
University of New Orleans University of New Orleans

ScholarWorks@UNO ScholarWorks@UNO

University of New Orleans Theses and
Dissertations Dissertations and Theses

12-17-2010

Weather Radar image Based Forecasting using Joint Series Weather Radar image Based Forecasting using Joint Series

Prediction Prediction

Sravanthi Kattekola
University of New Orleans

Follow this and additional works at: https://scholarworks.uno.edu/td

Recommended Citation Recommended Citation
Kattekola, Sravanthi, "Weather Radar image Based Forecasting using Joint Series Prediction" (2010).
University of New Orleans Theses and Dissertations. 1238.
https://scholarworks.uno.edu/td/1238

This Thesis is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with
permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright
and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-
holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the
work itself.

This Thesis has been accepted for inclusion in University of New Orleans Theses and Dissertations by an
authorized administrator of ScholarWorks@UNO. For more information, please contact scholarworks@uno.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of New Orleans

https://core.ac.uk/display/216837216?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.uno.edu/
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/etds
https://scholarworks.uno.edu/td?utm_source=scholarworks.uno.edu%2Ftd%2F1238&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uno.edu/td/1238?utm_source=scholarworks.uno.edu%2Ftd%2F1238&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uno.edu

Weather radar image based forecasting using joint series prediction

A Thesis

Submitted to the Graduate Faculty of the
University of New Orleans
in partial fulfillment of the

requirements for the degree of

Master of Science
in

Engineering
Electrical Engineering

by

Sravanthi Kattekola

B.Tech Jawaharlal Nehru Technological University, 2007
M.S University of New Orleans, 2010

December 2010

ii

Acknowledgement

I owe my deepest gratitude to my supervisor Dr. Dimitrios Charalampidis for his patience

guidance, excellent advising, invaluable assistance, and support throughout this study. I am

indebted to advisory committee member Professor Kim Jovanovich for his guidance and

direction. Deepest gratitude is also due to the advisory committee member Dr. Edit Bourgeois

whose knowledge and assistance made this study successful.

Special thanks to my parents for their unconditional support. I would like to take this

opportunity to express my profound gratitude to my brother for his understanding and

encouragement.

iii

Table of Contents

List of Figures .. iii
List of Table ... iv
Abstract ..v
Chapter 1: Introduction ..1
 1.1Overview of Radial Basis Function Neural Networks2

 1.2 Competitive Radial Basis Function Neural Networks3
Chapter 2: Non linear and Non Stationary Timer series prediction.....................................8

 2.1 Gradient Radial Basis Function Neural Network ..8
 2.2 Orthogonal Least Squares algorithm ...12

Chapter 3: Joint series prediction ...17
 3.1 Proposed approach ...18
 3.2 Discussion ..21

Chapter 4: Simulations ...23
 4.1 Motion Pattern ...23
 4.2 Dependence on the number of basis function and parameter α26
 4.3 Experimentation with rainfall data...28
Chapter 5: Conclusions and Future Work ...33
References ..34
Appendix: Code ...35
Vita ...50

iv

List of Figures

Figure 1. Radial Basis Function Neural Network architecture.

Figure 2. Competitive Radial Basis Function Neural Network.

Figure 3. Weather radar precipitation events in five consecutive images (starting from (a) to (e))

Figure 4. Weather images approximated as mixture of Gaussian envelopes in five consecutive

images (starting from (a) to (e)).

Figure 5. Topology of the first order GRBFNN.

Figure 6. Time series.

Figure 7. Joint series prediction using GRBFNN.

Figure 8. Simulations presenting the performance of joint series predictor and independent series

predictor.

Figure 9. SNR results with respect to the variance and with respect to the number of centers for

joint series predictor and independent series predictor.

Figure 10. The Gaussian envelope centers path for four successive images in a sequence.

Figure 11. Response of independent series predictor and joint series predictor.

Figure 12. Error comparison of independent series predictor and joint series predictor.

Figure 13. MSE of independent series predictor and joint series predictor.

v

List of Tables

Table 1. Comparison in terms of MSE.

Table 2. Comparison in terms of SNR.

vi

Abstract

Accurate rainfall forecasting using weather radar imagery has always been a crucial and

predominant task in the field of meteorology [1], [2], [3] and [4]. Competitive Radial Basis

Function Neural Networks (CRBFNN) [5] is one of the methods used for weather radar image

based forecasting.

 Recently, an alternative CRBFNN based approach [6] was introduced to model the

precipitation events. The difference between the techniques presented in [5] and [6] is in the

approach used to model the rainfall image. Overall, it was shown that the modified CRBFNN

approach [6] is more computationally efficient compared to the CRBFNN approach [5].

However, both techniques [5] and [6] share the same prediction stage.

In this thesis, a different GRBFNN approach is presented for forecasting Gaussian

envelope parameters. The proposed method investigates the concept of parameter dependency

among Gaussian envelopes. Experimental results are also presented to illustrate the advantage of

parameters prediction over the independent series prediction.

Key words: Radial Basis Function Neural Network, Forecasting, Time Series Prediction.

1

Chapter 1: Introduction

The nature of the atmosphere is chaotic, thus rainfall forecasting is always a challenging issue.

The rainfall forecasting system is intended to assist an assortment of fields that includes marine

[7], forestry [8], private sector [9] and military applications [10].

In ancient times, forecasting was mostly based on weather pattern observation. Over the

years, the study of weather patterns has resulted in various techniques for rainfall forecasting.

Present rainfall forecasting embodies a combination of computer models, interpretation, and an

acquaintance of weather patterns. Some of the very commonly used methods are the persistence

method [11], the use of a barometer [12], nowcasting [13], and use of forecast models [14], and

[15]. All these methods result in reasonably accurate prediction.

Several radars were developed to observe weather patterns [16]. The development of

artificial Neural Networks established an innovative trend to understand the intricate weather

patterns, and therefore improve the forecasting accuracy. In this work, the weather radar data

used are obtained from the NASA website [16]. The data have been collected by the WSR-88D

radar located in Houston, Texas.

The thesis is organized as follows. The rest of Chapter 1 presents an overview of Radial

Basis Function Networks [5], and how they are used to model the rainfall events [6]. Chapter 2

discusses rainfall forecasting using GRBFNN [17]. Chapter 3 presents the proposed work, and

discusses the adjustments made to the existing forecasting algorithms. Chapter 4 presents the

experimental results using simulations and actual weather precipitation events [22]. Finally,

Chapter 5 concludes the thesis suggesting future work.

2

1.1 Overview of Radial Basis Function Neural Networks

In general, Radial Basis Function Neural Networks (RBFNN) consist of three layers. Each

network layer consists of certain nodes. The input data are presented to the network as vectors.

Each node of the hidden layer holds a suitable centroid or prototype, and each hidden node

performs a nonlinear function. The response of each hidden node is multiplied with its

corresponding connecting weight, and presented to the output layer. In this layer, all responses

obtained from the hidden layer are combined accordingly to get the network output. The RBFNN

may be trained following an iterative process in order to get the desired output. Training includes

adaption of the network parameters. These parameters depend on the type of the non linear

function associated to the hidden nodes. The general architecture of RBFNN is shown in

Figure 1.

Figure 1. Radial Basis Function Neural Network architecture

…….,,,

 … .

 .

 .

 .

 . .

Input Layer Hidden Layer Output Layer

Input vectors
Network Output

…….,,,

 … w1

 w2

wn

3

1.2 Competitive Radial Basis Function Neural Networks

In the particular application of weather forecasting, the CRBFNN has been used to forecast the

rainfall map in 2-D imaging [5]. In this approach, forecasting is performed in two steps. The first

step is to approximate the rainfall events using localized functions, and in particular, Gaussian

envelopes. The second step is rainfall forecasting by using the approximated Gaussian envelope

parameter. For forecasting purposes, a different Neural Network called GRBFNN [17] has been

used.

The CRBFNN network consists of three layers, namely, the input layer, the hidden layer,

and the output layer. The network architecture is shown in Figure 2. In this approach, a rainfall

image of size is represented as a set of vectors {x1, x2 ,, xn}. The vector represents

the pixel value f(
 ,

 at its corresponding coordinates (
 ,

 of rainfall image. In order to

model the rainfall image, all these vectors , 1 ≤ i ≤ n are used to train the network.

.

 Figure 2. Competitive Radial Basis Function Neural Network

Input Layer Hidden Layer Output Layer

fiaaakaka

Ψm()

…….,,,

 … .

 .

 .

 .

 .

Ψ1()

…….,,,

 … w1

 w2

wm

…….,,,

 … .

 .

 .

 .

4

Assuming that the vector is applied as input to the network, the response of the hidden

node for input vector is given by following equation:

 Ψj (

 (1)

where

T , (2)

The above equation (2) represents the Mahalanobis distance between the input vector , and

centroid associated to the node of hidden layer. Moreover, is the inverse covariance matrix,

thus, equation (1) represents a directional Gaussian function. For modeling rain events, the width

of the Gaussian function is made independent along each direction using Mahalanobis distance.

The CRBFNN output is the maximum of the individual hidden node responses Ψ1 , Ψ2 ,

......, Ψn multiplied with their connection weights , , ,, . In other words, only

those hidden nodes whose output is close to the Gaussian centroid, in the mahanalobis sense will

contribute significantly to the network output . The network output is expressed as follows

 Ψj (, 1) (3)

5

Equation (3) represents the approximated rain rate i.e. pixel value at coordinates (
 ,

 of

the rainfall fall image. Also, n is the total number of the nodes in the hidden layer, and is the

bias term associated to the hidden node.

Based on the above discussion, the parameters required for modeling the precipitation

events are the weights , the inverse covariance matrix , and the centroid . From equation

(3) it is also clear that the node that gives the maximum output for a point in rainfall image will

be activated and trained. The training of the parameters is performed in an iterative manner using

the learning rules presented in [18]. During this process, if none of the nodes in the hidden layer

gives an output that exceeds a particular threshold, a new hidden node will be initialized at that

point. In addition, hidden nodes which are not producing a significantly large output for a given

number iterations are deleted. However, the deletion is performed only after examining all input

vectors extracted from the rainfall image. The Mean Square Error (MSE) between the network’s

output , and the actual output f(
 ,

 , i.e. the pixel value at coordinates (
 ,

 is

computed. This MSE is fed back to the network to reduce the error and adopt the parameters of

the network for the purpose of reducing the MSE. The iterative training process will be

terminated once a specified maximum number of iterations is reached, [5] or when a specified

minimum MSE is achieved [5].

 Once the network training is complete, the output image produced by the network will

contain the modeled rain events. In other words, the output image is approximated as mixture of

Gaussian envelopes. The Gaussian envelope parameters, including the weights, the covariance

matrix, and the centroids, are used in rainfall forecasting [17].

6

However, the CRBFNN approach in [5] used the full resolution rainfall image size of to

train the network, following a pyramidal approach. Even though the pyramidal approach speeds

up the process, the overall training stage is still time consuming. In order to solve this problem,

an alternative CRBFNN technique [6] was proposed, which is computationally efficient. In the

technique presented in [6], instead of using the full resolution weather radar image, a down

sampled version of the image is used to train the network. The high resolution image is simply

obtained by an extrapolation of the Gaussian parameter for higher resolution. As a result, the

computational time is considerably reduced while achieving the same MSE as for CRBFNN [5].

Apart from that, in technique [6], only non-zero value pixels and a zone of zero-value

pixels around the non-zero value pixels are used in the training process. Considering the zone of

zero-value pixels is important because the Gaussian envelopes may assume some arbitrary values

beyond the rainfall event boundaries. This selection during training of the network ensures the

Gaussian function represented by the hidden nodes is restricted to the boundaries determined by

the zero-value pixels zone. At the same time, the majority of zeros in the weather image are not

used in the training process.

In general, as the consecutive weather images are similar, the Gaussian envelope

parameters of the preceding weather image are used as starting points to model its consecutive

weather image. As a result, computation time is reduced. The technique in [6] also uses the same

learning rules [18] for training, but the network parameters such as weights, covariance matrix,

and centers of hidden layer nodes are updated differently [6]. Once the training of the network is

complete, the output image of the network will be represented as a mixture of Gaussian

envelopes. The obtained envelope parameters including centers, covariance matrix, and weights

are used in GRBFNN [17] for rainfall forecasting, as presented in Chapter 2.

7

Figure 1 illustrates a sequence of radar rainfall maps of hurricane Rita, and Figure 3 illustrates

the rainfall events approximated as a mixture of Gaussian envelopes.

 (a) (b)

Figure 3. Weather radar precipitation events in consecutive two images (starting from (a) to (b))

Figure 4. Weather images approximated as mixture of Gaussian envelopes in two consecutive

images (starting from (a) to (b))

8

Chapter 2: Non-linear and non-stationary time series

Time series is defined as a sequence of successive samples of an event, which are temporally

equidistant from one another without any missing observation [19]. In particular, non-linear and

non-stationary time series have a mean that varies with respective time [20]. These series have an

important role in real time applications such as interest rate dynamics [24], macroeconomic

applications [23], and heart rate dynamics analysis [25]. Figure 6 illustrates a general time series.

2.1 Gradient Radial Basis Function Neural Network

GRBFNN is a three layer feed-forward Neural Network [17]. The three layers are input layer,

hidden layer, and output layer. In this network, the nonlinear function associated to the hidden

layer nodes is a static Gaussian Function . Each node of the hidden layer holds a suitable

center . In order to process the input data, the input vector is compared to each node’s center

 . The GRBF network output is a sum of the individual hidden node responses multiplied

with their corresponding connection weights .

 As mentioned in Chapter 1.2, the technique in [6] represents the rainfall events image as a

mixture of Gaussian envelopes. Thus, rainfall forecasting can be done by tracking the parameters

associated to the Gaussian envelopes. The Gaussian parameters include envelope centroids, the

covariance matrices and the weights.

 In general, the envelope parameters obtained from consecutive images can be represented

as time series. Thus, forecasting can be performed by predicting the series’ next value. The

GRBFNN approach presented in [17] is used for this time series prediction. One reason of

9

employing this approach is that the hidden layer nodes of GRBFNN [17] can cope with the series

which are characterized by a non-linear and non-stationary behavior.

 GRBFNN [17] considers the successive sample differences of the time series as the input

vector presented to the network. It analyzes the non-linear and non-stationary behavior of the

series to make an accurate prediction. The network architecture is shown in Figure 5.

Figure 5. Topology of the first order GRBFNN

A general time series is shown in Figure 6. The input vector of GRBFNN, consists of k

successive sample differences of the time series at a particular time i as follows:

∑

 ..

 .

 .

Input Layer Hidden Layer Output Layer

…….,,,

 … .

 .

 .

 .

 .

 .

.

10

 ,

……..

T (4)

where , are the successive samples of the input time series.

Thus, vector represents the rate of change in the time series for the past k samples. This vector

is used to predict the time series future value .

Figure 6. Time series

The input vector is applied to the hidden layer of the GRBFNN. The hidden node response

of the network, , for input vector is given by following equation

2) (5)

11

In equation (5), || ||
2) represents a static k-dimensional Gaussian function, and

is a scaling parameter. This function compares the similarity of the input vector to the hidden

node’s center . Here is an k-dimensional center vector of hidden node.

The additional term is local single step prediction of by the hidden

node and is a constant value associated with the center . Thus, if the input vector is very

similar to the hidden node center the value of Gaussian function in equation (5) will be

close to 1.0, and the predictor becomes active.

The response of each hidden node of GRBFNN is multiplied with its corresponding

connection weight , and the weighted sum of these responses will give the network

output as follows:

 (6)

The centers ,and prediction terms , can be chosen from the training data

.

using OLS algorithm [21]. During training, for each training input vector a sample difference is

defined as follows:

 (7)

If input is selected as the center , we set to ensure that the hidden node is a

perfect prediction of . A detailed discussion of the OLS algorithm is presented in chapter 2.2.

12

2.2 Orthogonal Least Squares algorithm (OLS)

In order to obtain the GRBFNN centers and prediction terms, initially all the training input

vectors

 are considered as centers of the GRBFNN. The GRBFNN output equation (6) for

the training input

 can be expressed in the following form:

 (8)

 (9)

where

 T (10)

T (11)

 (12)

T, (13)

 T (14)

In equation (8) the matrix P consists of regressor vectors, . The OLS algorithm transforms

these regressors into orthogonal basis vectors. Thus, each regressor contribution to

the output d can be determined. The regressor matrix P is can be decomposed as follows:

 (15)

where

13

 1

 0 1

 = (16)

 0 0 0 0 1

and

 (17)

In equation (16), is an matrix with orthogonal columns such that it will satisfy the

following condition

 T (18)

where is the diagonal matrix with elements

 , (19)

Using Gram-Schmith orthogonalization [22], matrices A and W can be computed based on the

procedure is described below

 , k=2,, M

From equations (13) and (8)

 (20)

14

The OLS solution for the non linear equation (8) is

 (21)

Based on linear regression, the is given by

 , (22)

From the above steps, once and are computed, the weights of the GRBF network . . .

 are obtained using equation (20).

However, in Neural Networks like GRBFNN the training data set is usually very large,

and during training initially all input vectors are considered as centers of the network. In such a

case, the regressor matrix is very large consisting of regressors. In actuality, a satisfactory

model requires only regressors, which is a smaller number than (< <). These

significant regressors are selected using the OLS subset selection process [21].

The matrix has orthogonal columns i.e. T , and thus and are orthogonal

for . Therefore, the sum of squares of the GRBFFNN output is expressed as

 (23)

The variance of GRBFNN output is given by

 (24)

In equation (23),

 is the variance of actual output, while is the

variance of error. The error reduction ratio for GRBFNN output is defined as:

15

 , (25)

Using equation (24), the error reduction ratio is computed for all regressors The

significant regressors are selected from the total regressors based on their

computed error reduction ratio. This subset selection is an iterative process and is terminated

once the sufficient number of regressors are found, as determined by OLS’s [21] specified

threshold value. The selection procedure is summarized as follows

Step 1 :

First step , for compute

select

 }

Step 2:

At the step where for , , ………

16

Find

 , , ……… }

select

Step 3 :

The procedure is terminated at step where

 where is a chosen tolerance (26)

Using this subset selection process, the significant number of regressors , , as well

as matrices and A are determined. The weights of the GRBFNN are obtained using g and A in

equation (20).

As mentioned in Chapter 2.1, In the GRBFNN approach, each approximated Gaussian

envelope parameters are considered as individual time series. As a result rainfall forecasting is

made once all parameters path are predicted.

However, the technique [5] has some drawbacks as discussed in Chapter 3. In order to

overcome these, a new approach called joint series prediction [22] is presented in this thesis.

17

Chapter 3: Joint series prediction

The study of several cyclones and storms reveled that most of the times their path can be

represented as a time varying non-linear and non-stationary series [5]. This kind of storm

behavior is always chaotic and needs to be forecasted immediately. For such events, even though

the GRBFNN [17] performance is satisfactory, an enhanced performance may be required.

 The hurricane or cyclone event forecasting has always being a complex issue to

understand, and uncertain to forecast an accurate rainfall. Sometimes these events’ motion is fast,

which needs almost an immediate prediction. There wouldn’t be sufficient time to analyze the

motion of events, and then to forecast their path. In such situations, the only solution would be to

train and test the network in an online mode.

 As discussed in Chapter 1.2, the technique in [5] represents the rainfall map as a mixture

of Gaussian envelopes. This method has some shortcomings discussed below.

 Primarily, the technique [5] assumes that there is no dependency among the Gaussian

envelope parameters. In actuality, Gaussian motion is directly associated with the change of the

envelope parameters with respect to time. Thus, there should be a dependency among all these

parameters. Apart from that, it considers each Gaussian envelope parameters as individual time

series and forecasts the parameters separately using GRBNN. Then, if Gaussian envelope has n

parameters, n number of GRBFNN should be trained, which is an extremely time consuming

process. This also results in additional computational complexity. In case of hurricanes or

cyclone events, their motion has to be predicted right away, which may not be possible in this

case.

18

In order to overcome all these shortcomings, a new concept called joint series prediction is

proposed. This proposed method investigates the dependency among the envelope parameters.

All envelope parameters are predicted simultaneously, so computational time is reduced.

3.1 Proposed approach

Assume that each approximated Gaussian envelope has N number of parameters. The input

vector contains the successive sample difference of all N parameters and is given by :

 (27)

where

 ,

 This input is applied to the hidden layer of the GRBFNN. The hidden node response of the

GRBF network for the input is given by

2)

 (28)

Here is an K-dimensional center vector and

 is a

constant vector associated with the center .The response of each hidden node is multiplied with

its connecting weights

 , (29)

The weighted sum of these responses provides the network output as follows:

19

 , (30)

Figure 7. Joint series prediction using GRBFNN

The centers, and the prediction terms, , are chosen using the OLS subset

selection process from the training data set

. During the subset selection process, initially

all input vectors of the training dataset

 are considered as GRBFNN centers. However,

during the subset selection process
 centroids are eliminated based on their error

reduction ratio, and finally, the algorithm provides the optimal number of centers M that are used

20

for prediction. For each training input vector

, a sample difference is defined and is given

by:

 , (31)

If input is selected as the center for the time series , we set

)

 to

ensure that the hidden node is a perfect predictor of
 Therefore, the value of

 is equal

to the value of

 if vector is not eliminated from the list of centroids, and is selected as

the centroid,

 Although the proposed method uses the same non-linear function
2)

which was also used in the previous method [17], the weights
 and the prediction term

 used are different for different time series. This is one of the two adjustments

made in the proposed joint series prediction. This modification contributed a better performance,

because the GRBFNN Gaussian functions are close to 1 if an only if all time series vectors

 are closely located to the centroid. Thus, it can be argued that if the rainfall

events are moving on a particular pattern, then there might a dependency among the position of

the event (represented by Gaussian envelope centroids), and the size and directionality of the

event (represented by the Gaussian covariance matrix).

The second adjustment of the joint series prediction is the center selection process.

Although the same OLS algorithm is used to select the centers, during the selection process a

center is selected based on its error reduction ratio associated to all parameters i.e.

 (32)

21

It can be argued that the selected center will allows the GRBFNN to have a better overall

performance if all Gaussian envelope parameters are used instead of a just single parameter, in

the case where there is some dependence between the envelope parameters.

3.2 Discussion

As mentioned earlier, the input vector of the GRBFNN in the joint series prediction contains the

successive sample differences of all parameters. During the training of GRBFNN, this merging

plays a crucial role, because centers have knowledge of the whole motion of Gaussian envelopes

as they can see the dependency among all parameters of Gaussian envelopes.

The scaling parameter is used in the non-linear function of GRBFNN centers. This

parameter is inversely proportional to the variance, and its value is assumed to be same for all

centers. However, this parameter plays a significant role in the prediction process.

Parameter should be directly dependent to the number of GRBFNN centers. If the

value of is large, it implies that the Gaussian envelopes have a small variance, which in turn

implies that the Gaussian function is narrow. Therefore, if a large α value is used, then a larger

number of centers should be considered. Since each Gaussian function is the main representative

function around its own centroid, if small value is used, then it results in a significant overlap

among the closely located Gaussian functions.

The value of the parameter is also related to the value of successive sample differences

in the input vector. If successive sample differences are large, then they can afford a large

Gaussian variance and thus a small .

22

The value of is also depends on the size of the Gaussians of the GRBFNN. If the GRBFNN

center contains a large number of elements, a mismatch between all the elements of the

successive difference vector and the centroid will result in a large Euclidean distance, and thus a

small Gaussian function value. For this reason, the joint series prediction is producing a larger

signal to noise ratio for smaller value compared to the previously used method [6].

23

Chapter 4: Simulations

In this chapter, the experimentation results are presented for simulated and also actual weather

image data.

 The joint series prediction and the independent series prediction were compared using

simulations in order to examine a specific motion pattern that was not available in actual

weather-image based data. While experimenting with simulations, it’s not consistent to include

all envelope parameters without knowledge of their dependency. Thus, simulations are

concentrated only on the joint prediction of the Gaussian envelope centroid coordinates

(horizontal and vertical). Based on these simulations the following conclusions were drawn.

4.1 Motion Pattern

The joint series and independent series predictor network (predicting parameters separately using

separate GRBFNN) were tested with different kind of motion patterns. Initially, when they were

tested with linear moving patterns, it was found that the performance of both joint series

predictor and independent series predictor was mostly similar. The reason could be the lack of

significant variations in the motion pattern.

Moreover, the joint series predictor network and independent series predictor network

were tested with circular motion patterns which have a significant variation in their motion

pattern. The kind of motion was considered to be a counter clock wise rotation, coupled with an

almost linear overall movement of the overall circulations, which is similar to the motion of

cyclones and hurricane events.

24

Figure 8. Simulation presenting the performance of joint series predictor and independent series

predictor

25

Figure 9. SNR results with respect to the variance and with respect to the number of centers for

joint series predictor and independent series predictor

26

The joint series predictor and independent series predictor networks were trained using 200

samples of the generated circular motion series, while 600 samples of the circular motion series

were used to test both of these networks. The testing samples of the series that were used are the

further evolvements of the circular motion series, corrupted by a small amount of additive

random noise. Thus, only a short, noiseless version of the testing series was seen by the network

during the training phase.

One of the reasons of this simulation was to study the concept of parameter dependency.

The second reason was to analyze the performance of two networks with a limited training data

set, so that training and testing can be performed online. The simulations are presented in Figure

9. The scaling parameter value is 0.5 x 10-4 and number of centers employed is 8 for both

predictor networks. The need of using small value for has already been discussed in section

3.2. From the simulations, it can be observed that joint series predictor network is more effective

in predicting the particular motion pattern presented.

4.2 Dependence on the number of basis function and on scaling parameter α

As it is not easy to draw conclusions based on only a single simulation, several simulations were

conducted which are presented in Figure 8. These simulations give a better idea of the

performance of joint series predictor network and independent series predictor network in

correspondence to the number of basis functions and different values of variance (which as a

reminder is equal to).

The results are presented in Figure 9. The top two figures present all results, while the

bottom two figures present selected results in order to be able to provide a closer look to the SNR

performance curves.

27

Form the simulations in Figure 9, it can be easily understood that the joint series predictor

network produces higher SNR values compared to the independent series predictor network.

Moreover, it can be seen that as the number of basis functions (centers) increases, the SNR

performance of the two predictor networks is not respectively increasing. The reason for this can

be the overlapping of basis functions, because with such a small variance only few centers are

sufficient to approximate the series. Therefore, when a large number of centers are used, there is

an overlap which in turn causes the network to lose its generalization capabilities.

 The joint series predictor network and independent series predictor network may have

their own range of variance values and number of basis function for which they may be

performing well. In the simulation as the value of the parameter used is in the order of 10-4.

It can be argued that if a small numbers of basic functions are employed in the network, it is

preferable to choose a small for better SNR performance.

 One of the main goals was to find a computationally efficient predictor network that will

support a computationally efficient weather image modeling, so that the networks are tested with

a small set of training data. However, if the training data set is large, then the value of the

variance and number of basis function required may be different than the one used in these

experiments.

28

4.3 Experimentation with Real weather-image Data

It was clearly understood from the simulations that the joint series predictor provides higher SNR

than the independent series predictor. In order to ensure that the concept dependency among

Gaussian envelope parameters holds, experimentation was performed with real weather-image

data.

Figure 3 shows actual weather-image data in consecutive frames. Figure 4 illustrates

these weather images approximations as a mixture of Gaussian envelopes using the technique in

[6]. The weather-image data was approximated with a total number of 32 Gaussian envelopes in

each frame.

Figure 10. The Gaussian envelope centers path for four consecutive weather images

29

After the approximation is completed, the center coordinates (horizontal coordinate, vertical

coordinate) of the Gaussian envelopes in each image are considered for four consecutive frames.

Considering these two coordinates values in successive frames as a time series, they are

presented to the joint series predictor network and the individual series predictor network. The

Figure 10 shows the motion pattern of Gaussians envelope centers for four consecutive images.

The response of both predictors is shown in Figure 11.

Figure 11. Response of independent series predictor and joint series predictor

30

Figure 12.Error comparison of independent predictor and joint series predictor

It is clear from Figure 12 that in overall joint series network prediction is better than the

independent series network prediction, in terms of the prediction error. The error in Figure 12 is

defined as the absolute difference between the actual coordinate value, and the predicted

coordinate value.

31

Figure 13. MSE of independent series predictor and joint series predictor

Figure 13 shows the Mean Square Error (MSE) of independent series predictor and joint series

predictor. From this figure, it is clear that the joint series prediction has a smaller MSE value

compared to the independent series prediction. The experiment is conducted with a total of 6

different data sets. The obtained values of MSE and SNR values of two predictors are given in

Table 1 and Table 2, respectively. Here, it should be reminded that the actual weather image was

down sampled by 16, thus the image size of was approximated with Gaussian

envelopes. In other words, obtained MSE and SNR values of the two predictors are 16 times the

values presented in Table 1 and Table 2, respectively.

32

Data Set No. Independent series predictor Joint series predictor

Data set 1 0.0321 0.0272

Data set 2 0.0272 0.0367

Data set 3 0.1195 0.1093

Data set 4 0.0318 0.0290

Data set 5 0.0393 0.0374

Data set 6 0.0278 0.0214

 Table 1.Comparison in terms of MSE

Data Set No. Independent series predictor Joint series predictor

Data set 1 38.56 39.27

Data set 2 37.32 38.17

Data set 3 32.79 33.18

Data set 4 39.71 40.11

Data set 5 38.96 38.75

Data set 6 39.62 40.76

 Table 2. Comparison in terms of SNR

From the above tables it can be argued that the joint series predictor performance is better

compared to independent series predictor, in terms of MSE and SNR.

33

Chapter 5: Conclusion and Future work

In this work, a modification to the existing technique was proposed and implemented. Assuming

that weather radar data can be represented as a mixture of Gaussian envelopes, the main goal of

the thesis is to investigate the parameter dependency of Gaussian envelope parameters.

With the introduction of joint series prediction, the computational complexity and

algorithm runtime are reduced. By using the proposed concept of parameter dependency it was

shown that parameters can be predicted simultaneously. At the same time, a better SNR

performance is achieved compared to predicting parameters independently, at least based on the

experimental results performed in this work.

Future work includes studying the dependency of all Gaussian envelope parameters

including envelope heights and covariance matrices. For this study, interesting motion patterns

which change rapidly such as hurricane events, cyclones, storms, and other significantly moving

tropical systems will be collected. Although the forecasting of these events is a critical issue, it

was proved that once the events are modeled, the forecasting can be done quickly by tracking the

modeled parameters.

34

References

[1] Einfalt, T., Denoeux, T., Jacquet, G., “A radar rainfall forecasting method designed for

hydrological purposes,” J Hydrology , vol.114, pp.229-244, 1990.
[2] Austin, GL.,Belllon, A., “The used digital weather radar records for short term precipitations

forecasting,” Quartz J Roy Meteorological Soc, vol.100, pp.658-664, 1974.
[3] Frech, MN., Krajewski, WF., Cuykendall, RR., “Rainfall forecasting in space and time using

a neural network,” J Hydrology, vol.137, pp.1-31, 1992.
[4] Broomhead, D.S., “Multivariable functional interpolation and Adaptive Networks,” complex

systems, vol.2, pp.321-355, 1988.
[5] Denoeux, T., and Rizand, P., “Analysis of radar images for rainfall forecasting using neural

networks,” Neural Computing and Applications, vol.3, pp.50-61, 1995.
[6] Charalampidis, D., Paduru, .A, “Tracking of storm fronts in weather radar imagery “, spie

Defense security and sensing, 2009.
[7] Borrell, V.E., Dartus, D., Alquier, M., “Forecasting falsh floods in unengaged basins with

satellite data,” IAHS Publ , vol.309, pp.20-22, 2007.
[8] Paul, J.T., “A Real Time weather system for forestry.” Bul. Ame.Metro. Soc., vol.62,

pp.1466-1466, 1981.
[9] Hudlow, M.D.,” Technological developments in real-time operational hydrologic forecasting

in the United States,” Journal of Hydrology , Vol.102, pp.69-92, 1988.
[10] Jorgeson, J., Julien, P., “Peak Flow Forecasting with Radar Precipitation and the Distributed

Model CASC2D,” Water International, Vol.30, pp.40 – 49, 2005.
[11] http://ww2010.atmos.uiuc.edu/(Gh)/guides/mtr/fcst/mth/prst.rxml
[12] Jack W.,” The Weather Book”, Vintage Books, ISBN 0-679-77665-6, 1997.
[13] Roberts, R. D., Rutledge, S.,” Nowcasting storm initiation and growth using GOES-8 and

WSR-88D data,” Wea.Forecasting, vol.18, pp.562-584, 2003.
[14] Hamill, T.M.,” Interpretation of rank histograms for verifying ensemble forecasts,” Mon.

Wea. Rev, vol.129, pp.550-560, 2001.
[15] Reggiani, P., Weerts, A. H.,” Probabilistic Quantitative Precipitation Forecast for Flood

Prediction,” Journal of Hydrometeorology, pp.76–95, 2008.
[16] http://www.roc.noaa.gov/WSR88D/Level_II/Level2Info.aspx
[17] Chang, E. S. , Chen, S., and Mulgrew, B. , “Gradient radial basis function networks for

nonlinear and nonstationary time series prediction,” IEEE Trans. Neural Networks, vol.7,
pp.190-194, 1996.

 [18] Lee, S., “Supervised learning with Gaussian potentials, ”Neural Networks for Signal

Processing, pp. 189-227, 1992.
[19] Potts, M. A. S., Broomhead, D. S., “Time series prediction with a radial basis function

neural network,” SPIE Adaptive Signal Processing, vol. 1565, pp. 255-266, 1991.
[20] Casdagli., M., “Nonlinear prediction of chaotic time-series,” Physica D, vol. 35, pp.335-

356, 1989.
.[21] Chen S., Cowan, C. F. N., Grant, P. M., "Orthogonal Least Squares Learning Algorithm for

Radial Basis Function Networks", IEEE Transactions on Neural Networks, Vol 2, No 2,
1991.

[22] Charalampidis, D., Sravanthi, K., “Computationally efficient radar image based forecasting
using RBF neural networks”, SPIE defence security and sensing, vol.7701, 2010.

http://www.sciencedirect.com/science/journal/00221694
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235811%231988%23998979998%23410107%23FLP%23&_cdi=5811&_pubType=J&view=c&_auth=y&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=bcc0ca24c04351d5d03087b4e7b7135e
http://www.informaworld.com/smpp/title~db=all~content=t792815876
http://www.informaworld.com/smpp/title~db=all~content=t792815876~tab=issueslist~branches=30#v30
http://ww2010.atmos.uiuc.edu/(Gh)/guides/mtr/fcst/mth/prst.rxml
http://www.amazon.com/exec/obidos/ASIN/0679776656/livinggentlyquar
http://ams.allenpress.com/perlserv/?request=get-abstract&doi=10.1175%2F2007JHM858.1&ct=1
http://ams.allenpress.com/perlserv/?request=get-abstract&doi=10.1175%2F2007JHM858.1&ct=1
http://www.roc.noaa.gov/WSR88D/Level_II/Level2Info.aspx

35

[23] James, S.H,”Business cycle fluctuations in us macroeconomic time series,” Hand book of

Macroeconomics, vol 1, pp 3-64, 1999.
[24] Chan, K.C., Karolyi, G.A., Longstaff, F.A., “An empirical comparison of alternative models

of the short-term interest rate,” Journal of science, vol 3, 1992.
 [25] Makikallio, T.H., Seppanen, T., “Dynamic analysis of heart rate may predict subsequent

ventricular tachycardia after myocardial infarction,” Scand J Soc, 1989.

http://www.jstor.org/stable/2328983
http://www.jstor.org/stable/2328983
http://reylab.bidmc.harvard.edu/pubs/1997/ajc-1997-80-779.pdf
http://reylab.bidmc.harvard.edu/pubs/1997/ajc-1997-80-779.pdf

36

Appendix

Code

clc;
clear all;
close all;

var=1/1000; %%% variance of gaussian for original and modified
mc=3; %%%modified OLS centers
oc=6; %%%original OLS centers

ts=0.5; %%%threshold %Note:value must be and 0< ts <1

nd=2; %No.of parameters (x,y, kx, ky, wx, wy)
n1=4; %%No.of past samples considered(length of each input vector)
%%%%% Parameters for testing the n/w%%%
nd2=2; %no.of parameters (x,y, kx, ky, wx, wy) in each gaussian,should be

equal to (nd)
n2=4; %%length of each input vector;always should be equal to (n1)
hours1=1;hours2=1;params=2;
paramst=2;

[mxi,mde1,mD1,mI,mC,mDel,mE1,mth,mA1,mG1,mw]=modified_training(hours1,hours2,

params,nd,n1,ts,mc,var);

%%%%%%%%%%%%%%%%tetsing Modified_Ols%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% followed (testing) is the main function which will carry out the whole-
%-testing part of Modified_OLS
%mde2=desired output of testing series
% mD2=predicted output of tested series using modified_ols
%mE2=Differece b/w the actual series and predicted series values
%de2=desired output of testing series
% mC=dlmread('mC.txt');mDel=dlmread('mDel.txt');mth=dlmread('mth.txt');

hours3=18;
hours4=18;
[input2,mxi2,mde2,mD2,mE2]=modified_testing(hours3,hours4,paramst,nd2,n2,var)

;
% r);
input1=input2(:,:,1);
input3=input2(:,:,2);
%%%%%%%%%%%%%%%%%%%%Trainign OLS %%%%%%%%%%%%%%%%%%%%%%
% followed (ols_tr) is the main function which will carry out the whole-
%-training part of OLS
%send all input parameters defined so far
%this will return the training pattern and responce of n/w for training
%de1=desired output training series
%D1=predicted output of trained series using ols
%I Index of the selected centers using OLS
%C Centers selected using OLS
%Del prediction terms selected using OLS
%E1 error
%th weights computed using OLS

37

[xi1,de1,D1,I,C,Del,E1,th,A1,G1,w]=ols_tr(hours1,hours2,nd,n1,ts,oc,var) ;

[xi2,E2,D2,de2]=ols_te(th,nd2,n2,hours3,hours4,var) ;

figure
plot(D1{:,1},'-g');
hold on
plot(de1{:,1},'-r');
legend('Predicted(x,y)','Desired(x,y)');
title('Training pattern OLS');
figure
plot(D1{:,2},'-g');
hold on
plot(de1{:,2},'-r');
legend('Predicted(x,y)','Desired(x,y)');
title('Training pattern OLS');

figure
plot(mD1(:,1),'-b');
hold on
% figure
plot(mde1(:,1),'-r');
legend('Predicted(x)','Desired(x)');
title('Training pattern of centers (M_OLS)');

%plot the testing series coordinates(x,y)
figure
plot(mD1(:,2),'-b');
hold on
% figure
plot(mde1(:,2),'-r');
legend('Predicted(y)','Desired(y)');
title('Training pattern of (M_OLS)');

figure
% subplot(3,1,1)
plot(D2{:,1},'-g');
hold on
plot(de2{:,1},'-r');
legend('Predicted(x,y)','Desired(x,y)');
title('Testing pattern OLS');

figure
% subplot(3,1,2)
plot(D2{:,2},'-g');
hold on
plot(de2{:,2},'-r');
legend('Predicted(x,y)','Desired(x,y)');
title('Testing pattern OLS');

figure
% subplot(3,1,1)
plot(mD2(:,1),'-b');
hold on
plot(mde2(:,1),'-r');

38

legend('Predicted(x)','Desired(x)');
title('Testing pattern of centers (M_OLS)');
%
figure
% subplot(3,1,2)
plot(mD2(:,2),'-b');
hold on
plot(mde2(:,2),'-r');
legend('Predicted(y)','Desired(y)');
title('Testing pattern of centers (M_OLS)');
%

% ols_me=[(mse(de1{1}-D1{1})+mse(de1{2}-D1{2})+mse(de1{3}-D1{3})+mse(de1{4}-

D1{4})+mse(de1{5}-D1{5}))/2 (mse(de2{1}-D2{1})+mse(de2{2}-D2{2})+mse(de2{3}-

D2{3})+mse(de2{4}-D2{4})+mse(de2{5}-D2{5}))/2]
mols_me=[mse(mde1-mD1) mse(mde2-mD2)]
ols_me=[(mse(de1{1}-D1{1})+mse(de1{2}-D1{2}))/2 (mse(de2{1}-

D2{1})+mse(de2{2}-D2{2}))/2]
mols_me1=sqrt((mde2(:,1)-mD2(:,1)).^2+(mde2(:,2)-mD2(:,2)).^2);
ols_me1=sqrt((de2{1}-D2{1}).^2+(de2{2}-D2{2}).^2);
% pers_me=mse(test(:,1:end-1,:)-test(:,2:end,:))
error_ov1=(mde2(:,1)-mD2(:,1))-(de2{1}-D2{1});
error_ov2=(mde2(:,2)-mD2(:,2))-(de2{2}-D2{2});
dB_SIGNAL=10*log10(mse(mde2));
dB_ERROR_OLS=10*log10(ols_me(2));
dB_ERROR_mOLS=10*log10(mols_me(2));
% dB_ERROR_pers=10*log10(pers_me);
dB_SNR_OLS=round((dB_SIGNAL-dB_ERROR_OLS)*100)/100
dB_SNR_mOLS=round((dB_SIGNAL-dB_ERROR_mOLS)*100)/100
% dB_SNR_pers=round((dB_SIGNAL-dB_ERROR_pers)*100)/100

figure
subplot(1,2,1),
plot(de2{1},de2{2},'*k','Color',[0.7 0.7 0.7]);hold

on;plot(D2{1},D2{2},'*k');hold off;
% if(strcmp(model_used,'Circular')==1)
% hold on, plot(xcc,ycc,'Color',[.4 0.4 0.4]);hold off
% end
legend('Desired','Independent prdictor','Location','best');
xlabel('Horizontal Coordinate (Km)')
ylabel('Vertical Coordinate (Km)')
title(['Testing Series (OLS), SNR_{dB} = ' num2str(dB_SNR_OLS)]);
axis equal

subplot(1,2,2),
plot(mde2(:,1),mde2(:,2),'*k','Color',[0.7 0.7 0.7]); hold

on;plot(mD2(:,1),mD2(:,2),'*k');hold off
% if(strcmp(model_used,'Circular')==1)
% hold on,plot(xcc,ycc,'Color',[.4 0.4 0.4]), hold off;
% end
legend('Desired','Joint series predictor','Location','best');
xlabel('Horizontal coordinate (Km)')
ylabel('Vertical coordinate (Km)')
title(['Testing Series (Joint OLS), SNR_{dB} = ' num2str(dB_SNR_mOLS)]);
axis equal

39

figure
subplot(1,2,1),
plot(1:length(mD2(:,1)),filter2(ones(10,1)/10,abs(mD2(:,1)-

mde2(:,1))),':k',1:length(mD2(:,1)),filter2(ones(10,1)/10,abs(D2{1}-

mde2(:,1))),'-k');
xlabel('Gaussian Envelope Horizontal Coordinates')
ylabel('Error - Horizontal Coordinate')
title('Error Comparison (Independent series vs Joint series)');
legend('Joint series predictor','Independent series

predictor','Location','best');

subplot(1,2,2),
plot(1:length(mD2(:,1)),filter2(ones(10,1)/10,abs(mD2(:,2)-

mde2(:,2))),':k',1:length(mD2(:,1)),filter2(ones(10,1)/10,abs(D2{2}-

mde2(:,2))),'-k');
xlabel('Gaussian Envelope Vertical Coordiantes')
ylabel('Error - Vertical Coordinate')
title('Error Comparison (Independent series vs Joint series)');
legend('Joint series predictor','Independent series

predictor','Location','best');

set(gcf,'Position',[101 101 800 800])
%
figure
plot(error_ov1,':k');hold on;plot(error_ov2,'-k');hold off;
xlabel('Gaussian envelopes centroids')
ylabel('Error - Verticaland horizontal Coordinate')
title('Error Comparison (Independent series vs Joint series)');
legend('Error-vertical','Error-horizontal','Location','best');

figure
plot(mols_me1,':k');hold on;plot(ols_me1,'-k');
xlabel('Gaussian envelopes centroid')
ylabel('MSE- Vertical and HOrizontal Coordinate together')
title('Mean Sqare Error(Independent series predictor vs Joint series

predictor)');
legend('Joint series predictor','Independent series

predictor','Location','best');

figure
plot(input1(:,:),25-input3(:,:));
hold on
plot(input1(1,:),25-input3(1,:),'*');
for i=1:length(input1(1,:))
 text(input1(end,i),25-input3(end,i),num2str(i));
end
xlabel('Horizontal Coordinates(Km)')
ylabel('Veritical Coordinates Movement')
title('Gaussian Envelope centroids path');

% plot(1:length(mD2(:,3)),filter2(ones(10,1)/10,abs(mD2(:,3)-mde2(:,3))),'-

k',1:length(mD2(:,3)),filter2(ones(10,1)/10,abs(D2{3}-mde2(:,3))),':k');
% xlabel('Time')
% ylabel('Error - Horizontal Coordinate')
% title('Error Comparison (OLS vs Joint OLS)');
% legend('Predicted Joint OLS','Predicted OLS','Location','best');

40

%
% subplot(2,2,3),
% plot(1:length(mD2(:,4)),filter2(ones(10,1)/10,abs(mD2(:,4)-mde2(:,4))),'-

k',1:length(mD2(:,4)),filter2(ones(10,1)/10,abs(D2{4}-mde2(:,4))),':k');
% xlabel('Time')
% ylabel('Error - Horizontal Coordinate')
% title('Error Comparison (OLS vs Joint OLS)');
% legend('Predicted Joint OLS','Predicted OLS','Location','best');
%
% subplot(2,2,4),
% plot(1:length(mD2(:,5)),filter2(ones(10,1)/10,abs(mD2(:,5)-mde2(:,5))),'-

k',1:length(mD2(:,5)),filter2(ones(10,1)/10,abs(D2{5}-mde2(:,5))),':k');
% xlabel('Time')
% ylabel('Error - Vertical Coordinate')
% title('Error Comparison (OLS vs Joint OLS)');
% legend('Predicted Joint OLS','Predicted OLS','Location','best');
%
% set(gcf,'Position',[101 101 800 800])

%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [input2,xi de d2 del]=real_input(hours1,hours2,params,s)
% clc;clear all;close all;
% hours1=1;hours2=1;s=5;
% params=2;
sam=s+1;
location{1}='C:\Users\Hariprakash Reddy\Documents\SRAVANTHI\REFERENCE

PAPERS\data\sep16_2004_ivan\rita_parameters\cx\';
location{2}='C:\Users\Hariprakash Reddy\Documents\SRAVANTHI\REFERENCE

PAPERS\data\sep16_2004_ivan\rita_parameters\cy\';
location{3}='C:\Users\Hariprakash Reddy\Documents\SRAVANTHI\REFERENCE

PAPERS\data\sep16_2004_ivan\rita_parameters\k1\';
location{4}='C:\Users\Hariprakash Reddy\Documents\SRAVANTHI\REFERENCE

PAPERS\data\sep16_2004_ivan\rita_parameters\k2\';
location{5}='C:\Users\Hariprakash Reddy\Documents\SRAVANTHI\REFERENCE

PAPERS\data\sep16_2004_ivan\rita_parameters\k3\';

% loc=strcat(location{params},num2str(hours1),'.txt');
% temp=load(loc);

for j=1:params
 irw=1;
 for i=hours1:hours2
 loc=strcat(location{j},num2str(i),'.txt');
 temp=load(loc);
 [rwt cwt]=size(temp);
 for rw=1:rwt
 input(:,irw,j)=temp(rw,:);
 irw=irw+1;
 end
 end;

 end
% input2=input(1:end,:,:);
% xi=input2(2:end-sam,:,:)-input2(3:end-sam-1,:,:);

41

% de=input2(1,:);
% d2=input2(:,2);
% del=de-d2;

[rw col di]=size(input);
% input1=input(end:-1:1,:,:);
temp=1;
ir3=1;sf3=sam;ir4=1;sf4=sam;
input2=input(end:-1:1,:,:);
for k=1:di
 ic=1;

 sf2=sam;
 input1=input(end:-1:1,:,k);
 for j=1:col
 ir=1;
 st=1;
 sf1=sam;
 for i=1
 temp(ir:sf2,ic)=input1(st:sf1,j);
 st=st+1;
 sf1=sf1+1;
 ic=ic+1;
 end

 end

 de(:,k)=temp(1,:);
 d2(:,k)=temp(2,:);
 input3(ir3:sf3,:)=temp;
xi(ir4:sf4-2,:)=temp(2:end-1,:)-temp(3:end,:);
 ir3=ir3+sam;
 sf3=sf3+sam;
 ir4=ir4+sam-2;
 sf4=sf4+sam-2;
end
del=de-d2;

% %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [p]=modified_gaus(xg,cg,d2g,delg,no,var,hours,params)
%xg sucessive difference samples of input
%d2g past samples of time series
%delg Initial Predication Terms
%cg Initial centers
%p=guassian terms
%no is no.of parameters of guassian
% clc;clear all; close all;
% hours=1;
% params=5;
% no=5;
% s=5;
% var=1/2000;

42

% [xg,deg,d2g,delg]=real_input(hours,params,s);
% % for prs=1:params
% cg=xg;
%To calculate the Guassian terms

[n2 N]=size(xg);
[m2 M]=size(cg);
%To calculate the Guassian terms
for k=1:no
for i=1:N %to repeat the hidden node loop for every input(N number of

inputs)
 temp=xg(:,i);
 for j=1:M % to repeat M no.of centers or hidden nodes
 nor=norm(temp-cg(:,j));
 gu=exp(-var*nor^2);
 p(i,j,k)=gu*(d2g(i,k)+delg(j,k));
 end;
 end;
 %%%%%%%%%%%%end of calculating guassian term%%%%%%%%%%%
end;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [I,th,T,A1,G1,w]=modified_subset(d,ts,mc)
%%%%%feb03su is function determine the actual centers and prediction terms
%%I variable that contains the Index of the selected centers using OLS

algorithm
% th weight vector and each value is the weight associated with specific
% center
%%T is the thresold error value at which the subset selection process is
%%terminated
%p guassian terms
%d is the normalized desired output desried
%ts is tolerable threshold value
[n,M,nd]=size(p(:,:,:));
% %%%%%%%first step of the subset selection algorithm %%%%%%%%%
for i=1:M
 for k=1:nd
 w1(:,i,k)=p(:,i,k);
 g1(:,i,k)=(w1(:,i,k)'*d(:,k))/(w1(:,i,k)'*w1(:,i,k));
 e1(:,i,k)=g1(:,i,k)^2*w1(:,i,k)'*w1(:,i,k)/(d(:,k)'*d(:,k));
 end
 e1f(:,i)=sum(e1(:,i,1:nd));
end
[e(:,1) I(:,1)]=max(e1f(:,:),[],2);
w(:,1,1:nd)=p(:,I,1:nd);
for i=1:nd
 G1(1,:,i)=g1(:,I,i);
end
%%%%%%%%%end of sub set celction algoritm first step%%%%%%%
%%%

%%ts defines the tolerable error value that we can choose
% ts=0.5;
T=ts;

43

%%%
%%%%%%%%%%second step of algorithm for subset selction%%%%%%
for ms=2:M
 if T>=ts
% if ms<=mc
 for k=2:ms
 for i=1:M %%no.of centers
 for N=1:nd %%nd.no.of parameters predicted at a time
 if(i~=I(:,:))

 s=0;
 for j=1:k-1

a(j,k,N)=w(:,j,N)'*p(:,i,N)/(w(:,j,N)'*w(:,j,N)+0.0001);
 s=s+(a(j,k,N)*w(:,j,N));

 end
 wk(:,i,N)=p(:,i,N)-s;

gk(:,i,N)=wk(:,i,N)'*d(:,N)/(wk(:,i,N)'*wk(:,i,N)+0.0001);

ek(:,i,N)=gk(:,i,N)^2*wk(:,i,N)'*wk(:,i,N)/(d(:,N)'*d(:,N)+0.0001);

 else ek(:,i,N)=0;
 end
 end

 ekf(:,i)=mean(ek(:,i,1:nd));
 end
 [e(:,k) I(:,k)]=max(ekf(:,:),[],2);
 w(:,k,1:nd)=wk(:,I(:,k),1:nd);
 G1(k,:,1:nd)=gk(:,I(:,k),1:nd);

 for N=1:nd
 for j=1:k-1

A1(j,k,N)=w(:,j,N)'*p(:,I(:,k),N)/(w(:,j,N)'*w(:,j,N)+0.0001);
 A1(j,j,N)=1;
 end
 end
 % w(:,k,2)=wk(:,I(:,k),2);
 % G1(k,:,2)=gk(:,I(:,k),2);
 end

 A1(ms,ms,1:nd)=1;
 % A1(ms,ms,2)=1;

 %%%%finding total error to terminate the sub set selection

process%%%%%%%

 t=0;
 for i=1:ms
 t=t+ e(:,i);
 end

44

 T=nd-t;
 end
end
for i=1:nd
 th(:,i)=inv(A1(:,:,i))*G1(:,:,i);
end
% th(:,2)=inv(A1(:,:,2))*G1(:,:,2);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function

[input2,xi2,de2,mD2,E2]=modified_testing(hours3,hours4,params,nd,n2,var)
% C centers selected by OLS algorithm while training n/w
%Del prediction terms calculated by OLS algorithm while training n/w
% th , weights calculated by OLS algorithm while training n/w
%test is series to be tested

% %%%%% Parameters for testing the n/w%%%
% nd;%no.of parameters (x,y, kx, ky, wx, wy) in each guassian,should be equal

to (no)
% n2;%%length of each input vector;always should be equal to (n1)
%%%%%%%%%%%Testing the N/W for a different series(testing series)%%%%
%%%%%%Generating sucessive sample differences for testing series%%%%%%%%

[input2,xi2,de2,dp2,del2]=real_input(hours3,hours4,params,n2);

%%%%%%%%%%%%%computing guassian terms of testing series%%%%%%%%
%p3=guassian terms

[p3]=modified_gaus(xi2,C,dp2,Del,nd,var);
%%%%%%%%%%calculating normalized predicted output of testing series %%
for i=1:nd
mD2(:,i)=p3(:,:,i)*th(:,i);
end
% E2 is the Error b/w the desired series de2 and Actual predicted series ytt
E2=de2-mD2;

%%

function [p]=ols_guas(xg,cg,d2g,delg,var)
%xg sucessive difference samples of input
%d2g past samples of time series
%delg Initial Predication Terms
%cg Initial centers
%p=guassian terms

[n2 N]=size(xg);
[m2 M]=size(cg);
%To calculate the Guassian terms
for i=1:N %to repeat the hidden node loop for every input(N number of

inputs)
 temp=xg(:,i);
 for j=1:M % to repeat M no.of centers or hidden nodes
 no=norm(temp-cg(:,j));
 gu=exp(-var*no^2);
 p(i,j)=gu*(d2g(i,:)+delg(j,:));

45

 %figure(100+j),plot(i,gu,'*'),hold on
 %j
 end;
 end;
 %%%%%%%%%%%%end of calculating guassian term%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [xi,d2,del,de]=ols_input(hours1,hours2,jp,s)
%jp===specific file (1.txt,2.txt)
% function [xi,d2,del,d,de,Su,sfi,indices]=ols10i(j,nd,npi,sfi,input)
%xi sucessive difference samples of input
%d2 past samples of time series (going to be used in subset selection
%function)
%del Initial Predication Terms
%de actual desire output of time series
%nd no.of parameters we are prediciting at a time(no.on o/p arguments)
%npi no.of past samples to be considered(length of each input vector)
% clc;clear all;close all;
% hours1=1;hours2=1;
% jp=5;s=2;
sam=s+1;
location{1}='C:\Users\Hariprakash Reddy\Documents\SRAVANTHI\REFERENCE

PAPERS\data\sep16_2004_ivan\rita_parameters\cx\';
location{2}='C:\Users\Hariprakash Reddy\Documents\SRAVANTHI\REFERENCE

PAPERS\data\sep16_2004_ivan\rita_parameters\cy\';
location{3}='C:\Users\Hariprakash Reddy\Documents\SRAVANTHI\REFERENCE

PAPERS\data\sep16_2004_ivan\rita_parameters\k1\';
location{4}='C:\Users\Hariprakash Reddy\Documents\SRAVANTHI\REFERENCE

PAPERS\data\sep16_2004_ivan\rita_parameters\k2\';
location{5}='C:\Users\Hariprakash Reddy\Documents\SRAVANTHI\REFERENCE

PAPERS\data\sep16_2004_ivan\rita_parameters\k3\';

 for j=jp
 irw=1;
 for i=hours1:hours2
 loc=strcat(location{j},num2str(i),'.txt');
 temp=load(loc);
 rwt=size(temp);
 for rw=1:rwt
 input(:,irw)=temp(rw,:);
 irw=irw+1;
 end
 end;

 end

input1=input(end:-1:1,:);
[rw col]=size(input);
temp=1;
ir3=1;sf3=sam;ir4=1;sf4=sam;

for k=1
 ic=1;

46

 sf2=sam;

 for j=1:col
 ir=1;
 st=1;
 sf1=sam;
 for i=1
 temp(ir:sf2,ic)=input1(st:sf1,j);
 st=st+1;
 sf1=sf1+1;
 ic=ic+1;
 end

 end
 de(:,k)=temp(1,:);
 d2(:,k)=temp(2,:);
 input3(ir3:sf3,:)=temp;
xi(ir4:sf4-2,:)=temp(2:end-1,:)-temp(3:end,:);

 ir3=ir3+sam;
 sf3=sf3+sam;
 ir4=ir4+sam-2;
 sf4=sf4+sam-2;
end
del=de-d2;

% % input2=input1(1:end-1,:,:)-input1(2:end,:,:);
% xi=input2(2:end-1,:,:)-input2(3:end,:,:);
% de=input2(1,:);
% d2=input2(:,2);
% del=de-d2;

% % input2=input1(1:end-1,:,:)-input1(2:end,:,:);
% xi=input1(2:end-1,:)-input1(3:end,:);
% de=input1(1,:)';
% d2=input1(2,:)';
% del=de-d2;

%%%

function [I,th,T,A1,G1,w]=ols_subset(p,d,ts,oc)

%%%%%nov23su is function determine the actual centers and prediction terms
%%I variable that contains the Index of the selected centers using OLS

algorithm
% th weight vector and each value is the weight associated with specific
% center
%%T is the thresold error value at which the subset selection process is
%%terminated
%p guassian terms
%d is the normalized desired output desried
%ts is tolerable threshold value
%%%%%%%first step of the subset selection algorithm %%%%%%%%%

47

%M define the number of centers
% clc;
% clear all;
% close all;
% p=rand(
[n M]=size(p);
for i=1:M
 w1(:,i)=p(:,i);
 g1(:,i)=(w1(:,i)'*d)/(w1(:,i)'*w1(:,i));
 e1(:,i)=g1(:,i)^2*w1(:,i)'*w1(:,i)/(d'*d);
end
[e(:,1) I(:,1)]=max(e1(:,:),[],2);
w(:,1)=p(:,I);
G1(1,:)=g1(:,I);
%%%%%%%%%end of sub set selection algorithm first step%%%%%%%
%%%

%%ts defines the tolerable error value that we can choose
% ts=0.5;
T=ts;

%%%
%%%%%%%%%%second step of algorithm for subset selction%%%%%%
for ms=2:M
 if T>=ts
% if ms<=oc
 for k=2:ms
 for i=1:M
 if(i~=I(:,:))
 s=0;
 for j=1:k-1
 a(j,k)=w(:,j)'*p(:,i)/(w(:,j)'*w(:,j)+0.0001);
 s=s+(a(j,k)*w(:,j));
 A1(j,k)=a(j,k);
 A1(j,j)=1;
 end
 wk(:,i)=p(:,i)-s;
 gk(:,i)=wk(:,i)'*d/(wk(:,i)'*wk(:,i)+0.0001);
 ek(:,i)=gk(:,i)^2*wk(:,i)'*wk(:,i)/(d'*d+0.0001);
 else ek(:,i)=0;
 end

 end

 [e(:,k) I(:,k)]=max(ek(:,:),[],2);
 w(:,k)=wk(:,I(:,k));
 G1(k,:)=gk(:,I(:,k));
 for j=1:k-1
 A1(j,k)=w(:,j)'*p(:,I(:,k))/(w(:,j)'*w(:,j)+0.0001);
 A1(j,j)=1;
 end
 end
 A1(ms,ms)=1;

48

 %%%%finding total error to terminate the sub set selection

process%%%%%%%

 t=0;
 for i=1:ms
 t=t+ e(:,i);
 end
 T=1-t;
 end
end
%%%%%%%%%%%%%%%%%%%%%%end of the subset selection algorithm second step%%
th=inv(A1)*G1;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5

function

[xi3,o_E2,o_DD2,o_de2]=ols_te(o_C,o_Del,o_th,nd,n2,hours3,hours4,var)
% clear all;
% close all
% clc;
for i=1:nd
 C=o_C{:,i};
 Del=o_Del{:,i};
 th=o_th{:,i};
%%%%%%%%%%%%%%%%%%%%%To generate time series%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% [xi2,dp2,del2,d2,de2,su2]=ols_ip(i,n2,sf2,test);
[xi2,dp2,del2,de2]=ols_input(hours3,hours4,i,n2);
xi3(:,:,i)=xi2;
%%%

%%%%%%%%%%%%
[p3]=ols_guas(xi2,C,dp2,Del,var);
D2=p3*th;
E2=de2-D2;
[m n]=size(D2);

o_E2(:,i)={E2};
o_DD2(:,i)={D2};
o_de2(:,i)={de2};
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function

[xi1t,o_de1,o_DD1,o_I,o_C,o_Del,o_E1,o_th,A1,G1,w]=ols_tr(hours1,hours2,nd,n1

,ts,oc,var)
% o_de1 desired output of training series
% o_DD1 predicted output of training series
% o_I Index of selected centers
% o_C selected centers
% o_Del selected prediction terms using OLS
% o_E1 Erroe b/w actual desired o.p and predicted output
% o_th computed weights using OLS
% train is the training i/p series
% nd no.of parametrs of (x,y,kx,ky,wx,wy)
% n1 no.of past sample(length of each i/p vector)
% sf1 no.of total i/p vectors each of length n1

49

% ts tolerable threshold

% clc;
%
% clear all;
% close all;hours1=1;hours2=2;nd=5;n1=5;ts=0.5;oc=4;var=1/2000;
i=1;
% train=train1(:,:,:);
for j=1:nd

%%%%%%%%%%%%%%%%%%%%%To generate input data of time

series%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[xi1,dp1,del1,de1]=ols_input(hours1,hours2,j,n1);
xi1t(:,:,j)=xi1;
c1=xi1;
%%%%%%%%%%nov4 is function that determine guassian terms%%%%%%%%%
%%p > guassian terms
[p]=ols_guas(xi1,c1,dp1,del1,var);

%%%%%nov4sub is function determine the actual centers and predication terms
%%I variable that contains the centers index,th is variables that
%%represents the weights and Del prediction terms
[I,th,T,A1,G1,w]=ols_subset(p,de1,ts,oc);
%%now assigning the actual ceners and prediction terms obatined from

algorithm to vairables
C=c1(:,I);%C--centers
Del=del1(I,:);%del--prediction terms
%%%%%%%% %Testing the trained network for th same series
P=p(:,I);
D1=P*th;
E1=de1-D1;
DD1=D1;
o_de1(:,j)={de1};
o_DD1(:,j)={DD1};
o_I(:,j)={I};
o_C(:,j)={C};
o_Del(:,j)={Del};
o_E1(:,j)={E1};
o_th(:,j)={th};
i=i+1;
end

50

Vita

Sravanthi Kattekola was born in Karimnagar, India. She received her undergraduate

degree in Electronics and Communication Engineering from J.N.T University, India in

May 2007. From Summer-2008 to Fall-2010 she was with Electrical Engineering

department at UNO where she worked with Dr.Dimitrios Charalampidis as a Research

assistant and pursued her Master’s degree in Electrical Engineering. Her research

interests include Digital Image Processing and Signal Processing.

	Weather Radar image Based Forecasting using Joint Series Prediction
	Recommended Citation

	tmp.1322760292.pdf.E2AW8

