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Abstract 
 

The Android operating system is quickly becoming the most popular platform for mobile 
devices.  As Android’s use increases, so does the need for both forensic and privacy tools 
designed for the platform.  This thesis presents the first methodology and toolset for acquiring 
full physical memory images from Android devices, a proposed methodology for forensically 
securing both volatile and non-volatile storage, and details of a vulnerability discovered by the 
author that allows the bypass of the Android security model and enables applications to acquire 
arbitrary permissions. 
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Chapter 1: 

Introduction 

 

1.1 Motivation for Live Forensics 
 
The Android operating system now has a 48 percent share of the world-wide smart phone 

market, with Apples iOS trailing in second with a 19 percent share [1].  The mass adoption of 

Android and its projected growth make it vital that the forensics community be able to properly 

acquire and analyze evidence from the platform.  While a few research efforts have discussed 

analysis of Android’s filesystem and analysis of process memory, the author is not aware of any 

work to date that completely acquires physical memory from Android devices to allow 

subsequent, coherent analysis of the acquired memory.  Physical memory analysis is vital to 

investigations, since it contains a wealth of information that is otherwise unrecoverable.  This 

evidence includes objects relating to both running and terminated processes, open files, 

network activity, memory mappings, and more.  Lack of such information can make certain 

investigative scenarios impossible, such as when performing incident response or analyzing 

advanced malware that does not interact with non-volatile storage.   

1.2 Motivation for Privacy-Enhancing Technologies 

Mobile computing technology offers access to information anytime and anywhere, providing 

the opportunity for an enterprise to continue business which was previously delayed while 

employees were away from their desks.  This uninterrupted stream of voice, data and email 
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communication to the workforce reduces latency and enhances service delivery.  Also, evolving 

consumer capabilities for mobile computing devices are eagerly embraced by the younger 

members of the technology workforce, and usage of these devices inspires them to integrate 

their work and personal life.  Current policies, however, severely limit this potential integration.  

Many of the capabilities of enterprise level mobile computing devices are disabled due to 

security concerns and in many cases, the use of personal mobile computing devices in the 

workplace is discouraged or disallowed completely, leading to the necessity for workers to carry 

at least two devices where connectivity is required.   

The key to moving toward a reduction in the restrictions imposed on personal mobile devices is 

to ensure that sensitive information is either not stored on the devices or is stored in a 

cryptographically secure manner, since devices can be lost, stolen, or hacked.  Possible 

solutions must take into account both volatile and non-volatile storage.  Software-based 

solutions are preferable to those that are hardware-based, since they allow adoption on 

existing devices.  A properly implemented solution could pave a path for businesses and 

government entities to allow mobile applications to access sensitive information in more 

situations. 

1.3 Organization 

This thesis will discuss the results of research on both Android forensics and anti-forensics.  

Chapter 2 will explore the technical issues associated with acquiring physical memory captures 

from Android-based devices and present a methodology for successfully acquiring complete 
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memory captures.  Chapter 3 will detail a developed acquisition tool based off of this 

methodology, called DMD.  Chapter 4 will present a software-based scheme for allowing 

sensitive information to be viewed on Android devices that takes into account both volatile and 

non-volatile storage.  Chapter 5 will detail two proof-of-concept applications that test the 

viability of the scheme.  Chapter 6 will discuss a vulnerability in the implementation of the 

Android security model that was discovered by the author during the course of this research.  

Exploitation of this vulnerability allowed the utilization of protected Android operating system 

APIs in the implementation of the aforementioned privacy scheme.  Finally, Chapter 7 will 

discuss conclusions of this work as well as future work. 
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Chapter 2: 

Android Live-Forensics 

2.1 Related Work 

2.1.1 Linux Volatile Memory Analysis 

In the last few years, there has been a substantial amount of memory analysis research 

targeting Linux.  The first systems presented for this purpose were the FATKit [2], and 

memparser [3].  Inspired by the DFRWS 2008 challenge [4], additional efforts were made to 

extract forensically relevant information from memory captures [5].  Since then, a number of 

other research projects have been presented that perform deep analysis of Linux kernel data 

structures as well as userland information [6] [7] [8].  The result of these projects is the ability 

to gather numerous objects and data structures relevant to forensics investigations in an 

orderly manner.  A shortcoming of these projects, however, was their inability to properly 

handle the vast number of Linux kernel versions and the large number of widely used Linux 

distributions.  Due to the issues investigators face when attempting to analyze one of a large 

number of Linux kernel versions, a number of recent research projects have attempted to 

automatically build kernel structure definitions through a combination of static and dynamic 

analysis [7] [9] [10] [11].  There has also been recent work by the Volatility [12] developers to 

automatically generate C kernel structure representations for different Linux kernel versions 

using debugging information, which is similar to how Volatility handles different versions of the 

Windows kernel.   
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While the these projects were able to recover both allocated and de-allocated instances of 

kernel structures, many of them relied on either following references within data structures or 

memory scanning using ad-hoc structure signatures.  The ability to accurately find data 

structures to which all references are removed is required in order to find completely freed 

objects.  The problem with current generation scanners, such as those discussed previously, is 

that the signatures were created based on manual and informal source code review by the 

project developers.  Illustrating serious problems with this approach, including the ease in 

which malware can bypass such weak signatures, were two publications that used virtual 

machine introspection and formal methods to construct structure signatures [13] [14].  Using 

the techniques presented in these publications, forensic investigators are able to scan for 

instances of data structures with a degree of confidence, since malware is unable to easily 

bypass the signatures and false negatives and false positives will be minimal. 

2.1.2 Linux Memory Acquisition 

Traditionally, memory captures on Linux were acquired by accessing the /dev/mem device, 

which contained a map of the first gigabyte of RAM.  This allowed acquisition of 896MB of 

physical memory without the need to load code into the kernel.  This approach did not work for 

machines with more than 896MB of RAM.  Due to security concerns, the /dev/mem device has 

recently been disabled on all major Linux distributions, as it allowed for reading and writing of 

kernel memory.  In order to capture all physical memory, regardless of size, and to work around 

the loss of the /dev/mem device, Ivor Kollar created fmem [15], a loadable kernel module that 

creates a /dev/fmem device supporting memory capture.  fmem has been used in a number of 



6 
 

incident response situations and is the defacto Linux memory acquisition tool.  Another tool 

similar to fmem is the crash [16] project by Redhat.  For reasons we discuss later, the fmem 

module does not work on Android devices. 

2.1.3 Android Memory Analysis 

There are currently three projects that support varying levels of Android memory analysis.  The 

first project, volatilitux [17], provides only limited analysis capabilities, including enumeration 

of running processes, memory maps, and open files, and does not provide a method to acquire 

memory from the phone.   

The second related work was published in DFRWS 2010 [18].  This research project avoided the 

technical issues with capturing physical memory on Android (which is solved in this work), by 

focusing on specific, running processes, and using the ptrace functionality of the kernel to 

dump specific memory regions of a process.  The virtual memory captures are then analyzed to 

discover evidence.  While this is a good first step, many important aspects of the Android 

device’s memory are not analyzed, including in-kernel structures, networking information, etc.   

Another concern is that the approach requires memory to be extracted separately for each 

process of interest, which requires a number of interactions with the live system and 

potentially overwrites valuable evidence.  The research presented in this thesis instead 

concentrated on physical memory acquisition and analysis, which provides a superset of the 

information contained in the address spaces of individual processes. 
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Finally, another tool that is capable of extracting process memory is memfetch [19].  This tool 

dumps a running application’s address space, either on demand or when faults (e.g., SIGSEGV) 

occur.  memfetch is portable across a variety of Linux distributions, including Android, but 

cannot acquire physical memory. 

2.2 Acquiring Physical Memory  

This section discusses memory acquisition for Android.  The discussion is broken into a number 

of sections for readability.  Section 2.2.1 explains how to prepare a phone or other Android 

device for memory acquisition, section 2.2.2 discusses issues with existing acquisition modules, 

and section 2.2.3 discusses portability issues. 

2.2.1 Preparing the Device 

Preparation of the device for memory acquisition requires a number of steps, since Android 

does not support a memory device that exposes physical memory and furthermore does not 

provide APIs to support userland memory acquisition applications.  This means that acquisition 

of physical memory requires gaining root privileges on the phone so that code can be loaded 

into the OS kernel to read and export a copy of physical memory.  While not ideal, this 

procedure is commonplace when live forensics analysis is performed on commodity operating 

systems, virtually all of which have now removed or disabled devices that expose physical 

memory (e.g., /dev/mem, \\Device\\PhysicalMemory).  Unless Android adds the ability to 

export memory directly from userland (which is unlikely) or manufacturers include hardware 

that allows for such access directly through DMA (e.g., FireWire, also unlikely), loading code 
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into the running kernel to dump memory is the only method available to access privileged 

memory and the memory of all running processes. 

The first step in the preparation process, gaining root privileges on an Android device, 

commonly referred to as “rooting”, is not difficult, as a number of methods exist that allow 

elevation of a normal user process to root (user id 0) access.  Examples of these include “Rage 

against the Cage” [20] and a number of NULL pointer dereference exploits [21].  There are valid 

concerns about using privilege escalation exploits to obtain root privileges, and an investigator 

should only use rooting techniques that have been verified to work reliably on a particular 

device and furthermore, verified not to have undesirable consequences, such as introduction of 

malicious code.  The chosen rooting technique should also not require the device to be reset, 

which will likely wipe volatile memory.  A “rooting toolkit” with verified functionality is 

therefore a useful component of a live forensic investigator’s toolset, along with proper 

acquisition tools.  While this might seem like a radical idea, the situation is not unique to 

Android devices.  For example, if an investigator must obtain a copy of physical memory from a 

live desktop machine for which no administrator privileges are available, privilege escalation 

provides the only option for introducing kernel code to facilitate memory dumping. 

Once exploited, an Android process continues to execute as root until closed, which provides a 

vector for loading code into the kernel.   The binary containing the exploit can be transferred to 

the target phone in a number of ways, but the most portable method to transfer files to and 

from the phone is through the adb application that is distributed with the Android SDK.  adb 

wraps a host PC-to-phone protocol that allows for transfer of files, execution of commands, and 
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other tasks.  Once the exploit is transferred, it can then be executed in the shell to gain root.  Of 

course the entire rooting process can be skipped on phones that were previously rooted by 

their owner.   

2.2.2  Issues with Existing Memory Acquisition Models 

The initial aim of the presented research project was solely analysis of acquired memory.  Upon 

starting the research, it was discovered that existing Linux memory acquisition modules were 

unusable against Android devices.  The first module tested was fmem, which is widely used for 

acquisition on Intel-based machines.    The basic operation of fmem involves creation of a 

character device /dev/fmem that supports read and seek operations backed by physical 

memory.  This allows dd and other similar userland applications to read memory from the 

running operating system.  Internally fmem works by: 

1. Obtaining the starting offset specified by the read operation. 

2. Checking that the page corresponding to this offset is physical RAM and not part of 
a hardware device's address space. 

3. Obtaining a pointer to the physical page associated with the offset. 

4. Writing the contents of the acquired page to the userland output buffer. 

While attempting to use fmem, a number of issues were discovered.  First, the function used to 

implement step 2, page_is_ram, does not exist on the ARM architecture.  This means that the 

investigator cannot simply specify the entire memory range to be copied as the module would 
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attempt to read from memory-mapped hardware device ranges, which could cause severe 

instability and potentially crash the phone.   

The second issue discovered was that the dd application bundled with common Android ROMs 

does not handle file offsets  above 0x80000000 correctly.  This is because the Android dd uses 

32-bit signed integers for offsets and storing 0x80000000 causes a 32-bit signed integer 

overflow.  It then uses a system call to interact with a kernel function that expects a 64-bit 

signed integer.  This means the kernel function receives a sign-extended 64-bit integer, which 

will obviously produces incorrect results.  In the case of 0x80000000, this transforms the 

address used by the kernel function into 0xFFFFFFFF80000000.  This incorrect handling of 

integers makes dd unusable for memory acquisition on a number of Android devices. 

Finally, during the testing phase which will be described in section 3.3, it was discovered that 

fmem only recovers 80% of the original memory of devices from which it acquires memory.  

This high percentage of overwritten memory (20%) is likely due to the fact that fmem requires 

extensive interaction with userland.  Particularly when used with dd, as is recommended by the 

fmem author, a context switch and user-to-kernelland copying of data must occur thousands of 

times during the memory imaging operation. 

The other kernel module for memory acquisition, crash, faces the same issues with dd as it also 

exposes a device driver to userland.  This userland approach also creates the same issues with 

overwriting excessive memory due to frequent context switching. 
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2.3 Barriers to Device-Independent Acquisition 

One issue that affects all kernel modules for Android phones, including the memory acquisition 

module described in this thesis, is portability across a wide variety of phone models.  

Unfortunately, loading kernel modules is a difficult task to perform in a kernel-version agnostic 

manner.  When attempting to load a kernel module, if module verification is enabled, the 

kernel performs a number of sanity checks to ensure that the module was compiled for the 

specific version of the running kernel.  If any of these checks fail, then the kernel refuses to load 

the module.  While module verification is optional, every kernel tested (see Table 1) enabled it 

and there is no reason to believe that verification will be disabled on other Android phones.  A 

bypass of the sanity checks is very difficult, since kernel modules are tagged with a number of 

pieces of information about the kernel they were compiled against.  While some of this is 

superficial information, such as version information and strings that might easily be changed to 

“trick” the kernel into loading a module, the module also stores CRCs of functions and 

structures that it requires.  Before loading, the kernel reads each symbol in the binary and 

attempts to match its CRC against the corresponding code in the kernel.  Again, if this check 

fails, then the module does not load.  Without the CRC information for particular kernels, the 

location of which is discussed shortly, successfully loading a module that does not match the 

required kernel version is extremely difficult, since it would require brute-forcing (on the 

phone) the kernel CRC values for every symbol used by the module.   
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To work around the issues related to version-generic kernel modules, a popular root-only 

Android application, No Dock, attempts to bypass many of the strict checking features [22].  

First, the application comes with bare kernel modules compiled against a stock version of each 

supported kernel for ARM.  At load time it first uses uname in order to determine the running 

kernel version and which bare module it should attempt to load.  Next, it tries to read 

/dev/kmem, a file mapping kernel memory, in order to locate the vermagic string.  If it is able to 

read this file and locate the string, it then patches the on-disk module with it in order to satisfy 

the check.  In order to bypass CRC checks, No Dock assumes that by loading a module compiled 

against the same base kernel that CRC checks will pass.  Unfortunately, this is not always the 

case as functions can change between minor versions and this issue is documented on the 

referenced page.  Therefore No Dock is able to handle a fairly large number of kernel versions, 

but it can still fail in a number of ways.  For example, if /dev/kmem is not present, then the 

loader is unable to read the correct version magic string.  It will also fail if any of the CRC checks 

fail.  Ultimately, the No Dock approach is promising to increase the number of supported 

phones for a kernel module, but it is not perfect.   

Creating a module for every kernel version that might be deployed on an Android phone is 

therefore not a trivial task.  In order to compile a loadable kernel module, a number of 

additional files are required, including the kernel source for the installed kernel.  While a 

number of manufacturers release the kernel source for their deployed kernel in order to 

comply with the GPL, distributors of popular custom ROMs for rooted phones do not include 

the kernel source with their releases.  The lack of access to kernel source also prevents simply 
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bypassing the previously mentioned CRC checks, since the Modules.symvers file, which contains 

the CRCs of all symbols, cannot be obtained.   

Module compilation also requires the kernel configuration file (.config) that was used when the 

installed kernel was compiled.  Normally there are two ways to acquire this file, the first being 

from within the kernel sources distributed by the kernel creator and the second from 

/proc/config.gz on the running kernel.   While the kernel on some phones provides 

/proc/config.gz (see Table 1), it is unavailable on others.   

Due to these issues, further research is needed to make a truly kernel-version agnostic module.  

Support for stock kernels on Android phones is fairly straightforward, but procedures to safely 

bypass the kernel version checking restrictions on custom kernels would have an immense 

impact on module portability, both for this work and for other useful kernel modules.  Although 

it not yet possible to develop a truly portable kernel module, in the development of our tools 

we strived for as much portability as possible, subject to the constraints listed above. 
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Chapter 3: 

DMD 

This will discuss the developed Android memory acquisition module – named Droid Memory 

Dumper (DMD), address memory dumping over TCP and to an Android device’s Secure Digital 

(SD) card, and offer thoughts on the forensics soundness of the approach. 

3.1 The Acquisition Module 

In order to support acquisition of kernel memory across all Android devices,  a kernel module 

was developed that acquires a copy of system RAM with minimal interaction from the 

investigator.  To work around the issues detailed in section 2.2.2 (problems with dd, disturbing 

memory with context switching, etc.), DMD, takes a different, simpler, and less invasive 

approach to acquiring memory.  The module works by: 

1. Parsing the kernel’s iomem_resource structure to learn the physical memory address 

ranges of system RAM. 

2. Performing physical to virtual address translation for each page of memory. 

3. Reading all pages in each range and writing them to either a file (typically on the 

device’s SD card) or a TCP socket. 
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When loading the module, the investigator provides either a directory path to copy the dump 

to on the host device or a TCP port for the device to listen on.  Physical address range 

information is handled automatically in the kernel module.  The memory dump is written 

directly from the kernel to limit the amount of interaction with userspace and in particular, to 

eliminate the need for userspace data copying programs such as dd.  This saves a substantial 

number of system calls and other kernel activity that is necessary when using userland tools 

such as dd and cat, which must issue a read and write call for every block of data requested via 

the memory device.  The module also attempts to avoid the use of kernel file system buffers 

and network buffers in order to minimize the contamination of volatile memory during the 

acquisition process. 

3.2 Interacting with the Developed Module 

To illustrate the use of the described module, we will now walk through two examples of 

acquiring memory from an Android device.  We will first discuss the acquisition of memory over 

a TCP connection, followed by a discussion of acquiring a memory dump via the phone’s SD 

card.  While these processes should be identical for all Android devices, in our example we will 

use a rooted HTC EVO 4G, a popular Android phone. 

3.2.1 Acquisition of Memory over TCP 

The first step of the process is to copy the kernel module to the phone’s SD card using adb.  adb 

is the Android Debug Bridge, which supports a number of interactions with an Android device 



16 
 

tethered via USB.  We then use adb to setup a port-forwarding tunnel from a TCP port on the 

device to a TCP port on the local host.   The use of adb for network transfer eliminates the need 

to modify the networking configuration on the device or introduce a wireless peer—all network 

data is transferred via USB.  For the example below, we have chosen TCP port 4444.  We then 

obtain a root shell on the device by using adb and su.  To accomplish this we run the following 

commands with the phone plugged into our computer and debugging enabled on the device1. 

$ adb push dmd-evo.ko /sdcard/dmd.ko 

$ adb forward tcp:4444 tcp:4444 

$ adb shell 

$ su 

# 

Memory acquisition over the TCP tunnel is then a two-part process.  First, the target device 

must listen on a specified TCP port and then we must connect to the device from the host 

computer.  When the socket is connected, the kernel module will automatically send the 

acquired RAM image to the host device.  The module first sends a fixed-size header, which lists 

the physical memory address ranges for the device and their corresponding offsets in the 

image.  It then sends an image of each physical address range concatenated together. 

In the adb root shell we install our kernel module using the insmod command.  To instruct the 

module to dump memory via TCP we set the path parameter to “tcp”, followed by a colon and 

then the port number that adb is forwarding.  On our host computer we connect to this port 

with netcat redirect output to a file.  When the acquisition process is complete, dmd will 

terminate the TCP connection. 

                                                             
1 Enabling debugging involves a simple change in the phone’s settings. 

2 This technique is explained in detail in Chapter 6 and was the approach taken in the prototype to minimize 
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The following command loads the kernel module via adb on the target Android device: 

# insmod dmd path=tcp:4444 

On the host, the following command captures the memory dump via TCP port 444 to the file 

“evo.dump”: 

$ nc localhost 4444 > evo.dump 

3.2.2 Acquisition of Memory to the Device’s SD Card 

In some cases, such as when the investigator wants to make sure no network buffers are 

overwritten, disk-based acquisition may be preferred to network acquisition.  To accommodate 

this situation, DMD provides the option to write memory images to the device’s file system.  On 

Android, the logical place to write is the device’s SD card. 

Since the SD card could potentially contain other relevant evidence to the case, the investigator 

may wish to image the SD card first in order to save unallocated space.  Unfortunately, some 

Android phones, such as the HTC EVO 4G and the Droid series, place the removable SD card 

either under or obstructed by the phone’s battery, making it impossible to remove the SD card 

without powering off the phone (these phones will power down if the battery is removed, even 

if they are plugged into a power source!).  For this reason, the investigator needs to first image 

the SD card, and then subsequently write the memory image to it.  While this process violates 

the typical “order of volatility” rule of thumb in forensic acquisition, namely, obtaining the most 

volatile information first, it is necessary to properly preserve all evidence. 



18 
 

Fortunately, imaging the SD card on an Android device that will be subjected to live forensic 

analysis (including memory dumping) does not require removal of the SD card.  Tethering the 

device to a Linux machine, for example, and activating USB Storage exposes a /dev/sd? device 

that can be imaging using traditional means (e.g., using dd on the Linux box).  Activating USB 

Storage mode unmounts the SD card on the Android device, so a forensically valid image can be 

obtained. 

With USB Storage mode deactivated we copy the dmd kernel module to the device using the 

same steps described in the last section.  When installing the module using insmod, we set the 

path parameter to /sdcard to specify the directory in which the dump should be placed: 

$ insmod dmd path=/sdcard 

Once the acquisition process is complete, we can power down the phone, remove the SD card 

from the phone, and transfer the memory dump to the examination machine.  If the phone 

cannot be powered down, the memory dump can be transferred to the investigator's machine 

by using adb or by utilizing the phone’s USB storage mode as described earlier. 

3.3 Testing 

The developed kernel module was tested against a number of Android phones.  Table 1 lists 

these phones with the model, ROM, and kernel version.  Other Android phones are similar, with 

minor differences in kernel versions. 
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Model ROM Kernel Version Config Exported 

HTC EVO 4G  
HW Rev: 0004 

OMJ_EVO_2.2_Froyo_v4.0_odexe
d 

2.6.32.15-g59b9e50 
#17 

Yes 

HTC EVO 4G 
HW Rev: 0003 

Stock 2.6.32.17-gee557fd Yes 

HTC EVO 4G 
HW Rev: 0003 

Stock 2.6.35.10-gc0a661b Yes 

Droid Eris Kaos Froyo 2.6.29-c77FF39d No 
Droid 2 Stock 2.6.32.9-g462500f No 
Android 
Emulator 

Stock Goldfish 2.2 2.6.29 Yes 

 
Table 1.  Phones used as test platforms for DMD. 

Since it would be infeasible to test every Android model on the market and the goal of this 

effort is to provide memory acquisition capabilities for all Android devices, the module was 

designed to work as simply as possible.  The only functionality that the final version of the 

module relies on is the ability to translate virtual to physical addresses, the ability to write to 

files from the kernel, and the ability to communicate over TCP.  If any of those facilities were 

broken, the operating system would not operate correctly as these are basic operations 

necessary for proper operation of the phone.  Because only basic operating systems services 

are used in the DMD module, I am confident that the module will work on all Android devices 

as well as other architectures that support Linux.   

Testing was performed using manual analysis of the acquired memory capture as well as testing 

captures with Volatility functionality, which was developed by Andrew Case [23].  All phones 

tested successfully allowed for acquisition of memory with no observed side effects to 

continued operation of the device. 
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3.4 Forensic Soundness of Acquisition Approach 

For the developed acquisition approach to be of use to the forensic community, it must meet 

the basic standards of forensic soundness.  Adherence to these guidelines determines if 

evidence will be admissible in court and usable in other legal settings.  While live forensics 

investigation on any computer inevitably disturbs some volatile data, just as a traditional 

forensics investigation of a murder scene inevitably disturbs some characteristics of the crime 

scene; careful steps can be made to minimize the impact.  This approach meets basic forensic 

soundness standards for a number of reasons.  First, we attempt to minimize the impact on the 

target device when transferring data to and from it.  Second, only a USB connection with the 

phone is needed for interaction.  Once connected, only a single binary (the kernel module) 

needs to be transferred and executed to perform the acquisition.  Third, loading of the module 

requires a minimal footprint, as the dmd module is very small (~70KB) and requires very few 

kernel functions to acquire memory.  As explained previously, minimal interaction with 

userland is needed beyond loading the module, since all reading and writing of data to files or 

via the network is handled within the kernel.  This saves hundreds of system calls and other 

function invocations that would otherwise need to be performed. 

To quantitatively test the soundness of the module we turn to virtualization.  The Android SDK 

ships with a qemu-based emulator that runs the full Android stack all the way down to the 

kernel.  By launching the emulator with the flags –qemu –monitor stdio we are presented with a 

command line interface that allows us to run commands to interact with the emulator.  The 

pmemsave command pauses the execution of the guest operating system running in the 
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emulator, saves a dump of physical memory of the guest operating system, and then continues 

execution of the guest operating system.  This essentially allows us to capture a physical 

memory snapshot of a virtual Android device.  We then use this snapshot to establish “ground 

truth” in our testing. 

For our tests we repeatedly use pmemsave to take snapshots of memory on the virtual Android 

device.  When the snapshot is finished we immediately start a capture using DMD.  We then 

compare the two images for identical physical memory pages.  The average results for 10 runs 

of testing are provided in Table 2. 

There was also interest in comparing the results to tools traditionally used in Linux memory 

acquisition, namely fmem and dd.  However, as we discussed in section 2.2.2, fmem does not 

work properly on Android devices.  fmem was modified to work around the issues we described 

in step 2 of the fmem acquisition process.  The modifications were minimal and only handled 

how fmem determines if an address points to physical RAM.  These modifications should not 

affect the soundness of the capture.  Since the Android emulator maps physical RAM starting at 

address 0, the issues described with dd do not play a factor in acquiring memory from virtual 

devices (but remain problematic for real devices).  The same tests were run against the 

modified fmem as were with DMD.  The results are also recorded in Table 2. 
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Method Total # of Pages # of Identical Pages % of Identical Pages 

dmd (TCP) 131072 130365 99.46% 
dmd (SD Card) 131072 129953 99.15% 
fmem (SD Card) 131072 105080 80.17% 

 
Table 2.  Average results from 10 runs of our testing procedure. 

512MB RAM images collected using dmd were consistently over 99% identical to the pmemsave 

snapshots.  Since the copying of the image takes time, which allows other running processes to 

perturb memory during the capture, I feel that this is a very reasonable result.  When compared 

to the modified fmem implementation dmd shows on average significantly better results: about 

99% of pages are correctly captured versus about 80%.  This supports the design decision to 

minimize interactions with userland programs and eliminate the traditional method of exposing 

a new memory device via a kernel module and then using a userland program such as dd to 

capture memory contents through this device.  Based on the design goals and the results of 

testing, we state that the developed approach meets all the guidelines of a forensically sound 

process. 
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Chapter 4: 

Android Forensic Analysis 

4.1 Introduction 

Modern mobile computing devices such as the Motorola Droid are powerful handheld 

computers with large amounts of non-volatile storage and run multitasking operating systems 

with complex data storage capabilities.  Users may choose from a variety of browsers and tens 

of thousands of downloadable applications.  Data may be stored persistently on internal flash 

memory or on removable flash storage.  Data may also be resident in the device’s volatile 

memory.  The development of solutions to ensure that sensitive information accessed by one of 

these mobile devices is not stored for a longer duration than needed required extensive 

forensic evaluation of the devices to determine when, where, and how potentially sensitive 

information might be stored.  In this section we will discuss our analysis. 

4.2 Volatile Storage Analysis 

After acquiring full memory captures with DMD, a mix of standard Linux tools as well as custom 

scripts were used to search for information that was insecurely freed.  This process started by 

running two passes of strings over the memory capture, one for ASCII data and one for 

Unicode.  The output was then manually inspected to determine if relevant information was 

still contained in the capture.  For data structures that are not recognizable by simple strings 
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analysis, scripts were developed that were able to locate and parse binary structures from 

memory. 

The first application tested was version 2.2 of “Internet”, the stock Android web browser.  This 

test was performed by browsing to various webpages and then closing them.  This test was 

performed using the strings method mentioned previously.  The output was then searched for 

common page elements such as HTML tags, words contained on visited pages, and headers of 

files loaded, such as images.  Analysis revealed that a number of pieces of information were left 

in memory after use – including visited pages, page contents, and other session information. 

The second application tested was version 5.1.22460 of the Opera Mini web browser.  Unlike 

the “Internet” application, in order to conserve bandwidth in mobile environments, Opera Mini 

proxies all of its requests through Opera’s server farms.  The HTML is converted server-side into 

a format called “Opera Binary Markup Language” [24].  The OBML binary is then sent to Opera 

Mini for rendering.  Opera Mini does not properly sanitize the OMBL binary from memory upon 

exit.  While future work is needed in analyzing the OBML format, by searching for static markers 

that appear in all of our collected OBML files it was possible to identify OMBL file fragments in 

the acquired memory dump.  Recovery of this information was performed through a custom 

script that was able to identify the OBML in memory.  With further analysis and understanding 

of the OMBL file format, it is likely that the complete webpages could be recovered from the 

binary format. 
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After testing Internet and Opera, two applications that handle very sensitive information 

(passwords and financial transactions) were tested.  Since these applications do not handle 

multiple requests at once like web-browsers do with tabbing, we cannot simply open them in 

different contexts.  To remedy this we use a modified analysis methodology.  First, while the 

application is running we acquire a full memory dump of the device.  We then terminate the 

application’s process and collect a second memory dump.  In order to end a target process, we 

can use either the command line kill utility or the Advanced Task Killer (ATK) [25] application.  

Noting that processes were fully terminated, as opposed to being sent to the background, is an 

important distinction as the average Android user simply backgrounds processes when they are 

no longer in use.  Obviously this leaves all information intact in memory as the process is still 

running and leaves room for a number of research avenues that target memory analysis of 

specific Android applications. 

The reason we acquire two memory dumps is so that we may first analyze the dump of the 

running process to ensure that sensitive information can be recovered when the process is 

running and to verify that our searching methodology is not flawed.  We then can analyze the 

dump of the terminated process to see if we can find the same information recovered from the 

“live” dump. 

The first application in this category, version 1.9.1 of KeePassDroid [26] – an application that 

manages passwords, securely erased passwords and all other sensitive information after the 

application exited.  This application was tested by entering usernames and passwords to be 

managed by the application, and then searching for these within the memory dump.  
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Usernames, keys, and passwords were recoverable from an unlocked database in the “live” 

dump, but none of this information could be found in the “terminated” dump.  The second 

application in this category, the USAA online banking application [27], also securely erased 

memory after a user logged out or the process exited.  This was tested using the described 

strings method as well as through the use of a developed script that searched for the integer 

representation of the account numbers and other account information.  Once again, account 

numbers and balances were available in the “live” dump, but this information could not be 

found after the process was terminated.  While it is disappointing from a forensics perspective 

that these applications handle memory securely, the privacy and security risks of them not 

doing so would be dire, so the fact that they were secure was not completely unexpected. 

4.3 Securing Volatile Storage 

Analysis of Android’s volatile storage showed that it is clear that leakage occurs, which will 

necessitate policies to sanitize RAM after accessing sensitive data using an Android phone.  A 

primary difficulty is that Android devices kill processes without warning to deal with low 

memory situations, insecurely freeing potential sensitive data which might reside in the virtual 

address space of the process being killed or in associated kernel structures.   

In spite of these difficulties we still need a way to ensure that data is not left resident in the 

device’s memory after a process exits.  One idea was that no data would remain resident in the 

device’s memory after a reboot of the phone.  In order to validate this hypothesis we had to do 

some testing. 
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In order to test the validity of the hypothesis an application was written that allocates a large 

amount of RAM and then fills RAM with a unique “fingerprint” that can be later searched for.  

The program was run on a device and then a memory capture was acquired with DMD.  

Analysis of the initial capture verified that we could find many instances of our fingerprint 

throughout the memory capture.  The device was then rebooted and DMD was used to acquire 

another memory capture.  No instances of the unique “fingerprint” were present in the capture 

after a reboot, thus we can surmise that data located in volatile memory is not persistent across 

reboots. 

With these results we decided that a reasonable solution to the volatile data remanence 

problem is to cause reboots of the device on a timed basis when the phone is inactive or 

disconnected from a specified “secure” network.  Rather than simply suggesting a policy of 

phone rebooting, a software-based methodology was developed by the author in collaboration 

with Neha Thakur that could help automate the process.   

In order to ensure that no sensitive volatile information can be recovered from a device an 

event-based software solution should reboot the phone under the following conditions: 

 Disconnection from a specified WIFI network  

 Expiration of a pre-set timer 

 Direct request by a user 
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4.3.1 Disconnection from a Specified WIFI Network 

Devices connected to secure networks, such as those run by the Department of Defense, often 

access data that is classified and should not be removed from secure facilities.  In order to 

prevent this data from remaining in the device’s memory, our proposed software solution 

would automatically restart the device upon disconnection from a sensitive network.  A list of 

networks that should be considered “sensitive” would be pre-populated on the device and 

would be customizable. 

4.3.2 Expiration of a Pre-Set Timer 

Automatic timer-based resets may also be desirable.  For example you may wish to reset the 

device every day when leaving the office.  If you typically leave at 5PM your device can be set to 

reboot at that time on work days.  More sophisticated timer-based approaches are also 

possible.  For instance, a device could be set to reboot 5 minutes after a user checks their email 

or 30 seconds after the GPS on the device detects that they have left a government facility. 

4.3.3 Direct Request by a User 

In some cases a simple, manual reboot may be desired to quickly destroy volatile data without 

a delay.  Our proposed software solution would provide this facility with the click of a button. 
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4.4 Securing Non-Volatile Storage 

One method for securing non-volatile data is to provide an encrypted area for non-volatile data 

stored by Android applications.  This will allow secure erasure of the encryption key to provide 

nearly instantaneous sanitation of non-volatile storage.  Specifically, in order to prevent 

recovery of sensitive information from non-volatile memory I suggest the following process:  

 An encrypted volume on the device is mounted with a given encryption key. 

 The filesystem root for the application being protected is set to the root of the 

encrypted volume, to ensure that any changes to the filesystem by the application take 

place only in the content of the encrypted volume. 

 When the application exits, the encrypted volume is un-mounted and the key securely 

erased from memory, to ensure that no data is recoverable without the erased key. 

 If the same key can be re-generated (possibly with a password as a seed from the user), 

then the same volume can be remounted and the application can regain control over its 

configuration files and stored data once the phone is in a secure area.  
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Chapter 5: 

Privacy-Enhancing Proof-of-Concept 

5.1 Introduction 

In order to test the effectiveness of the methodology two minimal proof-of-concept 

applications were developed.  The first was created in collaboration with co-researcher, Neha 

Thakur, and demonstrates the ability to reboot the device upon disconnection from a specified 

wireless network.  The second demonstrates the feasibility of creating a per-process encrypted 

volume and “jailing” the process to the volume to ensure that no data is written to disk outside 

of the encrypted volume. 

5.2 Volatile Memory Proof-of-Concept 

 
Figure 1 - Screenshot of Volatile Memory POC 
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The three basic conditions that our prototype implements can be seen in Figure 1 and are 

described in section 4.3. We will first describe how the application handles rebooting the device 

and then will describe the three implemented options. 

5.2.1 Basic Reboot Function  

All three implemented options call a common function which instructs the device to reboot.  

Android does not provide an interface for non-system applications to reboot the device.  

Therefore the function must first elevate its privilege to “root” using the rooted device’s su 

command and then execute the system command /system/bin/reboot.  Any problems with this 

process will be caught and presented to the user for troubleshooting.  

5.2.2 Option 1: Direct Reboot 

This option is the simplest option.  If this option is selected the “reboot” function is immediately 

called and the device is restarted, wiping volatile memory. 

5.2.3 Option 2: Reboot on Disconnection  

If the “Reboot on Disconnection” option is selected the program first determines whether a 

user is currently connected to a wireless network.  If the device is connected to a network it will 

determine when the device disconnects from the network and then will call the “reboot” 

function.   
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The program calls the getSystemService method in order to acquire access to the WifiManager 

class instance.  This class provides the primary API for managing all aspects of Wi-Fi 

connectivity. 

WifiManager wifi = (WifiManager)getSystemService(Context.WIFI_SERVICE); 

The WifiManager.getConnectionInfo function returns a WifiInfo class object. The WifiInfo class 

describes the state of any WIFI connection that is active or is in the process of being set up. 

WifiInfo wifiInfo= wifi.getConnectionInfo(); 

Once we have that information we can retrieve the service set identifier (SSID) for the current 

WIFI network using the WifiInfo.getSSID function.  If the SSID is an ASCII string, it will be 

returned surrounded by double quotation marks. Otherwise, it is returned as a string of hex 

digits. The SSID may be null if there is no network currently connected. Each time the 

WifiManager notifies us of a change in the connection state we check the connection info.  If 

the device is no longer connected to the specified access point then the reboot function is 

called and the device is restarted, wiping volatile memory. 

5.2.4 Option 3: Timed Reboot  

The “Timed Reboot” option allows a user to specify a delay (in seconds) the device should wait 

before rebooting. When the “Timed Reboot” button is clicked we create a TimerTask class 

instance which will call the “reboot” function.  Java’s TimerTask class represents a task to run at 

a specified time. We then use the Java scheduler to schedule the task’s execution after the 
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provided delay has expired.  Once the delayed time has elapsed the TimerTask will be triggered 

and the device will reboot, wiping volatile memory. 

While this prototype is minimal, the functionality can be expanded in the future with event 

triggers.  One useful example would be to schedule a reboot 5 minutes after a scheduled 

meeting ends or to reboot 10 seconds after the device’s screen is locked. 

5.3 Non-Volatile Memory Proof-of-Concept 

 

 
Figure 2 - Screenshot of Non-Volatile POC 

 

Our second proof-of-concept application simulates a custom application launcher that utilizes 

the techniques described in section 4.4 to ensure that any data written to the device’s non-

volatile storage remains encrypted on disk. 
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The Android operating system contains undocumented, private APIs that allow the creation, 

use, and destruction of Twofish-encrypted volumes.  Since these APIs are marked hidden, they 

are not included in the Android SDK and therefore cannot be used directly in a traditional 

manner.  However, the Java runtime system that underlies application execution on Android 

supports a feature called reflection that allows the dynamic loading and use of Java classes at 

runtime.  Since the private APIs do exist in the Android runtime system we can use reflection to 

utilize these APIs.   

A complication is that the private APIs require several undocumented application permissions 

to be granted before they can be used.  These permissions are defined with a protection level 

of “signature”, which means that Android will not grant these permissions to applications 

whose digital signature does not match that of the application who defined the permission [28].  

In this case our application would need to be signed by Google in order to be granted the 

needed permissions.   There are several options for working around this restriction: 

 Re-implement the private APIs without including the need for special permissions.  Since 

the source of the APIs is available to us, it should be possible to write our own API which 

would allow us to use encrypted volumes without the need for any system signed 

permissions. 
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 Bypass the security model of the Android OS to use the APIs. A weakness exists in 

Android’s security model and it is possible for us to bypass the protections and grant 

ourselves the appropriate permissions to call the Google APIs2. 

Many of the APIs to create, mount, un-mount, and destroy encrypted volumes on Android 

devices are not included in the Software Development Kit. Therefore wrapper classes were 

written that call these private APIs through Java’s reflection libraries, which allow dynamic 

loading and execution of classes at runtime. 

The application first uses a wrapper class to obtain an instance of the device’s MountService.  

The MountService controls most aspects of creation and mounting of volumes on the device.  

Since all encrypted volumes are backed by files on the device’s SD-card we must first ensure 

that an SD-card is mounted.  To accomplish this we use our wrapper class to call the function 

MountService.getVolumeState and pass it the path of the SD-card.  If the function returns 

Environment.MEDIA_MOUNTED then we know the SD-card is mounted and it is safe to 

continue. 

Once we are sure that the SD-card is properly mounted then we can create an encrypted 

volume.  We use our wrapper class to call the function MountService.createSecureContainer 

and pass it a generated 32-byte encryption key.  We check the return value of this function to 

check for any errors. 

                                                             
2 This technique is explained in detail in Chapter 6 and was the approach taken in the prototype to minimize 

development effort. 
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After creation of the secure container we then execute the system command chroot to change 

the root file system of our running process to the mounted secure container.  We can then 

execute the application of our choosing and wait for it to exit. 

When the application exits the program un-mounts the secure container and overwrites the 

encryption key in memory.  This ensures that all sensitive data that is written to disk by the 

chosen application will be unrecoverable. 

While the proof-of-concept is minimal and only supports running a single test application, the 

functionality could be extended to allow the user to select any application of their choosing.  A 

separate secure container would be created for each application that was selected. 
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Chapter 6: 

Exploiting the Android Security Model 

6.1 Introduction 

To be able to execute the private API’s used in the proof-of-concept for non-volatile storage 

protection, a number of protected permissions are required.  In order to obtain these 

permissions we take advantage of a vulnerability discovered by the author in the Android 

security model that allows us to grant ourselves arbitrary permissions, regardless of their 

protection level.  The details of this vulnerability will be discussed in this chapter. 

6.2 Overview of Android Security Model 

By default no Android application has the ability to perform actions that may adversely impact 

the operation or integrity of other applications or the operating system.  All applications must 

be digitally signed by the developer’s unique private key.  Each application is assigned a uid by 

the Android runtime system at install time.  In most cases each application will be assigned a 

unique uid; however, if two applications are signed by the same private key then the developer 

may request that they be assigned the same uid. Android utilizes the standard Linux access-

rights model to ensure that the data directory of one application cannot be accessed by 

another application with a different uid.  Android also uses a permission-based model to restrict 

access to certain operating system APIs.  For example, in order for an application to be able to 
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open a network socket it must first be granted the android.permission.INTERNET permission.  

Similarly, an application must be granted the android.permission.ACCESS_FINE_LOCATION 

permission to be able to access GPS data.  A list of all of the documented Android permissions 

can be found on the Android Developer Website [29]. We will discuss the Android permission 

model in detail in the next section.  For more detailed information about the Android security 

model see [30]. 

6.3 Permissions 

Developers of Android applications include an AndroidManifest.xml file, which contains a list of 

permissions for the application to be granted.  Developers may also create their own set of 

permissions in the AndroidManifest.xml files, so that they may expose their own permissions-

based APIs to other applications in order to share data or functionality.  Each permission is 

assigned a “protection” level (see Table 3) that helps determine whether the Android runtime 

should grant the permission to a requesting application.  When an application is being installed, 

the Android runtime reads the AndroidManifest.xml file in the application package and uses the 

protection level of each requested permission to determine whether it should grant the 

permission, ask the user, or to deny the permission.  An application may revoke its own 

privileges at any time, but privileges may only be granted at install time. 
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Value Meaning 

"normal" The default value. A lower-risk permission that gives requesting applications access to 
isolated application-level features, with minimal risk to other applications, the system, 
or the user. The system automatically grants this type of permission to a requesting 
application at installation, without asking for the user's explicit approval (though the 
user always has the option to review these permissions before installing). 

"dangerous" A higher-risk permission that would give a requesting application access to private user 
data or control over the device that can negatively impact the user. Because this type of 
permission introduces potential risk, the system may not automatically grant it to the 
requesting application. For example, any dangerous permissions requested by an 
application may be displayed to the user and require confirmation before proceeding, or 
some other approach may be taken to avoid the user automatically allowing the use of 
such facilities. 

"signature" A permission that the system grants only if the requesting application is signed with the 
same certificate as the application that declared the permission. If the certificates 
match, the system automatically grants the permission without notifying the user or 
asking for the user's explicit approval. 

"signatureOrSystem" A permission that the system grants only to applications that are in the Android system 
image or that are signed with the same certificates as those in the system image. Please 
avoid using this option, as the signature protection level should be sufficient for most 
needs and works regardless of exactly where applications are installed. The 
signatureOrSystem permission is used for certain special situations where multiple 
vendors have applications built into a system image and need to share specific features 
explicitly because they are being built together. 

 
Table 3. “Protection” levels of Android permissions. 

6.4 Permission Model Implementation 

6.4.1 PackageManagerService 

On startup Android starts a PackageManagerService, which reads in the xml file 

/data/system/packages.xml.  This file is the central storage location that keeps track of all 

permissions, their protection levels, and the application package in which these permissions 

were created.  The packages.xml file also contains a list of all applications, their assigned uid, 

and a list of permissions that have been granted to them.  A snippet of a packages.xml file can 

be seen in Figure 3.  
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Figure 3 – Snippet from packages.xml 

For each permission listed, PackageManagerService checks the AndroidManifest.xml file of the 

application package that defined the permission in order to determine if the protection level 

has changed.  The PackageManagerService then parses each listed package and grants them 

the permissions listed.  For permissions with a protection level of signature or higher the 

PackageManagerService rechecks to ensure the application has the correct digital signature for 

the permission.  When the PackageManagerService shuts down (usually during device 

shutdown) its in-memory structures are written to packages.xml for persistent storage. 

<?xml version='1.0' encoding='utf-8' standalone='yes' ?> 

<packages> 

... 

<permissions> 

... 

<item name="android.permission.RECEIVE_SMS" package="android" protection="1" /> 

<item name="android.permission.CALL_PHONE" package="android" protection="1" /> 

<item name="android.permission.BACKUP" package="android" protection="3" /> 

<item name="android.permission.READ_CALENDAR" package="android" protection="1" /> 

<item name="android.permission.RECEIVE_BOOT_COMPLETED" package="android" /> 

<item name="android.permission.SET_TIME" package="android" protection="3" /> 

<item name="android.permission.ACCESS_UPLOAD_DATA" package="com.htc.providers.uploads" 

protection="2" /> 

... 

</permissions> 

... 

<package name="com.weather.Weather" codePath="/data/app/com.weather.Weather-2.apk"...  

userId="10058" ...> 

<sigs count="1"> 

<cert index="1" key="..." /> 

</sigs> 

<perms> 

<item name="android.permission.SET_WALLPAPER" /> 

<item name="android.permission.SEND_SMS" /> 

<item name="android.permission.WRITE_EXTERNAL_STORAGE" /> 

<item name="android.permission.ACCESS_WIFI_STATE" /> 

<item name="android.permission.ACCESS_COARSE_LOCATION" /> 

<item name="android.permission.CALL_PHONE" /> 

<item name="android.permission.WRITE_CALENDAR" /> 

<item name="android.permission.READ_CALENDAR" /> 

<item name="android.permission.CAMERA" /> 

<item name="android.permission.INTERNET" /> 

<item name="android.permission.ACCESS_FINE_LOCATION" /> 

<item name="android.permission.VIBRATE" /> 

<item name="android.permission.ACCESS_NETWORK_STATE" /> 

<item name="android.permission.RECORD_AUDIO" /> 

</perms> 

</package> 

... 

</packages> 
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6.4.2 Application Installation 

When an application is installed its AndroidManifest.xml file is read.  Any created permissions 

are added to the system by calls to the PackageManagerService.  Calls to the 

PackageManagerService are also used to determine the “protection level” of each requested 

permission.  Requested permissions that do not meet the requirements of the “protection 

level” are ignored and those that do are granted by the PackageManagerService. 

6.4.3 Exploiting the Process 

We can use the fact that permissions are only validated at install-time to exploit the process 

and grant our application arbitrary permissions (even those that are protected by digital 

signatures).  First in our applications AndroidManifest.xml file we define a new permission with 

the same name as the protected permission that we are trying to acquire and a protection level 

of normal.  We also request access to the permission in the AndroidManifest.xml file.  At install 

time, the PackageManagerService will ignore the request to create a new permission, since one 

already exists with the same name.  It will also ignore the application’s request to be granted 

the protected permission, since the application does not meet the requirements.  However, 

both the definition of the request and the request for the permission will stay in the 

application’s AndroidManifest.xml file. 
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On the first run of the application after installation, our malicious program will read the 

packages.xml file3.  In memory, the application modifies the copy of packages.xml to change 

the owning package of the desired permission to its own package name and lowers the 

permission level to normal.  The permission is also added to the application’s list of permissions 

in the modified packages.xml file. 

The application then kills the process which is running the PackageManagerService.  This causes 

the PackageManagerService to shut down and dump its state to the packages.xml file.  The 

killed process will automatically restart.  After the PackageManagerService writes its state to 

disk, but before it is reinitialized in the new process (there is a delay of about 10 seconds on 

most current devices) the modified packages.xml file is written to disk. 

When the PackageManagerService starts it reads in our modified packages.xml file.  It now 

thinks the application package which created our desired permission is our own and checks our 

AndroidManifest.xml file to check the permission level of the process, which is now set to 

normal.  The PackageManagerService then goes on to grant our process the desired permission 

listed in the packages.xml file.  By killing the process which hosts the PackageManagerService 

and others we have put the operating system in an unstable state.  The device will become 

unresponsive to user input, but processes will continue to run.  After the 

PackageManagerService is restarted we should cause the device to reboot to fix this issue. 

                                                             
3 The application must first be granted “root” access either by way of the user or privilege escalation vulnerability. 
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Since the permission is now essentially unprotected and owned by our application package, this 

trick only needs to be run once.  Any future requests to access this permission will be granted 

by the PackageMangerService. 
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Chapter 7: 

Conclusions and Future Work 

As use of the Android platform continues to increase, the need for both forensic and privacy 

tools will both increase.  This work presents the first methodology and toolset to acquire 

complete volatile memory dumps from Android devices.  These dumps are an integral first step 

towards “live” analysis of a device’s memory.  DMD is a full-featured and tested 

implementation of this method, and the source is included in Appendix A of this manuscript.  

Researches and investigators may use DMD in order to develop future tools for analysis of 

Android kernel structures and to find valuable information that may not be otherwise found on 

non-volatile storage.  In fact one researcher, Andrew Case, has already used DMD to aid in the 

development of Android support in the popular Volatility memory analysis tool [23]. 

This work also presents a basic methodology that can be used to forensically secure both 

volatile and non-volatile storage on Android devices.  While future work is needed to 

implement this methodology in a full-featured commercial product, it represents an important, 

first step in this process. 

The vulnerability described in the Android security model is currently present in all versions of 

the Android operating system.  While exploitation of this vulnerability is partially mitigated by 

the fact that the malicious process must first gain elevated privileges, future work is needed to 

ensure that the platform is no longer vulnerable to this attack.    



45 
 

References 
 

 

[1]  C. Boulton, "eWeek," 02 08 2011. [Online]. Available: http://www.eweek.com/c/a/Mobile-and-

Wireless/Android-Closes-on-50-of-Global-Smartphone-Market-Canalys-377187/. 

[2]  A. Walters, "FATKit: Detecting Malicious Library Injection and Upping the "Anti"," 4TF Research 

Laboratories, 2006. 

[3]  C. Betz, "Memparser," [Online]. Available: http://sourceforge.net/projects/memparser/. 

[4]  M. I. Cohen, D. J. Collett and A. Walters, "Digital Forensics Research Workshop 2008 - Submission 

for Forensic Challenge," 2008. 

[5]  A. Case, "FACE: Automated digital evidence discovery and correlation," Digital Investigation, vol. 5, 

pp. S65-S75, 2008.  

[6]  A. Case, "Trasure and tragedy in kmem_cache mining for live forensics investigation," Digital 

Investigation, vol. 7, pp. S41-S47, 2010.  

[7]  A. Case, "Dynamic recreation of kernel data structures for live forensics," Digital Investigation, vol. 

7, pp. S32-S40, 2010.  

[8]  I. Kollar, "Forensic RAM dump image analyser," Department of Software Engineering, Charles 

University, Prague, 2010. 

[9]  A. Cozzie, "Digginf or data structures," in Proceeding of 8th Symposium on Operating System Design 

and Implmentation, 2008.  

[10]  Z. Lin, "Automatic Reverse Engineering of Data Structures from Binary Execution," in 17th Annual 

Network and Distributed System Security Symposium, 2010.  

[11]  A. Slowinska, "Howard: a dynamic excavator for reverse engineering data structures," in 18th 

Annual Network & Distributed System Security Symposium, 2011.  

[12]  "Volatility," [Online]. Available: https://www.volatilesystems.com/default/volatility. 

[13]  B. Dolan-Gavitt, "Robust Signatures for Kernel Data Structures," in ACM Conference on Computer 

and Communications Security, 2009.  

[14]  Z. Lin, "SigGraph: Bruite Force Scanning of Kernel Data Structure Instances Using Graph-based 

Signatures," in Network and Distrobuted Systems Security Symposium, 2011.  



46 
 

[15]  I. Kollar, "fmem," 2010. [Online]. Available: http://hysteria.sk/~niekt0/foriana/fmem_current.tgz. 

[16]  D. Anderson, "Crash," 2008. [Online]. Available: 

http://people.redhat.com/anderson/crash_whitepaper. 

[17]  E. Girault, "Volatilitux," 2010. [Online]. Available: http://code.google.com/p/volatilitux/. 

[18]  V. L. L. Thing, "Live memory forensics of mobile phones," in Digital Forensics Research Workshop, 

2010.  

[19]  M. Zalewski, "memfetch," 2002. [Online]. Available: 

http://lcamtuf.coredump.cx/soft/memfetch.tgz. 

[20]  S. Kramer, "Rage Against the Cage," 2010. [Online]. Available: http://c-

skills.blogspot.com/2010/08/droid2.html. 

[21]  Zinx, "Linux Kernel 2.x sock_sendpage() Local Root Exploit (Android Edition)," 2009. [Online]. 

Available: http://www.exploit-db.com/exploits/9477. 

[22]  androidnothize, "NoDock - Testing and Compatibility," 2011. [Online]. Available: 

http://sites.google.com/site/androidnothize/no-dock/testing-comp. 

[23]  A. Case, "Live Memory Anaylsis with Volatility," in Open Memory Forensics Workshop, New Orleans, 

LA, 2011.  

[24]  C. Mills, "Opera Binary Markup Language," dev.opera.com, 10 11 2008. [Online]. Available: 

http://dev.opera.com/articles/view/opera-binary-markup-language/. 

[25]  ReChild, "Advanced Task Killer," 2011. [Online]. Available: 

https://market.android.com/details?id=com.rechild.advancedtaskkiller&hl=en. 

[26]  "KeePassDroid," 2011. [Online]. Available: http://www.keepassdroid.com/. 

[27]  USAA, "USAA Android App," [Online]. Available: 

https://www.usaa.com/inet/pages/mobile_access_methods_mobileapps. 

[28]  [Online]. Available: http://developer.android.com/guide/topics/manifest/permission-

element.html#plevel. 

[29]  [Online]. Available: http://developer.android.com/reference/android/Manifest.permission.html. 

[30]  "Android Security and Permissions," 2011. [Online]. Available: 

http://developer.android.com/guide/topics/security/security.html. 



47 
 

 

 

Appendix A: DMD Source Code 

/* 

 * Droid Memory Dumper 2 

 * 

 * 2011, Joe Sylve, joe.sylve@gmail.com, @jtsylve 

 */  

 

#include <linux/kernel.h> 

#include <linux/device.h> 

#include <linux/highmem.h> 

#include <linux/pfn.h> 

 

#include <net/sock.h> 

#include <net/tcp.h> 

 

//#undef DEBUG 

#define DEBUG 

 

#ifdef DEBUG 

#define DBG(fmt, args...) do { printk("[DMD] "fmt"\n", ## args); } while (0) 

#else 

#define DBG(fmt, args...) do {} while(0) 

#endif 

 

//extern rwlock_t resource_lock; 

extern struct resource iomem_resource; 

 

static int write_range_disk(struct resource *, unsigned long); 

static int write_range_tcp(struct resource *); 

static int setup_tcp(void); 

static void cleanup_tcp(void); 

static int init_tcp(void); 

static int init_disk(void); 

 

static char * path; 

static int port; 

 

module_param(path, charp, 0); 

 

#define RAMSTR "System RAM" 

 

int init_module (void) 

{ 

   if(!path) { 

      DBG("No path specified."); 

      return -EINVAL; 

   } 

 

   return (sscanf(path, "tcp:%d", &port) == 1) ? init_tcp() : init_disk(); 

} 
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void cleanup_module(void) 

{ 

 

} 

 

static int init_tcp() { 

   struct resource *p; 

   int err = 0; 

 

   DBG("Initilizing TCP Dump..."); 

 

   if((err = setup_tcp())) { 

      DBG("TCP Error"); 

      cleanup_tcp(); 

      return err; 

   } 

 

   //read_lock(&resource_lock); 

 

   for (p = iomem_resource.child; p ; p = p->sibling) { 

      if (strncmp(p->name, RAMSTR, sizeof(RAMSTR))) 

         continue; 

 

      if((err = write_range_tcp(p))) { 

         DBG("Write Error"); 

         break; 

      } 

   } 

 

   //read_unlock(&resource_lock); 

 

   cleanup_tcp(); 

 

   return err; 

} 

 

static int init_disk() { 

   struct resource *p; 

   int err; 

   unsigned long timestamp = get_seconds(); 

 

   DBG("Initilizing Disk Dump..."); 

 

   //read_lock(&resource_lock); 

 

   for (p = iomem_resource.child; p ; p = p->sibling) { 

      if (strncmp(p->name, RAMSTR, sizeof(RAMSTR))) 

         continue; 

 

      if((err = write_range_disk(p, timestamp))) { 

         DBG("Write Error"); 

         return err; 

         break; 

      } 

   } 
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   //read_unlock(&resource_lock); 

 

   return 0; 

} 

 

static struct socket *control; 

static struct socket *accept; 

 

static int setup_tcp() { 

   struct sockaddr_in saddr; 

   int r; 

 

   mm_segment_t fs; 

 

   int buffsize = PAGE_SIZE; 

 

   r = sock_create_kern(AF_INET, SOCK_STREAM, IPPROTO_TCP, &control); 

 

   if (r < 0) { 

      DBG("Error creating control socket"); 

      return r; 

   } 

 

   memset(&saddr, 0, sizeof(saddr)); 

 

   saddr.sin_family = AF_INET; 

   saddr.sin_port = htons(port); 

   saddr.sin_addr.s_addr = INADDR_ANY; 

 

   fs = get_fs(); 

   set_fs(KERNEL_DS); 

 

   sock_setsockopt(control, SOL_SOCKET, SO_SNDBUF, (void *) &buffsize,  

      sizeof (int)); 

 

   set_fs(fs); 

 

   if (r < 0) { 

      DBG("Error setting buffsize %d", r); 

      return r; 

   } 

 

   r = control->ops->bind(control,(struct sockaddr*) &saddr,sizeof(saddr)); 

   if (r < 0) { 

      DBG("Error binding control socket"); 

      return r; 

   } 

 

   r = control->ops->listen(control,1); 

   if (r) { 

      DBG("Error listening on socket"); 

      return r; 

   } 

 

   r = sock_create_kern(PF_INET, SOCK_STREAM, IPPROTO_TCP, &accept); 

   if (r < 0) { 

      DBG("Error creating accept socket"); 
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      return r; 

   } 

 

   r = accept->ops->accept(control,accept,0); 

   if (r < 0) { 

      DBG("Error accepting socket"); 

      return r; 

   } 

 

   return 0; 

} 

 

static void cleanup_tcp() { 

   accept->ops->shutdown(accept,0); 

   accept->ops->release(accept); 

 

   control->ops->shutdown(control,0); 

   control->ops->release(control); 

} 

 

static int write_range_tcp(struct resource * res) { 

   mm_segment_t fs; 

   resource_size_t i; 

   struct page * p; 

   void * v; 

   long s; 

 

   struct iovec iov = {.iov_len = PAGE_SIZE }; 

 

   struct msghdr msg  = {.msg_iov = &iov, 

     .msg_iovlen = 1 }; 

 

   fs = get_fs(); 

   set_fs(KERNEL_DS); 

 

   for (i = res->start; i < res->end; i += PAGE_SIZE) { 

 

      p = pfn_to_page(PFN_DOWN(i)); 

 

      v = kmap(p); 

 

      iov.iov_base = v; 

 

      s = sock_sendmsg(accept, &msg, PAGE_SIZE); 

 

      kunmap(p); 

 

      if (s < 0) { 

         DBG("Error sending page %ld", s); 

         set_fs(fs); 

         return (int) s; 

      } 

   } 

 

   set_fs(fs); 

 

   return 0; 



51 
 

} 

 

static int write_range_disk(struct resource *res, unsigned long timestamp) { 

   mm_segment_t fs; 

   resource_size_t i; 

   struct page * p; 

   void * v; 

   struct file * f; 

   char filename[256]; 

   int err = 0; 

   size_t s; 

 

   sprintf(filename, "%s/%lu_%lx_%lx.pdump", path, timestamp, (unsigned long) 

      res->start, (unsigned long) res->end); 

 

   fs = get_fs(); 

   set_fs(KERNEL_DS); 

 

   f = filp_open(filename, O_WRONLY | O_CREAT | O_DIRECT, 0); 

 

   if(f == ERR_PTR(-EINVAL)) 

      f = filp_open(filename, O_WRONLY | O_CREAT, 0); 

 

   if (!f || IS_ERR(f)) { 

      DBG("Error opening file %ld", PTR_ERR(f)); 

      set_fs(fs); 

      return (f) ? PTR_ERR(f) : -EIO; 

   } 

 

   for (i = res->start; i < res->end; i += PAGE_SIZE) { 

      p = pfn_to_page(PFN_DOWN(i)); 

 

      v = kmap(p); 

      s = f->f_op->write(f, v, PAGE_SIZE, &f->f_pos); 

      kunmap(p); 

 

      if (s < 0) { 

         DBG("Error writing to file %d", s); 

         err = s; 

         goto error; 

      } 

   } 

 

   err = 0; 

 

 

error: 

 

   filp_close(f, NULL); 

 

   set_fs(fs); 

   return err; 

} 

 

//MODULE_AUTHOR ("Joe T. Sylve, joe.sylve@gmail.com"); 

//MODULE_DESCRIPTION ("Perform physical memory dump on Android devices."); 

MODULE_LICENSE("GPL"); 
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