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ABSTRACT 

 

Noncovalent intermolecular interactions, widely found in molecular clusters and 

bio-molecules, play a key role in many important processes, such as phase changes, 

folding of proteins and molecular recognition. However, accurate calculation of 

interaction energies is a very difficult task because the interactions are normally very 

weak. Rigorous expressions for the electrostatic and polarization interaction energies 

between two molecules A and B, in term of the electronic densities, have been 

programmed: 
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Z is atomic charge, ρ0 is the electron density of the isolated molecule and ∆ρind is the 

electron density change of the molecule caused by polarization. With some 

approximations, procedures for electrostatic and polarization energy calculations were 

developed that involve numerical integration. Electrostatic and polarization energies 

for several bimolecular systems, some of which are hydrogen bonded, were calculated 

and the results were compared to other theoretical and experimental data.  

 



 xii

A second method for the computing of intermolecular interaction energies has 

also been developed. It involves a “supermolecule” calculation for the entire system, 

followed by a partitioning of the overall electric density into the two interacting 

components and then application of eq. (1) to find the interaction energy. In this 

approach, according to Feynman’s explanation to intermolecular interactions, all 

contributions are treated in a unified manner. The advantages of this method are that 

it avoids treating the supersystem and subsystems separately and no basis set 

superposition error (BSSE) correction is needed. Interaction energies for several 

hydrogen-bonded systems are calculated by this method. Compared with the result 

from experiment and high level ab initio calculation, the results are quite reliable. 

 

 



 
 
 

 

1

 
 
 
 

CHAPTER 1.  INTRODUCTION 
 

1.1. Covalent and Noncovalent Interactions 

It is found that there are four types of interactions in nature. They are strong, 

weak, electromagnetic and gravitational forces. The strong and weak interactions 

are short-range forces and only act between protons, neutrons and other elementary 

particles.  Gravitational interactions are associated with all mass systems. 

According to the generalized theory of relativity, this interaction originates from the 

distortion of space. The electromagnetic interactions, mainly acting between atomic 

and sub-atomic systems, directly lead to the formation of atoms and molecules. 

Among the four interactions, only electromagnetic forces are fundamentally 

important to molecular systems, in that the interaction range of strong and weak 

forces is too short (less than 10-5 nm) and gravitational forces are too weak. 

Electromagnetic forces are responsible for the formation of covalent bonds and 

noncovalent bonds in chemistry. According to molecular quantum mechanics, a 

covalent bond usually originates from the overlap of the partially occupied orbitals. 

Covalent interactions were first described by Lewis in 1916 [1]. With the 

development of the quantum theory of the chemical bond, the properties of covalent 

bonds are well understood and their theoretical treatment is now routine work with 

quantum chemical software packages. Many physical properties, such as energy, 



 
 
 

 

2

bond lengths and bond angles etc., can be accurately evaluated at various theoretical 

levels. 

There is another kind of interaction of atoms and molecules, which is to 

form molecular complexes.  Since there is no breaking or formation of covalent 

bonds in this process, these are called noncovalent interactions or van der Waals 

(vdW) interactions. In this dissertation, we recommend the term “noncovalent 

interactions”, because some of them, such as the electrostatic and polarization 

interactions, are normally not included in “vdW interactions”. 

Noncovalent interactions, widely found in molecular clusters and bio-

molecular systems, play a key role in many important processes such as phase 

changes, folding of proteins and molecular recognition. Compared to covalent 

interactions, noncovalent interactions are much weaker (normally 1 to 2 orders of 

magnitude less than covalent interactions). 

The noncovalent interactions may be intramolecular or intermolecular. 

However, compared to covalent interactions, the noncovalent intramolecular 

interactions are too weak to affect the properties of molecules in most cases. 

Therefore, we only focus on noncovalent intermolecular interactions, which are 

very important in many fields of chemistry and physics. 

 

1.2. Noncovalent Intermolecular Interactions 

According to their different origins, noncovalent intermolecular interactions 

are grossly classified into four categories: repulsion-exchange, electrostatic, 

polarization and dispersion interactions. The first one is connected with the overlap 
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of occupied orbitals and the rest of them originate, respectively, from the interaction 

between two permanent multipoles, between a permanent multipole and an induced 

multipole, and between an induced multipole and an instantaneous multipole. 

Hence the total intermolecular interaction energy is the sum of these four different 

intermolecular energies: 

Eint = Ees + Epol + Edis + Eex                                                         (1.1) 

where Ees, Eind, Edis and Eex represent electrostatic, polarization, dispersion and 

exchange energy separately. 

The basic equation for describing electrostatic interactions is Coulomb’s law, 

which gives the relationship between the Coulomb force F and two point charges q1 

and q2 with a certain separation r: 

 2
0

21

4 r
qq

F
επε

=                                                                                         (1.2)                      

where ε0 is the dielectric constant of a vacuum and ε is the dielectric constant of the 

medium.  The Coulomb force is a long-range interaction, vanishing as r-2.  

As we know, most molecules do not carry any net charge; however, many of 

them, called polar molecules, have permanent electric dipoles. By Coulomb’s law, 

the electrostatic interaction energies between charges and dipoles can be expressed 

as shown in Table 1.1 [2]. 

The permanent dipole moments of polar molecules bring into being an 

electric field around them. When any atom or molecule is placed in an electric field, 

its charge is redistributed and thus an induced dipole moment is generated (Figure 

1.1). This process is called polarization. The induced dipole moment µr  is given by 
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E
rr αµ =                                                                           (1.3) 

 

Type of interaction Interaction Energy 

Charge-charge   

Charge-dipole         Qucosθ /4πε0r2 

Dipole-dipole   

 
Table 1.1 Some types of electrostatic interactions. Q, electric charge; µ,                     

electric dipole moment. 
 

where α is the static polarizability and E
r

 the electric field. The energy due to the 

interaction between an electric field E
r

 and an induced dipole moment µr  is: 

2

2
1µ EEdE

E

opol α−=⋅−= ∫
rr

                                                           (1.4) 

 

 

                       Fig. 1.1 The process of polarization. 

 
Electric field E

δ- δ+ 

µind

Q1Q2 /4πε0r 

-u1u2[2cos θ 1cos θ 2 –  
sin θ 1sin θ 2cosφ]/4πε0r3 
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Dispersion interactions have also long-range character. They are present in 

all kinds of intermolecular systems.  In the view of modern quantum mechanics, 

dispersion interactions arise from the mutual correlation of electrons which belong 

to different molecules.  

The theory of dispersion interactions is less well understood than that of 

electrostatic and polarization interactions. In 1930s, London made an interpretation 

with the oscillator model [3-4].  He found that the dispersion energy is proportional 

to the sixth power of the reciprocal distance. The dispersion interaction energy 

between two identical atoms or molecules is 

62
0

2
0

6
6

)4(4
3

r
I

r
C

Edis πε
α

−=−=                                                            (1.5) 

where I is the ionization potential and α0 is the polarizability. The oscillator model 

was extended to higher multipole moment interactions by Margenau [5], and 

Hornig and Hirschfelder [6]. The dispersion interaction energy can be written in the 

form 

           ,10
10

8
8

6
6 ⋅⋅⋅−−−−=

r
C

r
C

r
CEdis                                                               (1.6) 

where Cn (n=6, 8, 10,…) are all dispersion coefficients. They can be obtained in 

several different ways, such as dipole oscillator strength distributions (DOSDs) [7-9] 

and ab initio calculations. 

Exchange interactions originate from charge overlap and exchange effects. 

When two molecules come together, according to the Pauli exclusion principle, two 

electrons cannot have the same spatial and spin wave functions. Therefore, the 
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electron density between the molecules falls when their orbitals begin to overlap.  

The process brings a kind of repulsion force between molecules, which is called 

exchange-repulsion. 

 Exchange-repulsion is characterized by its short interaction distance. 

Unfortunately, there is no strictly defined equation for describing the distance 

dependence.  Hence some empirical potential functions have been employed. 

Among them, the three most common are the hard sphere potential, the inverse 

power-law potential and the exponential potential. Each of them can fit 

experimental data well with proper parameters. For instance, as a valid 

approximation, the exchange potential is proportional to the square of an overlap 

integral between orbitals of two molecules [10]. Since the wave functions decay 

exponentially with distance, it is reasonable that the exchange repulsion energy is 

represented exponentially with intermolecular distance R: 

BR
ex AeE −=                                                                                         (1.7) 

where A and B are coefficients. As all these three potentials have simple 

mathematical forms, they are widely used in many fields. 

 

1.3. Methods for Intermolecular Interaction Energy Calculation 

Mainly, there are three different methods for intermolecular interaction 

energy calculation: empirical force-field methods, semi-empirical methods and ab 

initio methods. Each of them has advantages and drawbacks.  
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In the molecular simulations of bioorganic and polymeric systems, empirical 

force field methods are very popular. Generally, the total interaction energy is the 

sum of the electrostatic energy, polarization energy and vdW interaction energy: 

vdwpoles EEEE ++=int                                                               (1.8) 

Normally, the electrostatic energy is described by the point charge model and the 

vdW interaction energy is given by Lennard-Jones or Buckingham types of 

potentials.  As a simple example, the interaction energy can be expressed as: 

)( 612int
ij

ij

ij

ij

ij ij

ji

R
b

R
a

R
qq

E −+=∑                                                      (1.9) 

where the first term gives the electrostatic interactions, the second term describes 

the short-range  repulsion energy, and the third term  the dispersion energy. The 

point charges and vdW parameters are from experimental data and theoretical 

calculations. 

There are many different force-field models such as AMBER [11-15], 

CHARMM [16-22], MM2 [23-25] etc. Some of these force-fields are much more 

complicated than the above examples: polarization effect and angle factors are 

included and also the effect of hydrogen bonds is considered.    

                        The force-field models are computationally efficient and thus can be carried 

out for big molecular systems. Some typical applications of force field methods are 

solution phase simulations and conformation searches for proteins and DNAs. 

Using the correct force-field parameters, the method may obtain good results. 
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Nevertheless, it cannot describe the interaction energy of electrons and also the 

accuracy is obviously less than that of quantum chemical calculations.  

Traditionally, the concept of semiempirical methods is from semi-empirical 

quantum methods, such as INDO, MNDO and AM1 [26-31]. The complexity of 

these methods lies between empirical force-field and strictly ab initio calculations. 

Like force-field methods, they use some experimentally-derived parameters for 

improving calculation efficiency; like ab initio methods, they are based on solving 

the Schrödinger equation. Since a lot of time-consuming integrals are neglected or 

replaced by experimental data, semiempirical methods are computationally much 

faster than ab initio methods. Therefore, they can treat a molecular system that 

contains several hundred atoms. However, because of the same reason, these 

methods are very rough, and fail in the evaluation of dispersion and repulsion 

interactions in intermolecular interaction energy calculations. Some improved 

semiempirical methods, such as PDDG/PM3 and PDDG/MNDO [32] have been 

developed to partially overcome this deficiency. In this method, a Pairwise Distance 

Directed Gaussian function (PDDG) is added into the Core Repulsion Function 

(CRF) to eliminate the excessive core-core repulsion. Hence more accurate 

interaction energies can be obtained, especially for hydrogen-bonded molecular 

systems.  

The definition of semiempirical methods was extended in recent years. 

QM/MM [33-39], a hybrid method combining molecular mechanical and quantum 

mechanical calculations, has also been included. This method was first introduced 

by Warshel and Levitt in1976. The idea is to divide a molecular system into a QM 
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region and an MM region with an appropriate boundary treatment to connect these 

two parts. Thus the total energy of the system can be written as 

Eint = EQM + EMM + EQM/MM, elec + EQM/MM, vdW              (1.10) 

where EQM and EMM are energies of the QM and MM parts, and EQM/MM,elec and 

EQM/MM,vdW are the boundary electronic and vdW energy on the boundary. The key 

in this method is the treatment of the boundary energy, which represents the 

interaction of the MM atom cores with the electron cloud of the QM atoms when 

interacting with MM atoms.  It is found that a Lennard-Jones term must be added to 

the QM atoms to obtain good intermolecular interaction energies. 

The QM/MM methods are normally employed to study biomolecules and 

other condensed-phase systems, in which it is necessary to treat some parts of them 

rigorously. A good example is enzyme reactions. In most cases, the active site of an 

enzyme accounts for only a relatively small portion of the total system.  The active 

site is computed by a QM method while other regions are treated by an MM 

scheme. 

 The most accurate methods for intermolecular interaction energy 

calculations are the ab initio, based on solving the time-independent Schrödinger 

equation with several approximations (non-relativistic approximation, Born-

Oppenheimer, etc.): 

Ψ=Ψ EĤ                                                                                              (1.11) 

where Ψ is a wave function  and Ĥ is the Hamiltonian of the system. For a 

molecular system, the Hamiltonian (in atomic units) is defined as shown in Eq. 

(1.12): 
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           ∑∑∑∑∑ ∑∑
>>

++−∇−=
ji j ijBA B AB

BA

i i A iA

A
i rR

ZZ
r
ZH 1

2
1ˆ 2                                (1.12) 

ZA and ZB are the charges on nuclei A and B, riA is the distance between electron i 

and nucleus A, RAB and rij are the distances between two nuclei and two electrons, 

respectively.  

Many ab initio methods, such as Hartree-Fock (HF), Møller-Plesset (MP) 

perturbation [40], couple-cluster (CC) [41] and density functional theory (DFT), 

have been developed. However, not all of them are qualified to describe 

intermolecular systems. (See Section 1.6) 

 

1.4.       Perturbation and Supermolecular Methods 

 The study of intermolecular interactions is one of the most exciting fields in 

chemical science. Considerable progress has been achieved toward understanding 

the mechanisms of these interactions. Ab initio theory, as a power tool, plays a 

central role in this progress. There are two different approaches to studying 

intermolecular interactions in ab initio schemes: the perturbation method and the 

supermolecular method. The perturbation method treats the interaction between the 

subsystem wave functions as a perturbation and the interaction energy is evaluated 

by perturbation theory [42-46]. In this method, the electrostatic energy, exchange-

repulsion energy, polarization energy, dispersion energy, exchange-induction 

energy and exchange-dispersion interaction energy can be calculated separately. 

The total interaction energy is a summation of these contributions. Alternatively, in 
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the supermolecular method [47-48], the interaction energy is given as the difference 

between the energies of the supersystem and those of the subsystems. 

Perturbation Theory of Intermolecular Interactions 

For a complex of two molecules 1 and 2, the total Hamiltonian of the system 

in the frame work of Rayleigh-Schrödinger perturbation theory (RSPT) may be 

written as 

VHHH ˆˆˆˆ
21 ++=                                                                              (1.13) 

where 1Ĥ  and 2Ĥ  are the Hamiltonians of molecules 1 and 2, respectively.  V̂  is 

the intermolecular interaction operator, which is expressed as 

∑∑∑∑∑∑ ∑∑ +−−=
1 21 21 2 1 2

1ˆ
a b aba B aB

B

A B A b Ab

A

AB

BA

rr
Z

r
Z

r
ZZV                               (1.14) 

where A and B are nuclei of molecules 1 and 2;  analogously, a and b are electrons 

of molecules 1 and 2. Furthermore, we assume that the ground-state wave functions 

are ψ1,0 and ψ2,0, and the exited-state wave functions are  ψ1,i and ψ2,j. The 

corresponding eigenvalues are denoted as ε1,0, ε2,0, ε1,i and ε1,j respectively. The 

RSPT expression for the total energy Etot is written in the form 

∑+=
i

itot EEE 0                                                                                  (1.15) 

where E0 is the total unperturbed energy of the isolated molecules and Ei the 

interaction energy at the ith level. When the exchange effects are not included 

(polarization approximation [49]), the long-range contributions (electrostatic, 

polarization and dispersion energy) can be obtained [43] 

>=< 0,20,10,20,1 || ψψψψ VEes                                                                (1.16)                    
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The polarization approximation neglects exchange effects and may lead to 

convergence problems [50-51].  In more complicated approaches such as 

symmetry-adapted perturbation theory (SAPT) [52] and intermolecular perturbation 

theory (IMPT) [43, 53], the exchange-repulsion terms are involved in the 

perturbation expansion. Usually, the exchange–repulsion energy is determined by 

fitting methods [54-58]. 

 

Supermolecular Theory of Intermolecular Interactions 

In the supermolecular approach, the interaction energy is calculated in terms 

of its definition as 

∑−= moleculecomplex EEEint                                                              (1.19)  

in which Eint is the intermolecular interaction energy,  Ecomplex the energy of the 

complex,  and ΣEmolecule the  total energy of isolated molecules. The energies of the 

complex and molecules are obtained by ab initio methods. In most cases, the values 

of Ecomplex and ΣEmolecule differ only by 101 to 103 J/mole while the energy of 

medium size complexes is 106-108 J/mole [59]. Coulson compared this method to 

weighing a ship’s captain by weighing the ship with and without him. Therefore, 

the energies of the subsystems and of the supersystem must be calculated at very 

high precision and also must be evaluated at the same level. 
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Both approaches have advantages and drawbacks. In the perturbation 

method, the interaction energy is calculated directly, which avoids any 

inconsistency originating from different descriptions of supersystems and 

subsystems. In addition, the individual terms of the interaction energy have a clear 

physical meaning，  which can reflect the nature of intermolecular interaction. 

However, perturbation calculations are more time-consuming than supermolecular 

methods and thus have not yet been used for large molecular systems. This method 

also suffers sometimes from convergence problems. Convergence problems of the 

interaction energy are avoided and intermolecular exchange effects are 

automatically incorporated in the supermolecular approach. Furthermore, compared 

to the perturbation approach, the higher-order terms in the interaction potential are 

implicitly taken into account. Since the supermolecular approach is formally 

straightforward, standard chemical programs can be employed, which means that no 

additional programming is needed and many advanced methods and highly efficient 

codes are available. Because of these advantages, most calculations of 

intermolecular interaction energies are carried out by supermolecular method. The 

perturbation method is mainly used to construct accurate intermolecular potential 

surfaces. 

 Theoretically, the supermolecular and perturbation methods are equivalent. 

Using an infinite basis set and extending perturbation to infinite orders, identical 

interaction energies must be obtained. Practically, the basis set inconsistency in the 

supermolecular method and truncation of high orders in perturbation calculations 

make the results somewhat different from each other. 
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1.5. Basis Set Superposition Error (BSSE) 

The supermolecular method is extensively used for interaction energy 

determination. However, there is a major drawback. Suppose that a supersystem 

and its subsystems are calculated with the same basis set and theoretical method. 

Since the supersystem is described by a larger basis set, this leads to a more 

negative total energy, in which a spurious attraction energy is included. The error 

caused by unequal basis sets of supersystem and subsystems is called basis set 

superposition error (BSSE). It is not for any physical reason but is only a purely 

artificial mathematical effect. For small basis sets, the BSSE dominates interaction 

energy calculation, while it disappears automatically with an infinite basis set. In 

the 1970s, Boys and Bernardi introduced the counterpoise method (CP) for 

eliminating the BSSE [60]. In their method, subsystem energies are calculated in 

the supersystem basis set. The interaction energy corrected for the BSSE ( CE int ) is 

written as follows 

∑−=
i

i
complexcomplex

c EEEint                                                                      (1.20) 

where complexE is the energy of the supersystem and i
complexE is the energy of the 

subsystem i with the same basis set as the complex. In other words, the energy of 

each subsystem is calculated in the presence of the atomic orbitals of the other 

subsystems, but without including the electrons and nuclei of the other subsystems. 

These kinds of orbitals are named “ghost orbitals”. 
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The counterpoise method has proved effective and is therefore widely used 

to correct the BSSE. Nevertheless, the accuracy of this method is controversial. It is 

said that the Boys-Bernardi method (CP) may overestimate the BSSE, because in 

the supersystem calculation, the occupied orbitals of each subsystem are not 

available to the electrons in other ones [61]. A corrected method, called VCP 

(“virtual” counterpoise method), using only the virtual orbitals of the other 

subsystems, has been suggested [62-64].  

In some cases, the VCP method performs well. Nevertheless, it has also 

been criticized. Some calculations demonstrate that the VCP method does not 

eliminate the whole BSSE [65-66]. In these papers, Gutowski et al declared that the 

full counterpoise method has a very beneficial effect while the VCP method should 

be rejected.  

The debate about the BSSE correction is still continuing. It is really a very 

complicated problem. Fortunately, with the development of computer techniques, 

ab initio calculations with large basis sets are feasible now, which can make the 

BSSE correction negligible. 

 

1.6.      Effective Theoretical Methods for Supermolecular Approach  

In the supermolecular method, all ab initio methods can be employed for 

intermolecular interaction calculation. However, not all of them are suitable for 

supermolecule calculations.  

The Hartree-Fock method completely misses the dispersion interaction, 

which involves electron correlation between electrons on different molecules. In ab 
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initio calculations, the total interaction energy can be divided into two parts: 

Hartree-Fock (∆EHF) and correlation energy (∆ECOR): 

CORHF EEE ∆+∆=∆ int                                                                      (1.22) 

∆ECOR represents mainly the dispersion interaction energy. In post-Hartree-Fock 

methods, the correlation term can be evaluated. The effective ones should give 

accurate values of ∆ECOR. 

Density functional theory is very attractive for intermolecular energy 

calculation because it is much less computationally demanding than post-Hartree-

Fock methods. As the exchange-correlation functionals are naturally contained in 

DFT, it was believed that this method is suited to deal with intermolecular 

interactions. Disappointingly, current density-functional methods fail completely 

for the evaluation of dispersion energy. The reason is very simple: none of the 

existing correlation functionals can describe the dispersion interaction [67-68].  

Although DFT works well for hydrogen-bonded systems, it needs to overcome the 

dispersion problem to achieve enough accuracy for intermolecular interaction 

calculations. 

The most economical post Hartree-Fock method is second-order Møller-

Plesset theory (MP2). Surprisingly, this method gives very accurate intermolecular 

correlation energies.  This is due to mutual compensation of neglected higher-order 

contributions [69]. For interaction energy calculations of big molecular complexes, 

the local MP2 method (LMP2) was developed. This can deal with a molecular 

system with hundreds of atoms [70]. Additionally, the value of the BSSE in this 

method is smaller than for the normal MP2 method [71]. 
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For complete investigation of interaction energies, the full configuration 

method (FCI) or coupled-cluster singles, doubles and triples method (CCSDT) [72] 

is recommended. However, these methods are presently too computationally 

expensive to be applied to normal intermolecular systems. Therefore, as a 

compromise between accuracy and economy, an approximate form of CCSDT, 

which is called CCSD(T)  (coupled cluster method with single, double and 

noninteractive triple excitations),  has been developed [73]. CCSD(T) provides a 

powerful tool for the evaluation of intermolecular interaction energies.  

Finally, we should underline that ab initio methods for the supermolecular 

approach must be size-consistent, which means that the energy of the 

supermolecule at infinite separation must be equal to the sum of the energies of the 

isolated molecules [40]. The size-consistency restriction means that some common 

methods are not qualified. For instance, configuration interaction methods (CI) are 

not size-consistent in that double excitations on each subsystem are included, but 

the corresponding higher order excitations are excluded for the supermolecule. 

  

1.7. Basis Set Selection  

The selected basis set should describe the complex as accurately as possible. 

It is found that large basis sets which contain polarization and diffuse functions 

must be used for reliable results. Nevertheless, the relationship between the size of 

basis sets and computation time is not linear but nX (X≥4), which means that the 

size of basis sets must be limited. Among all sorts of basis sets, Dunning's 

correlation-consistent basis sets [74-75], augmented with polarization functions, 
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have recently been extensively used for intermolecular interactions, because the 

basis set limit can be extrapolated. They are referred to with acronyms such as aug-

cc-pVnZ, with n = D, T, Q, 5, etc., for double-zeta, triple-zeta, quadruple-zeta, etc.  

Dunning's correlation-consistent basis sets are general-purpose, and are not 

optimized for interaction energy calculation. Many special basis sets have been 

developed for better results. For example, specially-tailored basis sets are designed 

to reproduce monomer properties relevant to intermolecular forces; adding bond-

centred basis functions, located at or near the midpoint of the Van der Waals bond, 

is effective in recovering most of the dispersion energy [76]. 

The size of basis sets determines the value of the BSSE directly. Generally, 

the larger the basis set, the smaller the BSSE. When an infinite basis set is used, the 

BSSE is equal to zero. Therefore, large basis sets can reduce the effects caused by 

the BSSE. 
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CHAPTER 2. SOME PROBLEMS IN AB INITIO 
INTERMOLECULAR INTERACTION ENERGY 

CALCULATIONS 
 

2.1. Historical Retrospection 

Ab initio methods provide a robust tool for studying the properties of 

molecular systems. They are extensively used to understand the nature of the 

chemical bond and chemical reactions. In this field, ab initio quantum theory is so 

successful that the accuracy of theoretical calculations is close to experimental data 

in many cases. Nevertheless, ab initio methods could only give a qualitative 

explanation for intermolecular interactions for a long time, largely because of the 

difficulty of calculating the dispersion contribution. Before the 1990s, although 

many researchers believed that quantum theory can describe noncovalent 

intermolecular interactions as successfully as covalent ones, they had to 

acknowledge that it is a “very difficult task” [1].  At that time, even experimental 

data were not plentiful, and accurate empirical potential surfaces existed only for 

noble gas pairs [2] and some simple molecular systems such as Ar-H [3] and Ar-

HCl [4].  

During the early years of the 1990s, a great deal of work was done on the 

spectroscopy of weakly-bonded complexes, especially in the mid-infrared and near-

infrared ranges [5]. These experimental data were used to determine intermolecular 

potentials and even to build potential energy surfaces (PES). 
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At the same time, because of  the growth of computer power, various ab 

initio methods with larger basis sets and more complete intermolecular correlation 

were employed for intermolecular interaction calculations. Their accuracy can also 

be evaluated in terms of spectral data. It was found that CCSD(T) and MP2 are 

suitable methods.  Using these, most dispersion energy can be recovered; 

furthermore, they are not as time-consuming as their cousins such as CCSDT, MP4, 

etc. Large basis sets with polarization functions should be used for accurate results. 

Now the ab initio theory of intermolecular interactions enters a quantitative 

era. The methodology can provide reliable intermolecular potential energy surfaces 

and accurate interaction energies.  

 

2.2. Problems in ab initio Intermolecular Interaction Calculations 

Despite the considerable progress,, there are still some unsolved problems in 

this field, which limit the development and application of ab initio intermolecular 

interaction theory severely.  

One of the most important problems is the efficiency of ab initio methods. 

As we know, ab initio calculations are so time-consuming that they cannot be 

applied to large molecular systems. The problem is even worse in intermolecular 

interaction calculations: For electronic structures of isolated molecules, ab initio 

calculation may give reliable results at the HF level with small or medium size basis 

sets in many cases. In contrast,  post-HF methods (MP2, MP4 and CCSD(T), etc.) 

must be employed and large basis sets with polarization functions must be used for 

intermolecular energy calculations. Despite the progress in computational 
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capabilities, accurate results can only be obtained for some small complexes. Since 

many important intermolecular systems are medium- or large-sized, it is a serious 

drawback. Unless there are some breakthroughs in fundamental theory, the 

application of ab initio methods is very limited. 

In chapter 1, we mentiond that the BSSE was a significant error in  the 

supermolecular approach. The main approach for BSSE correction is the 

counterpoise method, the validity of which is still being argued today. It seems that 

the BSSE originates from the “internal infection” of the supermolecular method [1]. 

Although the CP correction works in most cases, it cannot completely eliminate the 

error. Theoretically, the BSSE converges to zero with complete basis sets. However 

this is too computationally demanding for most molecular complexes.  

Another important problem in the supermolecular approach is called basis-

set saturation: The convergence is very slow for interaction energies, with a rapid 

increase in the number of basis functions. This effect originates in the Coulumb 

cusp condition, which is very slowly reproduced by an one-electron basis set 

expansion [6-7]. It is particularly serious for dispersion interactions.  Several 

different methods are used to correct this problem; these include adding the 

interaction distance into a basis set [8-9] and using bond functions in the middle of 

the van der Waals bond [10-11]. However the former is too computationally 

demanding in actual applications and the latter is not appropriate for electric 

properties of the subsystems [12]. 

In summary, ab initio calculations are becoming a popular method for 

intermolecular interaction calculations. However, there are still some difficult 
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problems with this approach. The complexity of ab initio methods limits their 

application to large complex systems and post-HF methods and big basis sets 

exacerbate the difficulty. In the supermolecular approach, the most popular method 

for interaction energy calculations, the BSSE correction is still argued. Additionally, 

the use of huge basis sets causes basis set saturation, which also needs correction. In 

order to overcome the difficulties, we want to develop a new method in this 

dissertation, which is less computationally demanding for intermolecular interaction 

energy calculations.  Furthermore, the BSSE effect can be avoided in this approach. 
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CHAPTER 3. CALCULATION OF ELECTROSTATIC 
INTERACTION ENERGIES FROM ELECTRONIC 

DENSITIES 
 

3.1. Introduction 

Electrostatic interactions are very important in intermolecular systems. In 

particular, they dominate ionic and hydrogen-bonded systems such as proteins and 

DNA.   For some hydrogen-bonded systems, an electrostatic approximation was 

employed and it was found that the electrostatic energy agreed very well with the 

non-empirical SCF interaction energy in the entire range from large separation to 

the vdW minimum [1]. Therefore, in some cases, the electrostatic energy can be 

used for estimating the strength of a weakbond.  

The easiest method for electrostatic interaction energy calculations is to 

determine the net atomic charges for each molecule. This kind of work started 

decades ago [2]. As the motion of electrons is ignored, this method is only a crude 

approximation. Actually, there is no rigorous way to define atomic charge. Some 

improved methods, including the interaction of higher multipole moments, were 

developed for better results [3-7].  However, the evaluation of multipoles is 

sophisticated. In this work, a more accurate approach is presented: the energy of the 

intermolecular electrostatic interaction is calculated directly from the electron 

densities of the monomers.   
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3.2. Computational Methods 

 
The electron density is a physical observable, which can be determined by 

experimental methods such as X-ray diffraction in crystals [8]. If a bridge between 

interaction energy and electron density is built, the electrostatic interaction energy 

can be obtained from experimental data directly. This is really very attractive for 

calculations of big complexes. Alternatively, the electron densities may come from 

theoretical computation. With the development of modern quantum chemistry, 

calculation the electron densities of many molecular systems is becoming a routine 

task.  

According to the Hohenberg-Kohn theorem [10], the ground-state molecular 

energy is uniquely determined by the electron density. In other words, the ground-

state energy E0 is a functional of the electron density ρ. 

)(0 ρFE =                                                                                            (3.1) 

What the Hohenberg-Kohn theorem guarantees is the existence of such a 

functional )(ρF . However, it does not tell us how to calculate E0 from ρ. Actually, 

an exact analytical form of the functional may not exist. Hence we have to find 

other approaches. 

Fortunately, it is not difficult to calculate the electrostatic interaction energy 

from an electron density model based on Coulumb’s law. First, we assume that a 

complex is composed of two molecules, A and B. The intermolecular electrostatic 

interaction energy between A and B is the sum of nucleus-nucleus, nucleus-electron, 

and electron-electron terms. In the view of quantum mechanics, the position of the 
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electrons in uncertain at a specific time, so the electron probability density, a time-

average property, is employed here.  The electrostatic interaction energy Ees 

between A and B is, 
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where ZA, ZB are atomic charges in molecules A and B, and 0
Aρ and 0

Bρ  are the 

electron densities of isolated molecules A and B. 

Eq. (3.2) can also be derived rigorously from the concept of electrostatic 

potential.  The electrostatic potential of molecule A at any point rr  that is created by 

the nuclei and electrons of a system A is given by [10, 11] 

∫∑ −
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A A
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rV r
rr

r

rr
r

||
)(

||
)(

0ρ                                                          (3.3)   

in which )(rVA
r  is the electrostatic potential of molecule A at point rr , ZA is the 

charge on each nucleus of molecule A; and )(0
AA rrρ  is the equilibrium electron 

density of isolated A. The nucleus and electron charges of molecule B interact with 

the electrostatic potential of molecule A and the energy of the electrostatic 

interaction between two molecules A and B is therefore, 

BeB
B

NBes rdEE r
∫∑ += ,, ε                                                                             (3.4) 

EB,N  are the electrostatic interaction energies at each nucleus of molecule B and εB,e 

are electrostatic energy densities at each point Brr : 
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BBANB ZrVE )(,
r

=                                                                                    (3.5) 

)()( 0
, BBBANB rrV rr ρε =                                                                                 (3.6) 

Putting Eqs. (3.5) and (3.6) into Eq. (3.4), we obtain an expression for the 

electrostatic interaction energy between A and B, which has the same form as Eq. 

(3.2). 

 According to Eq. (3.2), the unperturbed electron density of each molecule 

and the geometry of the complex must be known for the calculation of the 

intermolecular interaction electrostatic energy. To evaluate the integrals in Eq. (3.2), 

we use a numerical integration scheme modeled, with slight modifications, after 

that of Gavezzotti [12].  Usually, the calculation includes following several steps 

and some approximations are used: 

(1). Preparation of electron density  

In the numerical integration, an electron charge distribution )(rrρ is divided 

into a large number of tiny electron density units by means of a three dimensional 

grid which creates blocks (not necessary cubical) of volumes V, called electron 

pixels centered around points ir
r .  These units were termed “e-pixels” by Gavezzotti; 

however, since pixel is an abbreviation for picture element, which is two-

dimensional, the present three-dimensional units should properly be called “e-

voxels” (electronic volume elements). Therefore, we shall always use the term “e-

voxel” in the dissertation. 

The electron density of each e-voxel is generated from molecular wave 

functions by Gaussian 98 (G98). The electron density can be generated directly 
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with the keyword “cube=density” or from a formatted check point file by the 

program “cubegen”. The Cube subroutine allows one to establish the origin, 

stepsizes and extent of the grid; alternatively, one need only specify the total 

number of points desired and Cube will generate a corresponding rectangular grid 

enclosing the particular charge distribution. For example, “cube=80” means 

generating a file which includes around 512000 (80×80×80) e-voxels. All the 

information of the electron density is stored in a cube file. 

Some unrealistic values of the electron charges may arise close to the nuclei. 

Since this is mainly brought about by the inner core electrons, the valence electron 

density is used instead of the full electron density to alleviate the problem. 

(2). Boundary of electron density 

The electron cloud diffuses in the whole space. In a cube file, the number of 

e-voxels is usually from several hundred thousands to a few millions. In order to 

keep the scope of the calculation within reasonable bounds, Gavezzotti invokes a 

minimum acceptable magnitude for the charge of each e-voxel. We choose instead 

to assign an outer boundary to the molecule, defined as an isodensity contour of 

)(rrρ , designated minρ . All e-voxels beyond the boundary are ignored (exceptions 

are discussed below). Many near-zero-density e-voxels are removed in this step. 

             (3). Condensation 

In step 2, many e-voxels are screened out. However, the number of voxels is 

still too high for calculation of the electron-electron repulsion energy. The original 

ones are combined and new cubic “super e-voxels” are thus formed. Each of them 

consists of n3 old e-voxels. This procedure is called condensation and n is the 
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condensation level. The charge of a super e-voxel, Qi, is taken to be located at its 

center ir
r , and to equal the sum of  the charges of its constituents: ∑=

j
i,ji qQ . It 

might seem that using a larger step size in the generation of the electron density 

(step 1) could avoid the condensation step and simplify the calculation. 

Nevertheless, it may cause errors because of an inaccurate electron count [12]. 

The original number of e-voxels may not be an integer multiple of that of 

the new ones, which causes a small asymmetry in the condensed density in 

Gavezzotti’s approach [12].  Our method is very simple and effective: If a super e-

voxel has its center within the  minρ  boundary, but some of its constituents are 

beyond minρ , the are nevertheless included, even if they are screened out in step 2. 

The asymmetry can thus be eliminated.  

            (4). Renormalization 

In previous steps, a small part of the electron count is lost. To keep charge 

neutrality, the total valence charge must be renormalized to fit the nuclear charge in 

the molecule. Although this procedure may increase some inner electron density, 

the error is negligible. 

            (5). Coordinate transformation 

Since the coordinates of atoms in the isolated molecules are normally 

different from those in the complex, the former must be transformed into the latter. 

The procedure involves a series of appropriate translations and rotations of 

coordinate axes. The parameters of translation and rotation can be determined by 

comparing the coordinates of each atom in the isolated molecules and in the 
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complex. Then the coordinates of each e-voxel are transformed in terms of the 

parameters.  

(6). Electrostatic energy calculation 

In terms of the super e-voxels, the electrostatic interaction energy between 

two systems, A and B, as expressed by Eq. (3.2), becomes, 
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                                                (3.7) 

Sometimes the distances || ji rr rr
−  in Eq. (3.7) can be very small, leading to 

unrealistic interaction energies. In order to avoid the errors caused by e-voxel 

overlap, a minimum distance (e.g. one-half of the grid stepsize) is chosen and all 

distances below the minimum are reset to a fixed value (eg. the minimum distance). 

Figure 3.1 gives the flowsheet of the calculation of the electrostatic 

interaction energy. A FORTRAN program was prepared on the basis of the 

flowsheet. It reads the electron density files of each isolated molecule and the 

coordinates of the complex and then calculates the electrostatic energy between the 

molecules. 

 

3.3.     The Calculation of the Electrostatic Interaction Energy for Water 

Dimer 

The properties of water are of the utmost importance in a host of chemical 

and biological processes. Intimately related to these properties are intermolecular 

interactions. Thus the water dimer, as one of the simplest intermolecular pairs, is  
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Figure 3.1 Flowsheet of the calculation of intermolecular electrostatic interaction 
energy. 
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widely studied. In recent years, a lot of experimental work [13-16] and theoretical 

studies [17-25] focused on this topic and the structure and intermolecular 

interactions have been studied thoroughly. 

The water dimer is an electrostatic-interaction-dominant complex. With the 

study of its intermolecular potential energy surface, ten stationary points  were 

found and the nonplanar open Cs structure has the lowest energy among them [26]. 

In this dissertation, we always use the Cs structure. 

The geometries of the dimer and the isolated molecules were optimized, 

respectively, at CCSD(T)/TZ2P(f,d)+dif and  MP2/6-311G(d,p) levels [26], the 

hydrogen bond H---O distance was 1.9485 Ǻ.  The density cube files were prepared 

at different levels by single point calculations. Some parameters, such as the value 

of the isodensity boundary, condensation level and number of e-voxels in a cube 

file, may affect the results of calculation. In order to assess the influence caused by 

the various parameters, we calculated the electrostatic interaction energies of the 

water dimer with two different basis sets for various values of (a) minρ  and (b) the 

number of e-voxels, using Hartree-Fock electron densities of the free molecules at 

their relative positions in the dimer.  

The results are listed in Tables 3.1 and 3.2. Table 3.1 shows that 

minρ ≤1.0×10-5 electrons/bohr3 is sufficient for Ees to achieve convergence when the 

number of e-voxels equals 1.0×106. In most cases, the value of minρ  is set from 10-5 

to 10-6 electrons/bohr3 for reliable results. As mentioned above, the number of e-

voxels in a cube file can significantly affect the results: A small size cube file may 

lead to big errors.  From Table 3.2, it is seen that 1.0×106 e-voxels is adequate for  



 
 
 

 

37

 

 

 

 

 

 

 
 
Figure 3.2    Optimized Cs structure of water dimer at CCSD(T)/TZ2P(f,d)+dif level. 

Intramonomer geometrical parameters: rH1O2 = 0.9581 Å; rO2H3 = 
0.9653 Å; rO4H5 = 0.9597 Å;  rO4H6  = 0.9597 Å; θH1O2H3 = 104.45°; 
θH5O4H6 = 104.58°. Intermonomer geometrical parameters: rH3O4 = 
1.9485Å; θO2H3O4 = 172.92°; θH5O4O2 = 110.50°; θH6O4O2 = 110.50°; 
τO4H3O2H1 = 180.00°; τH5O4O2H3 = 122.37°; τH6O4O2H3 = -122.37°. rXY, 
θXYZ and τWXYZ represent distance, angle and dihedral angle 
respectively. Data are from ref. 26. 

                  
 
 

ρmin, electrons/bohr3 Computational 

method 0.01 0.001 1.0×10-4 5.0×10-5 2.0×10-5 1.0×10-5 1.0×10-6 1.0×10-7 

HF/6-31+G(d,p) -8.12 -9.19 -9.56 -9.65 -9.81 -9.82 -9.83 -9.83 

HF/aug-cc-pVQZ -7.26 -7.40 -7.94 -8.02 -8.14 -8.17 -8.17 -8.17 

 
Table 3.1  Electrostatic interaction energies Ees of (H2O)2, in kcal/mole, using 

various molecular boundaries ρmin. Number of e-voxels is 1.00×106, 
stepsize is 0.0531 Å and condensation level is n=3. H2O geometry 
optimization was MP2/6-311G(d,p); relative positions in dimer 
determined at CCSD(T)/TZ2p(f,d)+dif level. 

 
reliable results when minρ =1.0×10-6 electrons/bohr3. For most molecular systems, 

“cube=100” (1.0×106 e-voxels) is a good choice. With regard to the number of 

super e-voxels, our experience has been that at least 2000 are needed for Ees to be 
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stable. For example, for 1.0×106 e-voxels, the condensation level n should be no 

larger than 7 (1.0×106/73=2915). 

 

Numer of e-voxels and condensation levela Computational 

method 2.98×104 

n=3 
2.27×105 

n=3 
5.12×105 

n=5 
1.00×106 

n=5 
1.73×106 
n=7 

HF/6-31+G(d,p) -10.91 -9.99 -9.74 -9.82 -9.78 

HF/aug-cc-pVQZ -9.29 -8.32 -8.09 -8.17 -8.16 

 

Table 3.2    Electrostatic interaction energies Ees of (H2O)2, in kcal/mole, for 
various number of e-voxels. Molecular boundary ρmin is 1.0×10-6 

electrons/bohr3. H2O geometry optimization was MP2/6-311G(d,p); 
relative positions in dimer determined at CCSD(T)/TZ2P(f,d)+dif 
level. 

 

aStepsizes range from 0.0441 Å for 1.73×106 e-voxels to 0.176 Å for 2.98×104.  
 
 

Tables 3.1 and 3.2 indicate that the basis set can have a significant effect. To 

further investigate the effect of basis sets and theoretical methods, we computed the 

electrostatic interaction energies at different levels, with the electron charges of the 

isolated water molecule and the geometry of the water dimer. As a comparison, 

point-charge methods were also employed in this calculation: Here Mulliken 

charges and CHelpG [27] (Charges from Electrostatic Potential using a Grid based 

method) were obtained. Table 3.3 shows the charges on the oxygen atom. 

From Table 3.3, it is found that the Mulliken charges fluctuate widely 

(between –0.256 and –0.866) with different theoretical methods and basis sets. 

Therefore, it is not reliable to determine the electrostatic interaction energy from 

Mulliken charges. CHELPG makes the charges much less variable (between –0.675 
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and –0.870). The precision of this method thus is better than that of Mulliken 

charges. 

 

Computational method Mulliken 
Charge 

Ees CHELPG 
Charge 

Ees 

HF/3-21G -0.7265 -4.89 -0.8703 -7.02 
HF/6-31G(d) -0.8655 -6.70 -0.8042 -6.00 
HF/6-31+G(d,p) -0.7312 -4.96 -0.8271 -6.34 
HF/6-311++G(d,p) -0.5104 -2.41 -0.8067 -6.03 
HF/cc-pVDZ -0.3068 -0.87 -0.7444 -5.13 
HF/cc-pVQZ -0.5271 -2.57 -0.7289 -4.92 
HF/aug-cc-pVQZ -0.5850 -3.17 -0.7198 -4.80 
B3LYP/cc-pVDZ -0.2556 -0.60 -0.6920 -4.44 
B3LYP/cc-pVQZ -0.4879 -2.21 -0.6911 -4.43 
B3LYP/aug-cc-pVQZ -0.5860 -3.18 -0.6751 -4.22 
CBS-Q -0.5113 -2.49 -0.7547 -5.28 

 
Table 3.3. Mulliken and CHELPG charges on the oxygen atom and electrostatic 

interaction energies Ees (in kcal/mole) of (H2O)2 at various 
computational levels. H2O geometry optimization was MP2/6-311 
G(d,p); relative positions in dimer determined at CCSD(T)/TZ2P 
(f,d)+dif levels. 

 

Table 3.3 also gives the electrostatic interaction energies of the water dimer 

by point-charge methods. Not surprisingly, poor results are obtained in the 

electrostatic energy calculation with Mulliken charges, from -0.60 to -6.70 

kcal/mole. This is in agreement with the conclusion that charges derived from 

Mulliken population analysis are not suitable for electrostatic energy calculation 

[28]. CHELPG results are much better: the energies are from -4.22 to –7.02 

kcal/mole. Compared to point-charge methods, the energies by our electron density 

method fluctuate less with basis sets and are much larger in magnitude (Table 3.4). 

The reason may be explained by the neglect of multipole interactions in the point-

charge approach. 
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In Table 3.4, what is particularly interesting is that for a given basis set, the 

Hartree-Fock, B3LYP and MP2 results differ by no more than 0.65 kcal/mole. 

Especially, when huge basis sets are used, the electrostatic energies are almost the 

same with different computational methods. For example, with the basis set aug-cc-

pVQZ, the electrostatic interaction energies are: Hartree-Fock (-8.17 kcal/mole), 

B3LYP (-8.04 kcal/mole) and MP2 (-8.08 kcal/mole). 

 

Computational method ρmin=1.0×10-5electrons/bohr3 ρmin=1.0×10-6electrons/bohr3 

HF/3-21G -8.74 -8.74 
HF/6-31G(d) -8.68 -8.68 
HF/6-31+G(d,p) -9.82 -9.83 
HF/6-311++G(d,p) -9.52 -9.52 
HF/cc-pVDZ -7.84 -7.84 
HF/cc-pVQZ -8.11 -8.13 
HF/aug-cc-pVQZ -8.17 -8.17 
B3LYP/cc-pVDZ -7.19 -7.19 
B3LYP/cc-pVQZ -7.87 -7.89 
B3LYP/aug-cc-pVQZ -8.04 -8.05 
MP2/6-311++G(d,p) -9.72 -9.72 
MP2/cc-pVDZ -7.51 -7.52 
MP2/aug-cc-pVQZ -8.08 -8.08 
CBS-Q -9.27 -9.27 

 
Table 3.4    Electrostatic interaction energies Ees of (H2O)2, in kcal/mole, at various 

computational levels. Number of e-voxels is 1.00×106, stepsize is 
0.0531 Å and condensation level is n=3. H2O geometry optimization 
was MP2/6-311G(d,p); relative positions in dimer determined at 
CCSD(T)/TZ2P(f,d)+dif level. 

 
Different basis sets give different electronic densities and then different 

electrostatic energies. Table 3.4 shows that the electrostatic energies vary from        

-7.19 to -9.82 kcal/mole ( minρ =1.0×10-5 electrons/bohr3). For a particular 

computational method, e.g. HF or MP2, the range of Ees values for various basis 

sets are less than 2 kcal/mole. Also it is found that the diffusion functions play an 
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important role in Ees calculation. Obviously, the use of diffusion functions increases 

the electron density in outer regions. For the water dimer, it gives larger 

electrostatic interaction energies. Furthermore, the size of basis sets may affect the 

results: More accurate electron densities are generated by larger basis sets and thus 

more accurate electrostatic energies can be obtained. 

 

3.4.      Evaluation of the Electron Density Method 

We have derived the expression for the electrostatic interaction energy from 

electron densities and made calculations for the water dimer. To verify the validity 

of this method, we have compared it to other theoretical methods.  

There are several different ways to analyze electrostatic interaction energies 

of various complexes. In the perturbation approach, electrostatic energy can be 

obtained directly [29-35]. In the supermolecular approach, the total interaction 

energy can be decomposed into different parts. One of the most frequently used 

methods is the Kitaura-Morokuma (KM) scheme [36-37]. Briefly, it is an energy 

decomposition scheme for intermolecular interactions within the Hartree-Fock 

approximation.  The interaction energy is divided into four components ⎯ 

electrostatic Ees, polarization Epol, exchange Eex and charge-transfer Eet. (The 

Hartree-Fock interaction energy does not include a dispersion term.) Each 

component is defined as follows: 

Electrostatic: the classical electrostatic interaction between occupied MO’s 

which does not cause any mixing of MO’s. 
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Polarization: the interaction which causes the mixing between the occupied 

and vacant MO’s within each molecule. 

Exchange: the interaction between occupied MO’s which causes electron 

exchange and delocalization between molecules. 

Charge Transfer: the interaction which causes intermolecular 

delocalization by mixing the occupied MO’s of one molecule with the 

vacant MO’s of the other and vice versa.  

The physical meaning of each interaction may be expressed by Fig. 3.3. 

Following the definition of electrostatic interaction in the KM scheme, the 

equation for the electrostatic interaction energy can be derived. Suppose there are 

two closed-shell molecules A and B in a complex. Both of them are in the ground 

state. The total Hamiltonian of the complex is 

ABBA HHHH ˆˆˆˆ ++=                                                                              (3.8) 

 

 

Figure 3.3   Interaction and mixing of MO’s via various components of molecules 
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                   (see ref. 36). 

 

where AĤ  and BĤ  are the Hamiltonians for the isolated molecules and ABĤ  is the 

interaction term between the two molecules. Since the electrostatic term is caused 

by unmixed MO’s, the wave function of the complex may be written as 

 00
1 BAψψψ =                                                                                                (3.9) 

0
Aψ  and 0

Bψ are the wave functions of the isolated molecules. The total energy of 

the complex considering only electrostatic interaction is given by 
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where 0
Aψ  and 0

Bψ are normalized. On the other hand, the total energy of the 

unperturbed state is the sum of the Hartree-Fock ground state energies of molecules 

A and B 
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where M and N are the number of electrons in A and B, respectively. It is easy to 

prove the equality of electrostatic interaction energy in the KM scheme and the Ees 

described by Eq. (3.2). Combining Eqs. (3.9), (3.12) and (3.13), we have 

 

                (3.14) 

 

 

Since 0
Aψ  and 0

Bψ  are normalized, the electrostatic energy Ees can be written as 

follows further 
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The electron densities of A and B can be defined as 
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Eq. (3.15) thus can be expressed by electron densities 
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                                                                                                                                          (3.18) 

 

 

Since electrons are indistinguishable, Eq. (3.18) has the same form as Eq. (3.2). 

Thus the equality of the electrostatic interaction energies in the KM scheme and the 

electron density method is demonstrated.     

 In our method, several approximations are used to improve the 

computational efficiency. However, they may also reduce the accuracy of the 

results. Fortunately, the electrostatic energy obtained from electron densities can be 

evaluated against that from the KM scheme. The electrostatic energies for six 

noncovalently-bound dimers were calculated. The dimer geometries (see Figure 3.4) 

were obtained at the HF/6-31+G(d,p) level and the monomer geometries were 

extracted from the optimized dimer structure; density cube files with the option 

“cube=100” generated at the HF/6-31+G(d,p) level were used. The electrostatic 

energies with KM decomposition scheme are from Kairys and Jensen’s work [38].  

Table 3.5 gives the electrostatic interaction energies from the electronic 

density calculations. As a comparison, the results from the KM scheme and 

distributed multipole calculations are also listed. Despite the use of several 

approximations, the results show great agreement between our method and the 

Kitaura-Morokuma values, which means the approximations are reasonable; the 

small discrepancies may be caused by slight differences in the optimized  
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Figure 3.4 Dimer geometries calculated at HF/6-31+G(d,p) level. Electron density 
obtained at HF/6-31+G(d,p). The values in parentheses correspond to 
the geometries in ref. 38. 
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(2.05 Ǻ) 

2.01 Ǻ 
(2.03 Ǻ) 

3.72 Ǻ 
(3.72 Ǻ)

2.30Ǻ 
(2.30Ǻ) 

3.30 Ǻ 
(3.36 Ǻ) 

3.47 Ǻ 
(3.43 Ǻ) 

2.63 Ǻ 
(2.62 Ǻ)

3.64 Ǻ 
(3.64 Ǻ) 

2.82 Ǻ 
(2.82 Ǻ) 

[Me(OH)]2 Ci    

  (Me2SO)2   Ci    (CH2Cl2)2  C1  

  (Me2CO)2   C2h     (MeCN)2  C2h  
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Table 3.5  Electrostatic interaction energies Ees, in kcal/mole, computed by different 
procedures. Geometry optimizations and other calculations were at 
HF/6-31+G(d,p) level. 

 

aNumber of e-voxels in each case is approximately 1.0×106, condensation level is 
n=3 or n=5 and stepsizes range from 0.0531 Å to 0.0964 Å. 
bRef. 38. 
 

geometries and the valence charge approximation. Different software packages 

were used in this work and ref. 38. Slightly different geometries were generated and 

then different electrostatic energies were obtained. As mentioned above, some 

unrealistic electron densities very close to the nuclei are obtained with Gaussian 98. 

The use of  the valence charge density can mitigate this problem. Nevertheless, it 

cannot eliminate the problem completely, even for those molecules containing 

atoms with many core electrons( e.g. S, Cl, etc.).  In Table 3.5, the Ees of the DMSO 

dimer has the largest deviation from the KM electrostatic energy (-1.0 kcal/mole 

when ρmin=10-5 electrons /bohr3;  -1.1 kcal/mole when ρmin=10-6 electrons/bohr3). 

This may indicate that the electron density near the S atom may not be evaluated 

accurately with Gaussian 98.  

Eq. (8).a Kitaura-
Morukumab 

 

Distributed 
multipole 
methodb 

System 

 ρmin =1.0×10-5  

electrons/bohr3 
ρmin =1.0×10-6 

electrons/bohr3 
  

(H2O)2 -8.13 -8.14 -8.21 -7.12 
(CH3OH)2 -8.47 -8.49 -8.12 -6.88 

(CH2Cl2)2 -1.67 -1.66 -1.73 -1.47 

(CH3CN)2 -5.12 -5.26 -5.12 -4.54 

(CH3COCH3)2 -3.38 -3.46 -3.33 -2.65 

(CH3SOCH3)2 -11.9 -12.0 -10.88 -8.41 
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Table 3.5 also clealy shows that the electron density method is a better 

choice than distributed multipole calculations. The errors of the multipole method 

range from 11.3% for the acetonitrile dimer to 22.7% for the DMSO dimer, which 

is much larger than those of electron density calculations. The multipole expansion 

is not valid inside a charge distribution and may cause errors for interaction energy 

calculations with overlapping charge distributions [38]. For correcting the errors, a 

charge penetration term must be added.  

 

3.5. Electrostatic Interaction Energy Study of Stacked Uracil Dimer 
 

Knowledge of DNA and RNA structures is a foundation stone of modern 

life science. The double helix structure of DNA has been investigated extensively 

for its great value in understanding genetics and molecular biology. However, the 

intra- and intermolecular energies which may affect the structure of DNA are still 

not known quantitatively. The difficulty consists in the complexity of the huge 

molecular systems. In order to simplify this problem, the properties of the base 

pairs are studied widely. The structures and interaction energies of stacked DNA 

and RNA base pairs have been evaluated by experimental [39, 40] and theoretical 

methods [41, 42]. 

The force-field method shows that the face-to-face and face-to-back 

structures are minima for stacked uracil dimers [43].  Furthermore, the accurate 

structures and binding energies of these two stacked uracil dimers by ab initio 

calculation at MP2 and CCSD(T) levels has been reported recently [44].  (See 

Figure 3.5).  



 
 
 

 

49

The molecular electrostatic potential was examined for DNA base pairs. It is 

found that the electrostatic interaction energies agree reasonably well with the self-

consistent-field (SCF) values [45]. Additionally, it is possible to identify the 

binding energy with the SCF energy for H-bonded complexes, because the BSSE 

and dispersion energy may compensate for each other [28].  Although this 

approximation is rough, it is valid in most cases.  In general, the electrostatic energy 

can reflect the stabilization energy for many electrostatic-dominant molecular 

systems. 

As the reliability of the electron density method has been demonstrated in 

section 3.4, it can be employed for electrostatic energy calculations. In order to find 

the contribution of the electrostatic interaction in stacked uracil dimers, we 

computed the intermolecular electrostatic energies between two stacked uracil 

molecules. The geometries of the dimers were taken from ref. 44, optimized at the 

MP2/TZ2P(f,d)++ level. The basis set TZ2P(f,d)++ consisted of the Huzinaga-

Dunning set of triple-ζ Gaussian functions with two sets of p-type and one set of d-

type functions on all hydrogen atoms and two sets of d-type and one set of f-type 

polarization functions on each first-row atom (Li-Ne). The individual structures 

were extracted from the dimers geometries and the electron densities were 

computed with the parameter “cube=100” using Dunning’s correlation-consistent 

basis sets. Since the uracil molecule is larger than the others that we have 

considered, our first step was to calculate Ees for a series of ρmin, to ascertain its 

convergence behavior. This was done for both dimers, at Hartree-Fock levels 

(results in Table 3.6). We concluded that minρ ≤1.0×10-6 electrons/bohr3 is now  
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Figure 3.5 Face-to-face and face-to-back uracil dimers. 

 

ρmin, electrons/bohr3 Computational level 

1.0×10-3 1.0×10-4 1.0×10-5 1.0×10-6 1.0×10-7 

HF/aug-cc-pVDZ -6.69 -10.06 -11.79 -12.07 -12.07 
HF/aug-cc-pVTZ -6.56 -10.30 -12.24 -12.42 -12.42 

Face-to-face 

dimer 

HF/aug-cc-pVQZ -6.34 -10.08 -12.10 -12.26 -12.26 

HF/aug-cc-pVDZ -4.46 -4.28 -4.95 -5.16 -5.16 
HF/aug-cc-pVTZ -4.19 -5.69 -5.01 -5.11 -5.11 

Face-to-back 

dimer 

HF/aug-cc-pVQZ -3.98 -4.02 -5.01 -5.10 -5.10 

 
Table 3.6   Electrostatic interaction energies Ees, in kcal/mole, for stacked uracil 

dimers with different ρmin. Uracil molecular structure taken from 
MP2/TZ2P(f,d)++ dimer geometries.a Number of e-voxel is 
1.01×106(115×107×82), condensation level is n=5 or 7, stepsize is 
0.0860Å. 

 
 aRef. 44. 
 
required, rather than minρ ≤1.0×10-5 electrons/bohr3, which suffices for the smaller 

molecules. We proceeded to determine Ees for each dimer from Hartree-Fock 
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electron densities obtained with six different basis set. The results are listed in 

Table 3.7. 

For each complex, the magnitude of Ees initially increases as the basis 

become larger, but then levels off. The electrostatic interaction is consistently 

stronger, by more than a factor of two, for the face-to-face dimer. This can be 

explained by considering their different structures:   in the face-to-face dimer, there 

are four positive-negative N-H---O charge pairs (O15-H6, O2-H14, O20-H7 and 

O4-H18), where as in the face-to-back, there are only two of that kind of pairs 

(O15-H6 and O4-H18), the other two being the weak C-H---O.   

   

Computational level Face-to-face dimer Face-to-back dimer 

HF/cc-pVDZ -8.91 -4.26 

HF/cc-pVTZ -10.46 -4.93 

HF/cc-pVQZ -12.30 -5.30 

HF/aug-cc-pVDZ -12.07 -5.16 

HF/aug-cc-pVTZ -12.42 -5.11 

HF/aug-cc-pVQZ -12.26 -5.10 
 

Table 3.7   Electrostatic interaction energies Ees, in kcal/mole, for stacked uracil 
dimers. Uracil molecular structure taken from MP2/TZ2P(f,d)++ 
dimer geometries.a Number of e-voxel is 1.01×106, condensation level 
is n=5, stepsize is 0.0860Å, and ρmin=1.0×10-6 electrons/bohr3.  

 

aRef. 44. 
 

For the face-to-face dimer, the electrostatic energies are -8.91 — -12.42 

kcal/mole computed with different basis sets. The values with augmented basis sets 

are much more consistent (from -12.07 to -12.42 kcal/mole) than those with non-
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augmented basis sets.  The electrostatic interaction energy is much smaller (-4.26—

-5.30 kcal/mole) for the face-to-back complex. Leininger et al computed the MP2 

stabilization energies, extrapolated  these to the infinite basis set limits and then 

included higher-order correlation effects, finally estimating ∆Estab to be -9.7 

kcal/mole for the face-to-face complex and -8.8 for the face-to-back. Since Table 

3.7 indicates that Ees for these systems is about -12.4 and -5.1 kcal/mole, 

respectively, it follows that any contributions of ∆Estab, besides Ees, are overall 

stabilizing in the face-to-back dimer but destabilizing in the face-to-face. It seems 

likely that the exchange-repulsion term is significantly larger in the latter instance; 

it is frequently viewed as being proportional to the overlap of the components’ 

charge distribution [6, 46, 47], and Leininger et al’s structures do show the two 

uracil rings to be tilted toward each other in the face-to-face dimer, on the side 

having adjacent N-H---O interactions, whereas they are approximately parallel in 

the face-to-back.  

Clearly, the face-to-face complex is a strongly electrostatic molecular 

system. However, it is not an electrostatic-dominant system because other 

interactions are also strong. In the face-to-back structure, the dispersion 

contribution even dominates the binding energy although the electrostatic energy 

plays an important role [39].  

 

3.6. Summary 
 

The equation for electrostatic interaction energies between two molecules 

has been derived from the electrostatic potential )(rV r , in terms of the electron 
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densities. With several approximations, procedures for electrostatic interaction 

energy calculations, using a numerical integration technique slightly different from 

Gavezzotti’s, have been developed. The equality of the electrostatic interaction 

energy by our electron density method and by Kitaura-Morokuma analysis was 

rigorously demonstrated. The validity of the approximations was tested by 

calculations for some inter-molecular systems. In this method, Ees are determined 

from the electron densities of complex and its components, and thus can be 

obtained with generally satisfactory accuracy and relatively inexpensively (in term 

of computational resources), as well as from experimental (diffraction) 

measurements.  
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CHAPTER 4.  EVALUATION OF POLARIZATION 
ENERGIES FROM ELECTRONIC DENSITIES 

 

4.1. Introduction 

As mentioned in Chapter 1, when a molecule is placed in a static electric 

field, induced electric multipoles can be generated due to distortion of the charge 

distribution. When only the lowest order is considered, a dipole moment µr  is 

induced:  

E
rr

⋅= αµ                                                                                                     (4.1) 

The dipole moment is proportional to the static field E
r

 and the direction of the 

vector is parallel to E
r

. α is a tensor, called the electronic polarizability.  For a non-

polar molecule, the polarization arises from the displacement of its negatively 

charged electron cloud relative to the positively charged nuclei under the influence 

of an external electric field. For a polar molecule, there is an additional contribution, 

called orientational polarization, which arises from the effect of an external field on 

the Boltzmann-average orientations of the rotating dipole [1].  The orientational 

polarizability αorient is given by 

αorient = µ2 / 3kT                                                                                          (4.2) 

where µ is the permanent dipole moment of the polar molecule and k is the 

Boltzmann constant. The polarization energy Epol generated by an induced dipole 

moment µr  in an external electric field E
r

can be expressed as 
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2

2
1µ EEdE

E

opol α−=⋅−= ∫
rr                                                                     (4.3) 

It is difficult to accurately evaluate the polarization energy between two molecules 

by Eq. (4.3). First, evaluating the polarizability of a molecule is not an easy task [2]. 

Although it may be obtained approximately as the sum of the polarizabilities of its 

covalent bonds, this is not true in many cases. For example, for those molecules 

which have delocalized or lone pair electrons, this approach causes significant 

errors. Second, the electric field emanating from other molecules is very 

complicated for most molecular systems. In general, the strength of the electric field 

changes at different positions of a molecule. One possible treatment is the use of an 

average electric field instead. Other methods include the use of “point 

polarizability” [3, 4]. In this approach, the polarizability at each point of a molecule 

is defined by some specific rules and thus the polarization energy at each point can 

be determined. The total polarization energy is taken as the sum of the polarization 

energies at each point. Several defects discussed in ref. 4 may affect the accuracy of 

this method. Finally, Eq. (4.3) does not contain the interaction of high order 

moments. Briefly, Eq. (4.3) is only a crude approximation for polarization energy 

calculations.  

In perturbation theory, the polarization energy for a pair of molecules A and 

B can be written as follows [5] 

)

(
4

1

01*0*0

10*0*0

0

BABA
ij ij

B
j

A
i

BA

BABA
ij ij

B
j

A
i

BApol

dd
R
ee

dd
R
ee

E

ττ

ττ
πε

ΨΨΨΨ

+ΨΨΨΨ=

∑∫

∑∫
                                    (4.4) 
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where 0
AΨ  and 0

BΨ  are the unperturbed ground state wave functions of molecules A 

and B, 1
AΨ  is the first-order change in the wave function of molecule A induced by 

the electric field of molecule B, and Rij is the distance between the charge A
ie  in A 

and the charge B
je  in B. If overlap effects are neglected, the polarization energy 

between two molecules is given by Eq. (4.4). The polarization energy can also be 

defined by other quantum chemical methods. For example, in the Kitaura-

Morokuma analysis, it is defined as the interaction which causes the mixing 

between occupied and vacant MOs within each molecule [5]. In all these 

approaches, the wave function change of a molecule caused by the external electric 

field must be known. 

The polarization energy can also be derived based on the concept of electron 

density. First, we will give the rigorous definition of the polarization energy 

between two molecules. 

 

4.2.      The Electron Density Expression of Polarization Energy 

Suppose there are two molecules, A and B, in a complex. Both of them are 

closed-shell molecules in the ground state. In the isolated state, their electron 

densities are 0
Aρ  and 0

Bρ , respectively. In the complex A⋅⋅⋅B, the electron densities 

may change because of the polarization effect. The electron densities of molecules 

A and B in the complex can be written as 

pol
AAA ρρρ ∆+= 01                                                                                    (4.5) 

pol
BBB ρρρ ∆+= 01                                                                                    (4.6) 
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where pol
Aρ∆  and pol

Bρ∆  are electron density changes caused by polarization. The 

interaction energy including electrostatic and polarization contributions between the 

two molecules is 

BA
BA

BBAA
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B AB
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A BA

BBA

A B BA
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rdrd
rr

rrrd
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rr
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1

1

ρρρ

ρ

                                   (4.7) 

E1 is the sum of electrostatic and polarization energy: 

poles EEE +=1                                                                                          (4.8) 

Combining Eqs. (4.5), (4.6) and (4.7), we have 
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                        (4.9) 

Subtracting the electrostatic term (see Eq. (3.2)) from Eq. (4.9), the polarization 

energy between molecules A and B is obtained 
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 Eq. (4.10) gives the exact form of the polarization energy between two molecules 

in term of the electron densities of the isolated components and the changes in these 
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due to polarization. Now the problem is how to put it into practical calculations. 

According to Eq. (4.10), for the polarization energy computation, 0
Aρ , 0

Bρ , pol
Aρ∆  

and pol
Bρ∆  must be known. As discussed in Chapter 3,  0

Aρ  and 0
Bρ  can be obtained 

by theoretical or experimental methods. The difficulty focuses on the measure of  

pol
Aρ∆  and pol

Bρ∆ . 

The total electron density of a complex can be known from quantum 

chemical calculations. However, the relationship between the total electron density 

ρ and the electron density change caused by polarization is indirect. ρ may be 

expressed as follows 

disp
B

ex
B

pol
BB

disp
A

ex
A

pol
AA

ρρρρ

ρρρρρ

∆+∆+∆++

∆+∆+∆+=
0

0

                                                          (4.11) 

where polρ∆ , exρ∆  and dispρ∆  are the electron density changes by polarization, 

exchange and dispersion effects, respectively. As the dispersion term does not exist 

in the Hartree-Fock method, dispρ∆  can be neglected within the HF approximation.  

Bader et al. suggested that the electron isodensity surface provided a useful 

theoretical definition of the size and shape of an isolated molecule [7]. They also 

proposed the 0.002 electrons/bohr3
 density contour as the boundary of molecules. In 

a supermolecular complex, the molecular electron clouds interpenetrate each other. 

However, it is still possible to obtain a prescription for molecular size in which 

mutual penetration is minimal if the boundary of the molecule is defined properly 

[8]. The exchange-repulsion energy is equal to zero when the electron densities of 

two molecules do not overlap each other. If an isodensity boundary is well defined, 
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the exchange effect may be neglected. Within the Hartree-Fock approximation, Eq. 

(4.11) may be written as 

pol
BB

pol
AAHF ρρρρρ ∆++∆+≈ 00                                                            (4.12) 

Eq. (4.12) gives the relationship between the HF electron density and electron 

density changes by polarization effects. However, it is impossible to resolve pol
Aρ∆  

and pol
Bρ∆  using just one equation. Additional approximations are necessary for 

pol
Aρ∆  and pol

Bρ∆ . 

The supermolecular complex A⋅⋅⋅B is divided into three spatial regions: one 

is associate only with A, another only with B, and the third with the overlap with A 

and B (Figure 4.1). Although the exchange-repulsion interaction arises from the 

overlap of the electron clouds, it can be well controlled (see the discussion of 

section 4.4). In the two nonoverlap regions, each of which contains no electronic 

charge from the other component. pol
Aρ∆  and pol

Bρ∆  thus can be defined 

0
, AHF

pol
nonoverlapA ρρρ −=∆                                                                    (4.13) 

0
, BHF

pol
nonoverlapB ρρρ −=∆                                                                    (4.14) 

The second approximation is about charge transfer effects. We assume that 

there is no charge transfer for each molecule in the complex. Accordingly, for each 

molecule, the number of electrons does not change from the isolated state to the 

bound state:  

∫ = AA Nrdr rr)(0ρ                                                                                  (4.15) 

∫ = AA Nrdr rr)(ρ                                                                                  (4.16) 
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Figure 4.1 Overlap and nonoverlap regions in a complex. 

 

where NA is the number of electrons of molecule A. According to the previous 

approximations, using Eq. (4.16) minus Eq. (4.15), we have 

0)( =∆∫ rdrpol
A

rrρ                                                                               (4.17) 

0)( =∆∫ rdrpol
B

rrρ                                                                               (4.18) 

 The third approximation gives the electron density change in the overlap 

region. Since the electron density for each molecule is composed of two parts, Eq. 

(4.17) can be rewritten  

 0)()( ,, =∆+∆ ∫∫ rdrrdr pol
nonoverlapA

pol
overlapA

rrrr ρρ                           (4.19)                    

For series of noncovalently-bound complexes, Bentley has made a detailed study of 

the density difference function )(rAB
rρ∆  [8], defined as 

 

A B

overlap region

non-overlap region 
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            )()()()( 00 rrrr BAAB
rrrr ρρρρ −−=∆                                         (4.20) 

 

He found that )(rAB
rρ∆ is very small and relatively slow-varying in the 

intermolecular region of significant overlap. We will assume that pol
Aρ∆  and pol

Bρ∆  

can be treated as being constant. Thus, from Eq. (4.19), pol
overlapA,ρ∆  and pol

overlapB ,ρ∆   

are given as 

overlap

pol
nonoverlapApol

overlapA V

rdr rr)(,
,

∫∆−=∆
ρ

ρ                                                   (4.20) 

 

          
overlap

pol
nonoverlapBpol

overlapB V

rdr rr)(,
,

∫ ∆−=∆
ρ

ρ                                                  (4.21) 

 

where Voverlap is the volume of overlap region. Eqs. (4.12), (4.13), (4.20) and (4.21) 

provide an approximate form of  pol
Aρ∆  and pol

Bρ∆ .  Knowing these, as well as 0
Aρ  

and 0
Bρ , it is possible to calculate Epol from Eq. (4.10). 

 

4.3. Procedure for Polarization Energy Calculation 

With several approximations, the polarization energy can be obtained from 

Eq. (4.10). The calculation is programmed with a numerical integration method, 

which is similar to the electrostatic energy computation described in Chapter 3. The 

procedure of polarization energy calculation is performed in the following steps: 
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(1). Generation of electron density files 

The files containing the information about electron densities can be 

generated by the Gaussian software package. The basic unit in the files is called an 

e-voxel, the number and size of which can be adjusted with different parameters.  

Only the valence charge density is included in order to mitigate the unrealistic 

electron density around the nuclei. For the polarization energy calculation, electron 

density files of the complex and the monomers are needed.  

The size of the e-voxels used for the complex is the same as that for the 

monomers, for convenience. The counterpoise method is employed for the 

monomers in order to eliminate the BSSE [9]. 

 (2). Boundary of electron density 

Choosing a proper isodensity boundary is very important for the polarization 

energy calculation. The boundaries of the isolated components are defined by 

assigning a value for ρmin. The overlap region is determined by identifying those e-

voxels that are simultaneously within the boundaries of both components, and the 

remaining e-voxels within these boundaries constitute the two nonoverlap regions. 

In Chapter 3, we discussed the effect of the isodensity boundary. It was found that a 

smaller ρmin led to a more accurate value of the electrostatic energy. The problem is 

more complicated for the polarization energy calculation: with a small ρmin, the 

molecular volume increases and then the overlap region enlarges. This may cause a 

significant exchange-repulsion effect between two molecules and lead to big errors 

in the evaluation of ∆ρpol. On the other hand, the use of a big ρmin may lose some 
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outer e-voxel and lead to inaccuracy of ρ0. Therefore, the value of ρmin should be 

selected carefully and it can be neither too small nor too big.  

            (3). Condensation of e-voxels 

The number of e-voxels is too high for electron-electron repulsion 

interaction evaluation and must be reduced to a reasonable level. The method used 

here is the same as that described in Chapter 3. For convenience of the polρ∆  

calculation, the condensation level of the complex must be equal to that of the 

monomers. Normally, there are only several thousand super e-voxels left after 

condensation. 

            (4). Charge renormalization 

A small part of the electron count is lost in the previous steps. In order to 

maintain the balance between positive and negative charges, the total valence 

charge is renormalized. Before renormalization, the electron densities of the 

complex and monomers can not be used for ∆ρpol calculation directly, because their 

normalization coefficients are different. 

(5). Coordinate transformation 

The electron densities for the complex and the monomers may be based on 

different coordinate systems. However, a corresponding relationship must be built 

between each of the e-voxels in the complex and those in the monomers for the 

polarization energy calculation. Therefore, the coordinate system of each monomer 

must be transformed to that of the complex. The process involves a series of 

translations and rotations of coordinate axes. 

(6). Calculation of ∆ρpol 
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Before the calculation of ∆ρpol, the overlap and nonoverlap regions are 

measured. Each e-voxel is assigned according to its position in the coordinate 

system. Then ∆ρpol can be obtained with Eqs. (4.13), (4.14), (4.20) and (4.21).  

(7). Polarization energy calculation 

With numerical integration, the polarization energy can be calculated by Eq. 

(4.10). ρ0, the distances between the two points and ∆ρpol are given in steps 4, 5 and 

6 respectively. In the calculation, the near zero voxel-voxel or voxel-atom distances 

are reset to avoid unrealistic energies. The flow sheet of the polarization energy 

calculation is given in Figure 4.2.  

 

4.4. Polarization Energy Calculation For Water Dimer 

The polarization interaction is seldom dominant in intermolecular 

interaction energies and thus can often be ignored in comparison with the 

electrostatic and other contributions [10]. However, the polarization interaction still 

plays an important role in some molecular systems [11].  

The polarization energy, Epol, for the water dimer has been studied by Chen 

and Gordon with the Kitaura-Morokuma technique and also an alternative energy 

partition scheme, the reduced variational space self-consistent-field (RVS SCF) 

method of Stevens and Fink [12,14]. Using the procedure discribed in sections 4.2 

and 4.3,  we computed the Epol  for the water dimer and compared it with Chen and 

Gorden’s results. The water dimer structures were optimized at several different 

levels, consistent with Chen and Gordon; the individual H2O geometries  were 

taken from the dimers. All the charge densities were generated by Gaussian 98. 
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Figure 4.2 Flowsheet of  polarization energy calculation. 
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The counterpoise method was used in the monomer calculations for BSSE corection. 

The results are in Table 4.1. 

 
 

Table 4.1  Polarization interaction energies Epol of (H2O)2, in kcal/mole, computed 
by different procedures. Number of e-voxels is 1.00×106, stepsize is 
0.065Å, and condensation level is n=3. 

 
aValues of ρmin are in electrons/bohr3. 
bRef. 12. 
 

In Table 4.1, the number of e-voxels is about 1.00×10-6 and the 

condensation level is set to 3. The results show that Epol is not highly sensitive to 

basis set. In section 4.3, we discussed the importance of ρmin, which can be neither 

too big nor too small for reasonable results. We tested some values of ρmin and 

found that the approximations are valid compared to other results [12] if ρmin is 

between 10-2 to 10-4 electrons/bohr3. Since the overlap region is only 0.1% of the 

total volume for each monomer when ρmin=10-2 electrons/bohr3, the exchange-

repulsion can be neglected. Surprisingly, the overlap part increases to 23% of the 

Eq. (4.10)aComputational method 

ρmin=0.01 ρmin=0.001 ρmin=0.0001 

Morokuma- 

Kitaurab 

RVS 

SCFb 

HF/6-31G(d,p)//HF/6-31G(d,p) -0.94 -1.36 -1.09 -0.47 -0.60 

HF/cc-pVDZ// HF/6-31G(d,p) -0.53 -1.19 -0.83 -0.44 -0.56 

HF/aug-cc-pVDZ//HF/6-31G(d,p) -0.86 -1.19 -1.32 -1.12 -0.77 

HF/6-31++G(d,p)//HF/6-31G(d,p) -0.77 -1.07 -1.19 -0.84 -0.65 

HF/6-31++G(2d,p)//HF/6-31G(d,p) -0.82 -1.17 -1.32 -0.91 -0.71 

HF/cc-pVDZ//HF/cc-pVDZ -0.57 -1.28 -0.91 -0.45 -0.58 

HF/aug-cc-pVDZ//HF/cc-pVDZ -0.86 -1.28 -1.30 -1.09 -0.78 

HF/aug-cc-pVDZ//HF/aug-cc-pVDZ -0.69 -1.11 -1.35 -0.89 -0.67 

HF/6-31++G(d,p)//HF/6-31++G(d,p) -0.73 -1.11 -1.23 -0.77 -0.66 

HF/6-31++G(2d,p)//HF/6-31++G(2d,p) -0.71 -1.09 -1.33 -0.78 -0.66 
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volume when ρmin=10-4 electrons/bohr3 and the results are still satisfactory. 

However, when ρmin=10-5 electrons/bohr3, the approximations are not effective and 

give wrong polarization energies. This demonstrated that our model is applicable 

for the slight or moderate overlap of electron clouds. 

Our Epol for ρmin=0.01 electrons/bohr3 are in very good agreement with the 

RVS SCF and, for the most part, with the Kitaura-Morokuma as well; the average 

absolute differences are 0.09 and 0.16 kcal/mole, respectively. For the other ρmin, 

they are 0.52 and 0.41 kcal/mole. These clearly indicate that the volume of the 

overlap region is the most important factor for the calculation. It should be noted 

that  Bentley’s analysis of the electron densities of noncovalent complexes shows 

that  ρ=0.01 electrons/bohr3 is an appropriate boundary surface for a constituent of a 

hydrogen-bonded system, as is (H2O)2. For weaker interactions, he suggested ρ 

≈0.01 electrons/bohr3. Thus, the data in Table 4.1 suggest that, for (H2O)2, the 

magnitude of Epol is overestimated at ρ=0.001 and 0.0001 electrons/bohr3.  

 

4.5. Summary 

The exact expression for polarization interaction energies between two 

molecules is derived in terms of the electron densities. As polρ∆  cannot be obtained 

directly, it is necessary to make some approximations. Procedures for polarization 

energy calculations are proposed and a program is formulated, using a numerical 

integration technique. The validity of the approximations is supported by 

calculations for the water dimer. The result is quite reliable in comparison with 
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other theoretical results. This method provides a new way for evaluation of 

polarization energies. 
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CHAPTER 5. DETERMINATION OF NONCOVALENT 
INTERACTION ENERGIES FROM ELECTRONIC 

DENSITIES  
  

5.1.      Introduction 

Noncovalent interactions are of key importance in many areas, including 

salvation [1, 2], liquid and solid properties [3, 4], DNA and Protein structure [5, 6], 

biological molecular recognition processes [7, 8], supermolecular chemistry [9], 

physical adsorption [8, 10], etc. Hydrogen bonding is a particularly prominent 

example of a noncovalent interaction [11, 12].   

The stabilization energy ∆Estab of a noncovalent complex AB can be defined 

as the difference between the energies of the complex and the isolated molecules A 

and B: 

)( BAABstab EEEE +−=∆                                                                     (5.1) 

          

Since ∆Estab is usually several orders of magnitude smaller than EAB and 

(EA+EB), any errors in the values of these latter energies are considerably magnified 

in ∆Estab. Accordingly, EAB, EA and EB have to be computed at a high level of 

accuracy. This is often not feasible for those relatively large systems. Another 

problem caused by this approach is called BSSE, which has been discussed in 

Chapters 1 and 2.  
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Instead of calculating  ∆Estab from Eq. (5.1) (called the supermolecular 

method), a popular alternative which does not require taking a difference between 

computed quantities is to use perturbation theory to directly obtain the interaction 

energy Eint. Unlike ∆Estab, Eint normally refers to interactions between rigid systems, 

A and B having the same geometries in the complex as in their isolated states; in 

contrast, ∆Estab corresponds to AB, A and B having their equilibrium structures [13-

16]. The difference between ∆Estab and  Eint will be discussed in section 5.3. 

Generally, Eint is composed of 4 components, which are usually designated as 

electrostatic, polarization, exchange-repulsion and dispersion. Various techniques 

have been used to evaluate these terms [13-18].  

 In terms of the concept of electron density, some methods have been 

developed for calculating noncovalent interaction energies. In Chapters 3 and 4, we 

computed electrostatic and polarization energies from electronic densities. 

Exchange-repulsion energy can be evaluated by the overlap model, which assumes 

that the exchange energy between two closed shell molecules A and B is 

proportional to the overlap of the isolated molecule electron densities [19, 20],  

∫= drrrKE BAex )()( 00 ρρ                                                                         (5.2) 

where K is an adjustable parameter and 0
Aρ  and 0

Bρ  are the electron densities of the 

isolated molecules A and B. The validity of this model has been tested explicitly for 

some intermolecular systems, such as pairs of rare gas atoms [21], rare gas atoms 

with halide ions [22], and (F2)2, (N2)2, (Cl2)2 [23], etc. Compared to ab initio 

calculations, this method is less computationally demanding. However, the overlap 

model is only a semiempirical method. The parameter K is normally obtained by 
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fitting, which may affect the accuracy of calculations. The dispersion energy may 

be also expressed in term of electron densities. Recently, Gavezzotti developed a 

method called semi-classical density sums (SCDS) for the calculation of 

intermolecular interaction energies [24]. In his approach, the polarizability at each 

e-voxel and the ionization energy are defined by semi-empirical methods. 

Intermolecular energies are calculated as a sum of voxel-voxel terms in a London-

type expression.  

The Hohenberg-Kohn theorem states that the electron density determines all 

the ground state properties of a molecular system. Therefore, the interaction energy 

may be calculated from the electron densities of a supermolecular system and its 

components. In this work, we develop an alternative method for the calculation of 

intermolecular interaction energy, which only requires a knowledge of the 

electronic density of the complex. 

In 1998, Bentley explored the behavior of 50 interaction pairs and found 

that the total electron density was well represented by the sum of the density 

functions of the isolated molecules in the reaction region [25]. The results suggest 

that the approximate electron densities of the subsystems may be obtained from the 

electron density of the supersystem. Hence the calculation of the electronic density 

of the isolated molecules may be omitted. 

Our calculation is based on the Hellmann-Feynman electrostatic theorem, 

which describes the nature of the forces acting on nuclei in molecular systems. It 

states that the effective force acting on a nucleus in a molecular system can be 

calculated by simple electrostatics as the sum of the Coulombic forces exerted by 
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other nuclei and by the electron density found by solving the Schrödinger equation 

[26]. In the spirit of the electrostatic theorem, we propose a new method for 

interaction energy calculations. 

 

5.2.      The Hellmann-Feynman Electrostatic Theorem  

The generalized Hellmann-Feynman theorem [27, 28] has the following 

form, 

τψ
λ

ψ
λ

dHE
∂
∂

=
∂
∂

∫
ˆ

*                                                                                    (5.3) 

where ψ  is an exact eigenfunction of a Hamiltonian Ĥ , E is the corresponding 

eigen energy and λ is any parameter that appear in the Hamiltonian.  

Now we apply the Hellmann-Feynman theorem to a molecular system.  

Suppose there are N nuclei and m electrons in the system. For any nucleus α, its 

Cartesian coordinates can be written as (Xα , Yα, Zα ), (α=1, …N).  First, in a 

Cartesian coordinate system, considering the force α
Xf , exerted on nucleus α in the 

X direction. According to Eq. (5.3), we have 

τψψ α
α d

X
H

X
Ef aX ∂

∂
−=

∂
∂

−= ∫
ˆ

*                                                                           (5.4) 

The Hamiltonian consists of the kinetic energy operator T̂ and the potential energy 

operator V̂ , VTH ˆˆ +=
)

. Since T̂  is independent on the nuclear Cartesian 

coordinates, Eq. (5.4) is written as 

τψψ α
α d

X
Vf X ∂
∂

−= ∫
ˆ

*                                                                                 (5.5) 



 
 
 

 

77

V̂  is made up of three terms: the interactions of the nuclei with each other NNV̂ , of 

the nuclei and electrons NeV̂ , and of  the electrons eeV̂  

eeNeNN VVVV ˆˆˆˆ ++=                                                                                 (5.6) 

NNV̂ , NeV̂ and eeV̂  can be expressed as follows 

∑∑
> −+−+−

=
β βα

βαβαβα
βα

2/1222 ])()()[(
ˆ

ZZYYXX
ZZ

VNN                       (5.7) 

∑∑ −+−+−
−=

α
ααα

α

i
iiiNe zZyYxX

eZ
V 2/1222 ])()()[(
ˆ                           (5.8) 

∑∑
> −+−+−

−=
i ij

ijijijee zzyyxx
eV 2/1222

2

])()()[(
ˆ                               (5.9) 

where xi, yi and  zi are the coordinates of the electrons. Following Eqs. (5.7), (5.8) 

and (5.9), we have 

∑
≠

−
=

∂
∂

αβ αβ

αβ
βα

α 3

)(ˆ

R
XXZZ

X
VNN                                                                      (5.10) 

∑ −
=

∂
∂

i i

i
Ne

R
xXeZ

X
V

3

)(ˆ

α

α
α

α                                                                (5.11) 

0
ˆ

=
∂
∂

αX
Vee                                                                                                   (5.12) 

where Rαβ is the distance between two nuclei α and β, and Rαi is the distance from 

nucleus α to electron i. 

2/1222 ])()()[( βαβαβα
αβ ZZYYXXR −+−+−=                                (5.13) 

 2/1222 ])()()[( iii
i zZyYxXR −+−+−= ααα

α                                     (5.14) 

If ψ is normalized, Eq. (5.5) becomes 
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∫∑ ∫∑

∫∑∑
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−
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−=

−
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≠

≠
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i
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ddv
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α
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)(

*'
33

3
*

3

                  (5.15) 

 ∫ dvψψ *' means the integral over the coordinates of all electrons except those of 

electron i. This integral is equal to ρ/m (m is the number of electrons in the system). 

Thus Eq. (5.15) can be further written as 

τρ
α

α

α
αβ αβ

αβ
βαα d

R
xXeZ

mR
XXZZ

f
i

im

i
X 3

1
3

1)( −
−

−
−= ∫∑∑

=≠

                              (5.16)                    

As the integrals in Eq. (5.16) have the same value no matter the value of i is, the 

equation is simplified to the following form: 

τρ
α

α

α
αβ αβ

αβ
βαα d

R
XxeZ

R
XXZZ

f
i

i

X 33

)( −
+

−
−= ∫∑

≠

                                      (5.17) 

The force on nucleus α is the gradient of the potential energy at point  α: 

kfjfifEF ZYX

vrrrr
ααα

α ++=∇=                                                                  (5.18) 

Therefore, the effective force exerted on nucleus α  is written 

             τρ
α

α
α

αβ αβ

αββα
α d

R
R

eZ
R

RZZ
F

i

i
33

rr
r

∫∑ +−=
≠

                                                         (5.19) 

Eq. (5.19) is called the electrostatic theorem. As described above, the force on a 

nucleus is just the classical interaction exerted on the nucleus by the other nuclei 

and by the electron density distribution of all of the electrons. It is easy to explain 

the formation of covalent bonds by the electrostatic theorem. The attractive forces 

between two nuclei originate from the second term in Eq. (5.19): The electron 
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density distribution between the two nuclei gives the strong attraction between two 

atoms and leads to a covalent bond.  

The electrostatic theorem can also be used to explain intermolecular 

interactions. Feynman interpreted the dispersion force [28]. He said, “The 

Schrödinger perturbation theory for two interacting atoms at a separation R, large 

compared to the radii of the atoms, leads to the result that the charge distribution of 

each is distorted from central symmetry, a dipole moment of order 1/R7 being 

induced in each atom. The negative charge distribution of each atom has its center 

of gravity moved slightly toward the other. It is not the interaction of these dipoles 

which leads to van der Waals’ force, but rather the attraction of each nucleus for the 

distorted charge distribution of its own electrons that gives the attractive 1/R7 

force.”  

The electrostatic theorem provides the classical interpretation that 

intermolecular interactions come from the electrostatic forces between the nuclei 

and the electrons whose distribution is determined by the electron density of the 

system. Hirschfelder and Eliason calculated the long-range interaction of two 

ground state hydrogen atoms with the use of the Hellmann-Feynman electrostatic 

theorem [29]. They found that the exact C6 coefficient was obtained with highly 

accurate approximate wavefunctions. This confirms Feynman’s suggestion that the 

force on the nucleus is due to its attraction to the centroid of its “own” electron 

cloud. 
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5.3.      A New Model for Calculation of Noncovalent Interaction Energy  

In this section, we shall use Eq. (5.19) to express the stabilization energy 

∆Estab.  Assume that a complex AB is composed of two molecules, A and B. Both 

of them are in the ground state. The intermolecular interaction energy is equal to the 

work in moving A from infinite distance from B to the separation in the complex. 

The molecule A can be divided into two parts, nuclei and electrons. According to 

the electrostatic theorem, the work done by each nucleus α in A, Wα is given as 

  
∫ ∫∫ ∑
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33 ),(
            (5.20) 

where RαB is the distance from nucleus α to the nucleus B in molecule B, rαB the 

distance from nucleus α to rB where the electron density of  molecule B is ρB. 

However, the calculation of the second integral is difficult, in that the electron 

density ρB changes with intermolecular distance. Hence we divided the second 

integral of Eq. (5.20) into two terms: In the first term, the electron density is always 

equal to electron density of molecule B in the complex; the second one is a 

correction term. Hence Eq. (5.20) can be written as 
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and the work done by all nuclei in molecule A is 

             ∑ ∑∑ ∫∑∑ ∆+
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Now we consider the work done by the electrons in molecule A. For an 

electron i, the effective force on it due to the nuclei and electrons of molecule B is, 

B
Bi

Bi
BBiB

B Bi

BiB
i rd

r
r

rre
R

ReZ
F r

r
rr

r
r

3
2

3 ),(∫∑ −= ρ                                                       (5.23) 

where RBi is the distance between nucleus B to electron i, and rBi is the distance 

between electron i and a point B with the electron density ρB. The work made by 

electron i can be written as 
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cor
BiE∆  is a correction term. In Eq. (5.24), the electron i is treated as a stationary 

point. According to quantum mechanics, an electron can appear in any position and 

the probability is determined by the electron density. Therefore, Eq. (5.24) may be 

expresszd as 
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where ρi is the electron density of i. Since ρi is also a function of intermolecular 

distance, we use the same treatment described above. Thus two correction terms are 

added 
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The work by all of the electrons in molecule A can be given as 
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The stabilization energy is the sum of WN and We. Combining Eq. (5.22) and Eq. 

(5.27), we obtain the expression of stabilization energy between two molecules: 
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Eq. (5.28) indicates that the stabilization energy ∆Estab can be expressed as the sum 

of the classical electrostatic energy and the correction energy corE∆ . As the 

electronic densities depend on intermolecular distance, corE∆  should be included to 

describe the effect. If we neglect the dependence and use Aρ  and Bρ  at the 

equilibrium state in the complex AB, the energy that we obtain is not rigorously  

∆Estab but rather represents the intermolecular interaction of A and B as they are in 

the complex, which is designated *
intE . Eq. (5.28) accordingly becomes, 
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Eq. (5.29) expressed the interaction energy solely in term of classical electrostatics, 

involving the charge distributions of the components as they are in the complex. 

Conceptually, *
intE , intE  and stabE∆  differ from one another: stabE∆  refers to AB, A 
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and B in their equilibrium states, *
intE  corresponds to A and B having geometries 

and electronic densities as in the complex, and intE  uses ground-state geometries 

for the monomers A and B but attempts to approximate their electronic densities in 

AB. The effects of these distinctions are usually quite small [30]. For example, The 

energies required to distort both components in (H2O)2 and (HF)2 from isolated 

equilibrium to their states in the dimers were found to be 0.09 kcal/mole [31] and 

0.03 kcal/mole [32], respectively. To those larger systems such as face-to-face 

dimer of uracil [33], we found the energy to be 0.79 kcal/mole at MP2/6-31+G* 

level. The effect may be significantly greater for ion-molecule interactions, e.g. F-

(H2O) [31].   

The relationship between stabE∆  and *
intE , and  the physical meaning of the 

correction energy corE∆  is denoted in Figure 5.1. We design a two-step path to 

describe the binding process. In the first step, the geometries and electronic 

densities of the isolated molecules change to those in binding state; In the second 

step,  A and B form the complex A···B. Therefore, the interaction energy is given as 

***
int BAstab EEEE ∆+∆+=∆                                                                         (5.30) 

Comparing (5.30) and (5.28), we find  

**
BA

cor EEE ∆+∆=∆                                                                                   (5.31) 

It gives the binding energy between two separated molecules with the same 

geometries and electronic densities as those in the complex. *
AE∆  and *

BE∆ , 

designated relaxation energies, are the differences in energy between the 

unperturbed isolated state and the hypothesized state with the geometry and 
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electronic density in the complex. Since the geometries and electronic densities 

vary little in this process, ∆Ecor is usually much smaller than *
intE  and can be 

ignored in many cases.  

 

  

Figure 5.1 Relationship between stabE∆  and *
intE , and physical meaning of the 

correction energy. 
 

 

Since Eq. (5.29) is to be applied by computing the electronic density of the 

complex and then partitioning it into those of the monomers, a key problem now is 

how to carry out the latter step. The approach and integration technique shall be 

described in the next section. 

 

5.4.      Approximate Approach for Calculation of Interaction Energy 

According to Eq. (5.29), *
intE can be computed if ρA and ρB are known. 

However, only the total electron density of the system is available. It is impossible 

to resolve ρA and ρB strictly by one equation. Fortunately, the binding between the 

molecules in a complex is normally very weak, which means their electron clouds 

A(ρA,0) B(ρB,0)+ A···B(ρA+ ρB)
∆Estab

A*(ρA) 

 ∆EA
* 

+ B*(ρB)

∆EB
*

*
intE
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only overlap and penetrate each other slightly. Thus the total electron density ρ may 

be decomposed to ρA and ρB directly. First, a molecular boundary surface for the 

complex should be established in term of an isodensity contour minρ . A lot of work 

has been done in this field: Bader et al. suggested a value of 0.001 electrons/bohr3 

as best describing molecular dimensions in the gas phase [34]. Wiberg et al. used a 

value of 0.0004 electrons/bohr3 for reproducing liquid molar volumes [35]. Bentley 

found that the 0.002 electrons/bohr3 can be used to define the size and shape of a 

molecule for weakly interacting systems in condensed states [25]. Here we choose 

0.001-0.0001 electrons/bohr3 as the boundary of the molecular electron clouds. 

 

 

Figure 5.2 Decomposition of the electron density of a complex. 

 

 The size and shape of the electron clouds for the complex are defined when 

an isocontour is given. For obtaining the approximate electronic densities ρA and ρB, 

we assume that the electronic density at any point can only be owned by one 

molecule. Thus ρA and ρB can be determined by assigning each point in the complex. 

A simple method is implemented for the assignment:  For each point p in the 

complex, we evaluate the ratios of its distance from each nucleus divided by van 

A B A B 

ρA ρB ρ 
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der Waals radius of that atom (RpN/RNvDW, where RpN is the distance between p and 

the nucleus of atom N, and R NvDW is the vDW radius of atom N.). The point and the 

corresponding electronic density are assigned to the atom with the lowest value of 

RpN/RNvDW. In terms of the position of the atom, the assignment of each point can 

be determined. 

The procedure for *
intE calculation is similar to that described in Chapters 3 

and 4. The integrations are carried out numerically, which consists of several steps: 

(1). For each molecule in the complex, the boundary of the electron cloud is defined 

in term of an isodensity contour. (2). Each point in the complex is assigned to a 

molecule in the complex and the electronic density of each molecule is thus 

obtained. (3). The electronic charge distribution is divided into a large number of 

small units, “e-voxels”, via a three dimension grid. Since unrealistic values may 

arise near the nuclei, only the valence electrons are included. (4). Cubic “super e-

voxels” are generated by combining n3 old ones for each molecule. Each super e-

voxels has a charge equal to the sum of those of its constituents, which is taken to 

be located at its center. If some of the constituent e-voxels are beyond minρ , they 

are nevertheless included in order to avoid asymmetry. (5). Charge renormalization 

is carried out for each molecule, so that overall charge neutrality is preserved. (5). 

The interaction energy is calculated using Eq. (5.29). Since the distance between 

two super e-voxels is very small sometimes, we choose a minimum distance, e.g. 

one-half of the grid stepsize, below which this term is forced to equal the minimum. 

On the basis of the procedure mentioned above, a computer program was 

written to implement this numerical integral method. It reads an electron density 
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file generated by Gaussian 98 and computes *
intE  between any two molecules in the 

complex.  

    

5.5.    Interaction Energy Calculations for (H2O)2 and (HF)2 

In Chapters 3 and 4, we discussed the electrostatic and polarization 

interaction energies for the water dimer. Here we calculate *
intE  of these hydrogen-

bonded systems. The nonplanar Cs geometry of the water dimer optimized at the 

CCSD(T)/TZ2P(f,d)+dif level was used [36]. Electronic density files for the water 

dimer were generated by single point calculations. Four different theoretical 

methods (HF, MP2, B3LYP and B3PW91) were employed, with three basis sets 

(cc-pVXZ, (X=D, T, Q)) for each method. The number of e-voxels of each cube file 

is 1.0×106 and the condensation level is 3. *
intE were computed with four different 

ρmin varying from 0.01 to 0.00001 electrons/bohr3. 

*
intE  for another strong hydrogen-bonded system ⎯ the hydrogen fluoride 

dimer, was also evaluated. The geometry of the (HF)2 has been investigated by 

theoretical calculations [32, 38-47] and experimental methods [48-50]. It was found 

that the theoretical results agreed well with those estimated from experiments 

(RFF=2.72±0.03Å; ∠H3F4F2 = 117±6°; ∠H1F2F4=10±6°). Here we used the best 

estimated geometry obtained from the CCSD(T) calculations by Peterson et al [32] 

(see Figure 5.3). The dimer electronic densities and *
intE  were also computed at 

several different theoretical levels, with Dunning’s correlation-consistent basis sets 
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(CC-pVXZ, X=D, T, Q). The number of e-voxels, the condensation level and minρ  

are as same as those for (H2O)2 . 

 

Method =minρ 10-2 au 10-3 au 10-4 au 10-5 au 

HF/cc-pVDZ  -7.18 -6.26 -6.07 -6.04 

HF/cc-pVTZ  -7.30 -6.19 -5.95 -5.91 

HF/cc-pVQZ  -7.29 -6.20 -5.92 -5.88 

      

MP2/cc-pVDZ  -6.63 -5.82 -5.62 -5.58 

MP2/cc-pVTZ  -6.76 -5.65 -5.39 -5.36 

MP2/cc-pVQZ  -6.77 -5.63 -5.33 -5.29 

      

B3LYP/cc-pVDZ  -6.48 -5.68 -5.49 -5.45 

B3LYP/cc-pVTZ  -6.65 -5.59 -5.33 -5.29 

B3LYP/cc-pVQZ  -6.62 -5.55 -5.26 -5.22 

      

B3PW91/cc-pVDZ  -6.48 -5.71 -5.53 -5.49 

B3PW91/cc-pVTZ  -6.63 -5.61 -5.37 -5.34 

B3PW91/cc-pVQZ  -6.63 -5.60 -5.32 -5.28 

      

best estimate of stabE∆ c          -5.0 to -5.4 

 
Table 5.1 Calculated *

intE for (H2O)2, in kcal/mole, using CCSD(T) optimized 
dimer geometry and Eq. (5.29).a, b 

 

a Geometry taken from Ref. 36. 
b Number of e-voxels=1.0×106; grid stepsize=0.0615 Ǻ; n=3. 
c Ref. 37. 
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There is a long history of efforts to determine stabE∆  for (H2O)2. Correlated 

ab initio methods (MP2, MP4, CI, with correlation consistent basis sets) have tend 

to give values between -4.2 and -4.8 kcal/mole (corrected for BSSE) [37, 51], while 

an experimentally- based (thermal conductivity) prediction is -5.44±0.7 kcal/mole  

 [52]. Feyereisen et al concluded that the MP2 complete basis set limit is -5.0 

kcal/mole, so that the true stabE∆  is between -5.0 and -5.4 kcal/mole. (HF)2 has also 

been studied extensively. High-level (MP4, CI, CC) calculated stabE∆  are primarily 

in the range -4.3 to -5.3 kcal/mole [32, 45, 50]. Klopper et al’s analysis of 

computed and IR data led to a best estimate of  5.57±0.05 kcal/mole. 

 

 

Figure 5.3 The best estimated Cs structure of HF dimer from CCSD(T) calculations 
(Ref. 32).  

 

Table 5.1 and Table 5.2 give the *
intE  for (H2O)2 and  (HF)2, respectively. It 

is found that the magnitude of *
intE decreases as minρ becomes smaller, which 

expands the molecular boundary.  The reason can be explained reasonably: since 

more peripheral electron voxels are included when a smaller minρ  used, more short 

e-voxel pairs are involved in the calculation. This process yields a larger electron- 

1.818 Ǻ 

2.73 Ǻ 

7° 

111° 
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Method =minρ 10-2 au 10-3 au 10-4 au 10-5 au 

HF/cc-pVDZ  -6.69 -5.08 -4.83 -4.80 

HF/cc-pVTZ  -7.10 -5.12 -4.75 -4.70 

HF/cc-pVQZ  -7.27 -5.30 -4.83 -4.77 

      

MP2/cc-pVDZ  -6.13 -4.61 -4.36 -4.33 

MP2/cc-pVTZ  -6.42 -4.49 -4.13 -4.09 

MP2/cc-pVQZ  -6.62 -4.63 -4.15 -4.10 

      

B3LYP/cc-pVDZ  -6.07 -4.63 -4.38 -4.35 

B3LYP/cc-pVTZ  -6.41 -4.52 -4.15 -4.11 

B3LYP/cc-pVQZ  -6.55 -4.61 -4.13 -4.07 

      

B3PW91/cc-pVDZ  -6.06 -4.64 -4.39 -4.36 

B3PW91/cc-pVTZ  -6.42 -4.55 -4.19 -4.15 

B3PW91/cc-pVQZ  -6.55 -4.67 -4.21 -4.15 

      

best estimate of stabE∆ c                 -4.57 

 
Table 5.2 Calculated *

intE for (HF)2, in kcal/mole, using CCSD(T) optimized 
dimer geometry and Eq. (5.29).a, b 

 

a Geometry taken from Ref. 32. 
b Number of e-voxels=1.0×106; grid stepsize=0.0573 Ǻ; n=3. 
c Ref. 50. 
 

 
electron repulsion and then  a smaller interaction energy.  For (H2O)2 and (HF)2, 

*
intE  converge when minρ is less than 10-4 electrons/bohr3. Surprisingly, different 

theoretical methods, HF, MP2 and DFT give close results. With the same basis set, 
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the biggest difference of *
intE  is only about 0.7 kcal/mole. Also it is noted that the 

Hartree-Fock *
intE  are more negative than the others, for (H2O)2 and (HF)2, the 

differences are about 0.4 – 0.7 kcal/mole. The discrepancy could be caused by 

following reasons: (1). As the electronic densities are obtained from the 

approximate wave functions generated by a numerical method, the accuracy of the 

electronic densities may be not as good as that of other calculated properties such as 

energies and geometries. The inaccuracy of the electronic densities may affect the 

results. (2). Because several approximations are used in the decomposition of the 

electronic densities, it is not a rigorous approach. For electronic densities produced 

by different theoretical methods, different errors may be introduced in this process. 

(3). In our scheme, stabE∆ consists of two terms, *
intE  and corE∆ .  The correction 

energy is neglected in the calculation. However, the MP2, B3LYP and B3PW91 

*
intE  are usually quite similar. Additionally, for a given computational method (HF, 

MP2, B3LYP or B3PW91), *
intE  show only small basis set dependence. We 

computed *
intE  for (HF)2 and found that the MP2 *

intE  vary by 0.25 kcal/mole from 

cc-pVDZ to cc-pV5Z; and the DFT *
intE  change a little more, about 0.35 kcal/mole. 

Especially, there is little difference between the results given by the larger basis sets 

(cc-pVTZ, cc-pVQZ and cc-pV5Z).   

In comparing our results to the estimated stabE∆ , we shall focus upon 

*
intE for minρ ≤ 10-4 electrons/bohr3. For (H2O)2 and (HF)2, The *

intE  are in good 

agreement with the best estimated stabilization energy: e.g., for the water dimer, 
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MP2 and DFT give the *
intE  in the range -5.28  to -5.62 kcal/mole with different 

basis sets.   

 

5.6.      Interaction Energy Calculations for (MeOH)2 and (HCOOH)2 
 

Ab initio calculations have been widely employed to study intermolecular 

interactions. With the use of high level post-Hartree-Fock methods and large basis 

sets, the results agree well with the experimental data [37, 53]. In order to test the 

performance of *
intE , we computed the interaction energies for two other hydrogen-

bonded systems: (MeOH)2 and (HCOOH)2 and compared them to the experimental 

results. 

The geometries of the complexes were optimized at the MP2/6-311G** 

level by Gaussian 98. The geometries of (MeOH)2 and (HCOOH)2 are C1 and C2h, 

respectively. (Figure 5.4) The electronic densities were obtained at several 

theoretical levels (HF, MP2, B3LYP and B3PW91) with Dunning’s correlation-

consistent basis sets (CC-pVXZ, X=D, T, Q). The number of e-voxels in each cube 

file is about 1.0×106. Four electron density isocontours ( minρ ) were tested and the 

condensation level was set to 3. 

Experimental H∆ have been reported for the formation of (MeOH)2 and 

(HCOOH)2 , although with some degrees of uncertainty: Curtiss et al reported that 

the ∆H of the (MeOH)2 is 3.2⎯4.1 kcal/mole [54]. Bizzarri et al gave the result 

∆H=3.2±0.1 kcal/mole [55]. The bonding enthalpy of the (HCOOH)2 was reported 

by Lazaar et al as no more than 12 kcal/mole [56]. Henderson estimated the value is 

11.45±0.10 kcal/mole [57].  All these values are based on IR and NMR studies. 
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Tsuzuki et al added zero-point and thermal contributions to arrive at estimates of  

stabE∆  at 0K [58]: -4.6 to -5.9 kcal/mole for (CH3OH)2 and -13.2 kcal/mole for 

(HCOOH)2.  

The *
intE  were computed by the procedures described in this chapter. Tables 

5.3 and 5.4 give the calculated *
intE  of the hydrogen-bonded complexes. The *

intE  

decrease as minρ becomes smaller and converge for minρ ≤ 10-4 electrons/bohr3, 

which are similar to those of (H2O)2 and (HF)2. The Hartree-Fock *
intE  are more 

negative than the others, approximately by 15-20% margin; while the MP2, B3LYP 

and B3PW91  *
intE  are much closer.  

 

 

Figure 5.4 Ab initio (MP2/6-311G**) optimized structures of (MeOH)2 and 
(HCOOH)2. 

 

The *
intE  are also independent of basis set size for all the theoretical 

methods. The deviation is usually under 5% from cc-pVDZ to cc-pVQZ. It was 

reported that the small cc-pVDZ basis set considerably underestimates the 

MeOH-MeOH(C1) HCOOH-HCOOH(C2h) 

1.914 Ǻ 

1.717 Ǻ 

1.717 Ǻ 
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dispersion interactions for the MP2 method [53]. However, this is not reflected in 

our electronic density method. We note that the MP2, B3LYP and B3PW91 *
intE  are  

 

Method =minρ 10-2 au 10-3 au 10-4 au 10-5 au 

HF/cc-pVDZ  -4.32 -3.59 -3.43 -3.40 

HF/cc-pVTZ  -4.52 -3.61 -3.39 -3.35 

HF/cc-pVQZ  -4.57 -3.61 -3.38 -3.34 

      

MP2/cc-pVDZ  -3.75 -3.08 -2.88 -2.85 

MP2/cc-pVTZ  -3.79 -3.06 -2.83 -2.79 

MP2/cc-pVQZ  -3.86 -3.07 -2.85 -2.80 

      

B3LYP/cc-pVDZ  -3.59 -2.98 -2.80 -2.77 

B3LYP/cc-pVTZ  -3.68 -3.02 -2.78 -2.74 

B3LYP/cc-pVQZ  -3.70 -3.00 -2.76 -2.72 

      

B3PW91/cc-pVDZ  -3.66 -3.02 -2.85 -2.82 

B3PW91/cc-pVTZ  -3.71 -3.04 -2.83 -2.79 

B3PW91/cc-pVQZ  -3.68 -3.04 -2.82 -2.78 

      

best estimate of stabE∆ c                 -4.6 to -5.9 

 
Table 5.3 Calculated *

intE for (MeOH)2, in kcal/mole, using MP2/6-311G(d,p) 
optimized dimer geometry and Eq. (5.29).a 

 

a Number of e-voxels=1.0×106; grid stepsize=0.0843 Ǻ; n=3. 
b Ref. 58. 
 

smaller in magnitude than the reported stabE∆  by roughly 2 to 3 kcal/mole. There 

are several possible reasons for these discrepancies: (1). The definition of  *
intE  is  
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Method 

=minρ 10-2 au 10-3 au 10-4 au 10-5 au 

HF/cc-pVDZ  -16.48 -13.00 -12.38 -12.29 

HF/cc-pVTZ  -17.46 -13.88 -13.11 -13.01 

HF/cc-pVQZ  -17.51 -14.07 -13.21 -13.09 

      

MP2/cc-pVDZ  -13.43 -10.15 -9.47 -9.37 

MP2/cc-pVTZ  -14.47 -10.93 -10.12 -10.00 

MP2/cc-pVQZ  -14.65 -11.18 -10.26 -10.12 

      

B3LYP/cc-pVDZ  -14.03 -10.99 -10.33 -10.24 

B3LYP/cc-pVTZ  -14.92 -11.49 -10.69 -10.57 

B3LYP/cc-pVQZ  -15.01 -11.66 -10.74 -10.61 

      

B3PW91/cc-pVDZ  -12.42 -10.31 -9.73 -9.65 

B3PW91/cc-pVTZ  -13.36 -10.78 -10.06 -9.96 

B3PW91/cc-pVQZ  -13.45 -10.96 -10.15 -10.03 

      

best estimate of stabE∆ c                 -13.2 

 
Table 5.4 Calculated *

intE for (HCOOH)2, in kcal/mole, using MP2/6-311G(d,p) 
optimized dimer geometry and Eq. (5.29).a 

 

a Number of e-voxels=1.0×106; grid stepsize=0.0718 Ǻ; n=3. 
b Ref. 58. 
 
 

different from that of stabE∆ : stabE∆  refers to the complex and its components in 

their equilibrium ground states; while *
intE  corresponds to the components having 

same geometries and electronic densities as in the complex. According to Eq. (5.28), 

stabE∆  is the sum of *
intE  and the correction energy, ∆Ecor. In our approach, ∆Ecor is 
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not included. (2). Our computed dimer structures are likely somewhat different 

from those used in the measurements upon which the stabE∆  are based. (3). The 

electronic densities of the components, generated by several approximations, are 

not exact. (4) There is some uncertainty in the literature values.  

We have presented the results which support the approach described in 

Sections 5.3 and 5.4. However, there continues to be a need for further exploration 

of the effects of such factors as the number of e-voxels, the value of minρ , and the 

level of condensation n, in relation to the sizes and shapes of the molecules. For this 

purpose, it is important to apply our new approach to larger intermolecular systems. 

In next Chapter, we will compute the interaction energies for an energetic explosive 

— RDX. 

 

5.7.     Summary 

Based on the electrostatic Hellmann-Feynman theorem, an expression is 

derived, for the intermolecular interaction energy in forming a noncovalently-bound 

complex.  In this approach, only classical electrostatics, involving the charge 

distributions of the components as they are in the complex, is invoked. The 

definition of our *
intE  is slightly different from stabE∆  and intE . Their relationships 

have been discussed.  

An approximate method for the calculation of *
intE has been proposed. The 

electronic densities of the components are obtained by a decomposition procedure 

and integration over the electronic densities is carried out by a numerical method. 

We calculate the interaction energies for four molecular dimers at a variety of 
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computational levels. The results are analyzed and compared to the best estimated 

values available in the literature. This method may open a new window for 

interaction energy calculations. 
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CHAPTER 6. APPLICATION: INTERMOLECULAR 
ENERGETICS FOR RDX CRYSTAL 

 

6.1.      Introduction 

Hexahydro-1,3,5,-trinitro-s-triazine (RDX) is one of the most widely used 

explosives. Its structure is shown in Figure 6.1. There are two known polymorphic 

forms [1], designated I and II or α and β in literature. The second, II or β, is very 

unstable; it is therefore α-RDX that is of interest. The details of the crystal structure 

of α-RDX are known from neutron diffraction [1]. The unit cell of α-RDX is 

orthorhombic and contain 8 molecules, which have a chair-AAE conformation. 

AAE Means that two NO2 groups are oriented axially (A) while the third is 

equatorial (E).  

              

H2C

N

C
H2

N

CH2

N

NO 2

O2N NO 2
 

 

Figure 6.1 Structure of the RDX molecule. 
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Classical molecular dynamics (MD) simulations provide a promising route 

to achieving a better understanding of the factors and processes involved in the 

initiation and propagation of detonation in energetic solids. There has indeed been 

considerable activity in this area, as reviewed recently on several occasions [2-4]. A 

key challenge is to identify and develop inter/intramolecular potentials which can 

satisfactorily describe both molecular and crystal properties and behavior, including 

crystal growth, lattice defect formation, impact/shock-induced vibrational excitation 

and molecular dissociation etc. Some work of this kind has been applied to the 

study of the properties of RDX, such as intermolecular potential and conformation 

[5-7]. 

As discussed in Chapter 1, the total intermolecular interaction energy is 

frequently expressed as the sum of four primary elements: electrostatic, polarization 

(induction), dispersion and exchange-repulsion. In molecular dynamics simulations, 

the intermolecular potential is usually taken to be composed of a point-charge 

Coulombic term together with a Lennard-Jones or Buckingham expression to 

represent non-bonded interactions. Since the Lennard-Jones and the Buckingham 

potentials each contain both an attractive (dispersion) and a repulsive contribution 

(exchange-repulsion), three of the four elements are taken into account in some 

manner. Polarization generally is not, although techniques for doing so do exist; for 

example, the magnitudes of the point charges could periodically be changed [8].  

It should be noted that the molecular dynamics formulation does not reflect 

any distortion of the molecules’ geometries that may accompany crystal formation; 

their equilibrium gas phase structures are often used for the calculations. The effect 
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of neglecting such distortion upon the interaction energy is often quite small [9], 

however, for the uracil dimer, our calculation shows that the energy required to 

convert two free uracil molecules to their states in the dimer is 0.8 kcal/mole at the 

MP2/6-31+G* level. 

 

 

Figure 6.2 Unit cell of RDX, containing 8 molecules in two series of interlocked 
pairs. Oxygens are red, nitrogens blue and carbons gray. Hydeogens are 
not shown in this figure. 

 

In this work, we have focused on the pairwise intermolecular interactions in 

the crystal lattice of RDX. We evaluate both the electrostatic and total interaction 
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energies. Our objectives include (a) obtaining accurate values for these, and (b) 

assessing how effectively they are reproduced by typical molecular dynamics 

methodology. 

 

 

Figure 6.3 An interlocked pair of molecules in the crystal lattice of RDX. Shortest 
N(nitro)---O distances are given in Angstroms. 

 

Karpowicz and Brill pointed out that the lattice can be viewed as composed 

of series of interlocked molecules, adjoining pairs having several N(nitro)---O 

electrostatic interactions, with fewer and weaker ones between the pairs of 

neighboring series [10]. This is shown in Figures 6.2-6.4. We will look at both 
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types of interactions between two RDX molecules: first, when they comprise an 

interlocked pair (Figure 6.3) and second, when they are members of neighboring 

interlocked pairs (Figure 6.4). The geometries of the two molecules and their 

positions relative to each other will be taken from the experimental crystal structure 

of α-RDX [1, 11]. 

 

 

Figure 6.4 Two molecules in neighboring interlocked pairs in the crystal lattice of 
RDX. Shortest N(nitro)---O distances are given in Angstroms. 
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6.2.      Energy Expressions 

In molecular dynamics, a common approach to calculating the electrostatic 

interaction energy, Ees, between two unperturbed molecules A and B is to treat them 

as collections of point charges: 

∑∑=
i j ij

ji
es R

QQ
E                                                                                 (6.1)                   

in which iQ  and jQ  are the net charges on atoms i in A and j in B, and ijR  is their 

distance. The atomic charges may be obtained by one of the variety of techniques 

that have been proposed [12-15], or they can be treated as parameters, to be 

determined by some fitting procedure. In molecular dynamics simulations of 

energetic solids, the charges are frequently established by requiring that they 

reproduce the molecules’ electrostatic potentials [4, 13, 14]. The representation of 

Ees by Eq. (1) could of course be improved, but at greater computational cost, by 

adding dipole and higher-order multipole terms [16]. In Chapter 3, we derived a 

rigorous expression for Ees: 
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where AZ  and BZ  refer to the charges on nuclei of molecules A and B, respectively; 

AR
r

 and BR
r

 are their locations, and 0
Aρ  and 0

Bρ  are the electronic densities of the 

unperturbed molecules. 
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In reality, the interacting molecules do polarize each others’ charge 

distributions, so that their electronic densities are no longer described by 0
Aρ  and 

0
Bρ . The associated energy effect, polE , is one of the contributions to the total 

energy of the interaction between A and B. Various approaches to estimating  polE  

have been proposed [16-20]. In Chapter 4, we developed a formulation of polE  

which is based on writing the polarized electronic densities of the molecules as 

pol
AA ρρ ∆+0  and pol

BB ρρ ∆+0 ;  pol
Aρ∆  and pol

Bρ∆  are the changes due to mutual 

polarization:  
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                  (6.3) 

In Eq. (6.3), we have used an approximate approach to represent pol
Aρ∆  and pol

Bρ∆  

(see Chapter 4). They are obtained from the total electronic density of the pair after 

interaction. 

In Chapter 5, we derived the total noncovalant interaction energy between 

two molecules, *
intE , from the Hellmann-Feynman electrostatic theorem [21, 22], 

which can be expressed in a manner similar to Eq. (6.2)  but in which 0
Aρ  and 0

Bρ  

are replaced by the electronic densities of the molecules after interaction,  Aρ  and 

Bρ , 
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∫ ∫
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Eq. (6.4) assumes that molecules A and B, although having undergone polarization 

and perhaps changes in geometries, retain their identities after interaction. In order 

to make the calculation feasible, we designed an approach to partition the overall 

electronic distribution of the pair after interaction between the two components. 

It should be noted that the different definitions of *
intE , intE  and stabE∆ . *

intE  

refers to the molecules with electronic density and geometries as they are after 

interaction; intE uses ground-state geometries but tries to approximate the effects of 

polarization; and the stabilization energy stabE∆  corresponds to the complex and its 

components in their equilibrium ground states. Unlike *
intE and intE , stabE∆  does 

take account of any changes in the geometries and electronic distributions of A and 

B that may accompany their interaction. The approach for the calculation of stabE∆  

is called the supermolecular method, which poses some practical problems [21]: It 

requires a high computational level, because stabE∆  is given as a small difference 

between much larger quantities; thus, any errors in these are likely to be greatly 

magnified in stabE∆  (except for fortuitous cancellation). There is also the issue of 

BSSE, the spurious stabilization of the complex because it is described by a larger 

basis set than its components.  

As we already pointed out, the energetic consequence of the conceptual 

differences between *
intE and intE , stabE∆  are often rather small. It might be 
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anticipated that this potential problem would be exacerbated in the case of RDX 

because the molecular conformation changes from chair-AAA in the gas phase [22, 

23] to chair-AAE in the crystal [1]. However the MP2/6-31G* and B3LYP/6-

311+G** analyses of Rice and Chabalowski show the AAA and AAE conformers 

to differ in energy by only 0.13 and 0.64 kcal/mol, respectively [22].  

The expressions of esE , polE  and *
intE , all involve integration over 

electronic densities. The details of the numerical procedures have been described in 

previous chapters.  

 

6.3. Procedure 

As has been discussed, esE , Eqs (6.1) and (6.2), is normally calculated using 

the ground-state gas phase geometries of the interacting molecules. In the case of 

RDX, this would mean the chair-AAA molecular conformation [21, 22]. Since our 

interest is in interactions within the crystal, however, it is more relevant to use 

chair-AAE, which is the conformation of the RDX molecule in the lattice [1]. 

Accordingly, esE was computed from atomic charges, Eq. (6.1), or electronic 

densities, Eq. (6.2), obtained for individual RDX molecules with the geometries 

that they are in the crystal [1]. To determine esE , these molecules were placed in 

the relative positions that they occupy in the lattice; we treated both the interaction 

within an interlocked pair (Figure 6.3) and that between two molecules in 

neighboring interlocked pairs (Figure 6.4). 
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For polE  and *
intE , we calculated the electronic density )(rAB

rρ of the pair of 

molecules after each mode of interaction (i.e., within and between interlocked pairs), 

again using the crystal structure. We also looked at how well the point-charge 

model would approximate *
intE , applying Eq.(6.1) but with the charges obtained for 

the pairs. 

There are several parameters involved in computing esE , polE  and *
intE  by 

numerical integration over electronic densities: the number of e-voxels (which 

determines the stepsize in the grid), the condensation level n in forming the super e-

voxels, and the boundary surface minρ . In Chapters 3,4 and 5, we have investigated 

the effects of varying these parameters. We concluded that on the order of 106 e-

voxels yields satisfactory results, and that n should be small enough so that the 

number of super e-voxels is greater than 2000. The optimum choice of minρ  

depends on the energy quantity sought; for example, minρ =1.0×10-6 au is desirable 

for esE , minρ =1.0×10-2 au for polE  and minρ =1.0×10-4 au for *
intE . 

All calculations were carried out at both the HF/6-311+G** and B3PW91/6-

311+G** levels. Two types of atomic charges were tested: the Mulliken [12] and 

those derived from electrostatic potentials via the CHelpG technique [24]. 

 

6.4. Results and Discussion 

The electrostatic and polarization energies, esE and polE  , between 

individual RDX chair-AAE molecules are given in Table 6.1. In Table 6.2 are the 

total interaction energies, *
intE , within the pairs of molecules in the crystal lattice. 
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Looking first at the point-charge results, the esE  based on Mulliken charges 

are quite poor, usually being positive. The CHelpG do predict attractive interactions, 

but very weak ones; esE and *
intE  are usually significantly smaller in magnitude than 

the corresponding values calculated from the electronic density. 

Proceeding to the energies obtained from electronic densities, Eqs. (6.2-6.4), 

the overall interaction is seen to be much stronger within the interlocked pair. This 

is as anticipated from Figures 6.3 and 6.4, which show more N(nitro)---O 

electrostatic attractions, over shorter distances, in the interlocked pairs than between 

pairs. 

 

Ees, Eq. (6.1) Interaction Method 

Mulliken CHelpG 

Ees, 

Eq. (6.2)a 

Epol,  

Eq. (6.3)b 

HF/6-311+G** 3.4 -2.9 -8.5 -0.4 Within 
interlocked 
pair 
(Figure 6.3) 

B3PW91/6-311+G** 4.3 -2.2 -8.0 -0.3 

      

HF/6-311+G** 0.5 -1.9 -3.1 -1.4 Between 
interlocked 
pairs 
(Figure 6.4) 

B3PW91/6-311+G** 1.2 -1.4 -3.0 -1.2 

      

 

Table 6.1 Computed electrostatic and polarization interaction energies, Ees and Epol, 
in kcal/mole. 

 
a Number of e-voxels =1.4×10-6; stepsize=0.0882 Å; n=5; ρmin=1.0×10-6 au. 
b Number of e-voxels =1.4×10-6; stepsize=0.1232 Å for Figure 6.2 system, 0.1307 Å 

for Figure 6.2 system;n=5; ρmin=1.0×10-2 au.  
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Bukowski et al have carried out a symmetry-adapted perturbation theory 

(SAPT) treatment of dimers of dimethylnitramine (DMNA), (H3C)2N-NO2 [25], 

which has the same basic structural elements as does RDX. For their most stable 

dimer, the total interaction energy intE  was approximately -11 kcal/mole. This is 

about 3 kcal/mole more negative that our *
intE ; however the two DMNA molecules 

were considerably closer than our RDX in the crystal lattice. The distance between 

the centers of mass the former was 3.04 Å, which is comparable to the shortest 

intermolecular distances in Figures 6.3 and 6.4. 

 

Point Charge Model Interaction Method 

Mulliken CHelpG 

Eq. (6.4)a 

HF/6-311+G** 0.0 -1.7 -8.8 Within 
interlocked 
pair 
(Figure 6.3) 

B3PW91/6-311+G** -1.0 -1.1 -7.3 

     

HF/6-311+G** 2.6 -2.8 -2.8 Between 
interlocked 
pairs 
(Figure 6.4) 

B3PW91/6-311+G** 3.6 -2.2 -2.2 

     

 

Table 6.2 Computed total interaction energies, *
intE , in kcal/mole. 

 
a Number of e-voxels =3.0×10-6; stepsize=0.0882 Å; n=5; ρmin=1.0×10-4 au. 
 

An interesting feature of Tables 6.1 and 6.2 is the marked similarity between 

the electrostatic and the total interaction energies, esE and *
intE , for both types of 

interaction,  i.e. within and between interlocked pairs, Bukowski et al found the 
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same to be true in the case of dimethylnitramine [25]. For each of the three most 

stable DMNA dimer structures, esE and *
intE  differed by ≤ 1 kcal/mole. (Bukowski 

et al also list four other contributions to intE , which nearly cancel.) Thus, for 

molecules such as RDX and DMNA, the electrostatic interaction between the 

separate components is a good approximation to the total interaction energy, 

provided that the former is obtained at a sufficient level of accuracy (higher than 

that afforded by point charges). Table 6.1 shows the polarization energies to be 

relatively minor. 

 

6.5. Summary 

The principal results of this study are the following: 

(1). We have obtained reasonable estimates of the energies of two key 

intermolecular interactions within the RDX crystal lattice; within an 

interlocked pair, -8 kcal/mole, and between interlocked pairs, -2 to -3 

kcal/mole.  

(2). These energies can be well approximated by the electrostatic interactions 

between the individual chair-AAE RDX molecules, using their isolated-state 

electronic densities. 

(3). Mulliken and CHelpG atomic charges are not adequate for modeling these 

electrostatic interactions. 

(4). Polarization of isolated-state molecular electronic densities is a relatively minor 

factor. 
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