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ABSTRACT 

 

      Our project was aimed at the development of novel CB1 cannabinoid receptor antagonists that 

may have clinical applications for the treatment of cannabinoid and psychostimulant addiction. 

In this study, we designed, synthesized, and established the CB1 affinity for the 1,5-diaryl-1,2,3-

triazole esters, a series of 4,5-diaryl-1-substituted-1,2,3-triazole analogues and a series of 4,5-

diaryl-2-substituted-1,2,3-triazoles. 

 

     Our research group has been interested in the synthesis of amphibian alkaloids due to their 

interesting biological activities. We have recently developed a general synthetic strategy which 

can rapidly prepare a few amphibian alkaloids simply from the abundant natural product (-)-

cocaine This strategy was first successfully applied to the synthesis of (-)-monomorine. More 

recently, this strategy has also been utilized in the syntheses of both of the enantiomers of cis-

pyrrolidine 225H and (+)-gephyrotoxin 287C. 

 

 

 

 

 

 

Keywords: endocannabinoid system, CB1 receptors, antagonists, drug abuse, binding affinity, 

amphibian alkaloid, formal synthesis, neuronal nicotinic acetylcholine receptor.
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CHAPTER 1 

DESIGN AND SYNTHESIS OF CB1 RECEPTOR LIGANDS 

 

1.1 ABSTRACT 

      This study was aimed at the development of novel CB1 cannabinoid receptor antagonists that 

may have clinical applications for the treatment of cannabinoid and psychostimulant addiction. 

Our original target molecule was carboxamide. The rationale was to incorporate a bioisosteric 

1,2,3-triazole ring into the vicinal diaryl group revealed in the prototypical antagonist/inverse 

agonist SR141716 (Rimonabant)  that was presumed to interact with a unique region in the CB1 

receptors.  

      Based on our preliminary results we identified a novel series of 1,2,3-triazole ester 

derivatives as lead compounds for for biological evaluation.  

      Herein the design rationale, synthesis and CB1 receptor affinity for the 1,5-diaryl-1,2,3-

triazole esters, a series of 4,5-diaryl-1-substituted-1,2,3-triazole analogues and a series of 4,5-

diaryl-2-substituted-1,2,3-triazoles is described. 

 

1.2 INTRODUCTION 

The Endocannabinoid System 

      The endocannabinoid system is a physiological system that is believed to regulate body 

weight, glucose and lipid metabolism, and tobacco dependence. The endocannabinoid system 

consists of three components:  cannabinoid receptors, their endogenous ligands 
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(endocannabinoids), and the enzymes, proteins, and transporters involved in the synthesis and 

degradation of endocannabinoids. 1  

      The research on cannabinoid receptors was stimulated by the identification of the chemical 

structure of Δ 9-tetrahydrocannabinol (1, Δ 9-THC), the major active component of marijuana. 

Although, the central and peripheral actions of marijuana have been studied for over half a 

century and marijuana has been used in medical and recreational applications throughout the 

ages, it has taken many years to understand the action mechanisms.2 The effects of Δ9-THC have 

been assumed to be mediated by the binding of this drug to a certain type of receptors located 

throughout the body, defined as cannabinoid receptors.  

 

Figure 1.1 Δ9-Tetrahydrocannabinol (1, Δ9-THC) 

      Endocannabinoids are endogenous compounds that bind to and functionally activate the same 

receptors Δ9-THC binds to. A tremendous number of studies have contributed to the 

comprehension of the endocannabinoid regulation and function. Unlike many other 

neuromodulators or hormones, endocannabinoids are not synthesized in advance and stored in 

vesicles, they are released “on demand” from their phospholipid precursors in cell membranes.2,3 

To date, five endocannabinoids have been identified. Anandamide (AEA, 2) was the first 

endogenous ligand identified and reported in the early 1990’s. Anandamide together with 2-

arachidonoyl glycerol (2-AG, 3) are the two most studied endocannabinoids.4 

      Anandamide and 2-arachidonoyl glycerol are biosynthesized “on demand” from their 

membrane lipid precursors, N-arachidonoyl-phosphatidylethanolamine (N-ArPE) and sn-1-acyl-
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2-arachidonoylglycerols (DAGs) respectively.5 Most of the proteins involved in the metabolism 

of Anandamide and 2-arachidonoyl glycerol have been fully characterized, especially the 

enzymes responsible for their biosynthesis and degradation. However, the route for the synthesis 

and inactivation of Virhodamine (4), N-arachidonoyldopanime (NADA, 5), and noladin ether (6) 

still remains unclear. And further efforts are necessary to understand the signaling system of the 

endocannabinoid system. 

 

 

Figure 1.2 Endocannabinoids 

 

Cannabinoid Receptors 

      The identification of the cannabinoid receptors was stimulated by the desire to understand the 

pharmacological and biochemical effects of the psychoactive effects of Δ9-tetrahydrocannabinol 

(Δ9-THC), the major psychoactive component of cannabis. It was believed that the effects of Δ9-
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tetrahydrocannabinol (Δ9-THC) are mediated by occupation of receptors located throughout the 

body. 

      Although the existence of protein receptors for Δ9-tetrahydrocannabinol (Δ9-THC) had been 

indicated for a long time, Allyn Howlett et al., for the first time, provided definitive evidence for 

a cannabinoid receptor. They developed a binding assay established that cannabinoids activated a 

G protein-coupled receptor (GPCR) that inhibited adenylyl cyclase. Their work further showed 

this receptor was present in certain brain regions with a high expression level.4 Furthermore, the 

cannabinoid receptor distribution was successfully mapped with the development of highly 

active cannabinoid receptor agonists.6,7 The existence of cannabinoid receptor was ultimately 

proved by the cloning of a cannabinoid receptor in 1990 by Matsuda et al.8 which was followed 

by the cloning of a second type of cannabinoid receptors three years later in 1993.9 

      Much has been learned about the cannabinoid receptors by determining its localization. The 

localization of cannabinoid receptors was mainly determined using quantitative autoradiography, 

in situ hybridization and immunocytochemsitry.10 The autoradiographic studies performed by 

Herkenham et al. demonstrated significant results about CB1 receptors: a) The CB1 cannabinoid 

receptors are mainly expressed in the central nervous system with high density in the cerebellum, 

hippocampus, and striatum. The CB1 cannabinoid receptors were highly abundant in the brain 

regions that are affected by psychoactive effects of Δ 9-tetrahydrocannabinol (Δ9-THC); b) the 

concentration was low in the brain regions unaffected by tetrahydrocannabinol (Δ9-THC); c) 

CB1 receptors were expressed abundantly on axon terminals. The expression of CB1 receptors 

has also been described with high resolution from immunoctyochemical studies. It was revealed 

that CB1 receptors are expressed at very high levels in a subset of GABAergnic interneurones, 

the cholecystokinin (CCK) containing basket cells and at lower levels on many glutamatergic 
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terminals throughout the brain. CB1 receptors are largely present on the preterminal axonal 

segment and axons but very little on more proximal axons, dendrites, or the cell body. CB1 

receptors are also found in fat, liver, pancreas, skeletal muscles, and a number of other peripheral 

tissues.11 Conversely, the CB2 cannabinoid receptors are exclusively present in the immune 

system. It has been found in the periphery of the spleen and cells associated with immune system. 

The presence of a third type of cannabinoid receptor has been indicated recently.  

      Cannabinoid receptors (CB1, CB2) belong to the Class A, rhodospin-like family of G 

protein-coupled receptors (GPCRs). The cannabinoid receptors signals primarily through the 

inhibitory G proteins Gi and Go, to a less extend via Gs and Gq/11 with certain agonists. Both the 

CB1 cannabinoid receptor and the CB2 cannabinoid receptors share the similar signaling 

sequence. Upon the binding of cannabinoid ligands on cannabinoid receptors, the cannabinoid 

receptors were stimulated which leads to the activation of adenylyl acyclase, the activation of 

mitogen-activated protein kinases, the inhibition of certain voltage-gated calcium channels and 

the activation of G protein-linked inwardly rectifying potassium channels. The modulation of ion 

channels by CB2 cannabinoid receptors is more variable than that of CB1 cannabinoid receptors. 

CB1 was originally believed to be the “brain type” of receptors because it is among the most 

abundant G protein-coupled receptors in the central nervous system of mammalians. Now it is 

clear that CB1 is predominantly expressed in the central nervous system but also, to a lesser 

extent, in various peripheral organs, while CB2 receptors are mostly expressed in the immune 

system. “The endocannabinoid system appears to be involved in a rising number of pathological 

conditions and hence represents an exciting target for drug discovery.”12 
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CB1 Receptor Ligands 

      The CB1 receptor is pharmacologically activated upon small molecule occupation of the 

binding sites.  Based on structural features, cannabinoid receptor ligands fall into four classes4: 

1. “Classical” Cannabinoids typified by tetrahydrocannabinol (Δ9-THC, 1); 

2. “Non-classical” cannabinoids [ e.g. CP55,940, 7]; 

3. “Aminoalkylindoles” [ e.g. WIN55212-2, 8]; 

4. “Endocannabinoids” [e.g. anandamide, 9]. 

 

 

                     Δ9-THC (1)                                                          CP55,940 (7)                                                              

 

                   WIN55,212-2 ( 8)                                                  Anandamide (9) 

Figure 1.3 Cannabinoid receptor ligands 

 

      These ligands typically exhibit low nanomolar binding affinity for CB1 receptors and 

generally do not exhibit significant differential in binding affinity between the two subtypes of 



7 
 

the cannabinoid receptors, CB1 and CB2. Of these ligands, anandamide has been reported to 

exhibit selectivity for CB1 over CB2 with Ki = 61 nM (CB1) and Ki = 1930 nM (CB2). CB1 

receptor agonists inhibit cAMP production through inhibition of adenlyl cyclase, inhibit Ca+2 

influx, activate K+ channels and activate MAP kinase pathways. One of the many indications of 

CB1 receptor agonists is to increase intracellular dopamine levels in brain (striatum) similar to 

cocaine. It is believed that CB1 agonist modulation of dopamine levels in the central nervous 

system is responsible partially for the abuse liability observed for cannabinoid agonists.  

      The CB1 cannabinoid receptor agonists have a great variety of potential pharmacological 

applications including nausea, glaucoma, cancer, stroke, pain, cachexia, and neuronal disorders 

such as multiple sclerosis and Parkinson’s disease.13  

 

 

Figure 1.4 Cannabinoid receptor partial agonists 

 

      Among known cannabinoid receptor agonists there are several compounds exhibiting low 

efficacy agonist profiles in vitro and in vivo. Like the potent cannabinoid receptor ligand CP-



8 
 

55,940 (7) and WIN 55212-2 (8), they stimulated [35S]GTPγS binding but were significantly less 

potent and hence they have been designated as partial agonists.14,15 The partial agonists include 

tetrahydrocannabinol (Δ9-THC), BAY59-3704 (10), CB-25 (11) and CB-52  (12). 

 

CB1 Receptor Antagonists 

      The CB1 cannabinoid receptor antagonists bind to CB1 receptors and block the effects of 

CB1 agonists. CB1 antagonists block stimulation of [35S]GTPγS binding and block the inhibition 

of adenlyl cyclase activity. The CB1 cannabinoid antagonists have potential applications in the 

treatment of obesity and nicotine dependence. The CB1 receptor antagonists known so far are 

diarylpyrazoles, or aminoalkylidoles or triazole drivatives.16 

 

 

Firgure 1.5 SR141716A (Rimonabant, 13) 

 

      SR141716A (Rimonabant, 13), the first CB1 receptor antagonist synthesized, was tested in 

humans and then approved as a drug for the treatment of obesity and related comorbidities.  

       Bioisosterism is an important approach frequently used in medicinal chemistry to discover 

new lead compounds based on existing key ligands. It plays a significant role in attenuating 

toxicity, optimizing binding, and altering pharmacokinetics of a lead compound. The three 

dimensional structures of thiazoles, triazoles, and imidazoles and the structure of pyrazole 
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exhibit a high degree of similarity. Consequently, the pyrazole ring in Rimanabant can be 

replaced by such heterocyclic five-membered rings in order to discover bioisosteres, compounds 

that have similar chemical or physical properties and therefore similar biological properties. 

      Based on the structure of Rimonabant, numerous analogues have been synthesized to 

elucidate the structure-activity relationship information and the biological mechanisms. Most of 

those analogues were designed and synthesized based on the 1,5-diarylpyrazole ring as structural 

template, which was believed to be the molecular region binding to CB1 receptors. Various 

structural modifications of the prototype Rimonabant were undertaken and led to new series of 

cannabinoid compounds. Some of those compounds turned out to be CB1 antagonists with good 

potency, CB1/CB2 selectivity, and improved lipophilicity.  

      One of the most important structural modifications was focused on the changes of the C-3 

acyl group. Analogues have been synthesized and evaluated to establish the influence of the 

presence of the carboxamide oxygen from the C-3 position on the binding affinity.17 The 

carboxamide group was replaced by heterocyclic carboxamide bioisosteres, amino alcohols, 

ketones. It was discovered that the potency was diminished relative to Rimonabant when the 

carboxamide oxygen was absent from the pyrazole ring. It was explained by the hypothesis that 

the carboxamide oxygen forms a hydrogen bond with the CB1 receptor binding region. However, 

the functional assay results of those analogues suggested that the carboxamide group contributes 

to the inverse agonist property. Analogues without the carboxamide oxygen were identified as 

neutral antagonists in efficacy evaluations. Moreover, the analogues of Rimonabant consisting of 

long-chain alkyl amide have been synthesized and reported to exhibit good affinity for CB1 

receptors.18 Analogues with alkyl chain longer than six carbons exhibited decreased binding 
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affinity at CB1 receptors. Branched alkyl amides were generally more potent than the 

corresponding straight alkyl amides same number of carbon atoms.19  

      Based on the experimental and computational studies, the pharmacophoric requirements were 

concluded for the potency of the pyrazole analogues in CB1 binding: a para-substitute phenyl 

ring at the pyrazole C-5 position, a 2,4-dichlorophenyl ring at pyrazole N-1 position, and a 

carboxamide moiety at pyrazole C-3 position.20 

      SAR studies revealed that the C-5 phenyl group was essential for the CB1 binding. 

Substitution at the p-position of the phenyl with a halogen atom or an alkyl chain can effectively 

increase the binding affinity. In a recent study, pentyl chains with a variety of groups attached to 

the terminal carbon were used as the substituents at that position. The resulting analogues 

exhibited excellent binding affinity to CB1 receptors.19    

      Based on Rimonabant as the prototype, ring bioisosterism has been the most widely used 

strategy to design and synthesize cannabinoid antagonists with optimal pharmacological 

properties. The first reported bioisosteric analogues of Rimonabant were 4,5-diarylimidazole-2-

carboxamides synthesized by replacing the pyrazole core with an imidazole ring.21 A series of 

1,2-diarylimidazole-4-carboxamides were also described and structural modifications were 

conducted to established SAR information.22 The biological data clearly demonstrated that for 

both of those two isomeric series of imidazole analogues, the most potent ligands were those 

possessing substitution pattern very similar to that of SR141716A. In addition, most of those 

imidazole analogues showed antagonistic properties in functional assay studies. Some 

compounds displayed affinities for CB1 receptors comparative to that of SR141716A and had 

good oral bioavailability and brain penetration.  
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Figure 1.6 Rimonabant bioisosteric analogues 

 

      The pyrazole core in SR141716A was also replaced by other five-membered bioisosteric 

rings. These included thiazole, oxazole and 1,2,4-triazole derivatives. Those analogues were 

reported to be less potent than the methyl-diarylimidazoles discussed earlier. This difference in 

binding affinity may be attributed to the absence of methyl group which was believed to play a 

very important role in properly orienting the carbonyl group for molecular recognition at the 

CB1 binding pocket. Despite the moderate binding affinity associated with the 1,2,4-triazole 

derivatives, this series provided interesting compounds. The analogue bearing the same 

substituents as SR141716A was found to be an antagonist (14). Another 1,2,4-triazole derivative 

(15) bearing a n-hexyl instead of a carboxamide was reported to be an antagonist both in vitro 

and in vivo. In addition, it was one of the few known CB1 receptor antagonists without inverse 

agonistic properties.23 Tremendous amount of work has also been done researching on the 

structure-activity relationship of the imidazole bioisosteric analogue of SR141716A (16, 17).  
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Figure 1.7 Rimonabant bioisosteric analogues 

 

      In addition to the analogues with five-membered bioisosteric rings, six-membered ring 

replacement of the pyrazole ring in SR141716A has afforded a number of pyridine, pyrimidine 

and pyrazine derivatives. Diarylpyridine analogues with or without the carboxamide group were 

all synthesized and evaluated in binding assay studies. The ether 18, a potent and selective CB1 

agonist, demonstrated that the presence of amide moiety was not necessary for this category of 

compounds. It could be replaced by other functional groups combination with the substituent at 

the pyridine C-5 position, such as the nitrile in 19, to optimize pharmacological profiles.24 The 

introduction of a polar substituent to the pyrazine ring provided analogues 20 that were less 

lipophilic and more bioavailable. Compound with phenyl group 21 as the central ring still 

exhibited good binding to CB1 receptor. It indicated that the presence of a heterocycle is not 

strictly required for a CB1 antagonist.25 
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Figure 1.8 Six-membered bioisosteric analogues of Rimonabant 

 

Drug Abuse 

      Behavioral pharmacologists are particularly interested in the roles of CB1 receptors because 

of their selective presence in the central nervous system and their association with brain-reward 

circuitry.14 The mesocorticolimbic dopamine system has been implicated in mediating the effects 

of several drugs. The mesocorticolimbic dopamine system is believed to be the primary region of 

the brain mediating the effects of several drugs and is closely associated with brain-reward 

circuitry mechanisms. The mesocorticolimbic dopamine system includes neurons in the ventral 

tegmental areaand corresponding projections into the forebrain regions.15 Even though CB1 

receptors do not reside on the mesencephalic dopaminergic neurons, they are located in these 

regions.2 CB1 receptor agonists elevate dopamine levels, while CB1 receptor antagonists or 
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inverse agonists can attenuate the dopamine level elevations associated with drug abuse and 

diminish the stimulation of dopaminergic activity in the reward circuitry of the brain and 

attenuate the effects of drug abuse. Therefore, the development of CB1 antagonists as potential 

therapeutic agents for drug abuse is straightforward. While the CB1 antagonist  Rimonabant did 

not show to have an effect on cocaine and amphetamine self-administration, it has been reported 

to reduce rat cocaine-primed and cue-induced reinstatement studies with CB1 antagonist CB1 

antagonists have been shown to block the effects of Δ9-THC and appear to be devoid of abuse 

liability.16  

 

1.3 RESULTS AND DISCUSSION 

      The program, illustrated in Scheme 1.1, includes chemical synthesis, in vitro biological 

evaluation, and in vivo biological evaluation. Phase 1 of the study will consist of rational drug 

design and synthesis. Novel analogues will be designed based upon lead structures identified in 

our preliminary studies and supported by computational studies. In phase 2, compounds will be 

evaluated in vitro studies to identify structural requirements for high affinity binding. The 

binding affinity results will be used to advance compounds to in vitro efficacy studies as well as 

provide feedback information for the optimization of compound structures to identify more 

potent ligands. Phase 3 of the study will consist of in vitro characterization of compound efficacy 

and identify CB1 antagonists, agonists, or inverse agonists. Because of their different action 

mechanisms and potential therapeutic values, inverse agonists and partial agonists will be 

directed to another program. Compounds that elicit neutral antagonist efficacy will be advanced 

to the blood-brain barrier permeability evaluations. Compounds that exhibit good blood-brain 

barrier permeability will be advanced to in vivo evaluation of antagonist efficacy. 
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Scheme 1.9 Flowscheme of CB1 receptor rug discovery program 

       Compounds with poor blood-brain permeability will be re-evaluated in the rational drug 

design process to improve their physical properties to improve permeability. Finally, phase 5 will 

establish in vivo antagonist activity for compounds that have met the goals of in vitro efficacy 

and blood brain permeability. Those compounds that exhibit good in vivo antagonist efficacy 

will be submitted to the National Institute of Drug Abuse and serve as a lead compounds in 

future studies aimed at developing them further as drug abuse medications. The various phases 

of the program all go simultaneously with each phase contributing to the refinement of the ligand 

structure. 
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Figure 1.9 Initial target  

 

      In reviewing the literature about CB1 receptor antagonists, we noticed that the 1,2,3-triazole 

analogues were absent from the pool of SR141716A bioisosteric analogues. Our initial design of 

the target compound was based upon prototypical structure of SR141617A and its related 

compounds discussed in the literature. The design rationale was to incorporate the 1,2,3-triazole 

ring with the vicinal diaryl system. This led to the compound 22. This design was supported by 

preliminary computational study. As illustrated in Figure 1.10, for the AM1 geometry optimized 

structures, a 1,2,3-triazole ring in 2 could replace the pyrazole ring and provide good overlap 

with SR141716A in the diaryl groups which was believed to be the molecular region binding to 

CB1 receptors. It was not clear at that time how the juxtaposition of the alignment of the 

carboxamide moieties of 22 relative to SR141716A would affect molecular recognition at CB1 

receptors. Molecular modeling studies reported for analogues of SR141716A had suggested that 

increased steric bulk at C4 could be tolerated. This suggested that the carboxamide at C4 of 22 

may not have detrimental effect on CB1 binding. Furthermore important to the target selection 

was that computational logP (clogP) values for the 1,2,3-triazole derivatives typically exhibited a 

trend of improved lipophilicity over corresponding pyrazole or 1,2,4-triazole isomers of similar 

substitution and functionality. Although the ClogP values may vary from actual logP values, this 
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trend of decreased lipophilicity was encouraging for us to move forward. Based on this analysis, 

we identified the 1,5-diaryl-1,2,3-triazole as our initial target for synthesis. 

 

Figure 1.10 Preliminary computational study 

 

      To synthesize the target molecule, the key was to construct the 1,2,3-triazole ring with the 

right regiochemistry. One of the most attractive strategy was the 1,2,3-triazole ring system was 

to exploit the 1,3-dipolar cycloaddition reaction of an azide and a terminal alkyne (Scheme 

1.2).26, 27 When Cu(I) salt was used as catalyst for this reaction, the product was 1,4-

disubstituted-1,2,3-triazole. However the reaction of magnesium actylide and terminal alkyne 

give the 1,5-disubstituted-1,2,3-triazole exclusively. This strategy would allow rapid 

regioselective ring construction of the target molecules and provide suitable intermediates for 

parallel synthesis of potential analogues.  
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Scheme 1.2 The strategy to synthesize 1,2,3-triazoles  

 

       As one the building blocks for the cycloaddition reaction, 2,4-dichloropheynlazide 24 was 

required to be synthesized. Unlike the preparation of alkyl azides, there are only few effective 

methods available for the synthesis of aryl azides. Aryl azides were generally synthesized by 

diazotization of aryl amine followed by the treatment of sodium azide. An alternative method 

developed recently was to treat the corresponding amines with triflyl azide.28 As illustrated in 

Scheme 1.3, this reaction worked well on 4-chloroaniline to provide 4-chlorophenyl azide 23 in 

a 82% yield. It did not furnish useful quantities of the 2,4-dichlorophenyl azide. Moreover, triflyl 

azide was not commercially available nor could it be stored for a long time. It needed to be 

freshly prepared every time to synthesize phenyl azide. Fortunately, the Ullmann-type of 

conversion iodobenzene catalyzed by CuI with trans-1,2-di(aminomethyl)-cyclohexane as ligand 

worked efficiently on both 4-chloroiodobenzene and 2,4-dichloroiodobenzend.30 4-Chlorophenyl 

azide was prepared in a 89% yield and 2,4-dichloropheny benzene in a 54% yield from 2,4-

dichloroiodobenzene. All the reagents required for the synthesis of azide in this reaction were 

commercially available and the reaction could be conducted in a gram-scale. 
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Scheme 1.3 Synthesis of azide 

Reagents and conditions: a) H2O/CH2Cl2, 0 º Cb) TfN3, aq. CuSO4, Et3N, CH2Cl2/MeOH, rt, 2 h; 
c) TfN3, aq. CuSO4,  Et3N, CH2Cl2/MeOH, rt, 2 h; d) NaN3, Sodium ascorbate, CuI (10% mol), 
Ligand (15 mol%), DMSO/H2O, 50 ºC, 1 h; e) NaN3, Sodium ascorbate, CuI (10% mol), Ligand 
(15 mol%), DMSO/H2O, 100 ºC, 2 h 
 

      Since the mono-chlorophenyl azide 23 was more readily available by the synthesis, it was 

employed as the model to explore the potential of the cycloaddition approach and to examine the 

reaction conditions. Additionally, the resulting analogues with monochloro-substituted phenyl at 

N-1 position could be evaluated for CB1 binding and provide SAR information about 

substitution at this position. The proposed mechanism of the cycloaddition reaction was 

illustrated in Scheme 1.4.27 The reaction started with the nucleophilic attack of the acetylide on 

the terminal nitrogen of the azide to form a linear intermediate which spontaneously closed to 

give the 4-metallotriazole 25 which leads to 1,5-disubstituted-1,2,3-triazole 26 when treated with 
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an electrophile. In the excess of azide, the intermediate 4-metallotriazole 25 reacts with the 

second azide and gives the side product 27. 

 

Scheme 1.4 Proposed mechanisms of 1,2,3-triazole formation 

 

      To monitor the process of the one-pot three-step reaction and to optimize the yield for this 

reaction, the cycloaddition adduct was first directly treated with aqueous NH4Cl solution. The 

evaluation of the resultant 4-unsubstitute analogues would provide important SAR information 

about the effects of substitution at this position on the binding of 1,2,3-triazoles to CB1 receptors. 

The best yield (85%) was obtained when freshly made azide in THF was added to the acetylide 

and was heated for 2 hours at 50 ⁰C with a small amount of acetylene remaining unreacted. 

Excessive azide or extended reaction time led to decreased yield due to the addition of a second 

molecule of azide to the 4-magnesio-1,2,3-triazole. To synthesize the target carboxamide 

analogue 22, the carboxylic acid 31 was proposed as an intermediate from which the 

carboxamide could be synthesized through a straightforward amidation. When the cycloaddtion 
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intermediate 28 was treated with CO2, only the hydrolyzed product 4-unsubstituted-1,2,3-triazole 

29 was obtained because of the moisture introduced by CO2 stream. As an alternative synthetic 

route, methyl ester 30 was synthesized and concomitant hydrolysis gave the carboxylic acid 31 

in a good yield. The methyl ester 30 was prepared by capturing the 4-magnesio-1,2,3-triazole 

with methyl chloroformate.  

 

 

Scheme 1.5 Synthesis of target compound 

Reagents and conditions: a) 1. EtMgCl, THF, rt, 1 h; 2. 23 or 24, THF, 50 oC, 2 h; b) 1 N NH4Cl; 
c) CO2, 0 oC; d) ClCOOMe, THF, 0 oC; e) KOH, MeOH, reflux; f) DIPEA, HBTU, CH3CN, 1-
aminopiperidine. 
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Cmpda Code                           ClogPb Ki (nM)c 
 

22a 
      

      HS69 
                              

                              5.33 
  

590 ± 170 
22b 
29b 

     HS60 
      HS53-2 

                              4.69                  
                             4.46 

54%d    
6,900 ± 1,300 

29a      HS57-2                               5.11 1,420 ± 266 
30b      HS53-1                               4.68 4,400 ± 760 
30a      HS57-1                               5.32 66 ± 7.0 

    
aAll compounds were tested as the freebase. 
b See Ref. 30. 
cAll values are the mean ± SEM of three experiments performed in triplicate. 
dPercent inhibition at 100µM. 
 

Table 1.1 Inhibition of [3H]SR141716A at CB1 Receptors 
 

      As illustrated in Table 1.1, the binding affinities for CB1 receptors of the three 1,5-diaryl-

1,2,3-triazoles were determined in vitro by displacement of [3H]SR141716A for CB1 receptors 

in rat brain. The Ki values summarized in Table 1.1 indicate that the initial SR141716A analogue 

carboxamide 22a exhibited only modest binding for CB1 receptors (Ki =590 nM). The C4-

unsubstituted analogue exhibited only micromolar affinity for CB1 receptors. It was even less 

potent than the bulky carboxamide. It suggested that substitution at this position of the 1,2,3-

triazole ring is favorable for CB1 receptor binding and structural modification at this position 

may lead to compounds with optimal pharmacological profiles. The N-1 monochloro phenyl 

analogues 29b, 30b, and 22b were less potent than the corresponding N-1 dichloro phenyl 

analogues 29a, 30a, and 22a. However, it was serendipitous to find that the simple ester 

analogue 30a exhibited potent affinity for CB1 receptors. This result validated the previous 

hypothesis that 1,2,3-triazole ring was suitable replacement for pyrazole ring in SR141716A. It 

also indicated that an amide moiety at C4-position was not essential for high binding at CB1 

receptors, which updated the SAR information based on previous studies on other bioisosteric 

SR141716A analogues. More important for the future studies, it provided a very promising 

compound as a new lead compound.                                                                                                 
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      Compared with the target analogue and even SR141716A (Table 1.2), methyl ester 30a had a 

few desirable pharmacological features. First of all, it is near one order of magnitude more potent 

than the target compound and its Ki value was already in the same range with that of SR141716A. 

It also has a significantly smaller molecular weight than those of 30a and SR141716A. It has a 

much lower ClogP value than that of SR141716A.  

 

 

 

 

Cmpd      Ki (CB1) nM      ClogP MW 
 

30a 
 

22a 
 

SR141617A 

      
66  
 

590 
 

11.5a  

                              
   5.32   

 
   5.33  

 
    6.26                         

  
383 

 
451 

 
464 

aTaken form reference 31. 

Table 1.2 The properties of lead compound 

      More importantly, the ester moiety may lead to a significant increase in compound 

metabolism since esters are typically more readily hydrolyzed than amides in vivo. This is 

extremely important in lieu of the long half-lives typically observed for cannabinoids. Ester 

derivatives will undoubtedly be more susceptible to metabolism and have shorter duration of 

action than amide or hydrazide analogues. Although the measurement of ligand half-lives is not 
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part of this study, the development of an ester-based ligand would be an important step toward 

the development of shorter acting cannabinoids with better safety profiles. Therefore, methyl 

ester was identified as a new lead compound for further studies in the development of 1,2,3-

triazoles as CB1 antagonists. 

       

 

Scheme 1.6 Synthesis of esters 

Reagents and conditions: a) 1. EtMgCl (2 N in THF), THF, rt, 1 h; 2. 2,4-dichlorophenyl azide, 
50 ºC, 2 h; b) ClCOOR, THF, 0 ºC; c) cyclohexanol, n-BuLi, THF, 0 ºC, 2 h. 
 

      As illustrated in Scheme 1.6, a series of 1,2,3-triazole analogues with varying ester groups 

were prepared to investigate how lipophilicity and steric effects affect the binding of the ester to 

CB1 receptors. They were synthesized using the procedures described earlier for the methyl 

esters. The 4-magnesio-1,2,3-triazole intermediate was captured with a number of alkyl 

chloroformates. Each of the analogues could be synthesized in gram-scale. But since only a small 

quantity of product was required for the binding assay studies, only the cycloaddition reaction 
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was conducted in a gram-scale. Then the solution of cycloaddition adduct in THF was separated 

into a number of portions and each portion was treated with a different commercially available 

chloroformate to provide the corresponding 4-alkoxycarbonyl-1,5-diaryl-1,2,3-triazole. The 

cyclohexyl ester derivative 38 was prepared by a simple transesterification from the methyl ester 

30a.  

      As shown in Figure 1.11, the X-ray crystallographic analysis of 4-methoxycarbonyl-1,5-

diaryl-1,2,3-triazole served to confirm the regioselectivity of the cycloaddition reaction and 

unequivocally established the regiochemistry of the 1,2,3-triazole ring system.  

 

Figure 1.11 ORTEP Drawing of 4-methoxycarbonyl-1-(4-chlorophenyl)-5-(2,4-dichlorphenyl)-
1,2,3triazole 30a.32 
 
 
      The esters were evaluated in vitro for binding affinity at CB1 receptors (Table 1.3). The n-

propyl ester 33, with a Ki value slightly higher than SR141716A, was the most potent derivative 

of the series. We noticed that it exhibited similar lipophilicity to that of SR141716A. The phenyl 

ester 36 also exhibited high affinity for CB1 receptors, but the affinity of the benzyl ester 37 was 



26 
 

somehow diminished, even though they share very similar lipophilicity. The larger alkyl esters 

exhibited high lipophilicity and were difficult to handle in the binding assay. Preliminary binding 

studies indicated diminished binding affinity relative to propyl ester. In general, analogues with 

either decreased or increased lipophilicity relative to SR141716A exhibited diminished affinity. 

It seems to suggest that a narrow window of lipophilic character may exist for binding of these 

triazoles at CB1 receptors. 

 

Cmpda                   Code                     R                                         ClogPb                         Ki (nM)      

SR141716A                                                                                    6.26                               11.5c 
30a                        HS57-1                Methyl                                  5.32                               66           
32                          HS57-3                Ethyl                                     5.68                              180 
33                          HS57-4                n-Propyl                                6.21                              4.6 
34                          HS57-5                n-Butyl                                  6.70                              I.R.d               
35                          HS57-6                n-Hexyl                                 7.62                              I. R. 
36                          HS57-8                Phenyl                                   6.83                              11 
37                          HS57-9                Benzyl                                   6.85                              97 
38                          HS57-7                c-Hexyl                                 7.23                              240 
______________________________________________________________________________                                                                                                                                                           
aAll compounds were tested as the freebase. 
b See Ref. 30. 
cAll values are the mean ± SEM of three experiments performed in triplicate. 
d Inconsistent results. 
 

Table 1.3 Inhibition of [3H]SR141716A at CB1 Receptors 
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Figure 1.12 

 

      The second class of compounds prepared were based on the 4,5-diaryltriazole ring system. 

They were prepared to investigate the effects of the orientation of triazole system on CB1 

receptor affinity. Preliminary computational study confirmed that 4,5-diaryltriazole could also 

provide good overlap with SR141716A. In this vein, the 4,5-diarytriazoles would be expected to 

be equipotent to 1,5-diaryltriazoles. In addition, the 4,5-diaryltriazoles typically offer the 

advantage of lower lipophilicity over the corresponding 1,5-diarytriazoles. A series of 4,5-

diaryltriazole derivatives were designed and synthesized  with three very interesting compounds 

as structure stereotype: our lead compound 30a, triazole 39 has been the only reported neutral 

antagonists. 40 exhibited a nanomolar binding potency.  

       In the synthesis of 4,5-diphenyl-1,2,3-triazoles (Scheme 1.7), the acetal azide was selected 

to be the reaction partner of the 1,3-dipolar cylcoaddition reaction for the consideration of further 

functionalization at a later stage. The acetal group was stable in the early stage reactions, but 

when transformed to the aldehyde, it can react with a number of reagents to prepare a variety of 

analogues.   
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      The 1,3-dipolar cycloadditon reaction of azide 41 and the alkyne gave a 4-magnesio-1,2,3-

triazole intermediate which was treated with elemental iodine giving 42. The heterocyclic 

aromatic iodide 42 was converted into the 4,5-diphenyl-1,2,3-triazole through Suzuki cross 

coupling reaction with 2,4-dichlorophenylboronic acid.    

 

 

Scheme 1.7 
 
Reagents and conditions: a) NaN3, DMSO/H2O, 100 ºC, 2 h; b)  1. EtMgCl (2 M in THF), THF, 
rt, 1 h; 2. 2,4-dichlorophenyl azide, 50 ºC, 2 h; 3. I2, THF, 10 min; c) 2,4-Dichlorophenylboronic 
acid, Pd2(dba)3 (5%mol), PCy3 (12%mol), K3PO4 (1.7 equiv), THF/H2O, 110 ºC, 16 h; d) Me3SiI, 
CHCl3, rt, 1 h. 
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Table 1.4 Suzuki Cross Coupling 

 

       As demonstrated in Table 1.4, we focused on the protocols that have been reported to 

successfully work on heterocyclic substrates especially the nitrogen containing heterocycles. 

Although essentially no desired product was determined from the first two reaction we ran 

(Entry 1, Entry 2), the methodology developed by Fu and coworkers gave the product in a 62% 

for the first run. With a simple screening of the reaction conditions, the desired product was 

obtained in an excellent yield (98%). 
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Scheme 1.8 

Reagents and conditions: a) Ph3P(Br)(CH2)3CH3, t-BuOK, THF, 0 ºC, 1.5 h; b) H2, 10% Pd/C, 
MeOH, rt, overnight; c)  Ph3P(Br)CH2CH3, t-BuOK, THF, 0 ºC, 1.5 h; d) H2, 10% Pd/C, MeOH, 
rt; e) NaClO2, NaH2PO4, 2-Methyl-2-butene, Acetone/H2O, rt, 2 h, overnight; f) TMSCHN2, 
toluene/MeOH, rt, 10 min. 
 
 
      With aldehyde 44 at hand, a number of analogues with different groups at N-1 position were 

synthesized. Wittig olefination reaction of 44 with Ph3P(Br)(CH2)3CH3 or Ph3P(Br)CH2CH3 gave 

45 and 47 respectively which were reduced to 46 and 48 by a simple hydrogenation. Aldehyde 
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44 was efficiently oxidized to carboxylic acid 49 using sodium chlorite as oxidizing agent. 

Carboxylic 50 was then methylated giving ester 50.  

 

 

Scheme 1.9 

Reagents and conditions: a) NaBH4, MeOH, 0 ºC; b) DAST, CH2Cl2,  -78 ºC to rt; c) TsCl, 
Pyridine, rt, 15 min; d) LiCl, Ethanol, reflux, 12 h; e) LiBr, Acetone, reflux, 16 h. 
 
      Aldehyde 44 was reduced to alcohol 51 which was also converted into fluoride 53. When the 

hydroxyl group in 51 was transformed to tosylate, a better leaving group, chloride 54 and 

bromide 56 were prepared from tosylate 53.   
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Scheme 1.10 

Reagents and conditions: a) 1. EtMgCl (2 M in THF), THF, rt, 1 h; 2. Benzyl azide, 50 ºC, 2 h; 3. 
I2, THF, 10 min; b) 2,4-Dichlorophenylboronic acid, Pd2(dba)3 (5%mol), PCy3 (12%mol), K3PO4 
(1.7 equiv), THF/H2O, 110 ºC, 16 h; c) t-BuOK (1 M in THF), O2, DMSO, rt, 2 h; d) NaH, DMF, 
Benzyl bromide. 
 

      The N2-substituted-4,5-diphenyl-1,2,3-triazole analogues were synthesized from the 

intermediate N1-H-4,5-diphenyl-1,2-3-triazole 58. No methodology available to prepare 58 

directly and it had to obtained from the deprotection of a N1-substituted-4,5-diphenyl-1,2,3-

triazole. Therefore, the selection of the azide for the 1,3-dipolar reaction was important. The 

azide functional groups associated with the azide had to be stable enough through the Grignard 

ring closure reaction and the following Suzuki cross coupling. At a later stage, the functional 

group should be removed readily to release an active hydrogen. Commercially available benzyl 

azide was a great candidate for our synthesis.  
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      The 4-magnesio-1,2,3-triazole intermediate was trapped with elemental iodine giving 56 

which served as the coupling partner for the following Suzuki reaction under the reaction 

conditions described previously. Although the most employed hydrogenation could not remove 

the benzyl group from triazole 57, a novel methodology reported by Aubrey A. Haddach et. al. 

successfully worked on our substrate and gave 58  in a high yield.35 

 

 

Figure 1.13 

      With the active hydrogen, 58 was treated with sodium hydride and reacted straightforwardly 

with a variety of electronphilic groups giving nine N2-substituted-4,5-diphenyl-1,2,3-triazole 

analogues. They are 59, butyl ester 60, methyl ester 61, hexyl analogue 62, propyl analogue 63, 

alcohol 64, fluoride 65, chloride 66, and bromide 67.  

      The binding affinity results of N1-substituted-4,5-diphenyl-1,2,3-triazoles and N2-

substituted-4,5-diphenyl-1,2,3-triazoles were summarized in Table 1.5. Although most of the 

analogues only exhibited modest potency, the fluoride 65 (Ki = 72 nM) and the chloride 66 (Ki = 

80 nM) were potent enough to be advanced into further biological evaluations 
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Cmpda                   Code                  R or R’                                ClogPb                         Ki (nM)      

SR141716A                                                                                    6.26                               11.5c 
45                          HS179                R = C6H11                              6.66                               I.R.d          
48                          HS192                R = C3H7                               5.58                               152 
50                          HS183                R = CH2COOMe                   4.34                               247 
51                          HS184                R = CH2CH2OH                    4.03                               163 
52                          HS193                R = CH2CH2F                        4.93                               420 
57                          HS142                R = CH2C6H5                         6.55                               187         
59                          HS216                R’ = CH2C6H5                             7.44                               230 
60                          HS147                R’ = COOBu                         5.55                  30% inhibitione 
61                          HS226                R’ = CH2COOMe                  5.23                               855 
64                          HS 230               R’ = CH2CH2OH                   4.92                               660 
65                          HS232                R’ = CH2CH2F                       5.82                              72 
66                          HS251                R’ = CH2CH2Cl                      6.37                              80 
67                          HS265                R’ = CH2CH2Br                      6.43                              I.R.d 
______________________________________________________________________________                                                                                                                                                           
aAll compounds were tested as the freebase. 
b See Ref. 30. 
cAll values are the mean ± SEM of three experiments performed in triplicate. 
d Inconsistent results. 
ePercent inhibition at 100 µM 
 

Table 1.5 Inhibition of [3H]SR141716A at CB1 Receptors 
 

1.4 CONLUSIONS 

      We started with designing the SR141716A derivative 22a as our target molecule and 

developed chemical synthesis to prepare this compound. Our preliminary binding assay results 

revealed the ester 30a was 10-fold more potent than 22a. Better potency, together with other 

more optimal drug-like properties, ester 30a was chosen to be our lead compound. With this lead 

compound, a series of esters (32-38), N1-substituted-4,5-diphenyl-1,2,3-triazoles (45-55), and 
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N2-substituted-4,5-diphenyl-1,2-3-triazoles (59-67) were synthesized. Six compounds (30a, 33, 

36, 37, 65, 66) exhibited good potency binding to CB1 receptors (Ki <100 nM) and they are 

currently being evaluated to determine efficacy. Based on these results, an extensive study is 

undergoing in our research laboratory searching for novel selective CB1 receptor antagonists.   

 

1.5 EXPERIMENTAL SECTION 

General Experimental Methods 

      All chemicals were purchased from Aldrich Chemical Company and used as received unless 

otherwise noted. Anhydrous dichloromethane was purchased from Mallinckrodt Baker, Inc. 

Research Technology Branch, National Institute on Drug Abuse. Proton and carbon NMR were 

recorded on a Varian-400 MHz nuclear magnetic resonance spectrometer at ambient temperature 

in deuterated chloroform (CDCl3) from Cambridge Isotope Laboratories, Inc. 1H NMR chemical 

shifts are reported as δ values (ppm) relative to tetramethylsilane. 13C NMR chemical shifts are 

reported as δ  values (ppm) relative to chloroform-d (77.0 ppm). Melting points (mp) were 

measured with an Electrothermal R Mel-Temp apparatus and are uncorrected. 

 

 

      Triflyl azide Sodium azide (1.17 g, 18 mmol) was dissolved in a mixture of 4 mL water and 

1.5 mL CH2Cl2 in a 20 mL glass vial. The mixture was cooled to 0 ⁰C in an ice-water cold bath 

and trifluorosulfanic anhydride (0.85 g, 0.51 mL, 3 mmol) was added dropwise. Upon the 

completion of addition, the vial was sealed by a screw cap. The reaction was stirred at 0 ⁰C for 

2.5 hours. The mixture was poured into 10 mL of ice water and extracted with CH2Cl2. 
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Combined organic portions were washed by sat. NaHCO3 aqueous solution. This triflyl azide 

solution was directly introduced to the following step.  

 

 

4-Chlorophenyl azide (23) Aniline (130 mg, 1.02 mmol) was dissolved in 1 mL of CH2Cl2 in a 

20-mL glass vial. Triethylamine (0.42 mL) was added by one portion, followed by the addition 

of a solution of CuSO4.5H2O (13 mg in 0.25 mL H2O). To this solution was added the freshly 

made triflyl azide described above. MeOH was added dropwise until the solution was made 

homogeneous and the color of the reaction changed from light blue to dark. The reaction vial 

was sealed by a screw cap. The stirring continued for 2.5 hours until the process of reaction 

stopped indicated by TLC. The mixture was partitioned between 10 mL sat. NaHCO3 and 10 mL 

CH2Cl2. The organic layer was separated. The aqueous layer was extracted with CH2Cl2 (2 x 10 

mL). Combined organic fractions were washed by sat. NaCl, dried on anhydrous MgSO4, filtered, 

and concentrated in vacuo. The dark brown oily residue was purified by a silica gel column 

eluting with hexanes affording 4-chlorophenyl azide 23 (125 mg, 82%) as a slightly yellowish oil. 

Rf = 0.58 (CH2Cl2/hexanes = 1:9).  
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      2,4-dichlorophenyl azide (24) 2,4-Dichloroaniline (172 mg, 1 mmol) was dissolved in 1 mL 

of CH2Cl2 in a 20-mL glass vial. Triethylamine (0.42 mL) was added by one portion, followed 

by the addition of a solution of CuSO4.5H2O (13 mg in 0.25 mL H2O). To this solution was 

added the freshly made triflyl azide from trifluorosulfanic anhydride (0.85 g, 0.51 mL, 3 mmol) 

by the procedure described above. MeOH was added dropwise until the solution was made 

homogeneous and the color of the reaction changed from light blue to dark. The reaction vial 

was sealed by a screw cap. The stirring continued at room and reaction process was monitored 

by TLC. After 2 hours, only a small amount of product was observed and longer reaction time up 

to 24 hours did not seem to drive the reaction. The mixture was partitioned between 10 mL sat. 

NaHCO3 and 10 mL CH2Cl2. The organic layer was separated. The aqueous layer was extracted 

with CH2Cl2 (2 x 10 mL). Combined organic fractions were washed by sat. NaCl, dried on 

anhydrous MgSO4, filtered, and concentrated in vacuo. The dark brown oily residue was purified 

by a silica gel column eluting with hexanes affording 2,4-dichlorophenyl azide 24 (15 mg, 8%) 

as a slightly yellowish oil. Rf = 0.2 (CH2Cl2/hexanes = 1:9).  

 

 

      4-Chlorophenyl azide (23)  NaN3 (3.25g, 50 mmol) was suspended in the mixture of DMSO 

(25 mL) and H2O (5 mL). The reaction apparatus was degassed and then filled with N2. Sodium 

ascorbate (99.0 mg, 0.5 mmol) and CuI (190 mg, 1 mmol), the ligand (S, S)-(+)-N,N’-Dimethyl-

1,2-cyclohexanediamine (213 mg, 1.5 mmol), and 4-chloro-iodobenzene (2.38 g, 10 mmol) were 

added to the flask consecutively. The mixture was heated at 100 ⁰C. When the progress of the 
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reaction was stopped, it was worked up by a mixture of brine (50 mL) and CH2Cl2 (50 mL). The 

aqueous phase was extracted with CH2Cl2 (50 mL ×  2). The combined organic phases were 

washed with brine (30 mL ×  3), dried over anhydrous MgSO4, and concentrated in vacuo. The 

residue was purified by a short flash chromatography (SiO2, Hexanes) affording 4-chlorophenyl 

azide 23 (1.41g, 9.2 mmol). Rf = 0.5 (Hexanes).  

 

 
      2,4-Dichlorophenyl azide (24)  NaN3 (3.25g, 50 mmol) was suspended in the mixture of 

DMSO (25 mL) and H2O (5 mL). The reaction apparatus was degassed and then filled with 

Argon. Sodium ascorbate (99.0 mg, 0.5 mmol) and CuI (190 mg, 1 mmol), the ligand (S, S)-(+)-

N,N’-Dimethyl-1,2-cyclohexanediamine (213 mg, 1.5 mmol), and 2,4-dichloro-iodobenzene 

(2.73 g, 10 mmol)were added to the flask consecutively. The mixture was heated at 100 ⁰C. 

When the progress of the reaction was stopped, it was worked up by a mixture of brine (50 mL) 

and CH2Cl2 (50 mL). The aqueous phase was extracted with CH2Cl2 (50 mL × 2). The combined 

organic phases were washed with brine (30 mL ×  3), dried over anhydrous MgSO4, and 

concentrated in vacuo. The residue was purified by a short flash chromatography (SiO2, Hexanes) 

affording 2,4-dichlorophenyl azide (24) (0.846 g, 4.5 mmol). Rf = 0.2 (Hexanes). 1H NMR (400 

MHz, CDCl3) δ  7.40 (s, 1H), 7.27 (dd, J = 22, JJ = 6), 7.105 (d, J = 22). 13C NMR (CDCl3) δ 

136.2, 130.8, 130.6, 128.3, 120.6, 102.6. 
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      1,5-bis(4-Chlorophenyl)-1H-1,2,3-triazole Under N2, a solution of 4-chlorophenyl azide 23 

(69 mg, 0.50 mmol) in 2 mL was added dropwise to ethyl magnesium chloride (0.25 mL, 2 M in 

THF). Stirring was continued at 50 ⁰C for 1 hr. Then a solution of freshly made chlorophenyl 

azide (76 mg, 0.50 mmol) in 1 mL of  THF was added dropwise. The mixture was stirred at room 

temperature for 2 hr. and then heated to 50 ⁰C for 1 hr. The reaction was cooled down to 0 ⁰C 

quenched with sat. NH4Cl (20 mL) and diluted with EtOAc (30 mL). The organic fraction was 

separated. The aqueous fraction was extracted with EtOAc (30 mL ×  2). Combined organic 

fractions were washed with brine (30 mL), dried on anhydrous MgSO4, filtered, and concentrated 

in vacuo. The residue was purified by a flash chromatography (SiO2, EtOAc/Hexanes = 1/5) 

affording 29b (126 mg, 87%) as a yellowish oil. 1H NMR (400 MHz, CDCl3) δ 8.18 (s, 1H), 

7.64-7.30 (m, 8H). 13C NMR (CDCl3) δ 136.8, 135.8, 135.5, 134.9, 133.7, 130.0, 129.8, 129.5, 

126.4, 125.0. Anal. Calcd for C14H9Cl2N3 : C, 57.95; H, 3.13; N, 14.48. Found: C, 58.08; H, 3.14; 

N, 14.35. 
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      Methyl 1,5-bis(4-chlorophenyl)-1H-1,2,3-triazole-4-carboxylate (30b) Under N2, a 

solution of 4-chlorophenyl azide 23 (205 mg, 1.50 mmol) in 2 mL was added dropwise to ethyl 

magnesium chloride (0.75 mL, 2 M in THF). Stirring was continued at 50 ⁰C for 1 hr. Then a 

solution of freshly made chlorophenyl azide (230 mg, 1.50 mmol) in 2 mL of  THF was added 

dropwise. The mixture was stirred at room temperature for 2 hr. and then heated to 50 ⁰C for 1 hr. 

The solution was cooled down to room temperature and added dropwise to the solution of methyl 

Chloroformate (184 mg,1.95 mmol) in 5 mL THF at -20 ⁰C. After stirring for 10 minutes, the 

reaction was quenched with sat. NH4Cl (20 mL) and diluted with EtOAc (30 mL). The organic 

fraction was separated. The aqueous fraction was extracted with EtOAc (30 mL × 2). Combined 

organic fractions were washed with brine (30 mL), dried on anhydrous MgSO4, filtered, and 

concentrated in vacuo. The residue was purified by a flash chromatography (SiO2, 

EtOAc/Hexanes = 1/5) affording 30b (350 mg, 67%) as a white solid. Mp: 172-173 ⁰C. 1H NMR 

(400 MHz, CDCl3) δ 7.60-7.40 (m, 8H), 3.77 (s, 3H). 13C NMR (CDCl3) δ 140.0, 137.0, 136.8, 

136.0, 135.4, 134.1, 131.7, 139.9, 139.2, 126.5, 123.8, 52.4. Anal. Calcd for C16H11Cl2N3O2 : C, 

55.19; H, 3.18; N, 12.07. Found: C, 55.43; H, 3.21; N, 12.07. 

 

 

      1,5-bis(4-Chlorophenyl)-N-(piperidin-1-yl)-1H-1,2,3-triazole-4-carboxamide (22b) 

Methyl ester 30b (306 mg, 0.88 mmol) was taken up in KOH (45 wt% in water, 2 mL) + 20 mL 
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MeOH and heated to reflux for 2 hours. The reaction was cooled to room temperature and 

concentrated in vacuo. The residue was dissolved in 3 mL of water and acidified by hydrochloric 

acid (1 N in water) to pH =2. White precipitate was extracted out with CH2Cl2 (2 x 20 mL). 

Combined organic fractions were washed by sat. NH4Cl, dried over Na2SO4, filtered, and 

concentrated in vacuo.  

      The carboxylic acid was then dissolved in 10 mL of CH3CN and cooled to 0 ⁰C. To this 

solution diisopropylethylamine (DIPEA, 239 mg, 1.85 mmol) was added dropwise. HBTU (367 

mg, 0.97 mmol) in 4 mL of CH3CN was added one portion followed by the slow addition of 1-

aminopiperidine (97 mg, 0.97 mmol). After the addition was complete, cold bath was removed 

and the reaction was stirred at room temperature for 16 hours. The mixture was then partitioned 

between 5% NaHCO3 (20 mL) + CH2Cl2 (50 mL). The organic fraction was separated and the 

aqueous fraction was extracted with CH2Cl2 (2 x 30 mL). Combined organic portions were 

washed by sat. NaCl, filtered, and concentrated in vacuo. The residue was purified by a column 

chromatography (SiO2, eluting with EtOAc/hexanes = 1:3) affording 22b (344 mg, 0.82 mmol, 

94%) as a white solid. Rf = 0.25 (EtOAc/hexanes = 1:2). Mp: 172-173 ⁰C. 1H NMR (400 MHz, 

CDCl3) δ 9.61 (s, 1H), 7.59-7.34 (m, 8H), 2.78 (t, 4H), 1.58-1.53 (m, 4H), 1.36-1.32 (m, 2H).  

13C NMR (CDCl3) δ157.3, 138.2, 138.1, 136.2, 135.7, 134.2, 132.0, 129.7, 128.5, 126.5, 123.4, 

56.9, 25.3, 23.2. Anal. Calcd for C20H19Cl2N5O : C, 57.70; H, 4.60; N, 16.82. Found: C, 57.66; H, 

4.68; N, 16.67. 
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      5-(4-Chlorophenyl)-1-(2,4-dichlorophenyl)-1H-1,2,3-triazole Under N2, a solution of 2,4-

dichlorophenyl azide 24 (69 mg, 0.50 mmol) in 2 mL was added dropwise to ethyl magnesium 

chloride (0.25 mL, 2 M in THF). Stirring was continued at 50 ⁰C for 1 h. Then a solution of 

freshly made 2,4-dichlorophenyl azide (94 mg, 0.50 mmol) in 1 mL of  THF was added dropwise. 

The mixture was stirred at room temperature for 2 hr. and then heated to 50 ⁰C for 1 hr. The 

reaction was cooled down to 0 ⁰C quenched with sat. NH4Cl (20 mL) and diluted with EtOAc 

(30 mL). The organic fraction was separated. The aqueous fraction was extracted with EtOAc 

(30 mL × 2). Combined organic fractions were washed with brine (30 mL), dried on anhydrous 

MgSO4, filtered, and concentrated in vacuo. The residue was purified by a flash chromatography 

(SiO2, EtOAc/Hexanes = 1/5) affording 29a (138 mg, 85%) as a light yellow solid. Mp: 140-141 

⁰C. 1H NMR (400 MHz, CDCl3) δ 8.28 (s, 1H), 7.96-7.28 (m, 7H). 13C NMR (CDCl3) δ 138.6, 

135.8, 137.4, 136.0, 133.2, 132.7, 132.6, 130.9, 130.3, 129.6, 129.2, 128.6, 124.9. Anal. Calcd 

for C14H8Cl3N3 : C, 51.80; H, 2.48; N, 12.95. Found: C, 51.80; H, 2.48; N, 12.79. 
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      Methyl 5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-1H-1,2,3-triazole-4-carboxylate (30a) 

Under N2, a solution of 2,4-dichlorophenyl azide (205 mg, 1.50 mmol) in 2 mL was added 

dropwise to ethyl magnesium chloride (0.75 mL, 2 M in THF). Stirring was continued at 50 ⁰C 

for 1 hr. Then a solution of freshly made 2,4-dichlorophenyl azide (282 mg, 1.60 mmol) in 2 mL 

THF was added dropwise. The mixture was stirred at room temperature for 2 hr. and then heated 

to 50 ⁰C for 1 hr. The solution was cooled down to room temperature and added dropwise to the 

solution of methyl Chloroformate (184 mg,1.95 mmol) in 5 mL THF at -20⁰C. After stirring for 

10 minutes, the reaction was quenched with sat. NH4Cl (20 mL) and diluted with EtOAc (30 mL). 

The organic fraction was separated. The aqueous fraction was extracted with EtOAc (30 mL × 2). 

Combined organic fractions were washed with brine (30 mL), dried on anhydrous MgSO4, 

filtered, and concentrated in vacuo. The residue was purified by a flash chromatography (SiO2, 

EtOAc/Hexanes = 1/5) affording 30a (0.35 g, 61%). Rf = 0.28 (EtOAc/Hexanes = 1:4). Mp: 158-

160 ⁰C. 1H NMR (400 MHz, CDCl3) δ 7.93-7.40 (m, 7H), 3.78 (s, 3H). 13C NMR (CDCl3) δ 

142.0, 137.9, 136.9, 136.3, 132.8, 132.1, 131.4, 130.8, 130.4, 129.0, 128.5, 123.3, 52.5. Anal. 

Calcd for C16H10Cl3N3O2 : C, 50.22; H, 2.63; N, 10.98. Found: C, 49.95; H, 2.68; N, 10.70. 

 

 

      5-(4-Chlorophenyl)-1-(2,4-dichlorophenyl)-N-(piperidin-1-yl)-1H-1,2,3-triazole-4-

carboxamide (22a) Methyl ester 30a (210 mg, 0.55 mmol) was taken up in KOH (45 wt% in 
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water, 2 mL) + 20 mL MeOH and heated to reflux for 2 hours. The reaction was cooled to room 

temperature and concentrated in vacuo. The residue was dissolved in 3 mL of water and acidified 

by hydrochloric acid (1 N in water) to pH =2. White precipitate was extracted out with CH2Cl2 (2 

x 20 mL). Combined organic fractions were washed by sat. NH4Cl, dried over Na2SO4, filtered, 

and concentrated in vacuo.  

      The carboxylic acid was then dissolved in 10 mL of CH3CN and cooled to 0 ⁰C. To this 

solution diisopropylethylamine (DIPEA, 149 mg, 1.16 mmol) was added dropwise. HBTU (227 

mg, 0.61 mmol) in 4 mL of CH3CN was added one portion followed by the slow addition of 1-

aminopiperidine (61 mg, 0.61 mmol). After the addition was complete, cold bath was removed 

and the reaction was stirred at room temperature for 16 hours. The mixture was then partitioned 

between 5% NaHCO3 (20 mL) + CH2Cl2 (50 mL). The organic fraction was separated and the 

aqueous fraction was extracted with CH2Cl2 (2 x 30 mL). Combined organic portions were 

washed by sat. NaCl, filtered, and concentrated in vacuo. The residue was purified by a column 

chromatography (SiO2, eluting with EtOAc/hexanes = 1:3) affording 30a (234 mg, 0.52 mmol, 

94%) as a white solid. Rf = 0.2 (EtOAc/hexanes = 1:3). Mp: 209-212 ⁰C. 1H NMR (400 MHz, 

CDCl3) δ 9.66 (s, 1H), 7.88-7.31 (m, 7H), 2.78 (t, 4H), 1.55-1.52 (m, 4H), 1.35-1.31 (m, 2H).  

13C NMR (CDCl3) δ157.2, 140.1, 137.5, 137.3, 136.2, 132.5, 132.2, 131.6, 130.6, 130.5, 129.7, 

128.4, 128.3, 123.1, 56.9, 25.4, 23.2. Anal. Calcd for C20H18Cl3N5O : C, 53.29; H, 4.03; N, 15.54. 

Found: C, 53.01; H, 4.10; N, 15.30. 
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      Ethyl 5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-1H-1,2,3-triazole-4-carboxylate (32a) 

Under N2, a solution of 1-chloro-4-ethynyl-benzene (232 mg, 1.70 mmol) in 2 mL was added 

dropwise to ethyl magnesium chloride (0.85 mL, 2 M in THF). Stirring was continued at 50 ⁰C 

for 1 hr. Then a solution of freshly made 2,4-dichlorophenyl azide (320 mg, 1.70 mmol) in 2 mL 

THF was added by dropwise. The mixture was heated at room temperature for 2 hr. and then at 

50 ⁰C for 1 hr. The reaction mixture was cooled down to room temperature and added dropwise 

to the solution of ethyl chloroformate (221 mg,2.04 mmol) in 5 mL THF at -20 ⁰C. After stirring 

for 10 minutes, the reaction was quenched with sat. NH4Cl (20 mL) and diluted with EtOAc (30 

mL). The organic fraction was separated. The aqueous fraction was extracted with EtOAc (30 

mL ×  2). Combined organic fractions were washed with brine (30 mL), dried on anhydrous 

MgSO4, filtered, and concentrated in vacuo. The residue was purified by a flash chromatography 

(SiO2, EtOAc/Hexanes = 1/5) affording 32 (370 mg, 55%) as a white solid. Mp: 135-136 ⁰C. Rf 

= 0.5 (Acetone: CHCl3:hexanes = 1:4:5). Mp: 135-136 ⁰C. 1H NMR (400 MHz, CDCl3) δ 7.94-

7.36 (m, 7H), 4.246 (q, 2H), 1.167 (t, 3H). 13C NMR (CDCl3) δ 160.9, 137.9, 136.9, 133.0, 132.2, 

132.4, 130.8, 130.4, 129.0, 128.5, 123.5, 61.7, 14.4. Anal. Calcd for C17H12Cl3N3O2 : C, 51.48; H, 

3.05; N, 10.59. Found: C, 51.75; H, 3.07; N, 10.66. 
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      Propyl 5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-1H-1,2,3-triazole-4-carboxylate (33) 

Under N2, a solution of 1-chloro-4-ethynyl-benzene (109 mg, 0.8 mmol) in 2 mL was added 

dropwise to ethyl magnesium chloride (0.4 mL, 2 M in THF). Stirring was continued at 50 ⁰C for 

1 hr. Then a solution of freshly made 2,4-dichlorophenyl azide (75 mg, 0.4 mmol) in 2 mL THF 

was added by dropwise. The mixture was heated at room temperature for 2 hr. and then at 50 ⁰C 

for 1 hr. The solution was cooled down to room temperature and added dropwise to the solution 

of propyl chloroformate (63.4 mg, 0.52 mmol) in 5 mL THF at -20⁰C. After stirring for 10 

minutes, the reaction was quenched with sat. NH4Cl (20 mL) and diluted with EtOAc (30 mL). 

The organic fraction was separated. The aqueous fraction was extracted with EtOAc (30 mL × 2). 

Combined organic fractions were washed with brine (30 mL), dried on anhydrous MgSO4, 

filtered, and concentrated in vacuo. The residue was purified by running a flash chromatography 

(SiO2, EtOAc/Hexanes = 1/5) affording 33 (93.4 mg, 57%). Rf = 0.3 (EtOAc/Hexanes = 1:5). Mp: 

117-118 ⁰C. 1H NMR (400 MHz, CDCl3) δ 7.92-7.39 (m, 7H), 4.145 (t, 2H), 1.539 (m, 2H), 

0.747 (t, 3H). 13C NMR (CDCl3) δ 160.9, 141.8, 137.8, 136.7, 136.6, 132.8, 132.1, 131.4 130.7, 

130.4, 128.9, 128.4, 123.6, 67.2, 22.0, 10.4. Anal. Calcd for C18H14Cl3N3O2 : C, 52.62; H, 3.44; 

N, 10.23. Found: C, 52.90; H, 3.47; N, 10.25. 
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      Butyl 5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-1H-1,2,3-triazole-4-carboxylate (34) 

Under N2, a solution of  1-chloro-4-ethynyl-benzene (68 mg, 0.5 mmol) in 2 mL was added 

dropwise to Ethyl magnesium chloride (0.25 mL, 2 M in THF). Stirring was continued at 50 ⁰C 

for 1 hr. Then a solution of freshly made 2,4-dichlorophenyl azide (94 mg, 0.5 mmol) in 1 mL 

THF was added by dropwise. The mixture was heated at room temperature for 2 hr. and then at 

50 ⁰C for 1 hr. The solution was cooled down to room temperature and added dropwise to the 

solution of butyl chloroformate (88 mg, 0.65 mmol) in 5 mL THF at -20⁰C. After stirring for 10 

minutes, the reaction was quenched with sat. NH4Cl (20 mL) and diluted with EtOAc (30 mL). 

The organic fraction was separated. The aqueous fraction was extracted with EtOAc (30 mL × 2). 

Combined organic fractions were washed with brine (30 mL), dried on anhydrous MgSO4, 

filtered, and concentrated in vacuo. The residue was purified by a flash chromatography (SiO2, 

eluting with EtOAc/Hexanes = 1:5) affording 34 (127 mg, 60%) as a white solid. Rf = 0.34 

(EtOAc/Hexanes = 1:4). Mp: 108-111 ⁰C. 1H NMR (400 MHz, CDCl3) δ 7.92-7.39 (m, 7H), 

4.17 (t, 2H), 1.48 (m, 2H), 1.10 (m, 2H), 0.80 (t, 3H). 13C NMR (CDCl3) δ 160.9, 141.8, 137.8, 

136.7, 132.8, 132.1, 131.4 130.7, 130.4, 128.9, 128.4, 123.6, 65.5, 30.6, 19.2, 13.8. Anal. Calcd 

for C19H16Cl3N3O2 : C, 53.73; H, 3.80; N, 9.89. Found: C, 53.95; H, 3.81; N, 9.89. 
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      Hexyl 5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-1H-1,2,3-triazole-4-carboxylate (35) 

Under N2, a solution of 1-chloro-4-ethynyl-benzene (82 mg, 0.6 mmol) in 2 mL was added 

dropwise to Ethyl magnesium chloride (0.30 mL, 2 M in THF). Stirring was continued at 50 ⁰C 

for 1 hr. Then a solution of freshly made 2,4-dichlorophenyl azide (113 mg, 0.60 mmol) in 2 mL 

THF was added by dropwise. The mixture was heated at room temperature for 2 hr. and then at 

50 ⁰C for 1 hr. The solution was cooled down to room temperature and added dropwise to the 

solution of hexyl chloroformate (129 mg, 0.78 mmol) in 5 mL THF at -20 ⁰C. After stirring for 

10 minutes, the reaction was quenched with sat. NH4Cl (20 mL) and diluted with EtOAc (30 mL). 

The organic fraction was separated. The aqueous fraction was extracted with EtOAc (30 mL × 2). 

Combined organic fractions were washed with brine (30 mL), dried on anhydrous MgSO4, 

filtered, and concentrated in vacuo. The residue was purified by a flash chromatography (SiO2, 

eluting with EtOAc/Hexanes = 1:5) affording 35 (163 mg, 60%) as a white solid. Rf = 0.33 

(EtOAc/Hexanes = 1:5). Mp: 89-91 ⁰C. 1H NMR (400 MHz, CDCl3) δ 7.92-7.39 (m, 7H), 4.16 (t, 

2H), 1.47 (m, 2H), 1.22-1.02 (m, 6H), 0.83 (t, 3H). 13C NMR (CDCl3) δ 160.9, 141.8, 137.8, 

136.8, 135.4, 132.8, 132.1, 131.4 130.7, 130.4, 128.9, 128.4, 123.6, 65.8, 31.6, 28.6, 25.7, 22.7, 

14.1. Anal. Calcd for C21H20Cl3N3O2 : C, 55.71; H, 4.45; N, 9.28. Found: C, 55.62; H, 4.52; N, 

9.06. 
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      Phenyl 5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-1H-1,2,3-triazole-4-carboxylate Under 

N2, a solution of 1-chloro-4-ethynyl-benzene (150 mg, 1.10 mmol) in 2 mL was added dropwise 

to ethyl magnesium chloride (0.55 mL, 2 M in THF). Stirring was continued at 50 ⁰C for 1 hr. 

Then a solution of freshly made 2,4-dichlorophenyl azide (207 mg, 1.10 mmol) in 2 mL THF 

was added by dropwise. The mixture was heated at room temperature for 2 hr. and then at 50 ⁰C 

for 1 hr. The solution was cooled down to room temperature and added dropwise to the solution 

of phenyl chloroformate (206 mg,1.43 mmol) in 5 mL THF at -20⁰C. After stirring for 10 

minutes, the reaction was quenched with sat. NH4Cl (20 mL) and diluted with EtOAc (30 mL). 

The organic fraction was separated. The aqueous fraction was extracted with EtOAc (30 mL × 2). 

Combined organic fractions were washed with brine (30 mL), dried on anhydrous MgSO4, 

filtered, and concentrated in vacuo. The residue was purified by a flash chromatography (SiO2, 

eluting with EtOAc/Hexanes = 1:4) affording phenyl 5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-

1H-1,2,3-triazole-4-carboxylate (352 mg, 72%). Rf = 0.29 (EtOAc/Hexanes = 1:4). Mp: 205-208 

⁰C. 1H NMR (400 MHz, CDCl3) δ 7.96-7.21 (m, 12H). 13C NMR (CDCl3) δ 169.4, 150.4, 142.9, 

138.0, 137.0, 135.9, 132.8, 132.0, 131.4, 130.8, 130.4, 129.7, 129.0, 128.6, 126.4, 123.1, 121.7. 

Anal. Calcd for C21H12Cl3N3O2 : C, 56.72; H, 2.72; N, 9.45. Found: C, 55.57; H, 2.79; N, 9.47. 
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      Benzyl 5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-1H-1,2,3-triazole-4-carboxylate (37) 

Under N2, a solution of 1-chloro-4-ethynyl-benzene (41 mg, 0.3 mmol) in 2 mL was added 

dropwise to Ethyl magnesium chloride (0.15 mL, 2 M in THF). Stirring was continued at 50 ⁰C 

for 1 hr. Then a solution of freshly made 2,4-dichlorophenyl azide (56 mg, 0.3 mmol) in 2 mL 

THF was added by dropwise. The mixture was heated at room temperature for 2 hr. and then at 

50 ⁰C for 1 hr. The solution was cooled down to room temperature and added dropwise to the 

solution of benzyl chloroformate (67 mg, 0.39 mmol) in 5 mL THF at -20⁰C. After stirring for 10 

minutes, the reaction was quenched with sat. NH4Cl (20 mL) and diluted with EtOAc (30 mL). 

The organic fraction was separated. The aqueous fraction was extracted with EtOAc (30 mL × 2). 

Combined organic fractions were washed with brine (30 mL), dried on anhydrous MgSO4, 

filtered, and concentrated in vacuo. The residue was purified by a flash chromatography (SiO2, 

eluting with EtOAc/CH2Cl2/hexanes = 1:4:5) affording 37 (105 mg, 76%) as a white solid. Rf = 

0.43 (EtOAc/CH2Cl2/hexanes = 1:4:5). Mp: 148-151 ⁰C. 1H NMR (400 MHz, CDCl3) δ 7.91-

7.21 (m, 12H), 5.27 (s, 2H). 13C NMR (CDCl3) δ 160.6, 142.0, 137.8, 136.7, 136.5, 135.2, 132.8, 

132.0, 131.3, 130.7, 130.3, 128.9, 128.7, 128.6, 128.5, 128.4, 123.4, 67.1. Anal. Calcd for 

C22H14Cl3N3O2 : C, 57.64; H, 3.08; N, 9.16. Found: C, 57.84; H, 3.21; N, 9.08. 
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      Cyclohexyl 5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-1H-1,2,3-triazole-4-carboxylate 

(38) A flame dried 50-mL round bottomed flask was vacuumed and backfilled with N2. The flask 

was charged with cyclohexanol (20 mg, 0.2 mmol) in 10 mL of anhydrous THF. The solution 

was cooled to 0 ⁰C and n-butyl lithium (2.5 M in hexanes, 0.18 mmol) was added slowly. After 

stirring for 10 minutes, methyl 5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-1H-1,2,3-triazole-4-

carboxylate (77 mg, 0.2 mmol) in 2 mL of anhydrous THF was added dropwise. The resultant 

solution was stirred for 1 hour and poured into 30 mL ice water in a separatory funnel and 

extracted with EtOAc (2 x 30 mL). The combined organic fractions were washed by sat. NaCl, 

dried on anhydrous MgSO4, filtered, and purified by running through a thin pad of silica gel. The 

solution was concentrated in vacuo affording 38 (89 mg, 99%) as a white solid. Mp: 138-141 ⁰C. 

1H NMR (400 MHz, CDCl3) δ 7.92-7.40 (m, 7H), 4.89 (m, 1 H), 1.73 (m, 1H), 1.42-1.17 (m, 

8H). 13C NMR (CDCl3) δ 160.3, 141.6, 137.8, 137.1, 136.7, 132.9, 132.2, 131.4, 130.8, 130.4, 

128.9, 128.4, 123.8, 74.4, 31.6, 25.3, 23.8. Anal. Calcd for C21H18Cl3N3O2 : C, 55.96; H, 4.03; N, 

9.32. Found: C, 55.96; H, 3.98; N, 9.22. 
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      2-Azido-1,1-diethoxyethane (41) A 50-mL round-bottomed flask was charged with 2-

bromo-1,1-diethoxyethane (1.97 g, 10 mmol) in 15 mL of DMSO. Sodium azide (1.95 g, 30 

mmol) was added. The reaction was heated to 100 ⁰C for 2 hours until the starting material spot 

disappeared on TLC. The reaction was cooled to room temperature, poured into 20 mL of ice 

water, and extracted with CH2Cl2 (2 x 50 mL). Combined organic fractions were washed by sat. 

NaCl (3 x 30 mL), dried on anhydrous Na2SO4, filtered, and concentrated in vacuo affording 41 

(1.55 g, 97%) as a slightly yellowish oil. Rf = 0.2 (EtOAc/hexanes = 1:4).  

 

 

      5-(4-Chlorophenyl)-1-(2,2-diethoxyethyl)-4-iodo-1H-1,2,3-triazole (42) A flame dried 

flash was filled with N2 and charged with 1-chloro-4-ethynylbenzene (0.82 g, 6 mmol) in 10 mL 

of anhydrous THF. At room temperature ethylmagnesium chloride (2 M in THF, 3 mL) was 

added slowly. The reaction was stirred at room temperature for 1 hour before 2-azido-1,1-

diethoxyethane (1.05 g, 6.6 mmol) in 3 mL of THF was added dropwise. The reaction was 

heated to 55 ⁰C for 2 hours. Iodine (1.82 g, 7.2 mmol) in 4 mL of THF was added and stirring 

continued for 10 minutes. The reaction was cooled to room temperature and quenched by the 

addition of 10 mL of sat. NH4Cl aqueous solution. The reaction mixture was partitioned between 

Na2S2O3 solution (2 N in water, 20 mL) and EtOAc (50 mL). The organic fraction was separated. 

The aqueous layer was extracted with EtOAc (2 x 30 mL). Combined organic fractions were 

washed by sat. NaCl, dried on anhydrous Na2SO4, filtered, and concentrated in vacuo. The 
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residue was purified on a flash chromatography (SiO2, eluting with EtOAc/hexanes = 1:4) 

affording 42 (1.99 g, 4.7 mmol, 79%) as a yellowish oil. Rf = 0.4 (EtOAc/hexanes = 1:4). 1H 

NMR (400 MHz, CDCl3) δ 7.51-7.39 (m, 4H), 4.82 (t, 1H), 4.33 (d, 2H), 3.35 (t, 4H), 1.03 (q, 

6H). 13C NMR (CDCl3) δ 140.2, 136.6, 131.7, 129.6, 124.6, 103.2, 90.2, 63.0, 55.8, 50.7, 16.1. 

 

 

      5-(4-Chlorophenyl)-4-(2,4-dichlorophenyl)-1-(2,2-diethoxyethyl)-1H-1,2,3-triazole (43) 

42 (211 mg, 0.5 mmol), 2,4-dichlorophenyl boronic acid (105 mg, 0.55 mmol), Pd2(dba)3 (23 mg,  

0.025 mmol), tricyclohexylphosphine (17 mg, 0.06 mmol), and K3PO4 (180 mg, 0.85 mmol)were 

suspended in 8 mL THF + 2 mL H2O in a 30 mL pressure tube. The reaction vessel was purged 

with N2, sealed, and heated to 120 ⁰C for 16 hours in a oil bath. The reaction mixture was 

partitioned between water (40 mL) and EtOAc (40 mL). The organic layer was separated and the 

aqueous layer was extracted with EtOAc (2 x 40 mL). Combined organic fractions were washed 

by sat. NaCl, dried on anhydrous MgSO4, filtered, and concentrated in vacuo. The residue was 

purified by a flash chromatography (SiO2, eluting with EtOAc/Hexanes = 1:3) affording 43 (216 

mg, 0.49 mmol, 98%). 1H NMR (400 MHz, CDCl3) δ 13C NMR (CDCl3) δ 7.53-7.30 (m, 7H), 

4.81 (t, 1H), 4.30 (d, 2H), 3.35 (t, 4H), 1.02 (q, 6H).  
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      2-(5-(4-Chlorophenyl)-4-(2,4-dichlorophenyl)-1H-1,2,3-triazol-1-yl)acetaldehyde Under 

N2, 43 (661 mg, 1.5 mmol) was taken up in anhydrous chloroform (20 mL). Iodotrimethylsilane 

(360 mg, 0.245 mL, 1.8 mmol) was added to the solution and the reaction was stirred at room 

temperature for 1hours. Solvent was removed in vacuo and the residue was purified on a flash 

chromatography (SiO2, EtOAc/Hexanes = 1:1) affording 44 (297 mg, 0.81 mmol) with 30% of 

starting material recovered. 1H NMR (400 MHz, CDCl3) δ 9.75 (S, 1H), 7.53-7.30 (m, 7H), 5.54 

(s, 2H). 13C NMR (CDCl3) δ 192.8, 142.7, 136.5, 135.7, 134.6, 133.1, 131.3, 131.2, 130.5, 130.0, 

129.9, 129.6, 129.5, 128.0, 127.5, 124.7, 57.3.   

 

 

      (Z)-5-(4-Chlorophenyl)-4-(2,4-dichlorophenyl)-1-(hex-2-enyl)-1H-1,2,3-triazole (45) A 

oven dried 25-mL round bottomed flask was flushed with N2 and charged with 

Ph3P(Br)(CH2)3CH3 (186 mg, 0.47 mmol) in 5 mL of anhydrous THF. At 0 ⁰C, t-BuOK (1 M in 

THF, 0.47 mL) was added dropwise. To the resultant bright orange solution was slowly added 44 

(114 mg, 0.31 mmol) dissolved in 1 mL of THF. The reaction was warmed up to room 
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temperature and stirred for 1 hour before sat. NH4Cl was added to quench the reaction. The 

reaction mixture was taken up in water (30 mL) + EtOAc (30 mL). The organic layer was 

separated and the aqueous layer was extracted with EtOAc (2 x 30 mL). Combined organic 

portions were washed by sat. NaCl, dried on MgSO4, filtered, and concentrated in vacuo. The 

residue was purified on a flash chromatography (SiO2, EtOAc/hexanes = 1:6) affording 45 (93 

mg, 74%) as a clear oil. Mp: 143-146 ⁰C. 1H NMR (400 MHz, CDCl3) δ 7.52-7.36 (m, 7H), 

5.62-5.49 (m, 2H), 5.12 (d, 2H), 2.05 (m, 1H), 1.98 (q, 1H), 1.34 (m, 2H), 0.85 (t, 3H). 13C NMR 

(CDCl3) δ 142.5, 135.9, 135.3, 135.2, 134.6, 133.2, 130.7, 129.9, 129.6, 129.5, 128.7, 127.4, 

125.9, 123.1, 46.4, 29.6, 22.4, 13.8.  

Anal. Calcd for C20H18Cl3N3 : C, 59.06; H, 4.46; N, 10.33. Found: C, 58.52; H, 4.54; N, 10.02. 

 

      5-(4-Chlorophenyl)-4-(2,4-dichlorophenyl)-1-hexyl-1H-1,2,3-triazole (46) A 25-mL 

round-bottomed flask was charged with 45 (81 mg, 0.2 mmol). The flask was vacuumed and 

backfilled with H2. 10 wt.% Pd on activated carbon (8 mg) and 10 mL MeOH was added. The 

reaction was stirred at room temperature for 4 hours. The reaction solution was filtered through a 

thin pad of celite and washed with 20 mL of EtOAc and concentrated in vacuo. The residue was 

purified by a flash chromatography (SiO2, EtOAc/hexanes = 1:7) affording 46 (76 mg, 0.18 

mmol, 93%) as a clear oil. 1H NMR (400 MHz, CDCl3) δ 7.65-7.32 (m, 7H), 4.26 (t, 2H), 1.76 
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(m, 2H), 1.29-1.17 (m, 6H), 0.82 (t, 3H). 13C NMR (CDCl3) δ 143.6, 136.4, 133.9, 131.5, 131.4, 

130.1, 129.9, 129.4, 128.9, 128.8, 128.7, 128.2, 126.5, 48.6, 31.2, 30.2, 26.2, 22.5, 14.1. 

 

      1-Allyl-5-(4-chlorophenyl)-4-(2,4-dichlorophenyl)-1H-1,2,3-triazole (47) A oven dried 50-

mL round-bottomed flask was charged with Ph3(Br)CH3 (157 mg, 0.44 mmol) in 10 mL 

anhydrous THF. At 0 ⁰C, t-BuOK (1 M in THF, 0.44 mL) was added dropwise. To the resultant 

bright orange solution was slowly added 44 (107 mg, 0.29 mmol) dissolved in 1 mL of THF. The 

reaction was warmed up to room temperature and stirred for 1 hour before sat. NH4Cl was added 

to quench the reaction. The reaction mixture was taken up in water (30 mL) + EtOAc (30 mL). 

The organic layer was separated and the aqueous layer was extracted with EtOAc (2 x 30 mL). 

Combined organic portions were washed by sat. NaCl, dried on MgSO4, filtered, and 

concentrated in vacuo. The residue was purified on a flash chromatography (SiO2, eluting with 

EtOAc/hexanes = 1:4) affording 47 (88 mg, 0.24 mmol, 83%) as a clear oil. Rf = 0.3 

(EtOAc/hexanes = 1:4). 1H NMR (400 MHz, CDCl3) δ 7.38-7.11 (m, 7H), 6.06-5.86 (m, 1H), 

5.28 (dd, J = 24, JJ = 1, 1H), 5.05 (dd, J = 41, JJ = 2, 1H), 4.96-4.94 (m, 2H). 13C NMR (CDCl3) 

δ 136.1, 135.5, 134.6, 133.2, 132.0, 130.6, 130.0, 129.6, 129.1, 128.6, 128.3, 127.4, 125.6, 119.2, 

51.1. 
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      5-(4-Chlorophenyl)-4-(2,4-dichlorophenyl)-1-propyl-1H-1,2,3-triazole (48) A 25-mL 

round-bottomed flask was charged with 47 (80 mg, 0.22 mmol). The flask was vacuumed and 

backfilled with H2. 10 wt.% Pd on activated carbon (8 mg) and 10 mL MeOH was added. The 

reaction was stirred at room temperature for 4 hours. The reaction solution was filtered through a 

thin pad of celite and washed with 20 mL of EtOAc and concentrated in vacuo. The residue was 

purified by a flash chromatography (SiO2, EtOAc/hexanes = 1:6) affording 48 (77 mg, 0.21 

mmol, 97%) as a clear oil. Mp: 132 ⁰C. 1H NMR (400 MHz, CDCl3) δ 7.52-7.38 (m, 7H), 4.39 (t, 

2H), 1.84 (m, 2H), 0.85 (t, 3H). 13C NMR (CDCl3) δ 142.5, 135.9, 135.3, 134.9, 134.7, 133.2, 

131.4, 130.6, 130.1, 129.9, 129.7, 128.9, 128.8, 128.2, 127.4, 126.0, 50.5, 23.6, 11.2. Anal. 

Calcd for C17H14Cl3N3: C, 55.69; H, 3.85; N, 11.46. Found: C, 55.77; H, 3.85; N, 11.16.  

 

      Methyl 2-(5-(4-chlorophenyl)-4-(2,4-dichlorophenyl)-1H-1,2,3-triazol-1-yl)acetate (49) 

44 (135 mg, 0.37 mmol) was taken up in 4 mL acetone followed by the  addition of 2-methyl-2-

butene (0.15 mL). At 0 ⁰C, to this solution was added a solution of NaClO2 (262 mg, 2.9 mmol) 

+ NaH2PO4 (348 mg, 2.9 mmol). The reaction was stirred at room temperature for 1 hour. 
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Solvent was removed under reduced pressure. The residue was dissolved 1 N hydrochloric acid 

(5 mL) and extracted with CH2Cl2 (2 x 20 mL). Combined organic fractions were washed with 

sat. NaCl, dried on anhydrous Na2SO4, filtered, and concentrated affording the carboxylic acid 

49 (141 mg, 99%) as a white solid.  

      The carboxylic acid prepared above was dissolved in 3 mL toluene + 0.6 mL MeOH. At 0 ⁰C, 

TMSCHN2 (2 M in hexanes, 0.19 mL) was added dropwise. The reaction stirred at room 

temperature until the evolution of gas was ceased. The solvent was removed under reduced 

pressure. The residue was taken up in water (20 mL) + CH2Cl2 (20 mL). The organic layer was 

separated. The aqueous layer was extracted with (20 mL). Combined organic layers were washed 

by sat. NaCl, dried on anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was 

purified by a flash chromatography (SiO2, EtOAc:hexanes = 1:3) affording 50 (147mg, 93%) as 

a white solid. Mp: 145-146 ⁰C. Anal. Calcd for C17H12Cl3N3O2: C, 51.48; H, 3.05; N, 10.59. 

Found: C, 51.64; H, 3.15; N, 10.39. 

 

      2-(5-(4-Chlorophenyl)-4-(2,4-dichlorophenyl)-1H-1,2,3-triazol-1-yl)ethanol (51) 

Aldehyde 44 (204 mg, 0.56 mmol) was dissolved in 15 mL MeOH. At 0 ⁰C, NaBH4 (21 mg, 1.2 

mmol) was added by three portions. After stirring for 10 minutes, reaction was warmed to room 

temperature and continued stirring for 30 minutes. The solvent was removed and residue was 

taken up in sat. NH4Cl (aqueous, 20 mL) + CH2Cl2 (20 mL). The aqueous layer was extracted 
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with CH2Cl2 (2 x 20 mL). Combined organic portions were washed by sat. NaCl, dried on 

Na2SO4, filtered, and concentrated in vacuo. The residue was purified by a flash chromatography 

(SiO2, EtOAc/hexanes = 1:1) affording 51 (196 mg, 95%) as a clear oil. 1H NMR (400 MHz, 

acetone-d6) δ 7.50-7.40 (m, 7H), 4.48 (t, 2H), 4.04 (t, 2H), 1.96 (s, 1H). 13C NMR (CDCl3) δ 

142.0, 136.1, 136.0, 135.4, 134.5, 133.0, 131.0, 129.9, 129.5, 128.2, 127.3, 125.2, 60.8, 50.9. 

Calcd for C16H12Cl3N3O: C, 52.13; H, 3.28; N, 11.40. Found: C, 51.98; H, 3.46; N, 10.95. 

 

 

      5-(4-Chlorophenyl)-4-(2,4-dichlorophenyl)-1-(2-fluoroethyl)-1H-1,2,3-triazole (52)  

(Diethylamino)sulfur trifluoride (DAST, 131 mg, 0.81 mmol) was taken up in 10 mL anhydrous 

CH2Cl2 and cooled to  -78 ⁰C. The solution of 51 (100 mg, 0.27 mmol) in 2 mL CH2Cl2 was 

added dropwise. Upon completion of addition, the reaction was warmed to room temperature and 

stirred overnight. The reaction mixture was then washed with sat. NaCl, dried on anhydrous 

MgSO4, filtered, and concentrated in vacuo. The residue was purified on a flash chromatography 

(SiO2, CH2Cl2/EtOAc/hexanes = 5:1:4) affording 52 (85 mg, 85%) as a white solid. Mp: 98-

103⁰C. 1H NMR (400 MHz, acetone-d6) δ 7.57-7.36 (m, 7H), 5.01-4.73 (m, 4H). 13C NMR 

(CDCl3) δ 136.2, 135.5, 134.7, 133.2, 131.1, 131.0, 130.0, 129.7, 128.5, 127.4, 125.3, 82.6, 80.8, 

48.9, 48.7. Calcd for C16H11Cl3FN3: C, 51.85; H, 2.99; N: 11.34. Found: C, 52.07; H, 2.81; N, 

11.25.  
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      1-(2-Chloroethyl)-5-(4-chlorophenyl)-4-(2,4-dichlorophenyl)-1H-1,2,3-triazole (54) A 

10-mL round-bottomed flask was charged with a stirring bar and 1 mL of pyridine. 51 (75 mg, 

0.20 mmol) was added followed by the addition of TsCl (194 mg, 1.0 mmol). The reaction was 

stirred at room temperature for 30 minutes. The solvent pyridine was removed under reduced 

pressure. The residue was taken up in sat. NaHCO3 (5 mL) + CH2Cl2 (10 mL). The organic 

fraction was separated, dried on anhydrous MgSO4, filtered, and concentrated in vacuo. 

      Anhydrous LiCl (34 mg, 0.8 mmol) and the tosylate prepared from above were taken up in 

20 mL of absolute ethanol. The reaction was heated to reflux for 15 hours. The solvent was 

removed. The residue was dissolved in CH2Cl2 (10 mL), washed by sat. NaCl (10 mL), dried on 

anhydrous MgSO4, and concentrated in vacuo. The residue was purified on a flash 

chromatography (SiO2, eluting with EtOAc/hexanes = 1:8) affording 54 (56 mg, 72%). Rf = 0.5 

(EtOAc/hexanes = 1:6). 

 

 

      1-(2-Bromoethyl)-5-(4-chlorophenyl)-4-(2,4-dichlorophenyl)-1H-1,2,3-triazole (55) A 10-

mL round-bottomed flask was charged with a stirring bar and 1 mL of pyridine. 51 (75 mg, 0.20 
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mmol) was added followed by the addition of TsCl (194 mg, 1.0 mmol). The reaction was stirred 

at room temperature for 30 minutes. The solvent pyridine was removed under reduced pressure. 

The residue was taken up in sat. NaHCO3 (5 mL) + CH2Cl2 (10 mL). The organic fraction was 

separated, dried on anhydrous MgSO4, filtered, and concentrated in vacuo. 

      Anhydrous LiBr (60 mg, 0.8 mmol) and the tosylate prepared from above were taken up in 

20 mL of anhydrous acetone. The suspension was heated to reflux for 15 hours. The solvent was 

removed. The residue was dissolved in CH2Cl2 (10 mL), washed by sat. NaCl (10 mL), dried on 

anhydrous MgSO4, and concentrated in vacuo. The residue was purified on a flash 

chromatography (SiO2, eluting with EtOAc/hexanes = 1:8) affording 55 (54 mg, 63%). Rf = 0.5 

(EtOAc/hexanes = 1:6). 

 

      1-Benzyl-5-(4-chlorophenyl)-4-iodo-1H-1,2,3-triazole (56) A flame dried flash was filled 

with N2 and charged with 1-chloro-4-ethynylbenzene (0.274 g, 2 mmol) in 5 mL of anhydrous 

THF. At room temperature ethylmagnesium chloride (2 M in THF, 1 mL) was added slowly. The 

reaction was stirred at room temperature for 1 hour before benzyl azide (293 mg, 0.25 mL, 2.2 

mmol) was added dropwise. The reaction was heated to 55 ⁰C for 2 hours. Iodine (1.82 g, 7.2 

mmol) in 2 mL of THF was added and stirring continued for 10 minutes. The reaction was 

cooled to room tempearature and quenched by the addition of 10 mL of sat. NH4Cl aqueous 

solution. The reaction mixture was partitioned between Na2S2O3 solution (2 N in water, 10 mL) 

and EtOAc (30 mL). The organic fraction was separated. The aqueous layer was extracted with 
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EtOAc (2 x 30 mL). Combined organic fractions were washed by sat. NaCl, dried on anhydrous 

Na2SO4, filtered, and concentrated in vacuo. The residue was purified on a flash chromatography 

(SiO2, eluting with EtOAc/hexanes = 1:6) affording 56 (554 mg, 70%) as a white solid.  

 

 

      1-Benzyl-5-(4-chlorophenyl)-4-(2,4-dichlorophenyl)-1H-1,2,3-triazole (57) 56 (829 mg, 2 

mmol), 2,4-dichlorophenyl boronic acid (420 mg, 2.2 mmol), Pd2(dba)3 (92 mg,  0.1 mmol), 

tricyclohexylphosphine (68 mg, 0.24 mmol), and K3PO4 (721 mg, 3.4 mmol) were suspended in 

16 mL THF + 4 mL H2O in a 50 mL pressure tube. The reaction vessel was purged with N2, 

sealed, and heated to 120 ⁰C for 16 hours in a oil bath. The reaction mixture was partitioned 

between water (40 mL) and EtOAc (40 mL). The organic layer was separated and the aqueous 

layer was extracted with EtOAc (2 x 40 mL). Combined organic fractions were washed by sat. 

NaCl, dried on anhydrous MgSO4, filtered, and concentrated in vacuo. The residue was purified 

by a flash chromatography (SiO2, eluting with EtOAc/Hexanes = 1:4) affording 57 (827 mg, 

99%) as a white solid. Rf = 0.3 (EtOAc/Hexanes = 1:4). Mp: 146-149 ⁰C. 1H NMR (400 MHz, 

acetone-d6) δ 7.38-6.96 (m, 12H), 5.53 (s, 2H).13C NMR (CDCl3) δ 146.3, 135.8, 135.3, 135.2, 

134.5, 133.1, 130.6, 129.8, 129.4, 129.0, 128.5, 128.4, 127.3, 127.2, 125.5, 52.9. Calcd for 

C21H14Cl3N3: C, 60.82; H, 3.40; N, 10.13. Found: C, 60.53; H, 3.40; N, 9.89.  
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      5-(4-Chlorophenyl)-4-(2,4-dichlorophenyl)-1H-1,2,3-triazole (58) 57 (40 mg, 0.1 mmol) 

was dissolved in 0.5 mL anhydrous DMSO and 1.5 mL anhydrous THF and cooled to 0 ⁰C. To 

this solution was slowly added t-BuOK (1 M in THF, 1 mL). Upon the completion of addition, 

O2 was bubbled through the resultant dark blue mixture for 15 minutes until the blue color 

disappeared and TLC indicated no starting material remained. The reaction was portioned 

between sat. NaCl (20 mL) + CH2Cl2 (30 mL). The organic fraction was separated. The aqueous 

fraction was extracted with CH2Cl2 (2 x 20 mL). Combined organic portions were washed by sat. 

NaCl (30 mL), dried on anhydrous MgSO4, filtered, and concentrated in vacuo. The residue was 

purified by a flash chromatography (SiO2, eluting with EtOAc/hexanes = 2:3) affording 58 (32 

mg, 99%) as a clear oil.  

 

 

      2-Benzyl-4-(4-chlorophenyl)-5-(2,4-dichlorophenyl)-2H-1,2,3-triazole (59) Under N2, 58 

(145 mg, 0.45 mmol) was dissolved in 2 mL anhydrous DMF. NaH (40% in mineral oil, 21.4 mg, 



64 
 

0.54 mmol) was added by one portion and stirred for 15 minutes at room temperature. Benzyl 

bromide (81 mg, 0.056 mL, 0.47 mmol) was added dropwise and stirred overnight. The reaction 

was then quenched with aqueous NH4Cl (1 N) and diluted with water (10 mL) + EtOAc (15 mL). 

The organic portion was separated. The aqueous portion was extracted with EtOAc (2 x 20 mL). 

Combined organic fractions were washed by sat. NaCl, dried on MgSO4, filtered, and 

concentrated in vacuo. The residue was purified on a flash chromatography (SiO2, eluting with 

EtOAc/hexanes = 1:3) affording 59 (112 mg, 60%) as a white solid. Rf = 0.4 (EtOAc/Hexanes = 

1:3). 1H NMR (400 MHz, acetone-d6) δ 7.66-7.37 (m, 12H), 5.75 (s, 2H). 13C NMR (CDCl3) δ 

144.9, 141.7, 135.9, 135.1, 134.5, 133.0, 130.1, 129.2, 129.0, 128.7, 128.6, 128.3, 127.6, 126.5, 

59.2. Calcd for C21H14Cl3N3: C, 60.82; H, 3.40; N, 10.13. Found: C, 60.97; H, 3.56; N, 9.92.  

 

      Butyl 4-(4-chlorophenyl)-5-(2,4-dichlorophenyl)-2H-1,2,3-triazole-2-carboxylate (60)   

Under N2, 58 (94 mg, 0.29 mmol) was dissolved in 4 mL anhydrous THF. NaH (40% in mineral 

oil, 14 mg, 0.35 mmol) was added by one portion and stirred for 15 minutes at room temperature. 

The solution was then added dropwise to another flask that was charged with butyl 

chloroformate (48 mg, 0.35 mmol) in 2 mL anhydrous THF. The reaction was stirred at room 

temperature for 2 hours and quenched with aqueous NH4Cl (1 N) and diluted with water (10 mL) 

+ EtOAc (15 mL). The organic portion was separated. The aqueous portion was extracted with 

EtOAc (2 x 20 mL). Combined organic fractions were washed by sat. NaCl, dried on MgSO4, 
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filtered, and concentrated in vacuo affording 60 (123 mg, 0.29 mmol) as a white solid. 1H NMR 

(400 MHz, acetone-d6) δ 7.50-7.30 (m, 7H), 4.62 (t, 2H), 1.89 (m, 2H), 1.52 (m, 2H), 0.11 (t, 

3H). 13C NMR (CDCl3) δ 147.6, 136.9, 136.0, 135.0, 132.8, 130.2, 129.3, 128.8, 127.8, 127.6 

70.1, 30.6, 19.0, 13.8. Calcd for C19H16Cl3N3O2: C, 53.73; H, 3.80; N, 9.89. Found: C, 53.74; H, 

3.85; N, 9.77.  

 

      Methyl 2-(4-(4-chlorophenyl)-5-(2,4-dichlorophenyl)-2H-1,2,3-triazol-2-yl)acetate (61) 

58 (200 mg, 0.62 mmol) was dissolved in 3 mL anhydrous DMF in a flask backfilled with N2. 

NaH (40% in mineral oil, 29.6 mg, 0.65 mmol) was added. The reaction was stirred at room 

temperature for 15 minutes before methyl 2-bromoacetate (99 mg, 0.65 mmol) was added 

dropwise. After stirring for 20 hours at room temperature, the reaction was quenched by 1 N 

NH4Cl in water (1 mL). The mixture was diluted with water (15 mL) + EtOAc (15 mL). The 

organic layer was separated. The aqueous layer was extracted with EtOAc (2 x 15 mL). 

Combined organic portions were washed with sat. NaCl, dried on MgSO4, filtered, and 

concentrated in vacuo. The residue was purified on a flash chromatography (SiO2, eluting with 

EtOAc/hexanes = 1:3) affording 61 (147 mg, 0.37 mmol, 60%). Rf = 0.47 (EtOAc/hexanes = 

1:3). Mp: 121-123 ⁰C. 1H NMR (400 MHz, acetone-d6) δ 7.67-7.39 (m, 7H), 5.47 (s, 2H), 3.79 

(s, 3H). 13C NMR (CDCl3)  δ 167.1, 145.7, 142.4, 136.1, 135.0, 134.7, 132.9, 130.2, 129.1, 129.0, 
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128.9, 128.3, 127.6, 55.8, 53.1. Calcd for C17H12Cl2N3O2: C, 51.48; H, 3.05; N, 10.59. Found: C, 

51.58; H, 3.05; N, 10.40.  

 

 

      4-(4-Chlorophenyl)-5-(2,4-dichlorophenyl)-2-hexyl-2H-1,2,3-triazole (62) 58 (65 mg, 0.2 

mmol) was dissolved in 3 mL anhydrous DMF in a flask backfilled with N2. NaH (40% in 

mineral oil, 13.2 mg, 0.22 mmol) was added. The reaction was stirred at room temperature for 15 

minutes before hexyl bromide (41 mg, 0.25 mmol) was added dropwise. After stirring for 12 

hours at room temperature, the reaction was quenched by 1 N NH4Cl in water (1 mL). The 

mixture was diluted with water (10 mL) + EtOAc (10 mL). The organic layer was separated. The 

aqueous layer was extracted with EtOAc (2 x 10 mL). Combined organic portions were washed 

with sat. NaCl, dried on MgSO4, filtered, and concentrated in vacuo. The residue was purified on 

a flash chromatography (SiO2, eluting with EtOAc/hexanes = 1:8) affording 62 (49 mg, 60%) as 

a clear oil. 
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      4-(4-Chlorophenyl)-5-(2,4-dichlorophenyl)-2-propyl-2H-1,2,3-triazole (63) 58 (88 mg, 

0.27 mmol) was dissolved in 3 mL anhydrous DMF in a flask backfilled with N2. NaH (40% in 

mineral oil, 18 mg, 0.3 mmol) was added. The reaction was stirred at room temperature for 15 

minutes before bromopropane (40 mg, 0.32 mmol) was added dropwise. After stirring for 12 

hours at room temperature, the reaction was quenched by 1 N NH4Cl in water (1 mL). The 

mixture was diluted with water (10 mL) + EtOAc (10 mL). The organic layer was separated. The 

aqueous layer was extracted with EtOAc (2 x 10 mL). Combined organic portions were washed 

with sat. NaCl, dried on MgSO4, filtered, and concentrated in vacuo. The residue was purified on 

a flash chromatography (SiO2, eluting with EtOAc/hexanes = 1:8) affording 63 (50 mg, 50%) as 

a yellowish oil. 

 

 

      2-(4-(4-Chlorophenyl)-5-(2,4-dichlorophenyl)-2H-1,2,3-triazol-2-yl)ethanol (64) Methyl 

ester 61 (320 mg, 0.81 mmol) was dissolved in 10 mL anhydrous THF. To the resultant solution 

LiAlH4 (2 M in THF, 1.22 mL) was added dropwise at -40 ⁰C. Upon the completion of addition, 

the reaction was brought up to 0 ⁰C and stirred for 15 minutes. The reaction was then quenched 

with 1 M NH4Cl in water (0.3 mL). After vigorously stirring for 5 minutes, anhydrous MgSO4 

was added and the slurry was filtered. The filtrate was concentrated in vacuo. The residue was 

purified by running through a short pad of silica gel affording 64 (298 mg, 99%) as a clear oil. Rf 
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= 0.36 (EtOAc/hexanes = 1:1). 1H NMR (400 MHz, acetone-d6) δ 7.67-7.36 (m, 7H), 4.59 (t, 

2H), 4.23 (s, 1H), 4.15 (t, 2H). 13C NMR (CDCl3)  δ 144.7, 143.7, 141.3, 135.9, 134.9, 134.7, 

134.5, 132.8, 130.1, 129.6, 129.1, 129.0, 128.9, 128.8, 128.7, 127.6, 60.9, 57.2.  

 

 

      4-(4-Chlorophenyl)-5-(2,4-dichlorophenyl)-2-(2-fluoroethyl)-2H-1,2,3-triazole (65) 

DAST (223 mg, 0.183 mL, 1.38 mmol) was taken up in 15 mL anhydrous CH2Cl2. At -78 ⁰C, 64 

(170 mg, 0.46 mmol) in 3 mL of CH2Cl2 was added to the DAST solution dropwise. After the 

addition was complete, the cold bath was removed and the reaction was brought up to room 

temperature and stirred overnight. The reaction mixture was washed by sat. NaCl (20 mL), dried 

on anhydrous MgSO4, filtered, and concentrated in vacuo. The residue was purified on a flash 

chromatography (SiO2, EtOAc/hexanes = 1:4) affording 65 (140 mg, 82%) as a clear oil. Rf = 0.4 

(EtOAc/hexanes = 1:4). 1H NMR (400 MHz, acetone-d6) δ 7.65-7.36 (m, 7H), 5.11-4.80 (m, 4H). 

 

 



69 
 

      2-(2-Chloroethyl)-4-(4-chlorophenyl)-5-(2,4-dichlorophenyl)-2H-1,2,3-triazole (66) 

Alcohol 64 (163 mg, 0.44 mmol), pyridine (168 mg, 0.88 mmol), and toluene sulphonyl chloride 

(70 mg, 0.88 mmol) were taken up in 5 mL of CH2Cl2 and stirred at room temperature for 4 

hours. The solvent was removed and the residue was purified by running through a thin pad of 

silica gel. The concentrate together with lithium chloride (186 mg, 4.4 mmol) was taken up in 20 

mL of absolute ethanol. The reaction was refluxed for 15 hours. The solvent was removed and 

the residue was dissolved in 20 mL water and extracted with EtOAc (2 x 20 mL). Combined 

organic portions were washed with sat. NaCl, dried on MgSO4, filtered, and concentrated in 

vacuo. The residue was purified on a flash chromatography (SiO2, EtOAc/hexanes = 1:6) 

affording 66 (153 mg, 90%) as a white solid. Mp: 115-118 ⁰C. Rf = 0.55 (EtOAc/hexanes = 1:4). 

1H NMR (400 MHz, acetone-d6) δ 7.52-7.27 (m, 7H), 4.81 (t, 2H), 4.08 (t, 2H). 13C NMR 

(CDCl3)  δ245.1, 141.9, 136.0, 135.1, 134.6, 132.9, 130.2, 129.7, 129.2, 129.1, 129.0, 128.3, 

127.7,56.3, 41.5.  

 

 

      2-(2-Bromoethyl)-4-(4-chlorophenyl)-5-(2,4-dichlorophenyl)-2H-1,2,3-triazole (67)  

Alcohol 64 (111 mg, 0.3 mmol), pyridine (114 mg, 0.6 mmol), and TsCl (48 mg, 0.6 mmol) were 

taken up in 5 mL of CH2Cl2 and stirred at room temperature for 4 hours. The solvent was 

removed and the residue was purified by running through a thin pad of silica gel. The 

concentrate together with LiBr (260 mg, 3 mmol) was taken up in 20 mL of acetone. The 
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reaction was refluxed for 15 hours. The solvent was removed and the residue was dissolved in 20 

mL water and extracted with EtOAc (2 x 20 mL). Combined organic portions were washed with 

sat. NaCl, dried on MgSO4, filtered, and concentrated in vacuo. The residue was purified on a 

flash chromatography (SiO2, EtOAc/hexanes = 1:6) affording 67 (102 mg, 79%) as a white solid. 

Rf = 0.5 (EtOAc/hexanes = 1:6). 
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CHAPTER 2 

SYNTHESIS OF PYRROLIDINE 225H AND A FORMAL SYNTHESIS OF  

(+)-GEPHYROTOXIN 

 

2.1 ABSTRACT 

 

       Neuronal nicotinic acetylcholine receptors have long been the target for the development of 

a large number of central nervous system diseases and disorders. In an effort to develop new 

neuronal nicotinic acetylcholine receptor ligands as therapeutic agents, we have been very 

interested in amphibian alkaloids. 

      To effectively synthesize amphibian alkaloids, our research group has recently developed a 

general synthetic strategy which can rapidly prepare a few amphibian alkaloids simply from the 

abundant natural product (-)-cocaine 1 as a starting material (Scheme 2.1). This strategy was first 

successfully applied to the synthesis of (-)-monomorine. More recently, this strategy has also 

been utilized in the syntheses of both of the enantiomers of cis-pyrrolidine 225H and (+)-

gephyrotoxin 287C. 

 

 

Scheme 2.1 Synthesis of amphibian from 2,5-cis-pyrrolidine building block 
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2.2 INTRODUCTION 

 

      Amphibians have produced a great number of biologically active compounds as a chemical 

defense against predators. These compounds are mostly present in the skin or venom of 

amphibians. Lipophilic alkaloids are one of the largest categories of chemicals detected in 

amphibian skin. Through 2005, over 800 hundred amphibian alkaloids of over 20 structural 

classes have been reviewed.1 The structural diversity and biological activity of amphibian 

alkaloids have aroused tremendous academic and pharmaceutical interest. However, the presence 

of alkaloids in amphibian species is very scarce. Dependence on the supply from natural sources 

is very limited. Therefore, total synthesis is the most used method to provide sufficient material 

for intensive structure and biological activity studies. An ongoing project in our laboratory has 

been to develop synthetic strategies for the construction of amphibian alkaloids that exhibit 

pharmacological activities mediated by nicotinic receptor ion channels.  

      Neuronal nicotinic acetylcholine receptors (nAChRs) are members of a super family of 

central nervous system synapses and the neuromuscular endplate. Neuronal nicotinic 

acetylcholine receptors respond to physiological signal of the neurotransmitter acetylcholine. 

They can also be activated by nicotine.2 Neuronal nicotinic acetylcholine receptors have been the 

target for the drug development for tobacco addiction, smoking cessation, muscle relaxation, and 

anti-hypertension.3,4 More recently, neuronal nicotinic acetylcholine receptors have been the 

target for the development of new therapeutic agents for the treatment of a number of other 

central nervous system disease and disorders such as Alzheimer’s Disease, Parkinson’s Disease, 

Tourettes syndrome, anxiety, and depression. Scientific findings have also indicated that nicotine 

receptors are involved in memories and learning activities. It is now widely believed that 
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neuronal nicotinic acetylcholine receptor agonists and antagonists have great potential for the 

treatment of a variety of diseases and disorders.  

      Unfortunately, most of the neuronal nicotinic acetylcholine receptor agents available up to 

date have adverse side effects which severely prevent them from being applied as drug therapy. 

Therefore, it is of great interest and benefit to discover and search novel nicotinic receptor 

ligands and develop them to provide therapeutic agents and medications for the treatment of a 

variety of neurological diseases and disorders. 

 

Figure 2.1 Structures of Amphibian Alkaloids and Cocaine 

 

       Several classes of the amphibian alkaloids have been found to be non-competitive blockers 

at nicotinic receptor ion channels. Among these alkaloids, at least four classes share the common 

skeletal structure. They are the pyrrolidine, pyrrolizidine, indolizidine, and gephyrotoxin. As 

illustrated in Figure 2.1, they are respectively represented by four natural products, (+)-

monomorine 4, cis-pyrrolidine 225H 5, trans-pyrrolizidine 223H 6 and (+)-gephyrotoxin 7. A 

cis-2,5-disubstituted pyrrolidine-ring structural feature was observed in all of those four natural 
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products. Meanwhile, this ring system can also be found in the abundant natural product (-)-

cocaine•HCl. Seeing this prominent similarity, we were encouraged to develop an 

enantioselective and general synthetic strategy preparing sample amphibian alkaloids and 

analogues for further structure-activity studies.  

 

 Pyrrolidine 225H 

 

 

 2,5-Pyr  R1  R2  

 183B  n-C4H9  n-C4H9  

 *197B  n-C4H9  n-C5H11  

trans  223N  C6H11  n-C5H11  

 225C  n-C4H9  n-C7H15  

 225H  n-C6H13 n-C5H11  

cis/trans  235F  C7H13  C5H9  

 253I  n-C6H13  n-C7H15  

trans  277D  C6H11  C9H17  

 279G  n-C6H13  n-C9H17  

 

Table 2.1 Pyrrolidines 
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      A 2,5-disubstituted pyrrolidine has been identified as the major alkaloid in skin extracts of 

Dendrobates histrionicus, a population of a Colombian dendrobatid frog. Such 2,5-disubstituted 

pyrrolidines (Table 2.1) were also detected in myrmicine ant venoms. These 2,5-disubstituted 

pyrrolidines were found to exhibit insecticidal activity serving as a defensive repellant.5 

Synthetic compound, 197B, acted as a noncompetitive blocker of nicotinic receptor exhibiting 

interesting biological activities.6 Yet very little is known about this class of alkaloids. Up to date, 

there is only one pyrrolidine structure was firmly established with organic synthesis as a tool. We 

were pleased to find that most of cis-2,5-disubstituted pyrrolidines in the chart can be 

synthesized from (-)-cocaine with two chiral centers directly introduced from  (-)-cocaine. We 

selected pyrrolidine 225H as an example to interpret the application of this strategy.  

      The only laboratory synthesis of unsymmetrical 2,5-pyrrolidines was reported about 30 years 

ago.7 As demonstrated in Scheme 2.2, a complexity of multiple isomers occurred in the reaction 

sequence as a result of harsh reaction conditions in the reaction sequences. 

 

 

Scheme 2.2 Review of the synthesis of Pyrrolidine 225H 

Reagents and conditions: a) PCC; b) R'CHO, Et3N; c) (NH4)2CO3; d) H2, Rh/Al2O3. 
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(+)-Gephyrotoxin 

      Four classes of tricyclic alkaloids have been detected in amphibians. Gephyrotoxin was the 

first tricyclic alkaloid that has been structurally defined. It was isolated from the skin secretion of 

tropical frog Dendrobates histrionicus and characterized by Daly and co-workers in 1977.8  

Although controversy still remains as to the absolute configuration of the major component from 

the Dendrobates histrionicus, this compound has aroused increasing pharmacological interest 

due to its observed biological activities. (+)-Gephyrotoxin was relatively nontoxic. It exhibited 

weak muscarinic antagonist activities and neurological activities. It acted as a noncompetitive 

blocker of nicotinic receptor-channels of muscle, electric ray electroplax, and 

pheochromocytoma cells.8 Due to its extreme scarcity in nature, (+)-Gephyrotoxin and analogues 

have been an interesting synthetic target for several organic synthetic groups.   

 

 

Scheme 2.3 Review of synthesis of Kishi’s Intermediate I 

Reagents and conditions: a) 1. P2S5, pyridine, 80 ⁰C; 2. MeCOCH(Br)CO2Et, NaHCO3, reflux; 3. 
0.1 N KOH, EtOH, 80 ⁰C; b) H2 (1 atm), 5 % Pd/C, HClO4, MeOH, rt; c) 1. C6H5OCOCl, 
pyridine, CH2Cl2, rt; 2. LiBH4, THF, rt; 3. KH, THF, rt; d) 1. DIBAL-H, THF/toluene, -105 ⁰C; 
2. 3 N HCl; 3. NaBH4, DME, rt; 4. MeOCH2Br, DIPEA, CH2Cl2, rt; 5. Ba(OH)2, H2O, reflux. 
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      Among the different approaches, only one total synthesis and two formal syntheses have 

been reported for the enantioselective preparation of (+)-Gephyrotoxin. The first and only 

enantioselective total synthesis of (+)-Gephyrotoxin was reported by Kishi and coworkers.9 In 

their synthesis (Scheme 2.3), L-pyroglutamic acid was converted into the enantiopure cis-2,5-

disubstituted pyrrolidine 8 in 15 step and another 3 steps led to the tricyclic intermediate 9 which 

is called Kishi’s intermediate. Kishi’s intermediate is a tricyclic compound with two chiral 

centers and a cis-2,5-disubstituted pyrrolidine ring system. Kishi’s strategy provided Kishi’s 

intermediate in 18 steps from L-pyroglutamic acid and it included a hydrogenation step which 

afforded a 2.3:1 mixture of cis- and trans-pyrrolidine.  

 

Scheme 2.4 Review of synthesis of Kishi’s Intermediate II 

Reagents and conditions: a) TBDPSCl, imidazole; b) 1. toluene/EtOH, Na2SO4, piperidinium 
acetate, 100 ⁰C; 2. 5% Pd/C, H2 (1 atm), EtOAc/EtOH; c) TBAF, CH2Cl2, 0 ⁰C. 
 
      Hsung and coworkers reported a shorter access to Kishi’s intermediate (Scheme 2.4). The 

key step of Hsung’s strategy was the stereoselective intramolecular formal [3+3] cycloaddition 

reaction of vinylogous amide with α,β-unsaturated aldehyde 11 which was obtained by 
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condensation of the chiral amino diol 10 with 1,3-cyclo-hexanedione. This synthesis afforded 

Kishi’s intermediate in 10 steps from commercially available starting material. However the 

intramolecular cycloaddition gave the tricyclic precursor 12 in a low yield (50%) and a poor 

diastereoselectivity.10  

 

 

Scheme 2.5 Review of synthesis of Kishi’s Intermediate III 

Reagents and conditions: a) 1. LDA; 2. p-TsOH, DHP, CH2Cl2; b) Zn(ClO4)2•6H2O, MgSO4, 
CH2Cl2; c) 1. NaBH4, AcOH, CH3CN; 2. H2, Pd(OH)2/C, Boc2O, AcOMe; 3. LiAlH4, THF, 0 ⁰C; 
4. NaH, BnBr, TBAI, DMF; 5. HCl, MeOH; d) p-TsOH, toluene; e) 1. PBr3, CH2Cl2; 2. NaI, 
CH3CN; 3. H2, Pd/C, HClO4, MeOH. 
 
      More recently, Vanucci-Bacqué and coworkers reported a more diastereocontrolled synthesis 

of Kishi’s intermediate (Scheme 2.5). In this strategy, Vanucci-Bacqué synthesized the 

enantiopure cis-2,5-disubstituted pyrrolidine 15 from the diastereocontrolled reduction of the 

chiral bicyclic pyrrolidine β-enamino ester 14 which was obtained by condensation of the chiral 

amine (S)-phenylglycinol 13 on a protected ω-oxo β-keto ester 12.11 
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Scheme 2.6 Review of the synthesis of (+)-Gephyrotoxin from Kishi’s Intermediate 

Reagents and conditions: a) H2 (60 psi), 5% Pt/Al, EtOAc; b) (COCl)2, DMSO, Et3N, CH2Cl2; c) 
1.EtOCCMgCl, THF; 2.MeMgBr; 3. H3O+; 4. t-Bu(C6H5)2SiCl, imidazole; d) 1. H2 (1 atm), 5% 
Rh/Al2O3, hexanes; 2. LiAlH4; e) 1. PCC; 2. Ph3P(CH=CHOEt)Br; 3. TSA, acetone/H2O; f) 1. 
Ph3P(CH2Cl)Cl, BuLi, THF; 2. MeLi, Me3SiCl, THF; 3. TBAF, DMF. 

 

     As demonstrated in Scheme 2.6, Kishi’s intermediate was diastereoselectively converted into 

(+)-gephyrotoxin by Kishi et. al.12 The unique and key aspect of the synthesis was that all three 

remaining asymmetric centers on the tricylic ring were stereoselectively introduced through 

hydrogenation reactions with specific catalysts and additives. When the hydrogenation of the 

vinylogous amide 8 was carried out with the presence of 10% Pd/C in ethyl acetate under 60 psi 

hydrogen pressure, the hydrogenation product along with hydrogenolysis side product were 

found to be the product with reversed stereochemical outcome. However, when the reaction 
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proceeded using 5% Platinum on an alumina support in anhydrous ethyl acetate at 60 psi 

hydrogen pressure at room temperature, the desired product 16 was obtained with the best result 

of a 12:1 ratio of the amino alcohol favoring the product with the right asymmetrical centers. For 

the purpose of purification and protection, the amino alcohol was isolated as its monoacetate. 

Swern oxidation of the alcohol 16 gave the ketone 17 which reacted with 

ethoxyacetylenemagnesium chloride in THF giving a mixture of the Z and E isomers 18. 

Addition of methylmagnesium bromide to the acetate ester and acid workup followed by the 

silylation afforded the unsaturated ester 19. The introduction of the bulky silyl group 

dramatically controlled the stereoselectivity of the last hydrogenation. With the directing effect 

of the silyl group, dissolving metal reduction by lithium in liquid ammonium followed by lithium 

aluminum hydride reduction gave the equatorial isomer with a 35:1 selectivity disfavoring the 

desired product. On the other hand, hydrogenation with 5% Rhodium on Al2O3 support in 

hexanes with 1 atm hydrogen atmosphere followed by lithium aluminum hydride reduction gave 

the axial isomer favoring the desired product with a 10:1 ratio. The stereochemistry of this 

synthesis was further proved by the comparison of the synthetic compound with authentic 

sample derived from natural source.   

 

2.3 RESULTS AND DISCUSSION 

 

Synthesis of (-)-Monomorine 

      As discussed earlier, (+)-monomorine 3, cis-pyrrolidine 225H 4, pyrrilizidine 233H 5 and 

(+)-gephyrotoxin 6 all share the common structural feature of a cis-2,5-disubstituted pyrrolidine 

ring system. This structural similarity encouraged us to develop a general synthetic sequence to 
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enantioselectively prepare those natural products. The building block in this strategy is cis-2,5-

disubstituted pyrrolidine 2 which can be easily obtained from (+)-2-tropinone 22. (+)-2-

Tropinone 22 was selected as the early stage intermediate due to its availability and relative ease 

of preparation in our research laboratory.  

      This chemical and stereochemical efficiency of this approach was first successfully tested in 

the synthesis of (-)-Monomorine since this is a compound that has been enantioselectively 

synthesized and well chracterized.13 The aldehyde 25 was selected as the building block due to 

its desired flexibility for a good chiral building block. It has the orthogonal reactivity of the 

aldehyde, ester and the N-Cbz protecting group as well as the asymmetry of cis-2,5-appendages 

which can all be developed into a diversity of functional groups.  

 

 

Scheme 2.7 Synthesis of pyrrolidine building block 

Reagents and conditions: a) 37% HCl, reflux, 24 h; b) 1. (PhO)2P(O)N3, DMAP, Na2CO3, 
CH2Cl2, rt, 48 h; 2. 1 N HCl, reflux, 1 h; c) Cbz-Cl, K2CO3, toluene, reflux, 48 h; d) HC(OCH3)3, 
PTSA•H2O; e) 1. O3, CH2Cl2, – 78 °C; 2. Ph3P, rt.  
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      Confiscated grade (-)-cocaine was used as the starting material in sufficient quantities to 

provide the chiral building block for the syntheses. Although it is not commercially available, 

confiscated (-)-cocaine can be obtained from the National Institute on Drug Abuse with 

appropriate DEA licensing. As illustrated in Scheme 2.7, (-)-cocaine hydrochloride was treated 

with concentrated hydrochloric acid and reflux. Hydrolysis and condensation provided (-)-

anhydroecgonine hydrochloride 22 in a quantitative yield. A suspension of the carboxylic acid 22 

in dichloromethane was treated with diphenylphosphoryl azide (DPPA) and a catalytic amount of 

DMAP. The reaction took 48 hours at room temperature and it afforded the corresponding acyl 

azide. Without purification, the residue of acyl azide was taken up in hydrochloric acid and 

refluxed. This step converted the acyl azide to the desired (+)-2-tropinone 23 via a Curtius 

rearrangement.   

      The 2-tropinone 23 was demethylated and simultaneously the nitrogen was protected as the 

Cbz-carbamate. This reaction was done by heating the mixture of Cbz-Cl and K2CO3 in toluene 

to 120 ⁰C for 48 hours when the progress of the reaction stopped indicated by TLC. This step 

reduced the basicity associated with the nitrogen atom and protected it from oxidation during the 

ozonolysis step. The N-Cbz-2-tropinone 2 was then treated with trimethyl orthoformate in the 

presence of PTSA•H2O as catalyst. This step converted N-Cbz-2-tropanone into the methyl enol 

24 which was unstable on silica gel and had a very short shelf life. Without further purification, 

the methyl enol ether was brought to ozonolysis. At -78 ⁰C, ozone was bubbled through the 

solution of methyl enol ether in dichloromethane till the solution turned light blue and the blue 

color persisted which indicated the complete cleavage of the double bond. The addition of 

triphenylphosphine subsequently reduced the intermediate to the enantiopure tricarbonyl 

derivative 25.    
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Scheme 2.8 Synthesis of (-)-Monomorine 

Reagents and conditions: a) CH(OCH3)3, CeCl3•7H2O; b) 1. DIBAL-H, toluene, -78 ⁰C; 2. 
Ph3PCH2CCH2CH3Br, t-BuOK, toluene; 3. PTSA.H2O, Acetone; c) (CH3O)2POCH2COCH3, 
LiCl, DBU, CH3CN; d) H2 (55 psi), 10% Pd/C, CH3OH. 

 
      In the synthesis of (-)-monomorine 3 (Scheme 2.8), the right butyl side chain was initially 

built from the ester moiety. This approach avoided the protection and deprotection of this ester 

functional group at a later stage. Thus, the aldehyde moiety was protected as the acetal 26 (in a 

92% yield) with trimethyl orthoformate catalyzed by cerric chloride. When the solution of 

DIBAL-H in THF was added slowly at a low temperature of -78⁰C, the ester group was cleanly 

reduced to aldehyde 27 which was directly introduced to the Wittig olefination reaction adding a 

four-carbon unit for the side-chain. Hydrogenation of the olefin at this point was not necessary 

since it could be done concomitantly with the ring closure step at the last step. The acetal group 

was subjected to hydrolysis when it was treated with PTSA•H2O at room temperature affording 

the aldehyde 27 in a 55% overall yield for three steps. Olefination of 27 with 

trimethylphosphonoacetate, lithiumchloride, and DBU gave the diene 28 in a form of the mixture 

of two isomers in an 80% yield. The construction of the indolizidine ring system was the key 

step for the synthesis of (-)-monomorine. It was completed with a simultaneous 

hydrogenation/reductive animation of 28.  The hydrogenation of the side olefin moieties, 
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deprotection of the pyrrolidine nitrogen, and reductive animation/ring closure all ran smoothly 

with the application of hydrogen (55 psi) over 10% Pd/carbon. During the sequence of the 

reactions, Z/E olefinations isomers were not separated since the later hydrogenation step would 

lead all to the same compound. The relative stereochemistry and absolute configuration of the 

synthesized (-)-monomorine product was confirmed by a good match of our collected analytical 

data of compound 29 with the published analytical data for (+)-monomorine in literature.   

 

Synthesis of (+)-cis-pyrrolidine 225H 

 

Scheme 2.9 Revised synthetic route of building block 

Reagents and conditions: a) EtOOCCl, K2CO3, toluene, reflux, 12 h; b) 37% HCl, reflux, 10 h; c) 
1. (PhO)2P(O)N3, DMAP, Na2CO3, CH2Cl2, rt, 24 h; 2. 1 N HCl, reflux, 1 h; 3. Cbz-Cl, CH2Cl2; 
d) 1. KH, THF, 0 ⁰C, 1 h; 2. TBDMS-Cl, rt, overnight; e) 1. O3, MeOH/CH2Cl2, – 78 °C; 2. 
NaBH4, 0 °C; 3. CH2N2, Et2O, 0 °C, 30 min. 
 
      We were pleased to see the chemical and stereochemical efficiency of our new synthetic 

strategy in the preparation of (-)-monomorine. To further apply this methodology to synthesize 

other amphibian alkaloids and the general synthesis of natural products and drug candidates, we 
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felt the need to optimize our reaction sequences to prepare the building block more rapidly and 

more efficiently.  

      Building block 25 (Scheme 2.8) was synthesized in a moderate yield of 31% over five steps 

and it took a long cycle to prepare 25 from our starting material natural product (-)-cocaine with 

24 hours and 48 hours reaction time for the first step and the second step respectively. The 

demethylation/protection step provided the product in a moderate yield (56%). The overall yield 

was also limited by the ozonolysis step where the low yield was believed to have caused by 

impurities brought from the previous step.  

      Targeting at the resolution of these problems, we designed a different synthetic route to make 

the building block 25. In our previous synthesis, we noticed that the overall yield of the (+)-2-

tropinone 23 varied with the quality of the confiscated (-)-cocaine. To minimize this influence, 

we simply purified the (-)-cocaine by extraction. The confiscated (-)-cocaine hydrochloride salt 

was first dissolved in water and the aqueous solution was washed by ethyl ether to removed trace 

of organic impurities. The aqueous solution was then basified to pH =10 with saturated sodium 

carbonate aqueous solution and extracted by dichloromethane. This procedure eliminated 

potential water-soluble inorganic impurities. We realized that the difficulty of the Cbz-protection 

on the nitrogen could be caused by the β-carbonyl group on 23. The β-carbonyl group made the 

nitrogen more hindered and the lone pair electrons on nitrogen less reactive with the 

chloroformate reagent. But if the demethylation/deprotection step was done before the β-

carbonyl was introduced, the difficulty of reaction could then be avoided. In the revised building 

block synthetic route (Scheme 2.10), demethylation was done as the first step accompanied by 

protection with ethyl chloroformate. This provided 30 in almost a quantitative yield and 

chromatography purification provided a clean intermediate for the next two steps. The carbamate 
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30 was refluxed in concentrated hydrochloric acid for 12 hours. Hydrolysis of two ester groups, 

one amide, and dehydrogenation all proceeded concomitantly giving the α,β-unsaturated 

carboxylic acid 31. The acid 31 reacted with diphenylphosphoryl azide catalyzed by DMAP in 

dichloromethane giving the intermediate acyl azide which then underwent Curtius rearrangement 

releasing nitrogen gas and carbon dioxide gas upon decomposition.14 It was not easy and not 

necessary to separate the intermediate (1R,5S)-8-azabicyclo[3.2.1]octan-2-one from DMAP since 

they share similar chemical and physical properties. The crude mixture reacted with benzyl 

chloroformate to protect the nitrogen and reduce its basicity. Since this was a heterogenous 

reaction, the yield of this one-pot three-step reaction was closely related to the dryness of the 

reactant carboxylic 31. Completely drying and finely grinding the acid 30 was found to greatly 

facilitate conversion of the carboxylic acid 31 into acyl azide and as a result could favor the yield 

for those steps giving ketone 2.    

Ketone 2 was treated with NaH followed by the addition of t-buytldimethylsilyl chloride 

to furnish silyl enol ether 32 according to the procedure reported by Rassat and coworkers.15 

Compared with methyl enol ether, silyl enol ether was more stable to acid conditions. Ether 32 

could be purified by silica gel chromatography. The clean product resulted in a significantly 

increased yield for the ozonolysis step. Ozone was freshly generated in our laboratory from 

oxygen. Ozone was slowly and steadily bubbled through the solution of enol ether 32 in the 

mixture of dichloromethane and methanol at a low temperature of -78 ⁰C. When all the enol 

ether was converted and no more ozone was consumed, the solution turned light blue and the 

blue color persisted. The ozonide was formed as the oxidation product but it could only exist in 

solvent at low temperature. Different reducing agents could result in different reduction products 

of the ozonide. When sodium borohydride was used, the two functional groups introduced were 
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carboxylic acid and alcohol. This product was not purified since it was highly polar. Therefore, 

the crude product residue was directly treated with diazomethane to convert the carboxylic acid 

to methyl ester. The new pyrrolidine building block 3 was furnished with 67% yield over three 

steps.4,14  

Diazomethane is a highly explosive material. Diazomethane frequently employed in 

routine work is generally prepared from precursors by dangerous and time-consuming distillation 

and collection. The diazomethane used in the reaction was freshly prepared by simply reacting 

toluenesulphonylmethylnitrosamide (Diazald) with sodium hydroxide in methanol in a simplified 

apparatus designed for this reaction. The stream of diazomethane was bubbled through the 

solution of intermediate carboxylic acid in ethyl ether and the reaction was done in minutes to 

afford 3 in a good yield. This revised synthetic route gave the new building block 3 in a 51% 

yield from (-)-cocaine.   

 

 

Scheme 2.10 Synthesis of (+)-Pyrrolidine 225H 

Reagents and conditions: a) 1. Oxalyl chloride, DMSO, Et3N, -78 ºC; b) 
(Ph3PCH2CH2CH2CH3)Br, KH, THF, rt; c) DIBAL-H, CH2Cl2, -78 ºC; d) 
(Ph3PCH2CH2CH2CH3)Br, KH, THF, rt; e) H2, Pd/C, MeOH, rt, overnight. 
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      In the synthesis of pyrrolidine 225H, no protection of either the alcohol functional group or 

the ester moiety was necessary when the reactions were under taken in the right sequence. The 

alcohol 3 was oxidized to aldehyde 25 following the Swern oxidation. The aldehyde 25 coupled 

with triphenylphosphoniumbutyl bromide gave a mixture of Z/E olefin with the ration of 5:1. 

The Z isomer was isolated and reduced by DIBAL-H. Although alcohol usually appeared as 

over-reduction product, the reaction ran cleanly to give aldehyde as the exclusively only 

reduction product with a very small amount starting material remained, when the DIBAL-H 

solution was added dropwise at a strictly controlled low temperature. Wittig reaction of the 

aldehyde 34 coupled again with triphenylphosphoniumbutyl bromide furnishing 35. This step 

produced four products, likely the isomers of Z-cis-pyrrolidine, E-cis-pyrrolidine, Z-trans-

pyrrolidine and E-trans-pyrrolidine as the result of epimerization associated with the Wittig basic 

reaction conditions. Fortunately, all those four isomers were easily separated on silica gel 

column chromatography. At that point we assume that the predominantly major product was Z-

cis-pyrrolidine isomer and it was exposed to hydrogen (1 atm) with 10% Pd/carbon. 

Hydrogenation of the two double bonds and the removal of Cbz protection group went 

simultaneously giving (+)-pyrrolidine 225H.  

            The absolute configuration of cis-pyrrolidine 225H has yet to be established and there is 

no reported spectroscopic data or optical rotation data of this compound that we could compare 

with our product. With the asymmetry of the appendages, the intermediates existed as a complex 

mixture of two conformers (rotomers) due to hindered rotation of the N-Cbz bond. The existence 

of rotomers significantly complicated the NMR spectroscopy of late stage intermediates and 

made it difficult to fully and accurately characterize intermediate compounds spectroscopically. 

As a result, we decided to synthesize the other enantiomer of cis-pyrrolidine 225H and to 
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compare the optical rotation data collected from both of the synthetic enantiomers. If our 

synthetic route especially the last hydrogenation step did not cause eperimerization of any 

asymmetric center, the optical rotation of the two enantiomers should be opposite to each other. 

The synthesis was completed following steps in described in Scheme 2.12 affording (-)-cis-

pyrrolidine 225 39. The spectroscopic data of 39 (NMR) was identical with that of 5. The optical 

rotation of 39 ([α]D
25 -19.6 (c 0.5, CH3OH)) was determined to be nearly opposite to that of 5 

([α]D
25 +21.9 (c 1.0, CH3OH)). This supported that both of the enantiomers of cis-pyrrolidine 

225H have been synthesized in our laboratory from the building block in a stereocontrolled 

manner.  

 

 

Scheme 2.11 Synthesis of (-)-Pyrrolidine 225H 

Reagents and conditions: a) 1. Oxalyl chloride, DMSO, Et3N, -78 ºC; b) (Ph3PCH2CH2CH3)Br,  
KH, THF, rt; c) 1. DIBAL-H, CH2Cl2, -78 ºC; 2. (Ph3PCH2CH2CH2CH2CH3)Br, KH, THF, rt; c) 
H2, Pd/C, MeOH, rt, overnight. 
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Formal Synthesis of (+)-Gephyrotoxin 

 

 

Scheme 2.12 Synthesis of Kishi’s Intermediate 

Reagents and conditions: a) 1. TBDPS-Cl, imidazole, DMF; b) DIBAL-H, toluene, -78 ºC; c) 1. 
(Ph3PCH2OCH3)Cl, t-BuOK, THF; 2. PTSA•H2O, acetone; d) 1. NaBH4, MeOH; e) 1. TsCl, 
pyridine, rt; 2. 1,3-Cyclohexanedione, t-BuOK, THF, 0 ºC; f) H2 (1 atm), Pd/C, MeOH, rt, 
overnight; g) TBAF, DMF. 
 

      As demonstrated in Scheme 2.13, Kishi’s intermediate has two asymmetric centers which 

can be directly introduced from our building block 3. With the cis-2,5-disubstituted pyrrolidine 3 

in hand, our attention was directed toward the construction of the remaining rings of tricyclic 

ketone 9.   To this end, a one-carbon homologation sequence was used to install the C5 atom of 

the tricyclic system 9.  The alcohol 3 was initially converted into silyl ether 40 using TBDPS-Cl 

in a 93% yield.16 The ester unit of 40 was then reduced using DIBAL-H to furnish the 

corresponding aldehyde 41 in an 83% yield. Wittig olefination of 41 using a preformed ylide 
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generated from Ph3PCH2OCH3Cl and t-BuOK gave the methyl enol ether. Subsequent hydrolysis 

of the enol moiety with PTSA·H2O in acetone furnished the desired aldehyde 42 in a 79% yield 

over the two-step sequence. Although we only observed one compound with the right NMR 

spectrum, there was the potential for epimerization at C5 of 41. We continued on with the 

intention of characterizing any diastereoisomers at a later stage in the synthesis.   

      Aldehyde 42 was reduced carefully with DIBAL-H. The product alcohol 43 was converted to 

its tosylate and then coupled with 1,3-cyclohexanedione .16 This one-step coupling method 

afforded the dione 44 in a 93 % yield.  Subsequent hydrogenation of the dione 44 catalyzed by 

10% Pd/C furnished the tricyclic amine as a mixture of diastereoisomers (9:1) in 75% yield via 

sequential Cbz removal, cyclization and enolamine elimination. Two isomers were observed as 

products with very similar NMR spectrum. 

      The rigid nature of the tricyclic ring system facilitated the structural characterization of the 

diastereoisomers. The two diastereoisomers were readily distinguished by 13C and 1H NMR but 

were not easily separated by column chromatography. Presumably the minor isomer resulted 

from epimerization of C5 during the ozonolysis, the DIBAL-H reduction or the Wittig 

olefination steps. Nevertheless, the minor diastereoisomer could be readily removed after the 

subsequent step. Removal of the silyl-protecting group with TBAF gave a separable mixture of 

diastereoisomers and furnished Kishi’s intermediate 9 in an 87% yield in its enantiopure form. 

The NMR spectra were consistent with previously reported data9-12 and the absolute 

configuration of 9 was unequivocally established by X-ray crystallography. 
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2.4 CONCLUSIONS 

 

      Our efficient and expeditious approach exploits the inherent stereochemistry of a (1R)-2-

tropinone derivative 2 prepared from (-)-cocaine 1 for the construction of the core cis-2,5-

disubstuted pyrrolidine ring system. Utilizing this intermediate as a building block, the 

enantioselective syntheses of both of the (+)-cis-pyrrolidine 225H in a 31% yield and (-)-cis-

pyrrolidine 225H in a 29% yield were achieved. An enantioselective synthesis of the tricyclic 

gephyrotoxin skeleton was also successfully conducted. The synthesis provided Kishi’s 

intermediate in an enantiopure form in a 19% overall yield and constitutes a formal synthesis of 

(+)-gephyrotoxin 287C.    

 

2.5 EXPERIMENTAL SECTION  

General Experimental Methods 

      All chemicals were purchased from Aldrich Chemical Company and used as received unless 

otherwise noted. Anhydrous dichloromethane was purchased from Mallinckrodt Baker, Inc. 

Confiscated grade (-)-cocaine hydrochloride was provided by NIDA Drug Supply System, 

Research Technology Branch, National Institute on Drug Abuse. Proton and carbon NMR were 

recorded on a Varian-400 MHz nuclear magnetic resonance spectrometer at ambient temperature 

in CDCl3 from Cambridge Isotope Laboratories, Inc. 1H NMR chemical shifts are reported as δ 

values (ppm) relative to tetramethylsilane. 13C NMR chemical shifts are reported as δ  values 

(ppm) relative to chloroform-d (77.0 ppm). Optical rotations were measured on Autopol III 

polarimeter at the sodium D line (2 mL sample cell). Melting points (mp) were measured with an 

Electrothermal R Mel-Temp apparatus and are uncorrected.  
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      (1R,2R,3S,5S)-8-Ethyl 2-methyl 3-(benzoyloxy)-8-azabicyclo[3.2.1]octane-2,8-

dicarboxylate (30) Confiscated (-)-cocaine hydrochloride salt (20 g) was dissolved in water (50 

mL). The aqueous solution was washed by ether to remove the trace of organic impurity. The 

saturated Na2CO3 in water was added till pH=10. The resultant slurry of white solid was treated 

with dichloromethane (100 mL). The aqueous portion was discarded. The organic solution was 

dried on anhydrous Na2SO4, filtered, and concentrated in vacuo giving the pure (-)-cocaine (18.1 

g, 100%) 

      Pure (-)-Cocaine (9.76 g, 32.1 mmol) and NaHCO3 (4.05 g, 48.3 mmol) were taken up in 100 

mL of anhydrous toluene. To the suspension was added ethyl chloroformate (17.45 g, 15.30 mL, 

160.8 mmol). The reaction mixture was heated to reflux at 120 °C. After 12 hours, another 

portion of ethyl chloroformate (10.47 g, 9.18 mL, 96.5 mmol) was added. The stirring and 

refluxing continued for additional 12 hours till the TLC indicated the complete conversion of the 

starting material. Toluene was removed under reduced pressure. The residue was portioned 

between EtOAc (100 mL) and water (100 mL). The aqueous layer was separated and the aqueous 

layer was extracted with EtOAc (2 x 100 mL). Combined organic portions were washed by 

saturated Na2CO3 in water (100 mL), brine (100 mL), dried on anhydrous MgSO4, filtered, and 

concentrated in vacuo. The residue was purified by a flash chromatography (SiO2, 

EtOAc/hexanes = 1:2) affording 30 (11.37 g, 31.46 mmol, 98%) as a slightly yellow oil.  Rf = 

0.34 (EtOAc/hexanes = 1:2). [α]D
25 -30.4 (c 1.0, CH3OH). 1H NMR (400 MHz, CDCl3) δ 7.98-
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7.90 (m, 2H), 7.59-7.51 (m, 1H), 7.42-7.37 (m, 2H), 5.50-5.41 (m, 1H), 4.76-4.41 (m, 2H), 4.20-

4.00 (m, 2H), 3.63 (s, 3H), 3.09 (brs, 1H), 2.61-2.56 (m, 1H), 2.18-1.72 (m, 5H), 1.30-1.19 (m, 

3H). 13C NMR (CDCl3)  δ170.4, 166.0, 153.9, 133.3, 129.7, 128.5, 66.7, 61.23, 61.12, 54.89, 

54.60, 52.55, 52.37, 51.95, 51.63, 49.38, 48.92, 33.67, 33.28, 28.91, 28.20, 27.94, 27.32, 14.75. 

Anal. Calcd. for C19H23NO6: C, 63.15; H, 6.41; N, 3.88. Found: C, 63.22; H, 6.49; N, 3.91.  

 

 

      (1R,5S)-8-Azabicyclo[3.2.1]oct-2-ene-2-carboxylic acid hydrochloride (31) 30 (10.14 g, 

28.5 mmol) was taken up in 100 mL of concentrated hydrochloric acid (12 N). The reaction was 

heated to reflux at 120 °C for 6 hours. After being cooled to room temperature, the aqueous 

solution was washed by ether (2 x 50 mL). Most of the water was removed under high vacuum at 

elevated temperature. Then the slurry was azeotropic distilled with toluene twice to remove the 

remaining water. The resultant solid was dried in a oven under vacuum (30 torr, 80 °C) for 12 

hours. The solid was ground into fine powder and heated again in the oven for 12 hours giving 

the desired product 31 (5.41 g, 28.5 mmol) as a white powder. Mp/Dec. 260-262⁰C. Anal. Calcd 

for C8H12ClNO2: C, 50.67; H, 6.38; N, 7.39. Found: C, 50.38; H, 6.39; N, 7.27. 
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      (1R,5S)-Benzyl 2-oxo-8-azabicyclo[3.2.1]octane-8-carboxylate (2) The finely powdered 31 

(3.216 g, 17.0 mmol) and sodium carbonate (4.50 g, 42.50 mmol) ware suspended in 100 mL of 

anhydrous dichloromethane followed by the addition of 4-dimethylaminopyridine (104 mg, 0.84 

mmol). The suspension was purged with N2, sealed, and stirred for 15 minutes before 

diphenylphosphoryl azide (5.71 g, 4.48 mL, 20.74 mmol) was added dropwise. The stirring was 

continued for 48 hours. Solvent was removed in vacuo. The mixture slurry was taken up in 40 

mL of water. At 0 °C, 120 mL of hydrochloric acid (1 N in water) was added slowly and 

carefully with the evolution of gas. The aqueous solution was then heated in a preheated oil bath 

(120 °C) for 40 minutes until the carbon dioxide and nitrogen gas evolution ceased. The aqueous 

hydrochloric acid solution was removed under reduced pressure. The residue was basified (pH 

9.5-10) by the addition of saturated Na2CO3. The aqueous solution was then extracted with 

CH2Cl2 (2 x 50 mL). The combined organic portions were washed by brine (50 mL), dried on 

anhydrous MgSO4, filtered, and concentrated in vacuo. The residue without further purification 

was dissolved in the mixture of 108 mL of MeOH and 12 mL of water. At 0 °C, sodium 

bicarbonate (4.6 g) was added followed by the addition of benzyl chloroformate (2.4 mL). The 

reaction mixture was stirred at room temperature for 5 hours. The solvent methanol was removed 

under reduced pressure. The aqueous solution was diluted with 50 mL of water and extracted 

with CH2Cl2 (2 x 50 mL). Combined organic fractions were washed by brine, dried on anhydrous 

MgSO4, filtered, and concentrated in vacuo. The residue was purified by a flash chromatography 

(SiO2, EtOAc/hexanes = 1:2) affording 2 (3.84 g, 14.79 mmol, 87%) as a clear oil. 1H NMR 
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(400 MHz, CDCl3) δ7.39-7.27 (m, 5H), 5.19-5.07 (m, 2H), 4.54-4.44 (m, 2H), 2.48-2.42 (m, 2H), 

2.38-2.32 (m, 2H), 2.25-2.18 (m, 2H), 1.86-1.77 (m, 2H). 13C NMR (CDCl3)  δ205.5, 154.0, 

136.5, 128.6, 128.2, 128.0, 67.2, 64.3, 53.0, 32.6, 30.6, 28.0, 27.2. Anal. Calcd for C15H17NO3: C, 

69.48; H, 6.61; N, 5.40. Found: C, 69.65; H, 6.65; N, 5.29.  

 

 

      (1R,5S)-benzyl 2-(tert-butyldimethylsilyloxy)-8-azabicyclo[3.2.1]oct-2-ene-8-carboxylate 

(32) Under nitrogen atmosphere, NaH (60 mg, 2.5 mmol) was suspended in anhydrous THF (4 

mL). At 0 °C, a solution of compound 2 (130 mg, 5 mmol) in dry THF (2 mL) was added 

dropwise and stirred for 2 hours. Then TBDMSCl (1.0 M in THF, 1 mL) was added dropwise 

and stirred overnight at room temperature. At 0 °C, the reaction was quenched by a slow addition 

of water (10 mL) and diluted with ethyl ether (20 mL). The organic fraction was separated and 

the aqueous was extracted with ethyl ether (2 x 20 mL). Combined organic portions were dried 

on MgSO4, filtered, and concentrated. The crude product was purified by a flash chromatography 

(SiO2, eluting with EtOAc/Hexanes = 5:95) to afford 32 (166 mg, 89% yield) as a colorless oil.      

[α]D
25 -43.5 (c 1.2, CH3OH). 1H NMR (400 MHz, CDCl3) δ 7.28-7.35 (m, 5H), 5.09-5.19 (m, 

2H), 4.11-4.49 (m, 2.5H), 2.61-2.79 (m, 0.5H), 1.94-2.18 (m, 3H), 1.74 (dd, J = 16.4, 4.6, 1H), 

1.58-1.67 (m, 2H), 0.90 (s, 9H), 0.14 (m, 6H). 13C NMR (75 MHz, CDCl3) δ 154.8., 154.4, 137.1, 

128.6, 128.1, 128.0, 97.3, 66.8, 57.7, 52.5, 34.4, 33.7, 32.4, 31.4, 30.2, 29.4, 25.8, 18.2, -4.5, -4.1, 

Anal. Calcd for C21H31NO3Si: C, 67.52; H, 8.36; N, 3.79. Found: C, 67.73; H, 8.58; N, 3.79. 
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      (2R,5S)-1-benzyl 2-methyl 5-(2-hydroxyethyl)pyrrolidine-1,2-dicarboxylate (3)  Silyl 

ether 32 (781 mg, 2.1 mmol, 1.0 equiv) was dissolved in the solution of CH2Cl2 (50 mL) + 

CH3OH (5 mL). At -78 °C, O3 was bubbled into the solution till a light blue color was observed 

and persisted. A stream of N2 was bubbled through for 10 minutes. At -78 °C, NaBH4 (250 mg) 

was added by one portion. After 30 minutes, another portion of NaBH4 (300 mg) was added and 

the reaction was warmed to room temperature. The solvent was removed under reduced pressure. 

The residue was triturated with 2N HCl (25 mL) to pH<1. The aqueous solution was extracted 

with CH2Cl2 (3 × 20 mL). Combined organic portions were dried on anhydrous MgSO4, filtered, 

and concentrated affording a slightly yellow oil.  

      CH2N2 gas was freshly prepared from p-toluenesulphonylmethylnitrosamide (Diazald) and 

bubbled through the solution of the previous oil in Et2O (20 mL) at 0°C. When a yellow color 

was observed in the solution, CH2N2 stream was removed and N2 was bubbled through the 

solution for 5 minutes. The reaction was warmed to room temperature and the solvent was 

removed in vacuo. The residue was purified by a flash chromatography (SiO2, eluting with 

hexanes/EtOAc = 4:6) affording ester 3 (430 mg, 67% yield, 3 steps) as a colorless oil. [α]D
25 

+52 (c 0.6, CH3OH). 1H NMR (400 MHz, CDCl3) δ 7.28-7.37 (m, 5H), 5.03-5.22 (m, 2H), 4.37 

(t, J = 8.3, 1H), 3.93 (dd, J = 9.8, 4.6, 1H), 3.64-3.82 (m, 3H), 3.60 (s, 3H), 2.30-2.37 (m, 1H), 

1.95-2.11 (m, 2H), 1.61-1.82 (m, 3H). 13C NMR (75 MHz, CDCl3) δ 173.6, 156.1, 136.4, 128.7, 

128.3, 127.9, 67.8, 59.9, 59.1, 55.8, 52.4, 37.8, 30.9, 29.2. Anal. Calcd for C16H21NO5: C, 62.53; 

H, 6.89; N, 4.56. Found: C, 62.28; H, 7.00; N, 4.49. 
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      (2R,5S)-1-benzyl 2-methyl 5-(2-oxoethyl)pyrrolidine-1,2-dicarboxylate (25) Under N2, 

oxalyl chloride (150 mg, 0.1 mL, 1.18 mmol) was taken up in 30 mL of CH2Cl2 and cooled to -

78 °C in a dry ice/acetone bath. Dimethyl sulfoxide (184 mg, 0.17 mL, 2.25 mmol) was added 

dropwise. The mixture was stirred at -78 °C for 10 minutes before a solution of the alcohol 3 

(300 mg, 1.07 mmol) in 2 mL CH2Cl2 was added slowly. The mixture again was stirred for 15 

minutes. Then triethyl amine (541 mg, 0.75 mL, 5.35 mmol) was added and the reaction was 

warmed to room temperature. Water (30 ml) was added. The organic layer was separated and the 

aqueous layer was extracted with CH2Cl2 (2 x 30 mL). Combined organic portions were washed 

by brine, dried on anhydrous MgSO4, filtered, and concentrated. The residue was purified by a 

silica gel column eluting with 1:1 EtOAc/hexanes affording the product (294 mg, 90%) as a clear 

oil. [α]D
25 +23.6 (c 1.0, CH3OH). 1H NMR (400 MHz, CDCl3) δ 9.81 (s, 0.6H), 9.71 (s, 0.4H), 

7.35-7.27 (m, 5H), 5.19-5.03 (m, 2H), 4.50-4.32 (m, 2H), 3.74 (s, 1.2H), 3.61 (s, 1.8H), 3.24 (dd, 

J = 20, 3.7, 0.6H), 3.05 (dd, J = 20, 3.7, 0.4H), 2.72-2.62 (m, 1H), 2.27-2.16 (m, 2H), 2.03-1.94 

(m, 1H), 1.75-1.66 (m, 1H). 13C NMR (CDCl3) δ 200.9, 200.7, 173.2, 173.0, 154.3, 153.9, 136.3, 

136.1, 128.5, 128.4, 128.2, 128.1, 128.0, 127.6, 67.3, 67.0, 59.9, 59.5, 54.0, 53.2, 52.3, 52.1, 48.9, 

48.2, 31.0, 30.2, 28.9, 28.0, 22.2. Anal. Calcd for C16H19NO5: C, 62.94; H, 6.27; N, 4.59. Found: 

C, 62.51; H, 6.53; N, 4.49. 
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      (2R,5S)-1-benzyl 2-methyl 5-((Z)-hex-2-enyl)pyrrolidine-1,2-dicarboxylate (33) 

Potassium hydride (40% in mineral oil) was washed by anhydrous hexanes and dried by a stream 

of argon. Potassium hydride (47.3 mg, 1.18 mmol) and Ph3P(CH2)3CH3Br (628 mg, 1.572 mmol) 

were suspended in 10 mL of anhydrous THF. The reaction was stirred under the atmosphere of 

N2 at room temperature for 30 minutes and then cooled to 0 °C in an ice water cold bath. At 0 °C, 

the solution of aldehyde 25 (120 mg, 0.393 mmol) in 1 mL of THF was added dropwise. Upon 

the completion of addition, the cold bath was removed and the reaction mixture was stirred at 

room temperature for one hour. The reaction was quenched by the addition of 1 mL of saturated 

ammonium chloride aqueous solution. The reaction was then partitioned between EtOAc (20 mL) 

and water (20 mL). The top organic layer was separated. The aqueous layer was extracted with 

EtOAc (2 x 20 mL). Combined organics were washed by brine, dried on anhydrous MgSO4, 

filtered, and concentrated under reduced pressure. The residue was purified by a silica gel 

column chromatography eluting with 1:4 EtOAc/hexanes affording the Z-alkene (85 mg, 85%) 

as the predominant major isomer. Rf = 0.44 (EtOAc:Hexanes = 1:4). [α]D
25 +15.6 (c 1.0, 

CH3OH). 1H NMR (400 MHz, CDCl3) δ 7.39-7.22 (m, 5H), 5.53-5.44 (m, 2H), 5.43-5.29 (m, 

2H), 4.41-4.30 (m, 1H), 4.00-3.83 (m, 1H), 3.77 (s, 1.4H), 3.61 (s, 1.6H), 2.84-2.62 (m, 1H), 

2.31-2.13 (m, 2H), 2.10-1.87 (m, 4H), 1.84-1.70 (m, 1H), 1.42-1.34 (m, 2H), 0.93 (t, J = 0.68, 

1.6H), 0.84 (t, J = 0.68, 1.4H). 13C NMR (CDCl3) δ 173.5, 173.3, 154.9, 154.1, 136.6, 136.5, 

132.4, 132.2, 128.4, 128.3, 128.0, 127.8, 127.6, 125.6, 125.3, 67.2, 66.8, 60.2, 59.8, 59.2, 58.6, 
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52.1, 52.0, 32.0, 31.2, 29.4, 29.3, 29.0, 28.7, 28.0, 22.7, 22.6, 13.7, 13.6. Anal. Calcd for 

C20H27NO4: C, 69.54; H, 7.88; N, 4.05. Found: C, 69.34; H, 8.01; N, 4.21. 

 

 

      (2R,5S)-benzyl 2-formyl-5-((Z)-hex-2-enyl)pyrrolidine-1-carboxylate (34) Methyl ester 

33 (100 mg, 0.289 mmol) was taken up in 15 mL of anhydrous CH2Cl2 and cooled to -78 °C in a 

dry ice/acetone bath. At -78°C, diisobutylaluminium hydride (DIBAL-H, 1 M in toluene, 0.376 

mL) was added dropwise in a period of 30 minutes. After the completion of addition, the reaction 

mixture was stirred at -78 °C for two hours till the starting material disappeared monitored by 

TLC. The reaction was quenched by the addition of 0.5 mL of MeOH and warmed up to room 

temperature. The mixture was poured into ice-cold hydrochloric acid solution in water (1 N). The 

aqueous layer was extracted with CH2Cl2 (2 x 20 mL). Combined organic portions were washed 

by brine, dried on anhydrous Na2SO4, filtered, and concentrated under reduced pressure. The 

residue was purified by a silica gel column chromatography eluting with 1:4 EtOAc/Hexanes 

affording the aldehyde (86 mg, 95%). [α]D
25 +4.6 (c 1.0, CH3OH). 1H NMR (400 MHz, CDCl3) δ 

9.83 (s, 0.5H), 9.74 (s, 0.5H), 7.39-7.22 (m, 5H), 5.53-5.44 (m, 2H), 5.43-5.29 (m, 2H), 4.45-

4.39 (m, 1H), 4.00-3.83 (m, 1H), 2.84-2.62 (m, 1H), 2.31-2.13 (m, 2H), 2.08-1.78 (m, 4H), 1.84-

1.70 (m, 1H), 1.42-1.34 (m, 2H), 0.93 (t, J = 0.68, 1.6H), 0.84 (t, J = 0.68, 1.4H). 13C NMR 

(CDCl3) δ 200.6, 156.0, 154.8, 136.4, 133.1, 128.9, , 128.0, 127.2, 67.9, 67.7, 66.3, 66.1, 59.9, 

58.7, 32.5, 31.9, 29.8, 28.3, 26.0, 24.8, 22.9. Anal. Calcd for C19H25NO3: C, 72.35; H, 7.99; N, 

4.44. Found: C, 72.09; H, 8.07; N, 4.19. 
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      (2S,5R)-benzyl 2-((Z)-hex-2-enyl)-5-((Z)-pent-1-enyl)pyrrolidine-1-carboxylate (35)  

Potassium hydride (40% in mineral oil) was washed by anhydrous hexanes and dried by a stream 

of argon. Potassium hydride (50 mg, 1.25 mmol) and Ph3P(CH2)3CH3Br (663 mg, 1.66 mmol) 

were suspended in 10 mL of anhydrous THF. The reaction was stirred under the atmosphere of 

N2 at room temperature for 30 minutes and then cooled to 0 °C in an ice/water cold bath. At 0 °C, 

the solution of aldehyde (131 mg, 0.415 mmol) in 1 mL of THF was added dropwise. Upon the 

completion of addition, the cold bath was removed and the reaction mixture was stirred at room 

temperature for one hour. The reaction was quenched by the addition of 1 mL of saturated 

ammonium chloride aqueous solution. The reaction was then partitioned between EtOAc (20 mL) 

and water (20 mL). The organic layer was separated. The aqueous layer was extracted with 

EtOAc (2 x 20 mL). Combined organic fractions were washed by brine, dried on anhydrous 

MgSO4, filtered, and concentrated under reduced pressure. The residue was purified by a silica 

gel column chromatography eluting with 1:11 EtOAc/hexanes affording the Z-alkene (116 mg, 

0.328 mmol, 85%) as the predominant major isomer. [α]D
25 -117.7 (c 1.5, CH3OH). 1H NMR 

(400 MHz, CDCl3) δ 7.40-7.23 (m, 5H), 5.55-5.30 (m, 4H), 5.12 (s, 2H), 4.61-4.57 (m, 1H),  

3.95-3.85 (m, 1H), 2.62-2.51 (m, 2H), 2.20-1.80 (m, 6H), 1.80-1.60 (m, 4H), 1.51-1.18 (m, 4H), 

1.00-0.85 (m, 4H) 13C NMR (CDCl3) δ 155.5, 137.1, 133.2, 130.5, 130.1, 128.4, 128.1, 128.0, 

125.9, 67.7, 59.0, 56.2, 32.9, 31.7, 30.0, 22.8, 14.3. Anal. Calcd for C23H33NO2: C, 77.70; H, 

9.36; N, 3.94. Found: C, 77.66; H, 9.49; N, 4.08. 
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      (+)-cis-Pyrrolidine 225H (5) Diene 35 (45 mg, 0.126 mmol) was taken up in 10 mL of 

MeOH and 10 mg of 10% Palladium on activated carbon was added. The reaction vessel was 

vacuumed and backfilled with hydrogen. This procedure was repeated three times and a balloon 

filled with H2 was connected to the reaction vessel. The solution was stirred overnight. The 

reaction solution was filtered through a thin pad of celite and washed with 20 mL of EtOAc and 

concentrated in vacuo. The residue was purified by a flash chromatography (SiO2, 

MeOH/CH2Cl2 = 1:10) affording (+)-cis-pyrrolidine 225H (31.8 mg, 0.124 mmol, 99%) as a 

slightly yellow oil. [α]D
25 +21.9 (c 1.0, CH3OH). 1H NMR (400 MHz, CDCl3) δ 2.98-2.88 (m, 

2H), 1.87-1.79 (m, 2H) 1.54-1.21 (m, 22H), 0.92-0.84 (m, 5H). 13C NMR (CDCl3) δ 59.6, 36.98, 

36.94, 32.27, 32.04, 31.54, 29.72, 27.69, 27.42, 22.83, 22.82, 14.29, 14.25. Anal. Calcd for 

C15H31N: C, 79.92; H, 13.86; N, 6.21. Found: C, 79.68; H, 13.97; N, 6.18. 

 

 

      (2R,5S)-1-Benzyl 2-methyl 5-((Z)-pent-2-enyl)pyrrolidine-1,2-dicarboxylate (36) 

Potassium hydride (40% in mineral oil) was washed by anhydrous hexanes and dried by a stream 

of argon. Potassium hydride (60.1 mg, 1.50 mmol) and Ph3P(CH2)2CH3Br (770 mg, 2.0 mmol) 

were suspended in 10 mL of anhydrous THF. The reaction was stirred under the atmosphere of 
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N2 at room temperature for 30 minutes and then cooled to 0 °C in an ice water cold bath. At 0 °C, 

the solution of aldehyde (152.7 mg, 0.50 mmol) in 1 mL of THF was added dropwise. Upon the 

completion of addition, the cold bath was removed and the reaction mixture was stirred at room 

temperature for one hour. The reaction was quenched by the addition of 1 mL of saturated 

ammonium chloride aqueous solution. The reaction was then partitioned between EtOAc (20 mL) 

and water (20 mL). The top organic layer was separated. The aqueous layer was extracted with 

EtOAc(2 x 20 mL). Combined organics were washed by brine, dried on anhydrous MgSO4, 

filtered, and concentrated under reduced pressure. The residue was purified by a silica gel 

column chromatography eluting with 1:4 EtOAc/hexanes affording the Z-alkene (146 mg, 0.44 

mmol, 87%) as the predominant major isomer. Rf = 0.4 (EtOAc:Hexanes = 1:4). [α]D
25 +13.0 (c 

1.0, CH3OH). 1H NMR (400 MHz, CDCl3) δ 7.39-7.22 (m, 5H), 5.55-5.44 (m, 2H), 5.33-5.27 (m, 

2H), 4.41-4.30 (m, 1H), 4.00-3.83 (m, 1H), 3.77 (s, 1.4H), 3.61 (s, 1.6H), 2.84-2.62 (m, 1H), 

2.31-2.13 (m, 2H), 2.13-1.87 (m, 4H), 1.78-1.70 (m, 1H), 2.32-2.14 (m, 2H), 1.23 (t, J = 0.62, 

1.6H), 1.19 (t, J = 0.62, 1.4H). 13C NMR (CDCl3) δ 173.5, 173.3, 154.9, 154.1, 136.6, 136.5, 

132.4, 132.2, 128.4, 128.3, 128.0, 127.8, 127.6, 125.6, 125.3, 67.2, 66.8, 60.2, 59.8, 59.2, 58.6, 

52.1, 52.0, 32.0, 31.2, 29.4, 28.7, 28.0, 20.7, 20.6, 13.9, 13.7. Anal. Calcd for C19H25NO4: C, 

68.86; H, 7.60; N, 4.23. Found: C, 69.04; H, 7.44; N, 4.21. 

 

 

      (2R,5S)-Benzyl 2-formyl-5-((Z)-pent-2-enyl)pyrrolidine-1-carboxylate (37) Ester 36 (76 

mg, 0.23 mmol) was taken up in 15 mL of anhydrous CH2Cl2 and cooled to -78°C in a dry 

ice/acetone bath. At -78 °C, diisobutylaluminium hydride (DIBAL-H, 1 M in toluene, 0.276 mL) 
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was added dropwise in 30 minutes. After the completion of addition, the reaction mixture was 

stirred at -78 °C for two hours till the starting material disappeared monitored by TLC. The 

reaction was quenched by the addition of 0.5 mL of MeOH and warmed up to room temperature. 

The mixture was poured into ice-cold hydrochloric acid solution in water (1 N). The aqueous 

layer was extracted with CH2Cl2 (2 x 20 mL). Combined organic portions were washed by brine, 

dried on anhydrous Na2SO4, filtered, and concentrated under reduced pressure. The residue was 

purified by a silica gel column chromatography eluting with 1:4 EtOAc/Hexanes affording the 

aldehyde (62.3 mg, 0.207 mmol, 90%). [α]D
25 +9.8 (c 1.0, CH3OH). 1H NMR (400 MHz, CDCl3) 

1H NMR (400 MHz, CDCl3) δ 7.39-7.22 (m, 5H), 5.55-5.44 (m, 2H), 5.33-5.27 (m, 2H), 4.41-

4.30 (m, 1H), 4.00-3.83 (m, 1H), 2.84-2.62 (m, 1H), 2.31-2.13 (m, 2H), 2.13-1.87 (m, 4H), 1.78-

1.70 (m, 1H), 2.32-2.14 (m, 2H), 1.23 (t, J = 0.62, 1.6H), 1.19 (t, J = 0.62, 1.4H). 13C NMR 

(CDCl3) δ 200.6, 156.0, 154.8, 136.4, 133.1, 128.9, , 128.0, 127.2, 67.9, 67.7, 66.3, 66.1, 32.5, 

31.9, 29.8, 28.3, 26.0, 24.8, 22.9. Anal. Calcd for C18H23NO3: C, 71.73; H, 7.69; N, 4.65. Found: 

C, 71.36; H, 7.83; N, 4.69. 

 

Potassium hydride (40% in mineral oil) was washed by anhydrous hexanes and dried by a stream 

of argon. Potassium hydride (28.8 mg, 0.72 mmol) and Ph3P(CH2)4CH3Br (409 mg, 0.96 mmol) 

were suspended in 10 mL of anhydrous THF. The reaction was stirred under the atmosphere of 

N2 at room temperature for 30 minutes and then cooled to 0°C in an ice water cold bath. At 0°C, 

the solution of aldehyde (72.2 mg, 0.24 mmol) in 1 mL of THF was added dropwise. Upon the 
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completion of addition, the cold bath was removed and the reaction mixture was stirred at room 

temperature for one hour. The reaction was quenched by the addition of 1 mL of saturated 

ammonium chloride aqueous solution. The reaction was then partitioned between EtOAc (20 mL) 

and water (20 mL). The top organic layer was separated. The aqueous layer was extracted with 

EtOAc(2 x 20 mL). Combined organics were washed by brine, dried on anhydrous MgSO4, 

filtered, and concentrated under reduced pressure. The residue was purified by a silica gel 

column chromatography eluting with 1:4 EtOAc/hexanes affording the Z-alkene (74.7 mg, 0.21 

mmol, 86%) as the predominant major isomer. Rf = 0.4 (EtOAc:Hexanes = 1:4). [α]D
25 +42.6 (c 

1.0, CH3OH). 1H NMR (400 MHz, CDCl3) δ 7.40-7.23 (m, 5H), 5.65-5.40 (m, 4H), 5.17 (s, 1H), 

5.12 (s, 1H), 4.61-4.57 (m, 1H),  3.79-3.85 (m, 1H), 2.62-2.51 (m, 2H), 2.20-1.80 (m, 4H), 1.77-

1.62 (m, 4H), 1.51-1.11 (m, 4H), 1.11-0.83 (m, 6H) 13C NMR (CDCl3) δ 155.5, 137.1, 133.2, 

130.5, 130.1, 128.4, 128.1, 128.0, 125.9, 67.7, 59.0, 56.2, 32.9, 31.7, 30.0, 22.8, 14.3. Anal. 

Calcd for C23H33NO2: C, 77.70; H, 9.36; N, 3.94. Found: C, 77.66; H, 9.49; N, 4.08. 

 

 

      (-)-cis-Pyrrolidine 225H (39) Diene 38 (56.8 mg, 0.08 mmol) was taken up in 10 mL of 

MeOH and 10 mg of 10% Palladium on activated carbon was added. The reaction vessel was 

vacuumed and backfilled with hydrogen. This procedure was repeated three times and a balloon 

filled with H2 was connected to the reaction vessel. The solution was stirred overnight. The 

reaction solution was filtered through a thin pad of celite and washed with 20 mL of EtOAc and 
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concentrated in vacuo. The residue was purified by a flash chromatography (SiO2, 

MeOH/CH2Cl2 = 1:10) affording (17 mg, 0.076 mmol, 95%) as a slightly yellow oil. [α]D
25 -19.6 

(c 0.5, CH3OH). 1H NMR (400 MHz, CDCl3) δ 2.96-2.88 (m, 2H), 1.80-1.70 (m, 2H) 1.59-1.21 

(m, 22H), 0.95-0.85 (m, 5H). 13C NMR (CDCl3) δ 58.9, 36.98, 36.94, 32.27, 32.04, 31.54, 29.72, 

27.69, 27.42, 22.83, 22.82, 14.29, 14.25. Anal. Calcd for C15H31N: C, 79.92; H, 13.86; N, 6.21. 

Found: C, 79.84; H, 14.20; N, 6.05. 

 

 

      (2R,5S)-1-Benzyl 2-methyl 5-(2-(tert-butyldiphenylsilyloxy)ethyl)pyrrolidine-1,2-

dicarboxylate (40) Under the atmosphere of nitrogen, alcohol 3 (374 mg, 1.22 mmol) and 

imidazole (166 mg, 2.44 mmol) were taken up in dry DMF (15 mL). At 0 °C, TBDPS-Cl (402 

mg, 1.46 mmol) was added dropwise. The reaction was warmed to room temperature and stirred 

overnight. At 0 °C, the reaction was quenched by water (15 mL) and extracted with Et2O (2 × 30 

mL). The combined organic portions were dried on MgSO4, filtered and concentrated in vacuo. 

The residue was purified by a flash column chromatography (SiO2, eluting with EtOAc/Hexane 

= 15:85) affording silyl ether 40 (617 mg, 93% yield) as a colorless oil. [α]D
25 +22.1 (c 0.73, 

CH3OH). 1H NMR (400 MHz, CDCl3) δ 7.63 (t, J = 6.4, 4H), 7.26-7.44 (m, 11H), 5.01-5.20 (m, 

2H), 4.31-4.41 (m, 1H), 4.09-4.16 (m, 1H), 3.65-3.79 (m, 4H), 3.58 (s, 1H), 2.15-2.40 (m, 2H), 

1.61-2.02 (m, 4H), 1.03 (d, J = 11.0, 9H). 13C NMR (101 MHz, CDCl3) δ 173.6, 155.1, 136.9, 

135.8, 134.0, 129.8, 128.7, 128.6, 128.1, 127.9, 67.3, 67.0, 62.1, 61.7, 60.2, 59.9, 57.7, 56.5, 52.4, 
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52.2, 37.2, 36.5, 30.2, 29.9, 29.4, 28.4, 27.0, 19.4. Anal. Calcd for C32H39NO5Si: C, 70.43; H, 

7.20; N, 2.57. Found: C, 70.64; H, 7.23; N, 2.56. 

 

 

      (2S,5R)-benzyl 2-(2-(tert-butyldiphenylsilyloxy)ethyl)-5-formylpyrrolidine-1-

carboxylate (41). Under nitrogen, ester 40 (547 mg, 1 mmol) was dissolved in toluene (6 mL). 

At -78 °C, DIBAL-H (1.0 M in toluene, 1.5 mL) was added dropwise over a period of 45 

minutes. The reaction was stirred at -78 °C for 30 minutes and warmed to -40 °C. The reaction 

mixture was diluted with Et2O (10 mL) and reaction was quenched by the addion of 1 N NH4Cl 

(1 mL). Anhydrous MgSO4 was added till the solution became clear. The solution was filtered 

through a thin pad of celite and concentrated in vacuo. The residue was purified by a flash 

column chromatography (SiO2, eluting with EtOAc/hexanes = 1:4) affording aldehyde 41 (431 

mg, 83%) as a colorless oil. [α]D
25 +17.3 (c 0.95, CH3OH). 1H NMR (400 MHz, CDCl3) δ 9.48 (s, 

0.5H), 9.35 (s, 0.5H), 7.67 (s, 4H), 7.26-7.46 (m, 11H), 4.13-4.27 (m, 2H), 4.13-4.27 (m, 2H), 

3.59-3.80 (m, 2H), 1.43-2.45 (m, 6H), 1.06 (d, J = 6.7, 9H). 13C NMR (CDCl3) δ 200.5, 155.9, 

154.7, 136.5, 135.8, 133.9, 129.9, 128.8, 128.3, 128.1, 127.9, 67.6, 67.4, 66.3, 65.9, 61.8, 61.6, 

57.7, 56.5, 37.8, 37.3, 30.1, 29.8, 27.1, 26.0, 24.9, 19.4. Anal. Calcd for C31H37NO4Si: C, 72.20; 

H, 7.23; N, 2.72. Found: C, 71.88; H, 7.37; N, 2.61. 
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      (2S,5R)-benzyl 2-(2-(tert-butyldiphenylsilyloxy)ethyl)-5-(2-oxoethyl)pyrrolidine-1-

carboxylate (42) Under N2, (Ph3PCH2OCH3)Cl (2.50 g, 7.28 mmol) was suspended in dry THF 

(50 mL) in a round-bottomed flask. At 0 ⁰C,  t-BuOK (1.0 M in THF, 6.84 mmol) was added 

dropwise. The solution was stirred at room temperature for 15 minutes and was added dropwise 

to the solution of aldehyde 41 (1.412 g, 2.74 mmol) in dry THF (10 mL) till an orange color 

persisted. Then reaction mixture was stirred at room temperature for additional 15 minutes 

before it was diluted by EtOAc (30 mL) and quenched by the addition of 1 N NH4Cl (20 mL). 

The organic fraction was separated and the aqueous was extracted with EtOAc (2 x 20 mL). 

Combined organic fractions were washed by saturated NaCl, dried on anhydrous MgSO4, filtered, 

and concentrated in vacuo affording the methyl enol ether which was used in next step without 

further purification. 

      To the solution of methyl enol ether prepared above in acetone (50 mL), PTSA·H2O (260 mg, 

1.37 mmol) was added one portion at 0 ⁰C. The reaction was stirred at room temperature for 30 

minutes and solvent was removed in vacuo. The residue was taken up in water (20 mL) + CH2Cl2  

(20 mL). The organic fraction was separated and the aqueous was extracted with CH2Cl2 (2 x 20 

mL). Combined organic portions were dried on MgSO4, filtered, and concentrated under reduced 

pressure. The crude product was purified by a flash column chromatography (SiO2, eluting with 

EtOAc/hexanes = 1:4) affording aldehyde 42 (1.145 g, 79%, 2 steps) as a colorless oil. [α]D
25 

+2.44 (c 1.31, CH3OH). 1H NMR (400 MHz, CDCl3) δ 9.71 (d, J = 52.8, 1H), 9.71 (d, J = 52.8, 

1H), 7.63 (s, 4H), 7.25-7.44 (m, 11H), 5.10 (d, J = 6.2, 2H), 4.22-4.36 (m, 1H), 4.04 (s, 1H), 



112 
 

3.69 (s, 2H), 2.78-3.11 (m, 1H), 2.36-2.45 (m, 1H),  1.39-2.27 (m, 6H), 1.03 (s, 9H). 13C NMR 

(75 MHz, CDCl3) δ 200.9, 136.8, 135.8, 133.9, 129.9, 128.7, 128.1, 127.9,  127.2, 67.1, 67.0, 

61.8, 56.4, 55.8, 54.2, 52.9, 50.3, 48.1, 38.4, 36.5, 30.4, 29.7, 28.5, 27.7, 27.1, 19.4. Anal. Calcd 

for C32H39NO4Si: C, 72.55; H, 7.42; N, 2.64. Found: C, 72.55; H, 7.39; N, 2.57. 

 

 

      (2S,5R)-benzyl 2-(2-(tert-butyldiphenylsilyloxy)ethyl)-5-(2-hydroxyethyl)pyrrolidine-1-

carboxylate (43) Aldehyde 42 (530 mg, 1 mmol)  was dissolved in 15 mL MeOH. At 0 °C, 

NaBH4 (80 mg, 2 mmol) was added by three portions and stirred for 30 minutes. The reaction 

was warmed to room temperature and stirred for 15 minutes. The solvent was removed under 

reduced pressure. The residue was portioned between sat. NaCl (20 mL) and DCM (30 mL). The 

organic fraction was separated and the aqueous was extracted with DCM (30 mL). Combined 

organic portions were dried on anhydrous MgSO4, filtered, and concentrated in vacuo. The 

residue was purified by a flash chromatography. 

 

 

      (2S,5S)-benzyl 2-(2-(tert-butyldiphenylsilyloxy)ethyl)-5-(2-(2,6-

dioxocyclohexyl)ethyl)pyrrolidine-1-carboxylate (44) Aldehyde 43 (462 mg, 0.872 mmol, 1.0 
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equiv) was dissolved in CH2Cl2 (1.75 mL). Diethyl 2,6-dimethyl-1,4-dihydropyridine-3,5-

dicarboxylate (221 mg, 0.872 mmol, 1.0 equiv) and cyclohexane-1,3-dione (98 mg, 0.872 mmol, 

1.0 equiv) were added subsequently. Then L-proline (20 mg, 0.175 mmol, 0.2 equiv) was added 

to the mixture. The stirring was continued for 1 hour. The resulting mixture was directly 

subjected to purify by a flush column chromatography (SiO2, 50:50 hexanes/EtOAc) to afford 

509 mg (93% yield) of 44 as a colorless oil. [α]D
25 +42.1 (c 0.4, CH3OH). 1H NMR (400 MHz, 

CDCl3) δ 7.60-7.64 (m, 4H), 7.26-7.45 (m, 11H), 5.15 (d, J = 2.0, 2H), 4.00-4.09 (m, 1H), 3.60-

3.81 (m, 3H), 2.15-2.54 (m, 6H), 1.35-1.97 (m, 11H), 0.98 (s, 9H). 13C NMR (75 MHz, CDCl3) δ 

199.4, 135.7, 133.8, 129.9, 128.7, 128.3, 128.2, 127.9, 114.7, 67.8, 61.7, 58.7, 56.9, 39.2, 37.2, 

37.0, 31.7, 30.0, 29.7, 27.0, 21.1, 19.4, 19.2, 14.4. Anal. Calcd for C38H47NO5Si·H2O: C, 70.88; 

H, 7.67; N, 2.18. Found: C, 70.98; H, 7.46; N, 2.18. 

 

 

      (1S,3aS)-1-(2-(tert-butyldiphenylsilyloxy)ethyl)-1,2,3,3a,4,5,8,9-octahydropyrrolo[1,2-

a]quinolin-6(7H)-one (45) Compound 44 (473 mg, 0.756 mmol, 1.0 equiv) was dissolved in 

methanol (100 mL). 10% Pd/C (245 mg) was added to the solution. The mixture was subjected to 

hydrogenation with hydrogen balloon at room temperature for 24 hours. The resulting mixture 

was filtered through celite 545 (5 g) and rinsed with methanol (2 × 50 mL). All the combined 

filtrates were concentrated under vacuum. The residue was purified by preparative TLC (SiO2, 

95:5 EtOAc/CH3OH) to afford 270 mg (75% yield) of 45 as a yellow oil. [α]D
25 +317 (c 0.31, 
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CH3OH). 1H NMR (400 MHz, CDCl3) δ 7.65 (dt, J = 8.0, 1.6, 4H), 7.37-7.47 (m, 6H), 4.03 (t, J 

= 8.6, 1H), 3.58-3.78 (m, 2H), 3.20-3.28 (m, 1H), 2.60-2.75 (m, 2H), 2.26-2.43 (m, 3H), 1.38-

2.20 (m, 10H), 1.13-1.28 (m, 1H), 1.06 (d, J = 7.7, 9H). 13C NMR (75 MHz, CDCl3) δ 193.9, 

158.9, 135.8, 135.7, 133.6, 130.1, 128.0, 107.3, 61.4, 61.0, 59.4, 57.3, 56.4, 55.7, 38.9, 38.5, 36.6, 

36.3, 30.7, 29.8, 29.1, 28.6, 27.8, 27.6, 27.4, 27.1, 22.1, 21.6, 20.3, 19.4. Anal. Calcd for 

C30H39NO2Si·0.5H2O: C, 74.64; H, 8.35; N, 2.90. Found: C, 74.51; H, 8.28; N, 2.95. 

 

 

      (1S,3aS)-1-(2-hydroxyethyl)-1,2,3,3a,4,5,8,9-octahydropyrrolo[1,2-a]quinolin-6(7H)-one 

(9) Silyl ether 45 (174 mg, 0.367 mmol) was dissolved in THF (5 mL). At 0 ⁰C, 

Tetrabutylammoniumfluoride (1.0 M in THF, 0.55 mL) was added dropwise to the solution. The 

reaction was stirred at room temperature for 3 hours and quenched by the addition of satuarted 

Na2CO3 solution (0.5 mL). The reaction mixture was partitioned in EtOAc (20 mL) + brine (20 

mL). The organic fraction was separated and the aqueous was extracted with EtOAc (2 x 20 mL). 

Combined organic fractions were dried on anhydrous MgSO4, filtered, and concentrated in vacuo. 

The residue was purified by preparative TLC (SiO2, eluting with CH3OH/CH2Cl2 = 8:92) 

affording Kishi’s Intermediate 9 (75 mg, 87% yield) as a white solid, mp 178-180 °C 

(recrystallization from EtOAc/cyclohexane, 1:1) {lit.10: mp 176-179 °C }. [α]D
25 +798 (c 0.29, 

EtOH) {lit.10: [α]D
25 +538 (c 1.40, EtOH)}. 1H NMR (400 MHz, CDCl3) δ 4.03 (t, J = 8.0, 1H), 

3.61-3.78 (m, 2H), 3.23-3.31 (m, 1H), 2.61- 2.68 (m, 2H), 2.40-2.48 (m, 1H), 2.32 (t, J = 6.5, 
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2H), 1.49-2.20 (m, 11H), 1.18-1.29 (m, 1H).  13C NMR (75 MHz, CDCl3) δ 193.7, 158.9, 107.1, 

60.0, 59.3, 55.6, 38.5, 36.3, 29.6, 29.0, 28.4, 27.3, 21.9, 21.4.  
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APPENDIX 

 
 
Crystal Structure of 
(1S,3aS)-1-(2-hydroxyethyl)-1,2,3,3a,4,5,8,9-octahydropyrrolo[1,2-a]quinolin-6(7H)-one (6)- 
Kishi’s intermediate 
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Table 1.  Crystal data and structure refinement for Kishi’s intermediate (6) 
 
Empirical formula  C14H21NO2 
Formula weight  235.32 
Temperature  120(2) K 
Wavelength  0.71073 Å 
Crystal system  Orthorhombic 
Space group  P2(1)2(1)2(1) 
Unit cell dimensions a = 8.83600(10) Å aα= 90o. 
 b = 10.49690(10) Å bβ= 90o. 
 c = 13.3180(2) Å gγ= 90o. 
Volume 1235.25(3) Å3 
Z 4 
Density (calculated) 1.265 Mg/m3 
Absorption coefficient 0.084 mm-1 
F(000) 512 
Crystal size 0.80 x 0.40 x 0.20 mm3 
Theta range for data collection 2.47 to 32.49o. 
Index ranges -13<=h<=13, -15<=k<=15, -20<=l<=20 
Reflections collected 52997 
Independent reflections 4454 [R(int) = 0.0208] 
Completeness to theta = 32.49o 100.0 %  
Absorption correction None 
Max. and min. transmission 0.9834 and 0.9360 
Refinement method Full-matrix least-squares on F2 
Data / restraints / parameters 4454 / 0 / 238 
Goodness-of-fit on F2 1.080 
Final R indices [I>2sigma(I)] R1 = 0.0285, wR2 = 0.0805 
R indices (all data) R1 = 0.0291, wR2 = 0.0814 
Absolute structure parameter -0.4(6) 
Largest diff. peak and hole 0.371 and -0.182 e. Å-3 
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Table 2. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2 x 103) 
for Kishi’s intermediate (6). U(eq) is defined as one third of the trace of the orthogonalized Uij 
tensor. 
 
______________________________________________________________________ 
 x y z U(eq) 
______________________________________________________________________ 
N(1) 4153(1) 1342(1) 10115(1) 17(1) 
C(2) 3935(1) 2114(1) 9329(1) 15(1) 
C(3) 4005(1) 1532(1) 8296(1) 18(1) 
C(4) 3347(1) 2399(1) 7496(1) 22(1) 
C(5) 3991(1) 3732(1) 7589(1) 23(1) 
C(6) 3814(1) 4264(1) 8634(1) 19(1) 
O(7) 3770(1) 5442(1) 8756(1) 30(1) 
C(8) 3741(1) 3415(1) 9468(1) 17(1) 
C(9) 3499(1) 3977(1) 10499(1) 21(1) 
C(10) 3235(1) 2945(1) 11285(1) 23(1) 
C(11) 4368(1) 1876(1) 11127(1) 20(1) 
C(12) 4237(1) 717(1) 11810(1) 28(1) 
C(13) 4756(1) -383(1) 11141(1) 25(1) 
C(14) 4075(1) -59(1) 10114(1) 18(1) 
C(15) 2438(1) -520(1) 10005(1) 20(1) 
C(16) 2333(1) -1923(1) 9743(1) 25(1) 
O(17) 2895(1) -2090(1) 8753(1) 30(1) 
______________________________________________________________________ 
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Table 3. Bond lengths [Å] and angles [o] for Kishi’s intermediate (6). 
_____________________________________________________  
N(1)-C(2)  1.3386(8) 
N(1)-C(11)  1.4716(8) 
N(1)-C(14)  1.4719(8) 
C(2)-C(8)  1.3881(8) 
C(2)-C(3)  1.5069(8) 
C(3)-C(4)  1.5174(10) 
C(4)-C(5)  1.5161(11) 
C(5)-C(6)  1.5079(10) 
C(6)-O(7)  1.2480(8) 
C(6)-C(8)  1.4257(9) 
C(8)-C(9)  1.5093(9) 
C(9)-C(10)  1.5238(11) 
C(10)-C(11)  1.5185(10) 
C(11)-C(12)  1.5236(11) 
C(12)-C(13)  1.5287(12) 
C(13)-C(14)  1.5328(10) 
C(14)-C(15)  1.5323(9) 
C(15)-C(16)  1.5154(10) 
C(16)-O(17)  1.4202(10) 
 
C(2)-N(1)-C(11)        120.27(5) 
C(2)-N(1)-C(14) 126.66(6) 
C(11)-N(1)-C(14) 112.84(5) 
N(1)-C(2)-C(8) 120.59(6) 
N(1)-C(2)-C(3) 117.54(5) 
C(8)-C(2)-C(3) 121.75(5) 
C(2)-C(3)-C(4) 112.46(5) 
C(5)-C(4)-C(3) 110.61(6) 
C(6)-C(5)-C(4) 112.26(6) 
O(7)-C(6)-C(8) 121.18(7) 
O(7)-C(6)-C(5) 119.32(7) 
C(8)-C(6)-C(5) 119.48(6) 
C(2)-C(8)-C(6) 120.35(6) 
C(2)-C(8)-C(9) 121.56(6) 
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Table 3 (Continued). Bond lengths [Å] and angles [o] for Kishi’s intermediate (6). 
 
C(6)-C(8)-C(9) 118.06(6) 
C(8)-C(9)-C(10) 111.63(6) 
C(11)-C(10)-C(9) 109.21(6) 
N(1)-C(11)-C(10) 108.87(6) 
N(1)-C(11)-C(12) 103.45(6) 
C(10)-C(11)-C(12) 117.22(6) 
C(11)-C(12)-C(13) 103.40(6) 
C(12)-C(13)-C(14) 103.61(6) 
N(1)-C(14)-C(15) 111.12(5) 
N(1)-C(14)-C(13) 101.62(6) 
C(15)-C(14)-C(13) 112.63(6) 
C(16)-C(15)-C(14) 112.74(6) 
O(17)-C(16)-C(15) 108.17(6) 
_____________________________________________________________  
Symmetry transformations used to generate equivalent atoms:  
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