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Abstract 

 The purpose of this research was to master several unfamiliar concepts and bring them 

together in one cohesive project. DroidCDF is an application for the Android operating system to 

create, write data to, and read data from netCDF format files. DroidCDF uses Unidata’s NetCDF 

Java Library and can write files in netCDF-3 format but read from any netCDF format files. As 

mobile devices become more powerful and commonplace, DroidCDF provides a convenient tool 

for researchers. An incremental methodology was applied; the application was built from a rough 

workflow to eventually a robust and fully functional program. The produced files are fully 

portable and can be used as the input for other applications. The application has been tested with 

several large netCDF files with varying conventions and has handled each one remarkably well. 

Upon submission of this thesis, DroidCDF will be released onto the open market. 
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Chapter 1: Introduction 

1.1 Intentions of DroidCDF 
 DroidCDF is an Android application that allows users to create files and read and write 

data in Unidata’s netCDF format. NetCDF is a self-describing, portable, and scalable data format 

used for sharing and transferring scientific data. All Android applications are written in Java, so 

DroidCDF uses NetCDF Java, a library that is maintained separately from the C, Fortran, and 

C++ interfaces. There are several versions of the netCDF file format, but currently NetCDF Java 

and thus DroidCDF only support writing with the netCDF-3 classic data format. In keeping with 

Unidata’s goal of being available to as many users as possible, DroidCDF is targeted to run on 

Android 2.1 and above, so that an estimated 99% of Android users are capable of using the 

application. 

 As devices such as smartphones and tablets become increasingly popular, it makes sense 

to have a mobile application for recording scientific data. If a researcher would like to record 

data while on the go, a simple to use and entirely functional application on a mobile device 

would be convenient and pragmatic. DroidCDF can display the contents of any netCDF file in an 

interactive format, optimized to fit on a mobile device. The application does not attempt to 

understand the data, but it would be easy to create a companion application to interpret the files 

in meaningful ways for specific research. It is important to note that since DroidCDF does not 

interpret data, it is up to the user to enforce conventions and standards that their teams or 

research require. 

DroidCDF has tree significant goals: 
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 Accessible: to be a useful, lightweight application for as many researchers as possible. 

This is achieved by developing the application to work on the most popular Android 

platforms and to support all netCDF formats that the NetCDF Java library allows. 

 Usable: if a researcher is familiar with the netCDF format, the application should require 

little or no training to use. Even without familiarity, the application attempts to be self-

explanatory. This means that the interface is intuitive and easy to navigate. 

 Open: DroidCDF is an open project that any researcher may modify or extend to suit 

their needs.  

1.2 History and Usage of NetCDF 

As described by its developers, NetCDF - short for Network Common Data Form - is a 

set of interfaces that was created in order to facilitate the sharing of electronic scientific data, 

regardless of machine or operating system. It was originally developed by the Unidata Program 

Center, part of the University Corporation for Atmospheric Research, in order for the program’s 

researchers to share their meteorological data and to create a reusable, cross-disciplined piece of 

software. [1] 

 In 1987, Treinish and Gough, researchers at the National Space and Science Data Center 

(NSSDC) of the National Aeronautics and Space Administration (NASA) described the NASA 

Common Data Format (CDF) which eventually laid the groundwork for Unidata’s netCDF. The 

two explain the CDF as being a cross-platform, readily accessible software package: 

This structure, called the Common Data Format (CDF), provides true data independence 

for applications software that has been developed at NSSDC. Scientific software systems 

at NSSDC use this construct so that they do not need specific knowledge of the data with 

which they are working. This permits users of such systems to apply the same functions 
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to different sets of data…The users of such data-independent NSSDC systems…rely on 

their own knowledge of different sets of data to interpret the results, a critical feature for 

the multidisciplinary studies inherent in the earth and space sciences. [2] 

The idea that it is the user’s responsibility to interpret the data is an important concept to CDF, 

netCDF, and DroidCDF. The software’s primary concern is with putting the data into a unified 

format, not with reaching meaningful understandings; in this way, the software becomes much 

more stream-lined and efficient, which is of the utmost importance in a mobile environment 

where memory and processing power can already be limited. 

 After Treinish and Gough laid their foundations, Dave Raymond – a researcher at the 

New Mexico Institute of Mining and Technology – developed a “system written in the C 

language for the analysis and display of gridded numerical data (Candis),” which he described in 

his 1987 paper. In his system, access to data files was sequential so that applications could be 

constructed with pipes, a mechanism wherein the output of one module becomes the input of 

another module. [3] 

 Unidata developer Glenn Davis combined the ideas of Treinish and Gough with 

Raymond’s, including named dimensions and variables of various shapes, into the first prototype 

of netCDF. The prototype was written in C, like Candis, and also layered on an External Data 

Representation (XDR) format. After Joe Fahle of SeaSpace, Inc., released his version of CDF 

software, Unidata produced and refined its own interface and documentation with additional 

developers Russ Rew, Ed Hartnett, John Caron, Steve Emmerson, and Harvey Davies. [1]  

 NetCDF files have a fundamental set of qualities. The first is that netCDF files are self-

describing; it includes information about the data it contains in a header, such as where particular 

sections of data are written in the file. Files are portable and can be read by machines with 
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differing architectures. NetCDF files are also scalable and appendable, so data can be efficiently 

read and written. Finally, netCDF files will always be archivable, or backwards-compatible. [4]

 Since its inception, netCDF has seen several new versions. Version 2.0 was released in 

October of 1991 and included changes such as storing dimension lengths as longs rather than 

integers. In June of 2008, version 4.0 was released. [1] This new release included a more 

powerful model of data representation with new primitive data types, the ability to have multiple 

dimensions with unlimited length, and support for parallel I/O. [5] 

 While netCDF files can be written in several different programming languages, Unidata 

maintains a single distribution of the C, Fortran, and C++ interfaces and a separate distribution of 

the Java interface. The latest versions of the NetCDF Java Library implement a Common Data 

Model (CDM), which is a generalization of the NetCDF, OpenDAP, and HDF5 data models. The 

library is still a prototype to netCDF-4; it completely supports reading the netCDF-4 format, but 

can only support writing to netCDF-3 format. [6] Since Android applications are written in Java, 

all files created by DroidCDF are in netCDF-3 format and extend the classic data model. While 

any netCDF can be read by DroidCDF, only files in netCDF-3 format can be modified.  

 In the classic netCDF data model, data are stored in array data structures, called 

variables, which are shaped by dimensions and described by attributes. Figure 1 shows a visual 

representation of these relationships: 
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Figure 1: Classic Data Model [7] 

From the netCDF User Guide, dimensions have a name and positive length, although a 

netCDF-3 file can have one dimension with an unlimited length. This unlimited dimension, also 

known as the record dimension, must always be listed first when defining variables because it is 

the slowest changing. These dimensions can be defined to represent real dimensions, like time or 

temperature, and they are used to shape variables. [1] 

 Variables are where the data in a netCDF file are stored. A variable has a name, type, and 

shape. The type of the variable indicates the type of the array of values it stores. The shape of the 

variable is indicated by supplying a list of dimensions. For example, if a variable has no 

dimensions it is a scalar value. If a variable has one dimension, its values are contained in a 1-

dimensional array; if it has two dimensions, its values are contained in a 2-dimensional array, 

and so on. Since the netCDF Java library writes files in the netCDF-3 format, the only types 

allowed are char, byte, short, int, float, and double. [1] 
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 Both the file and individual variables can be assigned attributes which provide 

supplementary information. Attributes have names, types, and values; variable attributes must 

also specify their associated variable’s name. While variables and dimensions must be declared 

before writing data, attributes can be continuously added. [1] Examples of attributes include file 

version, file authors, variable units, etc. 

 Together, the dimensions, variables, and attributes comprise the netCDF file header. The 

header includes names, types, lengths, and the offset to the beginning of each variable’s data. In 

order to minimize the size of netCDF files, the header takes up as little space as possible; 

generally, the data begin at the next available disk block. However, this means that if additional 

dimensions, variables, or attributes are added to the file, all data must be copied and moved. The 

data that are stored after the header is divided into two parts. The first part is for fixed-size data; 

here, the data are stored contiguously. If applicable, the last part of the file is for data with an 

unlimited record dimension. Here, according to users’ guide, the data “consists of a variable 

number of fixed-size records, each of which contains data for all the record variables. The record 

data for each variable are stored contiguously in each record.” [1] A detailed breakdown of the 

classic netCDF format can be found at 

http://www.unidata.ucar.edu/software/netcdf/docs/netcdf/Classic-Format-Spec.html. 

1.3 History and Usage of Android 

 “Android is a complete mobile phone software stack. It includes everything a 

manufacturer or operator needs to build a mobile phone.” [4] This robust platform began when 

Andy Rubin’s startup – Android, Inc. – was purchased by Google in July of 2005. [8] Contrary 

to popular belief, though, the Android platform is developed and maintained by more than just 

Google. The Open Handset Alliance (OHA) is “a group of 84 technology and mobile companies 
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who have come together to accelerate innovation in mobile and offer consumers a richer, less 

expensive, and better mobile experience.” Members are companies who are devoted to “making 

serious and ongoing contributions to openness in the mobile world.” [4] The group includes 

telecommunications companies, such as Sprint Nextel, T-Mobile, and Vodafone; handset 

manufacturers, such as HTC, Motorola, and LG Electronics; semiconductor companies, such as 

Intel Corporation, NVIDIA Corporation, and Synaptics; and many more software and 

commercialization companies. [9]  

 The OHA has designed Android as an open platform, meaning the group publishes and 

updates a comprehensive application programming interface (API). This greatly benefits 

developers for many reasons, including having access to easy-to-use developer tools, deeply 

integrated and optimized applications, and less expensive distribution and commercialization of 

applications. [4] All of these reasons factored into the decision to develop a mobile netCDF 

application for the Android operating system. 

On October 22, 2008, the Open Handset Alliance released its first Android-powered 

smartphone: the T-Mobile G1. Android 1.0 introduced widgets, a pull-down notification 

window, and the Android Market. [10] Widgets are “miniature application views that can be 

embedded in other applications (such as the home screen) and receive periodic updates. … An 

application component that is able to hold other App Widgets is called an App Widget host.” 

[11] For example, a screenshot from my HTC Evo demonstrates the clock widget in Figure 2: 
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Figure 2: Clock Widget 

This widget updates time and weather information in real time. Other examples include an 

interactive calendar, a Google search bar, and music controller. All of these allow the user to 

utilize the application’s functionality without actually launching an entire application. DroidCDF 

is not a widget and displays over the entire screen when in use. The pull-down notification 

window displays information for users in one convenient location. It could list incoming text 

messages, system updates, pending voicemails, or application notifications. Another screenshot 

demonstrates this in Figure 3: 

 

Figure 3: Pull-Down Notification Window 
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Here the window is in the process of being pulled down. It is displaying voicemail information 

as well as desktop-interactivity preferences while the phone is plugged in with a USB cable. The 

Android Market was, until very recently, the central hub where all applications could be 

downloaded and instantly synchronized to a user’s Google account on the web. Google has now 

combined this service and offerings of eBooks, television and movie streaming, and music sales 

into Google Play. 

 Three months after Android 1.0 was released, Android 1.1 was deployed. This quick 

turnaround time has been continuous, and the platform has seen several major releases to date. 

Table 1 lists these releases: 

Platform Codename API Level Release Date 

Android 1.5 Cupcake 3 April 2009 

Android 1.6 Donut 4 September 2009 

Android 2.1 Éclair 7 January 2010 

Android 2.2 Froyo 8 May 2010 

Android 2.3 –  

Android 2.3.2 

Gingerbread 9 December 2010 

Android 2.3.3 –  

Android 2.3.7 

10 February 2011 

Android 3.0 Honeycomb 11 February 2011 

Android 3.1 12 May 2011 

Android 3.2 13 July 2011 

Android 4.0 – 

Android 4.0.2 

Ice Cream Sandwich 14 October 2011 

Android 4.0.3 15 December 2011 

Table 1: Android Releases [11] 

 With each new release came exciting new features. Cupcake brought the “soft keyboard” 

so that a user could type entirely on the touch screen, eliminating the need for a physical 

keyboard. Éclair allowed users to have multiple accounts synchronized to the phone at one time 
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and integrated Google Maps Navigation into several apps. [10] Global positioning systems 

(GPS) and geographic information systems (GIS) like Google Maps can be integrated into 

applications such as trackers or customized searches; DroidCDF could even extend such 

capabilities in the future, as netCDF is a popular input choice for GIS programs. Honeycomb has 

made great strides into completely eliminating the need for physical inputs; a new action bar 

widget allowed for developers to programmatically set all necessary virtual buttons, such as 

home, back, and menu, and display them on the touchscreen. Ice Cream Sandwich has added 

many improvements to the user interface, like a clearer font for higher resolution devices, and is 

incorporating new technologies, like the facial recognition unlocking and the Android Beam. The 

Android Beam allows two phones to transfer data by simply touching the devices together, while 

the new unlocking mechanism uses the front-facing camera to determine who is unlocking the 

phone. [10] 

 To create an Android application, a basic series of steps is followed. First, the 

development environment must be installed. Android has been fine-tuned to work easily in the 

Eclipse integrated development environment (IDE), but applications can also be built through 

other IDEs or through a text editor and terminal. The Android Development Tools (ADT) must 

be downloaded through the Eclipse marketplace or from the command line. [11] When creating 

DroidCDF, I choose to use the Eclipse IDE for ease of development, but this has no bearing on 

the application itself. To run the application, either Android Virtual Devices (AVDs) can be 

installed or a physical device can be connected. Next, the programmer actually develops the 

application. This phase is followed by debugging and testing the application using the Android 

testing and instrumentation framework. Lastly, the application is built and tested in release mode 

before being sold or distributed. [11] 
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 An Android application consists of several components written in Java, Extensible 

Markup Language (XML) layouts, the Android Manifest file, and other resources like images 

and icons. The code is compiled into an Android package, or .apk, which is then installed on a 

mobile device. “The Android operating system is a multi-user Linux system in which each 

application is a different user.” [11] This means that, for security, android applications do not 

communicate by default. Each application has a unique ID and runs in its own virtual machine in 

isolation from other applications. However, applications can be configured to share the same 

Linux ID or share the same virtual machine. With these precautions in place, the Android system 

implements the principle of least privilege so that “each application, by default, has access only 

to the component that it requires to do its work and no more.” [11] 

 There are four Android components that define the framework of the application: 

activities, services, content providers, and broadcast receivers. “A unique aspect of the Android 

system design is that any application can start another application’s component.” [11] For 

example, when selecting a directory to create a file in, DroidCDF actually starts another 

application to provide the file chooser. It appears as if the file chooser is part of the DroidCDF 

application, but the two are separate and DroidCDF is actually waiting for the resulting directory 

path to be returned. 

 An activity is “a single screen with a user interface” that extends from the Activity 

class. [11] DroidCDF is built almost entirely from activities; for instance, when launching the 

application, the initial screen is the HomeScreenActivity. From there, the user could go to 

either an activity to create a new file or view existing files. All activities are independent, so 

applications can start any of them; however, one activity can be designated as the “main” activity 

and will start when the application is launched. Only one activity can run at a time, but any 
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stopped activities are preserved in the operating system’s last in, first out (LIFO) “back stack”. 

[11] 

 An activity can run in the foreground with focus (resumed), run in the foreground without 

focus (paused), or run in the background (stopped). In the latter two cases, the operating system 

can kill the activity if needed to reclaim memory. There are callback methods, also called hooks, 

for the transitions between each of these states. A stubbed example of the activity lifecycle from 

the Developer’s Guide is below: 

public class ExampleActivity extends Activity { 

    @Override 

    public void onCreate(Bundle savedInstanceState) { 

        super.onCreate(savedInstanceState); 

        // The activity is being created. 

    } 

    @Override 

    protected void onStart() { 

        super.onStart(); 

        // The activity is about to become visible. 

    } 

    @Override 

    protected void onResume() { 

        super.onResume(); 

        // The activity has become visible (it is now "resumed"). 

    } 

    @Override 

    protected void onPause() { 

        super.onPause(); 

        // Another activity is taking focus (this activity is about to be 

"paused"). 

    } 

    @Override 

    protected void onStop() { 

        super.onStop(); 

        // The activity is no longer visible (it is now "stopped") 

    } 

    @Override 

    protected void onDestroy() { 

        super.onDestroy(); 

        // The activity is about to be destroyed. 

    } 

} 

The method onCreate() is especially important, as that is where the XML layout for this 

activity should be defined; however, layouts can also be created programmatically rather than 

http://developer.android.com/reference/android/app/Activity.html#onCreate(android.os.Bundle)
http://developer.android.com/reference/android/app/Activity.html#onStart()
http://developer.android.com/reference/android/app/Activity.html#onResume()
http://developer.android.com/reference/android/app/Activity.html#onPause()
http://developer.android.com/reference/android/app/Activity.html#onStop()
http://developer.android.com/reference/android/app/Activity.html#onDestroy()
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through XML. onDestroy() is also important; it can be used to release resources, such as 

threads or input/output, when the activity is finished. To use an activity, it must be declared in 

the AndroidManifest with the <activity android:name=”ActivityName” /> tag. 

[11] 

 A service is “a component that runs in the background to perform long-running 

operations or to perform work for remote processes” and extends from the Service class. [11] 

A good example of a service is a music player. This service can play music in the background 

while a user runs other applications in the foreground. 

 There are two forms of services: started and bound. A started service is called by another 

component and usually performs one operation, such as downloading a file, before destroying 

itself. A bound service allows one or more components to interact with it indefinitely, but the 

service is destroyed if there are no components bound to it. Services should not be confused with 

threads, because the former can run even when the application is in the background, but the latter 

runs only when the user is interacting with the application. If a music player was run in a thread 

rather than a service, the music would stop when the application is sent to the background. [11] 

Like activities, services are declared in the AndroidManifest with the <service 

android:name=”ServiceName” /> tag. DroidCDF’s file chooser, written by Hai Bison, 

declares one service, the LocalFileProvider service, but the remaining components are activities. 

 A content provider “manages a shared set of application data.” This allows data from one 

application to be used directly by another. A broadcast receiver is “a component that responds to 

system-wide broadcast announcements.” DroidCDF currently uses neither of these components.  
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1.4 DroidCDF’s netCDF version choice 

 As noted in Section 1.1, netCDF has undergone a number of version changes. The most 

significant versions include different formats, including netCDF-3 classic, netCDF-3 64-bit 

offset, and netCDF-4/HDF5. As DroidCDF was to be developed for the Android operating 

system, the NetCDF Java library was required. This library allows the application to create and 

write files in the netCDF-3 class format, but files of any version can be read. As the NetCDF 

Java library is modified to support writing in other formats, DroidCDF could also be modified to 

support these implementations. Currently, DroidCDF is dependent upon the NetCDF Java 

version 4.3, the most recent release. 

1.5 DroidCDF’s Android target 

 A major goal of the DroidCDF application is to be useful to as many researchers as 

possible. Thus the ability to write only to netCDF-3 files, the most portable version, is not a real 

restriction in the context of this goal. Similarly, the application should be able to run on as many 

platforms as possible. Android applications are forward compatible [11], so the application 

should run on the lowest versioned platform, with a significant population of users, as possible. 

In general, a significant population will have at least 5% of the distribution. 

 Google tracks the estimated number of users of each Android version by recording the 

number of devices with that platform that access Google Play. The most recent distribution, as of 

April 2, 2012, is seen in the pie chart shown in Figure 4 with corresponding numerical data in 

Table 2: 
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Figure 4: Pie Chart of Android Version Distribution [11] 

 

Platform Distribution 

Android 1.5 0.3% 

Android 1.6 0.7% 

Android 2.1 6.0% 

Android 2.2 23.1% 

Android 2.3 –  

Android 2.3.2 

0.5% 

Android 2.3.3 –  

Android 2.3.7 

63.2% 

Android 3.0 0.1% 

Android 3.1 1.0% 

Android 3.2 2.2% 

Android 4.0 –  

Android 4.0.2 

0.5% 

Android 4.0.3 2.4% 
Table 2: Numerical Distribution of Android Versions [11] 

 This indicates that at least Android 2.1 should be supported. Supporting this version 

would mean that approximately 99% of all Android devices could support the application, due to 

an application’s forward capability. Unfortunately, if DroidCDF’s target platform is Android 2.1, 

the application cannot utilize any of the significant user interface (UI) changes introduced in later 

versions, such as the ActionBar. However, a sleek UI is secondary to DroidCDF’s main goal of 

being functional to as many researchers as possible. An aesthetically pleasing UI can still be 
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achieved with earlier versions of Android, so the official target platform for DroidCDF is 

Android 2.1. As the market changes and later versions of the Android operating system become 

the standard, future releases of DroidCDF can include an updated interface. 

 The version distribution in Figure 4, which was used to decide DroidCDF’s target 

platform, has been consistent in recent months, as shown in the histogram in Figure 5: 

 

Figure 5: Trend-Over-Time Histogram of Android Versions [11] 

This indicates the trend will likely continue for the next several months. A new version of 

DroidCDF will be released when older versions, such as 2.1, are replaced with Android 3.0 and 

higher. 

1.6 Additional Libraries 

 DroidCDF integrates Hai Bison’s android-filechooser version 3.3 project into the 

application. This filechooser is licensed under the Apache License, version 2.0. None of Bison’s 

files have been modified in any way and all attributions have remained intact. This particular 

filechooser was selected to be a part of the application because of its simple to use interface, 

general look and feel, and licensing. One of the main goals of DroidCDF is to be an open 

application that anyone can modify, so a dependent library that can be redistributed is necessary. 
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Chapter 2: Application Overview 

DroidCDF has three main phases: creation of a file, writing data to a file, and reading data from a 

file. A graphical representation of the application’s workflow is seen in Figure 6: 

 

Figure 6: DroidCDF Workflow 

Once the application is launched, the user can choose to either create a new file or browse the 

existing files. If the former action is chosen, then the user will define the file’s meta-data and the 

file will be written to the device’s file system. If the user chooses to browse the device’s existing 

netCDF files, the user selects a file and can then either write to or read from the file. 

2.1 The Home Screen 

When the DroidCDF application is launched, the HomeScreenActivity is launched, which 

can be seen in Figure 7: 
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Figure 7: DroidCDF Home Screen 

This entry point is specified in the AndroidManifest file in the following manner: 

<activity android:name=”edu.uno.droidcdf.HomeScreenActivity” 

android:label=”@string/app_name” > 

       <intent-filter>  

           <action android:name=”android.intent.action.MAIN” />  

           <category android:name=”android.intent.category.LAUNCHER” />  

       </intent-filter> 

</activity> 

Together, the tags <action /> and <category /> specify that HomeScreenActivity 

is the main entry point. All other activities are specified with simply the <activity /> tag. 

The label android:name specifies which package the desired element resides in, while the 

tag android:label refers to the title to be displayed for the activity. It is best practice to not 
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hard-code strings in the XML files; instead, there is a resource file (strings.xml) that contains all 

strings. A specific string is referenced by @string/string_name. 

 Every activity is assigned a layout. In DroidCDF, these layouts are XML files that are 

supplied in the activity’s onCreate() method. For example, the XML layout for 

HomeScreenActivity is defined in the file main.xml: 

<?xml version="1.0" encoding="utf-8"?> 

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android" 

    android:id="@+id/RLayout" 

    android:layout_width="fill_parent" 

    android:layout_height="fill_parent" > 

     

    <ImageView 

        android:id="@+id/logoImage" 

        android:layout_width="wrap_content" 

        android:layout_height="wrap_content" 

        android:layout_centerHorizontal="true" 

        android:src="@drawable/image1" /> 

 

    <TextView 

        android:id="@+id/lblWelcome" 

        android:layout_width="wrap_content" 

        android:layout_height="wrap_content" 

        android:layout_below="@+id/logoImage" 

        android:layout_centerHorizontal="true" 

        android:text="@string/welcome" /> 

 

    <Button 

        android:id="@+id/btnCreateNew" 

        android:layout_width="wrap_content" 

        android:layout_height="wrap_content" 

        android:layout_below="@+id/lblWelcome" 

        android:layout_centerHorizontal="true" 

        android:text="@string/create"  

        android:onClick="switchToCreateFileActivity"/> 

 

    <Button 

        android:id="@+id/btnExisting" 

        android:layout_width="wrap_content" 

        android:layout_height="wrap_content" 

        android:layout_below="@+id/btnCreateNew" 

        android:layout_centerHorizontal="true"         

        android:text="@string/existing"  

        android:onClick="switchToExistingActivity"/> 

 

</RelativeLayout> 

 

and is loaded with the method setContentView(): 
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    @Override 

    public void onCreate(Bundle savedInstanceState) { 

        super.onCreate(savedInstanceState); 

        setContentView(R.layout.main); 

    } 

where R.layout.main is the layout argument, main being the name of the file less the 

extension. Every element in the layout is called a View or a ViewGroup, which is “a special 

view that can contain other views (called children).” [11] The layout file must have one root 

ViewGroup. Typically, this root is one of several subclasses, which are described in Table 3: 

Class Description 

FrameLayout Layout that acts as a view frame to display a single object. 

Gallery A horizontal scrolling display of images, from a bound list. 

GridView Displays a scrolling grid of m columns and n rows.  

LinearLayout A layout that organizes its children into a single horizontal or 

vertical row. It creates a scrollbar if the length of the window 

exceeds the length of the screen. 

ListView Displays a scrolling single column list. 

RelativeLayout Enables you to specify the location of child objects relative to 

each other (child A to the left of child B) or to the parent 

(aligned to the top of the parent). 

ScrollView A vertically scrolling column of elements. 

Spinner Displays a single item at a time from a bound list, inside a one-

row textbox. Rather like a one-row listbox that can scroll either 

horizontally or vertically. 

SurfaceView Provides direct access to a dedicated drawing surface. It can 

hold child views layered on top of the surface, but is intended 

for applications that need to draw pixels, rather than using 

widgets. 

TabHost Provides a tab selection list that monitors clicks and enables 

the application to change the screen whenever a tab is clicked. 

TableLayout A tabular layout with an arbitrary number of rows and 

columns, each cell holding the widget of your choice. The 

rows resize to fit the largest column. The cell borders are not 

visible. 

ViewFlipper A list that displays one item at a time, inside a one-row 

textbox. It can be set to swap items at timed intervals, like a 

slide show. 

ViewSwitcher Same as ViewFlipper. 
Table 3: Typical ViewGroups [11] 

The HomeScreenActivity layout uses a RelativeLayout as the root 

ViewGroup. Each child View is given an android:id that the other children can reference 
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in order to specify their relative positions. On the home screen, a Button to switch to the 

existing files activity is below the Button to switch to the  create a new file activity, which is 

below the welcome text TextView, which is below an ImageView of the application’s logo. 

The labels android:layout_width and android:layout_height should be set for 

every View and ViewGroup.  The value fill_parent declares that the child should take 

up either the entire width or entire height of its parent, while wrap_content declares that the 

child should only take up as much width or height as it needs.  

Android Buttons should have an associated onClickListener(). This listener can 

be set in the XML file to call a specific activity when the Button is click with the tag 

android:onClick=”methodName”, or the listener can be set programmatically. In the 

HomeScreenActivity, clicking on the create button will call the method 

“switchToCreateFileActivity”.  In the code, this method looks like the following: 

    public void switchToCreateFileActivity(View v) { 

     startActivity(new Intent(getBaseContext(),CreateFileActivity.class)); 

    } 

 

The parameter View v is the View that called the method, in this case the Button 

btnCreateNew. When this method is called, startActivity() is called with 

CreateFileActivity.class as an argument, which is the activity that will be started. 

The Button for existing files is symmetrical to this process. 

 An image resource, such as a logo or an icon, can have several resolutions. In the 

application’s directory, there are four basic folders: drawable-ldpi, drawable-mdpi, drawable-

hdpi, and drawable-xhdpi. The image is placed into each of the folders saved with an appropriate 

resolution – respectively low, medium, high, and extra-high resolution. The Android operating 

system will automatically supply the best image for the device. Similarly, several layouts can be 
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defined; for example, an application could have one layout for smartphones and another layout 

for extra-large devices, such as tablets. A different layout can even be specified for landscape 

versus portrait orientation. The application would automatically run the most appropriate layout 

for the device.  

 A TextView displays text to the user. If this text should be editable, the subclass 

EditText should be used, although a TextView can have its text modified. [11] 

2.2 Creating Files 

Creating a netCDF-3 file with DroidCDF is an easy task. The general workflow of 

creating a new netCDF file with DroidCDF is shown in Figure 8: 

 

Figure 8: Creating a New NetCDF File with DroidCDF 

2.2.1 CreateFileActivity 

The CreateFileActivity is called by the clicking on the create file Button on the 

application’s home screen. The CreateFileActivity allows the user to supply a filename 

and choose the directory to place the new netCDF file. It can be seen in Figure 9: 
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Figure 9: CreateFileActivity 

The user must type in a filename but can either type in the directory or use the filechooser to 

select the directory by clicking on the browse Button. 

 The file chooser is started with the method startActivityForResult() rather 

than simply startActivity(). This allows the filechooser to return the directory path to the 

activity with the method onActivityResult(). The return value is then displayed in an 

EditText with the filename displayed in an additional EditText. When the user is satisfied 

with the filename and directory he clicks the next Button. This button’s 

onClickListener() calls the method goToFileAttributesActivity().  

This method first checks that the filename and directory the user supplied are valid, 

meaning: 

 The filename is a valid name for the Android file system. If the user wishes to transfer 

this file to a different operating system at a later time, it is the user’s responsibility to 

ensure the filename will also be valid for that operating system. 

 The directory path ends with a forward slash. If the directory path does not end with a 

forward slash, the parser will place one at the end of the directory path. 

 The filename begins with a forward slash. If the filename begins with a forward slash, it 

will be removed. 
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 The filename ends with the extension “.nc”. If it does not, the parser will place this 

extension at the end of the filename. While the file extension is arbitrary, this is the 

general convention for a netCDF classic file. 

 The directory is a valid, writeable directory. As a condition of using the application, the 

user must give permission for DroidCDF to write to external storage. This means that 

files can be written to any read-write directory, including on the SD card. 

 The filename is not already in use by another file. It is important to note that this 

condition is checked here, because the application will not block I/O. If the user leaves 

the application for a while, creates a file with the given name, and then resumes creation 

of the netCDF file, the netCDF file will overwrite the existing file.  

If any of the above conditions are not met and cannot be corrected by the parser, the method will 

throw a new IOException which will be displayed in an AlertDialog to the user. If the 

parser does not throw any errors, the FileAttributesActivity is started. If an error is 

caught, though, the user will not be able to proceed through the workflow until the error is 

corrected. If the user chooses to press the back button, then this CreateFileActivity will 

be popped from the backstack. 

 To start the FileAttributesActivity, a new Intent is defined. The filename is 

added to the Intent with the method putExtra(). This extra can then be retrieved by the 

class started by the Intent. 

2.2.2 FileAttributesActivity 

 

The FileAttributesActivity allows the user to add attributes to describe the entire file. 

These global attributes could include version number, authors, creation date, etc. Each attribute 

has a name, value, and value type. This screen can be seen in Figure 10: 
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Figure 10: FileAttributesActivity 

The FileAttributesActivity  uses a LinearLayout as the root ViewGroup. When 

using a LinearLayout, the layout’s value android:orientation should be set to either 

horizontal or vertical. This specifies in which direction child Views should be 

placed. 

 An important child View of the root ViewGroup is an additional LinearLayout 

labeled fileAttributesList. Child Views can be added to this layout programmatically. 

In the code, this layout is defined in the onCreate() method: 

    @Override 

    public void onCreate(Bundle savedInstanceState) { 

        super.onCreate(savedInstanceState); 

        setContentView(R.layout.fileattributes); 

        list = (LinearLayout)findViewById(R.id.fileAttributesList) 

        … 

    } 

First the main layout, fileattributes.xml, is loaded with setContentView(). From then, any 

element in fileattributes.xml can be referenced with the method findViewById(). When the 

user clicks on the “add file attribute” Button, a child View is added to list (DroidCDF 
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refers to this View as a row) with the helper method addFileAttr(). In turn, 

addAttributeRow() is called.  

public void addAttributeRow(final Context context, final LinearLayout    

   attributesLayout) { 

   

   LayoutInflater inflater = (LayoutInflater)    

    context.getSystemService(Context.LAYOUT_INFLATER_SERVICE);  

   View attributeRow = inflater.inflate(R.layout.fileattributesrow, null); 

         

   Spinner spinner = (Spinner)attributeRow.findViewById(R.id.spinType); 

   ArrayAdapter<CharSequence> adapter = ArrayAdapter.createFromResource( 

          this, R.array.types, android.R.layout.simple_spinner_item); 

            

   adapter.setDropDownViewResource( 

       android.R.layout.simple_spinner_dropdown_item); 

   spinner.setAdapter(adapter); 

   Button delete = (Button)attributeRow.findViewById(R.id.btnDelete); 

   delete.setTag(attributeRow); 

   delete.setOnClickListener(new OnClickListener() { 

     @Override 

         public void onClick(View v) { 

          View attributeRow = (View)v.getTag(); 

          attributesLayout.removeView(attributeRow); 

         } 

        }); 

         

   attributesLayout.addView(attributeRow); 

}  

This method uses a LayoutInflater to instantiate the row’s layout, fileattributesrow.xml. 

Each file attribute is associated with a unique row View. Every row has a delete Button, which 

when clicked will remove the row from the LinearLayout list. The appropriate row is 

deleted by setting the Button’s tag to be the attribute row. When the 

onClickListener() method onClick() is called, the Button’s tag can be retrieved, 

cast, and deleted. Each row also has a Spinner, which is a drop-down menu widget that uses 

radio buttons to select items. [11] This Spinner is opened by clicking on it; it can be seen in 

use in Figure 11: 
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Figure 11: Spinner for Value Type 

This spinner is used to select the type for the attribute’s value. The selected value can be 

retrieved with the method Spinner.getSelectedItem(). Additionally, each row has a 

CheckBox; if this box is selected, the value is saved as an array of the same type. 

 When FileAttributesActivity is started, HashMap<String,Object> 

attributes and String filename are instantiated in addition to LinearLayout 

list. filename is the extra that was sent by HomeScreenActivity and attributes 

is a mapping of attribute names with their value. They are both set in the activity’s 

onCreate() method: 

    public void onCreate(Bundle savedInstanceState) { 

        … 

        filename = getIntent().getStringExtra("filename"); 

        attributes = new HashMap<String, Object>(); 

        … 

    } 

When the next Button is clicked, the method goToDimensionsActivity() is called. 

This method first clears the attributes map in case the user arrives at the screen from 

pressing the back button; this could cause the method to attempt to place double keys in the map. 

Next, parseAttributes() is called. This method iterates through each row in list and 
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attempts to add the data to attributes. To be a valid attribute, the row must meet the 

following conditions: 

 The name cannot be an empty string. 

 The name cannot be in use by a file attribute already. 

 The value cannot be an empty string. 

 The value must agree with the selected value type. For example, the value 1.3 cannot be 

saved as an integer, but it can be saved as a double. 

If any of these conditions are not met, a new ParsingException will be thrown. When all 

attributes have been parsed, filename and attributes are added as extras to a new 

Intent, which then starts DimensionsActivity. 

2.2.3 DimensionsActivity 

The DimensionsActivity allows users to add dimensions to the file. All dimensions for 

every file should be defined here, though each variable’s dimensions will be specified in the next 

activity. Each Dimension can be used multiple times so it only needs to be defined once. The 

DimensionsActivity can be seen in Figure 12: 

 

Figure 12: DimensionsActivity 
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Like the file attributes, there is a LinearLayout that holds dimension rows. Each row is 

inflated with an instance of dimensionsrow.xml. If the add Button is selected, a new 

dimension row is added to the LinearLayout. Similar to the attribute rows, each dimension 

row has a delete Button that will remove the row when clicked. 

 Every netCDF dimension must have a name and length; one dimension can have an 

unlimited length. To specify an unlimited dimension, the row’s CheckBox is checked. 

Otherwise, the length must be a positive integer. A user does not have to declare any dimensions; 

in this case, every variable would be a scalar variable. 

 When the user clicks the next Button, the method goToVariablesActivity() is 

called. This method first clears the HashMap<String,Integer> dimensions to prevent 

duplicate dimensions if the activity was started by clicking the back button. The dimension rows 

are then parsed; each row must meet the following conditions: 

 The dimension name cannot be an empty string. 

 The dimension name cannot be in use by another dimension already. 

 The dimension length must be a positive integer, unless the dimension is unlimited. In 

this case, the length is set to -1. 

 The dimension cannot be unlimited if another dimension is already unlimited. 

In the future, if NetCDF Java is updated to support writing netCDF-4 files, there could be 

multiple unlimited dimensions. If any of the above dimensions are not met, a new 

ParsingException is thrown. Otherwise, the row is added to dimensions. 

 When DimensionsActivity is first called, the sent extras are extracted into a 

Bundle, which is a mapping of extras’ names to their values. In 

goToVariablesActivity(), dimensions is added to the Bundle with 
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putSerializable(). This Bundle is then added to a new Intent with putExtras(), 

rather than putExtra(), which then starts VariablesActivity: 

 public void goToVariablesActivity(View v) { 

     Intent intent = new Intent(this, VariablesActivity.class); 

  try { 

   dimensions.clear(); 

   parseDimensions(); 

   data.putSerializable("dimensions", dimensions); 

   intent.putExtras(data); 

   startActivity(intent); 

  } catch(ParsingException e) { 

              … 

  } 

 } 

2.2.4 VariablesActivity 

The VariablesActivity allows users to add variables to the netCDF file. Like the file 

attributes and dimensions, each variable is given its own row. However, this row also has a 

LinearLayout child that holds that particular variable’s attributes. These attributes are 

defined in the same way as file attributes and must meet the same conditions. Variable attributes 

do not have to have the same value type as the variable itself; instead, the attribute’s value type 

must agree with the value’s content. The VariablesActivity can be seen in Figure 13: 

 

Figure 13: VariablesActivity 
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Each variable row has a Spinner to define the variable’s type. The dims> Button opens an 

AlertDialog when clicked. This dialog uses the method setMultiChoiceItems() to 

populate itself with the dimensions that were passed to VariablesActivity through the 

Intent’s Bundle. This dialog is shown in Figure 14: 

 

Figure 14: Dimensions Dialog 

The number of dimensions selected will determine the shape of the variable. If no dimensions are 

selected, the variable will be a scalar. If one dimension is selected, the variable will be a one-

dimensional array of the type chosen in the Spinner. If two dimensions are selected, the 

variable will be a two-dimensional array, and so on. If an unlimited dimension is selected, the 

variable will have a record dimension. The order of selection does not matter; when the file is 

created in ConfirmWriteActivity, the unlimited dimension will be written first. 

 When defining a variable’s dimensions and attributes, the Variable’s row is used as the 

key in both HashMap<View, ArrayList<String>> variableDimensions and 

HashMap<View, HashMap<String, Object>> variableAttributes. This is so 
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the dimensions and attributes will be properly associated with their variable. If the variable’s 

name was used as the key, then it is possible that the user could have two variables with the same 

name that would not be caught until the next Button is pressed. This would mean that the 

wrong dimensions and attributes would be associated or could be erroneously deleted. Before 

adding the variable data to the Bundle, the keys are converted to the variable’s name with the 

methods changeDimsToString() and changeAttrsToString(). This conversion 

takes place only after the variables have been parsed to ensure no two variables have the same 

name and allows the HashMaps to be added to the Bundle. Only serializable or parceable data 

can be added to a Bundle, and Views are currently neither. ConfirmWriteActivity is 

then started. At least one variable should be created in VariablesActivity, although a 

variable can have no attributes. 

2.2.5 ConfirmWriteActivity 

The ConfirmWriteActivity serves two purposes: to allow the user to confirm the file’s 

metadata (file attributes, dimensions, variables, and variable attributes), and to create the 

netCDF-3 file. When this activity is started, the metadata that the user has entered is parsed and 

displayed. First, the Bundle is retrieved and each Extra is extracted in the onCreate() 

method: 

    public void onCreate(Bundle savedInstanceState) { 

         …         

        data = getIntent().getExtras(); 

        filename = data.getString("filename"); 

        fileAttributes = (HashMap<String, Object>)   

             data.getSerializable("fileAttributes"); 

        dimensions = (HashMap<String,Integer>)  

             data.getSerializable("dimensions"); 

        variables = (HashMap<String, String>)  

             data.getSerializable("variables"); 

        variableDimensions = (HashMap<String, ArrayList<String>>)  

             data.getSerializable("variableDimensions"); 

        variableAttributes = (HashMap<String, HashMap<String, Object>>)  

             data.getSerializable("variableAttributes"); 

         … 

 } 
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 ConfirmWriteActivity’s xml layout defines several TextViews. Even though 

the text will be edited programmatically before being displayed, the user should not be able to 

modify the text so EditText is not used. 

 To display the filename, setFilename() is called, which sets the TextView 

lblFileName: 

 public void setFilename() { 

  ((TextView) findViewById(R.id.lblFilename)).setText(filename +   

                 "\n"); 

 } 

 

 The method setFileAttributes() sets the text of 

confirmFileAttributesList. Each file attribute of the fileAttributes map is 

first parsed and the appropriate toString() method is called. If the attribute’s value is not 

cast first, the value does not always display properly; thus, this extra step is taken as a 

precaution. If fileAttributes is empty, then the String “None” is displayed. 

Dimensions and variables are similarly set. An example of this screen is seen in Figure 15: 

 

Figure 15: ConfirmWriteActivity 
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If the user is satisfied with the data displayed, the confirm Button is clicked. The 

onClickListener() for confirm calls writeFile(): 

 public void writeFile(View v) { 

  try { 

   NetcdfFileWriteable ncfile =  

                       NetcdfFileWriteable.createNew(filename, false); 

   addDimensions(ncfile); 

   addVariables(ncfile); 

   addFileAttributes(ncfile); 

   ncfile.create(); 

   ncfile.close(); 

      … 

       

  } catch (IOException e) { 

      … 

 } 

This method initializes a NetCdfWriteable file, ncfile. The method 

addDimensions(ncfile) adds every dimension to ncfile with addDimension() or 

addUnlimitedDimension(). For every variable to be added to the file, an 

ArrayList<Dimension> must be created with the appropriate dimensions, to be supplied as 

an argument for ncfile.addVariable(). This ArrayList is populated with values 

from variableDimensions. Once a variable is added to the file, its attributes (if 

applicable) are added with the method addVariableAttributes() that calls 

ncfile.addVariableAttribute(). File attributes are added with the method 

addFileAttributes() that calls ncfile.addGlobalAttribute() in turn. If any of 

these methods fail, it will throw a new IOException and the user will have to make the 

appropriate changes suggested in the error message. Otherwise, the file is written and an 

AlertDialog displays to notify the user of the file’s success, seen in Figure 16: 
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Figure 16: Creation Successful Dialog 

The application then returns to the home screen, where the user may either create a new file or 

open an existing file for reading or writing. 

2.3 Reading from Files 

The reading and writing functionalities have been combined into one interface. A filename is 

supplied either with the filechooser or by typing the path name into an EditText, as seen in 

Figure 17:  
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Figure 17: ExistingActivity 

 This is achieved by placing the editing capabilities in ContextMenus whose conditions for 

displaying are that the open file is in the netCDF-3 format. The condition, a Boolean called 

writeable, is set in the ExistingActivity in the following manner: 

 String fileType = ncfile.getFileTypeId(); 

 if(fileType.equalsIgnoreCase("netCDF")) 

  setWriteable(true); 

 Selse  

  setWriteable(false);  

The file format is specified in the first four bytes of the file, but NetCDF Java can also return a 

human-readable format Id with the method getFileTypeId(). The process above uses this 

method to compare the file’s Id with the String “netCDF,” which indicates that the file 

follows the netCDF-3 classic format. Other common Ids are “netCDF-4” and “HDF5”. [12] If 

the open file is a netCDF-3 file, then it can be edited by DroidCDF. Otherwise, the file is read-

only. 

 The common read-write interface consists of a TabLayout. A ribbon of tabs is placed 

at the top of the screen with a content frame underneath. Whenever a user clicks on a tab, its 
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associated content is displayed. In the XML layout file, the TabLayout is defined with a 

<TabHost /> tag whose two children are the ribbon (a Tab Widget) and frame (a 

FrameLayout). To create the tabbed interface, the Android developer tutorial found at 

http://developer.android.com/resources/tutorials/views/hello-tabwidget.html was initially used. 

 The tabs in the widget can either switch views within a single activity or switch views 

between two entirely separate activities. In DroidCDF, each tab is associated with a certain 

activity: 

 ViewFileAttributesActivity – displays the file’s global attributes. 

 ViewDimensionsActivity – displays the file’s dimensions. 

 ViewVariablesActivity – displays the file’s variables and variable attributes. 

 ViewDataActivity – displays the data for a specific variable. 

Each of these four activities extends a ListActivity rather than a normal Activity. This 

is because a ListView is used to display the respective content rather than a LinearLayout. 

There could potentially be hundreds or thousands of elements to view if a file is being supplied, 

though only a handful can be displayed at any given time; ListViews recycle Views in 

order to improve efficiency. The savings are especially noticeable if a user “flings” through a 

long list; a LinearLayout would appear choppy, while a ListView would be much more 

seamless. [11] When a user is creating a file with DroidCDF, this is not as much of a concern 

because elements are added one at a time and the user will most likely not need the performance 

boost during this phase. In exchange, the LinearLayout code is much simpler to implement. 

 The TabHost is defined in the OpenFileActivity. Each tab must have some View 

for the user to click on, such as an image or text. Each tab can be referenced with an id number 

http://developer.android.com/resources/tutorials/views/hello-tabwidget.html
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that is associated with the order in which the tabs were added to the TabHost. For example, in 

DroidCDF, the ViewFilesAttributes tab is added first and displayed with a call to: 

tabHost.setCurrentTab(0); 

The demonstrate the read-write interface, data was taken from 

http://www.unidata.ucar.edu/software/netcdf/examples/files.html. In particular, the file 

cami_0000-09-01_64x128_L26_c030918.nc was used as it was sufficiently large to test the 

application and it included a variety of attributes, dimensions, and variables. The read-write 

interface can be seen in Figure 18: 

 

Figure 18: Read-Write Interface 

Each tab’s button should be assigned two images: one for when the tab is currently selected, and 

one for when the tab is not selected. These images can be added to a selector, which will 

automatically supply the correct image to the application [11]. Refer to code below from the 

Developer’s Guide: 

<?xml version="1.0" encoding="UTF-8"?> 

<selector xmlns:android="http://schemas.android.com/apk/res/android"> 

    <!-- When selected, use grey --> 

http://www.unidata.ucar.edu/software/netcdf/examples/files.html
http://www.unidata.ucar.edu/software/netcdf/examples/cami_0000-09-01_64x128_L26_c030918.nc
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    <item android:drawable="@drawable/ic_tab_artists_grey" 

          android:state_selected="true" /> 

    <!-- When not selected, use white--> 

    <item android:drawable="@drawable/ic_tab_artists_white" /> 

</selector> 

An example of this image selection can be seen in Figure 19: 

 

Figure 19: Image Selector 

When a user selects the ViewFileAttributesActivity pane, its respective button is dark 

gray. When another tab is selected, the button becomes white.   

 When the file is not writeable, the ListActivies will simply be populated with the 

appropriate strings and the user will not be able to click on any individual View element. 

However, if writeable is true, then the file can be edited through ContextMenus. 

2.4 Writing Files 

Each ListView is registered for a ContextMenu in the following manner: 

 
ListView list = getListView(); 

list.setTextFilterEnabled(true); 

if(writeable) { 

… 

 registerForContextMenu(list); 

} 

The menu can then be displayed when the user long-presses on an item in the list. The long-

clicks have a special onLongClickListener()that calls the method 

onCreateContextMenu(). Each item has a sequential position in the list, which is 

necessary for defining separate context menus. For example, in the 
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ViewFileAttributesActivity, the first child in the ListActivity has a separate 

menu then all other elements and is shown in Figure 20: 

 

Figure 20: Two Separate ContextMenus Defined on the Same ListActivity 

 
@Override 

public void onCreateContextMenu(ContextMenu menu, View v, ContextMenuInfo  

   menuInfo){ 

AdapterView.AdapterContextMenuInfo info =   

(AdapterView.AdapterContextMenuInfo)menuInfo; 

menu.setHeaderTitle(TITLE); 

if(info.position == 0){ 

  menu.add(Menu.NONE, ADD, Menu.NONE, ADD_TEXT); 

 } else { 

  menu.add(Menu.NONE, RENAME, Menu.NONE, RENAME_TEXT); 

  menu.add(Menu.NONE, DELETE, Menu.NONE, DELETE_TEXT); 

 } 

} 
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This particular setup allows the user to perform modifications on the ListView as a whole, 

such as adding a new global attribute to the list, that do not deal with specific items. This pattern 

is repeated for several of the tabs. 

 Each item of the ContextMenu is given a label and unique integer identifier. When an 

item is selected, the method onContextItemSelected() is called. For example, below is 

the call in ViewFileAttributesActivity: 

@Override 

public boolean onContextItemSelected(MenuItem item){ 

final AdapterView.AdapterContextMenuInfo info =  

   (AdapterView.AdapterContextMenuInfo)item.getMenuInfo(); 

 int itemId = item.getItemId(); 

 switch(itemId){ 

  case ADD: 

   addFileAttribute(this); 

   break; 

    

  case DELETE: 

   deleteFileAttribute(info.position); 

   break; 

    

  case RENAME: 

   renameFileAttribute(info.position); 

   break; 

    

  } 

 return true; 

} 

The identifiers are perfect for a switch statement. Here, the appropriate method is called based 

on which ContextMenuItem was selected. 

 With the ContextMenu, users can add, delete, modify, and rename attributes, variables, 

and dimensions. If a user wants to edit any information in the file header, the file must be put 

into redefine mode. After the edit is finished, the file must be taken out of redefine mode and the 

changes should be immediately flushed to minimize the risk of losing changes. In general, a user 

should try to set as much of the header as possible during file creation. The header is given 

minimal extra space (usually only until the next available file block), so any edit that changes the 
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size of the metadata will mean rewriting all data in the file. This can be a very expensive 

operation. 

 When an element is selected to modify, the user selects the appropriate action from the 

ContextMenu. This will generally cause an AlertDialog to show which guides the user 

through their action. For example, if the user decides to add a new file attribute to his file, he 

should long click on the element labeled “File Attributes.” This is the first element in the list, and 

has a unique menu. The user can then click on the add item, which will cause the display in 

Figure 21 to show: 

 

Figure 21: Add Attribute AlertDialog 

This dialog behaves similar to the process of adding a file attribute during the creation phase. If 

the user’s values cannot be parsed or are incomplete, a Toast message will appear with 

information on the error incurred and how the user can rectify the data. 



43 

 

 

From the ViewVariablesActivity list, the user can select a specific variable to modify or 

to view its associated data. Figure 22 shows the Variables tab: 

 

Figure 22: ViewVariablesActivity 

Each item displays the variable’s name, DataType, and Shape (the dimensions and dimension 

lengths that are associated with the variable). Each variable’s attributes can also be accessed 

through the ContextMenu. 

2.5 Permissions 

An Android permission allows an application to utilize certain protected features of the 

operating system. The user must agree to these permissions in order to install the application. 

Each permission is declared in the AndroidManifest. [11] For example, DroidCDF requires 

permission to write files to the SD card; this permission is granted in the following manner: 

  <manifest xmlns:android="http://schemas.android.com/apk/res/android" 

    … 

  <uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/> 

 

    … 
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Chapter 3: DroidCDF Analysis 

3.1 File Creation 

File creation is a simple and stream-lined process. Defining the global file attributes leads to 

defining the dimensions, which in turn leads to defining the variables and variable attributes. 

Each of these elements is collected in a LinearLayout. A LinearLayout was chosen over 

a ListView for this phase due to the expected behavior of the user. Typically, a user will add 

elements one at a time and will have no need of quickly flinging through the list. The operating 

system would thus have sufficient time to seamlessly draw each View.  

 In the future, DroidCDF could extend Variables, Dimensions, and Attributes to be 

serializable; these objects could then be passed in the Intents rather than HashMaps. This 

would also reduce the sometimes redundant parsing that is necessary now. 

 File creation speed is generally in the low millisecond ranges. To get an average time 

taken, several trials were run. These included varying the number of attributes, dimensions, and 

variables as well as value types. Table 4 lists recordings from varying the number of dimensions 

written to the header at creation time while keeping everything else constant, including the set of 

file attribute, dimension name length, dimension length, no unlimited dimensions, and the set of 

variables : 

 

 

 

Number of 

Dimensions 

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Average 

One 9 7 8 6 7 7.4 

Two 7 5 5 6 5 5.6 

Five 6 8 8 8 8 7.6 
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Ten 10 6 8 7 8 7.8 

Twenty-Five 7 13 10 9 13 10.4 

Fifty 11 7 15 10 10 10.6 

One Hundred  8 12 17 15 15 13.4 
Table 4: File Creation Time with Varying Number of Dimensions 

 

The chart shows that the average creation time slowly rises with the increase in dimensions being 

written to the file header. This is to be expected, as there is more input and output. However, it 

shows that the difference between writing one dimension or a hundred dimensions is, on average, 

only 6 ms. Figure 23 shows these trends visually: 

 

Figure 23: Graph of Creation Times with Varying Number of Dimensions 

 

The results of trials based on attribute number and trials based on variable number were not 

significantly different.  

3.2 Data Write 

The most expensive operations in DroidCDF are editing the file header after the file has already 

been created. Each edit is done independently to minimize the risks of corrupting the file’s data, 

therefore multiple trials were run of: adding a new attribute (1), changing the attribute name to a 
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longer value (2), adding a new dimension (3), changing the dimension to be unlimited (4), 

adding a new scalar variable(5), adding a new two-dimensional variable (6), and adding a new 

two-dimensional variable with a record dimension (7). 

 Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Average 

Change 1 15 13 14 14 8 12.8 

Change 2 6 7 9 6 8 7.2 

Change 3 14 16 13 12 15 14.0 

Change 4 24 22 18 17 20 20.2 

Change 5 10 9 11 13 9 10.4 

Change 6 11 11 7 8 14 10.2 

Change 7 19 18 18 24 22 20.2 
Table 5: Time to Complete Change of File's Header 

This table records the time taken to complete modifications of the header file and includes 

leaving redefine mode and flushing the changes. The times are generally greater than the times 

recorded during the file creation phase, which was expected. It is interesting to note that on 

average it took longer to add a new element to the header than to modify an existing element; 

this can be attributed to the fact that the header could have enough space for a longer value but 

not an entirely new one. Additionally, the header elements are stored in List data structures. 

Retrievals run in near constant time, while adding a new element can take up to O(n) steps. 

 Writing new values to a variable is a quick operation, but if that particular variable has 

already been read and is being displayed by the application, the operation sees a reasonable 

speed increase. This implies that it is most efficient to perform all necessary operations on a 

single variable before loading the next variable. A table of trials is below in Table 6: 

 Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Average 

Write to new 

variable 

23 22 25 14 17 20.2 

Write to 

existing var. 

8 9 5 9 8 7.8 
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3.3 Data Read 

The decision to combine the reading and writing phases was a very efficient one. It cut back on 

code within files, redundant activities, and decluttered the workflow. Reading individual 

elements of the file, such as a dimension or variable, is a near constant time operation as the 

values are stored in List data structures. The variable’s data is stored in a ListView, so only 

the necessary Views are drawn on the screen at any one time. 

3.4 Limitations 

Currently, the biggest limitation of DroidCDF is the fact that the NetCDF Java library 

only supports writing to netCDF-3 files. When the library is updated, DroidCDF will be able to 

take advantage of compression, chunking, a larger selection of primitives and reference types, 

and all of the other large improvements that are a part of netCDF-4. Additionally, DroidCDF can 

only write to one unlimited dimension, and it must always be listed first for variables that use it; 

these restrictions are also uplifted with the enhanced data model. 

 The size of a file in DroidCDF is limited by the amount of space available on the SD 

card. Integers and can be 8-, 16-, or 32-bit, though floats can be either 32-bit or 64-bit. It is also 

recommended that netCDF-3 files remain under two gigabytes in size; the format is designed for 

portability, and some filesystems cannot handle files that are larger than this size. [1] 
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Chapter 4: Future of DroidCDF 
 

 This research project has been a great experience. Before I started, I had never 

programmed an application and knew very little about netCDF. I have now completed an entire 

Android application and can confidently say that I have learned an incredible amount. With the 

skills that I have acquired, I will continue working on DroidCDF. 

 Before DroidCDF is released to the open market, I will add querying functionality and an 

example companion application that utilizes DroidCDF. These features were not in the scope of 

this thesis and so were not detailed, but they are important and useful for netCDF files. 

 The next release of DroidCDF will include a better interface for the devices that can 

support it. As of now, every device sees the same interface and there is no distinction between 

horizontal and vertical layouts. I would especially like to take advantage of the ActionBar 

widget. This widget removes the need for any physical buttons from your application and instead 

relies solely on the touchscreen. The ActionBar generally runs across the top of the 

application screen and holds programmed buttons, such as “home”, “back”, “menu”, and “exit.” 

As the market shifts towards using new platforms, this release will become much more feasible 

while still staying in line with DroidCDF’s goals. 

 I believe that DroidCDF would make an excellent companion application to other 

programs. For example, a tracking application could output a netCDF file that could then be read 

by DroidCDF. DroidCDF could create an input file for a graph displayer or weather predictor or 

any number of other applications. When DroidCDF is released on the open market, any 

researcher or programmer will have the opportunity to help move this application forward and 

assist in progressing the sciences.   
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Licensing 

Copyright 2012 Brittany Allesandro 

 

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except 

in compliance with the License. You may obtain a copy of the License at 

 

       http://www.apache.org/licenses/LICENSE-2.0 

 

Unless required by applicable law or agreed to in writing, software distributed under the License 

is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY 

KIND, either express or implied. See the License for the specific language governing 

permissions and limitations under the License. 
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