
University of New Orleans University of New Orleans

ScholarWorks@UNO ScholarWorks@UNO

University of New Orleans Theses and
Dissertations Dissertations and Theses

5-20-2011

Private Information Retrieval in an Anonymous Peer-to-Peer Private Information Retrieval in an Anonymous Peer-to-Peer

Environment Environment

Michael Miceli
University of New Orleans

Follow this and additional works at: https://scholarworks.uno.edu/td

Recommended Citation Recommended Citation
Miceli, Michael, "Private Information Retrieval in an Anonymous Peer-to-Peer Environment" (2011).
University of New Orleans Theses and Dissertations. 1331.
https://scholarworks.uno.edu/td/1331

This Thesis is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with
permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright
and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-
holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the
work itself.

This Thesis has been accepted for inclusion in University of New Orleans Theses and Dissertations by an
authorized administrator of ScholarWorks@UNO. For more information, please contact scholarworks@uno.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of New Orleans

https://core.ac.uk/display/216837094?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.uno.edu/
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/etds
https://scholarworks.uno.edu/td?utm_source=scholarworks.uno.edu%2Ftd%2F1331&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uno.edu/td/1331?utm_source=scholarworks.uno.edu%2Ftd%2F1331&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uno.edu

Private Information Retrieval in an Anonymous Peer-to-Peer Environment

A Thesis

Submitted to the Graduate Faculty of the

University of New Orleans

in partial fulfillment of the

requirement for the degree of

Master of Science

in

Computer Science

Information Assurance

by

Michael Vincent Miceli

B.S. Louisiana State University, 2009

May, 2011

ii

© 2011, Michael Miceli

iii

Acknowledgment

This work would not have been possible without the guidance of Dr. Mahdi Abdelguerfi and a grant from

the Louisiana Board of Regents. I‟d like to thank the members of my committee: Dr. Bilar, Dr. Richard

III, and Dr. Tu. Also, my experience at Louisiana State University provided a solid foundation.

Specifically, I‟d like to thank Dr. Hartmut Kaiser, for his profound mentoring abilities and programming

expertise; and Dr. Shantenu Jha, for his ability to push me to research and success. Many talks with a

personal friend, Rodrigo Farnham, have also helped produce this research.

iv

Table of Contents

List of Figures .. vi

Abstract ... vii

Chapter 1 ... 1

1.1 Motivation ... 1

1.2 Importance of an Anonymous Peer-To-Peer Network .. 1

1.3 Private Information Retrieval.. 2

1.4 Goals of this project .. 3

Chapter 2 ... 4

2.1 Freenet... 5

2.2 Routing .. 6

2.3 Managing Data .. 8

Chapter 3 ... 11

3.1 Introduction ... 11

3.2 Practicality .. 12

3.2 Melchor and Gaborit‟s Scheme ... 14

3.2.1 Details .. 14

3.2.2 Lattices ... 16

3.2.3 Differential Hidden Lattice Problem .. 17

3.3 CUDA ... 17

3.3.1 Performance ... 18

3.4 Overhead ... 19

3.4.1 Solution 1: Split the database into many databases .. 20

3.4.2 Solution 2: Each node only stores a certain file size range ... 20

3.4.3 Solution3: Split each file into chunks ... 21

3.4.4 Solution4: Multiple partitions and chunk sizes ... 22

3.4.5 Comparison of Solutions .. 24

Chapter 4 ... 26

4.1 Details ... 27

4.2 Implementation ... 30

4.2 Experiments .. 30

v

Chapter 5 ... 33

5.1 Observations ... 33

5.2 Practicality .. 34

5.3 Future Work .. 34

References ... 36

Appendix ... 38

Building the software .. 38

Vita .. 40

vi

List of Figures

Figure 1: Three types of anonymity ... 4

Figure 2: Example of a data request.. 7

Figure 3: Types of keys in Freenet... 9

Figure 4: Communication complexities of select (C) PIR protocols. (cont.) ... 12

Figure 5: Time to multiply one bit versus time to transfer one bit in recent years. 13

Figure 6: Common times a typical CPIR scheme would take at the time of Sion and Carbunar's paper .. 13

Figure 7: Response encoding ... 15

Figure 8: Server Processing Time (GPU vs. CPU) .. 18

Figure 9: Server processing time with respect to number of files in a homogenous database. 19

Figure 10: Network download speed of CPIR Scheme causes for databases of small files 22

Figure 11: Download speeds of databases with large chunk sizes. .. 23

Figure 12: Download speeds for random sized data under 3 MiB. ... 24

Figure 13: Comparison of Freenet request with CPIR-based request. .. 26

Figure 14: Demonstration of onion route. .. 29

Figure 15: Load on a 2 GHz Machine with 2.00 GiB of RAM in Freenet in the first 24 hours. 31

vii

Abstract

 Private Information Retrieval (PIR) protocols enable a client to access data from a server without

revealing what data was accessed. The study of Computational Private Information Retrieval (CPIR)

protocols, an area of PIR protocols focusing on computational security, has been a recently reinvigorated

area of focus in the study of cryptography. However, CPIR protocols still have not been utilized in any

practical applications. The aim of this thesis is to determine whether the Melchor Gaborit CPIR protocol

can be successfully utilized in a practical manner in an anonymous peer-to-peer environment.

Keywords: Anonymous peer-to-peer, Private information retrieval (PIR), peer-to-peer

1

Chapter 1

Introduction

1.1 Motivation

The first amendment of the United States constitution guarantees freedom of speech, which allows

citizens to express their opinions without fear of persecution. Freedom of speech is necessary for a

functioning democracy. However, not every country has this freedom and there also have been many

instances in the United States where freedom of speech has been restricted. For instance, after the

publication of the over 250,000 leaked United States diplomatic cables in 2010, there was rash reaction

from lawmakers. Sen. Lieberman introduced the “Protecting Cyberspace as a National Asset Act of

2010”, which would have allowed for government control of Internet service providers (ISP)s, arguing

that in a national emergency the government should be able to „shut down‟ the Internet. This vague law

with no checks and balances would have greatly destroyed freedom of speech. Only in 2011, when Egypt

was able to prevent Internet access to citizens in an attempt to unsuccessfully prevent a revolution was the

bill revised to remove this „shut down‟ idea. This ebb and flow of censorship and regulation has shown a

need for the ability to communicate freely without government control.

1.2 Importance of an Anonymous Peer-To-Peer Network

An anonymous peer-to-peer network is a network that allows peers to communicate while remaining

anonymous. Creating such a network is very difficult because the network has to immune against any

attack that would even help determine original authors of data. Freenet is a prominent anonymous peer-

to-peer network. They argue that freedom of speech cannot be guaranteed without anonymity. This is

because it is easy to curtail free speech by punishing those who exercise it. Doing so instills fear and

2

stifles further free speech by others. By allowing anonymity it becomes impossible to punish anyone

exercising free speech, because it is unknown who exercised the freedom in the first place. Freenet

argues that to ensure the availability of freedom of speech, the government should not be able to control

its population‟s ability to share information freely at all. If knowledge is stifled and censored, then people

are uninformed and are not able to adequately determine a complete and accurate conclusion. Therefore,

no information should be censored in any way. It is difficult to take such a firm choice when it comes to

freedom of speech. There are many arguments for stifling freedom of speech. Child pornography, hate

speech, racism, and terrorism are all examples where preventing such information flow seems like a good

idea. However, it is too hard to determine whether certain knowledge can fall into these categories, and

governments have a record of overreaching in censorship. Also, they have been known to hide

information that would shine them in a negative light. Instances of this can be seen in the WikiLeaks

releases and the seizure of 84,000 sites, many of which were perfectly legal. [1] However, even

WikiLeaks itself censors data to protect citizens that would be in harm‟s way if uncensored. So, for me it

is hard to agree with Freenet completely, but the idea is interesting academically and in many countries

Freenet is a viable way to spread knowledge that would otherwise be censored.

1.3 Private Information Retrieval

Private Information Retrieval (PIR) protocols allow a client to access data from a server without allowing

the server to know which data was accessed. Until recently, it was accepted that all PIR protocols today

and in the near future are impractical. The study of Computational Private Information Retrieval (CPIR)

protocols were developed shortly afterwards. However, they also were not practical to use. Recently,

there have been many attempts to create a practical protocol. This thesis determines whether CPIR

protocols can be successfully used to create a practical anonymous peer-to-peer network.

3

1.4 Goals of this project

To develop and determine the success of the prototype network, there were 3 main goals are laid out. The

first goal is to understand anonymous peer-to-peer networks and why they are anonymous. Then, the next

goal is to find a CPIR protocol that would be most successful in with constraints placed on it by the

anonymous peer-to-peer network. Finally, a test suite has to be developed to analyze the performance and

anonymity of the network. By the end of this thesis, the ultimate goal is to show whether a CPIR protocol

can be used in a practical manner for anonymity networks.

4

Chapter 2

Anonymous Peer-To-Peer Systems

 Any distributed application where peers process tasks or work between them is considered a peer-

to-peer network. There are 3 different types of peer-to-peer networks: centralized, semi-centralized, and

decentralized. A centralized peer-to-peer system uses a central server either to distribute work, or help

locate information among nodes. Examples of a central system are Napster and BitTorrent. Semi-

centralized peer-to-peer systems do not have a central server; however, they do have nodes that are more

important than other peers. These peers accept more traffic and may control a part of the total network.

Semi-centralized systems include Kazaa [2] and Skype [3]. These more important nodes are usually

called super nodes. Finally, there are fully decentralized peers where all nodes have the same priority and

are equally valuable to the network. Freenet and GNUnet are examples of fully decentralized peer-to-

peer networks. Semi-centralized and fully decentralized networks have the advantage of being more

fault-tolerant. Anonymous peer-to-peer networks are peer-to-peer applications in which peers are

anonymous to each other. Peers cannot know who is requesting data and who is sending data.

There are many different roles in a peer-to-peer environment and each role has a different view of the

system, including senders, receivers, and intermediate nodes. An attacker could be any of these roles or

an outsider such as an ISP. Different anonymity protect against different attackers. For instance, some

anonymous peer-to-peer networks use proxies. In this sense senders and receivers are anonymous, but the

proxy knows everything. Within each view of the system, there are three levels (See Figure 1). [4]

Beyond suspicion Appears no more likely to have acted than any other

Probable innocence Appears no more likely to have acted than not have

Possible innocence Nontrivial probability that it was not the user

Figure 1: Three types of anonymity (continued)

5

The purpose of anonymous networks is usually to provide freedom of speech. By limiting the ability of

censorship, more information can be available. Anonymous networks are a gray area of the law. While

information about corrupt governments can be spread throughout the network without the whistleblower

being held responsible, so can child pornography and other illegal information.

The most popular schemes to provide anonymity utilize either proxies (mix nets) or intermediate nodes

(crowds, onion routes). The proposed anonymous peer-to-peer system in this thesis is very similar to

Freenet and Crowds. These systems provide possible innocence to both senders and receivers of data on

the network. The reason that the network is similar to Freenet and Crowds is because there is a

performance and bandwidth overhead in these networks which can be optimized by CPIR protocols. Also,

they are the most successful anonymous networks. The other types of networks have a central point(s) of

failure, which could allow a strong enough opposition to pressure the central point(s) of failure to shut

down services, crippling the network.

2.1 Freenet

The prototype peer-to-peer network in this thesis is heavily influenced by Freenet. In the original paper

[5], Clarke et al. lay out a framework for a distributed, censorship-resistant, peer-to-peer network called

Freenet. It provides both sender anonymity and receiver anonymity to the level of possible innocence.

The network was created with five goals in mind: provide anonymity for producers and consumers,

provide deniability for maintainers of data, be resistant to attempts to deny access to information, have

efficient routing and storage, and be decentralized. In Freenet, every peer contributes part of his hard disk

drive space for use in a large distributed data store, where nodes store other nodes‟ data. Each data item

stored on each node‟s hard disk drive is encrypted using AES (Rijndael), a symmetric algorithm, where

the passphrase determined by the creator of the data. While the decryption keys are theoretically

available to the node, it is not obliged to find these keys and determine the contents on its local data store.

6

This provides plausible deniability for nodes that are holding incriminating content, because the node

does not and cannot easily know what data it is holding – it is hard to determine what the decryption key

is unless the node knows the passphrase. So, the peer holding the data does not know specifically what

information he is holding. He only knows that he is holding data that has been inserted into Freenet. A

common concern among people using Freenet is that they do not want to support illegal actions, such as

storing child pornography, or hate speech for example; however, it is impossible to provide free speech if

you are unable to tolerate speech that you do not agree with. The main idea of Freenet is that if the user

running a Freenet node is discovered to be holding illegal content, there is no way to know for sure the

user knew this. Freenet has yet to be tested in court. This could be because persecutors are aware of how

hard a case would be with so much plausible deniability.

When a peer requests a file, it will spread throughout the network (See 2.2 Routing). Therefore, the more

popular an item is, the more available it will be for other nodes in the network. As nodes‟ caches become

full, least recently accessed items will be removed. The only way a file will be removed from all of

Freenet is if no node requests the file until all caches purge the item. This satisfies Freenet‟s goal of

providing resistance to deny access to information and it also removes ownership of sensitive information.

2.2 Routing

Freenet is anonymous because requests are routed through intermediate nodes, which prevents knowledge

of where the original request came from. When a request for data is received by a node in the Freenet

network, it will first look in his local data store. If the data is found, then the node will respond saying it

has the data. If the item is not in the local data store, the node will ask a neighbor that it thinks is most

likely to know which node has the data. This is determined by nodes that have returned “similar” items

before. Similarity is defined as the lexicographical difference between the hashes of the description of the

data described previously. If a node cannot find a close neighbor, he will send the data requested to a

7

random neighbor. All nodes will recursively do this until the data is found or the number of hops is

exceeded. If a destination is found that has the specified hash, all nodes on the route back to the requestor

will cache the data to provide faster access for subsequent requests for that data. They may also randomly

decide to change the source to themselves. This provides source anonymity, by preventing a requestor

from knowing who originally had the data exactly. If the number of hops is exceeded, an error will be

sent back. Note that on a successful request all nodes in the successful route will cache the data. To

prevent loops each message has an ID and each node keeps track of recent IDs it has received. Also, the

hops to live (HTL) – number of hops – value can be set to any value in a small range by the requesting

node to create requestor anonymity. The main idea with this routing algorithm is that the network will

adapt to requests, and over time become very efficient. The aim of the routing algorithm is to create a

small world network.

Figure 2: Example of a data request

Freenet relies on the idea of a small world network, which is defined as a network where most nodes are

not neighbors of one another, but can be reached by a small number of hops. Small world networks have

proven to be a very interesting area of study. In 1967 Dr. Stanley Milgram conducted an experiment that

widely popularized the idea of a small world network. He sent several packages to 160 random people

8

living in Omaha, Nebraska, asking them to forward the package to a friend or acquaintance that they

thought would bring the package closer to an individual in Boston, Massachusetts. Milgram chose

Omaha and Boston, because of geographic and cultural distance. Surprisingly, the packages that

successfully reached Boston, only took on average 5 links. [6] This is the same algorithm as a traveler

without a map. The traveler wants to go to a place, but doesn‟t know how to get there. He can ask a local

who knows more about a location how to get to the destination. Although the local may not know how to

get to the destination, he probably knows an area that is closer. There the traveler can ask another local,

until he gets to the destination. Small world networks are resistant to malicious nodes. In the travel

example, a local may give wrong directions (intentionally or unintentionally), but the next local will most

likely not give wrong directions again. The traveler will recover and be set in the right direction. Also,

note that the traveler must keep track of where he‟s been to prevent going in a circle.

2.3 Managing Data

This section describes how data is stored, inserted, and removed from Freenet‟s network. Unlike other

peer-to-peer networks, Freenet does not try to store data indefinitely. It acts as a large cache. If an item is

popular, it will not be deleted from the network. However, since space is limited by the number of users

and the size of each datastore the users set, the items that have been least accessed will be removed.

There are two types of data stored in Freenet: static and dynamic. Static files don‟t change. Examples of

these include mp3, pdf, historical documents, and video. To find these types of files on Freenet a node

uses a CHK. A Content Hash Key (CHK) is a three part URI. The first part is a 160 bit SHA-1 hash of a

descriptive string identifying the data. The second part is an encrypted decryption key to decrypt the file.

The last part contains some decryption settings. Suppose a Freenet user obtains a CHK and its descriptive

string, which is used to decrypt the decrypted encryption key, by an out of bounds means, such as IRC,

mailing lists, or fproxy. To obtain the file associated with the key, the user sends a request for the key,

9

which is then routed into Freenet. When the user receives the file he decrypts the key and then the

document. All nodes that have helped obtain the file have also successfully cached the file. However,

these users do not know what the contents of the file represented by the CHK actually are, because they

do not know the descriptive decryption key string.

CHK 1. http://localhost:8888/CHK@SVbD9~HM5nzf3AX4yFCBc-
A4dhNUF5DPJZLL5NX5Brs,

2. bA7qLNJR7IXRKn6uS5PAySjIM6azPFvK~18kSi6bbNQ,
3. AAEA—8

SSK 1. http://localhost:8888/SSK@GB3wuHmtxN2wLc7g4y1ZVydkK6sOT-
DuOsUoeHK35w,

2. c63EzO7uBEN0piUbHPkMcJYW7i7cOvG42CM3YDduXDs,
3. AQABAAE/
4. testinserts-3/

Figure 3: Types of keys in Freenet

Content hash keys work well for static content, but suppose a user wishes to publish a website with

weekly news. If the user changes the data and reinserts it into Freenet it will have a new CHK. Also,

another person could create a very similar website and claim that he is the original author. To prevent this

there is another type of file used in Freenet, a Signed Subspace Key (SSK). A SSK will allow a user to

have a subdomain. There are 4 parts to an SSK. The first part is a hash of the publisher‟s public key,

which is used for signing. This is the only part of the SSK stored on intermediate nodes. The second part

of an SSK is the decryption key used to access the data. The third part contains the decryption settings.

The fourth part is a human readable name of a file followed by the version number. The second and third

parts are not stored on intermediate nodes. If they were, then the nodes would be able to determine the

data and no longer have plausible deniability. The public key serves as the domain. A user can publish

many things all in the same domain and viewers know they the same user published all the information by

verifying the data was signed with the private key associated with the hashed public key. Although these

are the fundamental types of keys in Freenet, there are actually two more that won‟t be discussed in detail:

USK, and KSK. Updateable Subspace Keys are just a wrapper around SSK‟s to hide the version number.

10

KSK‟s are used to access some data using only human-readable URI‟s. These keys aren‟t relevant to this

thesis.

To insert an item into Freenet, a user simply uses a special message that will attempt to insert the data.

However, if there is a collision, the insert will fail. It will also spread the data around more in the network.

This prevents malicious uses from trying to override a hash (if, for instance, they found a hash collision).

A request is sent to neighbors and if no neighbors report a collision, all nodes will store a copy of the data.

The data will be inserted into the network and will remain there until all local datastores drop the file.

11

Chapter 3

Private Information Retrieval

3.1 Introduction

Private information retrieval (PIR) protocols are protocols that provide a way for clients to request data

from a database without the database knowing which data was requested. They are useful in several

application domains, such as stock market databases, location based services, and medical databases. PIR

protocols are a weakened form of 1 out of n oblivious transfer - introduced in 1981 - where database

privacy is not a concern. PIR protocols were first introduced in 1995 by Chor, Goldreich, Kushilevitz and

Sudan in [7]. The paper proposed a system that was information theoretic secure and relied on multiple

non-communicating servers. They also proved that to be information theoretic secure, you must have

multiple non-communicating servers. Later in 1997, the idea of Computational Private Information

Retrieval (CPIR) schemes was introduced by both Chor and Gilboa, and Ostrovsky and Shoup. [8] [9]

Computational privacy is defined as privacy that is guaranteed against computationally bounded attackers.

The first successful implementation was by Kushilevitz and Ostrovsky in [10]. CPIR protocols relax the

requirement that PIR protocols must be information theoretic secure; they are computationally secure, i.e.,

CPIR protocols are secure assuming computation power of today and the near future. Since CPIR

protocols are not information theoretic secure, they do not have to rely on multiple non-colluding servers.

After Kushilevitz and Ostrovsky proposed the first successful CPIR scheme, there have been many papers

describing new schemes. Each protocol focuses on reducing the communication complexity considering

the number of elements in database , block size of each element , and security parameter (See Figure

4: Communication complexities of select (C) PIR protocols.).

12

Scheme Approximate Communication Complexity

Kushilevitz and Ostrovsky () for

Cachin, Micali, and Stradler ()

Lipmaa ()

Gentry and Ramzan ()
Figure 4: Communication complexities of select (C) PIR protocols. (cont.)

In the rest of this thesis PIR will be used to represent both PIR protocols as well as CPIR protocols, unless

otherwise noted. When studying PIR protocols, the privacy of the user considers the ability of the server

to determine which elements are queried. It is not the confidentiality of the client.

3.2 Practicality

There has been a debate over the usefulness of CPIR protocols. An influential paper in 2007 by Sion and

Carbunar argue that all single server CPIR protocols are not only impractical today, but also will not be

useful in the near future assuming both Nielson‟s law and Moore‟s law are stable. [11] While the main

goal of (C) PIR protocols has been to minimize communication, Sion and Carbunar show that a low

communication complexity is worthless if the computation complexity is so large that the trivial

implementation of PIR would take less time. The trivial implementation of a CPIR scheme is to respond

to every request with the entire database. This is very bandwidth inefficient; but does ensure client

privacy. However, it is very computationally efficient compared to PIR protocols at the time of Sion and

Carbunar‟s paper. Chor, et al. first proposed the idea of a trivial solution and consequently, set the goal of

all PIR protocols to minimize communication. Sion and Carbunar‟s methodology revealed that this is not

correct. To prove this they relied on the time a server takes to process (multiply) two integers in the

database versus sending a bit in the database over modern networks (Figure 5). This ratio shows that it is

much more efficient and always will be in the future to send a bit over the network than to process a CPIR

request.

13

Figure 5: Time to multiply one bit versus time to transfer one bit in recent years.

Pitting CPIR protocols against the trivial solution seemed like a good idea during the PIR‟s initial

development, but computational complexity was ignored. Figure 6 shows the typical amount of time two

typical PIR protocols at the time of Sion and Carbunar‟s paper. The database size was 2.9 GiB and all

servers were equal in processing power. The query was for a 3 MiB file.

PIR Protocol Query Plus Download Time

Limpaa 33 hours

Gentry and Ramzan 17 hours
Figure 6: Common times a typical CPIR scheme would take at the time of Sion and Carbunar's paper

Obviously, these numbers are unreasonable considering today‟s network speeds. According to Sion and

Carbunar, an average home computer can download about .75 Mb per second (6 Mbps). So, downloading

a 2.9 GiB database (trivial solution) would take about 66 minutes or about an hour. Consequently, Sion

and Carbunar‟s paper has been used by other researchers to dismiss single server PIR protocols as

impractical. [12] In response to this, two papers developed new protocols that were much more efficient

14

overall, because of increased network utilization: the Melchor and Gaborit protocol, and the Trosle and

Parrish protocol. [13] [14] This paper focuses on Melchor and Gaborit‟s protocol, because they had faster

transfer times. Melchor and Gaborit focused on removing the extreme bound on communication,

allowing more information to be sent between the CPIR server and client. Their scheme is one hundred

times faster in terms of time than previous single database schemes. On top of that, Melchor, et al. takes

advantage of the linear algebraic characteristics of their protocol to create further optimizations. Using a

GPU and CUDA, they were able to obtain several orders of magnitude faster than their original

implementation. [15] With these optimizations, the same query as Figure 6 takes close to 10 minutes. A

recent paper by Olumofin and Goldberg, confirm that Melchor and Gaborit‟s scheme is indeed practical,

refuting their own earlier claims. [16]

3.2 Melchor and Gaborit’s Scheme

In response to Sion and Carbunar Melchor and Gaborit devised a scheme based on lattices. Lattices were

first shown to be useful in cryptography in 1996 by Ajtai. [17] The Melchor Gaborit protocol relies on a

new assumed hard problem: Differential Hidden Lattice Problem. This new scheme is very efficient and

the one that is used in the experimental anonymous peer-to-peer system this thesis presents.

 3.2.1 Details

In Melchor Gaborit‟s scheme, there are three global parameters: , and . The database is represented

as a set of elements. is the database element the client is requesting. Each element of the database is

encoded as a matrix where is chosen to be large enough to encode the largest database element.

The minute details aren‟t important in this thesis, but a decent overview is required to understand the

security.

15

 3.2.1.1 Query Generation

First, a secret random matrix , - over of rank is used to create a set of matrices.

 is multiplied to the left by random invertible matrices to obtain a set of matrices of order .

All matrices in the set except for the matrix associated with is combined with an soft noise

matrix by [

] where

 is the leftmost columns of ,
 is the

rightmost columns of , and is a random scrambling matrix over . is called a soft

disturbed matrix (SDM). The matrix associated with is combined with an hard disturbed matrix

 in the same manner. This is called a hard disturbed matrix (HDM). A soft noise matrix is a

matrix consisting entirely of * +. A hard noise matrix is a soft noise matrix whose diagonal is

multiplied by . The set is sent to the server along with the prime modulus .

 3.2.1.2 Response encoding

Let , - be the column concatenation of all database element matrices. First, the server

transposes each and then transposes the entire set . The server then returns over a

 matrix.

Figure 7: Response encoding

16

 3.2.1.3 Response decoding

Unscramble the result by to remove the scrambling matrix. Then let

 . For every element in , if compute . Then, for each compute

 with if and else. Finally, for * + compute

While these steps for decoding may seem arbitrary they are used because the soft noise inserted into the

query should not be more than and the sum of the soft noise and hard noise should not exceed .

Then the rest is to make sure the sign of the final result is correct. Melchor and Gaborit prove the

correctness in their paper.

 3.2.2 Lattices

Lattices are a discrete additive subgroup of , i.e. that satisfies:

1. is closed under addition and subtraction (subgroup)

2. such that any two distinct lattice points are at least distance | | .

Given a set of vectors in ; we can define an integer lattice to be the set:

 ∑

Where the set of vectors form the basis for the lattice (). L is the set of all linear combinations of .

Note that lattices are very similar to vector spaces. The difference is the set must be from the integers

for lattices, where a vector space can be from the real numbers. Usually lattices are represented by a basis

matrix , where the rows are the vectors from ; then to calculate a vector in the lattice, one multiplies

and .

17

 3.2.3 Differential Hidden Lattice Problem

Melchor and Gaborit developed a new cryptographic primitive based on lattices. They admit themselves

that the system has not been extensively peer reviewed and may be broken more easily than well-tested

cryptographic primitives. The premise is to recognize a special type of lattice between two lattices that

have both been modified by. In the Melchor Gaborit protocol, a client essentially gives the server many

lattices that they use to send back to the client. If the server can determine which lattice is has certain

unique qualities, then the cryptosystem is broken. Each element in (from the Melchor Gaborit protocol)

is a basis of a lattice. The server should not be able to tell which lattice is the HDM lattice.

3.3 CUDA

Compute Unified Device Architecture (CUDA) is an architecture that enables parallelization on Graphics

processing units (GPU). The architecture was developed by NVIDIA. GPUs have an architecture that is

designed to work on many threads concurrently. As long as applications are able to be written efficiently

using stream processing, then CUDA is able to improve performance using concurrency. Stream

processing is a programming paradigm where a series of operations are performed on each element in a

stream of data independently. Using the GPU has been a highly successful paradigm for embarrassingly

parallel tasks. In the Melchor Gaborit scheme these tasks are matrix multiplications. For every element

in the database, two matrices are multiplied over integers modulo a prime. While using a GPU is very

efficient and effective for many tasks, not all computers have a high end video card that supports CUDA

and is powerful enough. So, a peer-to-peer system must also be able to function without a GPU, utilizing

CPU resources.

18

 3.3.1 Performance

In Melchor-Gaborit scheme, enabling CUDA provided large performance increases (See Figure 8: Server

Processing Time (GPU vs. CPU)). To test the performance, a number of variables had to be isolated:

database size, number of items, and item size, database heterogeneity, and whether or not a GPU was

used.

Figure 8: Server Processing Time (GPU vs. CPU)

Upon further experimentation, it became clear that the number of elements does not influence the server

processing time as long as the database size is fixed. Also, the size of the data queried does not influence

server processing time for homogeneous databases, again as long as the database size is fixed. This is

because while the number of files is the database is larger, the total database size is the same and thus

requests take the same amount of time to process. (See Figure 9: Server processing time with respect to

number of files)

0

20

40

60

80

100

120

140

0 200 400 600 800 1000 1200

Ti
m

e
 (

se
c)

Number of 3 MiB database elements

Server Processing Time: CPU & GPU

GPU

CPU

19

Figure 9: Server processing time with respect to number of files in a homogenous database.

3.4 Overhead

The goal of this section is to determine which parameters would be the most practical in a network where

downloading a random file is a common operation. For each query, there is a noticeable bandwidth

overhead, which depends on security parameters. In a database with very heterogeneous file sizes, large

files will ruin any performance gains on small files. Remember in Melchor Gaborit scheme, the database

is encoded as a set of elements which are encoded as a set of matrices where is chosen to be

large enough to encode the largest database element and is a security parameter (suggested to be

around 50). This means that the matrices representing smaller database elements are filled up using a

standard padding technique. This prevents query and response sizes from leaking information about

which of the database elements was queried. For instance, querying a 32 KiB file on a database that also

has a 500 MiB file will require downloading at least 500 MiB of data. Since requests are nontrivially

small, the total bandwidth used would be larger than 500 MiB. This overhead is too much for such a

relatively small file. This is a major problem and area of concern on the practicality of CPIR schemes in

general. However, in application domains with homogenous data sets like stock pricing data, this is not a

0

20

40

60

80

100

120

140

0 1 2 3 4

Ti
m

e
 (

se
c)

Total Database Size (GiB)

Server Processing Time: Element size

3 MiB files (GPU)

6 MiB files (GPU)

3 MiB files (CPU)

6 MiB files (CPU)

20

concern. For an anonymous peer-to-peer network that can store any size of data, this is of upmost

concern. Outlined below are four common ideas discussed in research literature to solve problems

associated with heterogeneous databases and how the Melchor Gaborit CPIR protocol reacts to them.

 3.4.1 Solution 1: Split the database into many databases

The total size of database elements affect the server processing time: it greatly increases bandwidth usage

as the number of elements increases. Partitioning a single database into many seems like a decent

compromise. This lowers the total number of elements in each database, keeping efficiency up. A

disadvantage to this idea is that some privacy will be lost because the entire database is no longer being

searched. And thus, the server will know which elements weren‟t queried. Depending on level of

paranoia this could be a security concern. As it will be seen in the chapter on the prototype CPIR network,

this is not a concern. If during a CPIR request, the server realizes that the only possible element that the

requestor is obtaining is incriminating content, the requestor could still claim that it is caching to improve

network performance and someone has originally requested the data. This will always be a valid excuse

because this is how both Freenet and this prototype CPIR-based protocol work. There is no anonymity in

requests on Freenet. Using this CPIR-based protocol only strengthens the requests. There are many ways

to partition databases. To optimize bandwidth, databases should be partitioned by filesize, since CPIR

protocols need to pad the smallest element to match the largest element in the database. If the range of

the elements in each database is small, then the overhead will be reduced.

 3.4.2 Solution 2: Each node only stores a certain file size range

Another interesting solution is to partition not the databases on a node but the nodes on a network. This

would effectively create multiple networks where each node only stores certain file sizes. This would

21

increase burden on node storing popular files, because there are less nodes to help caching. Also, nodes

will still have to store original requests, and if these are different than the node‟s file size range, it would

be an incriminating factor. Because of this, the former solution is better. It allows all nodes to have an

opportunity to cache data. For these reasons, it is ill advised to try to create this type of network, while

still trying to maintain the main goals of Freenet, which is what this prototype CPIR network aims to do.

 3.4.3 Solution 3: Split each file into chunks

Freenet splits every file into a 32 KiB chunks to provide anonymity from timing attacks, and to improve

downloading of larger files by simultaneously obtaining chunks from multiple peers. CPIR schemes

usually start to notice their performance gains on larger files, but when splitting a file then a small chunk

size should be chosen to prevent internal fragmentation. Internal fragmentation is wasted space due to

large chunk sizes. For instance, if Freenet chose a 1 MiB chunk size and had to chunk a 32 KiB file, then

96.875% of the chunk fragment is wasted space. The desire to have both large chunks and small chunks

make it hard to find a right balance for such a heterogeneous network like anonymous peer-to-peer

networks tend to be.

A compromise scheme could be chunking files as well as partitioning the database. Each node would

have many databases of chunked, homogeneous files. This way there is less overhead for the query. This

has the same privacy issue in Solution 1, because the entire database is not being searched. However, the

overhead is so large on small files that there is no practical way to partition 32 KiB chunked files while

still providing proper security. (See Figure 10: Network download speed of CPIR Scheme causes for

databases of small files). The average network download speed is assumed to be 6 Mbps and the average

upload speed is assumed 2.64 Mbps. [18] The limiting factor would be a node‟s uploading speed. So, the

time it takes to upload a 32 KiB chunk is 94.34 milliseconds with no other delays, such as the load on a

node, and propagation delay; consequently, a node requesting data would have to wait at least this time to

obtain a chunk. This time is then measured to determine how long a download takes using CPIR for

22

various database sizes. The download speed decreases exponentially with number of 32 KiB files in a

database. In the future a larger chunk size may make more sense as people use more rich data, but right

now it is impossible for a CPIR protocol using small chunk sizes to be not only more efficient than

Freenet currently is, but also practical. This is true for all practical chunk sizes on one homogeneous

database.

Figure 10: Network download speed of CPIR Scheme causes for databases of small files

 3.4.4 Solution 4: Multiple partitions and chunk sizes

As shown above, determining how to deal with heterogeneous databases is very tricky. While chunking

creates homogeneous databases, which helps keep query response sizes small, it also increases the

number of files in a cache, which negatively affects the query size. Partitioning reduces the number of

files in a database. However, partitioning a database will reduce anonymity. A combination of

partitioning and chunking is a scheme that has both acceptable download speeds and acceptable requestor

anonymity. The first idea is to determine what to chunk for instance, if we allow a larger chunk size and

only chunk larger files there will be no internal fragmentation. If the files are smaller than the chunk size,

0

0.5

1

1.5

2

2.5

3

3.5

4

0 5000 10000 15000

D
o

w
n

lo
ad

 s
p

e
e

d
 (

kB
p

s)

of Files in Database

Download speeds on 32 KiB
Homogeneous Database

Perceived Download
Speed

23

then they should not be chunked to avoid internal fragmentation. This improves bandwidth by removing

unnecessary padding, which hopefully will speed up requests. Smaller requests are most likely requests

that would need the lowest latency. Things like html pages and xml documents are probably being used

to access larger documents like pdfs and images. Larger documents most likely do not need to be as

responsive. Freenet makes this distinction as well.

Figure 11: Download speeds of databases with large chunk sizes on a GPU enabled node.

Figure 11 show that having a large chunk size (3 MiB) provides decent download speeds. To determine

whether 3 MiB chunk sizes are acceptable, the download speed on files less than 3 MiB should have to be

acceptable as well. Figure 12 shows the minimum and maximum download speeds recorded on a

database of either 512 MiB or 1 GiB with files less than 3 MiB whose file sizes were distributed evenly

using a GPU enabled node. To create Figure 12 every file in the database was downloaded and then the

total download time was observed. For each timespan, the largest and smallest files downloaded in that

time range were obtained and this determined the minimum and maximum download speeds. Figure 12

shows that the total database size can be relatively large and still have decent performance.

A decent tuning to optimize a GPU node‟s download speed and bandwidth is to have two separate

databases: one for large files, which will be chunked into 3 MiB chunks; and one for files smaller than 3

0

5

10

15

20

25

30

0 500 1000 1500 2000 2500

D
o

w
n

lo
ad

 S
p

e
e

d
 (

kB
p

s)

Database Size (MiB)

Download Speeds with Database
having Large Chunks (GPU)

1 MiB chunks

3 MiB chunks

24

MiB, which will not be chunked. The database for larger files is partitioned into 1 GiB partitions and the

database for smaller files is partitioned into 512 MiB partitions.

Figure 12: Download speeds for random sized data under 3 MiB for a GPU enabled node.

Testing found that using a CPU wasn‟t able to achieve significant download speeds while still

maintaining privacy. This issue casts a dim light on the practicality of using this scheme as a peer-to-peer

network because the average user does not have a CUDA enabled video card; however, this is becoming

increasingly less likely.

 3.4.5 Comparison of Solutions

Solutions 2 and 3 are discredited in their respective sections. The only viable options for this CPIR-based

peer-to-peer network are Solutions 1 and 4. Although Solution 1 is viable, it isn‟t as efficient as Solution

4. Solution 4 has the ability to break larger files into chunks, which will allow for the ability to resume

downloads, if a connection is interrupted. Also, different chunks can be downloaded from multiple peers

to improve download speed. Smaller files do not suffer from internal fragmentation, because they are not

0

5

10

15

20

6-8 12-14 19-21 24-26

P
e

rc
e

iv
e

d
 D

o
w

n
lo

ad
 S

p
e

e
d

(k

B
p

s)

Duration (sec)

Minimum and Maximum Download
Speeds for Random Sized Data (GPU)

Min kBps (1 GiB)

Max kBps (1 GiB)

Min kBps (512 MiB)

Max kBps (512 MiB)

25

chunked. Thus, the settings that this prototype CPIR-based network uses are the tuned parameters from

Solution 4.

26

Chapter 4

Experimental CPIR Based Scheme

Freenet is very popular but has a certain bandwidth and latency overhead. All data requested is cached at

intermediate nodes to improve network performance and ensure privacy. This thesis proposes the idea

that a new network could be created using CPIR protocols to obtain information from a node, instead of

forwarding data through many intermediate nodes. When a node has a hash being requested, instead of

sending the data to the requesting node (which is most likely an intermediate node), it simply responds by

saying it does have the requested data. These responses are forwarded back until the original requestor

obtains the response. The original requestor then requests the data by using the CPIR protocol (See (b) of

Figure 13). To prevent timing attacks and to spread data throughout the network, intermediate nodes may

intervene and cache the data before responding (See (c) of Figure 13).

Figure 13: Comparison of Freenet request with CPIR-based request.

27

By using CPIR, requestor anonymity is protected without the need of going through intermediate nodes.

Remember, when using a PIR protocol the sender does not know which file the requestor is requesting.

In the Freenet paper Clarke et al. discredit the use of PIR protocols in an anonymous peer-to-peer

environment. They argue that in most cases, the act of contacting a particular server itself is

incriminating and should be avoided. In Freenet a node never knows when someone is actually

requesting data for itself. The data may always be for another node. The authors may have overlooked

using PIR along with intermediate nodes to provide plausible deniability for requesting nodes, ensuring

there is no more risk in contacting a Freenet data node than being a member of Freenet itself.

The goal of this thesis was to create a system similar to Freenet with lower latency and requiring less

overall network bandwidth, while still providing the same level of anonymity for the sender, receiver and

all participating nodes in the network. This system would have to be practical. Currently, it is possible to

create a network using CPIR systems with much less bandwidth usage than Freenet, but the

computational costs would be too high to be practical.

4.1 Details

This scheme is very similar to Freenet, but with a few notable changes. The most obvious change is the

way files are downloaded from the network. All file downloads will be through Alguilar and Gaborit‟s

CPIR protocol. This hides which information is being obtained from the server. With this in place, there

is much less need to cache data in a network. Freenet caches data in its network for three reasons: to

provide anonymity when sending data to a peer, to provide plausible deniability for requesting data, and

to provide plausible deniability for holding the data. When sending incriminating data, the node can

claim that it is simply forwarding data. It does not know what the data is nor does he know who uploaded

the data. When requesting incriminating data, he can claim that he is caching it locally and did not

request the data. He can also claim he did not know what the data was (with plausible deniability).

28

Finally, when caught storing incriminating data he can claim that he has only cached it for someone else

and that he never requested the data. By using Melchor and Gaborit‟s CPIR protocol, the first two

reasons for caching data become unnecessary. So, caching is still necessary because we need to provide

plausible deniability for storing data; however, not every node needs to cache requests. This can decrease

latency dramatically. The percentage of nodes in a request route that request data will also affect the

spread of data in a network, which is necessary for network usefulness.

Routing will be very similar to Freenet. Like Freenet this network uses the steepest-ascent hill-climbing

search with backtracking, requesting data from nodes that have returned data closest to the requested hash

before. On a successful route though, most nodes will not cache the data. This can be done randomly or

by a certain preference. Nodes that do cache the data can arbitrarily change the source to themselves. All

caching and storage is done through CPIR schemes. The sender is much less responsible for spreading

incriminating data in this network compared with Freenet, because the sender is not able to determine

which data was requested and consequently which data the sender actually sent. The criteria for

determining whether a successful request should be cached could be file size, or computational intensity

at the moment, or a strict percentage. In the prototype network tests, a strict percentage is used, but there

are advantages of other methods. Using computational intensity to determine whether to cache can

prevent a node that is very busy from adding more strain. This keeps the node responsive and the

network healthy. File size could help keep node‟s databases more homogenous and improve performance

of CPIR schemes. However, both of those options must be overridable with some certainty to keep

requestor anonymity, or else an attacker could force nodes to not cache data and find the original

requestor.

Finally another major change is in premix routing. Premix routing uses onion routes at the beginning of a

find request. Onion routing is the idea of encrypting a message many times in layers and each time has

a different key (See Figure 14: Demonstration of onion route.). To decrypt each layer, you must have the

29

associated key. This technique was created in 1996 by Goldschlag, Reed, and Syverson to provide real-

time anonymous communication over application layer protocols. [19] Using Figure 9, we can see that

that once hop #3 receives an onion, he can decrypt it but cannot see the contents. Hop #3 knows to send

the message to hop #2. This is repeated until hop #1 receives and decrypts the package. Hop #1 reads the

message and acts accordingly.

Figure 14: Demonstration of onion route.

The goal of incorporating premix routing into an anonymous peer-to-peer network is to prevent

correlation attacks using the HTL value. Assume for instance, that a node received a find request with a

HTL value of MAX_HTL. Then, with high probability, a node can conclude that this request is the

originating request. Right now, Freenet randomizes the HTL value when very high, but a correlation can

still be statistically evident. In the prototype anonymous peer-to-peer network, all find requests (which

include hash to find) are premix routed with onion routes. Now, nodes that receive find requests are

unable to say with any degree of certainty who initiated the request. If there was no premix routing, then

nodes requesting data only had plausible deniability of being incriminated for requesting data. With

30

premix routing, any requesting node has very strong deniability (beyond suspicion) with regard to

initiating a find request. Freenet wishes to add this feature, but has not because they are still trying to

determine the best way to do so.

4.2 Implementation

To test the usability of CPIR in an anonymous peer-to-peer network, a network that utilized the Melchor

Gaborit CPIR protocol and the routing algorithm mentioned above was created. The network is

implemented in C++ and uses xml-based messages to exchange information. When a request for data is

found, it is automatically downloaded using the CPIR protocol. When a success is being forwarded back

to the originator, each node may or may not cache the request, blocking the message until downloaded.

Every node listens on a different port and messages are sent asynchronously. Shell scripts were written

that would start the nodes on different ports with different neighbors and with different initial data.

4.2 Experiments

The goal of these experiments is to show that this prototype network is practical. Many full scale tests

were run on a local machine to determine some statistics. These results were compared against a typical

Freenet node running on the same machine. There are many things to determine. One limiting factor is

the computation. Each node will have requests that it must fulfill and CPIR operations are

computationally expensive. Statistics of Freenet are published by nodes who wish to help determine the

health of Freenet. After running a Freenet node whose cache was 2 GiB with the default settings on a 2

GHz machine with 2.00 GiB of RAM for twenty-four hours (See Figure 15), the total load on the node

was determined. Bulk requests are requests whose latency isn‟t as important. A real-time requests

demand faster latency. Most of the Freenet requests that were measured were real-time requests. When a

Freenet node is busy, it will drop requests; so the standard deviation within each hour is very little. Each

request is for a 32 KiB segment. Of course, the results depend on configuration settings. The default

31

settings were chosen for all options, except the cache size. The default cache size depends on the total

size of the hard disk drive a node has, but a 2 GiB cache was chosen. During the most demanding hour of

the test (hour 20), the node had to process 620 requests: 600 real-time and 20 bulk requests.

Figure 15: Load on a 2 GHz Machine with 2.00 GiB of RAM in Freenet in the first 24 hours.

I took the peak usage hour and determined that 620 local successes are successfully retrieved from that

node‟s local database. This means that every minute of the peak hour there were, on average, 11 find

requests being successfully responded to: 10 from real-time requests and 1 from bulk-requests. Stress

testing the machine used for Figure 15, which has a CUDA enabled GeForce 8800 GTX video card, was

able to produce upwards of 8 real-time CPIR requests per minute. Limiting real requests per minute to 7

real-time requests per minute and limiting bulk requests to 2 per minute, the node is able to process all

requests. This would limit the total requests that a node could handle to be 420 real-time requests per

hour. The recorded measurement of 620 requests is too high and the node would have to limit these

requests for peak hours. This restriction does not stop the network from functioning but it does limit the

amount of requests that a node can handle. Testing this on the prototype network did not seem to affect

network conditions greatly. The network was able to recover and route data around busy nodes. Not

using a CUDA enabled video card, a node can only handle almost 1 bulk-request per core per minute. The

0

100

200

300

400

500

600

700

1 3 5 7 9 11 13 15 17 19 21 23

Su
cc

e
ss

e
s

(#
)

Hour

Local Successes of a Freenet Node

Bulk

Real-Time

32

same goes with real-time requests. This is because the request uses almost all CPU for almost an entire

minute. The server processing time is almost 50 seconds alone.

It is impractical to think that a node would be willing to spend all CPU/GPU processing time to handle

requests for other nodes in a network. Most nodes have ample hard drive space and asking to give up a

small percentage makes sense. Limiting the number of requests per minute to such a low number where

CPU/GPU is not being constantly worked at near maximum capacity makes the network very

unresponsive. This is because one request consumes an entire process for almost 40 seconds on a CPU

device. Almost no packets are successfully found if requests are limited to 1 or 2 per minute.

By using experimentation, there was not a way that could be found to create a network that would be

practical using CPIR exclusively for downloading files. Every method that would have decent download

speeds required too much CPU/GPU use. Average users do not want to sacrifice their computer for

freedom. Besides the crippling factor of the CPU/GPU utilization, the bandwidth overhead was too large

to be even close to what Freenet‟s bandwidth has.

33

Chapter 5

Conclusion

5.1 Observations

The idea of an anonymous peer-to-peer network based on a computational private information retrieval

protocol is very intriguing. This thesis evaluated the practicality of such a network through many means.

Many ideas were changed over time to keep the network secure and anonymous. Many changes were

also made from the ideas of Freenet, mainly that the act of communicating with a Freenet node itself is

not dangerous. On top of fundamental differences, many technical changes were made. To spread data

around on a network, nodes on a path had to randomly download from the source; this happens in Freenet

but for many more reasons. In my original idea, this wasn‟t here, but there must be a way to carry

popular information through a network.

To develop this project there were many tasks that had to be complete. The first step is mainly

background reading and analysis. Finding a CPIR protocol was a lot of researching, because there are

many different protocols, but it was hard to determine the practicality of each one. Finally, developing a

peer-to-peer network was a challenge. It is written in C++ and heavily utilizes the boost library: boost

asio for handling networking, boost thread, boost filesystem for writing and reading data, and boost

program options for handling program arguments.

After developing the network, it had to be tested to ensure that it worked according to specifications of

other anonymous networks. The network had to converge like Freenet, and there had to be a framework

for testing the network. This took time to determine errors and bugs. However, I‟m sure not all bugs are

missing and this thesis project should not be used to guarantee anonymity. It should be used to conduct

further research and if CPIR protocols improve, the code can swap out CPIR protocols pretty easily.

34

5.2 Practicality

The network this thesis proposes, while not being more efficient than Freenet, can be practical and in

some sense more secure. It is possible to use this network even though it has very high bandwidth

overhead by limiting the total requests handled per hour, making the computation usage acceptable.

However, most computers do not have CUDA enabled video cards, yet. So, while CUDA enabled video

cards are not the norm, it is very difficult to imagine this network being practical. Also, overall there is

much more bandwidth overhead than originally anticipated. For instance a 3 MiB request for a 1 GiB

database – the recommended parameters – required at least a total of 41.039 MiB of bandwidth. In

Freenet this would have been, on average, significantly less. So, while this network is practical it is not

very useful unless a target audience would be willing to accept such performance penalties for added

anonymity. This may be the case in some situations.

5.3 Future Work

The prototype network uses a lot of bandwidth and computational power and probably isn‟t too useful in

the near term. However, there are a few projects that could be researched that would allow this network

to be practical.

One exciting idea is a Freenet plugin that would allow „extra‟ security by downloading an item over CPIR

as well as using intermediate nodes. This would block the server from knowing what was obtained while

creating a small overhead in both bandwidth and computation. Since not every request uses CPIR, a node

can handle CPIR requests with only a CPU and not notice much overhead. This could be done on top of

Freenet‟s current network and allow nodes to optionally participate in the protocol when they either have

free computation or a very sensitive request is going though.

35

Another avenue of research should be in CPIR requests today. Only recently was computational

complexity taken into account for CPIR optimizations. So, maybe a more efficient protocol could be

developed that uses both less computation and less bandwidth. If so, then this scheme may become even

more practical on its own.

36

References

1. Masnick, Mike. Homeland Security Seizes Spanish Domain Name That Had Already Been Declared

Lega. techdirt. [Online] February 1, 2011. [Cited: March 19, 2011.]

http://www.techdirt.com/articles/20110201/10252412910/homeland-security-seizes-spanish-domain-

name-that-had-already-been-declared-legal.shtml.

2. Understanding Kazaa. Liang, Jian, Kumar, Rakesh and Ross, Keith W. 2004.

3. An Analysis of the Skype Peer-to-Peer Internet Telephony. Baset, Salman A. and Schulzrinne,

Henning. 2004 : s.n.

4. Crowds: anonymity for Web transactions. Reiter, Michael K. and Rubin, Aviel D. 1, New York :

ACM, November 1998, ACM Transactions on Information and System Security (TISSEC), Vol. 1, pp.

62-92. 1094-9224.

5. Freenet: a distributed anonyous information storage and retrieval system. Clarke, Ian, et al. Berkeley :

Springer-Verlag New York, Inc., 2001, International workshop on Designing privacy enhancing

technologies, pp. 46-66. 3-540-41724-9.

6. Small World Experiment. Milgram, Stanley. May 1967, Psychology Today, Vol. 1, pp. 61-67. 0033-

3107.

7. Private Information Retrieval. Chor, B, et al. Washington, D.C. : IEEE Computer Science, 1995,

FOCS '95: Proceedings of the 36th Annual Symposium on Foundations of Computer Science, pp. 41-50.

0-8186-7183-1.

8. Computationally Private Information Retrieval. Chor, Benny and Gilboa, Niv. El Paso : Association

for Computing Machinery, May 4, 1997, Proceedings of the 29th Annual Symposium on the Theory of

Computing, pp. 304-313. 0-89791-888-6.

9. Private Information Storage (Extended Abstract). Ostrovsky, Rafail and Shoup, Victor. 1997.

10. Replication Is Not Needed: Single Database, Computationally-Private Information Retrieval.

Kushilevitz, Eyal and Ostrovsky, Rafail. Miami Beach : s.n., October 20, 1997, FOCS '97: Proceedings

of the 38th Annual Symposium on Foundations of Computer Science, pp. 364-373. 0-8186-8197-7.

11. On the Computational Practicality of Private Information Retrieval. Sion, Radu and Carbunar,

Bogdan. 2007, In Proceedings of the Network and Distributed Systems Security Symposium.

12. Privacy-preserving Queries over Relational Databases. Olumofin, Femi and Goldberg, Ian. July

2010, 10th Privacy Enhancing Technologies Symposium, pp. 75-92.

37

13. Efficient Computationally Private Information Retrieval From Anonymity or Trapdoor Groups.

Trosle, Jonathan and Parrish, Andy. [ed.] Mike Burmester, et al. s.l. : Springer Berlin / Heidelberg,

2011, Lecture Notes in Computer Science, Vol. 6531, pp. 114-128. 10.1007/978-3-642-18178-8_10.

14. A Fast Private Information Retrieval Protocol. Melchor, Carlos Alguilar and Gaborit, Phillippe.

Toronto : s.n., July 6-11, 2008, ISIT 2008. IEEE International Symposium on Information Theory, 2008,

pp. 1848-1852. 978-1-4244-2256-2.

15. High-speed Private Information Retrieval Computation on GPU. Alguilar-Melchor, Carlos, et al.

Washington DC : s.n., 2008, SECURWARE '08 Proceedings of the 2008 Second International

Conference on Emerging Security Information, Systems and Technologies, pp. 263-272. 978-0-7695-

3329-2.

16. Revisiting the Computational Practicality of Private Information Retrieval. Olumofin, Femi and

Goldberg, Ian. June 2010, CACR Tech Report, p. 16.

17. Generating hard instances of lattice problems (extended abstract). Ajtai, Miklós. Philadelphia,

Pennsylvania : Association for Computing Machinery, 1996, Proceedings of the twenty-eighth annual

ACM symposium on Theory of computing, Vol. 96, pp. 99-108. 0-89791-785-5.

18. Household Upload Index. Net Index. [Online] Ookla. [Cited: February 13, 2011.]

http://www.netindex.com/upload/allcountries/.

19. Hiding Routing Information. Goldschlag, David M., Syverson, Paul F. and Reed, Michael G. [ed.]

Ross Anderson. s.l. : Springer Berlin / Heidelberg, 1996, Information Hiding: Lecture Notes in Computer

Science, Vol. 1174, pp. 137-150. 10.1007/3-540-61996-8_37.

20. Lectures on the NTRU encryption algorithm and digital signature scheme. Pipher, Jill. Grenoble,

France : s.n., June 2002.

38

Appendix

Building the software

1. Obtain the prerequisite software

 Boost Program Options

 Boost Lexical Cast

 Boost Asio

 Boost Thread

 Boost Filesystem

 CUDA (optional)

 Crypto++

 GNU Multiple Precision Arithmetic Library

 Number Theory Library (NTL)

 Xerces-C++ XML Parser

2. Extract the archive and build

 tar xf thesis-michael.tar.gz

 make

3. Running the node
 ./node –h ip address –p port –v

4. Using the node

[port] 1. Send public key request

[port] 2. Send find request packet

[port] 3. Send PIR request

[port] 4. ls

[port] 5. wait (debugging)

Option 1:

 This option essentially finds neighbors. By obtaining a neighbor‟s public key, you are able to

send find requests to them. Also, you are able to send encrypted content to them by encrypting a

symmetric key with their public key.

Option 2:

 This option allows you to request a hash that you wish to obtain.

Option 3:

 This option allows you to download a hash when you know where it is. This isn‟t done

automatically after a find is successful to ensure data is wanted.

Option 4:

 Display hashes that you currently have. Mainly for debugging.

39

Option 5:
Wait is for running test networks on the localhost. It allows all nodes to be up and running before

requests are made.

40

Vita

The author was born in Covington, Louisiana and grew up in Slidell, Louisiana. He obtained his

bachelor‟s degree in computer science from Louisiana State University in 2009. He joined the University

of New Orleans computer science graduate program to pursue a MS in computer science focusing on

information assurance.

	Private Information Retrieval in an Anonymous Peer-to-Peer Environment
	Recommended Citation

	tmp.1318624567.pdf.3EqWq

