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ABSTRACT 

 

Brevetoxins are natural neurotoxins that are produced by “red tide” algae. In this study, 

brevetoxin-1 and brevetoxin-2 were incubated with rat liver hepatocytes and rat liver 

microsomes, respectively. After clean-up steps, samples were analyzed by liquid 

chromatography (LC) coupled with electrospray mass spectrometry (LC-MS). For the incubation 

sample of brevetoxin-1, two metabolites were found: brevetoxin-1-M1 and brevetoxin-1-M2. 

The tandem mass spectrometry study of the [brevetoxin-1-M1+H]+ led to the conclusion that it 

was formed by converting one double bond in the E or F ring of brevetoxin-1 into a diol. The 

second metabolite (brevetoxin-1-M2) is proposed to be a hydrolysis product of brevetoxin-1 

involving opening of the lactone ring with the addition of a water molecule. The study of 

incubation of brevetoxin-2 found two metabolites: brevetoxin-2-M1 gave a large [M-H]- peak, 

and its product ion mass spectrum allowed the deduction that this metabolite was the hydrolysis 

product of brevetoxin-2; the second metabolite (brevetoxin-2-M2) was deduced to have the same 

structure as that of brevetoxin-3. 
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CHAPTER I     INTRODUCTION 
 
 
 

Brevetoxins are natural toxins that are produced from a single cell dinoflagellate 

Gymnodinium breve that is responsible for blooms of “red tide” algae(1). This algae can grow 

rapidly under appropriate conditions of nitrate concentration, salinity, water depth and other 

factors(2).  Outbreaks of  “red tide” have been a recurring problem in the Gulf of Mexico in 

recent years. In fact, it is reported that since the 1970s, the rate of reoccurrence of this harmful 

algal bloom in the US has increased. For example, the Gymnodinium breve outbreak off the 

western coast of Florida occurs every 3-5 years (3). The toxins produced from such algae are 

lipid soluble polyether neutrotoxins that can cause massive fish kills. They also can cause human 

health hazards such as food (shellfish) poisoning(4), respiratory problems, eye irritation and skin 

irritation (5-7). Such harmful blooms usually impair the fishery industries (e.g. causing closing 

of shellfish beds), as well as the tourism industry.  For example, in October of 1996, a 

Gymnodinium Breve bloom occurred in the shellfish harvesting waters (Gulf of Mexico) off of 

Louisiana, Mississippi and Alabama; brevetoxin-2 dominated the Gymnodinium breve toxin 

profile in the bloom. The shellfish toxicity exceeded the guidance level for 75 days even after the 

bloom had dissipated(8). Also in the spring of that same year, a bloom of Gymnodinium breve 

appeared along the southwest coast of Florida, and at least two hundred manatees were found 

dead or dying in the coastal waters, or on beaches, in an ecological disaster(9). 
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The structures of brevetoxins are complicated and their molecular weights are nearly 

1000 Da, so the structural elucidation of these compounds is quite challenging. In 1981, Lin et al. 

(10) first reported the structural identification of brevetoxin-2, the most naturally abundant 

brevetoxin species. Since then, there are a total of nine brevetoxins that have been structurally 

elucidated(4, 11, 12). Based on their backbone structures, they can be divided into two categories 

(Figure 1): type A, which has 10 polyether rings; and type B, which has 11 polyether rings.   

 

 The physiological effects of brevetoxins are mainly neurotoxic symptoms in animals and 

humans. This type of toxin can induce central depression of respiratory and cardiac functions, 

spontaneous muscle contractions, spasms and rhinorrhea(13). The toxicity of brrevetoxins stems 

from the fact that they bind to a specific receptor site in the voltage sensitive sodium channel 

(VSSC) in the cell membrane(4). Binding involves a complicated series of association-

dissociation events, and the whole binding process may need several hours to reach equilibrium 

(14). It is hypothesized that the binding of brevetoxins to this VSSC receptor site will push the 

channel in favor of its open conformation, thus shifting the channel activation voltage and 

prolonging the activation duration time, while inhibiting its inactivation function(15). Over time, 

cells can no longer conduct their functions properly, and many symptoms such as hypertension 

and arrhythmia will occur. In clinical animal trials, the symptoms could lead to death(13). 

 

Currently, there are only a few reports on metabolite studies of brevetoxins, and these 

mainly pertain to metabolites found in shellfish. A case study of shellfish poisoning in Florida  
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found four major metabolites by HPLC-MS and radioimmunoassy(16). One is identified as 

brevetoxin-3, which was likely produced by reduction of the dominant parent toxin brevetoxin-2. 

When detected in the form of protonated molecules, [M+H]+, the remaining three metabolites 

appear at m/z 1018, 1034 and 1005, however, their structures were not determined. In 1993, 

more than 280 people suffered from shellfish poisoning in New Zealand in a single incident (17, 

18) related to consumption of “Greenshell Mussels”. Two major metabolites were separated and 

identified: One appeared at m/z 1135.7 in negative mode FAB-MS. Combined with information 

obtained from NMR studies, the structure was determined to be a D-ring opening of brevetoxin-2 

with esterification of the resulting alcohol and oxidation of the terminal aldehyde oxidized to the 

acid form (17),(19). The other metabolite appeared at m/z 1034.5 in its protonated form. It can be 

described as a 1,4-addition of L-cysteine to the terminal side chain group of brevetoxin-2 

followed by oxidation of the sulfide to sulfoxide and reduction of the aldehyde to an alcohol(18). 

However, studies on the metabolic pathways of brevetoxins in mammalian species are still rare. 

An early study in 1989 reported the observation of two metabolic products in rat liver 

hepatocytes using a radiolabeled compound. However, the structures of these two metabolites 

were not elucidated(20).  

 

In the current study, rat liver microsomes were applied to the in vitro metabolism study of 

brevetoxin-2, the dominant species of brevetoxins, and high performance liquid chromatography 

coupled with tandem mass spectrometry was used for separation and identification of metabolic 

products. On the other hand, brevetoxin-1 was incubated with rat hepatocytes and analyzed by 

similar LC-MS/MS approaches.  
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Because liver is the major organ for toxic chemical biotransformation, it is the tissue of 

choice for metabolism and toxicity studies. The metabolite profile of a drug obtained in vitro 

generally reflects the in vivo metabolite pattern, although limited to qualitative aspects(21). 

Because of this, in vitro metabolism techniques involving liver tissue including isolated liver 

hepatocytes and microsomes have been developed(22). Liver microsomes are prepared by 

homogenization of liver(s), followed by centrifugation of the homogenate at 9,000 to 10,000 

times the force of gravity to yield a supernatant subcellular fraction (also known as S9 or S10) 

(23). Microsomes contain many xenobiotic-metabolizing enzymes, the most prominent group of 

enzymes is the family of cytochrome P450 (CYPs). These enzymes play a key role in the 

metabolism of a variety of chemically diverse compounds. 

 

Like liver microsomes, hepatocytes are also widely employed in in vitro metabolism 

studies. Hepatocytes are isolated from liver by so-called two-step collagenase digestion 

procedures. A freshly isolated liver is perfused first with an isotonic buffer solution containing a 

calcium chelating agent to clear the blood and to loosen cell-cell junctions, followed by a 

collagenase solution to dissociate the hepatocytes from the liver parenchyma(24). Cryopreserved 

hepatocytes are also available, but some enzyme reactivity (including P450) might be lower than 

that of freshly isolated hepatocytes. Due to this, and the commercial shortage of fresh liver, many 

laboratories favor liver microsomes since they can be prepared and purchased in large batches 

and preserved at –80 °C for many months with little loss of P450 activity(25).  
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CHAPTER II       EXPERIMENTAL 
 

 
 
 

2.1 Materials 
 
 
 
 

Brevetoxin-1 was purchased from Chiral Corp. (Miami, FL), Brevetoxin-2 and 

brevetoxin-3 were purchased from CalBiochem (La Jolla, CA), HPLC-grade methanol and water 

were purchased from EM Sciences (Gibbstown, NJ). Rat hepatocyte wells were purchased from 

CEDRA Corp. (Austin, TX); rat liver microsomes and NADPH regenerated system were 

purchased from Genetest Corp. (Woburn, MA). 

 
 

2.2 Microsomal incubation 

 

 

According to the basic approach of Degawa et al (26), 2 µL of 5 mM brevetoxin-2 in 

ethanol was added to the incubation system as the substrate, the incubation mixture also included 

rat liver microsomes (at 1.5 mg/mL protein concentration), 16.5 mM glucose-6-phosphate, 16.5 

mM magnesium chloride, and 70 mM potassium phosphate buffer (pH 7.4) to make 0.1 mL 

aliquots each containing 0.1 mM brevetoxin-2(27). The incubation was conducted in a VWR 

1225 (Cornelius, OR) water bath at 37 °C for 12-24 hours. Blank and control incubations were 

also conducted, including incubation in the absence of microsomes, incubation in the absence of 

brevetoxin-2, and incubation in the absence of NADPH regenerating system. The incubation was 
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stopped by adding an equal volume of ice cold methanol; the mixture was then vortexed and 

centrifuged, and the supernatant was passed through a microcon YM-3 filter (Pittsburgh, PA) to 

further remove protein.  

 

 

2.3   Rat hepatocytes incubation 

 

 

The procedure was based on the method of Ekwall et al(28). Substrate solution (10 µg 

brevetoxin-1 in 1 mL William E medium) was added into a rat hepatocyte well containing about 

1 million cells. After 24 hours incubation at 37 0C in a 5% CO2 incubator, the incubation was 

stopped by adding 2 mL CH3CN. The solution was filtered (0.2 µm) and evaporated to 0.8 mL to 

eliminate virtually all organic solvent(29). Blank and control tests were also performed; for the 

controls, brevetoxin-1 was added after the incubation was quenched. The solution containing 

substrate and metabolites was cleaned up by solid phase extraction and concentrated to 100 µL 

prior to LC/MS analysis. 

 

 

 

                                                 2.4 LC-MS and LC-MS/MS Analysis 

 

 



8 

After incubation and protein clean-up, the brevetoxin-2 incubation sample was separated 

by liquid chromatography (LC) equipped with parallel LC-10 ADVP pumps and UV-Vis SPD-

10ADVP detector (Shimadzu Instruments Co. Colombia, MD). A 2.1 x 100 mm, 3.5 µm C-18 

Agilent (Wilmington, DE) LC column, coupled with 2.1 x 12.5 mm Agilent (Wilmington, DE) 

C-18 guard column was employed to separate the mixture. The mobile phase was 80:20 

methanol:water for the first 2.5 minutes, then linearly changed to 90:10 methanol:water in one 

minute. The flow rate was set at 0.2 mL/min. The brevetoxin-1 sample was separated on a 1 x 

100 mm, 3 µm C-18 Spherisorb column (ISCO, Lincoln, NE), with an isocratic mobile phase 

(85:15 methanol/water at 20 µL/min). After exiting the column, the LC eluents were directly 

infused into the Quatro II triple-quadrupole mass spectrometer, equipped with an electrospray 

ionization source (Micromass Inc. Manchester, UK). Nitrogen gas was employed as both drying 

gas and nebulizing gas. The ES “needle” voltage was set at 3.7 kV, and the cone voltage was set 

at 40 V, for both positive and negative modes. Collision-induced decomposition (CID) tandem 

mass spectra were acquired at 70-75 eV collision energy, using argon as collision gas at a 

pressure of 2.1 x 10-4 mbar (gauge external to cell). All mass spectra represent the average of 10 

to 20 scans.  To make accordance with the nitrogen rule, all reported m/z values were rounded 

down to the nearest integer values. Therefore, because there is no nitrogen atom in brevetoxin 

and its metabolites, all brevetoxin molecules and their fragments should be even-electron, and 

the corresponding peaks in electrospray mass spectra should appear only at odd mass values. 
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CHAPTER III   RESULTS AND DISCUSSION 

 

 

3.1 Brevetoxin-2 metabolism 

 

 

The brevetoxin-2 sample subjected to incubation with rat microsomes will be examined first. The 

LC-MS traces obtained after injection of the filtered incubation sample are shown in Figure 2. 

Two main metabolite peaks were observed in addition to the peak representing unreacted 

brevetoxin-2. The averaged mass spectrum for the first chromatographic peak at 4.3 min (Figure 

2b), representing the metabolite that we are calling brevetoxin-2-M1, showed mass spectral 

peaks at both m/z 935 and 951 (Figure 3a), which suggested that these could be the sodium and 

potassium adducts, respectively, of a neutral molecule of 912 Da. The averaged mass spectrum 

for the second chromatographic peak at 7.8 min (Figure 2c), which represents the second 

metabolite that we are calling brevetoxin-2-M2, showed m/z 919 as the base peak and also m/z 

935 (Figure 3b). The third peak on the chromatogram at 8.5 min (Figure 2d) also showed two 

peaks, i.e., m/z 917 as base peak and m/z 933 (Figure 3c), which represent the sodium and 

potassium adducts of unreacted brevetoxin-2 in the incubation solution. Selected ion 

chromatograms of m/z 917 (Figure 2d) and 919 (Figure 2c), clearly show the peaks for sodium 

adducts of brevetoxin-2 and its metabolite, respectively. No other significant peak was found by 

searching selected ion chromatograms of other m/z values, nor by extending the 

chromatographic running time. Based on this information, we postulate that the second 

chromatographic peak at 7.8 min corresponds to the sodium and potassium adducts
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Figure 2. LC-MS chromatograms for brevetoxin-2 rat microsomes incubation sample and

a brevetoxin-3 standard. a) TIC for incubation sample. b) SIC of m/z 935 from the

incubation sample. The peak at 4.31 min represents metabolite brevetoxin-2-M1.

[M+Na]+ of unreacted brevetoxin-2, from the incubation sample; c) SIC of m/z 919 from

the incubation sample. In this chromatogram, the peak at 7.75 min represents a metabolite

brevetoxin-2-M2, whereas the peak at 8.50 min is the M+2 peak of unreacted brevetoxin-

2. d) SIC of m/z 917, [Brevetoxin-2+Na]+, of unreacted substrate from the incubation

sample. 2e) TIC for brevetoxin-3 standard. The retention time of brevetoxin-3 overlaps

that of brevetoxin-2-M2.  
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Figure 3. Mass spectra corresponding to major peaks observed in Figure 2. a) The peak at 4.3

min is assigned as Brevetoxin-2-M1, the hydrolysis product of brevetoxin-2. m/z 935 and 951

correspond to sodium and potassium adducts, respectively; m/z 943 represents  [brevetoxin-2-

M1+Na+K]2+. b) The peak at 7.8 min is assigned as Brevetoxin-2-M2, a reduced form of

brevetoxin-2, i.e., brevetoxin-3: m/z 919 represents [brevetoxin-2-M2+Na]+, m/z 935 is

[brevetoxin-2-M2+K]+, m/z 927 is the doubly charged dimer of the above two species, and

m/z 951 is [brevetoxin-2-M2+Na+MeOH]+.  c) The peak at 8.5 min corresponds to unreacted

brevetoxin-2: m/z 917 represents [brevetoxin-2+Na]+, m/z 933 is [brevetoxin-2+K]+, m/z 925

is the doubly charged dimer of the above two species, and m/z 949 is [brevetoxin-

2+Na+MeOH]+. Note that each peak is shifted toward lower m/z by two units as compared to

3b. d) Brevetoxin-3 standard. m/z 919 is the sodium adduct of brevetoxin-3, and m/z 951 is

the sodium-plus-methanol adduct of brevetoxin-3. 
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of the metabolite brevetoxin-2-M2 of mass 896 Da, which has the same molecular weight as 

brevetoxin-3 (see Figure 1). 

 

           We postulate that brevetxin-2-M2 is formed by metabolic reduction of the tail (addition of 

two hydrogen atoms to the aldehyde), thereby forming brevetoxin-3. To confirm the postulation 

that the peak at 7.8 min (brevetoxin-2-M2, Figure 2) has the same structure as brevetoxin-3, LC-

MS of a brevetoxin-3 standard in methanol (0.05 mM) was conducted, and its retention time 

(7.78 min figure 2e was found to be the same as that of brevetoxin-2-M2 under the same 

chromatographic conditions. The averaged mass spectrum of this standard (Figure 3d) also gave 

a signal at m/z 919, but did not give a strong signal at m/z 935 (no potassium adduct). This could 

be rationalized by considering that the brevetoxin-3 standard (with ubiquitous sodium 

contamination) was dissolved in pure methanol, whereas the incubation sample is actually in a 

solution of potassium phosphate buffer (pH 7.4). Brevetoxins have very strong binding affinities 

for sodium ion, and even trace levels of sodium in the system are already enough for brevetoxins 

to form sodium adducts(30). Notably, peaks corresponding to noncovalent methanol addition to 

sodium adducts of brevetoxins were observed at m/z 951 in figure 3d, and  at m/z 949 in figure 

3c. Of course, these peaks appeared with the same retention times as the corresponding sodiated 

brevetoxin species. Lastly, doubly charged mixed adducts of brevetoxins containing Na+ and K+ 

were observed at m/z 943 in figure 3a, m/z 927 in figure 3b, and at m/z 925 in figure 3c(31). 

 

            To further confirm the postulation that the second metabolite peak was brevetoxin-3, 

tandem mass spectrometry was performed. However, CID of the sodium adduct of brevetoxins 

only yields Na+, and no informative fragments(30). In order to obtain a more useful tandem mass 
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spectrum, protonated brevetoxin is a preferable precursor ion. In our study, both passing 

incubation mixture through the ionic exchange resin (Dowex 50WX8) and direct acidification 

with 0.4 M TFA were attempted to promote formation of protonated molecules; direct 

acidification yielded stronger signals, but the signal-to-noise ratios for protonated precursor 

molecules eluting during LC-MS were still not strong enough to obtain adequate product ion 

mass spectra. During the separation, apparently traces of sodium on the LC column and 

elsewhere converted protonated molecules back to sodium adducts. The approach of separating 

the incubation sample constituents with an acidic (TFA) mobile phase was also tried, but such 

conditions usually resulted in a raised chemical noise background that masked the [M+H]+ 

signals. 

 

            The first metabolite peak (represented as brevetoxin-2-M1) has a deduced molecular 

weight of 912 Da, 18 Da higher than the mass of brevetoxin-2. We propose that this metabolite is 

a hydrolyzed form of brevetoxin-2. In negative mode LC-ES-MS operation, the incubation 

sample showed a large chromatographic peak at 4.2 min (Figure 4 inset). The negative ion mass 

spectrum corresponding to this peak, shown in figure 4, reveals the [M-H]- counterpart, at m/z 

911, to the [M+Na]+ ion (m/z 935) already seen in figure 2b and 3a. The fact that the intensity of 

m/z 911 was so much higher than any of the brevetoxins and brevetoxin metabolites in the 

negative ion mode suggests that this metabolite is likely to be a carboxylic acid. In fact, neither 

brevetoxin-2 nor brevetoxin-3 in pure solvent gives a significant signal in negative mode ES-MS. 

The problem is largely that the most acidic hydrogen atoms on brevetoxin-2 and brevetoxin-3 are 

the hydroxyl hydrogen atoms that are apparently not readily deprotonated under the employed  
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Figure 4: LC-MS/MS product ion mass spectrum of m/z 911, [brevetoxin-2-M1 - H]-. (inset

figure, LC-MS negative ion mode chromatograms for brevetoxin-2 incubation sample. a)

TIC; b) SIC for m/z 911, the deprotonated form of the metabolite Brevetoxin-2-M1. 
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negative ion electrospray conditions.  Tandem mass spectrometry of m/z 911 (figure 4) provided 

further evidence to support our proposed structure. 

 

            Figure 4 shows the LC-ES-MS/MS product ion spectrum of the m/z 911 precursor ion 

representing the deprotonated metabolite brevetoxin-2-M1. A charge remote fragmentation 

mechanism (Figure 5) can explain the formation of m/z 893 (by water loss), and subsequent 

charge induced CO2 loss leads to m/z 849. Alternatively, CO2 loss may occur first (yielding m/z 

867, figure 6) with water loss occurring afterwards to form m/z 849. The latter m/z 849 ion can 

undergo charge remote loss of a 54 Da neutral to form m/z 795 (Figure 5), with subsequent water 

loss to produce m/z 777 (Figure 5). At a CID energy of 75eV (ELAB), the hydrogen of the 

hydroxyl group on the B-ring may be transferred to the nearby carboxylic group (Figure 6 

middle panel), thereby initiating two possible fragmentation pathways leading to fragments at 

m/z 113, the largest fragment peak in the figure 4 product ion spectrum, and m/z 69 (Figure 6). 

This same initial higher energy alkoxide form of m/z 911 is proposed to be responsible for the 

formation of m/z 85 (Figure 7), and m/z 127 (Figure 7). The latter can undergo CO2 loss to form 

m/z 83 ( Figure 7). The brevetoxin-2-M1 metabolite is apparently formed by opening of the head 

lactone ring with concomitant addition of a water molecule.  This type of reaction can be 

accelerated by enzymes such as esterase or lactonase in the microsomes (32), (33).  The 

proposed structures of brevetoxin-2-M1 and brevetoxin-2-M2 are shown in figure 8. 
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3.2   Brevetoxin-1 metabolism 

 

 

            After incubation of brevetoxin-1 with rat hepatocytes and clean-up, similar LC/MS 

approaches as above were applied to the analysis of the incubation samples. By searching the 

entire range of masses contained in the total ion chromatogram, three ion peaks were revealed, 

and their single ion chromatograms are shown in figure 9 peak retention times of 7.5 min, 8.0 

min and 9.8 min in figure 9a, 9b, 9c, respectively. The peak retention time of 9.8 min in figure 9c 

and corresponding m/z value (889) are the same as those of the brevetoxin-1 standard starting 

material. This peak is clearly the sodium adduct [brevetoxin-1 + Na]+ of the remaining substrate. 

The peaks in figure 9a (assigned as [brevetoxin-1-M1+Na]+) and in figure 9b (assigned as 

[brevetoxin-1-M2 + Na]+) are proposed to be the sodiated forms of two brevetoxin-1 metabolites. 

To verify the mass assignment of the sodiated ion, the same solution was acidified by HCl 

addition (1:1 ratio of sample:0.33 M HCl), and the resultant solution was injected into the 

LC/MS system. The obtained selected ion chromatograms did show peaks corresponding to the 

mass of protonated species that appeared at the same time as the sodiated ions. The peak in 

figure 10b was assigned as [brevetoxin-1-M1 + H]+, and the peak in Figure 10d was assigned as 

[brevetoxin-1-M2 + H]+. The polarity of these two brevetoxin metabolites appears to be greater 

than that of precursor brevetoxin-1, as the latter eluted later from the reversed phase C-18 

column.  
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Figure 9.  LC/MS selected ion chromatograms of brevetoxin-1 rat hepatocytes

incubation sample. a) SIC of m/z 923, [Brevetoxin-1-M1 + Na]+. b) SIC of m/z 907,

[Brevetoxin-1-M2 + Na]+.  c) SIC of m/z 889, [Brevetoxin-1 + Na]+. 
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Figure 10. To examine the structures of metabolites, sample was acidified by 0.33 N HCl in

a 1:1 ratio. The resultant solution showed peaks corresponding to protonated species that

coexist with the sodiated ions in LC-MS. a). SIC for m/z 923, the peak of [Brevetoxin-1-

M1+Na]+. b) SIC for m/z 901, the peak of [Brevetoxin-1-M1+H]+. c) SIC peak of

[Brevetoxin-1-M2+Na]+, m/z 907. d) SIC for m/z 885, [Brevetoxin-1-M2+H]+. 
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            To gain more insight into the structure of brvetoxin-1-M1, the product ion tandem mass 

spectrum of the [brevetoxin-1-M1 + H]+ precursor was acquired and is shown in figure 12a. For 

comparison purposes, the product ion spectrum of the standard precursor [brevetoxin-1+H]+ 

obtained under identical instrumental conditions is given in figure 12b. While at least three 

consecutive water losses are detectable from [brevetoxin-1-M1 + H]+ (giving product ions at m/z 

849, 831 and 813 in figure 12b), the water losses are much more prominent relative to other 

fragmentations for [brevetoxin-1-M1 + H]+. In fact, the peak corresponding to loss of two water 

molecules (m/z 865) is even larger than the peak corresponding to a single water loss (m/z 883). 

Moreover, loss of a third water molecule (yielding m/z 847) gives a moderate signal relative to 

other product ions. The increased prominence of the second and third consecutive water losses 

for [brevetoxin-1-M1+H]+ combined with its higher mass (34 Da) relative to brevetoxin-1 leads 

us to propose that brevetoxin-1-M1 is an oxidation product resulting from the metabolic 

conversion of a double bond on brevetoxin-1 into a diol. The question becomes: which of the 

three double bonds is converted to the diol? 

 

            In the lower ends of the product ion mass spectra, both figure 12a and 12b show peaks at 

m/z 55, 81 and 95, these peaks are proposed to be characteristic of the brevetoxin-1 side chain 

(Figure 13). Because these same peaks appear for decomposition of brevetoxin-1 and brevetoxin-

1-M1, with no new peaks found for brevetoxin-1-M1 at m/z 89, 115 or 129, i.e. 34 Da higher 

than the proposed “tail” fragments for brevetoxin-1, it seems unlikely that the “tail” side chain 

unsaturation on brevetoxin-1-M1 is the site of diol conversion. Rather, we propose that diol 

formation is occurring on one of the two double bonds on the E or F ring (structures shown in 

Figure 11). The mechanism could be described as a two-step reaction wherein the double bond is  
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Figure 12. LC-MS/MS product ion mass spectra. a) m/z 901, protonated brevetoxin-1-

M1 from incubation sample. b) m/z 867, [brevetoxin-1+H]+ standard. 
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oxidized to form an epoxide structure catalyzed by enzyme P-450, followed by hydrolysis to 

form two hydroxyl groups. Further evidence to support the notion that a double bond on the E or 

F ring is converted to a diol is given by a comparison of the peaks at m/z 401, 419 and 437 in 

figure 12a which are 34 Da higher than those of m/z 367, 385 and 403 in figure 12b. This mass 

difference is the same as that shown by their precursor ions, which suggests that they may be 

formed by the same fragmentation pathways. The structure of the second metabolite, i.e., 

brevetoxin-1-M2, is proposed and shown in Figure 11. This metabolite is formed by opening of 

the lactone ring and by the addition of a water molecule. This kind of reaction can proceed 

spontaneously in aqueous solution and can be accelerated by enzymes such as esterase in the 

hepatocytes(34). The reaction is very much analogous to that involved in brevetoxin-2-M1 

formation from brevetoxin-2 except that there, an unsaturated six-membered ring lactone was 

involved; whereas for brevetoxin-1, saturated five-membered ring undergoes hydrolysis (see 

figure 1).  
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CHAPTER IV   CONCLUSIONS 

 

 

In summary, LC/ES-MS and LC/ES-MS/MS have been shown to be useful tools for the 

characterization of brevetoxin metabolites. Negative mode electrospray mass spectrometry was 

applied to brevetoxin metabolism studies for the first time, and successfully elucidated the 

structure of one metabolite of brevetoxin-2. In this study, brevetoxin-2 was shown to undergo in 

vitro metabolism by rat liver microsomes to yield two metabolites. One is assigned as the 

hydrolysis product of the head portion six-membered lactone ring of the substrate; the other is 

proposed to be brevetoxin-3, the metabolically reduced product of brevetoxin-2. The 

experimental results shows that negative mode electrospray mass spectrometry has fewer 

interferences than regular positive mode electrospray mass spectrometry, and also provide a 

novel viewpoint to elucidate the structure of an unknown compound. However, due to the 

specific requirement of negative mode mass electrospray that the analytes be able to undergo 

deprotonation fairly easily to yield signals, the varieties of compounds that are applicable to such 

analysis are limited compared to that for positive mode electrospray mass spectrometry.  

 

Brevetoxin-1 was shown to be metabolized by rat liver hepatocytes, also producing two 

metabolites. One is formed by transforming a double bond on the E or F ring into a diol, while 

the other is postulated to be a hydrolysis product of brevetoxin-1 involving opening of the head 

group five-membered lactone ring. 

 



29 

Future directions should include the development of ancillary approaches, such as anion 

attachment, to enhance the signal intensity of compounds that conventionally do not yield strong 

signal in negative mode mass spectrometry. This will broaden the applications of negative mode 

ES-MS to other brevetoxins and their metabolites. 
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