University of New Orleans ScholarWorks@UNO

Electrical Engineering Faculty Publications

Department of Electrical Engineering

1-2002

Angular range for reflection of p-polarized light at the surface of an absorbing medium with reflectance below that at normal incidence

R. M.A. Azzam University of New Orleans, razzam@uno.edu

Ericson E. Ugbo

Follow this and additional works at: https://scholarworks.uno.edu/ee_facpubs Part of the Electrical and Electronics Commons, and the Optics Commons

Recommended Citation

R. M. A. Azzam and Ericson E. Ugbo, "Angular range for reflection of p-polarized light at the surface of an absorbing medium with reflectance below that at normal incidence," J. Opt. Soc. Am. A 19, 112-115 (2002)

This Article is brought to you for free and open access by the Department of Electrical Engineering at ScholarWorks@UNO. It has been accepted for inclusion in Electrical Engineering Faculty Publications by an authorized administrator of ScholarWorks@UNO. For more information, please contact scholarworks@uno.edu.

Angular range for reflection of *p*-polarized light at the surface of an absorbing medium with reflectance below that at normal incidence

R. M. A. Azzam

Department of Electrical Engineering, University of New Orleans, New Orleans, Louisiana 70148

Ericson E. Ugbo

8152 Drais Way, Elk Grove, California 95624

Received April 30, 2001; accepted June 20, 2001

The range of incidence angle, $0 < \varphi < \varphi_e$, over which *p*-polarized light is reflected at interfaces between transparent and absorbing media with reflectance below that at normal incidence is determined. Contours of constant φ_e in the complex plane of the relative dielectric constant ε are presented. A method for determining the real and imaginary parts of the complex refractive index, $\varepsilon^{1/2} = n + jk$, which is based on measuring φ_e and the pseudo-Brewster angle $\varphi_{\rm pB}$, is viable in the domain of fractional optical constants, n, k < 1. © 2002 Optical Society of America

OCIS codes: 240.0240, 260.0260, 260.3910, 260.5430, 290.3030.

1. INTRODUCTION

The reflection of collimated monochromatic *p*-polarized light at the planar interface between a transparent medium of incidence of real dielectric constant ε_1 and an absorbing medium of refraction of complex dielectric constant ε_2 is governed by the Fresnel reflection coefficient¹

$$r_{p} = [\varepsilon \cos \varphi - (\varepsilon - \sin^{2} \varphi)^{1/2}] / [\varepsilon \cos \varphi + (\varepsilon - \sin^{2} \varphi)^{1/2}], \qquad (1)$$

where

$$\varepsilon = \varepsilon_2 / \varepsilon_1$$
 (2)

and φ is the angle of incidence; see Fig. 1. For a given complex ε , the absolute reflectance $r_p r_p^*$ initially decreases as φ increases from 0, reaches a minimum at the pseudo-Brewster angle $\varphi_{\rm pB}$, and then increases monotonically from minimum reflectance to 1 as φ increases from $\varphi_{\rm pB}$ to 90°. Explicit solutions for $\varphi_{\rm pB}$ for a given complex ε have been derived by several authors.²⁻⁴ Azzam and Ugbo⁵ also determined analytically the contours of constant $\varphi_{\rm pB}$ in the complex ε plane.

In this paper we are interested in the angular range $0 < \varphi < \varphi_{\rm e}$ over which the reflectance for *p*-polarized light at oblique incidence is less than that at normal incidence. The upper limit $\varphi_{\rm e}$, which lies between $\varphi_{\rm pB}$ and 90°, is determined by equating the oblique and normal-incidence reflectances, i.e.,

$$r_{p}(\varphi)r_{p}^{*}(\varphi) = r_{p}(0)r_{p}^{*}(0).$$
(3)

For the special case of an interface between two transparent media (ε real and >0), the minimum reflectance is

zero, $\varphi_{\rm pB}$ reverts to the usual Brewster angle $\varphi_{\rm B}$ = $\arctan \varepsilon^{1/2}$, and Eq. (3) has an explicit solution φ = $\varphi_{\rm e}$ given by⁶

$$\tan \varphi_{\rm e} = (\varepsilon^2 + \varepsilon)^{1/2}. \tag{4}$$

Another interesting conclusion from Ref. 6 is that the difference $\varphi_{\rm e} - \varphi_{\rm B}$ reaches a maximum of 13.9852° when ε = 3.6135, and $\varphi_{\rm B} = 62.2528^{\circ}$.

For the general case of an absorbing medium of refraction (complex ε), no analytical solution exists for Eqs. (1) and (3), and $\varphi_{\rm e}$ must be determined numerically. Our approach in this paper is to determine all possible values of $\varphi_{\rm e} - \varphi_{\rm pB}$ that are consistent with a given $\varphi_{\rm pB}$ (Section 2). The maximum difference ($\varphi_{\rm e} - \varphi_{\rm pB}$)_{max} = 20.447° occurs in the limit when ε is real negative, and $\varphi_{\rm pB} \approx 44^\circ$. We also determine the constant- $\varphi_{\rm e}$ contours in the complex planes of ε and $\varepsilon^{1/2}$ (= n + jk, the relative complex refractive index) in Section 3. In Section 4, we propose a technique for determining n and k, which is based on measuring the two angles $\varphi_{\rm pB}$ and $\varphi_{\rm e}$.

2. ANGULAR RANGE $\varphi_e - \varphi_{pB}$ FOR SPECIFIED PSEUDO-BREWSTER ANGLE φ_{pB}

All possible values of complex $\varepsilon = |\varepsilon| \exp(j\theta)$, that are consistent with a given $\varphi_{\rm pB}$ are determined by⁵

$$|\varepsilon| = \iota \cos(\zeta/3),\tag{5}$$

Fig. 1. Reflection of *p*-polarized light at an angle φ by the planar interface of two media with dielectric constants ε_1 and ε_2 .

Fig. 2. Family of reflectance-versus-angle $(r_p r_p^*$ -versus- $\varphi)$ curves that share the same pseudo-Brewster angle $\varphi_{\rm pB} = 50^\circ$. The associated values of complex $\varepsilon = |\varepsilon| \exp(j\theta)$ are obtained from Eqs. (5)–(7) by allowing θ to assume values from 0 to 180° in steps of 15°.

where

$$\iota = 2 \tan^2 \varphi_{\rm pB} (1 - \frac{2}{3} \sin^2 \varphi_{\rm pB})^{1/2}, \tag{6}$$

$$\zeta = \arccos[-\cos\theta\cos^2\varphi_{\rm pB}(1-\frac{2}{3}\sin^2\varphi_{\rm pB})^{-3/2}], \ (7)$$

by scanning θ from 0 to 180°. Constant- $\varphi_{\rm pB}$ contours in the complex ε plane were presented in Ref. 5 based on Eqs. (5)–(7).

Figure 2 shows a family of reflectance-versus-angle $(r_p r_p^*$ -versus- $\varphi)$ curves for 13 values of complex ε that share the same pseudo-Brewster angle $\varphi_{\rm pB} = 50^\circ$, as obtained by allowing θ to assume values from 0 to 180° in steps of 15°. Both the normal-incidence reflectance and the minimum reflectance at $\varphi_{\rm pB} = 50^\circ$ increase monotonically with θ . In the limit of $\theta = 180^\circ$ (i.e., ε is real negative), the reflectance is total (=1) at all angles.

Figure 3 shows the minimum reflectance, $(r_p r_p^*)_{\min}$, as a function of θ for constant values of $\varphi_{\rm pB}$ from 5° to 80° in steps of 5°. For small pseudo-Brewster angles (5° to 15°), an initial steep rise of the minimum reflectance with θ is followed by a more gradual increase toward 1. For $\varphi_{\rm pB}$ > 30°, the increase of minimum reflectance with θ appears parabolic and is nearly independent of $\varphi_{\rm pB}$.

Figure 4 shows $\varphi_{\rm e} - \varphi_{\rm pB}$ as a function of θ for constant $\varphi_{\rm pB}$ from 5° to 80° in steps of 5°. The maximum difference ($\varphi_{\rm e} - \varphi_{\rm pB}$)_{max} = 20.447° occurs when θ = 180° and $\varphi_{\rm pB} \approx 44°$. For large values of $\varphi_{\rm pB}$, ($\varphi_{\rm e} - \varphi_{\rm pB}$) is nearly

constant (e.g., at $\varphi_{\rm pB} = 80^{\circ}$, $\varphi_{\rm e} - \varphi_{\rm pB}$ increases from 8.270° to 8.351° as θ increases from 0 to 180°).

3. CONSTANT- φ_e CONTOURS IN THE COMPLEX PLANES OF ε AND $\varepsilon^{1/2}$

Over the range of incidence angles $0 \leq \varphi \leq \varphi_e$ the *p* reflectance at oblique incidence is less than that at normal incidence. It is of interest to consider the constant- φ_e contours in the complex ε plane. Figure 5 shows a family of such contours for φ_e from 45 to 80° in steps of 5° and φ_e from 80 to 85° in steps of 1°. These results are obtained by solving Eqs. (1) and (3) numerically. The curves resemble a family of semicircles centered at the origin. (However, each contour is *not* a semicircle.) Figure 6 shows the corresponding family of contours in the complex-refractive-index plane, $\varepsilon^{1/2} = n + jk$. The de-

Fig. 3. Minimum reflectance at the pseudo-Brewster angle $\varphi_{\rm pB}$, $(r_p r_p^*)_{\rm min}$, as a function of θ for constant values of $\varphi_{\rm pB}$ from 5 to 80° in steps of 5°.

Fig. 4. Angle difference $\varphi_{\rm e} - \varphi_{\rm pB}$ as a function of θ , for constant values of $\varphi_{\rm pB}$ from 5 to 80° in steps of 5°. $\varphi_{\rm e}$ defines the upper limit of the range of incidence angle for which the *p* reflectance at oblique incidence is less than that at normal incidence.

Fig. 5. Family of contours of constant $\varphi_e = 45$ to 80° in steps of 5°, and $\varphi_e = 80$ to 85° in steps of 1°. φ_e defines the upper limit of the range of incidence angle for which the *p* reflectance at oblique incidence is less than that at normal incidence.

Fig. 6. Family of constant- φ_e contours in the nk complex refractive index plane for the same values of φ_e as in Fig. 5.

viation of each contour from a quadrant of a circle is more apparent at lower angles (e.g., at $\varphi_e = 45^{\circ}$).

4. TECHNIQUE FOR DETERMINING *n* AND *k* FROM THE MEASURED ANGLES φ_{pB} AND φ_{e}

Azzam described an analytical technique for determining the optical constants n and k of an absorbing medium from two pseudo-Brewster angles measured in two transparent incidence media.⁷ It is of interest to consider whether n and k can be determined from the two angles $\varphi_{\rm pB}$ and $\varphi_{\rm e}$ measured in the same medium of incidence. In general, angular measurements are attractive, because no absolute reflectance measurements are required. (For

Fig. 7. Families of constant- $\varphi_{\rm pB}$ and constant- $\varphi_{\rm e}$ contours in the n-k plane in the domain of fractional optical constants (n, k < 1).

a review of numerous reflectance-based techniques, the reader may consult papers by Humphreys-Owen² and Hunter.⁸)

Figure 7 shows two superimposed families of constant- $\varphi_{\rm pB}$ and constant- $\varphi_{\rm e}$ contours in the n-k plane in the domain of fractional optical constants. This domain is important in that it relates to attenuated total internal reflection when light is incident from a dense medium. The contours are shown for $\varphi_{\rm pB} = 5$ to 40° in steps of 5° and for $\varphi_{\rm e} = 15$ to 55° in steps of 5°. The angles of intersection of curves of one family with curves of the other provide a measure of the precision with which n and k can be determined. It is apparent from Fig. 7 that n and k can be reasonably well determined when k < n.

Figure 8 is similar to Fig. 7, except that values of n, k > 1 are now considered. In Fig. 8 the families of

Fig. 8. Families of constant- $\varphi_{\rm pB}$ and constant- $\varphi_{\rm e}$ contours in the n-k plane for $n, k \geq 1$.

constant- $\varphi_{\rm pB}$ and constant- $\varphi_{\rm e}$ contours are generated for $\varphi_{\rm pB} = 45$ to 70° in steps of 5°, and for $\varphi_{\rm e} = 60$ to 80° in steps of 5°, and $\varphi_{\rm e} = 83°$. Because of the smaller intersection angles, the present two-angle method would not provide an accurate method of determining *n* and *k*

5. SUMMARY

We have determined the range of incidence angles, $0 < \varphi < \varphi_{e}$, over which the reflectance of *p*-polarized light

at oblique incidence is less than that at normal incidence, for any transparent medium/absorbing medium interface. Constant- φ_e contours in the complex planes of the dielectric constant ε and refractive index $\varepsilon^{1/2} = n + jk$ are obtained. Finally, it is shown that fractional optical constants n and k can be determined if the pseudo-Brewster angle and the angle φ_e [which satisfies Eq. (3)] are measured.

REFERENCES

- See, for example, R. M. A. Azzam and N. M. Bashara, *Ellipsometry and Polarized Light* (North-Holland, Amsterdam, 1987), Chap. 4.
- 2. S. P. F. Humphreys-Owen, "Comparison of reflection methods for measuring optical constants without polarimetric analysis, and proposal for new methods based on the Brewster angle," Proc. Phys. Soc. London **77**, 949–957 (1961).
- R. M. A. Azzam, "Maximum minimum reflectance of parallel-polarized light at interfaces between transparent and absorbing media," J. Opt. Soc. Am. 73, 959–962 (1983).
- S. Y. Kim and K. Vedam, "Analytic solution of the pseudo-Brewster angle," J. Opt. Soc. Am. A 3, 1772–1773 (1986).
- R. M. A. Azzam and E. E. Ugbo, "Contours of constant pseudo-Brewster angle in the complex ε plane and an analytical method for the determination of optical constants," Appl. Opt. 28, 5222–5228 (1989).
- R. M. A. Azzam, "Equalization of reflectance of parallelpolarized electromagnetic waves at normal and oblique incidence of interfaces between transparent media and its use for measurement of the dielectric constant," Appl. Phys. 20, 193-195 (1979).
- R. M. A. Azzam, "Analytical determination of the complex dielectric function of an absorbing medium from two angles of incidence of minimum parallel reflectance," J. Opt. Soc. Am. A 6, 1213–1216 (1989).
- W. R. Hunter, "Measurement of optical constants in the vacuum ultraviolet spectral region," in *Handbook of Optical Constants of Solids*, E. Palik, ed. (Academic, New York, 1985).