
University of New Orleans University of New Orleans

ScholarWorks@UNO ScholarWorks@UNO

University of New Orleans Theses and
Dissertations Dissertations and Theses

Fall 12-17-2011

Android Memory Capture and Applications for Security and Android Memory Capture and Applications for Security and

Privacy Privacy

Joseph T. Sylve
University of New Orleans, jtsylve@uno.edu

Follow this and additional works at: https://scholarworks.uno.edu/td

 Part of the Other Computer Sciences Commons

Recommended Citation Recommended Citation
Sylve, Joseph T., "Android Memory Capture and Applications for Security and Privacy" (2011). University
of New Orleans Theses and Dissertations. 1400.
https://scholarworks.uno.edu/td/1400

This Thesis-Restricted is protected by copyright and/or related rights. It has been brought to you by
ScholarWorks@UNO with permission from the rights-holder(s). You are free to use this Thesis-Restricted in any
way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you
need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative
Commons license in the record and/or on the work itself.

This Thesis-Restricted has been accepted for inclusion in University of New Orleans Theses and Dissertations by
an authorized administrator of ScholarWorks@UNO. For more information, please contact scholarworks@uno.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of New Orleans

https://core.ac.uk/display/216839354?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.uno.edu/
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/etds
https://scholarworks.uno.edu/td?utm_source=scholarworks.uno.edu%2Ftd%2F1400&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=scholarworks.uno.edu%2Ftd%2F1400&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uno.edu/td/1400?utm_source=scholarworks.uno.edu%2Ftd%2F1400&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uno.edu

Android Memory Capture and Applications for Security and Privacy

A Thesis

Submitted to the Graduate Faculty of the
University of New Orleans
in partial fulfillment of the

requirements for the degree of

Master of Science
in

Computer Science
Information Assurance

by

Joseph T. Sylve

B.S. University of New Orleans, 2010

December, 2011

ii

Copyright 2011, Joseph T. Sylve

iii

Funding

This work was supported in part by a grant from

the Space and Naval Warfare Systems Command.

iv

Acknowledgements

I would like to express my most heartfelt gratitude to:

 My advisor, Dr. Golden G. Richard III, for inspiring me to pursue a career in Digital
Forensics.

 Dr. Jaime Niño and Dr. Vassil Roussev for being on my thesis committee.

 My co-researchers, Andrew Case, Neha Thakur, Dr. Lodovico Marziale, and Dr. Golden
G. Richard III, for their contributions to the research that this thesis is based on.

 My grandfather, Salvador Joseph Tillis, M.A., for whom I owe my name and my interest
in Computer Science.

v

Table of Contents

List of Tables ..vii
List of Figures .. viii
Abstract ..ix
Chapter 1: Introduction ... 1
 1.1 Motivation for Live Forensics .. 1
 1.2 Motivation for Privacy-Enhancing Technologies .. 1
 1.3 Organization ... 2
Chapter 2: Android Live-Forensics ... 4
 2.1 Related Work .. 4
 2.1.1 Linux Volatile Memory Analysis ... 4
 2.1.2 Linux Memory Acquisition ... 5
 2.1.3 Android Memory Analysis .. 6
 2.2 Acquiring Physical Memory ... 7
 2.2.1 Preparing the Device.. 7
 2.2.2 Issues with Existing Memory Acquisition Models ... 9
 2.3 Barriers to Device-Independent Acquisition .. 11
Chapter 3: DMD .. 14
 3.1 The Acquisition Module .. 14
 3.2 Interacting with the Developed Modules .. 15
 3.2.1 Acquisition of Memory over TCP .. 15
 3.2.2 Acquisition of Memory to the Device’s SD Card ... 17
 3.3 Testing .. 18
 3.4 Forensic Soundness of Acquisition Approach .. 20
Chapter 4: Android Forensic Analysis .. 23
 4.1 Introduction .. 23
 4.2 Volatile Storage Analysis ... 23
 4.3 Securing Volatile Storage .. 26
 4.3.1 Disconnection for a Specified WIFI Network .. 28
 4.3.2 Expiration of a Pre-Set Timer ... 28
 4.3.3 Direct Request by a User .. 28
 4.4 Securing Non-Volatile Storage ... 29
Chapter 5: Privacy-Enhancing Proof-of-Concept .. 30
 5.1 Introduction .. 30
 5.2 Volatile Memory Proof-of-Concept ... 30
 5.2.1 Basic Reboot Function ... 31
 5.2.2 Option 1: Direct Reboot ... 31
 5.2.3 Option 2: Reboot on Disconnection ... 31
 5.2.4 Option 3: Timed Reboot ... 32
 5.3 Non-Volatile Memory Proof-of-Concept .. 33
Chapter 6: Exploiting the Android Security Model ... 37
 6.1 Introduction .. 37

vi

 6.2 Overview of Android Security Model ... 37
 6.3 Permissions ... 38
 6.4 Permission Model Implementation ... 39
 6.4.1 PackageManagerService .. 39
 6.4.2 Application Installation .. 41
 6.4.3 Exploiting the Process .. 41
Chapter 7: Conclusions and Future Work .. 44
References .. 45
Appendix A: DMD Source Code ... 47
Vita ... 52

vii

List of Tables

Table 1: Phones used as test platforms for DMD ... 19
Table 2: Average results from 10 runs of our testing procedure 22
Table 3: “Protection” levels of Android permissions .. 39

viii

List of Figures

Figure 1: Screenshot of Volatile Memory POC .. 30
Figure 2: Screenshot of Non-Volatile Memory POC ... 33
Figure 3: Snippet from packages.xml ... 40

ix

Abstract

The Android operating system is quickly becoming the most popular platform for mobile
devices. As Android’s use increases, so does the need for both forensic and privacy tools
designed for the platform. This thesis presents the first methodology and toolset for acquiring
full physical memory images from Android devices, a proposed methodology for forensically
securing both volatile and non-volatile storage, and details of a vulnerability discovered by the
author that allows the bypass of the Android security model and enables applications to acquire
arbitrary permissions.

Keywords: Digital Forensics, Privacy, Android, Live Memory Forensics, Linux, Mobile Device
Forensics, Android Security, Android Forensics

1

Chapter 1:

Introduction

1.1 Motivation for Live Forensics

The Android operating system now has a 48 percent share of the world-wide smart phone

market, with Apples iOS trailing in second with a 19 percent share [1]. The mass adoption of

Android and its projected growth make it vital that the forensics community be able to properly

acquire and analyze evidence from the platform. While a few research efforts have discussed

analysis of Android’s filesystem and analysis of process memory, the author is not aware of any

work to date that completely acquires physical memory from Android devices to allow

subsequent, coherent analysis of the acquired memory. Physical memory analysis is vital to

investigations, since it contains a wealth of information that is otherwise unrecoverable. This

evidence includes objects relating to both running and terminated processes, open files,

network activity, memory mappings, and more. Lack of such information can make certain

investigative scenarios impossible, such as when performing incident response or analyzing

advanced malware that does not interact with non-volatile storage.

1.2 Motivation for Privacy-Enhancing Technologies

Mobile computing technology offers access to information anytime and anywhere, providing

the opportunity for an enterprise to continue business which was previously delayed while

employees were away from their desks. This uninterrupted stream of voice, data and email

2

communication to the workforce reduces latency and enhances service delivery. Also, evolving

consumer capabilities for mobile computing devices are eagerly embraced by the younger

members of the technology workforce, and usage of these devices inspires them to integrate

their work and personal life. Current policies, however, severely limit this potential integration.

Many of the capabilities of enterprise level mobile computing devices are disabled due to

security concerns and in many cases, the use of personal mobile computing devices in the

workplace is discouraged or disallowed completely, leading to the necessity for workers to carry

at least two devices where connectivity is required.

The key to moving toward a reduction in the restrictions imposed on personal mobile devices is

to ensure that sensitive information is either not stored on the devices or is stored in a

cryptographically secure manner, since devices can be lost, stolen, or hacked. Possible

solutions must take into account both volatile and non-volatile storage. Software-based

solutions are preferable to those that are hardware-based, since they allow adoption on

existing devices. A properly implemented solution could pave a path for businesses and

government entities to allow mobile applications to access sensitive information in more

situations.

1.3 Organization

This thesis will discuss the results of research on both Android forensics and anti-forensics.

Chapter 2 will explore the technical issues associated with acquiring physical memory captures

from Android-based devices and present a methodology for successfully acquiring complete

3

memory captures. Chapter 3 will detail a developed acquisition tool based off of this

methodology, called DMD. Chapter 4 will present a software-based scheme for allowing

sensitive information to be viewed on Android devices that takes into account both volatile and

non-volatile storage. Chapter 5 will detail two proof-of-concept applications that test the

viability of the scheme. Chapter 6 will discuss a vulnerability in the implementation of the

Android security model that was discovered by the author during the course of this research.

Exploitation of this vulnerability allowed the utilization of protected Android operating system

APIs in the implementation of the aforementioned privacy scheme. Finally, Chapter 7 will

discuss conclusions of this work as well as future work.

4

Chapter 2:

Android Live-Forensics

2.1 Related Work

2.1.1 Linux Volatile Memory Analysis

In the last few years, there has been a substantial amount of memory analysis research

targeting Linux. The first systems presented for this purpose were the FATKit [2], and

memparser [3]. Inspired by the DFRWS 2008 challenge [4], additional efforts were made to

extract forensically relevant information from memory captures [5]. Since then, a number of

other research projects have been presented that perform deep analysis of Linux kernel data

structures as well as userland information [6] [7] [8]. The result of these projects is the ability

to gather numerous objects and data structures relevant to forensics investigations in an

orderly manner. A shortcoming of these projects, however, was their inability to properly

handle the vast number of Linux kernel versions and the large number of widely used Linux

distributions. Due to the issues investigators face when attempting to analyze one of a large

number of Linux kernel versions, a number of recent research projects have attempted to

automatically build kernel structure definitions through a combination of static and dynamic

analysis [7] [9] [10] [11]. There has also been recent work by the Volatility [12] developers to

automatically generate C kernel structure representations for different Linux kernel versions

using debugging information, which is similar to how Volatility handles different versions of the

Windows kernel.

5

While the these projects were able to recover both allocated and de-allocated instances of

kernel structures, many of them relied on either following references within data structures or

memory scanning using ad-hoc structure signatures. The ability to accurately find data

structures to which all references are removed is required in order to find completely freed

objects. The problem with current generation scanners, such as those discussed previously, is

that the signatures were created based on manual and informal source code review by the

project developers. Illustrating serious problems with this approach, including the ease in

which malware can bypass such weak signatures, were two publications that used virtual

machine introspection and formal methods to construct structure signatures [13] [14]. Using

the techniques presented in these publications, forensic investigators are able to scan for

instances of data structures with a degree of confidence, since malware is unable to easily

bypass the signatures and false negatives and false positives will be minimal.

2.1.2 Linux Memory Acquisition

Traditionally, memory captures on Linux were acquired by accessing the /dev/mem device,

which contained a map of the first gigabyte of RAM. This allowed acquisition of 896MB of

physical memory without the need to load code into the kernel. This approach did not work for

machines with more than 896MB of RAM. Due to security concerns, the /dev/mem device has

recently been disabled on all major Linux distributions, as it allowed for reading and writing of

kernel memory. In order to capture all physical memory, regardless of size, and to work around

the loss of the /dev/mem device, Ivor Kollar created fmem [15], a loadable kernel module that

creates a /dev/fmem device supporting memory capture. fmem has been used in a number of

6

incident response situations and is the defacto Linux memory acquisition tool. Another tool

similar to fmem is the crash [16] project by Redhat. For reasons we discuss later, the fmem

module does not work on Android devices.

2.1.3 Android Memory Analysis

There are currently three projects that support varying levels of Android memory analysis. The

first project, volatilitux [17], provides only limited analysis capabilities, including enumeration

of running processes, memory maps, and open files, and does not provide a method to acquire

memory from the phone.

The second related work was published in DFRWS 2010 [18]. This research project avoided the

technical issues with capturing physical memory on Android (which is solved in this work), by

focusing on specific, running processes, and using the ptrace functionality of the kernel to

dump specific memory regions of a process. The virtual memory captures are then analyzed to

discover evidence. While this is a good first step, many important aspects of the Android

device’s memory are not analyzed, including in-kernel structures, networking information, etc.

Another concern is that the approach requires memory to be extracted separately for each

process of interest, which requires a number of interactions with the live system and

potentially overwrites valuable evidence. The research presented in this thesis instead

concentrated on physical memory acquisition and analysis, which provides a superset of the

information contained in the address spaces of individual processes.

7

Finally, another tool that is capable of extracting process memory is memfetch [19]. This tool

dumps a running application’s address space, either on demand or when faults (e.g., SIGSEGV)

occur. memfetch is portable across a variety of Linux distributions, including Android, but

cannot acquire physical memory.

2.2 Acquiring Physical Memory

This section discusses memory acquisition for Android. The discussion is broken into a number

of sections for readability. Section 2.2.1 explains how to prepare a phone or other Android

device for memory acquisition, section 2.2.2 discusses issues with existing acquisition modules,

and section 2.2.3 discusses portability issues.

2.2.1 Preparing the Device

Preparation of the device for memory acquisition requires a number of steps, since Android

does not support a memory device that exposes physical memory and furthermore does not

provide APIs to support userland memory acquisition applications. This means that acquisition

of physical memory requires gaining root privileges on the phone so that code can be loaded

into the OS kernel to read and export a copy of physical memory. While not ideal, this

procedure is commonplace when live forensics analysis is performed on commodity operating

systems, virtually all of which have now removed or disabled devices that expose physical

memory (e.g., /dev/mem, \\Device\\PhysicalMemory). Unless Android adds the ability to

export memory directly from userland (which is unlikely) or manufacturers include hardware

that allows for such access directly through DMA (e.g., FireWire, also unlikely), loading code

8

into the running kernel to dump memory is the only method available to access privileged

memory and the memory of all running processes.

The first step in the preparation process, gaining root privileges on an Android device,

commonly referred to as “rooting”, is not difficult, as a number of methods exist that allow

elevation of a normal user process to root (user id 0) access. Examples of these include “Rage

against the Cage” [20] and a number of NULL pointer dereference exploits [21]. There are valid

concerns about using privilege escalation exploits to obtain root privileges, and an investigator

should only use rooting techniques that have been verified to work reliably on a particular

device and furthermore, verified not to have undesirable consequences, such as introduction of

malicious code. The chosen rooting technique should also not require the device to be reset,

which will likely wipe volatile memory. A “rooting toolkit” with verified functionality is

therefore a useful component of a live forensic investigator’s toolset, along with proper

acquisition tools. While this might seem like a radical idea, the situation is not unique to

Android devices. For example, if an investigator must obtain a copy of physical memory from a

live desktop machine for which no administrator privileges are available, privilege escalation

provides the only option for introducing kernel code to facilitate memory dumping.

Once exploited, an Android process continues to execute as root until closed, which provides a

vector for loading code into the kernel. The binary containing the exploit can be transferred to

the target phone in a number of ways, but the most portable method to transfer files to and

from the phone is through the adb application that is distributed with the Android SDK. adb

wraps a host PC-to-phone protocol that allows for transfer of files, execution of commands, and

9

other tasks. Once the exploit is transferred, it can then be executed in the shell to gain root. Of

course the entire rooting process can be skipped on phones that were previously rooted by

their owner.

2.2.2 Issues with Existing Memory Acquisition Models

The initial aim of the presented research project was solely analysis of acquired memory. Upon

starting the research, it was discovered that existing Linux memory acquisition modules were

unusable against Android devices. The first module tested was fmem, which is widely used for

acquisition on Intel-based machines. The basic operation of fmem involves creation of a

character device /dev/fmem that supports read and seek operations backed by physical

memory. This allows dd and other similar userland applications to read memory from the

running operating system. Internally fmem works by:

1. Obtaining the starting offset specified by the read operation.

2. Checking that the page corresponding to this offset is physical RAM and not part of
a hardware device's address space.

3. Obtaining a pointer to the physical page associated with the offset.

4. Writing the contents of the acquired page to the userland output buffer.

While attempting to use fmem, a number of issues were discovered. First, the function used to

implement step 2, page_is_ram, does not exist on the ARM architecture. This means that the

investigator cannot simply specify the entire memory range to be copied as the module would

10

attempt to read from memory-mapped hardware device ranges, which could cause severe

instability and potentially crash the phone.

The second issue discovered was that the dd application bundled with common Android ROMs

does not handle file offsets above 0x80000000 correctly. This is because the Android dd uses

32-bit signed integers for offsets and storing 0x80000000 causes a 32-bit signed integer

overflow. It then uses a system call to interact with a kernel function that expects a 64-bit

signed integer. This means the kernel function receives a sign-extended 64-bit integer, which

will obviously produces incorrect results. In the case of 0x80000000, this transforms the

address used by the kernel function into 0xFFFFFFFF80000000. This incorrect handling of

integers makes dd unusable for memory acquisition on a number of Android devices.

Finally, during the testing phase which will be described in section 3.3, it was discovered that

fmem only recovers 80% of the original memory of devices from which it acquires memory.

This high percentage of overwritten memory (20%) is likely due to the fact that fmem requires

extensive interaction with userland. Particularly when used with dd, as is recommended by the

fmem author, a context switch and user-to-kernelland copying of data must occur thousands of

times during the memory imaging operation.

The other kernel module for memory acquisition, crash, faces the same issues with dd as it also

exposes a device driver to userland. This userland approach also creates the same issues with

overwriting excessive memory due to frequent context switching.

11

2.3 Barriers to Device-Independent Acquisition

One issue that affects all kernel modules for Android phones, including the memory acquisition

module described in this thesis, is portability across a wide variety of phone models.

Unfortunately, loading kernel modules is a difficult task to perform in a kernel-version agnostic

manner. When attempting to load a kernel module, if module verification is enabled, the

kernel performs a number of sanity checks to ensure that the module was compiled for the

specific version of the running kernel. If any of these checks fail, then the kernel refuses to load

the module. While module verification is optional, every kernel tested (see Table 1) enabled it

and there is no reason to believe that verification will be disabled on other Android phones. A

bypass of the sanity checks is very difficult, since kernel modules are tagged with a number of

pieces of information about the kernel they were compiled against. While some of this is

superficial information, such as version information and strings that might easily be changed to

“trick” the kernel into loading a module, the module also stores CRCs of functions and

structures that it requires. Before loading, the kernel reads each symbol in the binary and

attempts to match its CRC against the corresponding code in the kernel. Again, if this check

fails, then the module does not load. Without the CRC information for particular kernels, the

location of which is discussed shortly, successfully loading a module that does not match the

required kernel version is extremely difficult, since it would require brute-forcing (on the

phone) the kernel CRC values for every symbol used by the module.

12

To work around the issues related to version-generic kernel modules, a popular root-only

Android application, No Dock, attempts to bypass many of the strict checking features [22].

First, the application comes with bare kernel modules compiled against a stock version of each

supported kernel for ARM. At load time it first uses uname in order to determine the running

kernel version and which bare module it should attempt to load. Next, it tries to read

/dev/kmem, a file mapping kernel memory, in order to locate the vermagic string. If it is able to

read this file and locate the string, it then patches the on-disk module with it in order to satisfy

the check. In order to bypass CRC checks, No Dock assumes that by loading a module compiled

against the same base kernel that CRC checks will pass. Unfortunately, this is not always the

case as functions can change between minor versions and this issue is documented on the

referenced page. Therefore No Dock is able to handle a fairly large number of kernel versions,

but it can still fail in a number of ways. For example, if /dev/kmem is not present, then the

loader is unable to read the correct version magic string. It will also fail if any of the CRC checks

fail. Ultimately, the No Dock approach is promising to increase the number of supported

phones for a kernel module, but it is not perfect.

Creating a module for every kernel version that might be deployed on an Android phone is

therefore not a trivial task. In order to compile a loadable kernel module, a number of

additional files are required, including the kernel source for the installed kernel. While a

number of manufacturers release the kernel source for their deployed kernel in order to

comply with the GPL, distributors of popular custom ROMs for rooted phones do not include

the kernel source with their releases. The lack of access to kernel source also prevents simply

13

bypassing the previously mentioned CRC checks, since the Modules.symvers file, which contains

the CRCs of all symbols, cannot be obtained.

Module compilation also requires the kernel configuration file (.config) that was used when the

installed kernel was compiled. Normally there are two ways to acquire this file, the first being

from within the kernel sources distributed by the kernel creator and the second from

/proc/config.gz on the running kernel. While the kernel on some phones provides

/proc/config.gz (see Table 1), it is unavailable on others.

Due to these issues, further research is needed to make a truly kernel-version agnostic module.

Support for stock kernels on Android phones is fairly straightforward, but procedures to safely

bypass the kernel version checking restrictions on custom kernels would have an immense

impact on module portability, both for this work and for other useful kernel modules. Although

it not yet possible to develop a truly portable kernel module, in the development of our tools

we strived for as much portability as possible, subject to the constraints listed above.

14

Chapter 3:

DMD

This will discuss the developed Android memory acquisition module – named Droid Memory

Dumper (DMD), address memory dumping over TCP and to an Android device’s Secure Digital

(SD) card, and offer thoughts on the forensics soundness of the approach.

3.1 The Acquisition Module

In order to support acquisition of kernel memory across all Android devices, a kernel module

was developed that acquires a copy of system RAM with minimal interaction from the

investigator. To work around the issues detailed in section 2.2.2 (problems with dd, disturbing

memory with context switching, etc.), DMD, takes a different, simpler, and less invasive

approach to acquiring memory. The module works by:

1. Parsing the kernel’s iomem_resource structure to learn the physical memory address

ranges of system RAM.

2. Performing physical to virtual address translation for each page of memory.

3. Reading all pages in each range and writing them to either a file (typically on the

device’s SD card) or a TCP socket.

15

When loading the module, the investigator provides either a directory path to copy the dump

to on the host device or a TCP port for the device to listen on. Physical address range

information is handled automatically in the kernel module. The memory dump is written

directly from the kernel to limit the amount of interaction with userspace and in particular, to

eliminate the need for userspace data copying programs such as dd. This saves a substantial

number of system calls and other kernel activity that is necessary when using userland tools

such as dd and cat, which must issue a read and write call for every block of data requested via

the memory device. The module also attempts to avoid the use of kernel file system buffers

and network buffers in order to minimize the contamination of volatile memory during the

acquisition process.

3.2 Interacting with the Developed Module

To illustrate the use of the described module, we will now walk through two examples of

acquiring memory from an Android device. We will first discuss the acquisition of memory over

a TCP connection, followed by a discussion of acquiring a memory dump via the phone’s SD

card. While these processes should be identical for all Android devices, in our example we will

use a rooted HTC EVO 4G, a popular Android phone.

3.2.1 Acquisition of Memory over TCP

The first step of the process is to copy the kernel module to the phone’s SD card using adb. adb

is the Android Debug Bridge, which supports a number of interactions with an Android device

16

tethered via USB. We then use adb to setup a port-forwarding tunnel from a TCP port on the

device to a TCP port on the local host. The use of adb for network transfer eliminates the need

to modify the networking configuration on the device or introduce a wireless peer—all network

data is transferred via USB. For the example below, we have chosen TCP port 4444. We then

obtain a root shell on the device by using adb and su. To accomplish this we run the following

commands with the phone plugged into our computer and debugging enabled on the device1.

$ adb push dmd-evo.ko /sdcard/dmd.ko

$ adb forward tcp:4444 tcp:4444

$ adb shell

$ su

Memory acquisition over the TCP tunnel is then a two-part process. First, the target device

must listen on a specified TCP port and then we must connect to the device from the host

computer. When the socket is connected, the kernel module will automatically send the

acquired RAM image to the host device. The module first sends a fixed-size header, which lists

the physical memory address ranges for the device and their corresponding offsets in the

image. It then sends an image of each physical address range concatenated together.

In the adb root shell we install our kernel module using the insmod command. To instruct the

module to dump memory via TCP we set the path parameter to “tcp”, followed by a colon and

then the port number that adb is forwarding. On our host computer we connect to this port

with netcat redirect output to a file. When the acquisition process is complete, dmd will

terminate the TCP connection.

1 Enabling debugging involves a simple change in the phone’s settings.

2 This technique is explained in detail in Chapter 6 and was the approach taken in the prototype to minimize

17

The following command loads the kernel module via adb on the target Android device:

insmod dmd path=tcp:4444

On the host, the following command captures the memory dump via TCP port 444 to the file

“evo.dump”:

$ nc localhost 4444 > evo.dump

3.2.2 Acquisition of Memory to the Device’s SD Card

In some cases, such as when the investigator wants to make sure no network buffers are

overwritten, disk-based acquisition may be preferred to network acquisition. To accommodate

this situation, DMD provides the option to write memory images to the device’s file system. On

Android, the logical place to write is the device’s SD card.

Since the SD card could potentially contain other relevant evidence to the case, the investigator

may wish to image the SD card first in order to save unallocated space. Unfortunately, some

Android phones, such as the HTC EVO 4G and the Droid series, place the removable SD card

either under or obstructed by the phone’s battery, making it impossible to remove the SD card

without powering off the phone (these phones will power down if the battery is removed, even

if they are plugged into a power source!). For this reason, the investigator needs to first image

the SD card, and then subsequently write the memory image to it. While this process violates

the typical “order of volatility” rule of thumb in forensic acquisition, namely, obtaining the most

volatile information first, it is necessary to properly preserve all evidence.

18

Fortunately, imaging the SD card on an Android device that will be subjected to live forensic

analysis (including memory dumping) does not require removal of the SD card. Tethering the

device to a Linux machine, for example, and activating USB Storage exposes a /dev/sd? device

that can be imaging using traditional means (e.g., using dd on the Linux box). Activating USB

Storage mode unmounts the SD card on the Android device, so a forensically valid image can be

obtained.

With USB Storage mode deactivated we copy the dmd kernel module to the device using the

same steps described in the last section. When installing the module using insmod, we set the

path parameter to /sdcard to specify the directory in which the dump should be placed:

$ insmod dmd path=/sdcard

Once the acquisition process is complete, we can power down the phone, remove the SD card

from the phone, and transfer the memory dump to the examination machine. If the phone

cannot be powered down, the memory dump can be transferred to the investigator's machine

by using adb or by utilizing the phone’s USB storage mode as described earlier.

3.3 Testing

The developed kernel module was tested against a number of Android phones. Table 1 lists

these phones with the model, ROM, and kernel version. Other Android phones are similar, with

minor differences in kernel versions.

19

Model ROM Kernel Version Config Exported

HTC EVO 4G
HW Rev: 0004

OMJ_EVO_2.2_Froyo_v4.0_odexe
d

2.6.32.15-g59b9e50
#17

Yes

HTC EVO 4G
HW Rev: 0003

Stock 2.6.32.17-gee557fd Yes

HTC EVO 4G
HW Rev: 0003

Stock 2.6.35.10-gc0a661b Yes

Droid Eris Kaos Froyo 2.6.29-c77FF39d No
Droid 2 Stock 2.6.32.9-g462500f No
Android
Emulator

Stock Goldfish 2.2 2.6.29 Yes

Table 1. Phones used as test platforms for DMD.

Since it would be infeasible to test every Android model on the market and the goal of this

effort is to provide memory acquisition capabilities for all Android devices, the module was

designed to work as simply as possible. The only functionality that the final version of the

module relies on is the ability to translate virtual to physical addresses, the ability to write to

files from the kernel, and the ability to communicate over TCP. If any of those facilities were

broken, the operating system would not operate correctly as these are basic operations

necessary for proper operation of the phone. Because only basic operating systems services

are used in the DMD module, I am confident that the module will work on all Android devices

as well as other architectures that support Linux.

Testing was performed using manual analysis of the acquired memory capture as well as testing

captures with Volatility functionality, which was developed by Andrew Case [23]. All phones

tested successfully allowed for acquisition of memory with no observed side effects to

continued operation of the device.

20

3.4 Forensic Soundness of Acquisition Approach

For the developed acquisition approach to be of use to the forensic community, it must meet

the basic standards of forensic soundness. Adherence to these guidelines determines if

evidence will be admissible in court and usable in other legal settings. While live forensics

investigation on any computer inevitably disturbs some volatile data, just as a traditional

forensics investigation of a murder scene inevitably disturbs some characteristics of the crime

scene; careful steps can be made to minimize the impact. This approach meets basic forensic

soundness standards for a number of reasons. First, we attempt to minimize the impact on the

target device when transferring data to and from it. Second, only a USB connection with the

phone is needed for interaction. Once connected, only a single binary (the kernel module)

needs to be transferred and executed to perform the acquisition. Third, loading of the module

requires a minimal footprint, as the dmd module is very small (~70KB) and requires very few

kernel functions to acquire memory. As explained previously, minimal interaction with

userland is needed beyond loading the module, since all reading and writing of data to files or

via the network is handled within the kernel. This saves hundreds of system calls and other

function invocations that would otherwise need to be performed.

To quantitatively test the soundness of the module we turn to virtualization. The Android SDK

ships with a qemu-based emulator that runs the full Android stack all the way down to the

kernel. By launching the emulator with the flags –qemu –monitor stdio we are presented with a

command line interface that allows us to run commands to interact with the emulator. The

pmemsave command pauses the execution of the guest operating system running in the

21

emulator, saves a dump of physical memory of the guest operating system, and then continues

execution of the guest operating system. This essentially allows us to capture a physical

memory snapshot of a virtual Android device. We then use this snapshot to establish “ground

truth” in our testing.

For our tests we repeatedly use pmemsave to take snapshots of memory on the virtual Android

device. When the snapshot is finished we immediately start a capture using DMD. We then

compare the two images for identical physical memory pages. The average results for 10 runs

of testing are provided in Table 2.

There was also interest in comparing the results to tools traditionally used in Linux memory

acquisition, namely fmem and dd. However, as we discussed in section 2.2.2, fmem does not

work properly on Android devices. fmem was modified to work around the issues we described

in step 2 of the fmem acquisition process. The modifications were minimal and only handled

how fmem determines if an address points to physical RAM. These modifications should not

affect the soundness of the capture. Since the Android emulator maps physical RAM starting at

address 0, the issues described with dd do not play a factor in acquiring memory from virtual

devices (but remain problematic for real devices). The same tests were run against the

modified fmem as were with DMD. The results are also recorded in Table 2.

22

Method Total # of Pages # of Identical Pages % of Identical Pages

dmd (TCP) 131072 130365 99.46%
dmd (SD Card) 131072 129953 99.15%
fmem (SD Card) 131072 105080 80.17%

Table 2. Average results from 10 runs of our testing procedure.

512MB RAM images collected using dmd were consistently over 99% identical to the pmemsave

snapshots. Since the copying of the image takes time, which allows other running processes to

perturb memory during the capture, I feel that this is a very reasonable result. When compared

to the modified fmem implementation dmd shows on average significantly better results: about

99% of pages are correctly captured versus about 80%. This supports the design decision to

minimize interactions with userland programs and eliminate the traditional method of exposing

a new memory device via a kernel module and then using a userland program such as dd to

capture memory contents through this device. Based on the design goals and the results of

testing, we state that the developed approach meets all the guidelines of a forensically sound

process.

23

Chapter 4:

Android Forensic Analysis

4.1 Introduction

Modern mobile computing devices such as the Motorola Droid are powerful handheld

computers with large amounts of non-volatile storage and run multitasking operating systems

with complex data storage capabilities. Users may choose from a variety of browsers and tens

of thousands of downloadable applications. Data may be stored persistently on internal flash

memory or on removable flash storage. Data may also be resident in the device’s volatile

memory. The development of solutions to ensure that sensitive information accessed by one of

these mobile devices is not stored for a longer duration than needed required extensive

forensic evaluation of the devices to determine when, where, and how potentially sensitive

information might be stored. In this section we will discuss our analysis.

4.2 Volatile Storage Analysis

After acquiring full memory captures with DMD, a mix of standard Linux tools as well as custom

scripts were used to search for information that was insecurely freed. This process started by

running two passes of strings over the memory capture, one for ASCII data and one for

Unicode. The output was then manually inspected to determine if relevant information was

still contained in the capture. For data structures that are not recognizable by simple strings

24

analysis, scripts were developed that were able to locate and parse binary structures from

memory.

The first application tested was version 2.2 of “Internet”, the stock Android web browser. This

test was performed by browsing to various webpages and then closing them. This test was

performed using the strings method mentioned previously. The output was then searched for

common page elements such as HTML tags, words contained on visited pages, and headers of

files loaded, such as images. Analysis revealed that a number of pieces of information were left

in memory after use – including visited pages, page contents, and other session information.

The second application tested was version 5.1.22460 of the Opera Mini web browser. Unlike

the “Internet” application, in order to conserve bandwidth in mobile environments, Opera Mini

proxies all of its requests through Opera’s server farms. The HTML is converted server-side into

a format called “Opera Binary Markup Language” [24]. The OBML binary is then sent to Opera

Mini for rendering. Opera Mini does not properly sanitize the OMBL binary from memory upon

exit. While future work is needed in analyzing the OBML format, by searching for static markers

that appear in all of our collected OBML files it was possible to identify OMBL file fragments in

the acquired memory dump. Recovery of this information was performed through a custom

script that was able to identify the OBML in memory. With further analysis and understanding

of the OMBL file format, it is likely that the complete webpages could be recovered from the

binary format.

25

After testing Internet and Opera, two applications that handle very sensitive information

(passwords and financial transactions) were tested. Since these applications do not handle

multiple requests at once like web-browsers do with tabbing, we cannot simply open them in

different contexts. To remedy this we use a modified analysis methodology. First, while the

application is running we acquire a full memory dump of the device. We then terminate the

application’s process and collect a second memory dump. In order to end a target process, we

can use either the command line kill utility or the Advanced Task Killer (ATK) [25] application.

Noting that processes were fully terminated, as opposed to being sent to the background, is an

important distinction as the average Android user simply backgrounds processes when they are

no longer in use. Obviously this leaves all information intact in memory as the process is still

running and leaves room for a number of research avenues that target memory analysis of

specific Android applications.

The reason we acquire two memory dumps is so that we may first analyze the dump of the

running process to ensure that sensitive information can be recovered when the process is

running and to verify that our searching methodology is not flawed. We then can analyze the

dump of the terminated process to see if we can find the same information recovered from the

“live” dump.

The first application in this category, version 1.9.1 of KeePassDroid [26] – an application that

manages passwords, securely erased passwords and all other sensitive information after the

application exited. This application was tested by entering usernames and passwords to be

managed by the application, and then searching for these within the memory dump.

26

Usernames, keys, and passwords were recoverable from an unlocked database in the “live”

dump, but none of this information could be found in the “terminated” dump. The second

application in this category, the USAA online banking application [27], also securely erased

memory after a user logged out or the process exited. This was tested using the described

strings method as well as through the use of a developed script that searched for the integer

representation of the account numbers and other account information. Once again, account

numbers and balances were available in the “live” dump, but this information could not be

found after the process was terminated. While it is disappointing from a forensics perspective

that these applications handle memory securely, the privacy and security risks of them not

doing so would be dire, so the fact that they were secure was not completely unexpected.

4.3 Securing Volatile Storage

Analysis of Android’s volatile storage showed that it is clear that leakage occurs, which will

necessitate policies to sanitize RAM after accessing sensitive data using an Android phone. A

primary difficulty is that Android devices kill processes without warning to deal with low

memory situations, insecurely freeing potential sensitive data which might reside in the virtual

address space of the process being killed or in associated kernel structures.

In spite of these difficulties we still need a way to ensure that data is not left resident in the

device’s memory after a process exits. One idea was that no data would remain resident in the

device’s memory after a reboot of the phone. In order to validate this hypothesis we had to do

some testing.

27

In order to test the validity of the hypothesis an application was written that allocates a large

amount of RAM and then fills RAM with a unique “fingerprint” that can be later searched for.

The program was run on a device and then a memory capture was acquired with DMD.

Analysis of the initial capture verified that we could find many instances of our fingerprint

throughout the memory capture. The device was then rebooted and DMD was used to acquire

another memory capture. No instances of the unique “fingerprint” were present in the capture

after a reboot, thus we can surmise that data located in volatile memory is not persistent across

reboots.

With these results we decided that a reasonable solution to the volatile data remanence

problem is to cause reboots of the device on a timed basis when the phone is inactive or

disconnected from a specified “secure” network. Rather than simply suggesting a policy of

phone rebooting, a software-based methodology was developed by the author in collaboration

with Neha Thakur that could help automate the process.

In order to ensure that no sensitive volatile information can be recovered from a device an

event-based software solution should reboot the phone under the following conditions:

 Disconnection from a specified WIFI network

 Expiration of a pre-set timer

 Direct request by a user

28

4.3.1 Disconnection from a Specified WIFI Network

Devices connected to secure networks, such as those run by the Department of Defense, often

access data that is classified and should not be removed from secure facilities. In order to

prevent this data from remaining in the device’s memory, our proposed software solution

would automatically restart the device upon disconnection from a sensitive network. A list of

networks that should be considered “sensitive” would be pre-populated on the device and

would be customizable.

4.3.2 Expiration of a Pre-Set Timer

Automatic timer-based resets may also be desirable. For example you may wish to reset the

device every day when leaving the office. If you typically leave at 5PM your device can be set to

reboot at that time on work days. More sophisticated timer-based approaches are also

possible. For instance, a device could be set to reboot 5 minutes after a user checks their email

or 30 seconds after the GPS on the device detects that they have left a government facility.

4.3.3 Direct Request by a User

In some cases a simple, manual reboot may be desired to quickly destroy volatile data without

a delay. Our proposed software solution would provide this facility with the click of a button.

29

4.4 Securing Non-Volatile Storage

One method for securing non-volatile data is to provide an encrypted area for non-volatile data

stored by Android applications. This will allow secure erasure of the encryption key to provide

nearly instantaneous sanitation of non-volatile storage. Specifically, in order to prevent

recovery of sensitive information from non-volatile memory I suggest the following process:

 An encrypted volume on the device is mounted with a given encryption key.

 The filesystem root for the application being protected is set to the root of the

encrypted volume, to ensure that any changes to the filesystem by the application take

place only in the content of the encrypted volume.

 When the application exits, the encrypted volume is un-mounted and the key securely

erased from memory, to ensure that no data is recoverable without the erased key.

 If the same key can be re-generated (possibly with a password as a seed from the user),

then the same volume can be remounted and the application can regain control over its

configuration files and stored data once the phone is in a secure area.

30

Chapter 5:

Privacy-Enhancing Proof-of-Concept

5.1 Introduction

In order to test the effectiveness of the methodology two minimal proof-of-concept

applications were developed. The first was created in collaboration with co-researcher, Neha

Thakur, and demonstrates the ability to reboot the device upon disconnection from a specified

wireless network. The second demonstrates the feasibility of creating a per-process encrypted

volume and “jailing” the process to the volume to ensure that no data is written to disk outside

of the encrypted volume.

5.2 Volatile Memory Proof-of-Concept

Figure 1 - Screenshot of Volatile Memory POC

31

The three basic conditions that our prototype implements can be seen in Figure 1 and are

described in section 4.3. We will first describe how the application handles rebooting the device

and then will describe the three implemented options.

5.2.1 Basic Reboot Function

All three implemented options call a common function which instructs the device to reboot.

Android does not provide an interface for non-system applications to reboot the device.

Therefore the function must first elevate its privilege to “root” using the rooted device’s su

command and then execute the system command /system/bin/reboot. Any problems with this

process will be caught and presented to the user for troubleshooting.

5.2.2 Option 1: Direct Reboot

This option is the simplest option. If this option is selected the “reboot” function is immediately

called and the device is restarted, wiping volatile memory.

5.2.3 Option 2: Reboot on Disconnection

If the “Reboot on Disconnection” option is selected the program first determines whether a

user is currently connected to a wireless network. If the device is connected to a network it will

determine when the device disconnects from the network and then will call the “reboot”

function.

32

The program calls the getSystemService method in order to acquire access to the WifiManager

class instance. This class provides the primary API for managing all aspects of Wi-Fi

connectivity.

WifiManager wifi = (WifiManager)getSystemService(Context.WIFI_SERVICE);

The WifiManager.getConnectionInfo function returns a WifiInfo class object. The WifiInfo class

describes the state of any WIFI connection that is active or is in the process of being set up.

WifiInfo wifiInfo= wifi.getConnectionInfo();

Once we have that information we can retrieve the service set identifier (SSID) for the current

WIFI network using the WifiInfo.getSSID function. If the SSID is an ASCII string, it will be

returned surrounded by double quotation marks. Otherwise, it is returned as a string of hex

digits. The SSID may be null if there is no network currently connected. Each time the

WifiManager notifies us of a change in the connection state we check the connection info. If

the device is no longer connected to the specified access point then the reboot function is

called and the device is restarted, wiping volatile memory.

5.2.4 Option 3: Timed Reboot

The “Timed Reboot” option allows a user to specify a delay (in seconds) the device should wait

before rebooting. When the “Timed Reboot” button is clicked we create a TimerTask class

instance which will call the “reboot” function. Java’s TimerTask class represents a task to run at

a specified time. We then use the Java scheduler to schedule the task’s execution after the

33

provided delay has expired. Once the delayed time has elapsed the TimerTask will be triggered

and the device will reboot, wiping volatile memory.

While this prototype is minimal, the functionality can be expanded in the future with event

triggers. One useful example would be to schedule a reboot 5 minutes after a scheduled

meeting ends or to reboot 10 seconds after the device’s screen is locked.

5.3 Non-Volatile Memory Proof-of-Concept

Figure 2 - Screenshot of Non-Volatile POC

Our second proof-of-concept application simulates a custom application launcher that utilizes

the techniques described in section 4.4 to ensure that any data written to the device’s non-

volatile storage remains encrypted on disk.

34

The Android operating system contains undocumented, private APIs that allow the creation,

use, and destruction of Twofish-encrypted volumes. Since these APIs are marked hidden, they

are not included in the Android SDK and therefore cannot be used directly in a traditional

manner. However, the Java runtime system that underlies application execution on Android

supports a feature called reflection that allows the dynamic loading and use of Java classes at

runtime. Since the private APIs do exist in the Android runtime system we can use reflection to

utilize these APIs.

A complication is that the private APIs require several undocumented application permissions

to be granted before they can be used. These permissions are defined with a protection level

of “signature”, which means that Android will not grant these permissions to applications

whose digital signature does not match that of the application who defined the permission [28].

In this case our application would need to be signed by Google in order to be granted the

needed permissions. There are several options for working around this restriction:

 Re-implement the private APIs without including the need for special permissions. Since

the source of the APIs is available to us, it should be possible to write our own API which

would allow us to use encrypted volumes without the need for any system signed

permissions.

35

 Bypass the security model of the Android OS to use the APIs. A weakness exists in

Android’s security model and it is possible for us to bypass the protections and grant

ourselves the appropriate permissions to call the Google APIs2.

Many of the APIs to create, mount, un-mount, and destroy encrypted volumes on Android

devices are not included in the Software Development Kit. Therefore wrapper classes were

written that call these private APIs through Java’s reflection libraries, which allow dynamic

loading and execution of classes at runtime.

The application first uses a wrapper class to obtain an instance of the device’s MountService.

The MountService controls most aspects of creation and mounting of volumes on the device.

Since all encrypted volumes are backed by files on the device’s SD-card we must first ensure

that an SD-card is mounted. To accomplish this we use our wrapper class to call the function

MountService.getVolumeState and pass it the path of the SD-card. If the function returns

Environment.MEDIA_MOUNTED then we know the SD-card is mounted and it is safe to

continue.

Once we are sure that the SD-card is properly mounted then we can create an encrypted

volume. We use our wrapper class to call the function MountService.createSecureContainer

and pass it a generated 32-byte encryption key. We check the return value of this function to

check for any errors.

2 This technique is explained in detail in Chapter 6 and was the approach taken in the prototype to minimize

development effort.

36

After creation of the secure container we then execute the system command chroot to change

the root file system of our running process to the mounted secure container. We can then

execute the application of our choosing and wait for it to exit.

When the application exits the program un-mounts the secure container and overwrites the

encryption key in memory. This ensures that all sensitive data that is written to disk by the

chosen application will be unrecoverable.

While the proof-of-concept is minimal and only supports running a single test application, the

functionality could be extended to allow the user to select any application of their choosing. A

separate secure container would be created for each application that was selected.

37

Chapter 6:

Exploiting the Android Security Model

6.1 Introduction

To be able to execute the private API’s used in the proof-of-concept for non-volatile storage

protection, a number of protected permissions are required. In order to obtain these

permissions we take advantage of a vulnerability discovered by the author in the Android

security model that allows us to grant ourselves arbitrary permissions, regardless of their

protection level. The details of this vulnerability will be discussed in this chapter.

6.2 Overview of Android Security Model

By default no Android application has the ability to perform actions that may adversely impact

the operation or integrity of other applications or the operating system. All applications must

be digitally signed by the developer’s unique private key. Each application is assigned a uid by

the Android runtime system at install time. In most cases each application will be assigned a

unique uid; however, if two applications are signed by the same private key then the developer

may request that they be assigned the same uid. Android utilizes the standard Linux access-

rights model to ensure that the data directory of one application cannot be accessed by

another application with a different uid. Android also uses a permission-based model to restrict

access to certain operating system APIs. For example, in order for an application to be able to

38

open a network socket it must first be granted the android.permission.INTERNET permission.

Similarly, an application must be granted the android.permission.ACCESS_FINE_LOCATION

permission to be able to access GPS data. A list of all of the documented Android permissions

can be found on the Android Developer Website [29]. We will discuss the Android permission

model in detail in the next section. For more detailed information about the Android security

model see [30].

6.3 Permissions

Developers of Android applications include an AndroidManifest.xml file, which contains a list of

permissions for the application to be granted. Developers may also create their own set of

permissions in the AndroidManifest.xml files, so that they may expose their own permissions-

based APIs to other applications in order to share data or functionality. Each permission is

assigned a “protection” level (see Table 3) that helps determine whether the Android runtime

should grant the permission to a requesting application. When an application is being installed,

the Android runtime reads the AndroidManifest.xml file in the application package and uses the

protection level of each requested permission to determine whether it should grant the

permission, ask the user, or to deny the permission. An application may revoke its own

privileges at any time, but privileges may only be granted at install time.

39

Value Meaning

"normal" The default value. A lower-risk permission that gives requesting applications access to
isolated application-level features, with minimal risk to other applications, the system,
or the user. The system automatically grants this type of permission to a requesting
application at installation, without asking for the user's explicit approval (though the
user always has the option to review these permissions before installing).

"dangerous" A higher-risk permission that would give a requesting application access to private user
data or control over the device that can negatively impact the user. Because this type of
permission introduces potential risk, the system may not automatically grant it to the
requesting application. For example, any dangerous permissions requested by an
application may be displayed to the user and require confirmation before proceeding, or
some other approach may be taken to avoid the user automatically allowing the use of
such facilities.

"signature" A permission that the system grants only if the requesting application is signed with the
same certificate as the application that declared the permission. If the certificates
match, the system automatically grants the permission without notifying the user or
asking for the user's explicit approval.

"signatureOrSystem" A permission that the system grants only to applications that are in the Android system
image or that are signed with the same certificates as those in the system image. Please
avoid using this option, as the signature protection level should be sufficient for most
needs and works regardless of exactly where applications are installed. The
signatureOrSystem permission is used for certain special situations where multiple
vendors have applications built into a system image and need to share specific features
explicitly because they are being built together.

Table 3. “Protection” levels of Android permissions.

6.4 Permission Model Implementation

6.4.1 PackageManagerService

On startup Android starts a PackageManagerService, which reads in the xml file

/data/system/packages.xml. This file is the central storage location that keeps track of all

permissions, their protection levels, and the application package in which these permissions

were created. The packages.xml file also contains a list of all applications, their assigned uid,

and a list of permissions that have been granted to them. A snippet of a packages.xml file can

be seen in Figure 3.

40

Figure 3 – Snippet from packages.xml

For each permission listed, PackageManagerService checks the AndroidManifest.xml file of the

application package that defined the permission in order to determine if the protection level

has changed. The PackageManagerService then parses each listed package and grants them

the permissions listed. For permissions with a protection level of signature or higher the

PackageManagerService rechecks to ensure the application has the correct digital signature for

the permission. When the PackageManagerService shuts down (usually during device

shutdown) its in-memory structures are written to packages.xml for persistent storage.

<?xml version='1.0' encoding='utf-8' standalone='yes' ?>

<packages>

...

<permissions>

...

<item name="android.permission.RECEIVE_SMS" package="android" protection="1" />

<item name="android.permission.CALL_PHONE" package="android" protection="1" />

<item name="android.permission.BACKUP" package="android" protection="3" />

<item name="android.permission.READ_CALENDAR" package="android" protection="1" />

<item name="android.permission.RECEIVE_BOOT_COMPLETED" package="android" />

<item name="android.permission.SET_TIME" package="android" protection="3" />

<item name="android.permission.ACCESS_UPLOAD_DATA" package="com.htc.providers.uploads"

protection="2" />

...

</permissions>

...

<package name="com.weather.Weather" codePath="/data/app/com.weather.Weather-2.apk"...

userId="10058" ...>

<sigs count="1">

<cert index="1" key="..." />

</sigs>

<perms>

<item name="android.permission.SET_WALLPAPER" />

<item name="android.permission.SEND_SMS" />

<item name="android.permission.WRITE_EXTERNAL_STORAGE" />

<item name="android.permission.ACCESS_WIFI_STATE" />

<item name="android.permission.ACCESS_COARSE_LOCATION" />

<item name="android.permission.CALL_PHONE" />

<item name="android.permission.WRITE_CALENDAR" />

<item name="android.permission.READ_CALENDAR" />

<item name="android.permission.CAMERA" />

<item name="android.permission.INTERNET" />

<item name="android.permission.ACCESS_FINE_LOCATION" />

<item name="android.permission.VIBRATE" />

<item name="android.permission.ACCESS_NETWORK_STATE" />

<item name="android.permission.RECORD_AUDIO" />

</perms>

</package>

...

</packages>

41

6.4.2 Application Installation

When an application is installed its AndroidManifest.xml file is read. Any created permissions

are added to the system by calls to the PackageManagerService. Calls to the

PackageManagerService are also used to determine the “protection level” of each requested

permission. Requested permissions that do not meet the requirements of the “protection

level” are ignored and those that do are granted by the PackageManagerService.

6.4.3 Exploiting the Process

We can use the fact that permissions are only validated at install-time to exploit the process

and grant our application arbitrary permissions (even those that are protected by digital

signatures). First in our applications AndroidManifest.xml file we define a new permission with

the same name as the protected permission that we are trying to acquire and a protection level

of normal. We also request access to the permission in the AndroidManifest.xml file. At install

time, the PackageManagerService will ignore the request to create a new permission, since one

already exists with the same name. It will also ignore the application’s request to be granted

the protected permission, since the application does not meet the requirements. However,

both the definition of the request and the request for the permission will stay in the

application’s AndroidManifest.xml file.

42

On the first run of the application after installation, our malicious program will read the

packages.xml file3. In memory, the application modifies the copy of packages.xml to change

the owning package of the desired permission to its own package name and lowers the

permission level to normal. The permission is also added to the application’s list of permissions

in the modified packages.xml file.

The application then kills the process which is running the PackageManagerService. This causes

the PackageManagerService to shut down and dump its state to the packages.xml file. The

killed process will automatically restart. After the PackageManagerService writes its state to

disk, but before it is reinitialized in the new process (there is a delay of about 10 seconds on

most current devices) the modified packages.xml file is written to disk.

When the PackageManagerService starts it reads in our modified packages.xml file. It now

thinks the application package which created our desired permission is our own and checks our

AndroidManifest.xml file to check the permission level of the process, which is now set to

normal. The PackageManagerService then goes on to grant our process the desired permission

listed in the packages.xml file. By killing the process which hosts the PackageManagerService

and others we have put the operating system in an unstable state. The device will become

unresponsive to user input, but processes will continue to run. After the

PackageManagerService is restarted we should cause the device to reboot to fix this issue.

3 The application must first be granted “root” access either by way of the user or privilege escalation vulnerability.

43

Since the permission is now essentially unprotected and owned by our application package, this

trick only needs to be run once. Any future requests to access this permission will be granted

by the PackageMangerService.

44

Chapter 7:

Conclusions and Future Work

As use of the Android platform continues to increase, the need for both forensic and privacy

tools will both increase. This work presents the first methodology and toolset to acquire

complete volatile memory dumps from Android devices. These dumps are an integral first step

towards “live” analysis of a device’s memory. DMD is a full-featured and tested

implementation of this method, and the source is included in Appendix A of this manuscript.

Researches and investigators may use DMD in order to develop future tools for analysis of

Android kernel structures and to find valuable information that may not be otherwise found on

non-volatile storage. In fact one researcher, Andrew Case, has already used DMD to aid in the

development of Android support in the popular Volatility memory analysis tool [23].

This work also presents a basic methodology that can be used to forensically secure both

volatile and non-volatile storage on Android devices. While future work is needed to

implement this methodology in a full-featured commercial product, it represents an important,

first step in this process.

The vulnerability described in the Android security model is currently present in all versions of

the Android operating system. While exploitation of this vulnerability is partially mitigated by

the fact that the malicious process must first gain elevated privileges, future work is needed to

ensure that the platform is no longer vulnerable to this attack.

45

References

[1] C. Boulton, "eWeek," 02 08 2011. [Online]. Available: http://www.eweek.com/c/a/Mobile-and-

Wireless/Android-Closes-on-50-of-Global-Smartphone-Market-Canalys-377187/.

[2] A. Walters, "FATKit: Detecting Malicious Library Injection and Upping the "Anti"," 4TF Research

Laboratories, 2006.

[3] C. Betz, "Memparser," [Online]. Available: http://sourceforge.net/projects/memparser/.

[4] M. I. Cohen, D. J. Collett and A. Walters, "Digital Forensics Research Workshop 2008 - Submission

for Forensic Challenge," 2008.

[5] A. Case, "FACE: Automated digital evidence discovery and correlation," Digital Investigation, vol. 5,

pp. S65-S75, 2008.

[6] A. Case, "Trasure and tragedy in kmem_cache mining for live forensics investigation," Digital

Investigation, vol. 7, pp. S41-S47, 2010.

[7] A. Case, "Dynamic recreation of kernel data structures for live forensics," Digital Investigation, vol.

7, pp. S32-S40, 2010.

[8] I. Kollar, "Forensic RAM dump image analyser," Department of Software Engineering, Charles

University, Prague, 2010.

[9] A. Cozzie, "Digginf or data structures," in Proceeding of 8th Symposium on Operating System Design

and Implmentation, 2008.

[10] Z. Lin, "Automatic Reverse Engineering of Data Structures from Binary Execution," in 17th Annual

Network and Distributed System Security Symposium, 2010.

[11] A. Slowinska, "Howard: a dynamic excavator for reverse engineering data structures," in 18th

Annual Network & Distributed System Security Symposium, 2011.

[12] "Volatility," [Online]. Available: https://www.volatilesystems.com/default/volatility.

[13] B. Dolan-Gavitt, "Robust Signatures for Kernel Data Structures," in ACM Conference on Computer

and Communications Security, 2009.

[14] Z. Lin, "SigGraph: Bruite Force Scanning of Kernel Data Structure Instances Using Graph-based

Signatures," in Network and Distrobuted Systems Security Symposium, 2011.

46

[15] I. Kollar, "fmem," 2010. [Online]. Available: http://hysteria.sk/~niekt0/foriana/fmem_current.tgz.

[16] D. Anderson, "Crash," 2008. [Online]. Available:

http://people.redhat.com/anderson/crash_whitepaper.

[17] E. Girault, "Volatilitux," 2010. [Online]. Available: http://code.google.com/p/volatilitux/.

[18] V. L. L. Thing, "Live memory forensics of mobile phones," in Digital Forensics Research Workshop,

2010.

[19] M. Zalewski, "memfetch," 2002. [Online]. Available:

http://lcamtuf.coredump.cx/soft/memfetch.tgz.

[20] S. Kramer, "Rage Against the Cage," 2010. [Online]. Available: http://c-

skills.blogspot.com/2010/08/droid2.html.

[21] Zinx, "Linux Kernel 2.x sock_sendpage() Local Root Exploit (Android Edition)," 2009. [Online].

Available: http://www.exploit-db.com/exploits/9477.

[22] androidnothize, "NoDock - Testing and Compatibility," 2011. [Online]. Available:

http://sites.google.com/site/androidnothize/no-dock/testing-comp.

[23] A. Case, "Live Memory Anaylsis with Volatility," in Open Memory Forensics Workshop, New Orleans,

LA, 2011.

[24] C. Mills, "Opera Binary Markup Language," dev.opera.com, 10 11 2008. [Online]. Available:

http://dev.opera.com/articles/view/opera-binary-markup-language/.

[25] ReChild, "Advanced Task Killer," 2011. [Online]. Available:

https://market.android.com/details?id=com.rechild.advancedtaskkiller&hl=en.

[26] "KeePassDroid," 2011. [Online]. Available: http://www.keepassdroid.com/.

[27] USAA, "USAA Android App," [Online]. Available:

https://www.usaa.com/inet/pages/mobile_access_methods_mobileapps.

[28] [Online]. Available: http://developer.android.com/guide/topics/manifest/permission-

element.html#plevel.

[29] [Online]. Available: http://developer.android.com/reference/android/Manifest.permission.html.

[30] "Android Security and Permissions," 2011. [Online]. Available:

http://developer.android.com/guide/topics/security/security.html.

47

Appendix A: DMD Source Code

/*

 * Droid Memory Dumper 2

 *

 * 2011, Joe Sylve, joe.sylve@gmail.com, @jtsylve

 */

#include <linux/kernel.h>

#include <linux/device.h>

#include <linux/highmem.h>

#include <linux/pfn.h>

#include <net/sock.h>

#include <net/tcp.h>

//#undef DEBUG

#define DEBUG

#ifdef DEBUG

#define DBG(fmt, args...) do { printk("[DMD] "fmt"\n", ## args); } while (0)

#else

#define DBG(fmt, args...) do {} while(0)

#endif

//extern rwlock_t resource_lock;

extern struct resource iomem_resource;

static int write_range_disk(struct resource *, unsigned long);

static int write_range_tcp(struct resource *);

static int setup_tcp(void);

static void cleanup_tcp(void);

static int init_tcp(void);

static int init_disk(void);

static char * path;

static int port;

module_param(path, charp, 0);

#define RAMSTR "System RAM"

int init_module (void)

{

 if(!path) {

 DBG("No path specified.");

 return -EINVAL;

 }

 return (sscanf(path, "tcp:%d", &port) == 1) ? init_tcp() : init_disk();

}

48

void cleanup_module(void)

{

}

static int init_tcp() {

 struct resource *p;

 int err = 0;

 DBG("Initilizing TCP Dump...");

 if((err = setup_tcp())) {

 DBG("TCP Error");

 cleanup_tcp();

 return err;

 }

 //read_lock(&resource_lock);

 for (p = iomem_resource.child; p ; p = p->sibling) {

 if (strncmp(p->name, RAMSTR, sizeof(RAMSTR)))

 continue;

 if((err = write_range_tcp(p))) {

 DBG("Write Error");

 break;

 }

 }

 //read_unlock(&resource_lock);

 cleanup_tcp();

 return err;

}

static int init_disk() {

 struct resource *p;

 int err;

 unsigned long timestamp = get_seconds();

 DBG("Initilizing Disk Dump...");

 //read_lock(&resource_lock);

 for (p = iomem_resource.child; p ; p = p->sibling) {

 if (strncmp(p->name, RAMSTR, sizeof(RAMSTR)))

 continue;

 if((err = write_range_disk(p, timestamp))) {

 DBG("Write Error");

 return err;

 break;

 }

 }

49

 //read_unlock(&resource_lock);

 return 0;

}

static struct socket *control;

static struct socket *accept;

static int setup_tcp() {

 struct sockaddr_in saddr;

 int r;

 mm_segment_t fs;

 int buffsize = PAGE_SIZE;

 r = sock_create_kern(AF_INET, SOCK_STREAM, IPPROTO_TCP, &control);

 if (r < 0) {

 DBG("Error creating control socket");

 return r;

 }

 memset(&saddr, 0, sizeof(saddr));

 saddr.sin_family = AF_INET;

 saddr.sin_port = htons(port);

 saddr.sin_addr.s_addr = INADDR_ANY;

 fs = get_fs();

 set_fs(KERNEL_DS);

 sock_setsockopt(control, SOL_SOCKET, SO_SNDBUF, (void *) &buffsize,

 sizeof (int));

 set_fs(fs);

 if (r < 0) {

 DBG("Error setting buffsize %d", r);

 return r;

 }

 r = control->ops->bind(control,(struct sockaddr*) &saddr,sizeof(saddr));

 if (r < 0) {

 DBG("Error binding control socket");

 return r;

 }

 r = control->ops->listen(control,1);

 if (r) {

 DBG("Error listening on socket");

 return r;

 }

 r = sock_create_kern(PF_INET, SOCK_STREAM, IPPROTO_TCP, &accept);

 if (r < 0) {

 DBG("Error creating accept socket");

50

 return r;

 }

 r = accept->ops->accept(control,accept,0);

 if (r < 0) {

 DBG("Error accepting socket");

 return r;

 }

 return 0;

}

static void cleanup_tcp() {

 accept->ops->shutdown(accept,0);

 accept->ops->release(accept);

 control->ops->shutdown(control,0);

 control->ops->release(control);

}

static int write_range_tcp(struct resource * res) {

 mm_segment_t fs;

 resource_size_t i;

 struct page * p;

 void * v;

 long s;

 struct iovec iov = {.iov_len = PAGE_SIZE };

 struct msghdr msg = {.msg_iov = &iov,

 .msg_iovlen = 1 };

 fs = get_fs();

 set_fs(KERNEL_DS);

 for (i = res->start; i < res->end; i += PAGE_SIZE) {

 p = pfn_to_page(PFN_DOWN(i));

 v = kmap(p);

 iov.iov_base = v;

 s = sock_sendmsg(accept, &msg, PAGE_SIZE);

 kunmap(p);

 if (s < 0) {

 DBG("Error sending page %ld", s);

 set_fs(fs);

 return (int) s;

 }

 }

 set_fs(fs);

 return 0;

51

}

static int write_range_disk(struct resource *res, unsigned long timestamp) {

 mm_segment_t fs;

 resource_size_t i;

 struct page * p;

 void * v;

 struct file * f;

 char filename[256];

 int err = 0;

 size_t s;

 sprintf(filename, "%s/%lu_%lx_%lx.pdump", path, timestamp, (unsigned long)

 res->start, (unsigned long) res->end);

 fs = get_fs();

 set_fs(KERNEL_DS);

 f = filp_open(filename, O_WRONLY | O_CREAT | O_DIRECT, 0);

 if(f == ERR_PTR(-EINVAL))

 f = filp_open(filename, O_WRONLY | O_CREAT, 0);

 if (!f || IS_ERR(f)) {

 DBG("Error opening file %ld", PTR_ERR(f));

 set_fs(fs);

 return (f) ? PTR_ERR(f) : -EIO;

 }

 for (i = res->start; i < res->end; i += PAGE_SIZE) {

 p = pfn_to_page(PFN_DOWN(i));

 v = kmap(p);

 s = f->f_op->write(f, v, PAGE_SIZE, &f->f_pos);

 kunmap(p);

 if (s < 0) {

 DBG("Error writing to file %d", s);

 err = s;

 goto error;

 }

 }

 err = 0;

error:

 filp_close(f, NULL);

 set_fs(fs);

 return err;

}

//MODULE_AUTHOR ("Joe T. Sylve, joe.sylve@gmail.com");

//MODULE_DESCRIPTION ("Perform physical memory dump on Android devices.");

MODULE_LICENSE("GPL");

52

Vita

Joe Sylve was born in New Orleans, LA and grew up in nearby suburban Chalmette. After

spending a year at Mississippi State University, Joe began attending The University of New

Orleans where he eventually went on to receive a Bachelor of Science in Computer Science. In

the Fall of 2010, he entered the M.S. program with a Research Assistantship funded by the

Space and Naval Warfare Systems Command.

	Android Memory Capture and Applications for Security and Privacy
	Recommended Citation

	tmp.1322001750.pdf.x4zWd

