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Abstract 

Accurate rainfall forecasting using weather radar imagery has always been a crucial and 

predominant task in the field of meteorology [1], [2], [3] and [4]. Competitive Radial Basis 

Function Neural Networks (CRBFNN) [5] is one of the methods used for weather radar image 

based forecasting.  

 Recently, an alternative CRBFNN based approach [6] was introduced to model the 

precipitation events. The difference between the techniques presented in [5] and [6] is in the 

approach used to model the rainfall image. Overall, it was shown that the modified CRBFNN 

approach [6] is more computationally efficient compared to the CRBFNN approach [5]. 

However, both techniques [5] and [6] share the same prediction stage. 

In this thesis, a different GRBFNN approach is presented for forecasting Gaussian 

envelope parameters. The proposed method investigates the concept of parameter dependency 

among Gaussian envelopes. Experimental results are also presented to illustrate the advantage of 

parameters prediction over the independent series prediction. 
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Chapter 1: Introduction 
 

The nature of the atmosphere is chaotic, thus rainfall forecasting is always a challenging issue. 

The rainfall forecasting system is intended to assist an assortment of fields that includes marine 

[7], forestry [8], private sector [9] and military applications [10].  

In ancient times, forecasting was mostly based on weather pattern observation. Over the 

years, the study of weather patterns has resulted in various techniques for rainfall forecasting. 

Present rainfall forecasting embodies a combination of computer models, interpretation, and an 

acquaintance of weather patterns. Some of the very commonly used methods are the persistence 

method [11], the use of a barometer [12], nowcasting [13], and use of forecast models [14], and 

[15]. All these methods result in reasonably accurate prediction. 

Several radars were developed to observe weather patterns [16]. The development of 

artificial Neural Networks established an innovative trend to understand the intricate weather 

patterns, and therefore improve the forecasting accuracy. In this work, the weather radar data 

used are obtained from the NASA website [16]. The data have been collected by the WSR-88D 

radar located in Houston, Texas.  

The thesis is organized as follows. The rest of Chapter 1 presents an overview of Radial 

Basis Function Networks [5], and how they are used to model the rainfall events [6]. Chapter 2 

discusses rainfall forecasting using GRBFNN [17]. Chapter 3 presents the proposed work, and 

discusses the adjustments made to the existing forecasting algorithms. Chapter 4 presents the 

experimental results using simulations and actual weather precipitation events [22]. Finally, 

Chapter 5 concludes the thesis suggesting future work.  
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1.1 Overview of  Radial Basis Function Neural Networks 

In general, Radial Basis Function Neural Networks (RBFNN) consist of three layers. Each 

network layer consists of certain nodes. The input data are presented to the network as vectors. 

Each node of the hidden layer holds a suitable centroid or prototype, and each hidden node 

performs a nonlinear function. The response of each hidden node is multiplied with its 

corresponding connecting weight, and presented to the output layer. In this layer, all responses 

obtained from the hidden layer are combined accordingly to get the network output. The RBFNN 

may be trained following an iterative process in order to get the desired output. Training includes 

adaption of the network parameters. These parameters depend on the type of the non linear 

function associated to the hidden nodes. The general architecture of RBFNN is shown in     

Figure 1. 

 

 

 

 

 

 

 

 

 

 

Figure 1. Radial Basis Function Neural Network architecture 
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1.2 Competitive Radial Basis Function Neural Networks 

In the particular application of weather forecasting, the CRBFNN has been used to forecast the 

rainfall map in 2-D imaging [5]. In this approach, forecasting is performed in two steps. The first 

step is to approximate the rainfall events using localized functions, and in particular, Gaussian 

envelopes. The second step is rainfall forecasting by using the approximated Gaussian envelope 

parameter. For forecasting purposes, a different Neural Network called GRBFNN [17] has been 

used. 

The CRBFNN network consists of three layers, namely, the input layer, the hidden layer, 

and the output layer. The network architecture is shown in Figure 2. In this approach, a rainfall 

image of size     is represented as a set of vectors {x1, x2 , . . . ., xn}. The vector    represents 

the pixel value f(  
 ,  

   at its corresponding coordinates (  
 ,  

   of rainfall image. In order to 

model the rainfall image, all these vectors   , 1 ≤  i ≤ n  are used to train the network. 
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   Figure 2. Competitive Radial Basis Function Neural Network 
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Assuming that the vector    is applied as input to the network, the response of the     hidden 

node for     input vector    is given by following equation:  

 

 Ψj (         
            

 
                                                                                            (1)                  

 

where 

 

                   
T        ,                                                                               (2)                                            

 

The above equation (2) represents the Mahalanobis distance between the     input vector    , and 

centroid associated to the     node of hidden layer. Moreover,   is the inverse covariance matrix, 

thus, equation (1) represents a directional Gaussian function. For modeling rain events, the width 

of the Gaussian function is made independent along each direction using Mahalanobis distance. 

The CRBFNN output is the maximum of the individual hidden node responses     Ψ1    , Ψ2    , 

......, Ψn     multiplied with their connection weights   ,   ,   , ......,   . In other words, only 

those hidden  nodes whose output is close to the Gaussian centroid, in the mahanalobis sense will 

contribute significantly to the network output       . The network output is expressed as follows 

 

             Ψj (         , 1    )                                                                                (3)                                                             
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Equation (3) represents the approximated rain rate i.e.      pixel value at coordinates (  
 ,  

   of 

the rainfall fall image. Also, n is the total number of the nodes in the hidden layer, and    is the 

bias term associated to the      hidden node.  

Based on the above discussion, the parameters required for modeling the precipitation 

events are the weights   , the inverse covariance matrix  , and the centroid   . From equation 

(3) it is also clear that the node that gives the maximum output for a point in rainfall image will 

be activated and trained. The training of the parameters is performed in an iterative manner using 

the learning rules presented in [18]. During this process, if none of the nodes in the hidden layer 

gives an output that exceeds a particular threshold, a new hidden node will be initialized at that 

point. In addition, hidden nodes which are not producing a significantly large output for a given 

number iterations are deleted. However, the deletion is performed only after examining all input 

vectors extracted from the rainfall image. The Mean Square Error (MSE) between the network’s 

output        , and the actual output f(  
 ,  

  , i.e. the pixel value at coordinates (  
 ,  

   is 

computed. This MSE is fed back to the network to reduce the error and adopt the parameters of 

the network for the purpose of reducing the MSE. The iterative training process will be 

terminated once a specified maximum number of iterations is reached, [5] or when a specified 

minimum MSE is achieved [5]. 

  Once the network training is complete, the output image produced by the network will 

contain the modeled rain events. In other words, the output image is approximated as mixture of 

Gaussian envelopes. The Gaussian envelope parameters, including the weights, the covariance 

matrix, and the centroids, are used in rainfall forecasting [17].  
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However, the CRBFNN approach in [5] used the full resolution rainfall image size of     to 

train the network, following a pyramidal approach. Even though the pyramidal approach speeds 

up the process, the overall training stage is still time consuming. In order to solve this problem, 

an alternative CRBFNN technique [6] was proposed, which is computationally efficient. In the 

technique presented in [6], instead of using the full resolution weather radar image, a down 

sampled version of the image is used to train the network. The high resolution image is simply 

obtained by an extrapolation of the Gaussian parameter for higher resolution.  As a result, the 

computational time is considerably reduced while achieving the same MSE as for CRBFNN [5]. 

Apart from that, in technique [6], only non-zero value pixels and a zone of zero-value 

pixels around the non-zero value pixels are used in the training process. Considering the zone of 

zero-value pixels is important because the Gaussian envelopes may assume some arbitrary values 

beyond the rainfall event boundaries. This selection during training of the network ensures the 

Gaussian function represented by the hidden nodes is restricted to the boundaries determined by 

the zero-value pixels zone. At the same time, the majority of zeros in the weather image are not 

used in the training process. 

In general, as the consecutive weather images are similar, the Gaussian envelope 

parameters of the preceding weather image are used as starting points to model its consecutive 

weather image. As a result, computation time is reduced. The technique in [6] also uses the same 

learning rules [18] for training, but the network parameters such as weights, covariance matrix, 

and centers of hidden layer nodes are updated differently [6]. Once the training of the network is 

complete, the output image of the network will be represented as a mixture of Gaussian 

envelopes. The obtained envelope parameters including centers, covariance matrix, and weights 

are used in GRBFNN [17] for rainfall forecasting, as presented in Chapter 2. 
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Figure 1 illustrates a sequence of radar rainfall maps of hurricane Rita, and Figure 3 illustrates 

the rainfall events approximated as a mixture of Gaussian envelopes. 

 

                                       (a)                                                                        (b) 

Figure 3. Weather radar precipitation events in consecutive two images (starting from (a) to (b))  

 

 

 

Figure 4. Weather images approximated as mixture of Gaussian envelopes in two consecutive 

images (starting from (a) to (b)) 
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Chapter 2: Non-linear and non-stationary time series 
                                        

Time series is defined as a sequence of successive samples of an event, which are temporally 

equidistant from one another without any missing observation [19]. In particular, non-linear and 

non-stationary time series have a mean that varies with respective time [20]. These series have an 

important role in real time applications such as interest rate dynamics [24], macroeconomic 

applications [23], and heart rate dynamics analysis [25]. Figure 6 illustrates a general time series. 

 

2.1 Gradient Radial Basis Function Neural Network 

GRBFNN is a three layer feed-forward Neural Network [17]. The three layers are input layer, 

hidden layer, and output layer. In this network, the nonlinear function associated to the hidden 

layer nodes is a static Gaussian Function    . Each node of the hidden layer holds a suitable 

center   . In order to process the input data, the input vector    is compared to each node’s center 

  . The GRBF network output     is a sum of the individual hidden node responses multiplied 

with their corresponding connection weights   . 

          As mentioned in Chapter 1.2, the technique in [6] represents the rainfall events image as a 

mixture of Gaussian envelopes. Thus, rainfall forecasting can be done by tracking the parameters 

associated to the Gaussian envelopes. The Gaussian parameters include envelope centroids, the 

covariance matrices and the weights. 

           In general, the envelope parameters obtained from consecutive images can be represented 

as time series. Thus, forecasting can be performed by predicting the series’ next value. The 

GRBFNN approach presented in [17] is used for this time series prediction. One reason of 
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employing this approach is that the hidden layer nodes of GRBFNN [17] can cope with the series 

which are characterized by a non-linear and non-stationary behavior.  

            GRBFNN [17] considers the successive sample differences of the time series as the input 

vector presented to the network. It analyzes the non-linear and non-stationary behavior of the 

series to make an accurate prediction. The network architecture is shown in Figure 5.   

 

  

 

 

 

 

 

 

  

 

 

 

 

 

 

Figure  5.  Topology of the first order GRBFNN 

 

 

A general time series is shown in Figure 6. The input vector of GRBFNN,     consists of k 

successive sample differences of the time series at a particular time i as follows: 
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                            ,
 
……..              

T                                         (4) 

where                  . . . . ,               are the successive samples of the input time series. 

Thus, vector    represents the rate of change in the time series for the past k samples. This vector 

is used to predict the time series future value   . 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Time series 

 

The input vector    is applied to the hidden layer of the GRBFNN. The     hidden node response 

of the network,   , for     input vector    is given by following equation  

 

                              
2)                                                                  (5)           

 

     

     

 

     

 

   

 



 

 

11 

 

In equation (5),        ||     ||
2) represents a static k-dimensional Gaussian function, and   

is a scaling parameter. This function compares the similarity of the input vector    to the hidden 

node’s center   . Here    is an k-dimensional center vector of     hidden node.  

The additional term            is local single step prediction of    by the     hidden 

node and     is a constant value associated with the center   . Thus, if the input vector is very 

similar to the     hidden node center    the value of Gaussian function in equation (5) will be 

close to 1.0, and the predictor            becomes active.  

The response of each hidden node of GRBFNN is multiplied with its corresponding 

connection weight   ,       and the weighted sum of these responses will give the network 

output as follows: 

 

              
 
                                                                                                                   (6) 

 

The centers    ,and prediction terms    ,       can be chosen from the training data        
 

. 

using OLS algorithm [21]. During training, for each training input vector a sample difference is 

defined as follows: 

                                                                                                                                          (7) 

If input    is selected as the     center   , we set        to ensure that the     hidden node is a 

perfect prediction of   . A detailed discussion of the OLS algorithm is presented in chapter 2.2. 
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2.2 Orthogonal Least Squares algorithm (OLS) 

In order to obtain the GRBFNN centers and prediction terms, initially all the training input 

vectors        
 

 are considered as centers of the GRBFNN. The GRBFNN output equation (6) for 

the training input        
 

 can be expressed in the following form: 

               
 
            

 
                                                                                        (8)                                                                               

                                                                                                                                        (9)   

where 

             . . . .      T     (10)  

           . . . . . .    
T                                                                                                              (11)   

          . . . . . . .                                                                                                                 (12) 

                      . . . . . . . .       
T,                                                                    (13)            

             . . . . .      T                                                                                                    (14) 

In equation (8) the matrix P consists of regressor vectors,   . The OLS algorithm transforms 

these regressors          into orthogonal basis vectors. Thus, each regressor contribution to 

the output d can be determined. The regressor matrix P is can be decomposed as follows: 

                                                                                                                                          (15)    

where  
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                1                       . . . . . .      

                0     1                  . . . . . .      

   =          .      .       .         .      . . . . . .             (16)               

  

                0     0       0       0      . . . . . .  1 

 

and 

            . . . . . . . . .          (17)                

In equation (16),   is an     matrix with orthogonal columns such that it will satisfy the 

following condition 

  T         (18)                               

where   is  the diagonal matrix  with elements 

      
               

 
    ,            (19)                 

Using Gram-Schmith orthogonalization [22], matrices A and W can be computed based on the 

procedure is described below 

       

       
       

    ,                        k=2, . . . . . . ., M 

             
   
     

From equations (13) and (8) 

             (20)                                                                                                                               
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The OLS solution for the non linear equation (8) is 

                                                                                                                                            (21)                                                                 

Based on linear regression, the   is given by  

      
      

    ,                                                                                                       (22) 

From the above steps, once   and   are computed, the weights of the GRBF network          . . . 

    are obtained using equation (20). 

However, in Neural Networks like GRBFNN the training data set is usually very large, 

and during training initially all input vectors are considered as centers of the network. In such a 

case, the regressor matrix   is very large consisting of   regressors. In actuality, a satisfactory 

model requires only     regressors, which is a smaller number than   (    < <  ). These 

significant regressors are selected using the OLS subset selection process [21]. 

The matrix   has orthogonal columns i.e.  T    , and thus    and    are orthogonal 

for    . Therefore, the sum of squares of the GRBFFNN output   is expressed as 

        
     

                                                                                                             (23) 

The variance of GRBFNN  output    is given by 

              
     

                                                                                          (24) 

In equation (23),        
     

    is the variance of actual output, while         is the 

variance of error. The error reduction ratio for GRBFNN output   is defined as: 
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   ,                                                                                                (25)                      

Using equation (24), the error reduction ratio is computed for all regressors   . . . .   . The 

significant regressors    . . . .      are selected from the total regressors    . . . .     based on their 

computed error reduction ratio. This subset selection is an iterative process and is terminated 

once the sufficient number of regressors are found, as determined by OLS’s [21] specified 

threshold value. The selection procedure is summarized as follows 

Step 1 : 

First step    , for         compute 

  
   

     

  
   

    
         

       
              

       
   

    
       

       
         

select 

      
    

           
           } 

          

 

Step 2: 

At the      step where      for      ,     , ………        
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Find 

      
               

          ,     , ………       } 

select 

     
               

   
     

       
            

Step 3 : 

The procedure is terminated at     step where    

         
   
      where       is a chosen tolerance                                                     (26) 

Using this subset selection process, the significant number of regressors       . . . .,     , as well 

as matrices   and A are determined. The weights of the GRBFNN are obtained using g and A in 

equation (20). 

As mentioned in Chapter 2.1, In the GRBFNN approach, each approximated Gaussian 

envelope parameters are considered as individual time series. As a result rainfall forecasting is 

made once all parameters path are predicted. 

However, the technique [5] has some drawbacks as discussed in Chapter 3. In order to 

overcome these, a new approach called joint series prediction [22] is presented in this thesis. 
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Chapter 3: Joint series prediction  

 

The study of several cyclones and storms reveled that most of the times their path can be 

represented as a time varying non-linear and non-stationary series [5]. This kind of storm 

behavior is always chaotic and needs to be forecasted immediately. For such events, even though 

the GRBFNN [17] performance is satisfactory, an enhanced performance may be required.  

            The hurricane or cyclone event forecasting has always being a complex issue to 

understand, and uncertain to forecast an accurate rainfall. Sometimes these events’ motion is fast, 

which needs almost an immediate prediction. There wouldn’t be sufficient time to analyze the 

motion of events, and then to forecast their path. In such situations, the only solution would be to 

train and test the network in an online mode.  

             As discussed in Chapter 1.2, the technique in [5] represents the rainfall map as a mixture 

of Gaussian envelopes. This method has some shortcomings discussed below. 

             Primarily, the technique [5] assumes that there is no dependency among the Gaussian 

envelope parameters. In actuality, Gaussian motion is directly associated with the change of the 

envelope parameters with respect to time. Thus, there should be a dependency among all these 

parameters. Apart from that, it considers each Gaussian envelope parameters as individual time 

series and forecasts the parameters separately using GRBNN. Then, if Gaussian envelope has n 

parameters, n number of GRBFNN should be trained, which is an extremely time consuming 

process. This also results in additional computational complexity. In case of hurricanes or 

cyclone events, their motion has to be predicted right away, which may not be possible in this 

case. 
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In order to overcome all these shortcomings, a new concept called joint series prediction is 

proposed. This proposed method investigates the dependency among the envelope parameters. 

All envelope parameters are predicted simultaneously, so computational time is reduced. 

      

3.1 Proposed approach 

Assume that each approximated Gaussian envelope has N number of parameters. The input 

vector contains the successive sample difference of all N parameters and is given by   : 

       
   

   
   

 . . . . . . . .    
   

                                                                                                     (27) 

where 

   
   

      
   

     
   

      
   

     
    . . . . . . .        

   
     

   
 ,       

 This input is applied to the hidden layer of the GRBFNN. The     hidden node response of the 

GRBF network for the     input is given by   

      
                     

2)       
      

                                                              (28)   

Here     is an K-dimensional center vector and   
     

      
      

    . . . .   
   

        is a 

constant vector associated with the center    .The response of each hidden node is multiplied with 

its connecting weights 

  
     

      
      

   . . . . . . .   
   

 ,                                                                                 (29) 

The weighted sum of these responses provides the network output as follows: 
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     ,                                                                                                  (30) 

 

Figure 7.  Joint series prediction using GRBFNN 

  

The centers,      and the prediction terms,    ,       are chosen using the OLS subset 

selection process from the training data set        
 

. During the subset selection process, initially 

all input vectors of the training dataset        
 

 are considered as GRBFNN centers. However, 

during the subset selection process        
      centroids are eliminated based on their error 

reduction ratio, and finally, the algorithm provides the optimal number of centers M that are used 
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for prediction. For each training input vector        
 

, a sample difference is defined and is given 

by: 

     
      

        
   

 ,                                                                                                     (31)                                                                      

If input    is selected as the     center    for the     time series , we set   
      

        
   )

  to 

ensure that the     hidden node is a perfect predictor of   
     Therefore, the value of   

    is equal 

to the value of    
   

 if vector    is not eliminated from the list of centroids, and is selected as 

the     centroid,     

 Although the proposed method uses the same non-linear function                   
2) 

which was also used in the previous method [17], the weights   
    and the prediction term      

     
      

     used are different for different time series. This is one of the two adjustments 

made in the proposed joint series prediction. This modification contributed a better performance, 

because the GRBFNN Gaussian functions are close to 1 if an only if all   time series vectors 

  
          are closely located to the centroid. Thus, it can be argued that if the rainfall 

events are moving on a particular pattern, then there might a dependency among the position of 

the event (represented by Gaussian envelope centroids), and the size and directionality of the 

event (represented by the Gaussian covariance matrix). 

The second adjustment of the joint series prediction is the center selection process. 

Although the same OLS algorithm is used to select the centers, during the selection process a 

center is selected based on its error reduction ratio associated to all   parameters i.e.  

                 
                                                                                                                (32) 
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It can be argued that the selected center will allows the GRBFNN to have a better overall 

performance if all   Gaussian envelope parameters are used instead of a just single parameter, in 

the case where there is some dependence between the envelope parameters. 

3.2 Discussion 

As mentioned earlier, the input vector of the GRBFNN in the joint series prediction contains the 

successive sample differences of all parameters. During the training of GRBFNN, this merging 

plays a crucial role, because centers have knowledge of the whole motion of Gaussian envelopes 

as they can see the dependency among all   parameters of Gaussian envelopes. 

The scaling parameter   is used in the non-linear function of GRBFNN centers. This 

parameter is inversely proportional to the variance, and its value is assumed to be same for all 

centers. However, this parameter plays a significant role in the prediction process. 

Parameter    should be directly dependent to the number of GRBFNN centers. If the 

value of   is large, it implies that the Gaussian envelopes have a small variance, which in turn 

implies that the Gaussian function is narrow. Therefore, if a large α value is used, then a larger 

number of centers should be considered. Since each Gaussian function is the main representative 

function around its own centroid, if small   value is used, then it results in a significant overlap 

among the closely located Gaussian functions. 

The value of the parameter   is also related to the value of successive sample differences 

in the input vector. If successive sample differences are large, then they can afford a large 

Gaussian variance and thus a small  .  
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The value of   is also depends on the size of the Gaussians of the GRBFNN. If the GRBFNN 

center contains a large number of elements, a mismatch between all the elements of the 

successive difference vector and the centroid will result in a large Euclidean distance, and thus a 

small Gaussian function value. For this reason, the joint series prediction is producing a larger 

signal to noise ratio for smaller   value compared to the previously used method [6]. 
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Chapter 4: Simulations 
   

In this chapter, the experimentation results are presented for simulated and also actual weather 

image data.  

 The joint series prediction and the independent series prediction were compared using 

simulations in order to examine a specific motion pattern that was not available in actual 

weather-image based data. While experimenting with simulations, it’s not consistent to include 

all envelope parameters without knowledge of their dependency. Thus, simulations are 

concentrated only on the joint prediction of the Gaussian envelope centroid coordinates 

(horizontal and vertical). Based on these simulations the following conclusions were drawn. 

 

4.1 Motion Pattern 

The joint series and independent series predictor network (predicting parameters separately using 

separate GRBFNN) were tested with different kind of motion patterns. Initially, when they were 

tested with linear moving patterns, it was found that the performance of both joint series 

predictor and independent series predictor was mostly similar. The reason could be the lack of 

significant variations in the motion pattern. 

Moreover, the joint series predictor network and independent series predictor network 

were tested with circular motion patterns which have a significant variation in their motion 

pattern. The kind of motion was considered to be a counter clock wise rotation, coupled with an 

almost linear overall movement of the overall circulations, which is similar to the motion of 

cyclones and hurricane events. 
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Figure 8. Simulation presenting the performance of joint series predictor and independent series 

predictor 
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Figure 9. SNR results with respect to the variance and with respect to the number of centers for 

joint series predictor and independent series predictor 
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The joint series predictor and independent series predictor networks were trained using 200 

samples of the generated circular motion series, while 600 samples of the circular motion series 

were used to test both of these networks. The testing samples of the series that were used are the 

further evolvements of the circular motion series, corrupted by a small amount of additive 

random noise. Thus, only a short, noiseless version of the testing series was seen by the network 

during the training phase.  

One of the reasons of this simulation was to study the concept of parameter dependency. 

The second reason was to analyze the performance of two networks with a limited training data 

set, so that training and testing can be performed online. The simulations are presented in Figure 

9. The scaling parameter   value is 0.5 x 10-4 and number of centers employed is 8 for both 

predictor networks. The need of using small value for   has already been discussed in section 

3.2. From the simulations, it can be observed that joint series predictor network is more effective 

in predicting the particular motion pattern presented.  

4.2 Dependence on the number of basis function and on scaling parameter α 

As it is not easy to draw conclusions based on only a single simulation, several simulations were 

conducted which are presented in Figure 8. These simulations give a better idea of the 

performance of joint series predictor network and independent series predictor network in 

correspondence to the number of basis functions and different values of variance (which as a 

reminder is equal to        ). 

The results are presented in Figure 9. The top two figures present all results, while the 

bottom two figures present selected results in order to be able to provide a closer look to the SNR 

performance curves. 
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Form the simulations in Figure 9, it can be easily understood that the joint series predictor 

network produces higher SNR values compared to the independent series predictor network. 

Moreover, it can be seen that as the number of basis functions (centers) increases, the SNR 

performance of the two predictor networks is not respectively increasing. The reason for this can 

be the overlapping of basis functions, because with such a small variance only few centers are 

sufficient to approximate the series. Therefore, when a large number of centers are used, there is 

an overlap which in turn causes the network to lose its generalization capabilities. 

 The joint series predictor network and independent series predictor network may have 

their own range of variance values and number of basis function for which they may be 

performing well. In the simulation as the value of the parameter   used is in the order of 10-4.    

It can be argued that if a small numbers of basic functions are employed in the network, it is 

preferable to choose a small   for better SNR performance. 

 One of the main goals was to find a computationally efficient predictor network that will 

support a computationally efficient weather image modeling, so that the networks are tested with 

a small set of training data. However, if the training data set is large, then the value of the 

variance and number of basis function required may be different than the one used in these 

experiments. 
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4.3 Experimentation with Real weather-image Data 

It was clearly understood from the simulations that the joint series predictor provides higher SNR 

than the independent series predictor. In order to ensure that the concept dependency among 

Gaussian envelope parameters holds, experimentation was performed with real weather-image 

data. 

Figure 3 shows actual weather-image data in consecutive frames. Figure 4 illustrates 

these weather images approximations as a mixture of Gaussian envelopes using the technique in 

[6]. The weather-image data was approximated with a total number of 32 Gaussian envelopes in 

each frame.  

 

 

Figure 10. The Gaussian envelope centers path for four consecutive weather images 
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After the approximation is completed, the center coordinates (horizontal coordinate, vertical 

coordinate) of the Gaussian envelopes in each image are considered for four consecutive frames. 

Considering these two coordinates values in successive frames as a time series, they are 

presented to the joint series predictor network and the individual series predictor network. The   

Figure 10 shows the motion pattern of Gaussians envelope centers for four consecutive images.  

The response of both predictors is shown in Figure 11. 

 

 

Figure 11. Response of independent series predictor and joint series predictor  
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Figure 12.Error comparison of independent predictor and joint series predictor  

 

It is clear from Figure 12 that in overall joint series network prediction is better than the 

independent series network prediction, in terms of the prediction error. The error in Figure 12 is 

defined as the absolute difference between the actual coordinate value, and the predicted 

coordinate value. 
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Figure 13. MSE of independent series predictor and joint series predictor 

 

Figure 13 shows the Mean Square Error (MSE) of independent series predictor and joint series 

predictor. From this figure, it is clear that the joint series prediction has a smaller MSE value 

compared to the independent series prediction. The experiment is conducted with a total of 6 

different data sets. The obtained values of MSE and SNR values of two predictors are given in 

Table 1 and Table 2, respectively. Here, it should be reminded that the actual weather image was 

down sampled by 16, thus the image size of       was approximated with Gaussian 

envelopes. In other words, obtained MSE and SNR values of the two predictors are 16 times the 

values presented in Table 1 and Table 2, respectively. 
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Data Set No. Independent series predictor Joint series predictor 

Data set 1 0.0321     0.0272     

Data set 2 0.0272     0.0367     

Data set 3 0.1195     0.1093     

Data set 4 0.0318     0.0290     

Data set 5 0.0393     0.0374     

Data set 6 0.0278     0.0214     

    Table 1.Comparison in terms of MSE  

 

Data Set No. Independent series predictor Joint series predictor 

Data set 1 38.56     39.27     

Data set 2 37.32     38.17     

Data set 3 32.79     33.18     

Data set 4 39.71     40.11     

Data set 5 38.96     38.75     

Data set 6 39.62     40.76     

     Table 2. Comparison in terms of SNR 

From the above tables it can be argued that the joint series predictor performance is better 

compared to independent series predictor, in terms of MSE and SNR. 
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Chapter 5: Conclusion and Future work 
 

In this work, a modification to the existing technique was proposed and implemented. Assuming 

that weather radar data can be represented as a mixture of Gaussian envelopes, the main goal of 

the thesis is to investigate the parameter dependency of Gaussian envelope parameters.  

With the introduction of joint series prediction, the computational complexity and 

algorithm runtime are reduced. By using the proposed concept of parameter dependency it was 

shown that parameters can be predicted simultaneously. At the same time, a better SNR 

performance is achieved compared to predicting parameters independently, at least based on the 

experimental results performed in this work. 

Future work includes studying the dependency of all Gaussian envelope parameters 

including envelope heights and covariance matrices. For this study, interesting motion patterns 

which change rapidly such as hurricane events, cyclones, storms, and other significantly moving 

tropical systems will be collected. Although the forecasting of these events is a critical issue, it 

was proved that once the events are modeled, the forecasting can be done quickly by tracking the 

modeled parameters. 
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Appendix 

Code 
 

clc; 
clear all; 
close all; 

  
var=1/1000; %%% variance of gaussian for original and modified 
mc=3;    %%%modified OLS centers 
oc=6;    %%%original OLS centers 

  
ts=0.5;  %%%threshold %Note:value must be and 0< ts <1 

  
nd=2;    %No.of parameters (x,y, kx, ky, wx, wy) 
n1=4;   %%No.of past samples considered(length of each input vector) 
%%%%% Parameters for testing the n/w%%% 
nd2=2;    %no.of parameters (x,y, kx, ky, wx, wy) in each gaussian,should be 

equal to (nd) 
n2=4;    %%length of each input vector;always should be equal to (n1) 
hours1=1;hours2=1;params=2; 
paramst=2; 

  
[mxi,mde1,mD1,mI,mC,mDel,mE1,mth,mA1,mG1,mw]=modified_training(hours1,hours2,

params,nd,n1,ts,mc,var); 

  
%%%%%%%%%%%%%%%%tetsing Modified_Ols%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% followed (testing) is the main function which will carry out the whole- 
%-testing part of Modified_OLS 
%mde2=desired output of testing series 
% mD2=predicted output of tested series using modified_ols 
%mE2=Differece b/w the actual series and predicted series values 
%de2=desired output of testing series  
% mC=dlmread('mC.txt');mDel=dlmread('mDel.txt');mth=dlmread('mth.txt'); 

  
hours3=18; 
hours4=18; 
[input2,mxi2,mde2,mD2,mE2]=modified_testing(hours3,hours4,paramst,nd2,n2,var)

; 
% r); 
input1=input2(:,:,1); 
input3=input2(:,:,2); 
%%%%%%%%%%%%%%%%%%%%Trainign OLS %%%%%%%%%%%%%%%%%%%%%% 
% followed (ols_tr) is the main function which will carry out the whole- 
%-training part of OLS 
%send all input parameters defined so far 
%this will return the training pattern and responce of n/w for training 
%de1=desired output training series 
%D1=predicted output of trained series using ols 
%I Index of the selected centers using OLS 
%C Centers selected using OLS 
%Del prediction terms selected using OLS 
%E1 error 
%th weights computed using OLS 
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[xi1,de1,D1,I,C,Del,E1,th,A1,G1,w]=ols_tr(hours1,hours2,nd,n1,ts,oc,var) ; 

  
[xi2,E2,D2,de2]=ols_te(th,nd2,n2,hours3,hours4,var) ; 

  
figure 
plot(D1{:,1},'-g'); 
hold on 
plot(de1{:,1},'-r'); 
legend('Predicted(x,y)','Desired(x,y)'); 
title('Training pattern OLS'); 
figure 
plot(D1{:,2},'-g'); 
hold on 
plot(de1{:,2},'-r'); 
legend('Predicted(x,y)','Desired(x,y)'); 
title('Training pattern OLS'); 

  
figure 
plot(mD1(:,1),'-b'); 
hold on  
% figure 
plot(mde1(:,1),'-r'); 
legend('Predicted(x)','Desired(x)'); 
title('Training pattern of centers (M_OLS)'); 

  
%plot the testing series coordinates(x,y) 
figure 
plot(mD1(:,2),'-b'); 
hold on  
% figure 
plot(mde1(:,2),'-r'); 
legend('Predicted(y)','Desired(y)'); 
title('Training pattern of  (M_OLS)'); 

  
figure 
% subplot(3,1,1) 
plot(D2{:,1},'-g'); 
hold on 
plot(de2{:,1},'-r'); 
legend('Predicted(x,y)','Desired(x,y)'); 
title('Testing pattern OLS'); 

  
figure 
% subplot(3,1,2) 
plot(D2{:,2},'-g'); 
hold on 
plot(de2{:,2},'-r'); 
legend('Predicted(x,y)','Desired(x,y)'); 
title('Testing pattern OLS'); 

  
figure 
% subplot(3,1,1) 
plot(mD2(:,1),'-b'); 
hold on 
plot(mde2(:,1),'-r'); 
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legend('Predicted(x)','Desired(x)'); 
title('Testing pattern of centers (M_OLS)'); 
%  
figure 
% subplot(3,1,2) 
plot(mD2(:,2),'-b'); 
hold on 
plot(mde2(:,2),'-r'); 
legend('Predicted(y)','Desired(y)'); 
title('Testing pattern of centers (M_OLS)'); 
%  

  
% ols_me=[(mse(de1{1}-D1{1})+mse(de1{2}-D1{2})+mse(de1{3}-D1{3})+mse(de1{4}-

D1{4})+mse(de1{5}-D1{5}))/2 (mse(de2{1}-D2{1})+mse(de2{2}-D2{2})+mse(de2{3}-

D2{3})+mse(de2{4}-D2{4})+mse(de2{5}-D2{5}))/2] 
mols_me=[mse(mde1-mD1) mse(mde2-mD2)] 
ols_me=[(mse(de1{1}-D1{1})+mse(de1{2}-D1{2}))/2 (mse(de2{1}-

D2{1})+mse(de2{2}-D2{2}))/2] 
mols_me1=sqrt((mde2(:,1)-mD2(:,1)).^2+(mde2(:,2)-mD2(:,2)).^2); 
ols_me1=sqrt((de2{1}-D2{1}).^2+(de2{2}-D2{2}).^2); 
% pers_me=mse(test(:,1:end-1,:)-test(:,2:end,:)) 
error_ov1=(mde2(:,1)-mD2(:,1))-(de2{1}-D2{1}); 
error_ov2=(mde2(:,2)-mD2(:,2))-(de2{2}-D2{2}); 
dB_SIGNAL=10*log10(mse(mde2)); 
dB_ERROR_OLS=10*log10(ols_me(2)); 
dB_ERROR_mOLS=10*log10(mols_me(2)); 
% dB_ERROR_pers=10*log10(pers_me); 
dB_SNR_OLS=round((dB_SIGNAL-dB_ERROR_OLS)*100)/100 
dB_SNR_mOLS=round((dB_SIGNAL-dB_ERROR_mOLS)*100)/100 
% dB_SNR_pers=round((dB_SIGNAL-dB_ERROR_pers)*100)/100 

  
figure 
subplot(1,2,1), 
plot(de2{1},de2{2},'*k','Color',[0.7 0.7 0.7]);hold 

on;plot(D2{1},D2{2},'*k');hold off; 
% if(strcmp(model_used,'Circular')==1) 
%     hold on, plot(xcc,ycc,'Color',[.4 0.4 0.4]);hold off 
% end 
legend('Desired','Independent prdictor','Location','best'); 
xlabel('Horizontal Coordinate (Km)') 
ylabel('Vertical Coordinate (Km)') 
title(['Testing Series (OLS), SNR_{dB} = ' num2str(dB_SNR_OLS)]); 
axis equal 

  
subplot(1,2,2), 
plot(mde2(:,1),mde2(:,2),'*k','Color',[0.7 0.7 0.7]); hold 

on;plot(mD2(:,1),mD2(:,2),'*k');hold off 
% if(strcmp(model_used,'Circular')==1) 
%     hold on,plot(xcc,ycc,'Color',[.4 0.4 0.4]), hold off; 
% end 
legend('Desired','Joint series predictor','Location','best'); 
xlabel('Horizontal coordinate (Km)') 
ylabel('Vertical coordinate (Km)') 
title(['Testing Series (Joint OLS), SNR_{dB} = ' num2str(dB_SNR_mOLS)]); 
axis equal 
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figure 
subplot(1,2,1), 
plot(1:length(mD2(:,1)),filter2(ones(10,1)/10,abs(mD2(:,1)-

mde2(:,1))),':k',1:length(mD2(:,1)),filter2(ones(10,1)/10,abs(D2{1}-

mde2(:,1))),'-k'); 
xlabel('Gaussian Envelope Horizontal Coordinates') 
ylabel('Error - Horizontal Coordinate') 
title('Error Comparison (Independent series vs Joint series)'); 
legend('Joint series predictor','Independent series 

predictor','Location','best'); 

  
subplot(1,2,2), 
plot(1:length(mD2(:,1)),filter2(ones(10,1)/10,abs(mD2(:,2)-

mde2(:,2))),':k',1:length(mD2(:,1)),filter2(ones(10,1)/10,abs(D2{2}-

mde2(:,2))),'-k'); 
xlabel('Gaussian Envelope Vertical Coordiantes') 
ylabel('Error - Vertical Coordinate') 
title('Error Comparison (Independent series vs Joint series)'); 
legend('Joint series predictor','Independent series 

predictor','Location','best'); 

  
set(gcf,'Position',[101 101 800 800]) 
%  
figure 
plot(error_ov1,':k');hold on;plot(error_ov2,'-k');hold off; 
xlabel('Gaussian envelopes centroids') 
ylabel('Error - Verticaland horizontal Coordinate') 
title('Error Comparison (Independent series vs Joint series)'); 
legend('Error-vertical','Error-horizontal','Location','best'); 

  
figure 
plot(mols_me1,':k');hold on;plot(ols_me1,'-k'); 
xlabel('Gaussian envelopes centroid') 
ylabel('MSE- Vertical and HOrizontal Coordinate together') 
title('Mean Sqare Error(Independent series predictor vs Joint series 

predictor)'); 
legend('Joint series predictor','Independent series 

predictor','Location','best'); 

  
figure 
plot(input1(:,:),25-input3(:,:)); 
hold on 
plot(input1(1,:),25-input3(1,:),'*'); 
for i=1:length(input1(1,:)) 
    text(input1(end,i),25-input3(end,i),num2str(i)); 
end 
xlabel('Horizontal Coordinates(Km)') 
ylabel('Veritical Coordinates Movement') 
title('Gaussian Envelope centroids path'); 

  
% plot(1:length(mD2(:,3)),filter2(ones(10,1)/10,abs(mD2(:,3)-mde2(:,3))),'-

k',1:length(mD2(:,3)),filter2(ones(10,1)/10,abs(D2{3}-mde2(:,3))),':k'); 
% xlabel('Time') 
% ylabel('Error - Horizontal Coordinate') 
% title('Error Comparison (OLS vs Joint OLS)'); 
% legend('Predicted Joint OLS','Predicted OLS','Location','best'); 
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%  
% subplot(2,2,3), 
% plot(1:length(mD2(:,4)),filter2(ones(10,1)/10,abs(mD2(:,4)-mde2(:,4))),'-

k',1:length(mD2(:,4)),filter2(ones(10,1)/10,abs(D2{4}-mde2(:,4))),':k'); 
% xlabel('Time') 
% ylabel('Error - Horizontal Coordinate') 
% title('Error Comparison (OLS vs Joint OLS)'); 
% legend('Predicted Joint OLS','Predicted OLS','Location','best'); 
%  
% subplot(2,2,4), 
% plot(1:length(mD2(:,5)),filter2(ones(10,1)/10,abs(mD2(:,5)-mde2(:,5))),'-

k',1:length(mD2(:,5)),filter2(ones(10,1)/10,abs(D2{5}-mde2(:,5))),':k'); 
% xlabel('Time') 
% ylabel('Error - Vertical Coordinate') 
% title('Error Comparison (OLS vs Joint OLS)'); 
% legend('Predicted Joint OLS','Predicted OLS','Location','best'); 
%  
% set(gcf,'Position',[101 101 800 800]) 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function [input2,xi de d2 del]=real_input(hours1,hours2,params,s) 
% clc;clear all;close all; 
% hours1=1;hours2=1;s=5; 
% params=2; 
sam=s+1; 
location{1}='C:\Users\Hariprakash Reddy\Documents\SRAVANTHI\REFERENCE 

PAPERS\data\sep16_2004_ivan\rita_parameters\cx\'; 
location{2}='C:\Users\Hariprakash Reddy\Documents\SRAVANTHI\REFERENCE 

PAPERS\data\sep16_2004_ivan\rita_parameters\cy\'; 
location{3}='C:\Users\Hariprakash Reddy\Documents\SRAVANTHI\REFERENCE 

PAPERS\data\sep16_2004_ivan\rita_parameters\k1\'; 
location{4}='C:\Users\Hariprakash Reddy\Documents\SRAVANTHI\REFERENCE 

PAPERS\data\sep16_2004_ivan\rita_parameters\k2\'; 
location{5}='C:\Users\Hariprakash Reddy\Documents\SRAVANTHI\REFERENCE 

PAPERS\data\sep16_2004_ivan\rita_parameters\k3\'; 

  
% loc=strcat(location{params},num2str(hours1),'.txt'); 
%         temp=load(loc); 

         
for j=1:params 
        irw=1; 
        for i=hours1:hours2 
        loc=strcat(location{j},num2str(i),'.txt'); 
        temp=load(loc); 
        [rwt cwt]=size(temp); 
        for rw=1:rwt 
            input(:,irw,j)=temp(rw,:); 
            irw=irw+1; 
        end 
    end; 

  
    end 
%     input2=input(1:end,:,:); 
%     xi=input2(2:end-sam,:,:)-input2(3:end-sam-1,:,:); 
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%     de=input2(1,:); 
%     d2=input2(:,2); 
%     del=de-d2; 

  
[rw col di]=size(input); 
% input1=input(end:-1:1,:,:);     
temp=1; 
ir3=1;sf3=sam;ir4=1;sf4=sam; 
input2=input(end:-1:1,:,:); 
for k=1:di 
    ic=1; 

  
    sf2=sam; 
    input1=input(end:-1:1,:,k); 
    for j=1:col 
        ir=1; 
        st=1; 
        sf1=sam; 
        for i=1 
            temp(ir:sf2,ic)=input1(st:sf1,j); 
            st=st+1; 
            sf1=sf1+1; 
            ic=ic+1; 
        end 

  

  
    end 

     
    de(:,k)=temp(1,:); 
    d2(:,k)=temp(2,:); 
    input3(ir3:sf3,:)=temp; 
xi(ir4:sf4-2,:)=temp(2:end-1,:)-temp(3:end,:); 
    ir3=ir3+sam; 
    sf3=sf3+sam; 
    ir4=ir4+sam-2; 
    sf4=sf4+sam-2; 
end 
del=de-d2; 

  
% %      

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function [p]=modified_gaus(xg,cg,d2g,delg,no,var,hours,params) 
%xg sucessive difference samples of input 
%d2g past samples of time series  
%delg Initial Predication Terms 
%cg Initial centers 
%p=guassian terms 
%no is no.of parameters of guassian 
% clc;clear all; close all; 
% hours=1; 
% params=5; 
% no=5; 
% s=5; 
% var=1/2000; 
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% [xg,deg,d2g,delg]=real_input(hours,params,s); 
% % for prs=1:params 
%     cg=xg; 
%To calculate the Guassian terms 

  
[n2 N]=size(xg); 
[m2 M]=size(cg); 
%To calculate the Guassian terms 
for k=1:no 
for i=1:N  %to repeat the hidden node loop for every input(N number of 

inputs) 
     temp=xg(:,i); 
  for j=1:M  % to repeat M no.of centers or hidden nodes 
       nor=norm(temp-cg(:,j)); 
       gu=exp(-var*nor^2); 
       p(i,j,k)=gu*(d2g(i,k)+delg(j,k)); 
 end; 
 end; 
 %%%%%%%%%%%%end of calculating guassian term%%%%%%%%%%% 
end; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function [I,th,T,A1,G1,w]=modified_subset(d,ts,mc) 
%%%%%feb03su is function determine the actual centers and prediction terms 
%%I variable that contains the Index of the selected centers using OLS 

algorithm 
% th weight vector and each value is the weight associated with specific 
% center 
%%T is the thresold error value at which the subset selection process is 
%%terminated 
%p guassian terms 
%d is the normalized desired output desried 
%ts is tolerable threshold value 
[n,M,nd]=size(p(:,:,:)); 
% %%%%%%%first step of the subset selection algorithm %%%%%%%%% 
for i=1:M 
    for k=1:nd 
        w1(:,i,k)=p(:,i,k); 
        g1(:,i,k)=(w1(:,i,k)'*d(:,k))/(w1(:,i,k)'*w1(:,i,k)); 
        e1(:,i,k)=g1(:,i,k)^2*w1(:,i,k)'*w1(:,i,k)/(d(:,k)'*d(:,k)); 
    end 
    e1f(:,i)=sum(e1(:,i,1:nd)); 
end 
[e(:,1) I(:,1)]=max(e1f(:,:),[],2); 
w(:,1,1:nd)=p(:,I,1:nd); 
for i=1:nd 
    G1(1,:,i)=g1(:,I,i); 
end 
%%%%%%%%%end of sub set celction algoritm first step%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%%ts defines the tolerable error value that we can choose 
% ts=0.5; 
T=ts; 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%second step of algorithm for subset selction%%%%%% 
for ms=2:M 
   if T>=ts 
%     if ms<=mc 
        for k=2:ms 
            for i=1:M %%no.of centers 
                for N=1:nd %%nd.no.of parameters predicted at a time 
                    if(i~=I(:,:)) 

  
                        s=0; 
                        for j=1:k-1 
                            

a(j,k,N)=w(:,j,N)'*p(:,i,N)/(w(:,j,N)'*w(:,j,N)+0.0001); 
                            s=s+(a(j,k,N)*w(:,j,N)); 

                       
                        end 
                        wk(:,i,N)=p(:,i,N)-s; 
                        

gk(:,i,N)=wk(:,i,N)'*d(:,N)/(wk(:,i,N)'*wk(:,i,N)+0.0001); 
                        

ek(:,i,N)=gk(:,i,N)^2*wk(:,i,N)'*wk(:,i,N)/(d(:,N)'*d(:,N)+0.0001); 

  
                    else ek(:,i,N)=0; 
                    end 
                end 

  
                ekf(:,i)=mean(ek(:,i,1:nd)); 
            end 
            [e(:,k) I(:,k)]=max(ekf(:,:),[],2); 
            w(:,k,1:nd)=wk(:,I(:,k),1:nd); 
            G1(k,:,1:nd)=gk(:,I(:,k),1:nd); 

             
            for N=1:nd 
                for j=1:k-1 
                    

A1(j,k,N)=w(:,j,N)'*p(:,I(:,k),N)/(w(:,j,N)'*w(:,j,N)+0.0001); 
                    A1(j,j,N)=1; 
                end 
            end 
            %   w(:,k,2)=wk(:,I(:,k),2); 
            %  G1(k,:,2)=gk(:,I(:,k),2); 
        end 

  
        A1(ms,ms,1:nd)=1; 
        % A1(ms,ms,2)=1; 

  
        %%%%finding total error to terminate the sub set selection 

process%%%%%%% 

  
        t=0; 
        for i=1:ms 
            t=t+ e(:,i); 
        end 
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        T=nd-t; 
    end 
end 
for i=1:nd 
    th(:,i)=inv(A1(:,:,i))*G1(:,:,i); 
end 
% th(:,2)=inv(A1(:,:,2))*G1(:,:,2); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function 

[input2,xi2,de2,mD2,E2]=modified_testing(hours3,hours4,params,nd,n2,var) 
% C centers selected by OLS algorithm while training n/w 
%Del prediction terms calculated by OLS algorithm while training n/w 
% th , weights calculated by OLS algorithm while training n/w 
%test is series to be tested  

  
% %%%%% Parameters for testing the n/w%%% 
% nd;%no.of parameters (x,y, kx, ky, wx, wy) in each guassian,should be equal 

to (no) 
% n2;%%length of each input vector;always should be equal to (n1) 
%%%%%%%%%%%Testing the N/W for a different series(testing series)%%%% 
%%%%%%Generating sucessive sample differences for testing series%%%%%%%% 

  
[input2,xi2,de2,dp2,del2]=real_input(hours3,hours4,params,n2); 

  
%%%%%%%%%%%%%computing guassian terms of testing series%%%%%%%% 
%p3=guassian terms 

  
[p3]=modified_gaus(xi2,C,dp2,Del,nd,var); 
%%%%%%%%%%calculating normalized predicted output of testing series %%  
for i=1:nd 
mD2(:,i)=p3(:,:,i)*th(:,i); 
end 
% E2 is the Error b/w the desired series de2 and Actual predicted series  ytt  
E2=de2-mD2; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function [p]=ols_guas(xg,cg,d2g,delg,var) 
%xg sucessive difference samples of input 
%d2g past samples of time series  
%delg Initial Predication Terms 
%cg Initial centers 
%p=guassian terms 

  
[n2 N]=size(xg); 
[m2 M]=size(cg); 
%To calculate the Guassian terms 
for i=1:N  %to repeat the hidden node loop for every input(N number of 

inputs) 
     temp=xg(:,i); 
  for j=1:M  % to repeat M no.of centers or hidden nodes 
       no=norm(temp-cg(:,j)); 
       gu=exp(-var*no^2); 
    p(i,j)=gu*(d2g(i,:)+delg(j,:)); 



 

 

45 

 

    %figure(100+j),plot(i,gu,'*'),hold on 
    %j 
 end; 
 end; 
 %%%%%%%%%%%%end of calculating guassian term%%%%%%%%%%% 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function [xi,d2,del,de]=ols_input(hours1,hours2,jp,s) 
%jp===specific file (1.txt,2.txt) 
% function [xi,d2,del,d,de,Su,sfi,indices]=ols10i(j,nd,npi,sfi,input) 
%xi sucessive difference samples of input 
%d2 past samples of time series (going to be used in subset selection 
%function) 
%del Initial Predication Terms 
%de actual desire output of time series 
%nd no.of parameters we are prediciting at a time(no.on o/p arguments) 
%npi no.of past samples to be considered(length of each input vector) 
% clc;clear all;close all; 
% hours1=1;hours2=1; 
% jp=5;s=2; 
sam=s+1; 
location{1}='C:\Users\Hariprakash Reddy\Documents\SRAVANTHI\REFERENCE 

PAPERS\data\sep16_2004_ivan\rita_parameters\cx\'; 
location{2}='C:\Users\Hariprakash Reddy\Documents\SRAVANTHI\REFERENCE 

PAPERS\data\sep16_2004_ivan\rita_parameters\cy\'; 
location{3}='C:\Users\Hariprakash Reddy\Documents\SRAVANTHI\REFERENCE 

PAPERS\data\sep16_2004_ivan\rita_parameters\k1\'; 
location{4}='C:\Users\Hariprakash Reddy\Documents\SRAVANTHI\REFERENCE 

PAPERS\data\sep16_2004_ivan\rita_parameters\k2\'; 
location{5}='C:\Users\Hariprakash Reddy\Documents\SRAVANTHI\REFERENCE 

PAPERS\data\sep16_2004_ivan\rita_parameters\k3\'; 

  
    for j=jp 
        irw=1; 
        for i=hours1:hours2 
        loc=strcat(location{j},num2str(i),'.txt'); 
        temp=load(loc); 
        rwt=size(temp); 
        for rw=1:rwt 
            input(:,irw)=temp(rw,:); 
            irw=irw+1; 
        end 
    end; 

  
    end 

  
input1=input(end:-1:1,:);     
[rw col]=size(input); 
temp=1; 
ir3=1;sf3=sam;ir4=1;sf4=sam; 

  
for k=1 
    ic=1; 
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    sf2=sam; 

  
    for j=1:col 
        ir=1; 
        st=1; 
        sf1=sam; 
        for i=1 
            temp(ir:sf2,ic)=input1(st:sf1,j); 
            st=st+1; 
            sf1=sf1+1; 
            ic=ic+1; 
        end 

  
    end 
    de(:,k)=temp(1,:); 
    d2(:,k)=temp(2,:); 
    input3(ir3:sf3,:)=temp; 
xi(ir4:sf4-2,:)=temp(2:end-1,:)-temp(3:end,:); 

  
    ir3=ir3+sam; 
    sf3=sf3+sam; 
    ir4=ir4+sam-2; 
    sf4=sf4+sam-2; 
end 
del=de-d2; 

  
% %     input2=input1(1:end-1,:,:)-input1(2:end,:,:); 
%     xi=input2(2:end-1,:,:)-input2(3:end,:,:); 
%     de=input2(1,:); 
%     d2=input2(:,2); 
%     del=de-d2; 

  

  
% %     input2=input1(1:end-1,:,:)-input1(2:end,:,:); 
%     xi=input1(2:end-1,:)-input1(3:end,:); 
%     de=input1(1,:)'; 
%     d2=input1(2,:)'; 
%     del=de-d2; 

     

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function [I,th,T,A1,G1,w]=ols_subset(p,d,ts,oc) 

  
%%%%%nov23su is function determine the actual centers and prediction terms 
%%I variable that contains the Index of the selected centers using OLS 

algorithm 
% th weight vector and each value is the weight associated with specific 
% center 
%%T is the thresold error value at which the subset selection process is 
%%terminated 
%p guassian terms 
%d is the normalized desired output desried 
%ts is tolerable threshold value 
%%%%%%%first step of the subset selection algorithm %%%%%%%%% 
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%M define the number of centers 
% clc; 
% clear all; 
% close all; 
% p=rand( 
[n M]=size(p); 
for i=1:M 
    w1(:,i)=p(:,i); 
    g1(:,i)=(w1(:,i)'*d)/(w1(:,i)'*w1(:,i)); 
    e1(:,i)=g1(:,i)^2*w1(:,i)'*w1(:,i)/(d'*d); 
end 
[e(:,1) I(:,1)]=max(e1(:,:),[],2); 
w(:,1)=p(:,I); 
G1(1,:)=g1(:,I); 
%%%%%%%%%end of sub set selection algorithm first step%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  
%%ts defines the tolerable error value that we can choose 
% ts=0.5; 
T=ts; 

  

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%second step of algorithm for subset selction%%%%%% 
for ms=2:M 
     if T>=ts 
%      if ms<=oc 
        for k=2:ms 
            for i=1:M 
                if(i~=I(:,:)) 
                    s=0; 
                    for j=1:k-1 
                        a(j,k)=w(:,j)'*p(:,i)/(w(:,j)'*w(:,j)+0.0001); 
                        s=s+(a(j,k)*w(:,j)); 
                        A1(j,k)=a(j,k); 
                        A1(j,j)=1; 
                    end 
                    wk(:,i)=p(:,i)-s; 
                    gk(:,i)=wk(:,i)'*d/(wk(:,i)'*wk(:,i)+0.0001); 
                    ek(:,i)=gk(:,i)^2*wk(:,i)'*wk(:,i)/(d'*d+0.0001); 
                else ek(:,i)=0; 
                end 

  
            end 

             
            [e(:,k) I(:,k)]=max(ek(:,:),[],2); 
            w(:,k)=wk(:,I(:,k)); 
            G1(k,:)=gk(:,I(:,k)); 
            for j=1:k-1 
                A1(j,k)=w(:,j)'*p(:,I(:,k))/(w(:,j)'*w(:,j)+0.0001); 
                A1(j,j)=1; 
            end 
        end 
        A1(ms,ms)=1; 
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        %%%%finding total error to terminate the sub set selection 

process%%%%%%% 

  
        t=0; 
        for i=1:ms 
            t=t+ e(:,i); 
        end 
        T=1-t; 
    end 
end 
%%%%%%%%%%%%%%%%%%%%%%end of the subset selection algorithm second step%% 
th=inv(A1)*G1; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5 

function 

[xi3,o_E2,o_DD2,o_de2]=ols_te(o_C,o_Del,o_th,nd,n2,hours3,hours4,var)  
% clear all; 
% close all 
% clc; 
for i=1:nd 
  C=o_C{:,i}; 
  Del=o_Del{:,i}; 
  th=o_th{:,i}; 
%%%%%%%%%%%%%%%%%%%%%To generate time series%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% [xi2,dp2,del2,d2,de2,su2]=ols_ip(i,n2,sf2,test); 
[xi2,dp2,del2,de2]=ols_input(hours3,hours4,i,n2); 
xi3(:,:,i)=xi2; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%% 
[p3]=ols_guas(xi2,C,dp2,Del,var); 
D2=p3*th; 
E2=de2-D2; 
[m n]=size(D2); 

  
o_E2(:,i)={E2}; 
o_DD2(:,i)={D2}; 
o_de2(:,i)={de2}; 
end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function 

[xi1t,o_de1,o_DD1,o_I,o_C,o_Del,o_E1,o_th,A1,G1,w]=ols_tr(hours1,hours2,nd,n1

,ts,oc,var)  
% o_de1 desired output of training series 
% o_DD1 predicted output of training series 
% o_I Index of selected centers 
% o_C selected centers 
% o_Del selected prediction terms using OLS 
% o_E1 Erroe b/w actual desired o.p and predicted output 
% o_th computed weights using OLS 
% train is the training i/p series 
% nd no.of parametrs of (x,y,kx,ky,wx,wy) 
% n1 no.of past sample(length of each i/p vector) 
% sf1 no.of total i/p vectors each of length n1 
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% ts tolerable threshold 

  
% clc; 
%  
% clear all; 
% close all;hours1=1;hours2=2;nd=5;n1=5;ts=0.5;oc=4;var=1/2000; 
i=1;  
% train=train1(:,:,:); 
for j=1:nd 

    
%%%%%%%%%%%%%%%%%%%%%To generate input data of time 

series%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
[xi1,dp1,del1,de1]=ols_input(hours1,hours2,j,n1); 
xi1t(:,:,j)=xi1; 
c1=xi1; 
%%%%%%%%%%nov4 is function that determine guassian terms%%%%%%%%% 
%%p > guassian terms 
[p]=ols_guas(xi1,c1,dp1,del1,var); 

  
%%%%%nov4sub is function determine the actual centers and predication terms 
%%I variable that contains the centers index,th is variables that 
%%represents the weights and Del prediction terms 
[I,th,T,A1,G1,w]=ols_subset(p,de1,ts,oc); 
%%now assigning the actual ceners and prediction terms obatined from 

algorithm to vairables 
C=c1(:,I);%C--centers 
Del=del1(I,:);%del--prediction terms 
%%%%%%%% %Testing the trained network for th same series 
P=p(:,I); 
D1=P*th; 
E1=de1-D1; 
DD1=D1; 
o_de1(:,j)={de1}; 
o_DD1(:,j)={DD1}; 
o_I(:,j)={I}; 
o_C(:,j)={C}; 
o_Del(:,j)={Del}; 
o_E1(:,j)={E1}; 
o_th(:,j)={th}; 
i=i+1; 
end 
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