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The condition for obtaining a differential (or ellipsometric) quarter-wave retardation when p- and s-polarized light
of wavelength λ experience frustrated total internal reflection (FTIR) and optical tunneling at angles of incidence
ϕ ≥ the critical angle by a transparent thin film (medium 1) of low refractive index n1 and uniform thickness d,
which is embedded in a transparent bulk medium 0 of high refractive index n0 takes the simple form:
− tanh2 x ¼ tan δp tan δs, in which x ¼ 2πn1ðd=λÞðN2sin2ϕ − 1Þ1=2, N ¼ n0=n1, and δp, δs are 01 interface Fresnel re-
flection phase shifts for the p and s polarizations. From this condition, the ranges of the principal angle and nor-
malized film thickness d=λ are obtained explicitly. At a given principal angle, the associated principal azimuths ψr ,
ψ t in reflection and transmission are determined by tan2ψr ¼ − sin 2δs= sin 2δp and tan2ψ t ¼ − tan δp= tan δs, respec-
tively. At a unique principal angle ϕe given by sin2ϕe ¼ 2=ðN2 þ 1Þ, ψ r ¼ ψ t ¼ 45° and linear-to-circular polariza-
tion conversion is achieved upon FTIR and optical tunneling simultaneously. The intensity transmittances of p-
and s-polarized light at any principal angle are given by τp ¼ tan δp= tanðδp − δsÞ and τs ¼ − tan δs=
tanðδp − δsÞ, respectively. The efficiency of linear-to-circular polarization conversion in optical tunneling is
maximum at ϕe. © 2011 Optical Society of America

OCIS codes: 240.0310, 240.7040, 260.2130, 260.5430, 260.6970, 310.6860.

1. INTRODUCTION
At a dielectric–conductor planar interface, a principal angle is
defined as an angle of incidence at which incident linearly
polarized monochromatic light of the proper azimuth, called
the principal azimuth, is reflected circularly polarized [1–3].
Depending on the value of the relative complex dielectric
function of the two media, one, two, or three principal an-
gle–principal azimuth pairs may exist [2,3]. For light reflection
by a transparent thin film on an absorbing substrate, there is
a continuum of principal angles and an associated range of
principal azimuths [4].

A previous paper [5] presented a detailed analysis of the
phase shifts that monochromatic p- and s-polarized light of
wavelength λ experience in frustrated total internal reflection
(FTIR) and optical tunneling at angles of incidence ϕ ≥ the cri-
tical angle by a thin film of low refractive index n1 and uniform
thicknessd,which isembeddedina transparentbulkmediumof
high refractive indexn0 (typically a uniform air gap,n1 ¼ 1, be-
tweenparallelplanefacesof twotransparentprisms;Fig.1). Ina
related paper [6], Azzam and Spinu described an FTIR, 2–12 μm
wavelength-tunable circular-polarization beam splitter that
uses a variable-thickness air gap between two Ge prisms.

In this paper, closed-form solutions for the principal angles,
principal azimuths, and film thicknesses that produce linear-to-
circular polarization conversion in FTIR and optical tunneling
by an embedded low-index thin film are obtained. Theprincipal
angle condition is considered analytically and graphically in
Section 2. At a given principal angle ϕ and given refractive
index ratio N ¼ n0=n1, an explicit solution for the normalized

film thickness d=λ that produces dual quarter-wave retardation
(QWR) in reflection and transmission is derived in Section 3. In
Section 4, the associated principal azimuths of reflection and
transmission are obtained in terms of the 01 interface Fresnel
reflection phase shifts for the p and s polarizations. Section 5 is
devoted to the special case of dual circular polarization in re-
flection and transmission at the unique incidence angle of equal
tunneling of the p and s polarizations. In Section 6, the intensity
reflectances and transmittances of p- and s-polarized light in
FTIR and optical tunneling are obtained as functions of the
principal angle ϕ and refractive index ratio N . Section 7 gives
a brief summary of the paper. In Appendix A, alternate expres-
sions of the principal azimuths of reflection and transmission
are presented, and, in Appendix B, the condition of maximum
linear-to-circular polarization conversion in optical tunneling
is considered.

2. PRINCIPAL ANGLES OF FTIR AND
OPTICAL TUNNELING
The changes of polarization that accompany FTIR and optical
tunneling are determined by the ratios of complex-amplitude
reflection (R) and transmission (T) coefficients of p- and s-po-
larized light that account for coherent multiple-plane-wave in-
terference within the embedded layer. These ellipsometric
functions [7] are expressed as

ρr ¼ Rp=Rs ¼ tanψ r expðjΔrÞ;
ρt ¼ Tp=Ts ¼ tanψ t expðjΔtÞ: ð1Þ

1256 J. Opt. Soc. Am. A / Vol. 28, No. 6 / June 2011 R. M. A. Azzam and F. F. Sudradjat

1084-7529/11/061256-06$15.00/0 © 2011 Optical Society of America



In [5], it is shown that

Δr ¼ Δt; ð2Þ

tanψ r= tanψ t ¼ sin δs= sin δp ¼ ðN2 þ 1Þsin2ϕ − 1: ð3Þ

In Eq. (3), N ¼ n0=n1 is the high-to-low index ratio and δp, δs
are 01 interface Fresnel reflection phase shifts for the p and s
polarizations. Starting from results already obtained in [5], ρr
is written as

ρr ¼
tanhx cos δs − j sin δs
tanh x cos δp − j sin δp

; ð4Þ

x ¼ 2πn1ðd=λÞðN2sin2ϕ − 1Þ1=2: ð5Þ

At a principal angle,

Reρr ¼ 0; ð6Þ
and substitution of ρr from Eq. (4) in Eq. (6) leads to

tanh2x cos δp cos δs þ sin δp sin δs ¼ 0; ð7Þ

−tanh2x ¼ tan δp tan δs: ð8Þ
Equation (8) is the simplest possible form of the principal-
angle condition in FTIR by an embedded low-index thin film.
(This result is also obtained by setting the denominator of the
right-hand side of Eq. (13) in [5] equal to zero.) For specified
values of n1, N , Eq. (8) represents the constraint on d=λ, ϕ
such that the overall differential reflection and transmission
phase shifts are quarter-wave, i.e., Δr ¼ Δt ¼ π=2.

From the known expressions of the 01 interface Fresnel
reflection phase shifts δν ðν ¼ p; sÞ [8], the right-hand side
of Eq. (8) can be cast as a function of ϕ of the form

tan δp tan δs ¼
�
sin2ϕp

sin2ϕs

� ðsin2ϕ − sin2ϕcÞð1 − sin2ϕÞ
ðsin2ϕ − sin2ϕpÞðsin2ϕ − sin2ϕsÞ

:

ð9Þ

In Eq. (9), ϕc ¼ sin−1ð1=NÞ is the critical angle and ϕp, ϕs

are the angles of incidence at which δp ¼ π=2 and δs ¼ π=2,
respectively [8].

As an example, consider a uniform air gap (n1 ¼ 1) be-
tween two Ge prisms (N ¼ 4) in the IR. Figure 2 shows the
product of tangents given by Eq. (9) as a function of ϕ for ϕc ≤

ϕ ≤ 90° as a continuous line. Singularities of this function
appear at ϕp ¼ 14:90° and ϕs ¼ 46:79° as expected. In Fig. 2,

a family of curves (dashed curves) that represent the left-hand
side of Eq. (8) is also plotted versus ϕ for discrete values
of d=λ ¼ 0:005, 0.02 to 0.20 in equal steps of 0.02, and 10.
Solutions of Eq. (8) correspond to points of intersection of
the negative branch of the product-of-tangents function
(ϕp < ϕ < ϕs) and the dashed lines that represent −tanh2x
(e.g., points A and B for d=λ ¼ 0:08). Principal angles of the
Ge–air–Ge system cease to exist for very thin films with
d=λ < 0:059. At large film thicknesses (e.g., d=λ ≥ 10), optical
tunneling is negligible and TIR at the 01 interface is restored.
In this large-thickness limit, tanh2x ¼ 1 and Eq. (8) reduces to

tan δp tan δs ¼ −1: ð10Þ
Equation (10) indicates that δp − δs ¼ π=2, which is the prin-
cipal-angle condition of TIR at the 01 interface. The full range
of principal angles ϕ1 ≤ ϕ ≤ ϕ2 is defined in Fig. 2 by the points
of intersection P1 and P2 at which Eq. (10) is satisfied. The
corresponding limiting angles ϕ1 and ϕ2 are given by [8]

sin2ϕ1;2 ¼ ½ðN2 þ 1Þ∓ðN4
− 6N2 þ 1Þ1=2�=4N2: ð11Þ

Acceptable solutions of Eq. (11) exist if

N ≥

ffiffiffi
2

p
þ 1 ¼ 2:414: ð12Þ

For the Ge–air interface N ¼ 4, ϕ1 ¼ 15:04° (which is slightly
above the critical angle ϕc ¼ 14:48°) and ϕ2 ¼ 42:93°.

3. FILM THICKNESS FOR QWR AT A GIVEN
PRINCIPAL ANGLE
For an index ratio N > 2:414 and a principal angle ϕ in the
range ϕ1 ≤ ϕ ≤ ϕ2 defined by Eq. (11), the value of tanhx that
satisfies the principal-angle condition is determined by
Eqs. (8) and (9). From tanhx,

X ¼ expð−2xÞ ¼ ð1 − tanhxÞ=ð1þ tanhxÞ ð13Þ

is calculated. Next, the normalized film thickness that pro-
duces QWR in reflection and transmission (Δr ¼ Δt ¼ π=2)
is obtained from Eqs. (5) and (13) as

Fig. 1. Reflection and transmission of p- and s-polarized light at an
angle of incidence ϕ by a uniform layer of thickness d and refractive
index n1 (medium 1), which is embedded in a bulk medium 0 of re-
fractive index n0.

Fig. 2. (Color online) Graphical construction that illustrates the
range of possible solutions of Eq. (8).
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d=λ ¼ −ðlnXÞ=½4πn1ðN2sin2ϕ − 1Þ1=2�: ð14Þ

As an example, the above algorithm is applied to a uniform
air gap between two IR-transparent Ge prisms (n1 ¼ 1, N ¼ 4)
at ϕ ¼ 30°; this gives δp ¼ 165:75°, δs ¼ 53:13°, tanhx ¼
ð− tan δp tan δsÞ1=2 ¼ 0:581914, X ¼ 0:264291, and d=λ ¼
0:061138.

Use of the same algorithm for the Ge–air–Ge system over
the full range of principal angles from ϕ1 ¼ 15:04° to ϕ2 ¼
42:93°, d=λ at which Δr ¼ Δt ¼ π=2 is obtained as a function
of principal angle ϕ, as shown in Fig. 3. Except for a change of
scale of the ordinate axis, this graph is the same as the one
obtained by Azzam and Spinu (Fig. 2 in [6]) using an iterative
numerical technique.

4. REFLECTION AND TRANSMISSION
PRINCIPAL AZIMUTHS AT A GIVEN
PRINCIPAL ANGLE
At a principal angle, cosΔr ¼ 0, sinΔr ¼ 1, Reρr ¼ 0 [Eq. (6)],
and ρr reduce to

ρr ¼ j tanψr: ð15Þ
In Eq. (15), ψr is the associated principal azimuth (the angle
between the electric-field vector of incident linearly polarized
light and the plane of incidence) that produces circularly
polarized reflected light. From Eqs. (4) and (15), we obtain

Imρr ¼ tanψr ¼
tanh2x sinðδp − δsÞ

tanh2xcos2δp þ sin2δp
: ð16Þ

Substitution of tanh2x ¼ − tan δp tan δs [Eq. (8)] in Eq. (16) and
use of trigonometric identities lead to an explicit expression
for the principal azimuth ψr in terms of the 01 interface TIR
phase shifts δν ðν ¼ p; sÞ:

tan2ψr ¼ − sin 2δs= sin 2δp: ð17Þ

At the same principal angle, the principal azimuth ψ t that
produces circular polarization of the transmitted (instead of
reflected) light is derived from Eqs. (3) and (17) as

tan2ψ t ¼ − tan δp= tan δs: ð18Þ

An air gap between two Ge prisms (n1 ¼ 1, N ¼ 4) with
thickness d=λ ¼ 0:061138 has a principal angle ϕ ¼ 30°
(Section 3). Substitution of δp ¼ 165:75° at δs ¼ 53:13°, ϕ ¼
30° in Eqs. (17) and (18) gives ψr ¼ 54:816°, ψ t ¼ 23:578°.
Calculation of ψr , ψ t as functions of ϕ over the full range
of principle angles ϕ1 ≤ ϕ ≤ ϕ2 of the Ge–air–Ge system pro-
duces the two curves shown in Fig. 4.

In Appendix A, we give alternate explicit expressions of ψ r ,
ψ t as functions of ϕ for a given N and locate the angular posi-
tions of the minimum and maximum of the ψr -versus-ϕ curve.

5. DUAL CIRCULAR POLARIZATION OF
REFLECTED AND TRANSMITTED LIGHT AT
ONE PRINCIPAL ANGLE
From Eq. (3), the principal azimuths of FTIR and optical tun-
neling are equal, ψr ¼ ψ t, at one principal angle ϕe, given by

sin2ϕe ¼ 2=ðN2 þ 1Þ: ð19Þ
ϕe of Eq. (19) is the incidence angle of equal tunneling of
p- and s-polarized light [9,10] so that ψr ¼ ψ t ¼ 45°. In Fig. 4,
for N ¼ 4, ψ r ¼ ψ t ¼ 45° at ϕe ¼ sin−1ð2=17Þ1=2 ¼ 20:06°.

It is worthwhile to recall that ϕe is the angle of incidence at
which phase difference (δp − δs) is maximum and the average
phase shift is ðδp þ δsÞ=2 ¼ π=2 [8].

Also, at ϕe, the Fresnel reflection phase shifts at the 01
interface [8] simplify to

tanðδs=2Þ ¼ 1=N; tanðδp=2Þ ¼ N: ð20Þ
Equation (20) indicates that δs and δp at ϕe are equal to double
the Brewster angles of internal and external reflection at the
01 interface, respectively.

Still another curious property of ϕe is that, for a given N ,
the product of tangents given by Eq. (9) reaches a maximum
at that angle. This can be proved by substituting sin2ϕ ¼ u
in Eq. (9) and setting the derivative of the right-hand side
with respect to u equal to zero. By use of Eq. (20) and the
trigonometric identity tan x ¼ 2 tanðx=2Þ=½1 − tan2ðx=2Þ�, the
maximum value of tan δp tan δs at ϕe is obtained:

Fig. 3. (Color online) Normalized thickness d=λ of a uniform air gap
between two IR-transparent Ge prisms (n1 ¼ 1, N ¼ 4) that produces
Δr ¼ Δt ¼ π=2 is plotted as a function of principal angle ϕ over the
full range from ϕ1 ¼ 15:04° to ϕ2 ¼ 42:93°.

Fig. 4. (Color online) Reflection and transmission principal azimuths
ψr , ψ t [Eqs. (17) and (18)] are plotted as functions of the principal
angle ϕ for a uniform air gap between two IR-transparent Ge prisms
(n1 ¼ 1, N ¼ 4) over the full range of principle angles ϕ1 ≤ ϕ ≤ ϕ2.
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ðtan δp tan δsÞmax ¼ −4N2=ðN2
− 1Þ2: ð21Þ

At ϕe, Eqs. (8), (13), and (21) lead to

tanh x ¼ 2N=ðN2
− 1Þ; ð22Þ

X ¼ ðN2
− 2N − 1Þ=ðN2 þ 2N − 1Þ: ð23Þ

The value of d=λ that produces dual QWR with equal
throughput for the p and s polarizations in FTIR and optical
tunneling at ϕe is obtained by substituting X from Eq. (23)
and ðN2sin2ϕe − 1Þ1=2 ¼ ½ðN2

− 1Þ=ðN2 þ 1Þ�1=2 in Eq. (14); this
gives

d=λ ¼ ð4πn1Þ−1
�
N2 þ 1
N2

− 1

�
1=2

ln

�
N2 þ 2N − 1
N2

− 2N − 1

�
: ð24Þ

For the Ge–air–Ge system (n1 ¼ 1, N ¼ 4), ϕe ¼ 20:06° and
the normalized air-gap thickness for dual QWR in reflection
and transmission is obtained from Eq. (24):

d=λ ¼ ð4πÞ−1ð17=15Þ1=2 lnð23=7Þ ¼ 0:100778: ð25Þ

The closed-form solution for d=λ [Eq. (24)] supersedes any
iterative numerical approach [6]. Figure 5 is a graph of d=λ
as a function of N calculated form Eq. (24) over the range
2:5 ≤ N ≤ 6:0.

6. REFLECTANCES AND TRANSMITTANCES
OF p- AND s- POLARIZED LIGHT AT A
GIVEN PRINCIPAL ANGLE
The intensity reflectances and transmittances of p- and
s-polarized light are obtained by taking the squared absolute
value of the corresponding complex-amplitude reflection and
transmission coefficients Rp, Rs; Tp, Ts given in [5]. The result-
ing expressions are functions of the film thickness parameter
x [Eq. (5)] and the 01 interface Fresnel reflection phase shifts
δν ðν ¼ p; sÞ:

Rν ¼ jRνj2 ¼
cosh 2x − 1

cosh 2x − cos 2δν
; ν ¼ p; s; ð26Þ

τν ¼ 1 − jRνj2 ¼
1 − cos 2δν

cosh 2x − cos 2δν
; ν ¼ p; s: ð27Þ

From Eq. (27), the principal-angle condition of Eq. (8), and the
identity

cosh 2x ¼ ð1þ tanh2xÞ=ð1 − tanh2xÞ; ð28Þ

the following expressions of the p and s intensity transmit-
tances are obtained:

τp ¼ tan δp= tanðδp − δsÞ; τs ¼ − tan δs= tanðδp − δsÞ: ð29Þ

Note that, from Eq. (29), τp=τs ¼ tan2 ψ t ¼ − tan δp= tan δs in
agreement with Eq. (18). The corresponding intensity reflec-
tances are given by

Rν ¼ 1 − τν ν ¼ p; s: ð30Þ

Substitution of δp, δs (δp − δs) as functions of N and ϕ from [8]
in Eqs. (29) yields

τp ¼ 2N2sin4ϕ − ðN2 þ 1Þsin2ϕþ 1

−ðN4 þ 1Þsin4ϕþ ðN2 þ 1Þsin2ϕ ; ð31Þ

τs ¼
2N2sin4ϕ − ðN2 þ 1Þsin2ϕþ 1

2N2sin4ϕ − ðN2 þ 1Þsin2ϕ : ð32Þ

Equations (31) and (32) are valid over the full range of
principal angles ϕ1 ≤ ϕ ≤ ϕ2 defined by Eq. (11) and give exact
mathematical representation of the families of curves pre-
sented in Fig. 5 in [6]. Both transmittances are zero at the limit-
ing angles ϕ1 and ϕ2 given by Eq. (11) as can be verified by
setting the common numerator of Eqs. (31) and (32) equal
to zero.

For a given N , the transmittance τpðϕÞ of Eq. (31) reaches a
maximum at a principal angle of incidence given by

sin2ϕpmax ¼ ðN2 þ 1Þ=ðN2
− 1Þ2: ð33Þ

Likewise, for a given N , the transmittance τsðϕÞ of Eq. (32)
reaches a maximum at a principal angle of incidence given by

sin2ϕsmax ¼ ðN2 þ 1Þ=4N2: ð34Þ
Equations (33) and (34) are obtained by substituting sin2ϕ ¼ u
in Eqs. (31) and (32) and setting the derivative of the right-
hand side of each equation with respect to u equal to zero.

For a given N , the maximum transmittances at ϕpmax and
ϕsmax are equal,

τpmax ¼ τsmax ¼ N4
− 6N2 þ 1

N4 þ 2N2 þ 1
; ð35Þ

and the corresponding principal azimuths are related by

ψ tðϕsmaxÞ ¼ 90° − ψ tðϕpmaxÞ; ð36Þ

ψ tðϕpmaxÞ ¼ arc tan

�
N6

− 3N4
− 3N2 þ 1

2N2ðN2 þ 1Þ
�
1=2

: ð37Þ

Fig. 5. (Color online) Normalized thickness d=λ of a low-index em-
bedded layer that produces circular polarization in FTIR and optical
tunneling at ϕe and ψr ¼ ψ t ¼ 45° [Eq. (24)] is plotted as a function of
the refractive index ratio N over the range 2:5 ≤ N ≤ 6:0. Equal trans-
mittance of p- and s-polarized light τpðϕeÞ ¼ τsðϕeÞ ¼ τ [Eq. (39)] is
also shown as a function of N .
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For the Ge–air–Ge system in the IR, N ¼ 4 and Eqs. (33)–(37)
give

ϕpmax ¼ 15:95°; ϕsmax ¼ 31:02°;

τpmax ¼ τsmax ¼ 0:5571; ψ tðϕpmaxÞ ¼ 67:84°;

ψ tðϕsmaxÞ ¼ 22:16°: ð38Þ

The analytical expressions presented here fully explain the
results previously obtained by Azzam and Spinu using a
numerical technique (see Fig. 5 in [6]).

When the denominators of the right-hand sides of Eqs. (31)
and (32) are equal, the p and s transmittances become equal,
and the condition of equal tunneling of the p and s polariza-
tions [Eq. (19)] at ϕ ¼ ϕe is recovered. At ϕe, the equal
throughputs for the p and s polarizations are given by

τpðϕeÞ ¼ τsðϕeÞ ¼ 1 −
1
2

�
N2 þ 1
N2

− 1

�
2
: ð39Þ

The same transmittance of p- and s-polarized light at ϕ ¼ ϕe

[τpðϕeÞ ¼ τsðϕeÞ ¼ τ] is plotted as a function of N in Fig. 5. For
N ¼ 4, Eq. (39) gives τpðϕeÞ ¼ τsðϕeÞ ¼ 0:35778 in agreement
with [6].

Another curious result of this section is that ϕsmax given by
Eq. (34) is also the angle of incidence at which δp ¼ 3δs [8].

In Appendix B, it is shown that the efficiency of linear-
to-circular polarization conversion upon optical tunneling is
maximum at ϕ ¼ ϕe.

7. CONCLUSION
Highlights of this paper are summarized as follows.

1. The principal-angle condition of FTIR and optical tun-
neling by an embedded low-index thin film is given in concise
form by Eq. (8). For selected refractive indices n1, N , Eq. (8)
represents the constraint on the normalized film thickness and
principal angle ðd=λ;ϕÞ such that the differential phase shifts
in reflection and transmission are quarter-wave. Figure 2 illus-
trates the domain of d=λ;ϕ for which acceptable solutions of
Eq. (8) exist when n1 ¼ 1, N ¼ 4.

2. For given values of n1, N , d=λ that leads to QWR in re-
flection and transmission (i.e., Δr ¼ Δt ¼ π=2) at a principal
angle ϕ is explicitly determined by Eq. (14).

3. Equations (17) and (18) determine the reflection and
transmission principal azimuths ψr , ψ t in terms of the 01 inter-
face Fresnel reflection phase shifts δν ðν ¼ p; sÞ.

4. At the angle ϕe given by Eq. (19), ψr ¼ ψ t ¼ 45°, and
circular polarization in FTIR and optical tunneling is achieved
simultaneously at thickness-to-wavelength ratio d=λ given
by Eq. (24).

5. At a given principal angle, the throughputs for the p and
s polarizations in optical tunneling are given by Eqs. (29), (31),
and (32). These transmittances have maxima at principal
angles given by Eqs. (33) and (34), respectively.

6. The efficiency of linear-to-circular polarization conver-
sion upon optical tunneling is maximum [Eq. (B7)] at ϕ ¼ ϕe.

APPENDIX A
By substituting the Fresnel interface reflection phase shifts δν
ðν ¼ p; sÞ as functions of N , ϕ from [8] in Eqs. (18) and (17),

we obtain

tan2ψ t ¼ −

�
up

us

��
u − us

u − up

�
; ðA1Þ

tan2ψr ¼ −

�
4up

usu2
e

��ðu − usÞðu − 0:5ueÞ1=2
ðu − upÞ

�
: ðA2Þ

In Eq. (A1) and (A2), u ¼ sin2ϕ and up, us, ue are the values of
u evaluated at the special angles ϕp, ϕs, ϕe ¼ ϕa defined in [8]
that depend on N only. Equations (A1) and (A2) provide ex-
plicit expressions for the principal azimuths ψ r , ψ t as func-
tions of the principal angle ϕ for any given N . For N ¼ 4,
the curves of ψr , ψ t versus ϕ are plotted in Fig. 4.

In Fig. 4, it is apparent that ψ t decreases monotonically as ϕ
increases, whereas ψr exhibits a minimum and a maximum as
a function of ϕ. The angular positions of the minimum and
maximum of ψ r are determined by setting the first derivative
of the right-hand side of Eq. (A2) with respect to u equal to
zero. This gives a quadratic equation in u whose roots are

u∓ ¼ ð1=4Þ
�
ð3up þ usÞ

∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3up þ usÞ2 þ 4ueðus − upÞ − 16upus

q �
: ðA3Þ

For N ¼ 4, up ¼ 17=257, us ¼ 17=32, ue ¼ 2=17, and
Eq. (A3) gives u− ¼ 0:073719, ϕ− ¼ 15:7542°; uþ ¼ 0:291128,
ϕþ ¼ 32:6539°, which exactly locate the angular positions
of the minimum and maximum of ψr in Fig. 4.

APPENDIX B
At a given principal angle-principal azimuth pair ðϕ;ψ tÞ, inci-
dent linearly polarized light of intensity Ii is partially trans-
mitted as circularly polarized with intensity It given by

It ¼ Iiðτpcos2ψ t þ τssin2ψ tÞ: ðB1Þ
The efficiency of linear-to-circular polarization conversion in
optical tunneling is given by

ηLTC ¼ It=Ii ¼ ðτpcos2ψ t þ τssin2ψ tÞ: ðB2Þ
Given that τp=τs ¼ tan2ψ t, Eq. (B2) becomes

ηLTC ¼ It=Ii ¼ 2τpcos2ψ t ¼ 2τssin2ψ t: ðB3Þ
Substitution of Eqs. (18) and (29) and the Fresnel interface
reflection phase shifts δν ðν ¼ p; sÞ as functions of N;ϕ [8]
in Eq. (B3) leads to

ηLTC ¼ ½up=ðup − usÞ�½2 − 2usu−1 þ ucu−2�: ðB4Þ
In Eq. (B4), u ¼ sin2ϕ and uc, up, us are the values of u eval-
uated at the angles ϕc, ϕp, ϕs defined in [8]. By setting

dηLTC=du ¼ 0 ðB5Þ
in Eq. (B4), the value of u at which ηLTC is maximum is
obtained:

u ¼ uc=us ¼ 2=ðN2 þ 1Þ: ðB6Þ

Equations (19) and (B6) confirm that ηLTC is maximum at the
angle ϕe of equal tunneling of the p and s polarizations
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(ψ t ¼ 45°); the associated maximum value of ηLTC is obtained
from Eqs. (B3) and (39) as

ηmax
LTC ¼ τpðϕeÞ ¼ τsðϕeÞ1 −

1
2

�
N2 þ 1

N2
− 1

�
2
: ðB7Þ
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