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Abstract 

 

 

 Private Information Retrieval (PIR) protocols enable a client to access data from a server without 

revealing what data was accessed.  The study of Computational Private Information Retrieval (CPIR) 

protocols, an area of PIR protocols focusing on computational security, has been a recently reinvigorated 

area of focus in the study of cryptography.  However, CPIR protocols still have not been utilized in any 

practical applications.  The aim of this thesis is to determine whether the Melchor Gaborit CPIR protocol 

can be successfully utilized in a practical manner in an anonymous peer-to-peer environment. 
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Chapter 1 

Introduction 

 
 
 

1.1 Motivation 

 
 
The first amendment of the United States constitution guarantees freedom of speech, which allows 

citizens to express their opinions without fear of persecution.  Freedom of speech is necessary for a 

functioning democracy.  However, not every country has this freedom and there also have been many 

instances in the United States where freedom of speech has been restricted.  For instance, after the 

publication of the over 250,000 leaked United States diplomatic cables in 2010, there was rash reaction 

from lawmakers.  Sen. Lieberman introduced the “Protecting Cyberspace as a National Asset Act of 

2010”, which would have allowed for government control of Internet service providers (ISP)s, arguing 

that in a national emergency the government should be able to „shut down‟ the Internet.  This vague law 

with no checks and balances would have greatly destroyed freedom of speech.  Only in 2011, when Egypt 

was able to prevent Internet access to citizens in an attempt to unsuccessfully prevent a revolution was the 

bill revised to remove this „shut down‟ idea.  This ebb and flow of censorship and regulation has shown a 

need for the ability to communicate freely without government control. 

 

1.2 Importance of an Anonymous Peer-To-Peer Network 

 

 

An anonymous peer-to-peer network is a network that allows peers to communicate while remaining 

anonymous.   Creating such a network is very difficult because the network has to immune against any 

attack that would even help determine original authors of data.  Freenet is a prominent anonymous peer-

to-peer network.  They argue that freedom of speech cannot be guaranteed without anonymity.  This is 

because it is easy to curtail free speech by punishing those who exercise it.  Doing so instills fear and 
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stifles further free speech by others.  By allowing anonymity it becomes impossible to punish anyone 

exercising free speech, because it is unknown who exercised the freedom in the first place.  Freenet 

argues that to ensure the availability of freedom of speech, the government should not be able to control 

its population‟s ability to share information freely at all.  If knowledge is stifled and censored, then people 

are uninformed and are not able to adequately determine a complete and accurate conclusion.  Therefore, 

no information should be censored in any way.  It is difficult to take such a firm choice when it comes to 

freedom of speech.  There are many arguments for stifling freedom of speech.  Child pornography, hate 

speech, racism, and terrorism are all examples where preventing such information flow seems like a good 

idea.  However, it is too hard to determine whether certain knowledge can fall into these categories, and 

governments have a record of overreaching in censorship.  Also, they have been known to hide 

information that would shine them in a negative light.  Instances of this can be seen in the WikiLeaks 

releases and the seizure of 84,000 sites, many of which were perfectly legal. [1] However, even 

WikiLeaks itself censors data to protect citizens that would be in harm‟s way if uncensored.  So, for me it 

is hard to agree with Freenet completely, but the idea is interesting academically and in many countries 

Freenet is a viable way to spread knowledge that would otherwise be censored. 

 

1.3 Private Information Retrieval 

 

 

Private Information Retrieval (PIR) protocols allow a client to access data from a server without allowing 

the server to know which data was accessed.  Until recently, it was accepted that all PIR protocols today 

and in the near future are impractical.  The study of Computational Private Information Retrieval (CPIR) 

protocols were developed shortly afterwards.  However, they also were not practical to use.  Recently, 

there have been many attempts to create a practical protocol.  This thesis determines whether CPIR 

protocols can be successfully used to create a practical anonymous peer-to-peer network. 

 



3 
 

1.4 Goals of this project 

 

 

To develop and determine the success of the prototype network, there were 3 main goals are laid out.  The 

first goal is to understand anonymous peer-to-peer networks and why they are anonymous.  Then, the next 

goal is to find a CPIR protocol that would be most successful in with constraints placed on it by the 

anonymous peer-to-peer network.  Finally, a test suite has to be developed to analyze the performance and 

anonymity of the network.  By the end of this thesis, the ultimate goal is to show whether a CPIR protocol 

can be used in a practical manner for anonymity networks. 
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Chapter 2 

Anonymous Peer-To-Peer Systems 

 

 

 

 Any distributed application where peers process tasks or work between them is considered a peer-

to-peer network.  There are 3 different types of peer-to-peer networks:  centralized, semi-centralized, and 

decentralized.  A centralized peer-to-peer system uses a central server either to distribute work, or help 

locate information among nodes.  Examples of a central system are Napster and BitTorrent.  Semi-

centralized peer-to-peer systems do not have a central server; however, they do have nodes that are more 

important than other peers.  These peers accept more traffic and may control a part of the total network.  

Semi-centralized systems include Kazaa [2] and Skype [3].  These more important nodes are usually 

called super nodes.  Finally, there are fully decentralized peers where all nodes have the same priority and 

are equally valuable to the network.  Freenet and GNUnet are examples of fully decentralized peer-to-

peer networks.  Semi-centralized and fully decentralized networks have the advantage of being more 

fault-tolerant.  Anonymous peer-to-peer networks are peer-to-peer applications in which peers are 

anonymous to each other.  Peers cannot know who is requesting data and who is sending data. 

 

There are many different roles in a peer-to-peer environment and each role has a different view of the 

system, including senders, receivers, and intermediate nodes.  An attacker could be any of these roles or 

an outsider such as an ISP.  Different anonymity protect against different attackers.  For instance, some 

anonymous peer-to-peer networks use proxies.  In this sense senders and receivers are anonymous, but the 

proxy knows everything.    Within each view of the system, there are three levels (See Figure 1). [4] 

Beyond suspicion Appears no more likely to have acted than any other 

Probable innocence Appears no more likely to have acted than not have 

Possible innocence Nontrivial probability that it was not the user 

Figure 1:  Three types of anonymity (continued) 
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The purpose of anonymous networks is usually to provide freedom of speech.  By limiting the ability of 

censorship, more information can be available.  Anonymous networks are a gray area of the law.  While 

information about corrupt governments can be spread throughout the network without the whistleblower 

being held responsible, so can child pornography and other illegal information. 

 

The most popular schemes to provide anonymity utilize either proxies (mix nets) or intermediate nodes 

(crowds, onion routes).  The proposed anonymous peer-to-peer system in this thesis is very similar to 

Freenet and Crowds.  These systems provide possible innocence to both senders and receivers of data on 

the network.  The reason that the network is similar to Freenet and Crowds is because there is a 

performance and bandwidth overhead in these networks which can be optimized by CPIR protocols.  Also, 

they are the most successful anonymous networks.  The other types of networks have a central point(s) of 

failure, which could allow a strong enough opposition to pressure the central point(s) of failure to shut 

down services, crippling the network. 

 

2.1 Freenet 

 

 

The prototype peer-to-peer network in this thesis is heavily influenced by Freenet.  In the original paper 

[5], Clarke et al. lay out a framework for a distributed, censorship-resistant, peer-to-peer network called 

Freenet.  It provides both sender anonymity and receiver anonymity to the level of possible innocence.  

The network was created with five goals in mind:  provide anonymity for producers and consumers, 

provide deniability for maintainers of data, be resistant to attempts to deny access to information, have 

efficient routing and storage, and be decentralized.  In Freenet, every peer contributes part of his hard disk 

drive space for use in a large distributed data store, where nodes store other nodes‟ data.  Each data item 

stored on each node‟s hard disk drive is encrypted using AES (Rijndael), a symmetric algorithm, where 

the passphrase determined by the creator of the data.  While the decryption keys are theoretically 

available to the node, it is not obliged to find these keys and determine the contents on its local data store.  
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This provides plausible deniability for nodes that are holding incriminating content, because the node 

does not and cannot easily know what data it is holding – it is hard to determine what the decryption key 

is unless the node knows the passphrase.  So, the peer holding the data does not know specifically what 

information he is holding.  He only knows that he is holding data that has been inserted into Freenet.  A 

common concern among people using Freenet is that they do not want to support illegal actions, such as 

storing child pornography, or hate speech for example; however, it is impossible to provide free speech if 

you are unable to tolerate speech that you do not agree with.  The main idea of Freenet is that if the user 

running a Freenet node is discovered to be holding illegal content, there is no way to know for sure the 

user knew this.  Freenet has yet to be tested in court.  This could be because persecutors are aware of how 

hard a case would be with so much plausible deniability. 

 

When a peer requests a file, it will spread throughout the network (See 2.2 Routing).  Therefore, the more 

popular an item is, the more available it will be for other nodes in the network.  As nodes‟ caches become 

full, least recently accessed items will be removed.  The only way a file will be removed from all of 

Freenet is if no node requests the file until all caches purge the item.  This satisfies Freenet‟s goal of 

providing resistance to deny access to information and it also removes ownership of sensitive information. 

 

2.2 Routing 

 

 

Freenet is anonymous because requests are routed through intermediate nodes, which prevents knowledge 

of where the original request came from.  When a request for data is received by a node in the Freenet 

network, it will first look in his local data store.  If the data is found, then the node will respond saying it 

has the data.  If the item is not in the local data store, the node will ask a neighbor that it thinks is most 

likely to know which node has the data.  This is determined by nodes that have returned “similar” items 

before.  Similarity is defined as the lexicographical difference between the hashes of the description of the 

data described previously.  If a node cannot find a close neighbor, he will send the data requested to a 
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random neighbor.  All nodes will recursively do this until the data is found or the number of hops is 

exceeded.  If a destination is found that has the specified hash, all nodes on the route back to the requestor 

will cache the data to provide faster access for subsequent requests for that data.  They may also randomly 

decide to change the source to themselves.  This provides source anonymity, by preventing a requestor 

from knowing who originally had the data exactly.  If the number of hops is exceeded, an error will be 

sent back.  Note that on a successful request all nodes in the successful route will cache the data.  To 

prevent loops each message has an ID and each node keeps track of recent IDs it has received.  Also, the 

hops to live (HTL) – number of hops – value can be set to any value in a small range by the requesting 

node to create requestor anonymity.  The main idea with this routing algorithm is that the network will 

adapt to requests, and over time become very efficient.  The aim of the routing algorithm is to create a 

small world network. 

 

Figure 2: Example of a data request 

 

Freenet relies on the idea of a small world network, which is defined as a network where most nodes are 

not neighbors of one another, but can be reached by a small number of hops.  Small world networks have 

proven to be a very interesting area of study.  In 1967 Dr. Stanley Milgram conducted an experiment that 

widely popularized the idea of a small world network.  He sent several packages to 160 random people 



8 
 

living in Omaha, Nebraska, asking them to forward the package to a friend or acquaintance that they 

thought would bring the package closer to an individual in Boston, Massachusetts.  Milgram chose 

Omaha and Boston, because of geographic and cultural distance.  Surprisingly, the packages that 

successfully reached Boston, only took on average 5 links. [6]  This is the same algorithm as a traveler 

without a map.  The traveler wants to go to a place, but doesn‟t know how to get there.  He can ask a local 

who knows more about a location how to get to the destination.  Although the local may not know how to 

get to the destination, he probably knows an area that is closer.  There the traveler can ask another local, 

until he gets to the destination.  Small world networks are resistant to malicious nodes.  In the travel 

example, a local may give wrong directions (intentionally or unintentionally), but the next local will most 

likely not give wrong directions again.  The traveler will recover and be set in the right direction.  Also, 

note that the traveler must keep track of where he‟s been to prevent going in a circle. 

 

2.3 Managing Data 

 

 

This section describes how data is stored, inserted, and removed from Freenet‟s network.  Unlike other 

peer-to-peer networks, Freenet does not try to store data indefinitely.  It acts as a large cache.  If an item is 

popular, it will not be deleted from the network.  However, since space is limited by the number of users 

and the size of each datastore the users set, the items that have been least accessed will be removed. 

 

There are two types of data stored in Freenet:  static and dynamic.  Static files don‟t change.  Examples of 

these include mp3, pdf, historical documents, and video.  To find these types of files on Freenet a node 

uses a CHK.  A Content Hash Key (CHK) is a three part URI.  The first part is a 160 bit SHA-1 hash of a 

descriptive string identifying the data.  The second part is an encrypted decryption key to decrypt the file.  

The last part contains some decryption settings.  Suppose a Freenet user obtains a CHK and its descriptive 

string, which is used to decrypt the decrypted encryption key, by an out of bounds means, such as IRC, 

mailing lists, or fproxy.  To obtain the file associated with the key, the user sends a request for the key, 
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which is then routed into Freenet.  When the user receives the file he decrypts the key and then the 

document.  All nodes that have helped obtain the file have also successfully cached the file.  However, 

these users do not know what the contents of the file represented by the CHK actually are, because they 

do not know the descriptive decryption key string. 

 

CHK 1. http://localhost:8888/CHK@SVbD9~HM5nzf3AX4yFCBc-
A4dhNUF5DPJZLL5NX5Brs, 

2. bA7qLNJR7IXRKn6uS5PAySjIM6azPFvK~18kSi6bbNQ, 
3. AAEA—8 

SSK 1. http://localhost:8888/SSK@GB3wuHmtxN2wLc7g4y1ZVydkK6sOT-
DuOsUoeHK35w,  

2. c63EzO7uBEN0piUbHPkMcJYW7i7cOvG42CM3YDduXDs,  
3. AQABAAE/ 
4. testinserts-3/ 

Figure 3:  Types of keys in Freenet 

 

Content hash keys work well for static content, but suppose a user wishes to publish a website with 

weekly news.  If the user changes the data and reinserts it into Freenet it will have a new CHK.  Also, 

another person could create a very similar website and claim that he is the original author.  To prevent this 

there is another type of file used in Freenet, a Signed Subspace Key (SSK).  A SSK will allow a user to 

have a subdomain.  There are 4 parts to an SSK.  The first part is a hash of the publisher‟s public key, 

which is used for signing.  This is the only part of the SSK stored on intermediate nodes.  The second part 

of an SSK is the decryption key used to access the data.  The third part contains the decryption settings.  

The fourth part is a human readable name of a file followed by the version number.  The second and third 

parts are not stored on intermediate nodes.  If they were, then the nodes would be able to determine the 

data and no longer have plausible deniability.  The public key serves as the domain.  A user can publish 

many things all in the same domain and viewers know they the same user published all the information by 

verifying the data was signed with the private key associated with the hashed public key.  Although these 

are the fundamental types of keys in Freenet, there are actually two more that won‟t be discussed in detail:  

USK, and KSK.  Updateable Subspace Keys are just a wrapper around SSK‟s to hide the version number.  
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KSK‟s are used to access some data using only human-readable URI‟s.  These keys aren‟t relevant to this 

thesis. 

 

To insert an item into Freenet, a user simply uses a special message that will attempt to insert the data.  

However, if there is a collision, the insert will fail.  It will also spread the data around more in the network. 

This prevents malicious uses from trying to override a hash (if, for instance, they found a hash collision).  

A request is sent to neighbors and if no neighbors report a collision, all nodes will store a copy of the data.  

The data will be inserted into the network and will remain there until all local datastores drop the file. 
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Chapter 3 

Private Information Retrieval 

 

 

3.1 Introduction 

 

 

Private information retrieval (PIR) protocols are protocols that provide a way for clients to request data 

from a database without the database knowing which data was requested.  They are useful in several 

application domains, such as stock market databases, location based services, and medical databases.  PIR 

protocols are a weakened form of 1 out of n oblivious transfer - introduced in 1981 - where database 

privacy is not a concern.  PIR protocols were first introduced in 1995 by Chor, Goldreich, Kushilevitz and 

Sudan in [7].  The paper proposed a system that was information theoretic secure and relied on multiple 

non-communicating servers.  They also proved that to be information theoretic secure, you must have 

multiple non-communicating servers.  Later in 1997, the idea of Computational Private Information 

Retrieval (CPIR) schemes was introduced by both Chor and Gilboa, and Ostrovsky and Shoup. [8] [9]  

Computational privacy is defined as privacy that is guaranteed against computationally bounded attackers.  

The first successful implementation was by Kushilevitz and Ostrovsky in [10].  CPIR protocols relax the 

requirement that PIR protocols must be information theoretic secure; they are computationally secure, i.e., 

CPIR protocols are secure assuming computation power of today and the near future.  Since CPIR 

protocols are not information theoretic secure, they do not have to rely on multiple non-colluding servers.  

After Kushilevitz and Ostrovsky proposed the first successful CPIR scheme, there have been many papers 

describing new schemes.  Each protocol focuses on reducing the communication complexity considering 

the number of elements in database  , block size of each element  , and security parameter   (See Figure 

4:  Communication complexities of select (C) PIR protocols.). 
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Scheme Approximate Communication Complexity 

Kushilevitz and Ostrovsky  (  ) for     

Cachin, Micali, and Stradler  (     ) 

Lipmaa  (            ) 

Gentry and Ramzan  (   ) 
Figure 4:  Communication complexities of select (C) PIR protocols. (cont.) 

 

In the rest of this thesis PIR will be used to represent both PIR protocols as well as CPIR protocols, unless 

otherwise noted.  When studying PIR protocols, the privacy of the user considers the ability of the server 

to determine which elements are queried.  It is not the confidentiality of the client. 

 

3.2 Practicality 

 
 
There has been a debate over the usefulness of CPIR protocols.  An influential paper in 2007 by Sion and 

Carbunar argue that all single server CPIR protocols are not only impractical today, but also will not be 

useful in the near future assuming both Nielson‟s law and Moore‟s law are stable. [11]  While the main 

goal of (C) PIR protocols has been to minimize communication, Sion and Carbunar show that a low 

communication complexity is worthless if the computation complexity is so large that the trivial 

implementation of PIR would take less time.  The trivial implementation of a CPIR scheme is to respond 

to every request with the entire database.  This is very bandwidth inefficient; but does ensure client 

privacy.  However, it is very computationally efficient compared to PIR protocols at the time of Sion and 

Carbunar‟s paper.  Chor, et al. first proposed the idea of a trivial solution and consequently, set the goal of 

all PIR protocols to minimize communication.  Sion and Carbunar‟s methodology revealed that this is not 

correct.  To prove this they relied on the time a server takes to process (multiply) two integers in the 

database versus sending a bit in the database over modern networks (Figure 5).  This ratio shows that it is 

much more efficient and always will be in the future to send a bit over the network than to process a CPIR 

request. 
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Figure 5:  Time to multiply one bit versus time to transfer one bit in recent years. 

 

Pitting CPIR protocols against the trivial solution seemed like a good idea during the PIR‟s initial 

development, but computational complexity was ignored.  Figure 6 shows the typical amount of time two 

typical PIR protocols at the time of Sion and Carbunar‟s paper.  The database size was 2.9 GiB and all 

servers were equal in processing power.  The query was for a 3 MiB file. 

PIR Protocol Query Plus Download Time 

Limpaa 33 hours 

Gentry and Ramzan 17 hours 
Figure 6:  Common times a typical CPIR scheme would take at the time of Sion and Carbunar's paper 

 

Obviously, these numbers are unreasonable considering today‟s network speeds.  According to Sion and 

Carbunar, an average home computer can download about .75 Mb per second (6 Mbps).  So, downloading 

a 2.9 GiB database (trivial solution) would take about 66 minutes or about an hour.  Consequently, Sion 

and Carbunar‟s paper has been used by other researchers to dismiss single server PIR protocols as 

impractical. [12]  In response to this, two papers developed new protocols that were much more efficient 
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overall, because of increased network utilization:  the Melchor and Gaborit protocol, and the Trosle and 

Parrish protocol. [13] [14]  This paper focuses on Melchor and Gaborit‟s protocol, because they had faster 

transfer times.  Melchor and Gaborit focused on removing the extreme bound on communication, 

allowing more information to be sent between the CPIR server and client.  Their scheme is one hundred 

times faster in terms of time than previous single database schemes.  On top of that, Melchor, et al. takes 

advantage of the linear algebraic characteristics of their protocol to create further optimizations.  Using a 

GPU and CUDA, they were able to obtain several orders of magnitude faster than their original 

implementation. [15]  With these optimizations, the same query as Figure 6 takes close to 10 minutes.  A 

recent paper by Olumofin and Goldberg, confirm that Melchor and Gaborit‟s scheme is indeed practical, 

refuting their own earlier claims. [16] 

 

3.2 Melchor and Gaborit’s Scheme 

 

 

In response to Sion and Carbunar Melchor and Gaborit devised a scheme based on lattices.  Lattices were 

first shown to be useful in cryptography in 1996 by Ajtai. [17] The Melchor Gaborit protocol relies on a 

new assumed hard problem:  Differential Hidden Lattice Problem.  This new scheme is very efficient and 

the one that is used in the experimental anonymous peer-to-peer system this thesis presents. 

 

 3.2.1 Details 

 

 

In Melchor Gaborit‟s scheme, there are three global parameters:   ,   and  .  The database is represented 

as a set of   elements.     is the database element the client is requesting.  Each element of the database is 

encoded as a     matrix where   is chosen to be large enough to encode the largest database element.  

The minute details aren‟t important in this thesis, but a decent overview is required to understand the 

security. 
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  3.2.1.1 Query Generation 

 

 

First, a secret random      matrix   ,     - over    of rank   is used to create a set of matrices.  

  is multiplied to the left by random invertible matrices to obtain a set of matrices    of order     .  

All matrices in the set    except for the matrix associated with    is combined with an     soft noise 

matrix    by    [  
     

 
      ]    where   

    is the   leftmost columns of   ,   
    is the   

rightmost columns of   , and   is a random       scrambling matrix over   .     is called a soft 

disturbed matrix (SDM).  The matrix associated with    is combined with an     hard disturbed matrix 

    in the same manner.  This     is called a hard disturbed matrix (HDM).  A soft noise matrix is a 

matrix consisting entirely of *    +.  A hard noise matrix is a soft noise matrix whose diagonal is 

multiplied by  .  The set   is sent to the server along with the prime modulus  . 

 

  3.2.1.2 Response encoding 

 

 

Let    ,      - be the column concatenation of all database element matrices.  First, the server 

transposes each    and then transposes the entire set  .  The server then returns       over    a 

     matrix. 

 

Figure 7:  Response encoding 
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  3.2.1.3 Response decoding 

 

 

Unscramble the result by          to remove the scrambling matrix.  Then let        
       

  

  
    .  For every element   in  , if       compute       .  Then, for each    compute     

      with           if        and              else.  Finally, for   *   + compute 

                

 

While these steps for decoding may seem arbitrary they are used because the soft noise inserted into the 

query should not be more than     and the sum of the soft noise and hard noise should not exceed    .  

Then the rest is to make sure the sign of the final result is correct.  Melchor and Gaborit prove the 

correctness in their paper. 

 3.2.2 Lattices 

 

 

Lattices are a discrete additive subgroup of    , i.e.       that satisfies:  

1.    is closed under addition and subtraction (subgroup) 

2.       such that any two distinct lattice points        are at least distance |     |   . 

Given a set of vectors            in   ;     we can define an integer lattice to be the set:  

  ∑             
 

   

 

Where the set of vectors   form the basis for the lattice  ( ).  L is the set of all linear combinations of  .  

Note that lattices are very similar to vector spaces.  The difference is the set   must be from the integers 

for lattices, where a vector space can be from the real numbers.  Usually lattices are represented by a basis 

matrix  , where the rows are the vectors from  ; then to calculate a vector in the lattice, one multiplies   

and   . 
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 3.2.3 Differential Hidden Lattice Problem 

 

 

Melchor and Gaborit developed a new cryptographic primitive based on lattices.  They admit themselves 

that the system has not been extensively peer reviewed and may be broken more easily than well-tested 

cryptographic primitives.  The premise is to recognize a special type of lattice between two lattices that 

have both been modified by.  In the Melchor Gaborit protocol, a client essentially gives the server many 

lattices that they use to send back to the client.  If the server can determine which lattice is has certain 

unique qualities, then the cryptosystem is broken.  Each element in   (from the Melchor Gaborit protocol) 

is a basis of a lattice.  The server should not be able to tell which lattice is the HDM lattice. 

 

3.3 CUDA 

 

 

Compute Unified Device Architecture (CUDA) is an architecture that enables parallelization on Graphics 

processing units (GPU).  The architecture was developed by NVIDIA.  GPUs have an architecture that is 

designed to work on many threads concurrently.  As long as applications are able to be written efficiently 

using stream processing, then CUDA is able to improve performance using concurrency.  Stream 

processing is a programming paradigm where a series of operations are performed on each element in a 

stream of data independently.  Using the GPU has been a highly successful paradigm for embarrassingly 

parallel tasks.  In the Melchor Gaborit scheme these tasks are matrix multiplications.  For every element 

in the database, two matrices are multiplied over integers modulo a prime.  While using a GPU is very 

efficient and effective for many tasks, not all computers have a high end video card that supports CUDA 

and is powerful enough.  So, a peer-to-peer system must also be able to function without a GPU, utilizing 

CPU resources. 
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 3.3.1 Performance 

 

 

In Melchor-Gaborit scheme, enabling CUDA provided large performance increases (See Figure 8:  Server 

Processing Time (GPU vs. CPU)).  To test the performance, a number of variables had to be isolated:  

database size, number of items, and item size, database heterogeneity, and whether or not a GPU was 

used.  

 

Figure 8:  Server Processing Time (GPU vs. CPU) 

Upon further experimentation, it became clear that the number of elements does not influence the server 

processing time as long as the database size is fixed.  Also, the size of the data queried does not influence 

server processing time for homogeneous databases, again as long as the database size is fixed.  This is 

because while the number of files is the database is larger, the total database size is the same and thus 

requests take the same amount of time to process. (See Figure 9:  Server processing time with respect to 

number of files) 
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Figure 9:  Server processing time with respect to number of files in a homogenous database. 

 

3.4 Overhead 

 

 

The goal of this section is to determine which parameters would be the most practical in a network where 

downloading a random file is a common operation.  For each query, there is a noticeable bandwidth 

overhead, which depends on security parameters.  In a database with very heterogeneous file sizes, large 

files will ruin any performance gains on small files.  Remember in Melchor Gaborit scheme, the database 

is encoded as a set of   elements which are encoded as a set of     matrices where   is chosen to be 

large enough to encode the largest database element and   is a security parameter (suggested to be 

around 50). This means that the matrices representing smaller database elements are filled up using a 

standard padding technique.  This prevents query and response sizes from leaking information about 

which of the database elements was queried. For instance, querying a 32 KiB file on a database that also 

has a 500 MiB file will require downloading at least 500 MiB of data.  Since requests are nontrivially 

small, the total bandwidth used would be larger than 500 MiB.  This overhead is too much for such a 

relatively small file.  This is a major problem and area of concern on the practicality of CPIR schemes in 

general.  However, in application domains with homogenous data sets like stock pricing data, this is not a 
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concern.  For an anonymous peer-to-peer network that can store any size of data, this is of upmost 

concern.  Outlined below are four common ideas discussed in research literature to solve problems 

associated with heterogeneous databases and how the Melchor Gaborit CPIR protocol reacts to them. 

 

 3.4.1 Solution 1:  Split the database into many databases 

 

 

The total size of database elements affect the server processing time:  it greatly increases bandwidth usage 

as the number of elements increases. Partitioning a single database into many seems like a decent 

compromise.  This lowers the total number of elements in each database, keeping efficiency up.  A 

disadvantage to this idea is that some privacy will be lost because the entire database is no longer being 

searched.  And thus, the server will know which elements weren‟t queried.  Depending on level of 

paranoia this could be a security concern.  As it will be seen in the chapter on the prototype CPIR network, 

this is not a concern.  If during a CPIR request, the server realizes that the only possible element that the 

requestor is obtaining is incriminating content, the requestor could still claim that it is caching to improve 

network performance and someone has originally requested the data.  This will always be a valid excuse 

because this is how both Freenet and this prototype CPIR-based protocol work.  There is no anonymity in 

requests on Freenet.  Using this CPIR-based protocol only strengthens the requests.  There are many ways 

to partition databases.  To optimize bandwidth, databases should be partitioned by filesize, since CPIR 

protocols need to pad the smallest element to match the largest element in the database.  If the range of 

the elements in each database is small, then the overhead will be reduced. 

 

 3.4.2 Solution 2:  Each node only stores a certain file size range 

 

 

Another interesting solution is to partition not the databases on a node but the nodes on a network.  This 

would effectively create multiple networks where each node only stores certain file sizes.  This would 
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increase burden on node storing popular files, because there are less nodes to help caching.  Also, nodes 

will still have to store original requests, and if these are different than the node‟s file size range, it would 

be an incriminating factor.  Because of this, the former solution is better.  It allows all nodes to have an 

opportunity to cache data.  For these reasons, it is ill advised to try to create this type of network, while 

still trying to maintain the main goals of Freenet, which is what this prototype CPIR network aims to do. 

 3.4.3 Solution 3:  Split each file into chunks 

 

 

Freenet splits every file into a 32 KiB chunks to provide anonymity from timing attacks, and to improve 

downloading of larger files by simultaneously obtaining chunks from multiple peers.  CPIR schemes 

usually start to notice their performance gains on larger files, but when splitting a file then a small chunk 

size should be chosen to prevent internal fragmentation.  Internal fragmentation is wasted space due to 

large chunk sizes.  For instance, if Freenet chose a 1 MiB chunk size and had to chunk a 32 KiB file, then 

96.875% of the chunk fragment is wasted space. The desire to have both large chunks and small chunks 

make it hard to find a right balance for such a heterogeneous network like anonymous peer-to-peer 

networks tend to be. 

 

A compromise scheme could be chunking files as well as partitioning the database.  Each node would 

have many databases of chunked, homogeneous files.  This way there is less overhead for the query.  This 

has the same privacy issue in Solution 1, because the entire database is not being searched.  However, the 

overhead is so large on small files that there is no practical way to partition 32 KiB chunked files while 

still providing proper security.  (See Figure 10:  Network download speed of CPIR Scheme causes for 

databases of small files).  The average network download speed is assumed to be 6 Mbps and the average 

upload speed is assumed 2.64 Mbps. [18]  The limiting factor would be a node‟s uploading speed.  So, the 

time it takes to upload a 32 KiB chunk is 94.34 milliseconds with no other delays, such as the load on a 

node, and propagation delay; consequently, a node requesting data would have to wait at least this time to 

obtain a chunk.  This time is then measured to determine how long a download takes using CPIR for 
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various database sizes.  The download speed decreases exponentially with number of 32 KiB files in a 

database.  In the future a larger chunk size may make more sense as people use more rich data, but right 

now it is impossible for a CPIR protocol using small chunk sizes to be not only more efficient than 

Freenet currently is, but also practical.  This is true for all practical chunk sizes on one homogeneous 

database. 

 

Figure 10:  Network download speed of CPIR Scheme causes for databases of small files 

 

 3.4.4 Solution 4:  Multiple partitions and chunk sizes 

 

 

As shown above, determining how to deal with heterogeneous databases is very tricky.  While chunking 

creates homogeneous databases, which helps keep query response sizes small, it also increases the 

number of files in a cache, which negatively affects the query size.  Partitioning reduces the number of 

files in a database.  However, partitioning a database will reduce anonymity.  A combination of 

partitioning and chunking is a scheme that has both acceptable download speeds and acceptable requestor 

anonymity.  The first idea is to determine what to chunk for instance, if we allow a larger chunk size and 

only chunk larger files there will be no internal fragmentation.  If the files are smaller than the chunk size, 
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then they should not be chunked to avoid internal fragmentation.  This improves bandwidth by removing 

unnecessary padding, which hopefully will speed up requests.  Smaller requests are most likely requests 

that would need the lowest latency.  Things like html pages and xml documents are probably being used 

to access larger documents like pdfs and images.  Larger documents most likely do not need to be as 

responsive.  Freenet makes this distinction as well. 

 

Figure 11:  Download speeds of databases with large chunk sizes on a GPU enabled node. 

Figure 11 show that having a large chunk size (3 MiB) provides decent download speeds.  To determine 

whether 3 MiB chunk sizes are acceptable, the download speed on files less than 3 MiB should have to be 

acceptable as well.  Figure 12 shows the minimum and maximum download speeds recorded on a 

database of either 512 MiB or 1 GiB with files less than 3 MiB whose file sizes were distributed evenly 

using a GPU enabled node.  To create Figure 12 every file in the database was downloaded and then the 

total download time was observed.  For each timespan, the largest and smallest files downloaded in that 

time range were obtained and this determined the minimum and maximum download speeds.  Figure 12 

shows that the total database size can be relatively large and still have decent performance. 

 

A decent tuning to optimize a GPU node‟s download speed and bandwidth is to have two separate 

databases:  one for large files, which will be chunked into 3 MiB chunks; and one for files smaller than 3 
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MiB, which will not be chunked.  The database for larger files is partitioned into 1 GiB partitions and the 

database for smaller files is partitioned into 512 MiB partitions. 

 

 

Figure 12: Download speeds for random sized data under 3 MiB for a GPU enabled node. 

 

Testing found that using a CPU wasn‟t able to achieve significant download speeds while still 

maintaining privacy.  This issue casts a dim light on the practicality of using this scheme as a peer-to-peer 

network because the average user does not have a CUDA enabled video card; however, this is becoming 

increasingly less likely. 

 3.4.5 Comparison of Solutions 

 

 

Solutions 2 and 3 are discredited in their respective sections.  The only viable options for this CPIR-based 

peer-to-peer network are Solutions 1 and 4.  Although Solution 1 is viable, it isn‟t as efficient as Solution 

4.  Solution 4 has the ability to break larger files into chunks, which will allow for the ability to resume 

downloads, if a connection is interrupted.  Also, different chunks can be downloaded from multiple peers 

to improve download speed.  Smaller files do not suffer from internal fragmentation, because they are not 
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chunked.  Thus, the settings that this prototype CPIR-based network uses are the tuned parameters from 

Solution 4. 
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Chapter 4 

Experimental CPIR Based Scheme 

 
 
Freenet is very popular but has a certain bandwidth and latency overhead.  All data requested is cached at 

intermediate nodes to improve network performance and ensure privacy.  This thesis proposes the idea 

that a new network could be created using CPIR protocols to obtain information from a node, instead of 

forwarding data through many intermediate nodes.  When a node has a hash being requested, instead of 

sending the data to the requesting node (which is most likely an intermediate node), it simply responds by 

saying it does have the requested data.  These responses are forwarded back until the original requestor 

obtains the response.  The original requestor then requests the data by using the CPIR protocol (See (b) of 

Figure 13).  To prevent timing attacks and to spread data throughout the network, intermediate nodes may 

intervene and cache the data before responding (See (c) of Figure 13). 

 

Figure 13: Comparison of Freenet request with CPIR-based request. 
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By using CPIR, requestor anonymity is protected without the need of going through intermediate nodes.  

Remember, when using a PIR protocol the sender does not know which file the requestor is requesting.  

In the Freenet paper Clarke et al. discredit the use of PIR protocols in an anonymous peer-to-peer 

environment.  They argue that in most cases, the act of contacting a particular server itself is 

incriminating and should be avoided.  In Freenet a node never knows when someone is actually 

requesting data for itself.  The data may always be for another node.  The authors may have overlooked 

using PIR along with intermediate nodes to provide plausible deniability for requesting nodes, ensuring 

there is no more risk in contacting a Freenet data node than being a member of Freenet itself. 

 

The goal of this thesis was to create a system similar to Freenet with lower latency and requiring less 

overall network bandwidth, while still providing the same level of anonymity for the sender, receiver and 

all participating nodes in the network.  This system would have to be practical.  Currently, it is possible to 

create a network using CPIR systems with much less bandwidth usage than Freenet, but the 

computational costs would be too high to be practical. 

4.1 Details 

 
 
This scheme is very similar to Freenet, but with a few notable changes.  The most obvious change is the 

way files are downloaded from the network.  All file downloads will be through Alguilar and Gaborit‟s 

CPIR protocol.  This hides which information is being obtained from the server.  With this in place, there 

is much less need to cache data in a network.  Freenet caches data in its network for three reasons:  to 

provide anonymity when sending data to a peer, to provide plausible deniability for requesting data, and 

to provide plausible deniability for holding the data.  When sending incriminating data, the node can 

claim that it is simply forwarding data.  It does not know what the data is nor does he know who uploaded 

the data.  When requesting incriminating data, he can claim that he is caching it locally and did not 

request the data.  He can also claim he did not know what the data was (with plausible deniability).  
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Finally, when caught storing incriminating data he can claim that he has only cached it for someone else 

and that he never requested the data.  By using Melchor and Gaborit‟s CPIR protocol, the first two 

reasons for caching data become unnecessary.  So, caching is still necessary because we need to provide 

plausible deniability for storing data; however, not every node needs to cache requests.  This can decrease 

latency dramatically.  The percentage of nodes in a request route that request data will also affect the 

spread of data in a network, which is necessary for network usefulness. 

 

Routing will be very similar to Freenet.  Like Freenet this network uses the steepest-ascent hill-climbing 

search with backtracking, requesting data from nodes that have returned data closest to the requested hash 

before.  On a successful route though, most nodes will not cache the data.  This can be done randomly or 

by a certain preference.  Nodes that do cache the data can arbitrarily change the source to themselves.  All 

caching and storage is done through CPIR schemes.  The sender is much less responsible for spreading 

incriminating data in this network compared with Freenet, because the sender is not able to determine 

which data was requested and consequently which data the sender actually sent.  The criteria for 

determining whether a successful request should be cached could be file size, or computational intensity 

at the moment, or a strict percentage.  In the prototype network tests, a strict percentage is used, but there 

are advantages of other methods.  Using computational intensity to determine whether to cache can 

prevent a node that is very busy from adding more strain.  This keeps the node responsive and the 

network healthy.  File size could help keep node‟s databases more homogenous and improve performance 

of CPIR schemes.  However, both of those options must be overridable with some certainty to keep 

requestor anonymity, or else an attacker could force nodes to not cache data and find the original 

requestor. 

 

Finally another major change is in premix routing.  Premix routing uses onion routes at the beginning of a 

find request.  Onion routing is the idea of encrypting a message many times in layers and each time has 

a different key (See Figure 14:  Demonstration of onion route.).  To decrypt each layer, you must have the 
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associated key.  This technique was created in 1996 by Goldschlag, Reed, and Syverson to provide real-

time anonymous communication over application layer protocols. [19]  Using Figure 9, we can see that 

that once hop #3 receives an onion, he can decrypt it but cannot see the contents.  Hop #3 knows to send 

the message to hop #2.  This is repeated until hop #1 receives and decrypts the package.  Hop #1 reads the 

message and acts accordingly. 

 

Figure 14:  Demonstration of onion route. 

 

The goal of incorporating premix routing into an anonymous peer-to-peer network is to prevent 

correlation attacks using the HTL value.  Assume for instance, that a node received a find request with a 

HTL value of MAX_HTL.  Then, with high probability, a node can conclude that this request is the 

originating request.  Right now, Freenet randomizes the HTL value when very high, but a correlation can 

still be statistically evident.  In the prototype anonymous peer-to-peer network, all find requests (which 

include hash to find) are premix routed with onion routes.  Now, nodes that receive find requests are 

unable to say with any degree of certainty who initiated the request.  If there was no premix routing, then 

nodes requesting data only had plausible deniability of being incriminated for requesting data.  With 
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premix routing, any requesting node has very strong deniability (beyond suspicion) with regard to 

initiating a find request.  Freenet wishes to add this feature, but has not because they are still trying to 

determine the best way to do so. 

4.2 Implementation 

 

 

To test the usability of CPIR in an anonymous peer-to-peer network, a network that utilized the Melchor 

Gaborit CPIR protocol and the routing algorithm mentioned above was created.  The network is 

implemented in C++ and uses xml-based messages to exchange information.  When a request for data is 

found, it is automatically downloaded using the CPIR protocol.  When a success is being forwarded back 

to the originator, each node may or may not cache the request, blocking the message until downloaded.  

Every node listens on a different port and messages are sent asynchronously.  Shell scripts were written 

that would start the nodes on different ports with different neighbors and with different initial data. 

4.2 Experiments 

 

 

The goal of these experiments is to show that this prototype network is practical.  Many full scale tests 

were run on a local machine to determine some statistics.  These results were compared against a typical 

Freenet node running on the same machine.  There are many things to determine.  One limiting factor is 

the computation.  Each node will have requests that it must fulfill and CPIR operations are 

computationally expensive.  Statistics of Freenet are published by nodes who wish to help determine the 

health of Freenet.  After running a Freenet node whose cache was 2 GiB with the default settings on a 2 

GHz machine with 2.00 GiB of RAM for twenty-four hours (See Figure 15), the total load on the node 

was determined.  Bulk requests are requests whose latency isn‟t as important.  A real-time requests 

demand faster latency.  Most of the Freenet requests that were measured were real-time requests.  When a 

Freenet node is busy, it will drop requests; so the standard deviation within each hour is very little.  Each 

request is for a 32 KiB segment.  Of course, the results depend on configuration settings.  The default 
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settings were chosen for all options, except the cache size.  The default cache size depends on the total 

size of the hard disk drive a node has, but a 2 GiB cache was chosen.  During the most demanding hour of 

the test (hour 20), the node had to process 620 requests:  600 real-time and 20 bulk requests. 

 

Figure 15:  Load on a 2 GHz Machine with 2.00 GiB of RAM in Freenet in the first 24 hours. 

 

I took the peak usage hour and determined that 620 local successes are successfully retrieved from that 

node‟s local database.  This means that every minute of the peak hour there were, on average, 11 find 

requests being successfully responded to: 10 from real-time requests and 1 from bulk-requests.  Stress 

testing the machine used for Figure 15, which has a CUDA enabled GeForce 8800 GTX video card, was 

able to produce upwards of 8 real-time CPIR requests per minute.  Limiting real requests per minute to 7 

real-time requests per minute and limiting bulk requests to 2 per minute, the node is able to process all 

requests.  This would limit the total requests that a node could handle to be 420 real-time requests per 

hour.  The recorded measurement of 620 requests is too high and the node would have to limit these 

requests for peak hours.  This restriction does not stop the network from functioning but it does limit the 

amount of requests that a node can handle.  Testing this on the prototype network did not seem to affect 

network conditions greatly.  The network was able to recover and route data around busy nodes.  Not 

using a CUDA enabled video card, a node can only handle almost 1 bulk-request per core per minute. The 
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same goes with real-time requests.  This is because the request uses almost all CPU for almost an entire 

minute.  The server processing time is almost 50 seconds alone. 

 

It is impractical to think that a node would be willing to spend all CPU/GPU processing time to handle 

requests for other nodes in a network.  Most nodes have ample hard drive space and asking to give up a 

small percentage makes sense.  Limiting the number of requests per minute to such a low number where 

CPU/GPU is not being constantly worked at near maximum capacity makes the network very 

unresponsive.  This is because one request consumes an entire process for almost 40 seconds on a CPU 

device.  Almost no packets are successfully found if requests are limited to 1 or 2 per minute. 

 

By using experimentation, there was not a way that could be found to create a network that would be 

practical using CPIR exclusively for downloading files.  Every method that would have decent download 

speeds required too much CPU/GPU use.  Average users do not want to sacrifice their computer for 

freedom.  Besides the crippling factor of the CPU/GPU utilization, the bandwidth overhead was too large 

to be even close to what Freenet‟s bandwidth has. 
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Chapter 5 

Conclusion 

5.1 Observations 

 

 

The idea of an anonymous peer-to-peer network based on a computational private information retrieval 

protocol is very intriguing.  This thesis evaluated the practicality of such a network through many means.  

Many ideas were changed over time to keep the network secure and anonymous.  Many changes were 

also made from the ideas of Freenet, mainly that the act of communicating with a Freenet node itself is 

not dangerous.  On top of fundamental differences, many technical changes were made.  To spread data 

around on a network, nodes on a path had to randomly download from the source; this happens in Freenet 

but for many more reasons.  In my original idea, this wasn‟t here, but there must be a way to carry 

popular information through a network. 

 

To develop this project there were many tasks that had to be complete.  The first step is mainly 

background reading and analysis.  Finding a CPIR protocol was a lot of researching, because there are 

many different protocols, but it was hard to determine the practicality of each one.  Finally, developing a 

peer-to-peer network was a challenge.  It is written in C++ and heavily utilizes the boost library:  boost 

asio for handling networking, boost thread, boost filesystem for writing and reading data, and boost 

program options for handling program arguments. 

 

After developing the network, it had to be tested to ensure that it worked according to specifications of 

other anonymous networks.  The network had to converge like Freenet, and there had to be a framework 

for testing the network.  This took time to determine errors and bugs.  However, I‟m sure not all bugs are 

missing and this thesis project should not be used to guarantee anonymity.  It should be used to conduct 

further research and if CPIR protocols improve, the code can swap out CPIR protocols pretty easily. 
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5.2 Practicality 

 

 

The network this thesis proposes, while not being more efficient than Freenet, can be practical and in 

some sense more secure.  It is possible to use this network even though it has very high bandwidth 

overhead by limiting the total requests handled per hour, making the computation usage acceptable.  

However, most computers do not have CUDA enabled video cards, yet.  So, while CUDA enabled video 

cards are not the norm, it is very difficult to imagine this network being practical.  Also, overall there is 

much more bandwidth overhead than originally anticipated.  For instance a 3 MiB request for a 1 GiB 

database – the recommended parameters – required at least a total of 41.039 MiB of bandwidth.  In 

Freenet this would have been, on average, significantly less.  So, while this network is practical it is not 

very useful unless a target audience would be willing to accept such performance penalties for added 

anonymity.  This may be the case in some situations. 

5.3 Future Work 

 

 

The prototype network uses a lot of bandwidth and computational power and probably isn‟t too useful in 

the near term.  However, there are a few projects that could be researched that would allow this network 

to be practical. 

One exciting idea is a Freenet plugin that would allow „extra‟ security by downloading an item over CPIR 

as well as using intermediate nodes.  This would block the server from knowing what was obtained while 

creating a small overhead in both bandwidth and computation.  Since not every request uses CPIR, a node 

can handle CPIR requests with only a CPU and not notice much overhead.  This could be done on top of 

Freenet‟s current network and allow nodes to optionally participate in the protocol when they either have 

free computation or a very sensitive request is going though. 
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Another avenue of research should be in CPIR requests today.  Only recently was computational 

complexity taken into account for CPIR optimizations.  So, maybe a more efficient protocol could be 

developed that uses both less computation and less bandwidth.  If so, then this scheme may become even 

more practical on its own. 
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Appendix 

Building the software 

 
 
1.  Obtain the prerequisite software 

 Boost Program Options 

 Boost Lexical Cast 

 Boost Asio 

 Boost Thread 

 Boost Filesystem 

 CUDA (optional) 

 Crypto++ 

 GNU Multiple Precision Arithmetic Library 

 Number Theory Library (NTL) 

 Xerces-C++ XML Parser 

2.  Extract the archive and build 

 tar xf thesis-michael.tar.gz 

 make 

 

3.  Running the node 
 ./node –h ip address –p port –v 

 

4.  Using the node 

 
[port] 1. Send public key request 

[port] 2. Send find request packet 

[port] 3. Send PIR request 

[port] 4. ls 

[port] 5. wait (debugging) 

 

 

Option 1: 

 This option essentially finds neighbors.  By obtaining a neighbor‟s public key, you are able to 

send find requests to them.  Also, you are able to send encrypted content to them by encrypting a 

symmetric key with their public key. 

 

Option 2: 

 This option allows you to request a hash that you wish to obtain. 

 

Option 3: 

 This option allows you to download a hash when you know where it is.  This isn‟t done 

automatically after a find is successful to ensure data is wanted. 

 

Option 4: 

 Display hashes that you currently have.  Mainly for debugging. 
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Option 5: 
Wait is for running test networks on the localhost.  It allows all nodes to be up and running before 

requests are made. 
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