Hess et al. 1994). In 

fact, results in the present study indicate that MCR in great apes has a larger GC content than 

the mitochondrial average. As a consequence, MCR numts are expected to inherit an elevated 

GC content that could account for the greater observed Ts/Tv ratio in MCR numts as compared 

to non-MCR numts. 

Past research has shown that the nuclear integration of mitochondrial fragments is most 

likely opportunistic and mediated by NHEJR in genomic locations with double strand breaks 

(Blanchard & Schmidt 1996). The contribution that the presented study made is in the use of a 
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large database of numts of known approximate age to simultaneously compare the potential 

role of NHEJR, trans-replication slippage and TE-mediated duplication on numt formation. 

Identification of nucleotide microhomologies between the numt flank and the inserted 

mitochondrial fragment in nearly half of the analyzed junction sites was consistent with a role of 

NHEJR in the mitochondrial integration process. Since presence of microhomologies is not a 

necessary condition for NHEJR, the role of this mechanism in numt integration may be even 

more important than previously realized. Comparison of numts made up of non-adjacent 

mitochondrial fragments also showed substantial presence of microhomologies between 

tandemly arranged fragments suggesting that NHEJR is also involved in the ligation of these 

fragments during their integration into the nuclear genome. Lastly, experimental evidence has 

shown that mitochondrial integration has also occurred through trans-replication slippage, but 

this study failed to find evidence of this mechanism which seems to act under very specific 

conditions (Chen et al. 2005a). Also, duplication of genomic regions through L1 3’ transduction 

has been previously shown (Goodier et al. 2000; Deininger et al. 2003). Although this 

mechanism may theoretically promote numt duplication, experimental evidence presented here 

indicates that this mode of numt duplication, if possible, would be infrequent and would not 

represent a predominant way of nuclear colonization of mitochondrial-like sequences.  

In the fourth chapter, I focused on the identification of gorilla specific numts and their 

characterization in a sample of captive gorillas. This is the first study specifically designed to 

isolate, map and characterize gorilla numts following an integration of experimental and 

bioinformatic data. The fact that three out of five numts successfully amplified in gorillas and 

were found to be polymorphic certainly demonstrates that mitochondrial integration is an 

ongoing process in gorillas. Three numts were also isolated through only one method, 

highlighting the importance of making use of several complementary methods of numt 

identification. Four numts were identified through BLAST searches in the short genomic 

readings used to assemble the recently released draft of the gorilla genome (Scally et al. 2012). 

Future completion of this genome assembly will probably uncover further insertions and will 

enable comparable estimations of numt prevalence and insertion rates across all major great 

ape taxa using the methods described in chapter 2. 

Substantial sequence similarity and phylogenetic grouping was found between the gorilla 

numt classes I and IIb and the numt loci numt2_1 and numt1_1, respectively. This finding 

provides the first direct validation of two of the three major groups of numts exclusively present 

in gorillas. Experimental verification of class III numts was not possible in this study despite the 
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use of alternative methods designed to isolate all three numt classes. Although class III numts 

have a wide geographical distribution as determined from their amplification in both eastern and 

western lowland gorillas (Anthony et al. 2007a), they have only been found in a limited number 

of samples suggesting that their frequency might be low, thus reducing the chance of finding 

them in population samples. Sequencing of numt1_1 and numt2_1 revealed that these two 

numts comprise the entire HVI region and share extensive sequence identity with authentic HVI 

haplotypes. Similarity also extends into the annealing regions of traditional HVI primers, to the 

point that specific amplification of authentic HVI sequences in gorillas is virtually impossible with 

such primers. Whenever possible, alternative tools designed to circumvent amplification of 

numts should be used to amplify HVI, including mtDNA isolation and long-range PCR. 

In contrast to mtDNA, specific amplification of gorilla numt loci is now possible since 

specific primers have been designed and tested. Numt presence was only tested in a sample of 

captive western gorillas whose ancestral geographic origin is not well known. But polymorphic 

numts described in this research can be amplified in natural populations providing a set of 

valuable molecular tools to be used in reconstructing historical patterns of gorilla dispersal and 

hybridization. 
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Appendix A. List of primers and WGS trace files (TI) from Genbank used to determine 
the presence of target numts and generate their corresponding sequence. Table indicates the 
name, period of insertion (in million years, Ma) and location of individual numts in trace file 
reports.  
 

Insertion 
Locus Name 

Taxon 
Primers 

Time TI number (Position) 

25-18 Ma 

h2_181 N/A 
F-GCAAAGGCCCTTCCTTCTT 

R-CTCCCACCTCCACCTCATT 

h4_179 N/A 
F-TCCAAATTTCTCCTTTTGATAA 

R-CTTGGTCTGACTTGGGCAGT 

h9_367 

G. gorilla 

N/A 

AF035465 

N. leucogenys 

1740323803 (68-383) 

1893040019 (305-678) 

2111902628 (30-129) 

2055598196 (470-844) 

2051768957 (607-854) 

2071273899 (604-867) 

2111242166 (836-978) 

h4_316 

G. gorilla 

N/A 

2036480803 (36-22) 

2035770266 (447-130) 

1666197786 (723-407) 

N. leucogenys 

1903839244 (197-67) 

2069579440 (262-22) 

2100287284 (442-125) 

2100976325 (462-145) 

h4_3525 

G. gorilla 

N/A 

1666197786 (406-36) 

2035770266 (128-30) 

N. leucogenys 

2100287284 (124-20) 

2100976325 (144-25) 

h7_75 

N. leucogenys   

2103608805 (513-444)   

2083527588 (586-655) F-GCAGAAGCATCTAACAACAGG 

1856862962 (219-288) R-TCCTCCTGGAATTCAACCAT 

2055295397 (708-776)   

2037471758 (86-155)   

18-14 Ma 

2_171 

G. gorilla 

N/A 1677027367 (133-291) 

2036454097 (660-814) 

h3_109 N/A 
F2-CACTGGAGGAGGGTGATGATC 

R3-AGCACATTGGCTTTCCAGTAC 

11_86 N/A 
F-AACTTGTTTGCTTTCAATGTCA 

R-GCAGCTGATGGGCTTTTTA 

h17_13321 
G. gorilla 

N/A 
2019418209 (44-592) 
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1670592741 (23-966) 

1671775833 (25-752) 

2033709513 (21-169) 

14-7 Ma 

11_138 

G. gorilla 

N/A 1688527071 (767-937) 

1674588214 (953-1124) 

h3_75 

G. gorilla 

N/A 2033326628 (794-868) 

2033233491 (159-233) 

h5_3463 

P. troglodytes 

N/A 

ti268741600 (660-28) 

G. gorilla 

2035181648 (559-68) 

2018891626 (424-31) 

1668869677 (386-38) 

h10_113 N/A 
F-CTGGGACAGTATTAATGCCA 

R-TTCAAATCTCAGTGTTGTGG 

h5_336 N/A 
F-CTATCAACAGAACAGAATAC 

R-TCAATTCTTCGAAGTTGGAG 

11_2451 

G. gorilla 

N/A 
1679297930 (429-23) 

1679327622 (1052-27) 

1666426381 (1145-489) 

h8_158 
G. gorilla 

N/A 
1687938424 (216-372) 

h8_63 

G. gorilla 

N/A 1680524703 (293-355) 

1680515464 (155-217) 

7-6 Ma 

h3_406 N/A 
Fa-CTATCTATCTGAGAAAGGTC 

Ra-GAGATGTGTCTGTTCATGTC 

h6_185 N/A 
F-CATAGCTGAACAAAAGGCAG 

R-GCAAATGTTGCTGCCTGATC 

5_2347 

P. troglodytes 

N/A 245056372 (413-69) 

258203367 (600-763) 
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Appendix B. Insertion time and chromosomal location of Hominoidea numts derived 
from MCR, MTP and MTF. * Human assembly (March 2006). ** Chimpanzee assembly (March 
2006). *** Orangutan assembly (July 2006). 
 
Hominoidea: 

Insertion time 
(Ma) 

Locus name Chromosomal location * 

25-18 

h2_181 chr2:56361105-56361285 

h4_179 chr4:5457167-5457345 

h9_367 chr9:34989142-34989510 

h4_316/h4_3525 chr4:65155015-65158855 

h7_75 chr7:110527934-110528008 

2_171 chr2:40865601-40865761 

18-14 

h3_109 chr3:68790791-68790899 

11_86 chr11:31533232-31533428 

h17_13321 chr17:21942648-21955968 

14-7 

11_138 chr11:110252926-110253096 

h3_75 chr7:110527934-110528008 

h5_3463 chr5:93928917-93932379 

h10_113 chr10:114644327-114644439 

h5_336 chr5:120394576-120394911 

11_2451 chr11:10486010-10488459 

h8_158 chr8:74060486-74060643 

h8_63 chr8:40047266-40047328 

7-6 

h3_406 chr3:43245822-43246227 

h6_185 chr6:125759417-125759601 

5_2347 chr5: 79981597-79983943 

2_158 chr2:227295229-227295386 

 

Human: 

Insertion time 
(Ma) 

Locus name Chromosomal location * 

≤6 

hY_146 chrY:19493376-19493521 

hY_77 1,2 
chrY:22743283-22743359 
chrY:22954129-22954205 

h2_132 chr2:149355765-149355896 

h4_131 chr4:55889084-55889214 

hX_284 chrX:125434116-125434399 

h13_256 chr13:108874473-108874728 

 

Chimpanzee: 

Insertion time 
(Ma) 

Locus name Chromosomal location ** 

≤6 pan6_105 chr6:10163792-10163896 
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pan7_67 chr7:156987471-156987537 

pan18_64 chr18:69214911-69214974 

pan8_74 chr8:133603293-133603366 

pan8r_177 chr8_r:3603832-3604008 

pan9_1480 chr9:27823883-27825362 

pan8_294 chr8:340619-340892 

pan17_70 chr17:41418401-41418470 

pan3_570 chr3:82584001-82584570 

pan16_124 chr16:69963897-69964020 

panUn_818 chrUn:41177641-41178459 

pan8_1258 chr8:47844710-47848307 

pan7_1565 chr7:29312566-29314130 

pan1_75 chr1:179331902-179331976 

panY8000_1-16 

chrY:14200750-14204541 
chrY:9080566-9084356 
chrY:9815553-9819340 
chrY:14304854-14308648 
chrY:8242882-8246675 
chrY:9711430-9715223 
chrY:13376620-13380412 
chrY:4519417-4523211 
chrY:8347010-8350802 
chrY:8979779-8983571 
chrY:863673-867464 
chrY:13480626-13484416 
chrUn:1417713-1421507 
chrY:5276040-5279817 
chrY:12618796-12622573 
chrY:1620808-1624584 

 

Orangutan: 

Insertion time 
(Ma) 

Locus name Chromosomal location *** 

≤14 

pgo14_177 chr14:32217963-32218139 

pgo3_1085 chr3:146875534-146876618 

pgo19_220 chr19:20973878-20974097 

pgo2b_446 chr2b:107002779-107003224 

pgo4_569(1) chr4:194385369-194385966 

pgo4_104 chr4:71543737-71543840 

pgo8_110 chr8:1239714-1239823 

pgo18_135 chr18:41005234-41005368 

pgo10_70 chr10:121833553-121833622 

pgo8_273 chr8:40739917-40740208 

pgoX_78 chrX:77811121-77811198 

pgo5_172 chr5:114959974-114960233 

pgo16r_110 chr16_r:9950532-9950641 
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pgo6_231 chr6:173022367-173022597 

pgo3_433 chr3:146022407-146022839 

pgo1_70 chr11:88325909-88325978 

pgo11_544(1) chr11:88325444-88326232 

pgo8_78 chr8:18915312-18915389 

pgo16_166 chr16:24806968-24807133 

pgo6_445 chr6_r:9944899-9945337 

pgo19r_126 chr19r:2162455-2162580 

pgo2a_182 chr2a:55952847-55953028 

pgo10_180 chr10:6713458-6713639 

pgo19_280 chr19:14698462-14698741 

pgo3_71 chr3:115571762-115571832 

pgo3_77 chr3:53115723-53115799 

pgo4_937 chr4_r:11865365-11866301 
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Appendix C. Name, chromosomal location and age in million years (Ma) of each 
hominoid numt. Taxon-specific numts are shown: Human-specific (H.S.), chimpanzee-specific 
(C.S) and orangutan-specific (O.S). 
 

Insertion time 
(Ma) 

  Name 
Location in human 

Mt (blt36) 
Nuclear Location 

(March 2006) 

24-18 

Cluster 
1 

h4_236 9170-9405 4:65154693-65154928 

h4_60 9168-9109 4:65154963-65155022 

h4_316 115-428 4:65155015-65155330 

h4_3525 13037-16568 4:65155331-65158855 

h4_1345 9467-10837 4:65158856-65160200 

Cluster 
2 

8_68(1) 12960-13064 8:49475800-49475904 

8_68(2) 13941-14053 8:49475906-49476018 

  h9_367 16102-16471 9:34989151-34989507 

  h7_75 359-425 7:110527934-110528008 

  h2_181 16131-16302 2:56361105-56361282 

  h4_179 16297-16474 4:5457167-5457345 

  5_503 3823-4316 5:60093116-60093608 

  h4_616 4614-5234 4:14116587-14117202 

  2_1107 4855-6208 2:155828212-155829566 

  h8_386 5228-5613 8:70177762-70178147 

  11_204 13256-13453 11:47302111-47302308 

  1_211 2468-2677 1:5832905-5833115 

  6_112 8490-8693 6:1651211-1651414 

  5_50 2005-2060 5:118490993-118491048 

18-14 

Cluster 
3 

h17_13321 14366-16571-11113 17:21942648-21955968 

17_232 14328-14583 17:21955965-21956219 

Cluster 
4 

h3_109 16087-16193 3:68790791-68790899 

3_76 4375-4430 3:68790897-68790972 

3_136 3060-3217 3:68790970-68791128 

  11_86 16199-16389 11:31533232-31533425 

  h4_152 2901-3052 4:27341144-27341295 

  3_58 4706-4768 3:123890271-123890346 

  8_99 6883-7010 8:121305733-121305860 

  2_592 6271-6999 2:50669330-50670057 

  2_171 958-1126 2:40865601-40865761 

  4-278 2005-2390 4:129222010-129222387 

14-7 

  h5_336 380-710 5:120394576-120394911 

  h10_113 348-461 10:114644327-114644439 

  h5_3463 12663-16125 5:93928917-93932379 

  11_2451 523-2974 11:10486010-10488459 

  12_68 4242-4309 12:61454057-61454124 

  11-138 15525-15612 11:110252926-110253096 

  h3-75 15561-15635 3:63807742-63807816 

  h8_158 627-784 8:74060486-74060643 

  h8_63 808-870 8:40047266-40047328 

7-6 

  5_2347 343-2699 5:79981597-79983943 

  h3_406 15810-16213 3:43245822-43246227 

  h6_185 16104-16284 6:125759417-125759601 
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  2_158 892-1050 2:227295229-227295386 

H.S. 

Cluster 
5 

hX_749 6554-7303 X:125433368-125434116 

hX_284 971-686 X:125434116-125434399 

hX_554 10607-11160 X:125434395-125434948 

  hY-77_1 557-629 Y:22954129-22954205 

  hY-77_2 557-629 Y:22743283-22743359 

  h13_256 984-1239 13:108874473-108874728 

  h2_132 613-744 2:149355765-149355896 

  h4_131 964-1094 4:55889084-55889214 

  hY_146 15567-15712 Y:19493376-19493521 

C.S. 

Cluster 
6 

pan6_85 11463-11379  6:10163706-10163790 

pan6_105 15491-15595 6:10163792-10163896 

  pan16_124 16103-16227  16:69963897-69964020 

  pan17_70 16025-16094  17:41418401-41418470 

  panUn_818 15414-16227  Un:41177641-41178459 

  pan7_1565 16355-16571; 1-1358  7:29312566-29314130 

  pan3_570 15569-16132  3:82584001-82584570 

  pan8_1258 6272-8442; 15722-405 8:47844710-47848307 

  pan8_294 15769-16061  8:340599-340892 

  pan8r_177 15504-15679  8_r:3603832-3604008 

  pan9_1480 14242-15748  9:27823883-27825362 

  pan8_74 15611-15684  8:133603293-133603366 

  pan1_75 889-962 1:179331902-179331976 

  pan18_64 15936-15999 18:69214911-69214974 

  pan7_67 15681-15747 7:156987471-156987537 

O.S. 

Cluster 
7 

pgo4_569(1) 15317-15885 4:194385398-194385966 

pgo4_569(2) 3848-3879 4:194385369-194385442 

Cluster 
8 

pgo11_544 (1) 7270-7517 11:88325975-88326232 

pgo11_544 (2) 16100-1-71 11:88325444-88325988 

  pgo1_70 16563-1-60 1:72964446-72964515 

  pgo10_180 104-390 10:6713458-6713639 

  pgo10_70 16083-16154 10:121833553-121833622 

  pgo14_177 15532-15711 14:32217963-32218139 

  pgo16_166 16555-1-150 16:24806968-24807133 

  pgo16r_110 16383-16492 16_r:9950032-9951141 

  pgo18_135 16010-16144 18:41005234-41005368 

  pgo19_220 15508-15728 19:20973878-20974097 

  pgo19_280 8-390 19:14698462-14698741 

  pgo19r_126 162-390 19_r:2162455-2162580 

  pgo2a_182 104-390 2a:55952847-55953028 

  pgo2b_446 15440-15885 2b:107002779-107003224 

  pgo3_1085 14640-15724 3:146875534-146876618 

  pgo3_433 16105-16538 3:146022407-146022839 

  pgo3_71 281-451 3:115571762-115571832 

  pgo3_77 587-662 3:53115723-53115799 

  pgo4_104 15909-16011 4:71543737-71543840 

  pgo4_937 16393-1-892 4_r:11865365-11866301 

  pgo5_172 16036-16291 5:114960062-114960233 

  pgo6_231 16210-16500 6:173022367-173022597 
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  pgo6_445 16378-1-244 6:9944899-9945337 

  pgo8_110 15934-16037 8:1239714-1239823 

  pgo8_273 15940-16230 8:40739917-40740208 

  pgo8_78 74-151 8:18915312-18915389 

  pgoX_78 16165-16245 X:77811121-77811198 
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Appendix D. List of primers used for amplification and sequencing of target numts. Also, 
trace file and location of numts filtered from the Genebank. Reference sequences in the gibbon 
genome were taken from trace files in Nomascus leucogenys and direct sequencing was done 
in Hylobates lar. 
* Primer 2 in Figure 1 of Zischler et al. (1998). 
 
Insertion 

time 
(Ma) 

 Name Taxon 
Trace file Trace 

Primers 
Acc. N. position 

24-18 

Cluster 1 

h4_236 

Gorilla 
2036480803 358-123 

N/A 

2035770266 769-534 

Nomascus 

1903839244 526-289 

2069579440 589-354 

2100287284 760-534 

2100976325 789-554 

h4_60 

Gorilla 

2036480803 88-29 

2035770266 499-440 

   

Nomascus 

1903839244 249-190 

2069579440 314-255 

2100287284 494-435 

2100976325 514-455 

h4_316 

Gorilla 

2036480803 36-22 

2035770266 447-130 

1666197786 723-407 

Nomascus 

1903839244 197-67 

2069579440 262-22 

2100287284 442-125 

2100976325 462-145 

h4_3525 

Gorilla 
1666197786 406-36 

2035770266 128-30 

Nomascus 
2100287284 124-20 

2100976325 144-25 

h4_1345 

Gorilla 1218235913 146-645 

Nomascus 
1749374728 67-339 

1722101939 86-357 

Cluster 2 
8_68-1 

N/A 

F-ccactgagaaaggagacagc 

8_68-2 R-aacatgaggaaaattcagggt 

 h9_367 

Zi98F-gcgagctgaaggactttctg 
(Gibbon) * 

or F- ctcccgagtagctgggattac 
(Gorilla) 
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R- ggatttgcagctgtgttca 

 h7_75 Nomascus 

2103608805 513-444   

2083527588 586-655  

1856862962 219-288 F-gcagaagcatctaacaacagg 

2055295397 708-776 R-tcctcctggaattcaaccat 

2037471758 86-155   

 h2_181 N/A 
F-gcaaaggcccttccttctt 

R-ctcccacctccacctcatt 

 h4_179 N/A 
F-tccaaatttctccttttgataa 

R-cttggtctgacttgggcagt 

 5_503 N/A 
F-gggaacagcttttgttgct 

R-catgcattggcacttctgt 

 h4_616 Nomascus 

1891975446 154-20 F-tgttgttagctggttgctatgc 

1813822831 623-752 Ra-aatacccagcctactcctcctc 

2094418442 334-23   

2062918683 460-25 Fa-trggatcaggggtgttaatc 

2038394904 85-702 R-tccagccaaactaagcttcata 

2110934940 926-491   

2043174271 24-415 2 overlapped fragments 

1746341073 810-536   

 
2_1107 N/A 

Fa-agtccttaggtattgcaga 

 R4-ctatgttcctcatgttttag 

 
h8_386 N/A 

F-tatcaaaggcccagaaggag 

 R-ggttttagatgagaaatctgttgtc 

 11_204 Nomascus 

2037611582 117-313 F-tctgagacccagctcaaca 

2036714198 590-394 R-gtttgatgctttgctgtcg 

2105643423 492-688   

 
1_211 N/A 

F-agccagggtagaggcaag 

 R-ctggggacagagctcactt 

 
6_112 N/A 

F-gacccacacagcaatgaga 

 R-tcccttgactcccctgtt 

 
5_50 N/A 

F-ttcaacatcagcaacaccc 

 Ra-acatgacgaaaccccatctc 

18-14 Cluster 3 

h17_13321 

G. gorilla 

2019418209 44-592 

N/A 
(530bp) 1670592741 23-966 

  1671775833 25-752 

  2033709513 21-169 

17_232 G. gorilla 
2019418209 589-844 Fa-ctgtctttctcctctgaccc 

1670592741 963-1210 Ra-aatgctaagtttcccagtag 
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1671775833 749-1002 
Obtained through both 
direct sequencing and 
Trace files. 

2033709513 166-420 
 Trace files are optional 
here 

Cluster 4 

h3_109 

N/A 

F2-cactggaggagggtgatgatc 

3_76 R3-agcacattggctttccagtac 

3_136   

 
11_86 N/A 

F-aacttgtttgctttcaatgtca 

 R-gcagctgatgggcttttta 

 
h4_152 N/A 

F-tggactcacagtttcacatgg 

 R-atttaggggacagggttaca 

 
3_58 N/A 

F-ccctaaggctgggactctt 

 R-tttctctgctcttgccctt 

 
8_99 N/A 

F-tagaccctgccctcatctc 

 R-tggggcatataaaagatgaaa 

 

2_592 N/A 

Fa-attggctttttggagtttac 

 Ra-ctgatccgtcctaatcacag 

   

 Fb-ctatgcccatatacccgaat 

 Rb-gtcctagctactcaggaggc 

 2 overlapped fragments 

 
2-171 G. gorilla 

1677027367 131-291 
N/A 

 2036454097 658-814 

 
4-278 N/A 

F-gggcttctttgtgtcaagg 

 R-gggatccaggtctttcttg 

14-7 

 
h5_336 N/A 

F-ctatcaacagaacagaatac 

 R-tcaattcttcgaagttggag 

 
h10_113 N/A 

F-ctgggacagtattaatgcca 

 R-ttcaaatctcagtgttgtgg 

 

h5_3463 

P. 
troglodytes 

268741600 660-28 

N/A    2035181648 559-68 

  G. gorilla 2018891626 424-31 

   1668869677 386-38 

 

11_2451 

  1679297930 429-23 

N/A   G. gorilla 1679327622 1052-27 

   1666426381 1145-489 

 
12_68 N/A 

F-catctatgcctaacctaaca 

 R-ttcactctctgagccggttt 

 11-138 G. gorilla 1688527071 767-937 N/A 
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h3_75 G. gorilla 

2033326628 794-868 
N/A 

 2033233491 159-233 

 h8_158 G. gorilla 1687938424 215-372 N/A 

 h8_63 G. gorilla 
1680524703 293-355 

N/A 
1680515464 155-217 

7-6 

 
5_2347 

P. 
troglodytes 

245056372 413-69 
N/A 

 258203367 600-763 

 
h3_406 N/A 

Fa-ctatctatctgagaaaggtc 

 Ra-gagatgtgtctgttcatgtc 

 
h6_185 N/A 

F-catagctgaacaaaaggcag 

 R-gcaaatgttgctgcctgatc 
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Appendix E. Origin and accession number of human whole mitochondrial genomes of 
world populations (Mitochondrial Genome Database; Ingman & Gyllensten 2006). 

 
Africa (n=20) 

DQ112692, DQ112699, DQ112707, DQ112714, DQ112721, DQ112728, DQ112742, DQ112756, 
DQ112792, DQ112794, DQ112796, DQ112850, DQ112857, DQ112883, DQ112904, DQ112911, 
DQ112919, DQ112933, DQ112960, DQ112961. 

Asia (n=20) 
DQ112779, DQ112781, DQ112784, DQ112786, DQ112788, DQ112859, DQ112864, DQ112866, 
DQ112868, DQ112873, DQ112875, DQ112878, DQ112880, DQ112882, DQ112928, DQ112930, 
DQ112935, DQ112939, DQ112951, DQ112954. 

Europe (n=20) 
DQ112760, DQ112764, DQ112769, DQ112795, DQ112805, DQ112809, DQ112813, DQ112828, 
DQ112831, DQ112836, DQ112837, DQ112841, DQ112842, DQ112891, DQ112936, DQ112941, 
DQ112942, DQ112943, DQ112945, DQ112955. 

India (n=10) 
DQ246811, DQ246813, DQ246815, DQ246817, DQ246819, DQ246822, DQ246824, DQ246826, 
DQ246828, DQ246831.  

Australia (n=10) 
DQ112750, DQ112751, DQ112752, DQ112753, DQ112754, DQ404441, DQ404443, DQ404445, 
DQ404446, DQ404447. 

North America (n=5) 
DQ112846, DQ112870, DQ112872, DQ112888, DQ112889. 
 

South America (n=5) 
DQ112772, DQ112774, DQ112776, DQ112832, DQ112871. 

Jewish (n=5) 
DQ301789, DQ301795, DQ301805, DQ301811, DQ301812. 

Melanesia (n=5) 
DQ112886, DQ112887, DQ112895, DQ112896, DQ112897. 
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Appendix F. Approval from the Association of Zoos and Aquariums of the USA. 

  
 

Nicola Mary Anthony 
Department of Biological Sciences 
University of New Orleans 
New Orleans LA 70148 

October 16, 2007 
 
 
Dear Drs. Anthony and Jensen-Seaman, 
 
The Gorilla SSP® has reviewed your proposal and voted to APPROVE your request for gorilla genetic 
samples.  SSP approval provides confirmation that the management group and advisors have reviewed 
the proposal and found it to be of sound scientific merit.  We encourage institutions to participate if 
they are able to do so.  We ask you to note that you will still need to contact individual zoos with your 
proposal and requests. 
 
We wish you the best in your research endeavor and look forward to seeing results when they are 
available. 
 
Sincerely, 

 
Kristen E. Lukas, Ph.D. 
Chair, Gorilla Species Survival Plan 
 
Curator of Conservation and Science 
Cleveland Metroparks Zoo 
3900 Wildlife Way 
Cleveland, OH  44109 
P: 216-635-2523 
F: 216-635-3318 
E: kel@clevelandmetroparks.com 
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Appendix G. Presence/absence polymorphism of three numts in 68 gorillas captive in 
USA zoos. The 18 underlined names represent wild-born gorillas and one captive-born gorilla 
(Kwanza) for which all known ancestors exhibit the same mitochondrial haplogroup. These 
gorillas were used to assess mtDNA haplogroup differences in the distribution of polymorphic 
numts (see Table 3.3). 
 

House 
Name 

Studbook * 
Mitochondrial 
Haplogroup 

Gcl18_1 Numt1_1 Numt2_1 

Paki 191 C1 +/+ - +/- 

Banga 224 C1 +/- - +/- 

Stadi 1186 C1 +/+ - +/- 

Charlie 1409 C1 +/+ - +/- 

Casey II 801 C1 +/- - +/- 

Ramar 537 C1 +/-   +/+ 

Ntondo 1301 C1 +/-   +/- 

Abe 52 C1 +/-   +/+ 

Motuba/Tubby 883 C1 -/-   -/- 

Kitombe/Ma 934 C1   -   

Rok 701 C1   -   

Willie B II 115 C1 +/- + +/- 

Kinyani 820 C1 +/- + +/- 

Kekla 1108 C1 +/- + +/- 

Mbeli 1693 C1 +/- - -/- 

Chicory 890 C1 -/- + +/- 

Mosuba 835 C1 -/- - -/- 

Taz 1110 C2 +/- - +/+ 

Ozoum 175 C2 +/- - -/- 

Donna 336 C2 +/+ - -/- 

Shango 1123 C2 -/-   -/- 

Shamba 221 C2 +/- - -/- 

Machi 609 C3 -/- - -/- 

Mia Moja 1109 C3 +/- - -/- 

Kashata 1294 C3 +/- - -/- 

Holoki 393 C3 -/- - -/- 

Choomba 180 C3 -/- + -/- 

Kudzoo 1330 C3 +/- + +/- 

Olympia 1410 C3 -/- + +/- 

Kidogo 1484 C3 -/- + +/- 

Sukari 1485 C3 +/- + +/- 

Mumbah 379 C3 -/- - +/- 

Chaka 864 D1 +/- + +/- 

Ivan 710 D2 +/- - -/- 

Beta 160 D2 +/+ - -/- 
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Aqualina 781 D2 +/- - -/- 

Praline 1418 D2 +/- - -/- 

Fredrika 528 D2   - +/- 

Binti 556 D2   - -/- 

Alpha 159 D2     -/- 

Curtis 1331 D2 +/- + +/- 

Carlos 506 D3 +/- - -/- 

Tabibu 1264 D3 +/- - -/- 

Rollie 1414 D3 +/- + -/- 

Bebac 872 D3 -/- + -/- 

Jasiri 1486 D3 +/- - +/- 

Kwanza 1107 D3 +/- - +/- 

Susie T1193/1835 D3 +/- + +/- 

Katie 498 D3 +/+ - +/- 

Toni 432 D3 -/- - +/- 

Jimmy Jr. 716 D3 +/- - +/- 

Katoomba 168 D3 -/- - +/+ 

Bahati 1142 D3 +/- + +/+ 

Josephine 524 D3   - +/- 

Bombom 612 D3 -/- - +/- 

Chipua 1419 D3 +/- + -/- 

Kowali 663 D3 -/- - +/- 

Makari 949 D3 +/- + -/- 

Bulera 1120 D3 -/- + +/- 

Madini 1413 D3   + +/- 

Azizi 1750 D3 +/- + +/- 

Mokolo 948 D3   + +/- 

Kubandu 812 D3 -/- - +/- 

Billy 1148 D3 +/- + +/- 

Kimya 1345 D3 +/- + +/- 

Sunshine 509 To be assigned   - +/- 

Koola 1369 To be assigned +/+ - +/+ 

Frank 265 To be assigned   +   

 
* Wharton (2007).  
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Appendix H. Sequence of 22 hits for putative gorilla numts detailing the locus name and 
corresponding coordinates in the human genome (hg18). 
 
AAGL1682 (chr19:17790170) 

CTGGGATTGTGGGGGCAATGAATGAAGCGAATAAATTTTCGTTCATTTTGGTTCTCAGGGTTTACAGAAGTTTTTTATTTTTATAGTTTTTGGTAAG

GGG 

 

AAGL1145 (chr1:113276030) 

ATGGCCATCGCTGTAGTATACCCAAAAACAACCATCATCCCCCCTAATAAATTAAAAAAACCATTAACCCATATAACCCTCCCCACAAGTTTAAAAT

ATAGCCCACCCCAACCACACCACTACNNNNN 

 

CABD5746 (chr9:23156894) 

GTGCATAAGTAGGTGACCTGCAGTGATAGTAGCGGTTCCCCTCCAAAGGGGAACGTGTGGGCAGTTTTAGATGTTATGGCCCTGAAGCAAGAACCAG

ATGCCGGATACTGTTCATTCTAGCTACCCACAAGTGTTATGGGCCCGGAGCGAGGAGAGTAGCACTCTTGTGCGGGATATTGATTTCACGGAGGATG

GTGACTAAGGGACTCCTATCTGAGGGGGGGCATCCGTGGGGGCAAGAAAGGATTTGATTGTAATGTGCTATGTACGATAAATGATTGTATGTGCYAT

GTACTGTCGAGGATGGACAGGTCTGTTGATATTCTAAGGGTTGGGGATTGTCCTTGGAGGTAGGGTTAATGTTCGATAGTTGTGAGGGTCGATCGCT

GTACGTGCTTGTAAGCATTGGGAGGAGGTTTTAATGTGGGATGGGTTCTGTATGTACTA 

 

Go11_188 (chr11:87805752) 

TTAGTTCTTCTGTAAGGTAATAGATTGGTCCAATTGGGTGCAAGTAGTTCAGTTGTATGTTTGGGATTTTTTAGATAATAGGTGTCGAGCTTGAACG

CTTTCTTAATTGGTGGCTGCTTTTAGGCCTACTATGGGTATTAAATTTTTTACTCTCTTTACAAGGTTTTTTCCTNGTGTCCAAAGAGCTGTTCCTN

TTTGGACTAACAGTTAAATTTACAGGGGTTTTGNAGGGTTCTGNGGGGAANNTTAAAGTNGANCTAAGANTCTANCTTGGNCAACCAGCTNTCACCA

GNCTCGGTAGGNTNNTCGCCNCTNNCTGNNNNTCTNCCCACTATTTTGCTACNTANACGGGNGTNCTCTTTTAGCTNNNCTNAGGAAGCTCNTNTGG

NTNCNGGGGGNTTAGCTTTNGTTNTNTTTGCAAAGTTATTTCTNGTTANTTCANNNTGCAGNAGNNACNAGGTNTNGNCCTTGCTGTATTGTGCNNG

GTTATNATTTTTCANCTTTCCCTTGCGGTNCTNTATCTNTNGCGCCANATTACAATTTCTATCNNCTATACTTTNTTTGAGTANATGGTTTGNTTAN

AGTTGTNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNTTNCTTTGNGCCTTCGTCAGGGTTTGNTGAAGATGGCGGTATATAGGCTGAGCAAGAGGTGGTG

AGGTTGATCGGGGTTTATCGATTACAGAACAGGCTCCTCTAGAGGGATNTGAAGCACCGCCAGNGTCCTTTGAGTTTTAAGCTGTGGCTCGTAGTGT

TCTGGCGAGCAGTTTTGTTAATTTAACTGTTGAAGTTTAGGGCTAAGCATAGTGGGGTATCTAATCCCAGTTTGAGTCTTAGCTATTGTGTGTTCAG

ATGCGTTAAAGCCACTTTCGTAGTTTATTTTGTATCAACTGGAGTTTTTTACAACTCAGGTGAATTTTAGCTTTATTGAGGGAAATTGATCTAAAAC

GCTCTTTACGCCGGTTTCTATTGACTTGGGTTAATCGTGTGACCGCGGTGGCTGGCACGAAATTGACCAACCCTGGGGTTAGTATAGCTTAGTTTAA

CTTTCGTTCATTGCTAAAGGTTTATCACTGCTGTCTCCCGTGGGGGTGTGGCTAGGCTAAGCGTTTTGAGCTGCATTGTTGTGTGCTTGATACCTGT

TCCTTTTGATCGTGGTGATTTAGAGGGTGACTCACCGGGGCGGGGTTGCTTGCATGTGTAATCTTACTAAGAGCTAATAGAAAGGCTAGGACCAAAC

CTATTTGTTTATGGGGNGGTATGAGCCCGTCGAAACATTTTCAGTGTATTGCTTTGAGGAAGTAAGCTACATAAACCGTATGGGGTGTCTTTGGGGT

TTGGTTGGTTCGGGGTATGGGGTTAGCAGCGGTGTATATGTTGAGTAAGGTGGGTAGGAGTTGCATTGGCAGGGTTAGTAGGATGGGAGTTGAGGGA

GGAGAATATGTTAGTTGAGGGGTGACTGTTAAAAATGCATACCGCCAAAAGATGAAAAATCCGGTTAGGCTGATGTTAGGGCTCTTTGTTTTTGGGG

TTTGGCAGAGATGTTTTTGAGTGCTATGGCCAGAGGTGGGGGGAGGGGGAGGGTTGTGGAAATTTTTATTGTAGTATTGGTGTGAAGAGCGGTTGCG

TGCGCATTCGTTGGCTATTGCTATGTCCAACAAGCATGGATTAATTAACACATTATGGTAGTTATGCTCGCCTGTAATATTGAACGTAAGTGCGATA

AATAATGGGATGGGGCAGGAATCAAAGACAGATACTGCGACATAGGGTGCTCCGGGGCCAGCGTTTCGCAATGCTATCGCGTGCACACCCCCCAGAC

GAAAATACCAAATGCATGGAGAGCTCCCGTGACTGGTTAATAGGGTGATAGACCTGTGATCCATCGTGATGTCTTATTTAAGGGGAACGTGTGGGCG

ACTTTGGGTGTTATGGCCCTCAAGTAAGAACCAGATGCCGGATACAGTTCATTCTAGCTACCCCCAAGTGTTATGGGCCCGGAGCGAGGAGAGTAGC

A 

 

Numt1_1 (chr1:224874831) 

GTGCGTTAATTAATAACCATGAATTAATTAACACCATGAAGCATATTGCGCTCGGCTGTAATATTGAACGTAGGTGCGATAAATAATGGTATGGGGT

AGGAATCAAAGACAGATACTGCGACATAGGGTGCTCCGGTTCCAGCGTTTCGCAATGCTATTGCGTGCACGCCCCCCCCCGACGAAAATACCAGATG

CATGGAGAGCTCCCGTGAGTGGTTAATAGGGTGATAGACCTGTGATCCATCGTGATGTCTTATTTAAGGGGAACGTGTGAAGCGCTTTAGGTGTTAT

GACCCTGAAGTAGGAACCAGATGTCGGATACAGTTCACTTTTAGCTACCCCCAAGTGTTATGGGCCCGGAGCGAGGAGAGTAGCACTCTTGTGCGGG

ATATTGATTTCACGGAGGATGGTGTTCAAGGGACCCCCATCTGAGGGGGGGCATCCATGGGGGCGAGGACGATTTAACTGGAATGTGCTATGTACGG

TAAATGATTTTATGTGTTATGTACTTTTGTAGAGGGTAGGTCGGTTGATATTTCGTTGGGTAGAGCAGGGGATGGGGGGGGTTTGTATGTGTTATAG

GTATTTGGGTGTTTATAGTACTGTATATTATTCATGGTGACTGGCAGTAATGCACGACATACATAACAATTATTGGTGGGTTAGCTAATACTTGGGT

GGTACCCAAATTTGTCTCCCCATGAAAGAACAGAGAATAGTTTAAATTAGAATGTTAGCTTTGGGTGCTGATGGTGGAGTCGAGGACTTTTTCTCTG

AATATGCCCTTGGAAGGAGGTCTTCGTTTCCRGTTYACAAGACTGGTGTATTGGTCTGTACTACAAGGGCAGGTTCATTTGAGTATTTTGTTTTCGA

TTAGGGATGTGACTGGCATTAGGAATAGGATTGTCGTGAAGTATAGTACGGATGCTACTTGCCCAATGGTGATGAAGGGGTAGCTTACTGGTTGTCC

TCCGATTCAGGTTAGAGTGAGGAGGTCTGTGATTAGGAATCAGTAGAGTAGTTGGCTTAATGGGCGGAATATTATGCTTTGTTGTTTGGACATGTGG

AGAACAGGAATTATTGCTAGGATGAGAATAGATAGTAATAGGGCTAAGACGCCTCCTAATTTATTGGGGACAGATCGGAGAATTGCGTAGGCAAATA

GGAAGTATCATTCGGGTTTGATGTGGGGTGGGGTGTTTAGGGGGTTGGCTAAGGTGTAGTTGTCTGGGTCTCCTAGGAGGTCTGGTGAGAATAGTGT

TAATGCTATTAGGGTCAGGAGAAAGAGGAATAGGCCTAGGATGTCTTTGATTGTGTAGTAGGGGTGGAAGGTAATTTTGTCAGAGTGGGAGTTAATT

AATTATTAATTAATTAACTAACTAATTAATTAATTAATTAACATGC 

 

Numt2_1 (chr2:155454827) 

CCCACTGGGGCGGGGATGCTTGCATGTGTAATCCTACTAAGAGTTAATAGAAAGGCTAGGACCAAACCTATTTGTTTATGGGGTGATGTGAGCCCGT

CGAAACATTTTCAGTGTATTGCTTTGGGGAGGTAAGCTACATAAACTGTGTGGGGTGTCTTTGGGGTTTGGTTAATTCGGGGTATAGGATCAGCAGC

AGTGTGTGTTGCTAGGGCGGGTKGGGGTTGTACTGGTGGGGTTGGTGGGGTGGGTGCTATGTTAGTTGAGGGGTGACTGTTAAAAATGCATACCGCC

AAAAGATGAAATTTGGAGTTTGGTAGGGCTGTTTTCTAGTGCTGAGGGGGTTTGGATTTTTTTGTTGTGTTTTTTGGTGTGAAGGGTGGTTGTGTTC

ACGTCCACCTGGTTGTTTTATGTCCAACAAGCATGAATTAATTAACACCATAAGGCATATTGCGCTCGGCTGTAATATTGAACGTAGGTGCGATAAA

TAATGGTATGGGGCAGGAATCAAAGACAGATACTGCGACATGTGGTGCTCCGGCTCCAGCGTTTCGCAATGCTATCGCGTGCACACCCCCCGACGAA
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AAATACCAAATGCATGGAGAGCTCCCGTGAGTGGTTAATAGGGTGATAGACCTGTGATCCATCGTGATGTCTTATTTAAGGGGAACGTGTGAAGCGC

TTTAGGTGTTATGACCCTGAAGTAGGAACCAGATGCCGGATACAGTTCATTCTTAGCTACCCCCAAGTGTTATGGGCCCGGAGCGAGGAGAGTAGCA

CTCTTGTGCGGGATATTGATTTCACGGAGGATGGTGTTCAAGGGATTCCTATCTGAGGGGGGGCATCCGTGGGGGCGAGGATGATTTAACTGGAATG

TGCTATGTACGATAAATGACTTTATGTGTTATGTACTTTTTGTGAGGGATGGATTGGTTGGTATTCCGTTGGGTGGAGCAGTGAGGGGGGGGGGTTG

TATGTGTTACAGGTGGTTGGACATTTGTAGTACTGTGCATTATTCATGGTGGCTGGCAGTAATGCACGACATACATGACAATTATTGATGGGTTAGC

TAATACTTGGGTGGTACCCAAATTTGTCTCCCCATGAAAGAACAGAAGAATAGTTTAAATTAGAATGTTAGCTTTGGGTGCTGATGGTGGAGTCGAG

GACTTTTTCTCTGAATATGCCCTTGGAAGGAGGTCTTCGTTTCCGGCTTACAAGACTGGTGTATTGGTCTGTACTACAAGGGCAGGTTCATTTGAGT

ATTTTGTTTTCGATCAGGGATGTGACTGGTATCAGGAATAGGATTGTCGTGAAGTATAGTACGGATGCTACTTGCCCAATGGTAATGAAGGGGTAGC

TTACTGGTTGTCCTCCGATTCAGGTTAGGGTGAAGAGGTCTGCGATTAGAAATCAGTAGAGTAGTTGGCTTAATGGGCGGAATATTATGCTTTGTTG

TTTGGATATGTGGAGAATAGGAATTATTGCTAGGATGAGAATAGATAGTAATAGGGCTAAGACGCCTCCTAGTTTATTGGGGACAGATCGGAGAATT

GCGTAGGCAAATAGGAAGTATCATTCGGGTTTGATGTGGGGTGGGGTGTTTAGGGGGTTGGCTAAAGTGTAGTTGTCTGGGTCTCCTAGGAGGTCTG

GTGAGAATAGTGTTAATGTTATCAGGGTCAGGAGAAAGAGGAATAGGCCTAGGATGTCTTTGATTGTGTAGTAGGGGTGGAAGGTGATTTTGTCAGA

GTGGGAGGGGATGCCTAGAGGGTTGTTTGATCCTGTTTCGTGTAGAAATAGGAGATGGAGGGTTGTTAGGGCTGTGATAATGAAGGGTAGGATAAAG

TGGAAGGTAAAGAATCGTGTAAGGGTAGGGCTATCTACTGAGTAACCACCTCAAACTCATTGGACTAGGTCTGTTCCGATGTATGGGATGGCGGATA

GCAAGTTTGTGATTACTGTGGCTCCTCAGAAGGATATTTGGCCTCATGGGAGGACATAGCCTATGAAGGCTGCTGCTATGGTTGTGAGTAGGAGGAT

GATGCCGATGTTTCAGGTTTCTTGGTAGAGAAATGAGCCGTAGTATAGGCCTCGGCCGATGTGTAGAAAGAGGCAAATGAAGAATATTGAGGCGCCG

TTAGCGTGGAGGTAGCGGATGGTTCAGCCATAGTTTACATCTCGGGTGATGTGAGCGATTGATGAGAAGGCGGTTGAGGCGTCAGGTGAGTAGTGTA

TGGCTAGGAATAGCCCTGTGGTGATTTGAAGGATTAAGCAGGTACCAAGGAGTGAGCCGAAGTTTCATCATGTGGAGATGTTGGACGGGGTAGGGAG

GTCAATGAATGAGTGGTTAATTAGTTTTGCTAGTGGGTTAGTTTTGCGTATAGGGGTCATTGATGTTCTTGTAGTTGAAGTACAACGATGGTTTTTC

ATATCATTGGTCGTGGTCGTGGTCCGTGCGAGAATGATGACATATGTTTTATTTTTATTGAGTGTGGGTTTAGT 

 

Gcl18-1 (chr5:123205257) 

CCCCCCGACGAAGATACCAGATGCATGGAGAGCTCCCGTGAGTGGTTAATAGGGTGATAGACCTGTGATCCATCGTGATGTCTTATTTAAGGGGAAC

GTGTGAAGCGCTTTAGGTGTTATGACCCTGAAGTAGGAACCAGATGTCGGATACAGTTCATTTTTAGCTACCCCAAGGTGTTATGGGCCCGGAGCGA

GGAGAGTAGCACTCTTGTGCGGGATATTGATTTCACGGAGGATGGTGTTCGAGGGATCCCCATCTGAGGGGGGGCATCCGTGGGGACGAGGGTAATT

TAACTGGAATGTGCTATGTACGATAAATGACTTTATGTGTTATGTACTTTTGTAGGAGGCAGGTCGGTTGATATTTCGTTGGGTGGAGCAGGAGATG

GGGGGGGTTGTATGTGTTACAGGTGTTTGGGTGTTTATAGTACTGTGCATTATTCATGGTGACTGGCANNNNN 

 

Gcl18-2 (chr13:113308247) 

AAGTACATAACACATAAGATCATTTATCGTACATAGCACANNNNN 

 

Go1_308 (chr1:183761643) 

CCCTCAACTCCCATCCTACTAACCCTGCCAATGCAACTCCTACCCACCTTACTCAACATATACACCGCTGCTAACCCCATACCCCGAACCAACCAAA

CCCCANAGACACCCCATACGGTTTATGTAGCTTACTTCCTCAAAGCAATACACTGAAAATGTTTCGACGGGCTCATACCGCCCCATAAACAAATAGG

TTTGGTCCTAGCCTTTCTATTAGCTCTTAGTAAGATACACATGCNAGCAACCCCCGTCCCGGTGAGTCACCCCTCTAATCACCACGATCANAAAGGA

CACGTATCAAGCACGCANNNNN 

 

Go2_201 (chr2:33645118) 

GTTGCCCCTTTGTTGTTCAAGTGTTTGTAGTACTGTATATTATTCATGGTGACTGGCAGTAATGCCCGATATACATGGCGGTTATTGGTGGGTTAGC

CAATACTTGGGTGGTACCCAAATTTGCTTCCCCATGAAAGAACAGAGAATAGTTTAAATTAGAATGCTAGCTTTGGGTGCTGATGGTGAAGTCAAGA

ACTTTTTCTCTGATTTGCCCTGGAAGGAGGNNNNN 

 

Go2_437 (chr2:101487391) 

CCGTACATAGCACATTCCAGTTAAATCGTCCTCGCCCCCATGGATGCCCCCCCTCAGATGGGGGTCCCTTGAACACCATCCTCCGTGAAATCAATAT

CCCGCACAAGAGTGCTACTCTCCTCGCTCCGGGCCCATAACACTTGGGGGTAGCTAAAAGTGAACTGTATCCGACATCTGGTTCCTACTTCAGGGTC

ATAACACCTAAAGCGCTTCACACGTTCCCCTTAAATAAGACATCACGATGGATCACAGGTCTATCACCCTATTAACCACTCACGGGAGCTCTCCATG

CATCTGGTATTTTCGTCGGGGGGGGGCGTGCACGCAATAGCATTGCGAAACGCTGGAACCGGAGCACCCTATGTCGCAGTATCTGTCTTTGATTCCT

ACCCCATACCATTATTTATCGCACCTACGTTCAATATTACAGCCGAGCGCGAATCCACCACAGTGCGAGATCATCGGACCNNNNN 

 

Go3_528 (chr3:129446363) 

AGAGCTAAGACGCCTCCTAGTTTATTGGGGACAGATCGGAGAATTGCGTAGGCAAATAGGAAATATCATTCGGGTTTGATGTGGGGTGGGGTGCTCA

GGGGGTTGGCTAAGGTGTAGTTGTCTGGGTCTCCTAGGAGGTCTGGTGAGAATAGTGTTAATGTTATCAAGGTCAGGAGAAAGAGGAGTAGGCCTAG

GATGTCTTTGATTGTGTAGTAGGGGTGGAAGGTGATTTTGTCAGAGTGGGAGGGGATGCCTAGAGGGTTGTTTGATCCTGTTTCGTGTAGAAATAGG

AGATGGAGGGTTGTTAGGGCTGTGATAATGAAGGGTAGGATAAAGTGGAAGGTAAAGAATCGTGTAAGGGTAGGGCTATCTACTGAGTAACCACCTC

AAACTCATTGGACTAGGTCTGTTCCGATGTACGGGATGGCGGATAGCAAGTTTGTGATTACTGTGGCTCCTCAGAAGGATATTTGGCCTCATGGGAG

GACATAGCCTATGAAGGCTGCTGCTATGGTTGTGAGTAGGNNNNN 

 

Go4_390 (chr4:125728606) 

CTGACATGTTCATCTTCCACCCCTAGTACACAGTCAGAGACATCCTAGGCCTATTCGTCTTTCTCCTGACCCTGATAACATTAACACTATTCTCACC

AGACCTCCTAAGAGACCCAGACAACTACACTTTAGCCAACCCCCTAAACACCCACCCCACATCAAACCCGAATGATACTTCCTATTTGCCTACGCAA

TTCTCCGATCTGTCCCCATAAACTAAGAGGCGTCTAGGCCTATTATATCTATTCTCGTCCAGCAAAAATTCTATTCTCACAATACAAAAACAAAGAT

ATATCCCGCTCATNNNNN 

 

Go5_67 (chr5:142927566) 

GTCCCTTGAACACCATCCTCCGTGAAATCAATATCCCGCACAAGAGTGCTACTCTCCTCGCTCCGGG 

 

Go11_371 (chr11:83018072; chrX:19753155) 

TAGTGTTCAGCACGTTATGCTTTCTACTGCAATTGACTCGTATTTTCTAACCTCGGTTACATCAATCCTGAAGTGGAGTATACGATTGATCTACATC

TTCATCACCATTGGAAAAGTAGCATTCGTACTATACTTATTCATGATCCTATTCATATTGCGAGTCACATCCCAAATCGAATATCAAATACTCACAT

GAGCCTGCTCTTGTAGTACAGAGCAATACACTAGTCTTGTAAACCGGAAACGAAGACCTCCTTCCAAGGTGATATTCAGAGAAGAAGTCCTCGACTC

CACCATCAGCACCCAAAGCTAACATTCTAATTTAAACTATTCTCTGTTCTTTCATGGGGAGACAAATTTGGGTGCCACC 
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Go15_391 (chr15:37175640 

GGTCTGCACATCCCCATAAACAGATATGTTTGGTCCTGGCCTTTCTATTAGCTTTTAGTAAGATTACACACGCAGGCACCCCCGCCCCAGTGAAAAT

GCCCTCTAGATCACCCAGATCAAAAGGAGCAGGTATCAAGCATGCACAAATGCAGCTCAAAACACTTTGCTCAGCCACACCGCCAGGGGAAACAGCA

GTGATAAACTGTTAGTAATAAACGAAAGTTTAAGGTATACTGATATCTAGGGTTGGTCAATTTCGTGCCAGCCATCGTGGCCATACCATTAACCCAA

GTTAATAGAACTCGGCATAAAGAGTGTTTAAGGTCTGGCCCTCATAAAGCTAAACTCCATCTAAAGTGTAANAACCCTCAGCTGAATANATATACTA

TGAAAGTGGCTTTATACCTGAGACACATAGTTAGACCAACTGGATAGAACCACTAGCTT 

 

Gcl39-2 (chr9:27204874) 

TCCCTAATCGAAAACAAAATACTCAAATGAACCTGCCCCTGTAGTATAAGCTAATACACCAGTCTTGTAAACCGGAAANNNNN 

 

Gcl39-1,5 (chr16:47290120) 

ACCTCTTCACCCTAACCTGAATCGGAGGACAACCAGTAAGCTACCCCTTCATTACCATTGGGCAAGTAGCATCCGTACTATACTTCACGACAATCCT

ATTCCTGATACCAATCACATCCCTGATCGAAAACAAAATACTCAAATGAACCTGCCCTTGTAGTACAGACCAATACACCAGTCTTGTAAACCGGAAA

NNNNN 

 

Gcl39-8 (chr11:25888029) 

TACACACCAATACACCAGTCTTGTAAACCGGAAANNNNN 

 

Gcl40-11a (chr5:123203800) 

CCCAACGAAATATCAACCGACCTGCCTCCTACAAAAGTACATAACACATAAGATCATTTATCGTACATAGCACANNNNN 

 

Gcl39-7 (chr5:162567507) 

CCCAACCTGAATCGGAGGACAACCAGTAAGCTACCCCTTCATTACCATTGGGCAAGTAGCATCCGTACTATACTTCACGACCATCCTGTTCCTAATG

CCAGTCACATCCCTAATCGAAAACAAAATACTCAAATGAACCTGCCCTTGTAGTACAGACCAATACACCAGTCTTGTAAACCGGAAACGAAGACCTC

CTTCCAAGGGCATATTCAGAGAAAAAGTCCTCGACTCCACCATCAGCACCCAAAGCTAATATTCTAATTTAAACTATTCTCTGTTCTTTCATGGGGA

GACAAATTTGGGTACCACCCAAGTATTAGCTAACCCATCAATAATTATCATGTATGTCGTGGC 

 

Gcl47-3 (chr9:27211514) 

CACCTCCCTAATCGAAAACAAAATACTCAAATGAACCTGCCCCTGTAGTATAAGCTAATACACCAGTCTTGTAAACCGGAAANNNNN 
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Appendix I. Alignment of mapped HVI numts and previous numt reports with high 
identity. 
 
 

Numt1_1 CCAAGTATTAGCTAACCCACCAATAATTGTTATGTATGTCGTGCATTACTGCCAGTCACCATGAATAATATACAGTACTATAAACACCCAAATACCTATA 

Rok8 .................................................................................................... 

AY530149.1 .................................................................................................... 

L76766.1 .................................................................................................... 

AF240455.1 .................................................................................................G.. 

Muk5 .................................................................................................G.. 

AF240453.1 .....................................A...........................................................G.. 

AF250888.1 .................................................................................................G.. 

AF250889.1 .................................................................................................... 

AY530150.1 .................................................................................................... 

Muk9 ...............T.....................A...........................................................G.. 

AF240451.1 .................................................................................................G.. 

Muk8 .......................................................................................T.........G.. 

Rok7 .....................................A......................................................C....G.. 

Rok10 .................................................................................................... 

AF250890.1 .....................................................................G...............G...........G.. 

AF250891.1 .....................................................................G.............................. 

muk7 ............................................................................................C....G.. 

AF240450.1 .....................................A......................................................C....G.. 

Rok5 .....................................A......................................................C....G.. 

AY530151.1 .....................................A......................................................C....G.. 

AY530152.1 ???????????????......................A......................................................C....G.. 

AY530153.1 .....................................R.....................................................?C....G.. 

AF240458.1 .....................................A......................................................C....G.. 

AF250887.1 .......................................................A.............G......................C....G.. 

Muk4 ...............T.....................A......................................................C....G.. 

AY530154.1 .....................................A......................................................C....G.. 

 

Numt1_1 ACACATACAAAACCCAACGAAATATCAACCGACCTACCCTCTACAAAAGTACATAACACATAAAATCATTTACCGTACATAGCACATTCCAGTTAAATCG 

Rok8 ..........????...................................................................................... 

AY530149.1 .................................................................................................... 

L76766.1 .................................................................................................... 

AF240455.1 .................................................................................................... 

Muk5 ..........????...................................................................................... 

AF240453.1 .................................................................................................... 

AF250888.1 ...................................................................................................A 

AF250889.1 ....................................................G..............................................A 

AY530150.1 ....................................................G............................................... 

Muk9 ..........????...................................................................................... 

AF240451.1 ...................................................................................................A 

Muk8 ..........????.........................C.C.......................................................... 

Rok7 .T........????...................................................................................... 

Rok10 ..........????.....................................................................................A 

AF250890.1 ................CG.......A.......................................................................... 

AF250891.1 .................G.........C...C...G................................................................ 

muk7 .T........????.........................C.C......................G..................................A 

AF240450.1 .T.....................................C.C......................G..................................A 

Rok5 .T........????.........................C.C......................G..................................A 

AY530151.1 .T.....................................C.C......................G..................................A 

AY530152.1 .T.....................................C.C......................G..................................A 

AY530153.1 .T...............G.....................C.C......................G..................................A 

AF240458.1 .T.....................................C.C......................G..................................A 

AF250887.1 .................G.....................C.C......................G..................................A 

Muk4 .T........????.........................C.C......................G..................................A 

AY530154.1 .T.....................................C.C......................G.......?..........................A 

 

Numt1_1 TCCTCGCCCCCATGGATGCCCCCCCTCAGATG 

Rok8 ................................ 

AY530149.1 ................................ 

L76766.1 ................................ 

AF240455.1 ................................ 

Muk5 ................................ 

AF240453.1 ................................ 

AF250888.1 ................................ 

AF250889.1 ................................ 

AY530150.1 ..........................T..... 

Muk9 ............................???? 

AF240451.1 ....T.......C................... 

Muk8 ............................???? 

Rok7 ............................???? 

Rok10 ....T.......C..................A 

AF250890.1 ................................ 

AF250891.1 ..............................G. 

muk7 ............C................... 

AF240450.1 ............C................... 

Rok5 ............C................... 

AY530151.1 ............C................... 

AY530152.1 ............C................... 

AY530153.1 ............C................... 

AF240458.1 ....T.......C................... 

AF250887.1 ............C................... 

Muk4 ............C................... 

AY530154.1 ....?.......C..................A 

 

 

 

Numt2_1 CCAAGTATTAGCTAACCCATCAATAATTGTCATGTATGTCGTGCATTACTGCCAGCCACCATGAATAATGCACAGTACTACAAATGTCCAACCACCTGTA 

AF240456.1 .................................................................................................... 
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AF240448.1 ...................C..........T........................T............................................ 

L76760.1 ....................................................................................C...T........... 

AY530145.1 ............................A..........................A............................................ 

 

Numt2_1 ACACATACAACACCCAACGGAATACCAACCAATCCATCCCTCACAAAAAGTACATAACACATAAAGTCATTTATCGTACATAGCACATTCCAGTTAAATC 

AF240456.1 .........................................................................C.......................... 

AF240448.1 .................................................................................................... 

L76760.1 ......................................T.....................................C....................... 

AY530145.1 .................................................................................................... 

 

Numt2_1 ATCCTCGCCCCCACGGATGCCCCCCCTCAGATA 

AF240456.1 ................................G 

AF240448.1 ................................. 

L76760.1 G........................T...A... 

AY530145.1 ................................. 

 

 

 

Gcl18-1 TGCCAGTCACCATGAATAATGCACAGTACTATAAACACCCAAACACCTGTAACACATACAACACCCAACGAAATATCAACCGACCTGCCTCCTACAAAAG 

Muk4 ....................AT..............................T........????.....................A..C..C....... 

Muk6 ....................AT..............................T........????.....................A..C..C....... 

muk7 ....................AT..............................T........????.....................A..C..C....... 

Rok5 ....................AT..............................T........????.....................A..C..C....... 

 

Gcl18-1 TACATAACACATAAAGTCATTTATCGTACATAGCACATTCCAGTTAAATTACCCTCGTCCCCACGGATGCCCCCCCTCAGATG 

Muk4 .......................C.........................C.T.....C......................... 

Muk6 .......................C.........................C.T.....C.....................???? 

muk7 .......................C.........................C.T.....C......................... 

Rok5 .......................C.........................C.T.....C......................... 
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