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Infrared quarter-wave reflection retarders
designed with high-spatial-frequency dielectric
surface-relief gratings on a gold substrate at
oblique incidence

Jian Liu and R. M. A. Azzam

One- and two-dimensional high-spatial-frequency dielectric surface-relief gratings on a Au substrate are
used to design a high-reflectance quarter-wave retarder at 70° angle of incidence and 10.6-mm light
wavelength. The equivalent homogeneous anisotropic layer model is used. It is shown that equal and
high reflectances ~.98.5%! for the p and the s polarizations and quarter-wave retardation can be achieved
with two-dimensional ZnS surface-relief gratings. Sensitivities to changes of incidence angle, light
wavelength, grating filling factor, and grating layer thickness are considered. © 1996 Optical Society of
America

1. Introduction

External-reflection phase retarders with high reflec-
tance have been of interest for many years.1–7 By
the selection of the angle of incidence, film thickness,
and refractive indices of both the film and metallic
substrate, the p- and s-polarized components of inci-
dent monochromatic light can be reflected equally
and with a specified differential reflection phase shift
introduced between them. In general, these studies
involved isotropic films. Azzam and Perilloux1 dis-
cussed the constraint on the optical constants of a
film–substrate system such that it functions as a
quarter-wave retarder ~QWR! or half-wave retarder
~HWR! at incidence angles of 70° and 45°, respec-
tively. The restrictions on film and substrate mate-
rials limit the design of QWR’s and HWR’s to the
near-UV–visible–near-IR spectral region. How-
lader and Azzam2 have recently proposed a QWR
design with very high reflectance at a 45° incidence
angle by using periodic and quasi-periodic non-
quarter-wave multilayer coatings at 3.39-mm wave-
length.
In the IR spectral range, external-reflection optical

elements are even more important. However, it is
difficult to make an ideal coated QWR or HWR be-
cause of the limitation in selecting materials. In
recent years binary optics technology and high-
resolution lithography have been introduced to fab-
ricate high-spatial-frequency dielectric surface-relief
gratings, whose properties are equivalent to those of
a thin film if the grating period is small enough to cut
off all nonzero diffracted orders. The most impor-
tant advantage of such subwavelength-structured
surfaces is that the needed index can be obtained by
a change in the filling factor and the grating peri-
od.8–13 This property overcomes the problem of se-
lecting a material with a proper refractive index in
the IR spectral region. High-spatial-frequency grat-
ings have been used for antireflection designs.9–15
Both one-dimensional ~1-D! and two-dimensional

~2-D! dielectric surface-relief gratings exhibit form
birefringence. The theory of 1-D dielectric surface-
relief gratings has been reviewed by Brundrett et al.11
The 2-D dielectric gratings are described by Grann et
al.13 and Motamedi et al.14
In this paper, the equivalent homogeneous aniso-

tropic layer model ~EHALM! is used to analyze how
the filling factor and the grating region thickness
control the reflected light polarization for 1-D and 2-D
dielectric surface-relief gratings on a metallic sub-
strate. This demonstrates the potential of employ-
ing such surface-relief gratings to realize a QWRwith
high reflectance. We select the CO2 laser wave-
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length of 10.6 mm and an incidence angle of 70° as an
example.
Section 2 presents the reflection properties of a

homogeneous uniaxial film on a metallic substrate.
The EHALM is introduced in Section 3. Section 4
illustrates the best QWR design that we obtain by
using a 2-D ZnS high-spatial-frequency surface-relief
grating on a Au substrate. A comparison with ho-
mogeneous isotropic coatings on Au is also discussed
in this section. Finally, Section 5 summarizes the
paper.

2. Reflection Coefficients for a Homogeneous Uniaxial
Film on a Metallic Substrate

Consider an ambient–film–substrate ~or three-phase!
system, in which the film is uniaxial with the optic
axis perpendicular to the interfaces. Because of
symmetry, an incident wave in the ambient, which is
either p or s polarized, excites waves in the uniaxial
film and in the isotropic substrate that possess the
same polarization, i.e., p or s, respectively. The com-
plex reflection coefficients are given by16,17

Rg 5 @r12g 1 r23g exp~2j2bg!#

y@1 1 r12gr23g exp~2j2bg!#,

g 5 pp, ss, (1)

where r12pp, r23pp and r12ss, r23ss are the complex
amplitude reflection coefficients at the 1–2 ~ambient–
film! and 2–3 ~film–substrate! interfaces for the p and
the s polarizations, respectively. They are obtained
by

r12pp 5 ~NoNe cos f1 2 n1p1!y~NoNe cos f1 1 n1p1!, (2)

r23pp 5 ~2NoNe cos f3 1 n3p3!y~NoNe cos f3 1 n3p3!, (3)

r12ss 5 ~n1 cos f1 2 s1!y~n1 cos f1 1 s1!, (4)

r23ss 5 ~2n3 cos f3 1 s3!y~n3 cos f3 1 s3!, (5)

where

p1 5 ~Ne
2 2 n1

2 sin2 f1!
1y2, (6)

p3 5 ~Ne
2 2 n3

2 sin2 f3!
1y2, (7)

s1 5 ~No
2 2 n1

2 sin2 f1!
1y2, (8)

s3 5 ~No
2 2 n3

2 sin2 f3!
1y2. (9)

The phase thicknesses bpp and bss of the layer for the
p and the s polarizations that appear in Eq. ~1! are
given by

bpp 5 ~2p dyl!~NoyNe!p1, (10)

bss 5 ~2p dyl!s1, (11)

where d is the layer thickness, l is the incident-light
wavelength, n1 is the refractive index of the isotropic
ambient, f1 is the angle of incidence, f3 is the angle
of refraction in the metal substrate with complex re-
fractive index n3, andNo andNe are the ordinary and

the extraordinary refractive indices of the uniaxial
film, respectively.
When the optic axis of the film is parallel to the

interfaces and to the plane of incidence, the corre-
sponding reflection coefficients and phase thicknesses
pertaining to Eq. ~1! are18,19

r12pp 5 ~NoNe cos f1 2 n1s1!y~NoNe cos f1 1 n1s1!, (12)

r23pp 5 ~2NoNe cos f3 1 n3s3!y~NoNe cos f3 1 n3s3!, (13)

r12ss 5 ~n1 cos f1 2 s1!y~n1 cos f1 1 s1!, (14)

r23ss 5 ~2n3 cos f3 1 s3!y~n3 cos f3 1 s3!; (15)

bpp 5 ~2p dyl!~NeyNo!s1, (16)

bss 5 ~2p dyl!s1. (17)

If the film’s optic axis is parallel to the interfaces
and perpendicular to the plane of incidence, we have

r12pp 5 ~No
2 cos f1 2 n1s1!y~No

2 cos f1 1 n1s1!, (18)

r23pp 5 ~2No
2 cos f3 1 n3s3!y~No

2 cos f3 1 n3s3!, (19)

r12ss 5 ~n1 cos f1 2 p1!y~n1 cos f1 1 p1!, (20)

r23ss 5 ~2n3 cos f3 1 p3!y~n3 cos f3 1 p3!; (21)

bpp 5 ~2dpyl!s1, (22)

bss 5 ~2dpyl!p1. (23)

The reflection coefficients and phase thicknesses
for a homogeneous anisotropic film on a metallic sub-
strate are obviously more complicated than those for
a homogeneous isotropic film. However, there are
more degrees of freedom to adjust in designing an
external-reflection QWR.
As conical diffraction is not considered in this pa-

per, the subscripts pp or ss are replaced below by p or
s, respectively.
The intensity ~or power! reflectance is given by

5g 5 uRgu2. (24)

For an external-reflection QWR, the ratio of com-
plex reflection coefficients for the p and the s polar-
izations must satisfy the condition

r 5 RpyRs 5 uRpyRsuexp~ jD! 5 6j, (25)

in which D is the differential reflection phase shift.
QWR is achieved if and only if the p- and the
s-polarized components are reflected equally and
their differential phase shift is 690°.

3. Equivalent Homogeneous Anisotropic Layer Model
for One-Dimensional and Two-Dimensional Dielectric
Surface-Relief Gratings

Figure 1 shows a 1-D rectangular-groove grating re-
gion, which is situated on a metallic substrate with
complex refractive index n3 and in an ambient with
refractive index n1 5 1.0. The grating is etched in a
dielectric coating material with refractive index nc.
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The grating region thickness is d, the period is L, the
filling factor is f, and the grating vector is K. If the
wavelength-to-period ratio ~lyL! is large enough to
cut off all nonzero diffracted orders, we may use the
EHALM.11 In this model the grating region is de-
scribed by a slab of uniaxial material with its optic
axis parallel to the grating vector. The equivalent
ordinary and extraordinary indices of the slab depend
on the grating filling factor, the refractive indices of
the ambient and the coatingmaterial, and the ratio of
wavelength to grating period lyL. Also, for lyL .
;15, Brundrett et al.11 indicated that higher-order
indices are essentially the same as the first-order
indices. In this paper, the assumed light wave-
length is 10.6 mm, for which large ratios lyL are
practical and justify the use of the equivalent first-
order indices to analyze the reflection properties of
the high-spatial-frequency surface-relief gratings.
The equivalent first-order ordinary and extraordi-

nary refractive indices are determined by11

No 5 ~1 2 f 1 nc
2f !1y2. (26)

Ne 5 ~1 2 f 1 fync2!21y2. (27)

Figure 2 shows a 2-D periodic dielectric surface-
relief square-pillar grating, with volume filling factor
f, thickness d, and refractive index nc for the coating
material. The substrate is a metal with complex
refractive index n3. The period L of the grating
along each side of the square is much smaller than
the incident-light wavelength l, so that lyL . 15 in
each direction.
Similar to the 1-D dielectric surface-relief grating,

the 2-D square-pillar grating can also be treated with
the EHALM. The optic axis for the 2-D square-

pillar grating is parallel to the pillars and normal to
the interfaces of the EHALM. The effective ordinary
index is obtained by assuming a 50%–50% dielectric
mixture of the values given in Eqs. ~26! and ~27!. By
the squaring and averaging of Eqs. ~26! and ~27!, the
effective ordinary refractive index is obtained14:

No 5 ~$~1 2 f 1 fnc
2!@ f 1 ~1 2 f !nc

2#

1 nc
2%y$2@ f 1 ~1 2 f !nc

2#%!1y2, (28)

where the volume filling factor f 5 ~ayL!2 and a is the
width of the square pillar for a 2-D surface-relief
grating.
The effective principal extraordinary index has the

form12,13

Ne 5 ~1 2 f 1 fnc
2!1y2. (29)

Therefore the 2-D dielectric surface-relief grating
with square pillars is equivalent to a uniaxially
anisotropic layer with the optic axis parallel to the
pillars and with effective ordinary and extraordinary
indices No and Ne that vary with the volume filling
factor.
The EHALM is used for the analysis of the reflected

polarization states and for the design of the QWR by
the use of high-spatial-frequency dielectric surface-
relief gratings.

4. Quarter-Wave Retarder Design with a
Two-Dimensional High-Spatial Frequency ZnS
Surface-Relief Grating on a Au Substrate

Figure 3 shows the differential reflection phase shift
D versus angle of incidence for a bare Au substrate
with refractive index of n3 5 12.67 2 j71.40 at l 5
10.6 mm.20 The principal angle at which a 90° dif-
ferential phase shift is achieved is 89.21°; the associ-
ated unequal intensity reflectances are 5p 5 70.25%
and 5s 5 99.99%. Even though Au is a good mate-
rial to use in the IR spectral region for making high-
reflectance mirrors, the high slope at the principal
angle of dDydf . 74 degydeg, the large difference

Fig. 1. Cross section of a 1-D dielectric surface-relief grating on a
Au substrate.

Fig. 2. Geometry of a 2-D dielectric surface-relief grating with
square pillars.

Fig. 3. Differential reflection phase shift D versus angle of inci-
dence for a bare Au substrate at light wavelength l 5 10.6 mm.
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between the p and the s reflectances and the near-
grazing incidence angle make it impractical as a
QWR.
When a uniform homogeneous isotropic film is

deposited on the Au substrate, the reflection prop-
erties of the Au can be modified to obtain a QWR.1
Table 1 shows five selected QWR designs at an in-
cidence angle of 70° and a light wavelength of 10.6
mm. The main disadvantage of using an isotropic
coating on a Au substrate is the difficulty in finding

the required coating materials. Also, the intensity
reflectances cannot reach very high values for all
designs.
We have designed 1-D and 2-D high-spatial-

frequency surface-relief gratings on a Au substrate
that function as QWR’s at the 70° angle of incidence
by using several readily available dielectric mate-
rials including ZnS and Si, which have refractive
indices 2.2176 and 3.4215, respectively, at l 5 10.6
mm.21 We find that the 2-D ZnS square-pillar
surface-relief grating on Au offers the best results.
Figure 4~a! shows the locus of all possible solutions

~ f, d! that achieve QWRwith uru 5 1.00 6 0.01 and uDu
5 90° 6 0.1°. As the accuracies are raised to uru 5
1.000 6 0.001 and uDu 5 90° 6 0.01°, only the upper
left part of the curve, shown in Fig. 4~b!, is obtained.
Five designs, represented by points 1, 2, 3, 4, and 5,
are selected for sensitivity analysis ~see Table 2!.
Figure 5 illustrates that the angular sensitivity of

the differential phase shift is nearly the same for all
five designs. A 1° angle-of-incidence error causes
,3.8° error for the differential phase shift for the five
designs. Figure 6 shows the intensity reflectance
ratio versus incidence angle. Over the entire region
of incidence angle, the deviation of the reflectance
ratio from 1.000 is within 60.0023. The average
reflectance versus incidence angle is drawn in Fig. 7
and is .98.5% between 69° and 71°. Figure 8 dem-
onstrates the sensitivity to changes of the incident-
light wavelength l from 10.0 to 11.2 mm. The

Fig. 4. Locus of grating region thickness d versus grating filling
factor f for QWR designs with ~a! uru 5 1.00 6 0.01 and uDu 5 90° 6
0.1°, ~b! uru 5 1.000 6 0.001 and uDu 5 90° 6 0.01°.

Fig. 5. Differential reflection phase shift D as a function of inci-
dence angle for the five QWR designs listed in Table 2.

Table 1. Five Selected QWR’s at 70° Incidence Angle and 10.6-mm Light Wavelength Designed with a Homogeneous Isotropic Film on a Au Substrate

Number n2
d

~mm!
5p

~%!
5s

~%! 5av 5py5s D 1 360

1 1.8100 1.05625 99.0699 98.1147 98.5923 1.0097 90.0006
2 2.0100 0.8875 98.9440 98.2058 98.5749 1.0075 89.9935
3 2.2175 0.79125 98.8239 98.1107 98.4673 1.0073 89.9936
4 2.3975 0.7325 98.7165 97.9755 98.3460 1.0076 90.0033
5 2.6725 0.66675 98.5410 97.6978 98.1194 1.0086 89.9612
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corresponding sensitivities to changes of the grating
filling factor ~by 60.1! and grating-region thickness
~by 60.1 mm! appear in Figs. 9 and 10, respectively.
The average reflectance and the reflectance ratio of
these designs are not significantly sensitive to
changes of light wavelength, grating filling factor, or
grating-region thickness. Average reflectances re-
main .98.5% and the reflectance ratios differ from 1
by ,0.5%.
If we consider that the differential reflection phase

shift is the most important parameter for a QWR,
design 1 in Table 2 can be regarded as the best one.
For this design the maximum phase error is ;2.3° for
a 0.6-mm incident-light wavelength shift, 3.1° for a
0.1 filling factor error, and 2.25° for a 0.1-mm thick-
ness error. The average reflectance is 98.9638%.

Fig. 6. Intensity reflectance ratio as a function of incidence angle
for the five QWR designs listed in Table 2.

Fig. 7. Average reflectance as a function of incidence angle for the
five QWR designs listed in Table 2.

Fig. 8. Differential reflection phase shift D as a function of the
incident-light wavelength l for the five QWR designs listed in
Table 2.

Fig. 9. Sensitivity of the differential reflection phase shift D to
error of the grating filling factor f for the five QWR designs listed
in Table 2.

Fig. 10. Sensitivity of the differential reflection phase shift D to
error of the grating-region thickness d for the five QWR designs
listed in Table 2.
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5. Summary

We have demonstrated that a 2-D high-spatial-
frequency surface-relief grating etched in a ZnS coat-
ing that is deposited on a Au substrate offers a QWR
with equal and high p and s reflectances ~.98.5%! at
an incidence angle of 70° and a light wavelength of
10.6 mm. This external-reflection QWR is reason-
ably insensitive to changes of the incident-light wave-
length, grating-region filling factor and thickness,
and incidence angle.

This research was supported by the U.S. National
Science Foundation and presented at the Annual
Meeting of the Optical Society of America in Port-
land, Or., 10–15 September 1995.

References
1. R. M. A. Azzam and B. E. Perilloux, “Constraint on the optical

constants of a film–substrate system for operation as an
external-reflection retarder at a given angle of incidence,”
Appl. Opt. 24, 1171–1179 ~1985!.

2. M. M. K. Howlader and R. M. A. Azzam, “Periodic and quasi-
periodic nonquarterwave multilayer coatings for 90-deg reflec-
tion phase retardance at 45-deg angle of incidence,” Opt. Eng.
34, 869–874 ~1995!.

3. W. H. Southwell, “Multilayer coating design achieving a broad-
band 90° phase shift,” Appl. Opt. 19, 2688–2692 ~1980!.

4. J. H. Apfel, “Phase retardance of periodic multilayer mirrors,”
Appl. Opt. 21, 733–738 ~1982!.

5. R. M. A. Azzam and M. E. R. Khan, “Single-reflection film–
substrate half-wave retarders with nearly stationary reflection
properties over a wide range of incidence angles,” J. Opt. Soc.
Am. 73, 160–166 ~1983!.
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