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Abstract 

The Interactions and magnetization reversal of Ni nanowire arrays and synthetic anit- 

ferromagnetic coupled thin film trilayers have been investigated through first order reversal 

curve (FORC) method. By using a quantitative analysis of the local interaction field profile 

distributions obtained from FORC, it has proven to be a powerful characterization tool that can 

reveal subtle features of magnetic interactions. 
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Introduction 

Magnetic materials have evolved from being a magical stone to one of the most 

commonly used material. Present day technology revolves around magnets, ferromagnets to be 

specific. Ferromagnets and being the most common known, yet by far are the most interesting 

and complex.  

The applications of ferromagnetic material in information storage devices, such as 

computers, cell phone, and nonolatile memory have caused them to be much desired. As 

technology progresses forward so does the desire for more efficient materials. Present day 

technology cause for information storage devices to be convenient enough to carry around in a 

pocket. Hence, sizes matters. 

Magnetic nanostructured materials, whereas their components have at least one 

dimension below 100 nm, are important to both theoretical and experimental studies. Magnetic 

nanowires, i.e. materials with two dimensions at nanometer scale,   in particular are commonly 

studied as an array of nanowires fabricated by depositing magnetic material into a nanoporous 

template. Materials such as track-etched polymers and anodic porous alumina allow for uniform 

control of nanowires. Consequently, the interaction properties of the magnetic nanowires greatly 

depend on the quality of the template used. This thesis will focus on the study of magnetic 

nanowires in templates obtained by aluminum anodization.  

In the study ferromagnetic materials the main feature that stands out is the major 

hysteresis loop. Although the major hysteresis loop gives some information, it has proven to be 

inadequate in producing information about the interactions within a magnetic system. The first 

order reversal curve (FORC) method probes the interior of the major hysteresis loop and it was 
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shown that has the ability to reveal the interactions within the system. After it was introduced by 

Mayergoyz, the first order reversal curve method soon became a protocol in characterize various 

ferromagnetic material systems [1]. This thesis will focus on the characterization of 

nanostructured materials using the first order reversal curve method. 

The following is an outline of this thesis: 

Chapter 1: A Brief Introduction into Magnetism. This chapter gives an overview of the 

concepts in magnetism that are crucial in the understanding of the content of this thesis. The 

background information includes magnetic free energy, insight into magnetic domains, an 

overview of the Stoner-Wohlfarth, Neel-Brown, and classical Preisach models.  

Chapter 2: Experimental Techniques.  This chapter gives an overview of the experimental 

techniques used in the research throughout this thesis. The content includes obtaining 

magnetization curves such as the major hysteresis loops and first order reversal curves (FORC), 

the program used to process the FORCs, the synthesis processes of the materials used, and the 

magnetometers used to characterize the materials. 

Chapter 3: Interactions and Field Reversal Memory in Complex Nanowire Arrays. In this 

chapter the interaction and magnetic reversal behavior in a series of 12 Ni nanowire arrays, of 

different configurations are quantitatively analyzed using first order reversal curve method. 

Chapter 4: Mapping internal fields and interactions on synthetic antiferromagnetic 

materials by FORC analysis: FeCoB/Ru/FeCoB trilayers. This chapter is a FORC study of 

synthetic antiferromagnetic materials.  

Chapter 5: Conclusions. This chapter gives the conclusion in this thesis.  
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Chapter 1: A Brief Introduction to Magnetism 

1.1 Introduction 

In this chapter the main theoretical concepts necessary for describing the research work 

in this thesis. Specifically, the contribution to the magnetic free energy and overview of some 

basic models describing the static and dynamic properties of magnetization will be reviewed.  

1.2  Magnetic Energy 

1.2.1 Magnetic anisotropy  

The magnetic behavior of materials is greatly dependent on factors such as their crystal 

structure, shape, and the effects of stresses. All of these can be grouped together as magnetic 

anisotropy. Magnetic anisotropy plays an important role in the shape of the magnetization curves 

such as the major hysteresis loop (MHL). The MHL is one of the main characteristics of 

magnetic material and will be explained in some detail in a later chapter. The measured magnetic 

properties in a given system can yield dramatically different results depending on the direction of 

the applied magnetic field H with respect to the specimen. Thus, the magnetic anisotropy will 

alter the outcome of the magnetization curves and is one of the most important properties of 

magnetic materials. In the following will be mentioned the main contributions to magnetic 

anisotropy. 
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1.2.1.1  Magnetocrystalline anisotropy  

Magnetocrystalline anisotropy can be considered as an intrinsic property of ferromagnetic 

materials. The origin of magnetocrystalline anisotropy can be associated partially with the 

exchange interaction between two neighboring spins. The exchange interaction can be explained 

as spin-spin coupling between neighboring electrons. Spin-spin coupling is a strong and 

important interaction which will be explained in more detail in later sections. However, the 

exchange interaction between spins is only part of the story. For example, as an external field   

is applied in an attempt to reorient the spins the orbitals associated with the spins are also 

reoriented[2]. The orbitals resist the reorientation due to applied field   because of their strong 

coupling with the crystal lattice, giving rise to a preferred direction of magnetization. The 

applied field   reorients the spins, which are coupled to the orbital, which are strongly coupled 

to the lattice, which consequently have a tendency to resist movement. This is known as spin-

orbit coupling. Also, the energy it takes to pull the magnetic moments away from the preferred 

axis of magnetization is the anisotropy energy. The preferred axis of magnetization is known as 

the easy axis (EA) of magnetization. The anisotropy energy is at a minimum on the EA. Consider 

a hexagonal crystal lattice with uniaxal anisotropy such as cobalt (Co) with a single angle   

between the Ms vector and the long axis. The energy density can be written as, 

            
        

                                                  (1.1) 

where   is the angle the magnetization M makes with the c-axis and     (n=0, 1, 2, 3…) are the 

anisotropy constants. For Co    is a constant and    and higher order terms are very small so 

they can be neglected. The energy density can be written such that 

        
                                                                           (1.2) 
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For cubic crystals such as iron (Fe) and nickel (Ni), the energy density can be written in 

terms of direction cosines such that, 

        
   

    
   

    
   

       
   

   
                                       (1.3) 

where (α1, α2, α3) are the direction cosines of the magnetization vector with respect to the cubic 

axes.  

1.2.1.2  Shape anisotropy 

The shape of the magnetic specimen will affect the outcome of the magnetization 

measurements and resultant curves. As an external magnetic field   is applied an accumulation 

of free poles emerges on the ends of the specimen producing an oppositional field to the 

direction of magnetization [3]. This opposing field is known as the demagnetization field and can 

be written as 

                                                                             (1.4) 

where N is the demagnetization factor dependent solely on the geometry of a given specimen[4].  

The energy of the demagnetizing field is called magnetostatic energy [2]. The 

magnetostatic energy density can be written as follows 

   
 

 
                                                                          (1.5) 

where    is the associated demagnetizing field produced by specimen’s particular geometry. 

Now let us consider a prolate ellipsoid magnetized at an arbitrary magnetization M at an 

angle  , as shown in figure 1.1.  
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Figure 1.1: A Schematic of a prolate sphere. 

 

The magnetostatic energy density    for a prolate ellipsoid with minor axes a and b, major axis 

c, and where a=b < c, can be written as 

   
 

 
                                                                        (1.6) 

where Na= Nb, and Nc are the demagnetizing factors associated with the three principal axes of 

the prolate ellipsoid a, b, and c, respectively, and Na + Nb + Nc =4 . The demagnetizing factors 

for a prolate ellipsoid can be written as 

   
  

      
 

 

      
                                                     (1.7) 

and 

      
     

 
                                                                    (1.8) 

where       and the aspect ratio      . As   becomes large the demagnetizing factors 

take the form 

   
  

  
                                                                         (1.9) 
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.                                                            (1.10) 

Substituting               into equation (1.5) we obtain 

   
 

 
     

 

 
        

                                                 (1.11) 

The angular dependence of the magnetostatic energy has a similar form to that of the 

uniaxial crystal anisotropy energy given in equation (1.2) [2]. The shape anisotropy constant    

can be written as 

   
 

 
        

                                                                    (1.12) 

Consequently, the long axis of a given specimen adopts the role of the easy axis (uniaxial 

crystals). As the aspect ratio increases the anisotropy constant    increases and the 

demagnetizing factor decreases along the long axis. We also find in the case of a sphere where 

    and       the shape anisotropy vanishes. 

The magnetic properties and domain behavior of complex nanostructures such as 

magnetic nanowires arrays depend on the magnetostatic energy as we will see in later sections. 

1.2.1.3 Magnetostriction and stress anisotropy 

When an external field H is applied to a given specimen, its dimensions change (figure 

1.2). This phenomenon is known as magnetostriction. This dimensional change can be expressed 

as a strain   

  
  

 
                                                                      (1.13) 
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where   is the magnetically induced strain on the system, and      is the fractional change in 

length. The strain of a system can be positive or negative depending on the material used. 

Magnetostriction is caused mainly by spin-orbit coupling [2]. As mentioned in section 1.2.1.1 

spin-orbit coupling is also responsible for magnetocrystalline anisotropy. As an applied field 

attempts to reorient the magnetic moments of a given system, the associated orbits are reoriented 

causing a deformation of the domains. Each domain being deformed results in a total 

deformation of the specimen as a whole. When a specimen has reached the saturation 

magnetization the value of    reaches saturation as well, this term is known as saturation 

magnetostriction.  

   

 

Figure 1.2:  Example of magnetostiction. The example depicts an enormous strain. In general, the change is very 

small. 

Consider the magnetization when a specimen is under tensile stress figure 1.3a and/or 

compressive stress Figure 1.3(b). The application of an external stress can alter the domain 

structure giving rise to a source of magnetic anisotropy or stress anisotropy and induces an EA of 

magnetization.  
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Figure 1.3: (a) Magnetization processes in a material with a positive magnetostriction under a tensile stress. (b) 

Magnetization processes in a material with a positive magnetostriction under a compressive stress. 

 

The energy density of a system experiencing stress is called magnetoelastic energy     written 

as 

    
 

 
                                                                (1.14) 

where     is the magnetotstriction,   is the induced stress, and   is the angle between the 

magnetization   and the stress  . The magnetoelastic energy can also be written as 

         
                                                            (1.15) 

where    is the stress anisotropy constant equal to 
 

 
     for a system that exhibits isotropic 

magnetostrictive behavior.  
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1.2.2 Zeeman Energy 

Interactions between the external applied field H and the magnetization vector M produce 

a free energy term known as the Zeeman energy. The Zeeman energy density    can be written 

as the negative of the dot product of the two vectors  

                                                                      (1.16) 

where   is the magnetization vector and   is the applied field. 

1.2.3  Exchange Energy  

The spins of electrons in magnetic materials experience a strong coupling (spin-spin) 

known as exchange interaction. While the exchange interaction is a strong interaction, it 

diminishes quickly with distance. It can be considered as a short range interaction and simplified 

by limiting the summation to neighboring spins.  The exchange energy term can be written as 

                                                                         (1.17) 

where    and    are the moment vectors and     is the exchange integral. Depending on the sign 

of the exchange integral     the spins can align parallel or anti-parallel [5]. The exchange energy 

    will be at minimum when the spins are parallel to each other when       . If        the 

minimum energy     can be observed when the spins align anti-parallel as shown in figure 1.14.  
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Figure 1.4: A crude representation of the spin orientation in ferro and anti-ferro magnetism when     is at a 

minimum. 

 

This is the mechanism that is responsible for ferromagnetism           and anti 

ferromagnetism         .  

1.3 Magnetization Processes 

1.3.1  Introduction 

In the previous sections of this chapter the basic concepts of magnetic free energy were 

discussed. In this section domain theory and important models that utilize the understanding of 

the minimum energies of magnetic systems will be considered.   

To gain a better understanding of ferromagnetic material we will look briefly at magnetic 

domains and why they are formed. Following domain theory, the observation of the simplistic 

case of a single domain particle under the influence of an applied magnetic field with no thermal 

excitation will be considered. We will then observe the same single domain particle as it is 

thermally excited and observe the effects it has on the magnetic properties. Finally, we will 

consider an assembly of interacting particle and focus on the observation of how they interact in 

an applied field and amongst themselves. 
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1.3.2 Domain Theory 

Equipped with a basic understanding of magnetism and ferromagnetic materials and a 

grasp of the energies associated with magnetic material mentioned in section 1.1, we can now 

briefly discuss magnetic domains. With the image of the orientation of the spins in a 

ferromagnetic material in mind (figure 1.4), we could assume that the bulk of the spins in the 

material would always face the same way, but this is not the case. The spins in ferromagnetic 

material tend to form groups or domains that are oriented in different directions to minimize the 

energy of the system. In each domain, the spins in the material are oriented in the same direction. 

Bloch walls, a type of domain wall for bulk materials (see figure 1.5(a)), in a crystal separate 

adjacent domains magnetized in different directions [5]. Another type of domain wall that can be 

produced is Neél walls. Neél walls occur when the thickness of the ferromagnetic material 

becomes comparable to the size of the Bloch wall. The rotation of the moments in Néel walls are 

no longer 3-D (Bloch walls), but 2-D in the plane of the film (see figure 1.5(b)).  Bloch and Néel 

walls cost exchange energy to create and as a consequence there are a finite number of walls that 

can be created.  The change in orientation of the spins is done gradually over many spins, 

crudely shown in figure 1.5. 

Two main magnetization processes occur in bulk magnetic material, domain wall motion 

and domain (magnetization) rotation. As magnetic field is applied to bulk magnetic material the 

domain walls tend to move and shift until a single domain is created, and finally rotating to align 

with the field. 
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Figure 1.5: Rotation of moments (represented by the red arrows) to form Bloch walls (a) and Néel walls. 

 

Multi-domain systems have proven to be difficult to predict and to model because of the 

complex nature of domain wall movement as well as many other interactions. As the size of a 

particle is decreased and becomes comparable to the size the Bloch walls a single domain or 

monodomain can be obtained due to competing energies of the domain walls and the magnetic 

anisotropy. The size of such a particle is  typically 10-100nm in diameter [5]. For example, the 

magnetic systems studied throughout this thesis fall close to the same dimensional category as 

single domain particles. As a consequence, we can approximate such systems after a single 

domain model which will be explained in the next section. 
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1.3.3  Stoner-Wohlfarth Model  

The behavior of a single domain particle was first modeled by Stoner and Wohlfarth in 

1948 [6].  The Stoner-Wohlfath (SW) model or coherent rotation model [3] is the simplest model 

which can predict ferromagnetic switching behavior, one of the most important features for 

magnetic data storage [7]. The SW model is based on the following assumptions: 1) thermal 

relaxation effects are neglected (the temperature is 0 Kelvin), 2) the particle is a single domain 

elongated spheroid with uniaxial anisotropy 3) all spins rotate coherently therefore the net spins 

can be summed as one giant moment 4) the particles are not interacting with each other.  

 

Figure 1.6: Example of a single domain particle 

 

In the following one considers the total energy of a single monodomain (figure 1.6) non-

interacting particle with uniaxial anisotropy under the influence of an applied magnetic field as 

in figure1.7. The magnetization is now subjected to the competing effects of the uniaxial 

anisotropy energy and the energy of the external applied field [7]. 
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Figure 1.7: Particle with uniaxel anisotropy in an applied field H. 

 

The total energy density of the monodomain particle can be written in terms of the anistropy 

energy    and the Zeeman energy    

                                                                          (1.18) 

The energy can also be written as 

                                                                       (1.19) 

where   is the anisotropy constant,   is the magnetization and   is the applied magnetic field. 

Appling the dot product we find 

                        (1.20) 

where   is the angle between the magnetization   and the easy axis ,   is the angle between  the 

applied field   and the easy axis, and     is the saturation magnetization. Let      at 

equilibrium, and minimize the energy to find the equilibrium position of    and the critical 
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angle at which the magnetization switches. Take the first and second derivatives with respect 

to  : 

 
   

  
 
     

               
    

    
     

             (1.21) 

We find that 

 
   

  
 
     

                                   (1.22) 

where the magnetization component is just 

                                                                    (1.23) 

At  =90
o
 the magnetization   is a linear function of   showing no hysteresis  

  
 

  
                                                                      (1.24) 

with          the normalized magnetization  

  
   

  
                                                                    (1.25) 

Saturation magnetization is achieved when                 which is the anisotropy field.  

       is the normalized field. Writing the derivatives in terms of the normalized field 

 
   

  
 
     

                                                                 (1.26) 

 

 
    

   
 
     

                                                                (1.27) 
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The critical field and angle can be written as 

                                                                              (1.28) 

and 

  
    

 

 
                                                                        1.29) 

When      and     a rectangular hysteresis loop is produced, as shown in figure (1.8). 

 

Figure 1.8: 0 and 90 degree magnetization loops of a single domain particle. 

 

The resulting equations give rise to the Stoner-Wohlfarth astroid curve (figure 1.9) which 

is the locus of critical switching fields. 
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Figure 1.9: Stoner-Wolfarth asteroid. Switching can only occur inside the asteroid. 

 

1.3.4 Néel-Brown Model 

A brief discussion of thermal effect on particles will be explored in this section.  In 

idealized systems when particles are not interacting and with no thermal excitation, the Stoner-

Wohlfarth model can be applied. However, the SW model fails when particles are thermally 

excited.  

As an ideal single domain particle or nanoparticle undergoes thermal excitation the 

moments tend to decay exponentially toward thermal equilibrium [8]. The theory of thermal 

relaxation  was first proposed by Néel [9] and later developed by Brown [10]. Bean [11] later 

coined the behavior of such magnetic systems as superparamagnetic. Both Néel and Brown 

assumed an ideal particle and derived a single time for relaxation [8]. The pre-exponential factor 
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is the main difference between the authors’ approaches in the development of the theory. The 

pre-factor consists of several factors such as damping and temperature; for simplicity, assumed 

to be constant. The Néel-Brown model gives the time    for an ideal particle to spontaneously 

switch its magnetization by overcoming the anisotropy energy barrier      , where   the 

anisotropy is constant,   is the volume of the particle at a given temperature  .  

 

Figure 1.10: Energy barrier with a height of KV. 

 

The time constant for magnetic reversal can be written as 

     
  

                                                                  (1.30) 

where   is the Boltzmann constant,    is the temperature, and         . The magnetic 

behavior of the system is strongly dependent on the measurement time frame or window    in 

which the measurement is desired  If      then the thermal  relaxation  is very fast and the 

energy barrier is overcome easily and the system exhibits superparamagnetic behavior(red curve 
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in figure (1.11) ). If      then the relaxation time is slower and the system is stable exhibiting 

ferromagnetic behavior (blue curve in figure 1.11). 

 

Figure 1.11: Example of (Blue) ferromagnetic behavior, and (Red) superparamagnetic behavior. 

 

The temperature that separates the superparamagnetic regime and blocking one is called 

the blocking temperature    [12]. The blocking temperature is defined as the temperature at 

which the relaxation is becomes equal with the measurement time      . For conventional 

magnetometry methods the measurement time is assumed to be of the order of 10
2
 seconds and 

in this case and     is 

   
  

   
                                                                            (1.30) 

In this thesis we studied the static magnetic properties of several magnetic systems using 

magnetometry methods, ad for which the thermal relaxation effects could be neglected. 

1.3.5 The Classical Preisach Model 

The two models in the previous sections assumed that a single particle or maybe an 

assembly of particles were non-interacting.  We also discussed a system was exposed to thermal 

excitation (Néel-Brown). In this section the interaction between particles will be considered.  
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 In 1935 Preisach extended the understanding of hysteretic behavior exhibited by 

ferromagnetic materials [13].The classical Preisach model makes the following assumptions: The 

major hysteresis loop of a given ferromagnetic specimen consists of an infinite number of square 

hysteresis loops known as hysterons, and does not take into account stress, temperature 

dependence, frequency dependence, and so on.  

While the Preisach model has been adapted to many other hysteretic systems, in this 

thesis we will focus on the application of the model to ferromagnetic systems and view the 

hysterons in magnetic terms as in figure 1.12. 

 

Figure 1.12 shows a graphical representation of a hysteron. 

 

The behavior of magnetic system in the Preisach model can be described by a distribution 

the hysterons             
 . Each hysteron has associated threshold reversal fields up       and 

down          as saturation magnetization           switches from           back 

to          . In an assembly of interacting particles the associated hysteron of the particle 
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experiences an offset or biasing from the origin (figure 1.12). The shift of the hysteron is a 

measure of the interaction field acting on that specific particle from its sounding neighbors.  

In order to be considered a classical Preisach system the following conditions must be 

satisfied: 1) the deletion and 2) the congruency properties. The deletion property is met by each 

minor loop starting and ending at the same point on the major hysteresis loop (figure 1.13(a)) 

[14]. Therefore, the history is “deleted.” The congruency property is met by all minor loops, with 

the same upper and lower field limits, must be congruent geometrically [14] as shown in figure 

1.13(b).  

 

Figure 1.13: (a) the deletion property and (b) the congruency property.[14] 

 

A function              determines the weight of each hysteron and is known as the 

weight or density function. A set of these weight functions is the Preisach distribution and we 

will see later how to determine such a function.  

The Preisach model can be written as 

                                                      ,                     (1.31) 
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where   is the magnetization  determined by the hysterons            
and the weight function 

               The Preisach plane is  

                                                                (1.32) 

where             is a point in the Preisach plane. The Preisach plane is shown in figure 1.14. 

 

Figure 1.14: Preisach plane 

 

At each point             there is an associated hysteron. We can now view the Preisach plane 

with each point in the plane represented by a hysteron as shown in figure 1.14. 
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Figure 1.15: Preisach plane with each point representing a hysteron. 

 

We can now determine the set of weight functions             . 

Consider the major hysteresis loop of an arbitrary specimen. Beginning at a saturating 

field where all the hysterons are in the up position (figure 1.16a), and as the applied field is 

decreased, the switching of the hysterons begin from up to down or from +1 to -1 (figure 1.16b). 
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Figure 1.16: Graphical representation of the Preisach model. (a) H=Hsat where all hysterons are in the up 

position, (b) a field is applied to a reversal point HR, and (c) the looped is probed as the field is applied. 

 

The magnetization in (figure 1.16b) can be written as a function of the reversal field  

                                                                             ,    (1.32)                                

where    and    represent the up and down hysterons, respectively. The hysterons operator is 

assigned a +1 or -1 depending on the state of the hysterons and the magnetization can now be 

simplified to be 

                                        ,       (1.33) 
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Next we can write the magnetization of (figure 1.16c) as a function of the applied field and the 

reversal field  

 

                                                       ,                                  (1.34) 

 

where third integral is the area of the small triangle in (figure 1..16c). Then the difference of the 

magnetizations                 is 

                                            .              (1.35) 

 

From the figure the orientation of the hysterons are down, so now solving for the weight function 

we find 

        
 

 

  

     
                                                     (1.36) 

The first term will be zero since       is only a function of    then 

         
 

 

         

     
 ,                                                   (1.37) 

the weight function in terms of the applied field   and the reversal field   . The set of weight 

functions is known as the Preisach distribution.  

To experimental obtain the Preisach distribution Mayergoys[15] introduced First order 

reversal curve (FORC) as an identification method. Systems such as magnetic nanowires arrarys 
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closely meet the requirements to be consider a classical Preisach system as shown by Sorop et al 

[14]. As we will see in the next chapter the FORC method can be used to obtain the Priesach 

distribution.  
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Chapter 2: Experimental Techniques 

2.1 Introduction 

Ferromagnetic magnetic materials have revolutionized the technological industry because 

of their unique hysteretic characteristics. To be considered hysteretic a system must have several 

possible outputs for every given input. As an applied magnetic field H (input) is cycled there are 

in general two paths that the magnetization M (output) follows when a specimen is saturated. 

The switching property is one the main desired characteristics of ferromagnets because of their 

application in computers and other information storage devices. Many methods are used to 

characterize ferromagnetic material. For example, the major hysteresis loop and first order 

reversal curve method, as described below, are quickly becoming the standard protocol for 

studying and characterizing ferromagnetic magnetic materials.  This chapter will be devoted to 

describing the experimental methods utilized to synthesize and characterize the magnetic 

materials used throughout the rest of this thesis.    

2.1.1 Major Hysteresis Loop 

The major hysteresis loop (MHL) is one of the main characteristics of ferromagnetic material.  

Known for the simplicity with which it can be obtained, the MHL can be considered the 

fingerprint of ferromagnetic material [16]. Obtaining the MHL is one of the first steps in the 

protocol for characterizing a ferromagnetic material. With recent advances in electronics, more 

efficient manufacturing in machinery, and improvements in data processing methods, 

magnetization curves can be obtained easily within minutes.  
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Consider a ferromagnetic sample under the influence of a positive applied field. The 

specimen will reach a state of saturation magnetization as a large enough field is applied.  Once 

the specimen has reached saturation magnetization the applied field H is reversed until the 

sample reaches negative saturation. In general, a sample is saturated with H in the positive 

direction and then data are recorded while the field is cycled from positive to negative and back 

to positive. 

 

Figure 2.1: The major hysteresis loop and associated main parameters 

 

The above figure is an example of an experimentally obtained MHL using a vibrating sample 

magnetometer.  With a large enough positive applied field H a given specimen can be saturated 

magnetically. Saturation magnetization occurs when all domains are aligned with the applied 

field H. As H is reduced to zero we find that the magnetization curve does not return to zero 

when H is zero. In fact, the specimen will retain a certain magnetization with no applied field. 

This is known as the positive remanence, and it is the point where a permanent magnetization 

can be obtained. In order to return the magnetization back to zero a negative applied field H is 
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needed. The value of the applied field H when the magnetization returns to zero is known as the 

coercivity. This is a measure of amount of field needed to “push” the magnetization to zero, 

obtaining a demagnetized state that is actually not the same as the original state of 

demagnetization.  If a negative field H is applied, the specimen reaches a negative saturation 

magnetization. Finally, applying a positive field H the lower path of the MHL is taken, passing 

through its associated negative remanence and coercivity. The path direction is marked with 

arrows in figure 2.1. 

Although the MHL provides some useful information about a given specimen it fails to 

produce an adequate description of the magnetic interactions. Different protocols such as the 

ratio of remnant magnetization to saturation magnetization (squareness) and sheerness of the 

MHL proved to be unsuitable tools in the further characterization of ferromagnetic material [17, 

18]. More complex magnetization curves that actually probe the interior of the MHL, such as 

higher-order magnetization, curves can provide additional information that can be used to 

further characterize ferromagnetic material by revealing magnetic interactions [19, 20].  Higher-

order magnetization curves are obtained after a number of reversals of the applied H. Thus, the 

MHL can be considered a zero-order magnetization curve and all subsequent curves when the 

applied field is reversed at a certain point on the MHL can be considered higher-order. To be 

more specific, positively saturating a specimen then allowing the magnetic field to decrease to a 

point on the descending branch of the MHL and reversing the polarity of the field before the  

negative saturation is considered a first-order reversal. This process can be extended to second 

and third-order and so on depending on how many field reversals are desired. For the purpose of 

this thesis we will only be considering first-order reversals, as we will see in the next section. 
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2.1.2 First Order Reversal Curve Method 

In order to probe the interaction effect of magnetic assembles of particles several 

methods of higher-order magnetization protocols were proposed. Examples of higher-order 

curves are Henkel plots [21],    plots[22], and first-order reversal curves [20, 21, 23]. As 

mentioned in Chapter 1, Mayergoys [20] first introduced first order reversal curve (FORC) 

measurement as an identification method for the Preisach model. It was later implemented by 

Pike who showed that the FORC method of characterization was a better alternative than     

plots for the study of magnetic interactions in assembles of magnetic entities [23]. The FORC 

method is experimentally easier to achieve. It also requires the system to be magnetically 

saturated which is highly reproducible. Also, as mentioned in chapter 1, the FORC method is 

independent of the Preisach model in the sense that it can be applied to any system that exhibits 

hysteretic behavior.   

The FORC method of characterization became an important characterization tool in many 

interacting hysteretic systems for a multitude of different materials ranging from magnetic [24-

31] and electric [32, 33] to spin transition [34-37]. FORC has proven to be a useful tool to study 

the change in interactions throughout a series of samples that have few variables. In the next 

section we will look at the experimental methods used to obtain FORCs. 

2.1.2.1 Experimental first order reversal curve measurements 

An experimental set of FORCs, commonly called a family of FORCs, consists of many 

minor hysteresis curves. Typically a family of FORCs of approximately 100 minor loops is 

needed to gain adequate detail of the magnetic properties. The simplicity in which the FORCs 

can be obtained makes this method a powerful and important tool in magnetic characterization. 
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Using conventional magnetometry (i.e., vibrating sample magnetometer, alternating gradient 

magnetometer) a family of FORCs can be obtained in approximately two hours. The 

measurement time may vary of course depending on the system under study.  

A FORC measurement starts by saturating a specimen magnetically by applying a high 

enough magnetic field H, in the direction chosen to be positive. Following saturation, the field’s 

polarity is changed and ramped down following the top branch of the MHL to a reversal point 

chosen to premature to negative saturation magnetization.  

 

Figure 2.2: An example of a single first order reversal curve probing the inside of the major hysteresis loop at an 

arbitray reversal field HR. 

 

The reversal point will be defined as    as shown in figure 2.2. The field is then reversed back to 

the positive direction and magnetization is recorded as function of the applied H field and 

reversal field     as the field is ramped back to positive saturation magnetization. This process is 

repeated until the interior of the MHL mapped out by FORCs as shown in figure 2.3 below. 
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Figure 2.3: Experimentally obtained family of FORCs where the interior of the MHL is completely probed. 

 

Different methods to obtain a family of FORCs were explored during the research for this 

thesis in an attempt to optimize the results of the measurements. All of the methods have certain 

drawbacks and advantages. Each process starts with complete magnetic saturation of a given 

specimen as described above.  

 

Figure 2.4 (a) The FORC plane, where each red dot represents a hysteron. (b)The experimental plot for 

obtaining the extended FORC. (c)The default arrangement for the Princeton Measurement VSM/AGM.   
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Figure 2.4(a) above is an example of the Preisach plane or now the FORC plane where each red 

dot represents a hysteron. The extended FORC is shown in figure 2.4(b) obtained by taking 

FORCs from positive saturation to negative saturation. The advantage of extended FORC is that 

it collects everything, which is also one of its drawbacks. Extended FORC measurements acquire 

a lot of data that is not needed and this in turn causes the resolution of the FORC distribution to 

be compromised to a certain degree. Figure 2.4(c) is the default program for the Princeton 

measurement VSM for obtaining FORCs. This program allows the user to choose where the first 

FORC will begin. The main advantage of this method is it clips out the unwanted data as seen in 

red in figure 2.4(c). After each FORC is taken the sample is saturated again. The disadvantage is 

the accidental clipping of the FORC data which will result in hours of time wasted if the user is 

careless.  

2.1.2.2 FORC distribution calculation 

After a family of FORCs is obtained the second order mixed derivative with respect to 

the reversal field HR and the applied field H is applied to amplify and reveal subtle changes in 

magnetization. The FORC distribution is written as 

             
 

 

          

     
                                                   (2.1) 

The above equation takes on a form similar to the Preisach weight function, but as mentioned 

previously the FORC method can be applied to a variety of hysteretic systems regardless if it fits 

the Preisach model or not. By applying the second order derivative of the magnetization, the 

associated noise is also amplified. Typically, a certain amount of noise removal or smoothing is 

required when calculating a FORC distribution. The FORC distribution can be represented as a 

2-D contour plot or as a 3-D plot as in figure 2.5. 
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Figure 2.5: Graphical representation of a 3-D plot and projected 2-D contour plot as a function of reversal and 

applied field, HR and H, respectively. 

 

2.1.2.2.1 FORCinel 

In this section we will briefly describe the computer program used in this research to 

process the FORC data. 

To calculate each FORC distribution a computer program named FORCinel [38] that uses 

locally weighted regression smoothing was implemented.  At any point P in the FORC plane, a 

least square fit to the magnetization M (HR,H) is performed over a square grid of points 

surrounding P [38].  The magnetization M (HR, H) is fitted to a second–order polynomial 

function. This method most commonly used [23] to calculate FORCs 

                    
         

                           (2.2) 
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Therefore the value of the FORC at point P is equal to -    .  The smoothing factor determines 

the size of the square grid (2SF+1)
2
 in the (HR,H) plane. The smoothing factor acts to smooth out 

the noise, but it can also over smooth and obscure the actually desired data. Typically a small 

smoothing factor of 2-5 is in the acceptable range. A smoothing factor that is too large will 

broaden the features of the FORC distribution and skew the results as in figure 2.6c.  

When running a FORC experiment it is imperative to ensure that the noise from the 

measurement it at a minimum. Using material that exhibits a strong ferromagnetic signal, 

increasing  the averaging time between data points, and eliminating most of the material that can 

give undesirable signals (i.e., substrates, capsules, sample contamination, and so on… ) are a few 

precautionary steps to aid in obtaining excellent FORC measurement results. Figure 2.6 is a 

comparative result of smoothing factors. 

 

Figure 2.6: Experimentally obtained FORC distributions with different smoothing factors. The features in (b) 

and (c) are broadendue to over smoothing. 
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Another feature of FORCinel that aids in the understanding of the FORC results and their 

relations to the MHL, is the color FORC option. This option provides a qualitative analysis tool 

by using the same color change to the FORC and the FORC distribution, allowing insight to 

which portion of the FORC is contributing to the FORC distribution, as shown in figure 2.7. 

 

Figure 2.7 A colored family of FORCs (left) revealing the potions of the MHL that contribute to the FORC 

distribution (right). 

 

2.1.2.3 Quantitative analysis using FORC 

The FORC method in not only a tool with qualitative analysis capabilities, it allows for a 

quantitative analysis approach by capturing the distribution of magnetic properties. It is helpful 

to apply a coordinate change to the FORC distribution for the discussion of the magnetic 

properties. This is done by considering a hysteron in terms of local coercivity    and biasing 

fields   , which affect wideness of the loop and how much the loop is shifted horizontally, 

respectively. This is shown in Figure 2.8, a graphical representation of a hysteron in terms of 

local coercivity     and biasing fields   .  
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Figure 2.8: A graphical representation of a hysteron in terms of biasing and coercive fields Hu and Hc, 

respectively. 

From figure 2.8 it can be seen that the reversal field is 

         ,                                                                (2.3) 

and the applied field is  

       .                                                                 (2.4) 

By solving for the bias and coercive field we can obtain the new rotated coordinate system  

   
    

 
,                                                                (2.5) 

and 

   
    

 
.                                                                 (2.6) 
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where,     ,      and at the boundary     . 

The coordinate transformation serves to rotate the distribution 45
o
 clockwise as shown in figure 

2.9. 

 

Figure 2.9: FORC plane in the original and rotated coordinated (H,HR) and (Hc,Hu), respectively. 

 

The blue axes represent the rotated coordinates in terms of biasing and coercive fields. 

Performing a coordinate change in terms of the biasing interactions and coercivity, complex 

interacting systems such as ferromagnetic nanowire [16] arrays or ferromagnetic multilayer thin 

film systems, as we will see later in the thesis, can be studied more readily. As with the original 

coordinate system the FORC distribution can be plotted as a 2-D contour plot or a 3-D plot. 
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2.1.2.4 Switching Field Distribution 

The switching field distribution can give insight to the onset and endpoints of 

irreversibility [27]. Integrate by integrating the FORC distribution in the original coordinate 

system              with respect to   

                
 

 
 

        

     
    

 

 

      

   
 .                               (2.7) 

As shown in figure2.10, by integrating over   we obtain a projection of the switching field 

distribution onto   .  

 

Figure 2.10: The projection of the switching field distribution onto the HR axis obtained by integrating over H 

 

As shown by Davies et al. [27] the FORC switching field distribution is comparable to that of the 

DC-demagnetization switching field distribution. The two methods for determining the switching 

field distribution are fairly different, however. The FORC switching field distribution method is 

obtained by integrating over the entire FORC which follows the irreversible switching back up to 

saturation, whereas the DC-demagnetization method probes the remanent state [27]. 
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2.1.2.5 Projection onto H 

The projection onto the H axis is done by integrating the FORC distribution with respect to HR  

                 
 

 
 

        

     
     

 

 

     

  
 .                              (2.8) 

This gives insight to how the magnetization changes as the applied field is changed as the MHL 

is probed by the FORC. 

 

Figure 2.11:The projection of H obtained by integrating over HR. 

 

2.1.2.6 Determination of Mirrev 

To determine Mirrev the total integration of the FORC distribution             is performed 

                   
 

 
 

        

     
       

 

 

         

     
        .        (2.9) 
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This method is useful when changing system parameters such as introducing impurities or 

varying layer thickness in thin films by allowing a study of the ferromagnetic phase fraction as 

the system is altered. 

2.1.3 Sample Synthesis  

2.1.3.1 Magnetic Nanowires 

Magnetic nanowires have gained much attention in magnetic research in recent years, 

gaining importance in the class of nanostructured material [39-41].  Due to size confinement, 

new phenomena arise in these systems which makes them ideal candidates for important 

technological applications in spintronics and as microwave devices [42-45] high-density 

recording media, and permanent magnets[46]. For all these applications, as well as in research 

studies, nanowires are commonly used as highly ordered periodic arrays. Nanowires can be made 

by depositing suitable composites into nanoporous templates. The nanowires studied throughout 

the research in this thesis were grown by electrodeposition techniques, which have advantages 

over the standard preparation methods of nanowires by lithographic approaches. There are 

several nanoporous materials that can be used as templates but the most common for 

unidimensional nanostructures are anodic porous alumina and track-etched polymer membranes 

[47, 48]. These membranes allow fabrication of uniform arrays of metallic nanowires with large-

aspect ratios over a large range of wire diameters and interwire distances. The strength of 

magnetic interactions in magnetic nanowire arrays can be controlled effectively by varying the 

interwire spacing. The spacing provided by the polymer membranes is difficult to control due to 

the randomness of pore location obtained through the combination of the charged-particle 

bombardment (irradiation) and chemical etching [48, 49]. Despite recent  progress  in  
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fabrication  of  ion  track  nanochannels that allows a better control of the number of the pores in 

a  membrane,  their  precise  location  is  still  problematic [50]. 

Templates obtained by aluminum anodization provide for better control of the pores 

through a combination voltage, acid concentration, and time used during the oxidation [48] 

process. Moreover, through a multistep anodization scheme one can obtain alumina membranes 

with more complex configurations that can be used to prepare nanowires with modulated 

diameters and/or varying interwire distances [51].This section will be an overview on the 

synthesis of nanoporous templates and the growth of nanowires used in this thesis research. 

2.1.3.1.1  Aluminum Anodized Oxide (AAO) Template Fabrication 

Here we focus on Ni wires deposited in anodic aluminum oxide (AAO) membranes. The 

membranes were prepared by either a two- or three-step anodization procedure[52]. To prepare 

the standard mild AAO (Mi AAO) membranes by the two-step method, first an Al film with a 

thickness of 0.25 mm was annealed at 450 ◦ C for 5 h in Ar atmosphere, and then the sample was 

electropolished in a 1:4 (volume ratio) solution of perchloric acid-ethanol at 25 V, 10 ◦ C, before 

anodization in 0.3 M oxalic acid at 40 V, 17 ◦ C. After the oxide layer was removed at 80 ◦ C in a 

solution of 1.8 wt% chromic acid-5 wt% phosphoric acid, a second anodization was performed in 

oxalic acid resulting in Mi AAO.  
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Figure 2.12: The two and three step anodization process used in the fabrication of the Mild and Mild Hard 

AAO templates  

 

2.1.3.1.2 Nanowire Deposition 

The nanowires in the research described in this thesis were deposited in the pores of an 

AAO template by electrodeposition. An initial thin coat of Ag was deposited onto the template to 

form an electrode. A counter electrode of Pt was used. An aqueous solution containing metal 

sulfate was used as the electrolyte. A commercial high-purity of Nickel sulphamate (NiSO4 

7H2O from TECHNIC NC) was use to synthesize the magnetic nanowire arrys. The process was 

developed using DC electrodeposition method in galvanostatic (constant current) mode, using a 

Teflon bath cell.  

The magnetic Ni nanowires used is this research were deposited as follows: To produce 

the mild nanowires (Mi) the wires were deposited into the AAO-Mi temple. As for the Mild-

Hard nanowires (MiHa) and Hard-Mild nanowires (HaMi), referring to figure 2.12(e) the wires 

were either deposited into the smaller or larger diameter side of the template, respectively. By 

filling the pores from the hard side and crossing the MiHa-HaMi interface a single modulated 

nanowire structure was obtained. 
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2.1.4 Vibrating Sample Magnetometer 

The vibrating sample magnetometer (VSM) is diverse as well as sensitive. In 1956 

G.W.Van Oosterhout and P.J. Flanders both published the idea behind the VSM, but it was S. 

Foner who gained credit for creating this instrument. While able to measure strongly magnetic 

material, the VSM also has the capability to measure precisely small magnetic moments in 

materials, on the order of ~10
-5

 emu. Using a conventional electromagnet set up a maximum of 

~2.2 tesla can be reached. Most VSM companies offer additional attachment options such as 

high a temperature furnace and cryostat with a temperature range of 4.2K -1000K, none of which 

were used during the work for this thesis. In general, the dimensions or mass of a given sample is 

not a problem when using the VSM because the sample holder is robust and the air gap between 

the electromagnet can be adjusted accordingly.  The VSM is fairly simple and straight forward 

and is based on the flux change in a copper detection coil as a magnetic sample is vibrated near it 

on a nonmagnetic sample rod and holder.  

 

Figure 2.13:  A typical set up of vibrating sample magnetometer 
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As a given magnetic sample is oscillated at a fixed frequency   in an applied magnetic field H 

(in the case of the Princeton Measurement VSM it is 83 Hz) the moving sample induces an 

alternating electromotive force (emf) in the pick-up coils. The emf is proportional to the magnetic 

moment of the sample. The total flux can be written as 

             ,                                                   (2.10) 

where   and   are constants. 

The induced alternating emf signal is very small so it is fed to a lock-in amplifier to compute M  

  

  
          .                                                      (2.11) 

The above example of the VSM is one of several different possible set ups, but all 

involve balanced pairs of coils that act as signal canceling agents to the applied field.  The VSM 

used throughout this thesis research was the Princeton Measurement Corporation VSM. 

2.1.5 Alternating Gradient Magnetometer 

The Alternating Gradient Magnetometer [53] (AGM) has attributes and capabilities 

which can attain higher sensitivity and speed than the VSM. The minimum magnetic moment of 

the AGM is on the order of ~10
-6

 emu, a full order of magnitude smaller than the VSM.  
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Figure 2.14: A typical set up of the alternating gradient magnetometer. 

 

The AGM characterization method is similar to that of the VSM. Instead of using a drive 

motor or some other mechanical source to vibrate the sample, the AGM uses gradient coils to 

produce an alternating gradient field.  The field gradient produces a force on the sample, which 

causes it to oscillate. This in turn produces stresses in the piezoelectric fiber. The piezoelectric 

crystal fiber generates a voltage that is proportional to the vibrational amplitude, which is 

proportional the sample’s magnetic moment. The signal generated by the piezoelectric element is 

dramatically enhanced by operating at or close to the mechanical resonant frequency assembly. 

Commercial AGMs generally have built-in software that can automatically determine the 

mechanical resonance and set the appropriate frequency for a given sample. 
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While the AGM is more sensitive it has a few drawbacks that must considered.  Since the 

AGM is depends on the vibration amplitude of the crystal it is susceptible to acoustic noise. 

Depending on the environment, it could be worth building or purchasing a sound proof booth to 

improve results.  In addition, since the mechanical resonant frequency is mass dependant, the 

sample should not be too massive, about 200mg at most. 

 

 

 

 

 

 

 

 

 



 

 

49 

 

Chapter 3: Interactions and Field-Reversal Memory 

in Complex Nanowire Arrays 

3.1 Introduction 

One of the most important effects in magnetic nanowire arrays is the interwire 

magnetostatic interactions [51, 54-57] The interwire interaction significantly affects magnetic 

properties of magnetic nanowire including magnetization switching, [54, 58] microwave, [54, 

59] and magnetotransport properties [43, 60]. Consequently, in order to understand the obtained 

experimental results, reliable methods for evaluation of interactions are needed. To quantify the 

effect of interactions one needs both a suitable method to experimentally vary the strength of 

interactions in arrays of magnetic nanowires and a method to measure the effect of the 

interactions. 

More complex magnetization curves, such as the first order reversal curve (FORC) 

method, can give additional information that can be used for magnetic interaction 

characterization. In the case of magnetic nanowire arrays, Spinu et al. [61] proposed for the first 

time the FORC method as an effective method for magnetic interaction characterization with 

many other reports following.[62-68] In the majority of these reports the FORC method was 

used mostly as a qualitative tool to picture the existence of interaction and coercive distributions 

without a comprehensive quantitative analysis of magnetic interactions. One of the reasons for 

this situation was the lack of a series of samples with tuned interaction strengths and 

predetermined morphological parameters that can facilitate a correct and coherent interpretation 

of the wealth of information provided by the FORC measurements via theoretical models. In 

fact, one of the advantages of using templates for magnetic system fabrication is the possibility 

of obtaining model systems that can be used to test the validity of theoretical models. As the 
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quality of materials is dependent on the morphology of the templates, an accurate interpretation 

of the experimental results is difficult, especially for templates with a large geometric variability 

such as is the case of commercially available templates used exclusively on all previous FORC 

studies on magnetic nanowire arrays. 

In this study, by a combined sample design and experimental measurements approach we 

quantitatively analyze the effect of magnetic interactions and investigate the magnetization 

reversal in highly ordered magnetic nanowire arrays. The magnetic nanowires were grown in 

highly ordered anodic alumina membranes for which the spatial distribution of the pores was 

controlled by a sequential application of mild and hard anodization technique [52]. Several series 

of samples were considered including simple wires of different lengths and diameters (70 and 

110 nm) and complex wires with a single modulated diameter along their length. The FORC 

method was used to quantify the effect of magnetic interactions in the series of magnetic 

nanowire arrays. Besides the qualitative investigation of FORC diagrams, more subtle features of 

magnetic interactions in complex wires are revealed through a quantitative analysis of the profile 

of the local interaction field distributions. In addition, the FORC analyses indicate that the 

nanowire systems with a mean diameter of 70 nm appear to be organized in symmetric clusters 

indicative of a reversal-field memory effect [69]. 

3.2  EXPERIMENTAL  

3.2.1 Sample Synthesis  

To prepare more complex membranes with larger interpore distances, the same 

anodization procedure as described in chapter 2 was carried out, but with an additional 

anodization step  (hard  condition)  at  100  V  for  30  min  at  5 
o
C  to produce the mild-hard 
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(Mi-Ha) AAO. After the second or third anodization steps, templates were detached from the Al 

film by an electrochemical treatment in a 1:1 mixture solution of perchloric acid-ethanol at 100 

V at 10 
o
C. The samples were then rinsed with distilled water and acetone. To completely 

remove the barrier layers, samples were immersed in a 5 wt% phosphoric acid solution. An 

example of such membranes prepared by multistep anodization is shown in figure 3.1. In the 

transition from the mild region to the hard region, approximately half of the channels remain 

continuous throughout the membrane while other pores initiated on the mild side terminate at the 

mild-hard interface. The Mi-Ha AAO can be employed as a membrane for the fabrication of the 

magnetic nanowire arrays. Wires were grown either in the hard or the mild side of these 

membranes. In the hard side of the membrane, 110-nm-diameter wires are readily obtained 

within all available pores. Wires fabricated in the mild side of the AAO template, however, only 

grow in selected pores as shown in figure 3.1. All samples were fabricated from Professor John 

Wiley’s research group at the University of New Orleans.  

 

Figure 3.1: Schematic representation of the four series of samples considered (a) Mi, (b) Mi-Ha, (c) SM Mi-Ha, 

and (d) Ha- Mi. Each series has three samples: each sample contains nanowires of constant length, the length 

being different from sample to sample. The individual samples within each series are represented schematically 

by the three wires of different lengths in each figure, (a), (b), (c), and (d). 
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Ni nanowires were grown in the pores of AAO templates by electrodeposition. Initially 

an Ag film was sputtered onto one side of AAO template. Metal nanowires were then grown 

over several minutes at room temperature by a constant current method at 0.5 mA on a Princeton 

Applied Research VMP2 with a Pt wire counter electrode. A commercially available Ni plating 

solution (Technics, Inc., nickel sulfamate-RTU) was used.  

 

Figure 3.2: FESEM images of Mi-Ha AAO template. (a) Cross section of the boundary of mild side (top) and 

hard (bottom) side. (b) Higher magnification view of boundary region of mild (bottom-right) and hard side (top 

left); black arrows highlight some selected pores that have been terminated on the hard anodization side. 

 

Synthesized nanostructures were characterized by field- emission scanning electron microscopy 

(FESEM) on a LEO1530 VP. Nanowires of different lengths were prepared by simply varying 

the electrodeposition time. 

In this work, we have selected 4 sets of nanowire arrays for a total of 12 in order to study 

the effect of the diameter, the length, and the interpore distance on the magnetic properties of 

single-diameter nanowire arrays. Also, we studied magnetic properties of single modulated 

diameter nanowire arrays, where each nanowire has two different diameters. The 4 sets of 

samples are represented schematically in Fig. 3.1. The samples labeled mild (Mi) are array of 

nanowires deposited in the pores of the membrane obtained through a single-step mild anodizing 
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process, characterized by diameters of 70 nm, with an interpore distance of 100 nm. The mild-

hard (Mi-Ha) samples are nanowires deposited only in the mild side of Mi-Ha templates. The 

mean diameter of the nanowires is 70 nm, and the interpore distance is about 250 nm. The hard-

mild (Ha-Mi) nanowires are deposited only in the hard side of Mi-Ha templates obtaining wires 

with a mean diameter of 110 nm and an interwire distance of 250 nm. The single modulated (SM 

Mi-Ha) templates are identical to Mi-Ha and Ha-Mi, but here wires are grown such that they 

cross the mild and hard interface, starting from the mild side, to produce single modulated 

diameter structures. In this case, the portion of the nanowire from the mild side is always 14 μm 

in length and 70 nm in diameter, while the portion from the hard side has various lengths with a 

diameter of 110 nm. 

3.2.2  Magnetic measurements 

The measurements and data analysis was done following the same approach mentioned in 

chapter 2. Thus, the magnetic measurements (MHLs and FORCs) were done at room 

temperature on a Princeton AGM-VSM magnetometer (using the VSM option); this instrument 

is able to record a set of 100 FORCs in less than 2 h. FORC distributions were obtained by 

computing the mixed second-order derivative of magnetization M (H, HR) (equation 2.1) and 

processed using FORCinel. In all measurements the magnetic field was applied along the length 

of the nanowire as shown in figure 3.3. 



 

 

54 

 

 

Figure 3.3: Schematic of a nanowire array with the yellow arrow indicating the applied magnetic field.  

 

In order to quantitatively compare different FORC diagrams obtained for different 

samples, a statistical analysis was carried out of the profiles of both interaction and coercive field 

distributions. Hence, the distribution parameters as mean-field values of coercive, <Hc>, and 

interaction, <Hu>, fields and their corresponding standard deviations, σHc and σHu, were obtained. 

The parameters for all samples considered in this study are given in table 3.1. 

 A typical family of FORCs is shown in the vertical back panel of figure 3.4 for the Mi-

Ha 4.8-μm sample (70-nm-diameter nanowires, interwire distance of 250 nm, and length of 4.8 

μm).  
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Figure 3.4: A family of FORCs from the Mi-Ha 4.8-μm nanowire array (vertical back panel), the corresponding 

FORC 3D distribution (top horizontal panel), and the FORC diagram (bottom horizontal panel). 

 

The FORC distribution as a three-dimensional (3D) plot and the FORC diagram as a 2D 

contour plot in coordinate (H, HR) for the Mi-Ha 4.8-μm sample are represented in the top and 

bottom horizontal panels of figure 3.5 respectively. 

3.3 Results and Discussion   

3.3.1 Study of the interactions 

The main advantage of the use of the AAO templates is the fact that they allow, while 

keeping the same diameter distribution, the modification of the interpore distance through a 

controlled obstruction of the pores.  In this section we study and compare the magnetic properties 

of the systems Mi AAO vs Mi-Ha AAO. The difference between these two systems is the 

average pore-pore distance.  The Mi AAO systems are characterized by a nominal diameter of 70 

nm, with a mean interpore distance of 100 nm, being synthesized with three different nominal 
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lengths: 4.0, 9.0, and 15.0 μm. The second system, Mi-Ha AAO, is characterized by the same 

nominal wire diameter of 70 nm, but with a mean interpore distance of about 250 nm; wires were 

fabricated with three different lengths: 4.8, 8.5, and 15.8 μm, respectively. 

For these ranges of diameters and lengths of the mild and Mi-Ha nanowires the 

demagnetizing factors of the wires do  not  vary  significantly [70]  and,  as  expected,  within  

the same  series,  Mi  or  Mi-Ha,  The  FORC  diagrams  do  not display any noticeable variation 

as a function of the length of the nanowires. In figures 3.5(a) and 3.5(b) are displayed the 

corresponding normalized FORC diagrams for the Mi-Ha and mild nanowires with a length of 

8.5 and 9.0 μm, respectively. 
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Figure 3.5:  FORC diagrams of a 8.5-μm-long Mi- Ha nanowire array (a), a 9-μm-long regular Mi nanowire 

array (b), and a 9-μm-long Ha-Mi nanowire array (c). The top and the side insets for each figure represent the 

coercive field and interaction field distribution profiles obtained at the location of the horizontal (blue color 

online) and (red color online) vertical lines, respectively. The values of diameters and center-to-center interwire 

distances are given for each sample in the corresponding diagrams.  

 

The top and the side insets represent the local coercive and interaction field distribution 

profiles obtained as horizontal and vertical cross sections, respectively, of the FORC distribution 

through its main maximum. One observes that as the interwire distance decreases the standard 

deviation of interaction field distribution, σHu , increases more than two times, while the most 

probable value and standard deviation of coercive field distribution varies only slightly (see table 
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3.1). This is a clear indication of the increased effect of interwire interaction as only the distance 

between nanowires is decreasing. In the majority of previously published studies of interacting 

magnetic nanowires it was difficult to isolate and evaluate the effect of interactions when 

comparing different samples because more than one parameter of the assembly was varied, not 

just the interactions. 

As shown in  figure 3.5(a)  and 3.5(c), by comparing the dispersion of interactions in Mi-

Ha and Ha-Mi samples one observes that for the same interpore distance of 250 nm the strength 

of interwire interactions is larger for the Ha-Mi sample (110 nm in diameter) than for the sample 

Mi-Ha (70 nm).  

As shown in table 3.1, one observes that the standard deviation of the local interaction 

field, σHu, in all Ha-Mi samples has about the same value as in the corresponding mild samples 

for the three lengths considered in this study. In fact, by increasing the nanowire diameter, while 

the distance between their centers remains constant, the mean interaction field is also increasing, 

due to the closer proximity of the wires’ walls [180 nm (Mi-Ha) vs 140 nm (Ha-Mi)]. Regarding 

the coercive field distribution of the FORC diagrams in figure 3.5, one observes a slight increase 

of the average coercive field value, <Hc>, for the mild sample relative to the Mi-Ha one while a 

horizontal ridge is present in the FORC diagrams of both samples. The origin of this “tail” of the 

FORC diagram is related to the switching mechanisms in the arrays of magnetic nanowires and 

is discussed in the next section. 
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3.3.2  Reversal-field memory effect 

The appearance of this horizontal ridge along the coercive field axis has been reported in 

the literature.[62]. Béron et al. [62] suggested that the origin of this tail in FORC diagrams is due 

to a nonuniform length distribution such that, during the magnetization process, the system acts 

as two populations of magnetic entities. They tested this assumption by polishing the top of a 

wire membrane, after which the horizontal ridge in the FORC diagram disappeared. In order to 

verify the same hypothesis on our nanowire arrays we considered single modulated diameter Mi-

Ha nanowires (SM Mi-Ha) presenting two different diameters, 70 and 110 nm. Nanowires were 

grown in the Mi-Ha AAO template starting from the mild side (diameter 70 nm), filling 

completely the mild side and continuing partially into the hard side. From Fig. 3.2(a) one 

observes that the separation between the mild side and the hard side is very uniform, which 

determines a very variation of the mild side section length of the SM Mi-Ha nanowires. The 

FORC diagrams of all single modulated diameter nanowire arrays display the horizontal ridge 

along the coercivity axis (see figure 3.6). The horizontal ridge is not the result of the larger 

diameter section in the composite wires because no ridge was observed for any of the samples 

with large diameter Ha-Mi as shown in figure 3.5. Consequently, in our case the origin of the 

horizontal ridge in the FORC diagram is not the result of an irregularity in the system, such as 

length variation, but merely an intrinsic characteristic of small-diameter nanowires. 

The ridge along the coercivity axis, i.e., a wide range of  coercivities with  a  narrow 

range  of interactions, is  in fact an additional irreversible FORC distribution located at large Hc   

values and very small interaction field Hu   values (Hu   0). To get a better insight into the origin 

of the horizontal ridge in smaller-diameter nanowire arrays we should refer to figure 3.4 where 

the FORC diagram is represented in the original coordinates (H,HR ), where H = Hu + Hc and HR  
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= Hu − Hc (see chapter 2). Thus, in terms of (H,HR ) coordinates one can easily observe that the 

ridge is determined by switching events occurring at large values of the applied field H  after the 

reversal field Hr   −H . In figure 3.4 this property of the ridge appears evident by projecting 

from magnetization curves FORC regions located at HR   −H and H (regions delimited by the 

blue ellipses “R” and “F,” respectively) and observing that both these projections converge on 

the FORC diagram ridge. In other words, the ridge is the result of switching events occurring 

after a reversal in the “R” region and finishing in the “F” region of the M vs H FORCs. These 

kinds of switching events are consistent with the “reversal-field memory” effect observed by 

Katzgraber et al. [69] in Edwards Anderson Ising spin glass (EASG) Ising-type systems. The 

physical origin of the reverse-field memory effect was ascribed to the existence in the magnetic 

system of a significant proportion of symmetric hysterons.  Hysterons  are  independent  two-

state  switching units that change their states from +1 to −1 and from −1 to +1 at the fields Hu  − 

Hc  = HR and Hu  + Hc  = H , respectively. A symmetric hysteron has a bias field Hu = 0 and 

consequently switches “symmetrically” at H and HR = −H. The presence of a distribution of 

symmetric hysterons is evidenced by a kink in the magnetization curve, which is reflected in the 

FORC diagram as a ridge with its extension proportional to the range of the coercive field, Hc. 

It has been claimed by some authors (e.g., Ref. [58]) that the magnetic nanowire arrays 

can be considered as a very good example of physical system correctly described by a classical 

Preisach model (also named CPM system). However, as Mayergoyz has shown in Ref. [1], the 

necessary and sufficient conditions to be obeyed by a CPM system are the deletion and 

congruency properties(see chapter 1). Systematic studies show, however, that the nanowire 

systems do not satisfy the congruency property. This is certainly motivated by the mean-field 

interactions that have to be taken into account in such systems. However, a comparison of the 
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parameters obtained directly from the experimental FORC distributions can be performed and 

may indicate with some degree of accuracy the “real” Preisach distribution characteristic to 

various samples. A more accurate study will include the evaluation of the influence on the results 

due to the state dependence of the interaction field distribution and will be presented in a future 

presentation. 

Consequently, we consider for the moment that the nanowire systems are characterized 

by the Preisach distributions of hysterons P (Hc, Hu), which are identical with the experimental 

FORC distributions ρ (Hc, Hu). From the FORC diagrams obtained in the case of our nanowire 

arrays, one observes the presence of the horizontal ridge in the range of reversal-field values 

−800  HR   −1500 Oe for the Mi-Ha AAO nanowire arrays and in the range of −1100   HR   

−1700 Oe for regular Mi AAO nanowire arrays, respectively. However, as shown in figure 3.5 

for the nanowire arrays with a larger diameter, Ha-Mi, the tail of the FORC diagram is 

drastically diminished if not negligible. Consequently, the presence of the reversal-field memory 

effect in the Mi-Ha samples, with small diameter, suggests that these samples have an important 

number of symmetric hysterons. In contrast, the absence of the reversal-field memory effect in 

the Ha-Mi samples indicates that, if symmetric hysterons do exist, their proportion is not 

significant and the horizontal ridge in the FORC diagram is not present. 

3.3.3  Magnetic properties tuning: Complex nanowire arrays 

We have seen in the previous section that the magnetic properties of Mi-Ha AAO arrays 

are quite different from those of Ha-Mi AAO arrays, especially the strength of dipolar 

interactions. A simple way to obtain magnetic nanowire arrays with intermediate magnetic 

properties is to combine the Ha-Mi and Mi-Ha nanowires within the same assembly to synthesize 

a single modulated diameter nanowire array. The magnetic properties of these complex 
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nanowires can be further tuned by varying the length ratio of the two components, Mi-Ha and 

Ha-Mi. An exemplification of this approach is shown in figure 3.6 where the FORC diagrams of 

Mi-Ha 15.8-μm, Ha-Mi 15.0-μm, and modulated Mi-Ha 30-μm samples composed of two 15.0-

μm-long  sections of diameters 70 and 110 nm are represented. 

 

Figure 3.6: (Color online) Comparison between FORC diagrams of Mi-Ha nanowire array (top), Ha-Mi AAO 

nanowire array (middle), and SM Mi-Ha nanowire array with the lengths of Mi and Ha segments h1=15μm and 

h2=15μm, respectively (bottom). The right side panel displays the corresponding profile of the local interaction 

field distribution for each sample. The values of diameters and center-to-center interwire distances are given for 

each sample in the corresponding diagrams.  
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 From the local interaction field distribution profiles shown in the right side panel one 

observes that the strength of dipolar interaction in the single modulated diameter nanowire array 

sample is intermediate between interactions in the Mi-Ha and Ha-Mi samples. Furthermore, one 

observes subtle differences in the way the interaction field is decaying upon moving away from 

the Hu = 0 line. Thus, in the Mi-Ha sample the dipolar interactions are localized with a 

quasilinear decay of the interaction field, while in the Ha-Mi sample the interaction field is 

broadly distributed with a convex decay. The combination of the two aforementioned effects in 

the single modulated diameter nanowire samples results in an intermediate width of the 

interaction field distribution with a localized convex decay. 

The statistical analysis done on the profiles of the interaction and coercive field 

distributions for all samples allows us to better assess and summarize these differences between 

samples from the three different series. For the sake of consistency the coercive field profiles ρ 

(Hc) were fitted for all samples with a double-peak Gaussian distribution,  

               
 
            

      
  

                                              (3.1) 

allowing determination of the average values <Hc1> and <Hc2> of the coercive field for both 

peaks and their corresponding standard deviations σHc1  and σHc2 . The same procedure was 

applied to the interaction field profiles ρ (Hu) taken for each sample at Hc = <Hc1> and Hc = 

<Hc2>. Using the standard deviations of the coercive and interaction field distributions for both 

peaks one can calculate m1/(m1  + m2 ), the ratio between the magnetic moment associated with 

the lower coercivity peak, m1 , and the total magnetic moment m1+m2 . As shown in table 3.1, m1 

/ (m1 + m2) is very close to 100% for all Ha-Mi samples with large diameter (110 nm).  
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Table 3.1: Statistical analysis of the FORC distributions. 

 

For smaller-diameter samples (Mi and Mi-Ha) the second FORC distribution peak is 

more noticeable as attested by smaller values of m1 / (m1 + m2). Essentially, for these samples 

the second distribution peak is part of the reversal-field memory ridge discussed in the previous 

section, but depending on the interaction strength, one observes subtle differences. For Mi-Ha 

samples with weak dipolar interactions the second coercivity  peak  is  well  defined,  while  for  

Mi  samples with stronger interwire interactions, the  peak  is  absorbed in the horizontal ridge 

(see figure 3.5). Thus, the increase of interwire interactions has as an effect a delocalization of 

the symmetric hysteron distribution along the coercive field Hc axis. 

For a better visualization of the statistical analysis results summarized in table 3.1, we 

plotted in figure 3.7 the length dependency of the main statistical parameters, average coercive 

field, and dispersion of dipolar interaction field.  
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Figure 3.7: Length dependency of (a) the mean value of the main coercive field and (b) the standard deviation of 

the main interaction field distribution. 

 

One observes that for all series the average coercive field does not vary significantly with 

the length of nanowire within this length range. By increasing the wire diameter one observes a 

variation of the coercive field mean value from about 750 Oe, for a nanowire diameter of 70 nm 

(Mi samples), down to 400 Oe, for a diameter of 110 nm (Ha-Mi samples). This is consistent 

with a variation of the coercive field inverse proportional with the diameter previously observed 

in similar systems [71] and associated with a noncoherent magnetization reversal in the case of 

magnetic nanowires with diameters larger than the critical diameter Dcoh which for Ni is 26 nm 

[72-74]  From the σHu  vs. wire-length plot, it clearly appears that the strength of interactions in 

complex nanowires is intermediate between the interactions in Mi-Ha and Ha-Mi samples, as 

discussed previously. Furthermore, by increasing wire diameters it is possible to strengthen the 
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dipolar interactions arriving at the point that thick Ha-Mi wires have essentially the same value 

of the standard deviation of the interaction field as thin Mi wires. As the wire diameter is proven 

to be efficient for changing both the standard deviation of the interaction field distribution and 

the average wire coercivity, it is interesting to observe the properties of complex wires (thin + 

thick). The results show that these wires provide average values for both coercivity and 

interaction intensity, which is another essential tool to obtain systems with tailored properties. 

3.4 Conclusions 

We have systematically studied the dipolar interaction effects and reversal behavior in 

highly ordered magnetic nanowire arrays by a combination of sample design and fabrication and 

magnetic measurements using the FORC method. Taking advantage of high-quality AAO 

templates obtained through a sequential application of mild and hard anodization techniques we 

were able to include in our study four different series of nanowire samples with good control of 

diameter, interwire spacing, and complexity (simple and single modulated diameter wires). The 

effect of dipolar interactions was studied by considering samples with virtually identical 

diameter distributions but different interwire distances as provided by a controlled obstruction of 

the pores of the AAO templates. This is essential for a correct evaluation of the effect of the 

interactions in magnetic nanowire arrays, as it is well-known that nanowire arrays with different 

diameters are subject to different strengths of interaction. Utilizing the FORC technique and 

through a quantitative analysis of the profiles of local interaction and coercive field distributions 

a detailed description of the magnetic interactions and magnetization reversal was obtained. 

Thus, for the Mi-Ha series with nanowires of 70-nm diameter and 250-nm interwire distance, the 

strength of dipolar interactions was significantly reduced relative to nanowires from Mi series 

having the same diameter but a 100-nm interwire distance. In addition FORC analysis indicates 
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that the nanowire systems with a mean diameter of 70 nm seem to be organized in symmetric 

clusters indicative of a reversal-field memory effect. The increase of interwire interactions 

enhances the reversal-field memory effect as reflected by a delocalization of the symmetric 

hysteron distribution toward higher coercive field values for the Mi samples. The Ha-Mi series, 

including thick wires of 110 nm in diameter and the same wire center-to-center distance as the 

Mi-Ha series (250 nm), displayed an enhanced strength of interactions as in the case of the Mi 

series. The composite Mi-Ha series composed of single modulated wires (70 and 110 nm) 

allowed us to obtain magnetic properties intermediate to those of simple thin and thick wires. 

Moreover, one observes subtle differences in the profiles of interaction field distributions. Thus, 

in the Mi-Ha sample the dipolar interactions are localized with a quasilinear decay of the 

interaction field, while in the Ha-Mi sample the interaction field is broadly distributed with a 

convex decay. The combination of the two aforementioned effects in the single modulated 

diameter nanowire samples results in an intermediate width of the interaction field distribution 

with a localized convex decay. Thus, by a careful choice of methods of preparing high-quality 

templates one can obtain complex magnetic nanowire systems with tunable magnetic properties. 

Furthermore, this study confirms that the FORC method is an effective tool for studying 

interactions and reversal properties of magnetic nanowire arrays. 
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Chapter 4: FORC analysis of FeCoB/Ru/FeCoB 

Synthetic Antiferromagnets 
 

4.1  Introduction 

Synthetic antiferromagnets (SAF) consist of two thin ferromagnetic films with moments 

of the same (or different) magnitude, strongly coupled antiferromagnetically due to the 

Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction through an ultrathin spacer layer, typically 

Ru, 0.6 − 0.9 nm thick[75, 76].To enhance the interlayer coupling in SAF materials, a trilayer 

film of boron-added FeCo alloys, with Ru as separator layer, have showed very promising 

properties because of their large saturation magnetization simultaneous with a soft magnetic 

response [77]. Examples range from pinned to free layers in MRAM and magnetic sensors. The 

switching properties of the SAF structures dictate the performance of these technological 

devices. Therefore, the study of their properties is important to both technological and scientific 

points of view [78, 79]. 

In 2006, Hashimoto et al. [77] reported on the extremely large flopping and saturation 

fields for FeCoB/Ru/FeCoB, where the Ru thickness was systematically changed from 0nm to 

4nm. Using basic analysis of the major hysteresis loops, the exponential decay-oscillatory trends 

of the flopping field and saturation field were examined. It was claimed that the large bilinear 

coupling  generated due to the suppression of ferromagnetic coupling, interfacial smoothness, 

and the shift to the first peak caused by the RKKY-like interlayer coupling for small Ru 

thicknesses. 

Radu et al. [80] also studied the SAF system of FeCoB/Ru/FeCoB, where the Ru 

thickness was changed from 0 nm to 2 nm. With a different switching field distribution, they 
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proved that through the angular variation of the magnetic susceptibility it is possible to build up a 

switching field vector diagram, in analogy with the well-known astroid from the coherent 

rotation model for uniaxial anisotropy. In particular, it was hown that that the critical curve could 

be considered the fingerprint of the switching behavior and provides information about micro-

magnetic and structural properties of the SAF, an essential component of modern magnetic 

devices as memories and sensors [81]. 

Interestingly, due to the fast drop of the oscillatory strength of the ferromagnetic coupling 

between the magnetic layers as the interlayer thickness is increased, the oscillatory strength 

seems to be negligible for thicker interlayers above 2 nm thicknesses. For example, Yuan-Jen 

Lee et al., theoretically studied the oscillatory behavior for long-range exchange bias in 

ferromagnet and antiferromagnet layers separated by a nonmagnetic metal spacer [82, 83].  

In the last 10 years, with the subsequent improvements in experimental techniques, in 

particular related to the vibrating sample magnetometry (VSM), First Order Reversal Curve 

(FORC) diagrams opened a new possibility to reliably quantify and map the interplay between 

the internal fields and interactions in SAF systems [84, 85]. FORC diagrams have proved to be 

highly adequate characterization tools for the quantitative analysis of many magnetic systems 

with different interaction and coupling geometries[26, 64, 85, 86].  

In this research a series of SAF samples provided by Dr. Ganping Ju from Seagate was 

examined by using FORC diagrams. Their structure has consisted of FeCOB/Ru/FeCoB 

trilayers, with the Ru interlayer varying from the nominal distances of 1.2 nm, 1.4 nm, 1.6 nm 

and 1.8 nm. As discussed in [77], for this range of Ru film thicknesses, the second most 

important maxima on the oscillatory dependence of the flopping and saturation fields is included. 
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This work explores the basic SAF structure with only two ferromagnetic layers separated by a 

nonmagnetic metallic interlayer. FORC diagrams can be used to characterize the distributions of 

the internal and interaction fields and to generate information that can be useful in understanding 

the basic mechanism of the switching field magnetization [87].  

4.2 Experimental  

The samples under study were SAF structures of type FeCoB/Ru/FeCoB with a carbon 

overcoat layer provided by Dr. Ganping Ju from Seagate. The layers were deposited at room 

temperature using a dc magnetron sputtering with a base vacuum pressure below 3x10
-9

 Pa. SAF 

samples were grown with nominal 20 nm thickness for the ferromagnetic FeCoB layers and a Ru 

interlayer nominal thickness of 1.6 nm and 1.8 nm. Each sample was cut in the radial direction 

from a disc to make a 5mm x 5mm square. The relative Fe/Co ratio was determined by Energy 

Dispersive Spectroscopy (EDS); an average value of Fe/Co=1.35 was obtained. The crystal 

structure of the SAF samples were analyzed by using a Cu-kα X-ray Powder Rigaku 

diffractometer (XRD,   = 0.15418 nm). 

All FORC measurements were performed at room temperature with a Princeton 

Measurements vibrating sample magnetometer (VSM), with a sensitivity of 0.5  emu at 1 sec 

per point. This allowed more than 100 FORC curves in to be obtained less than 1 h.  

4.3  FORC analysis and interpretation 

The switching field distributions (SFD) were determined for each sample using equation 

(2.7) and described in chapter 2. By obtaining the SFD the start and finish of irreversible 

behavior was determined.  
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4.4 Results and discussion 

The inset in Figure 4.1is a typical XRD pattern of sample R-18, where the crystalline peaks 

for  FeCo (110) and FeCo (200),  Ru (002), and the stronger peak of the C (200) are marked. The 

weak intensity and broadening of the FeCo peaks can be explained due to Boron inclusion on 

these samples, suggesting a polycrystalline structure for these FeCoB alloys. Fig. 4.1-bottom 

shows the EDS for the same sample R-18, where it is possible to see the contributions of the 

main elements Fe and Co, with iron-rich concentration, and average value of Fe/Co = 1.35.  

 

Figure 4.1: The inset corresponds to the typical X-ray diffraction pattern XRD for sample R18. EDS for the same 

sample R18, where it is possible to detect the contributions of the main elements Fe and Co, with iron-rich 

concentration, average value of Fe/Co = 1.35. 

 

 

Figure 4.2: MHL for R-16(a) shows symmetric layer switching and R-18(b) shows asymmetric layer switching. 

(a) (b) 
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In figure 4.2(a) the switching mechanism for R-16 is a product of the symmetric 

ferromagnetic FeCoB layers. Beginning at a positive saturation magnetization, upon the removal 

of the applied field the layers will return to a lower energy state of anti-ferromagnetic behavior. 

Continuing to negative saturation magnetization and cycling back to positive reveals “splitting” 

of the MHL into two anti-symmetric loops, which was what was to be expected. From the 

magnetization data shown in figure 4.2(b) the behavior for R-18 is quite different and the 

mgnetization switching in this case may be associated with non symmetric SAF structure. as 

schematically indicated by the arrows in figure 4.2(b).  

 

Figure: 4.3FORC curves for R-16 (left) and R-18 (right). 

 

From the calculated FORC curves in figure 4.3 we obtained the associated FORC 

distributions (figure 4.4).  The 2-D FORC distribution for R-16 (figure 4.4(a)) reveals three well 

defined distributions due to the SAF coupling. The positive and negative destitutions come from 

the top and bottom loops in figure 4.2 (a) respectively.  The third distribution located on the Hc 

axis that appears R-16’s 2-D  contour plot is a memory effect from a “kink” in the FORC toward 

the front of the positive loop that originates from a negative reversal field close to negative 
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saturation [88] which is an indication of the coupling between the ferromagnetic layers. This is 

better viewed in figure 4.5. 

 

Figure: 4.4: FORC couture plot of R-16(a) and R-18(b). 

 

Figure 4.5: Colorized FORCs of R-16.  

The red and blue FORCs in figure 4.5 contribute to the positive and negative FORC 

distributions in figure 4.4(a) and 4.4(b) respectively. While the MHL indicates that the 

ferromagnetic layers in R-16 are symmetric, further analysis of the FORC reveals that the 

positive and negative distributions are not completely identical. This behavior can be related to 

the inhomogeneities of the ferromagnetic layers thicknesses. These results can be better viewed 

in table 4.1 where the parameters obtained from a statistical analysis of the FORC distributions 

are presented 
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Table 4.1: Statistical analysis of the profile distributions of R-16 and R-18 

 

The FORC distribution of R-18 (figure 4.4(b)) is a single distribution with a “tail” along 

Hc which is similar to the memory effect described for R-16. Focusing on the right profile in 

figure 4.4(b), the appearance of a shoulder indicates the switching of the thinner ferromagnetic 

layer while the main peak is the thicker layer. 

Figure 4.6 shows FORC-SFD, obtained by the integration of the FORC distribution along 

the H axis. The SFD for R-18 is a single Gaussian-like distribution in good agreement with the 

FORC distribution in H/Hr coordinates. The SFD for R-16 shows two narrow peaks, as expected 

when compared to the corresponding FORC distribution.  

 

Figure 4.6:  The FORC-switching field distribution (SFD), obtained by the integration of the FORC distribution 

along the H axis: R16 (1.6 nm Ru separator layer), and R18 (1.8 nm Ru separator layer).   
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4.5 Conclusions 

                  A different method was used to characterize the irreversible magnetization switching 

process in synthetic-antiferromagnetic structures. A series of samples were examined by the First 

Order Reversal Curve (FORC) method where the structure consisted of FeCOB/Ru/FeCoB 

trilayers. The Ru interlayer thickness values of 1.6 nm and 1.8 nm. The FORC analysis identifies 

and quantifies the strength of the internal field interactions. To gain better insight of the magnetic 

behaviors, the switching field distribution (SFD) was determined to quantify the internal field 

distributions. Therefore, this type of information is related to the anti-ferromagnetic coupling of 

the layers and gives insight into the nature and strength of the coupling between the 

ferromagnetic layers. In addition, view its under 1 Oe resolution the FORC method was able to 

reveal very small differences in magnetization switching of the ferromagnetic layers detecting 

layer inconsistencies and furthering that it is a power characterization tool. 
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