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Abstract 
Using a generalized-clique hidden Markov model (HMM) as the starting point for a 

eukaryotic gene finder, the objective here is to strengthen the signal information at the transitions 
between coding and non-coding (c/nc) regions. This is done by enlarging the primitive hidden 
states associated with individual base labeling (as exon, intron, or junk) to substrings of primitive 
hidden states or footprint states.  Moreover, the allowed footprint transitions are restricted to 
those that include either one c/nc transition or none at all. (This effectively imposes a minimum 
length on exons and the other regions.) These footprint states allow the c/nc transitions to be seen 
sooner and have their contributions to the gene-structure identification weighted more heavily – 
yet contributing as such with a natural weighting determined by the HMM model itself according 
to the training data – rather than via introducing an artificial gain-parameter tuning on major 
transitions. The selection of the generalized HMM model is interpolated to highest Markov order 
on emission probabilities, and to highest Markov order (subsequence length) on the footprint 
states. The former is accomplished via simple count cutoff rules, the latter via an identification of 
anomalous base statistics near the major transitions using Shannon entropy. Preliminary 
indications, from applications to the C. elegans genome, are that the sensitivity/specificity 
(SN/SP) result for both the individual state and full exon predictions are greatly enhanced using 
the generalized-clique HMM when compared to the standard HMM. Here the standard HMM is 
represented by the choice of the smallest size of footprint state in the generalized-clique HMM.  
Even with these improvements, we observe that both extremely long and short exon and intron 
segments would go undetected without an explicit model of the duration of state. 

The key contributions of this effort are the full derivation and experimental confirmation 
of a rudimentary, yet powerful and competitive gene finding method based on a higher order 
hidden Markov model.  With suitable extensions, this method is expected to provide superior 
gene finding capability – not only in the context of pre-conditioned data sets as in the evaluations 
cited but also in the wider context of less preconditioned and/or raw genomic data.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Keywords: hidden Markov model, HMM, GHMM, gene finding, gene prediction 
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1 Introduction 

1.1 Background 
This work is largely a study in the extension of the traditional, 1st order hidden Markov 

model (HMM) to be used in the analysis of genomic signals, but some mention is also made of 
significant supporting roles played by Support Vector Machines (SVM‟s).  The complementary 
capabilities of HMM feature extraction and SVM classification can be combined to produce 
highly effective approaches to signal processing in both genomic and cheminformatic settings as 
well. 

The use of 1st order HMM in genomic signal processing is expected to have limited 
results in light of observed fluctuations of not only 1st order relative entropy but also that for 
higher orders over extended regions surrounding coding/non-coding (c/nc) boundaries in DNA 
sequence data.  In general, attempts to employ higher order HMM‟s (HOHMM) can result in an 
exponential explosion of states and hence run-time complexity, where each HOHMM state is a 
fixed-length, but otherwise less restricted (though not entirely arbitrary) concatenation of 
primitive exon (e), intron (i), and junk (j) states. 

This thesis presents an HOHMM using a minimum-length assumption, where coding and 
non-coding segments are assumed to be bounded in length from below, with the reasonable 
penalty of an additional, post-processing step in order to handle the shorter segments excluded 
from the ensuing prediction as a result.  The advantage of this minimum-length assumption is a 
scalable HOHMM with linear complexity in the length of the extended states or footprint states. 
1.2 Related Work 

Computational gene finding dates back to the mid 1980‟s if not further [1].   New gene 
finding programs arose up until about the year 2000.  Afterward came a period of publication of 
summaries of gene finding programs until 2003.  Since that time up until the present, the 
available literature is generally in the area of sensors for detecting specific sites or features, such 
c/nc transitions, gene starts, etc. 

One approach to gene finding used in homology-based programs generally attempts to 
identify new genes by characterizing the sequence alignments among known genes, such as in 
[2].  Another more recent effort discussed in [3], combines homology information with other ab 

initio information or intrinsic, statistical properties of the DNA sequence alone.  In general, the 
main drawback of homology-based approaches is that they appear incapable of finding new 
genes.  See, for example, in [4], where a study is cited in [5], in which only 50% of the proteins 
encoded in human chromosome 22 were found to be similar to previously known proteins.  

As mentioned above, much of the effort in recent years has been expended in the 
development of specific sensors, such as those listed in Table 1 below.  In general, these 
programs require (and in some cases provide) an external interface for incorporation into a 
comprehensive, structural gene identification system, for example, see 5.2 Future Work, page 
80. 
  



2 
 

Table 1  Programs for genetic feature sensors among the related work 

Program 

Name 

Targeted Feature Description Reference 

MetaTISA  Transcription initiation sites 
(TIS) 

Classification via phylogenetic 
clustering of genomic sequence 
data 

[6] 

WordSpy Transcription factor binding 
motifs (TFBM) 

Dictionary and grammar for 
sequence motifs + EST similarity 

[7] 

MZEF Internal exons in human genes Classification of genomic 
sequence features via quadratic 
discriminant analysis (QDA) 

[8] 

SpliceMachine splice sites SVM classification of splice site 
and exon content features 

[9] 

FirstEF promoters and first exons Classification of features in 
promoter and first donor splice 
sites via QDA 

[10] 

DNAFSMiner TIS in vertebrate 
DNA/mRNA/cDNA, 
polyadenylation in human 
DNA 

SVM classification of 
entropic/Markov features of 
target sites 

[11] 

 Splice sites SVM classification with 
weighted degree kernel 

[12], [13] 

PEAKS Regulatory motifs in DNA Frequency of motifs near target 
feature sites 

[14] 

 Splice sites, translation start 
sites (TSS‟s), TIS 

Neural network classification of 
higher order Markov 
dependencies at target sites 

[15] 

 Gene 3´ ends (stops) Classification via positional 
clustering of polyadenylation 
sites of known transcripts 

[16] 

 
1.3 Organization of This Thesis 

In 2 Structural Gene Prediction via HOHMM, as the main body of work in this effort, 
we develop a higher order HMM (HOHMM) in order to predict the genetic structure of lower 
order eukaryotic genomes. We observe that the scalability of the computation is realized by 
allowing only those hidden states in a relatively small but reasonably representative subset of the 
Cartesian product, ΛF+1, where Λ  is the alphabet of primitive hidden states, and where the subset 
grows linearly in F, the footprint state size in consecutive (but overlapping by one primitive) 
dimers.  In other words, in choosing a model where we fix the allowed minimum length of 
exons, introns, and junk strands, this in turn has the effect of limiting not only the size of the 
hidden state space but also the number of allowed state transitions to linear growth in state-word 
size F as measured in consecutive, overlapping dimers.  As a reasonable cost for attaining such 
controlled growth and scalability, we would then simply defer the detection of both the very 
short and very long exons and introns (if not junk as well) until an additional post-processing 
step. 
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In 3 HOHMM Implementation and Results, page 44, first there is an overview of the 
implementation including the organization at the top level of the client-server architecture 
common to both the training and testing facilities.  Following that are the results of testing with 3 
data sets, entire_1_contig of C. elegans, the benchmark data set ALLSEQ assembled by Burset 
& Guigo in [17], and data-reduced versions of Chromosomes I-V of C. elegans [18].  In the first 
two cases of the entire_1_contig and ALLSEQ data sets, we use the same data set for both 
training and testing in order to exhibit a simple, brute force search for optimum values of the 
HOHMM parameters.  The 3rd data set has been data-reduced in order to remove alternative 
splicings.  Using that data set we show the results of testing with 5-fold cross-validation.  We 
also include graphs of relative entropy and a discussion of its usefulness for the various types of 
c/nc transitions identified in the annotation data for this last data set, where the entropy values 
have been computed in a window centered on the respective transition sites. 

In 4 Other HMM Applications, page 68, first we mention several other applications 
based on iterative HOHMM processing.  Then we include a treatment taken largely from [19] on 
a form of duration modeling to the HMM (HMMwD) where the form is exact in the 2-state case 
in that there is no ambiguity of the destination state upon exit of a given state duration.  This 
work has served to motivate the development of an exact, implicit HMMwD [20].  Either the 
approximate or the exact formulation can be used to extend the HOHMM to include duration 
submodels for introns and exons in order to improve splice site recognition. Here the future 
intent would be enhanced recognition of both unusually short as well as unusually long instances 
of both exons and introns.  We also include the results of successful, preliminary trials of the 
HMMwD on synthetic data [19]. 

Also in 4.3 Controlled Acquisition via SVM, page 77, and 4.4 Pattern Recognition 

Informed Feedback via LabWindows Automation, page 78, we briefly describe ongoing 
efforts in measurements involving real time molecular capture and acquisition and control of 
pico-amp (pA) ion current signals induced by that capture at the site of a highly narrow protein 
channel called a nanopore.  Also, with material taken largely from [21] we present the first 
functional prototype of a nanopore signal acquisition system using SVM-based identification and 
control of the molecular species captured at the nanopore channel site.  Continuation of this work 
discussed in [22]. 

In 5  Discussion and Future Work, page 79, we discuss the results of the HOHMM 
referring also to the results in the two evaluations cited.  We also discuss some issues associated 
with the testing methodology in the evaluations cited and the impact on the programs evaluated.  
Finally, we provide perspective on the HOHMM and its greater usefulness in a wider context of 
gene finding. 

6 is Bibliography, page 83, and in 7 Appendix, page 88, there are detailed results of 
testing in the form of extended sequences of (combined contour and 3D surface) graphs of 
accuracy of the HOHMM for all values tested of the 4 main parameters in the model, M, F, L, 
and R.  These extended sequences of graphs provide a compelling demonstration of the stability 
of the HOHMM with respect to the choice of those 4 parameter values for all such values tested.  
There is also in 7 an extended, fully connected, 7-page flowchart depicting the function and 
collaboration of key modules in both the training and testing phases of the HOHMM.  The 
flowchart is then followed by a list of those same key modules, including descriptions of the 
collaborating interfaces.  Both training and testing implementations share the same, high-level, 
client/server infrastructure.  All training code specifically as well as all code in general for this 
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client-server infrastructure is implemented in Perl.  The C-based portion of the testing code, the 
Viterbi engine, is contained entirely within the server side. 
1.4 Contributions 

It should be noted that the original HOHMM derivation and code implementation (in Perl 
and C) were done in their initial form by my Ph.D. thesis advisor, Dr. Winters-Hilt [23]. When 
first presented to me, however, he indicated that there appeared to be an insidious run-time bug 
in the code implementation and that, although the implementation was 95% complete and 
operated with some predictive power (~70% accuracy), it was hopelessly flawed.  My task, thus, 
began with learning how to do run-time debugging of a complex higher order HMM.  I was 
warned that HMM implementation errors that only show at run-time are very complicated to 
isolate, and this was indeed the case, as born out by my thorough review and rederivation of the 
theory outlined in [24].  As a direct result of my review, the bug was identified and found to be 
due to a minor, but critically significant approximation error in the theoretical description itself 
and that this error had previously been faithfully represented in the code.  Upon repairing the 
code with the correct underlying theory, the predictive power on the test data improved to 99% 
accuracy on the base-by-base prediction of coding state (exon) versus non-coding state (intron or 
junk) using the diagnostic data set (or training contig), entire_1_contig of C. elegans.  (See 3.4.2 

Summary of Results for Entire_1_contig of C. elegans, page 50.) 
Moreover, the correct factorization of total probability for the HOHMM is presented in 

two different forms, each with accompanying sample calculation. As suggested above, the first 
form of factorization had already been outlined by my advisor, Dr. Winters-Hilt in [24].   The 
final, corrected form is presented in 2.5 Factorization 1 of Total Probability, page 27, and 
clearly indicates the proper formulation for future extension via SVM-based discriminator as 
demonstrated to some extent in [25].  The 2nd form of factorization is also a contribution in this 
effort, and also admits formal substitution of an SVM-based discriminator.  Though no testing 
was performed with this alternate form in this effort, this form was introduced to also link most 
closely with standard autoregressive HMM descriptions.  (See, for example, [26].) 

Another contribution in this effort is included in 2.10 Alternate Proof of Linear Upper 

Bound on Footprint States and Transitions, page 39.  This provides a more compact and 
concise argument for demonstrating the linear limit of growth of the HOHMM‟s complexity with 
respect to footprint state size – without the need for the full enumeration and precise counting of 
footprint states as shown in 2.4 Linear Growth in State/Transition Space, page 14. 

Last but not least in terms of man-hours among the contributions in this effort is the 
additional software architectural features (design) and coding effort (implementation) for the 
training and testing phases of the HOHMM, including among others: 

1) a Perl-syntax based, hence fully programmable, user configuration input file for 
defining: 

a.  units of work or tasks for both training and testing of the HOHMM, and 
b. full specification of the distribution and multi-threaded execution (via Perl 

threads) of those tasks among both task-specific and/or generic sets of 
processors available via public key authentication 

2) a Perl based, reusable, client/server, multi-task, distributed processing architecture – 
reused for performing both training and testing tasks 

3) a well-defined, hence extendable interface for task execution in multiple job 
scheduling contexts, including the currently implemented interfaces for: 

a. native OS job scheduling as implemented for the Ubuntu/Linux OS [27] 
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b. LoadLeveler job scheduling as implemented for the IBM/AIX OS on the IBM 
Power5 cluster [28]. 

(See 3.1.2 HOHMM Application Features, page 44.)  
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2 Structural Gene Prediction via HOHMM 

2.1 (Eukaryotic) Genomic Data 
 Once it is fully annotated, genomic data can be unambiguously represented by strings 

formed from the 4 letters a, c, g, and t denoting the DNA nucleotide bases adenine, cytosine, 
guanine, and thymine, respectively.  Genes are units of genomic data which encode specific 
sequences of amino acids to form proteins.  The process of annotating consists of designating 
specific segments of the data as coding and non-coding (c/nc) segments.  (The uppercase letters 
A, C, G, and T are often used to designate coding segments as distinct from the lower-cased, 
non-coding segments in the data.)  In eukaryotes, genes consist of coding segments or exons 
which are delimited internally by special, intragenic, non-coding segments or introns.  The 
intergenic, non-coding regions of bases outside the genes are generically referred to as junk. 

The process of removing the intermediate introns and reconnecting (possibly variable 
subsets of) the resulting exons end-to-end is referred to as splicing.  Perhaps the most important 
role of introns is to provide a mechanism for the formation of alternative combinations and/or 
subsets of the exons contained in a given gene in order to form alternative proteins also used by 
the organism in question.  These alternative combinations are referred to as alternative splicings. 
2.1.1 Framing 

Exons have a 3-base encoding as directly revealed in a mutual information analysis of 
gapped base interpolations as shown in [23].  The 3-base encoding elements are called codons, 
and the partitioning of the exons into 3-base subsequences is known as the codon framing.  Thus 
in order to both precisely and concisely encode a protein, the gene‟s cumulative exon string 

length must be a multiple of 3 bases.  The term reading frame is used to denote one of the 3 
possible positions – 0, 1, or 2 by our convention – relative to the start of a codon.  Moreover, in 
general introns may interrupt genes at any point along the coding extent.  In other words, introns 
can split the codon framing either at a codon boundary or one of two positions internal to a 
codon. 

Although there is no notion of framing per se among introns, for convenience we 
associate framing with the intron, as indicated in the example below, as a tracking device in 
order to ensure that the frame of the immediately following exon would be predicted correctly.  
Finally there is neither any notion nor any use for framing among strings of junk per se. Thus we 
denote the primitive states of the individual bases occurring in exons, introns, and junk by 
members of the sets 

 

Exon states = { e0, e1, e2 }, 

Intron states = { i0, i1, i2 }, and 

Junk state = {j}. 

 
For example, we have 3 possible intron framings indicated in the following state strings. 
 
jj...je0e1e2…e0i0i0…i0e1…e0e1e2jj…j  (intron frame 0) 
jj...je0e1e2…e1i1i1…i1e2…e0e1e2jj…j  (intron frame 1) 
jj...je0e1e2…e2i2i2…i2e0…e0e1e2jj…j  (intron frame 2) 
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2.1.2 Forward and Reverse Encoding 

Encodings for proteins can be found in both directions along the DNA strand such that 
the two directions rarely interfere with each other.  In other words, a coding segment in one 
encoding direction does not interfere with or overlap a coding segment in the other encoding 
direction.  Furthermore, when comparing exons, introns, and junk segments, the estimated 
probabilities of occurrence of specific base sequences are substantially different, yet when 
comparing forward and reverse encodings the differences of such probability estimates are 
negligible among sequences of a given segment type – exon, intron, or junk.  Hence, it would be 
counterproductive to simply ignore reverse encodings by relegating them to a second pass of our 
prediction algorithm, since that would require the interpretation of (reverse) coding segments, or 
exons, as junk – contradictory to that indicated by any reasonable set of estimates of the 
probabilities of nucleotide occurrences. 

Thus we incorporate shadow states indicating reversely encoded exons and introns into 
the state model of our HOHMM, denoted by the primitives by ê and î, respectively.  For 
example, we illustrate the 3 possible intron framings for the reverse encoding as follows: 

 
jj...jê2ê1ê0…ê1î0î0…î0ê0…ê2ê1ê0jj…j  (intron frame 0) 
jj...jê2ê1ê0…ê2î1î1…î1ê1…ê2ê1ê0jj…j  (intron frame 1) 
jj...jê2ê1ê0…ê0î2î2…î2ê2…ê2ê1ê0jj…j  (intron frame 2) 
 

2.2 Limited Success with 1
st
 Order HMM 

We define the 1st order HMM as consisting of the following: 
 

An observable alphabet, B 
A hidden state alphabet,  
(“Prior”) Probability P() for all  
(“Transition”) Probability P(2|1) for all 1 2 
(“Emission”) Probability P(b|) for all  bB, 

 
Given the above, there are three classes of problems [29] which the HMM can be used to 

solve: 
 

1. Evaluation - Determine the probability of occurrence of the observed sequence. 
 

2. Learning - Determine the most likely emissions and transitions for the observed 
sequence. 
 

3. Decoding (Viterbi) - Determine the most probable sequence of states emitting the 
observed sequence. 
 
Here we focus only on the 3rd problem, the Viterbi decoding problem.  The probability of 

a sequence of observables B=b0 b1… bn-1 being emitted by the sequence of hidden states =0 
1… n-1 is given by 

 
P(B, ) = P(B|) P() (chain rule) 
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where the chain rule as been applied, resulting in the two factors known in the traditional 
HMM as the observation model and the state model, respectively.  In the 1st order HMM, the 
state model has the 1st order Markov property and the observation model is such that the current 
observation, bi, depends only on the current state, i.  According to this, we may further factor 
the above probability as in the following: 

 
P(B|) P() =        (chain rule) 

P(b0|) P(b1|)…P(bn-1|) 
P(0)P(1|0)P(2|0, 1)…P(n-1|0... n-2) 

=        (1st order HMM states) 
P(b0|) P(b1|)…P(bn-1|) 
P(0)P(1|0)P(2|1)…P(n-1|n-2) 

=       (1st order HMM observations) 
P(b0|0) P(b1|1)…P(bn-1|n-1) 
P(0)P(1|0)P(2|0, 1)…P(n-1|0... n-2) 

=         (regrouping) 
P(0) P(b0|0) 
P(1|0) P(b1|1) 
… 
P(n-1|n-2) P(bn-1|n-1) 

 
According to [30], a factor graph is a tool frequently used in information theory to 

visually specify the belief propagation algorithm by which information is propagated throughout 
the model.  Referring to the diagram in Figure 1, a factor graph consists of a bipartite graph 
containing two sets of nodes V and F for variables sV and factor nodes fF respectively, where 
variables (shown as circles) can be connected by edges to factor nodes (shown as squares) but 
not other variables and vice versa. 
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Figure 1 Factor graph for traditional, 1st order HMM. 

 
The Viterbi algorithm is encoded in the factor graph using the max-product form of the 

belief propagation algorithm.  In order to implement the Viterbi algorithm, each of the variable 
(square) factor nodes along the top row is to be interpreted as taking a maximum of the 
probability with respect to the previous state.  This results in two recursion relations, one for 
each of two types of values, 1) the total probability at each observation, bi and 2) the most 
probable state at each observation, bi .  In practice, these recursively defined quantities are kept 
in two tables, a probability table and a back pointer table, with one column in each of the two 
tables for each observation, bi , and one cell or row in each column for each of the possible 
values of the state, i,  at observation, bi . 

The recursive expression for the total probability, P(bi, i) at each observation, bi , as 
follows: 

 
P(bi, i) = P(bi| i) maxj [ P(i| (i-1) 

j )  P(bi-1,(i-1)
j ) ] 

 
where the maximum is taken over all possible values of the previous state, 
 

(i-1)
j  for j = 1, … ||, and 

 
|  | = the size of the state alphabet, . 
 

In order to avoid having to recompute probabilities, the most probable state at each 
observation is computed once in dynamic programming fashion as determined by the recursive 
expression: 

 
(i-1)*  = arg maxj P(bi, i) = arg maxj [ P(i| (i-1) 

j )  P(bi-1,(i-1)
j ) ] 
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The recursion terminates with the last observation, bi , and the most probable path of 
states is given by 
 

Λ* = argmax Λ P(B, Λ) 
= (0*, …, 4*) 
 

where the decoding consists of retracing through the table of back pointers starting with 
 

4* = argmax j [P(b4, (4) 
j)]  

 
With genomic data, Viterbi decoding is used to identify the coding/non-coding transition 

sites, such as the exon-intron and intron-exon transitions, referred to as donor and acceptor 

splice sites, respectively.  Thus the job of gene prediction is to predict the precise locations of 
such c/nc transitions within a string of genomic data.  First order hidden Markov models 
(HMM‟s) have been used here and elsewhere for the prediction of donor and acceptor splice sites 
with limited success [4].  This can be attributed to the notion that using first order statistics for 
c/nc sites effectively under weights such transitions (relative to other homogeneous sites) when 
higher-order statistics are more appropriate in regions centered more or less on the c/nc 
transitions.   (Similar though weaker arguments can be made for junk-exon and exon-junk 
transitions as well.  See, for example, [4].)  This is typically revealed, for example as in 3.7 

Relative Entropy of C/NC Transitions by the extent of anomalous base statistics in the 
neighborhood of the transition.  
2.3 Higher Order HMM (HOHMM) Specifications 

As stated above, traditional 1st order HMM‟s assume that a 1st order Markov property 
holds among the states and that each observable depends only on the corresponding state and not 
any other observable.  However, the current work entails a departure from these conventions in 
an attempt to leverage information from the entire region of anomalous statistics in the 
neighborhood of c/nc transitions (when compared to base statistics of coding or non-coding 
regions away from such transitions).  The regions of anomalous statistics are often highly 
structured, having consensus sequences that strongly depart from the strong independence 
assumptions of the 1st order HMM. The existence of such consensus sequences suggests that we 
adopt an observation model that has a higher order Markov property with respect to the 
observations.  Furthermore, since the consensus sequences vary by the type of transition, this 
observational Markov order should be allowed to vary depending on the state – with higher order 
for non-splice sites and lower order for splice sites (where interpolation is through highest order 
supported by the size of the training data). 

Furthermore, in the Viterbi context, for a given state dimer transition or non-transition, 
such as e0e1 or e0i0, respectively, we can compound the contributions of the corresponding 
base emissions to the correct prediction of state by using extended states.  For example when 
encountered sequentially in the Viterbi algorithm, the following sequence of extended or 
footprint states would conceivably score highly when computed in the given order at consecutive 
positions in the vicinity of a consensus sequence for a donor splice site. 

 



11 
 

eeeeeei, 

 eeeeeii, 

  eeeeiii, 

   eeeiiii, 

    eeiiiii, and 
     eiiiiii  

 
In other words we can expect a natural boosting effect for the correct prediction at such c/nc 
transitions.  

In order to accommodate the above concerns, we consider the pairing of an extended 
observation centered on the primitive observation bi with an extended state centered on the dimer 
state si  (see below for notation), where the observation and state extents are parameterized 
independently according to the following. 

 
1) non-negative integers L and R denoting left and right maximum extents of a substring, 

wi,  (with suitable truncation at the data boundaries, b0 and bn-1 ) associated with the 
primitive observation, bi ,  in the following way, 

 
wi = bi-L+1, …, bi, …, bi+R 
ŵi = bi-L+1, …, bi, …, bi+R-1 
 
for i = -R, …, n-R-1, where 
 
L  0,      (left extent for bases in wi) 
R  0,      (right extent for bases in wi) 
L+R > 0.      (total extent for bases in wi) 
 

 
2) non-negative integers l and r denoting the left and right extents the extended (footprint) 

states, f, expressed usually in practice in terms of its component, overlapping dimer 
states, s.  Here, we show the relationships among the primitive states , dimer states s, 
footprint states f, and footprint transitions σ. 

 
si = ii+1     (dimer state, length in ‟s =2) 
fi = si-l+1, …, si+r  i-l+1, …, i, …, i+r+1 (footprint state, length in s‟s= l+r) 
σi = fi-1, fi     (length in s‟s= l+r+1, length in ‟s= l+r+2) 
  si-l, …, si+r  i-l, …, i, …, i+r+1 
 
where 
 
l  0,      (left extent of f or si-l+1, ..., si) 
r  0,      (right extent of f or si+1, ..., si+r) 
l+r > 0.      (total extent of f in s‟s) 
 

3) a non-negative integer function M(fi-1, fi, j) denoting a variable Markov order among the 
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R L 

r+1 l 

bases in the string wi with 
 
M(fi-1, f, j)  0 , where 
 
fi-1, fi = sequential footprint states, 
j = the index of any member of wi in the range i-L+1  j  i+R 

 
We note that there is no other restriction on the relative sizes of the four parameters L, R, l, and r. 
As in the 1st order HMM case, we assume that the ith base observation bi is aligned with the ith 
hidden state i.  However we note in the following – as a departure from the 1st order case – that 
we modify the condition that bi is dependent exclusively on the hidden state i.  We illustrate this 
pairing of specific observation strings and hidden state strings at either end and at an interior 
position in the processing via the diagram in Figure 2 below. 

 
 
 

 
         b0   … bi-L+1   …    bi …      bi+R  …  bn-1…      bn+L-2…   bn+L+R-2 
 

       -R-l+1 … -R … -R+r+1   … i-l+1 …  i  …     i+r+1      …     n+L-l-1..n+L-2..n+L+r-1 
 
 
 

Figure 2  Stepwise association (or clique) of observations and hidden states in HOHMM 

 
Referring to the diagram above, assuming a left-to-right traversal of the data, many 

choices of first and last clique are possible depending upon the desired point of onset and 
strength of influence from the emission probabilities in the prediction process of the Viterbi 
algorithm.  In the case of protein product data, such choices could be critical since there is 
typically little, if any, buffer extent at either ends of the data for the Viterbi algorithm to recover 
from poorly estimated state prior probabilities.  (See also 2.8 Estimates of Probabilities from 

Counts, page 37.) 
For convenience, we have chosen the first such that the first observations, b0, is included 

at the leading edge.  This allows the emission probabilities to exert the earliest influence on the 
prediction process, though the influence is weakest, since only one base, b0, is contributing at the 
outset.   However, for the last clique, we recognize the need to predict no further than the last 
observation, bn-1, but we choose the trailing edge to include the last observation for convenience 
at the cost of making predictions for states beyond the last observation. 

With this choice of first and last clique, we observe that in order to satisfy the conditions 
at the left and right boundaries, we have introduced some additional sets of state and observation 
primitives (with associated, unit-valued transition and emission probabilities) for suitable values 
of L, R, l, and r.  These additional primitives are shown in Table 2 below. 
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Table 2  Additional primitives for completion of boundary cliques 

Additional Primitives Type of Primitive Boundary 

-R -l+1 , …, -1 States Left 
b n, …, bn+L+R-2 Observations Right 
n , …, n+L+r+1 States Right 

 
In 2.5, page 27, and 2.6, page 34, we will investigate two different factorizations of the 

total probability for states and observations 
 
P(B, Λ) = P(b0, …, bn+L+R-2 ; -R -l+1, …, n+L+r-1)  
 

noting that both factorizations represent departures in their own varying degrees from the 
factorization of the traditional HMM.  The first factorization departs immediately from the 
traditional separation between observation and state models, but the second does at least initially 
separate the observation and state models. 

We will observe that both factorizations allow for an alternate representation such that 
the internal scalar-based state discriminant can be replaced with a vector-based discriminant.  
This would allow the substitution of a discriminant based on a Support Vector Machine (SVM) 
as demonstrated for splice sites in [25].  Also, we note that these alternate representations would 
not introduce any significant increase in computational complexity, since the SVM-based 
discriminant, having been trained offline, would require the computation of a simple vector dot 
product. 
2.3.1 Assumptions 

We demonstrate in 2.4 Linear Growth in State/Transition Space below the fact that the 
number of allowed transitions among footprint states is restricted to the linear growth in the size 
of the footprint states.  First, we first list the assumptions used as well as some mostly notational 
conventions in 2.3.2 Conventions below. 

1) The length of introns and exons are bounded below, such that the following hold: 
a. footprint states can contain at most one coding/non-coding (c/nc) transition 
b. footprint state transitions can involve at most one c/nc transition among both the 

source and destination footprint states 
 (This is referred to as the minimum length assumption.  See parameter F defined below 
in Conventions.)   

2) The length distributions of introns and exons are taken to be geometric by default.  (See 
[20] and [4].) 

3) We introduce support in the model for the notions of reading frame (0, 1, 2) and encoding 
direction (forward, reverse), thus replacing the basic exon e and intron i state primitives 
with the set of state primitives e0,e1,e2,i0,i1,i2,ê0,ê1,ê2,î0,î1,î2.  Without such 
explicit support in the model for the reverse encoding, we incur undue risk of 
indeterminate results [24].  For example, consider the case of a small, reverse encoded 
gene contained entirely within a forward encoded intron.  As the prediction process 
traverses forward through the data, the encounter with the reverse encoded gene can 
result in sufficient cumulative reduction of the computed state path probabilities, such 
that the ensuing end of the forward encoded intron would go undetected. 



14 
 

4) We make no attempt to encode the notions of  reading frame or encoding direction in the 
case of junk, hence designating a single primitive junk state, j. 

5) The base Markov order, with maximum value specified by parameter M of the HOHMM, 
is allowed to vary below the maximum M as a function of both footprint state as well as 
the position of the observed base relative to the c/nc transition site within the footprint 
state. 

6) We make no attempt thus far to vary the base Markov emission extent with respect to the 
encoding direction.  For example, we use the value R to designate the right base emission 
extent for both the 3‟-side in the context of forward transitions as well as the 5‟-side in 
the context of reverse (shadow) transitions.  Whereas, otherwise, we would anticipate 
some overall improvement in prediction accuracy of the HOHMM. 

2.3.2 Conventions 

1) According to Figure 2 above, a footprint state is an extended state consisting of l+r+1 
primitive states.  In practice, however, we use a symmetric footprint state, where l = r, 
and we denote the size of the footprint states for a given instance of an HOHMM by a 
single parameter F, where F is measured in units of consecutive, overlapping dimers.  
Thus, we write 

 
F = 2l = 2r = length of footprint state in dimers. 

 
2) In the following we will use the symbols ê, î in order to denote exon and intron 

primitive states for the reverse encoding direction.  Yet when we refer to the 
corresponding footprint states by name the primitives will be listed in 5‟-to-3‟, encoding 
order, such as the dimer ê0î0, and the dimer transition ê0î0 to î0î0.  Thus, we have the 
following complete set of state primitives. 
 
Set of state primitives = { e0,e1,e2,i0,i1,i2,ê0,ê1,ê2,î0,î1,î2,j } 
 

3) The reading frame varies cyclically among the primitives within an exon, such as e0e1e2, 
whereas the reading frame of an intron is fixed over the entire segment of intron 
primitives, such as i0i0i0. 

4) By convention, the reading frame at the exon-intron interface does not change, such as 
e0i0, whereas the reading frame at the intron-exon interface does, such as i0e1. 

5) We observe that introns are artificially split into the primitives i0,i1,i2 and î0,î1,î2 for 
the forward and reverse encoding directions, respectively, but are not expected to have 
notably different statistical profiles.  Such is the case for example in C. elegans upon 
inspection, and thus they are pooled as one “i" statistic in the training procedure. 

5) Six different footprint states will be used to capture the three possible stop codons, TAA, 
TAG, and TGA – 3 each for the forward and reverse encoding directions. 

2.4 Linear Growth in State/Transition Space 
In order to control the exponential explosion of the set of footprint states – as well as the 

set of allowed transitions – we use the observation in nature of a minimum length for exons, 
introns and junk segments.  This observation translates to a rule in the implementation that for 
any footprint state fi containing a primitive transition the following fi+1 cannot contain any new, 
additional primitive transition as in the following: 
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If the minimum length = 6 (as in footprint size 6 in units of s states) and 
 

fi = eeeeeei 

 
then we must have 
 

fi+1 = eeeeeii 

 
and not 
 

fi+1 = eeeeeie.  (intron is too short – not allowed). 
 

The following subsections were taken from [24], where it was shown that this restriction 
on minimum length results in limiting the growth of the possible set of states to linear in the state 
string length, as is discussed briefly in [23].  For an alternate calculation of this linear bound 
without employing the full enumeration, see 2.10 Alternate Proof of Linear Upper Bound on 

Footprint States and Transitions, page 37. 
2.4.1 Enumeration of the 33 Dimer States 

A dimer state is a footprint state consisting of two state primitives.  There are two types 
of dimer states, those that include a c/nc transition, and those that do not, which we refer to as the 
eij-type dimers and xx-dimers, such as e0i0 and e0e1, respectively. 

As a direct consequence of the assumptions 2, 3, and 4 above, we have a total of 33 
possible dimer states, which can be enumerated as follows: 

1) 13 xx-type (homogeneous) dimers 
a. 6 Intron-intron – i0i0, i1i1, i2i2, î0î0, î1î1, î2î2 
b. 6 Exon-exon – e0e1, e1e2, e2e0, ê0ê1, ê1ê2, ê2ê0 
c. 1 Junk-junk – jj 

2) 20 eij-type (heterogeneous) dimers 
a. 6 Exon-intron – e0i0, e1i1, e2i2, ê0î0, ê1î1, ê2î2  
b. 6 Intron-exon – i0e1, i1e2, i2e0, î0ê1, î1ê2, î2ê0 
c. 6 Exon-junk – (e2j)TAA, (e2j)TAG, (e2j)TGA, (ê2j)TAA, (ê2j)TAG, (ê2j)TGA 
d. 2 Junk-exon – (je0), (jê0) 

2.4.2 Enumeration of the Footprint States 

 As a consequence of assumption 1) above, footprint states fall into the same two 
categories or types, xx-type and eij-type, as the dimers above.  Regardless of footprint state type, 
each footprint state can be considered to be generated by the xx-type dimer that it contains.  For 
xx-types, it is sufficient to specify the generating dimer only, such as i0i0 for the xx-type 
footprint state i0i0…i0.  For eij-types, a position must also be specified for the location of the 
generating dimer within the generated footprint state. 

By definition, the number of xx-type footprint states is identical to the number of xx-type 
dimers, as enumerated in Table 3 below. 
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Table 3  All 13 xx-type footprint states generated by the xx-type dimers 

Dimer Index Xx- type Generating Dimer Xx- type Generated Footprint State 

0  i0i0 i0i0…i0 
1  i1i1 i1i1…i1 
2  i2i2 i2i2…i2 
3  î0î0 î0î0…î0 
4  î1î1 î1î1…î1 
5  î2î2 î2î2…î2 
6  e0e1 e0e1…e(F)mod3 
7  e1e2 e1e2…e(F+1)mod3 
8  e2e0 e2e0…e(F-1)mod3 
9  ê0ê1 ê0ê1…ê(F)mod3 
10  ê1ê2 ê1ê2…ê(F+1)mod3 
11  ê2ê0 ê2ê0…ê(F-1)mod3 
12  jj jj…j 

 
As for the eij-type footprint states, each is generated by the non-homogeneous dimer that 

it contains but is further characterized by the position of the generating dimer within the footprint 
string, such as e0i0 in the right-most position of the eij-type footprint state 
e(F-2)mod3e(F-1)mod3…e0e0e0i0 . 

As a consequence of assumption 1 above, there are F eij-type footprint states for each 
corresponding eij-type dimer.  This can be elaborated as follows.  First, observe that assumption 
1 above implies that a footprint state can contain at most one, if any, eij-type dimer, such as the 
eij-type dimer e2i0 in the eij-type footprint e0e1e2i0i0i0.  Hence, given an eij-type footprint 
state of length F in dimers, there are precisely F possible positions for the implied eij-type dimer 
to occur within the footprint state‟s string of primitives.  These dimer positions are labeled 0, …, 

F-1 and taken in the order of encoding (forward or reverse) in   
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Table 4 below.  Thus we have the relation 
 
# eij-type footprint states 

= 20 (F) 
= (# eij-type dimer states) (F) 
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Table 4  All 20(F) eij-type footprint states generated by the eij-type dimers 

Dimer Index 
Eij-type Generating 

Dimer 

Eij-type Generated Footprint State 

For Generating Dimer Positions 0, …, F-1 

0 … F-1 

13  e0i0 e0i0…i0 … e(1-F)mod3e(2-F)mod3…e0i0 
14  e1i1 e1i1…i1 … e(2-F)mod3e(-F)mod3…e1i1 
15  e2i2 e2i2…i2 … e(-F)mod3e(1-F)mod3…e2i2 
16  ê0î0 ê(1-F)mod3ê(2-F)mod3…ê0î0 … ê0î0…î0 
17  ê1î1 ê(2-F)mod3ê(-F)mod3…ê1î1 … ê1î1…î1 
18  ê2î2 ê(-F)mod3ê(1-F)mod3…ê2î2 … ê2î2…î2 
19  i0e1 i0e1e2…e(F)mod3 … i0…i0e1 
20  i1e2 i1e2e0…e(F+1)mod3 … i1…i1e2 
21  i2e0 i2e0e1…e(F-1)mod3 … i2…i2e0 
22  î0ê1 î0…î0ê1 … î0ê1ê2…ê(F)mod3 
23  î1ê2 î1…î1ê2 … î1ê2ê0…ê(F+1)mod3 
24  î2ê0 î2…î2ê0 … î2ê0ê1…ê(F-1)mod3 
25  (e2j)TAA (e2j)TAAjj…j … e(-F)mod3e(1-F)mod3…(e2j)TAA 
26  (e2j)TAG (Similar to above) … (Similar to above) 
27  (e2j)TGA       “              “ …       “              “ 
28  (ê2j)TAA ê(-F)mod3ê(1-F)mod3…(ê2j)TAA …  (ê2j)TAAj…j 
29  (ê2j)TAG (Similar to above) … (Similar to above) 
30  (ê2j)TGA       “              “ …       “              “ 
31  je0 je0e1…e(F-1)mod3 … jj…je0 
32  jê0 jj…jê0 … jê0ê1…ê(F-1)mod3 

 
2.4.3 Enumeration of the Allowed Footprint State Transitions 

As an additional consequence of assumption 1 above, there are two different types of 
transitions among footprint states, depending on whether they introduce a new c/nc transition in 
the second footprint state of the footprint transition. 

The transitions of the first type share the property that they do not introduce a new c/nc 
transition in the second footprint state.  These transitions comprise a group of size (13+20(F)) 
and are thus in 1-to-1 correspondence with the entire set of footprint states. 

As listed below in Table 5, the first 13 of these transitions are xx-type to xx-type, such as 
i0…i0 to itself, and in Table 6 the other 20(F) transitions are either eij-type to eij-type or eij-type 
to xx-type. 
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Table 5  All 13 (xx-type) to (xx-type) footprint transitions 

Dimer Index Xx-type Generating Dimer 

Xx-type Footprint Transition 

Generated Source 

Footprint State 

Destination 

Footprint State 

0  i0i0 i0i0…i0 i0i0…i0 
1  i1i1 i1i1…i1 i1i1…i1 
2  i2i2 i2i2…i2 i2i2…i2 
3  î0î0 î0î0…î0 î0î0…î0 
4  î1î1 î1î1…î1 î1î1…î1 
5  î2î2 î2î2…î2 î2î2…î2 
6  e0e1 e0e1…e(F)mod3 e1e2…e(F+1)mod3 
7  e1e2 e1e2…e(F+1)mod3 e2e0…e(F-1)mod3 
8  e2e0 e2e0…e(F-1)mod3 e0e1…e(F)mod3 
9  ê0ê1 ê0ê1…ê(F)mod3 ê2ê0…ê(F-1)mod3 
10  ê1ê2 ê1ê2…ê(F+1)mod3 ê0ê1…ê(F)mod3 
11  ê2ê0 ê2ê0…ê(F-1)mod3 ê1ê2…ê(F+1)mod3 
12  jj jj…j jj…j 
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Table 6  All 20(F) eij-type footprint transitions 

Dimer 

Index 

Eij-type 

Generat-

ing 

Dimer 

Eij-type Generated Footprint Transitions 

For Generating Dimer Positions 0, …, F-1 

0 … F-1 

Generated 

Source Footprint 

State 

Destination 

Footprint State 

 Generated Source 

Footprint State 

Destination 

Footprint State 

13  e0i0 e0i0…i0 i0i0…i0 … e(1-F)mod3 …e0i0 e(2-F)mod3 …e0i0i0 
14  e1i1 e1i1…i1 i1i1…i1 … e(2-F)mod3 …e1i1 e(-F)mod3 …e1i1i1 
15  e2i2 e2i2…i2 i2i2…i2 … e(-F)mod3 …e2i2 e(1-F)mod3 …e2i2 
16  ê0î0 ê(1-F)mod3 …ê0î0 ê(-F)mod3 …ê2ê0 … ê0î0…î0 ê2ê0î0…î0 
17  ê1î1 ê(2-F)mod3 …ê1î1 ê(1-F)mod3 …ê0ê1 … ê1î1…î1 ê0ê1î1…î1 
18  ê2î2 ê(-F)mod3 …ê2î2 ê(2-F)mod3 …ê1ê2 … ê2î2…î2 ê1ê2î2…î2 
19  i0e1 i0e1e2…e(F)mod3 e1e2…e(F+1)mod3 … i0…i0e1 i0…i0e1e2 
20  i1e2 i1e2e0…e(F+1)mod3 e2e0…e(F-1)mod3 … i1…i1e2 i1…i1e2e0 
21  i2e0 i2e0e1…e(F-1)mod3 e0e1…e(F)mod3 … i2…i2e0 i2…i2e0e2 
22  î0ê1 î0…î0ê1 î0…î0 … î0ê1…ê(F)mod3 î0î0ê1…ê(F-1)mod3 
23  î1ê2 î1…î1ê2 î1…î1 … î1ê2…ê(F+1)mod3 î1î1ê2…ê(F)mod3 
24  î2ê0 î2…î2ê0 î2…î2 … î2ê0…ê(F-1)mod3 î2î2ê0…ê(F+1)mod3 

25  
(e2j)TAA (e2j)TAAjj…j jj…j … e(-F)mod3 …(e2j)TAA e(1-F)mod3 … 

(e2j)TAAj 

26  (e2j)TAG (Similar to above) (Same as above) … (Similar to above) (Similar to above) 
27  (e2j)TGA       “              “       “              “ …       “              “       “              “ 

28  
(ê2j)TAA ê(-F)mod3 … 

(ê2j)TAA 
ê(2-F)mod3 …ê1ê2 …  (ê2j)TAAj…j ê1(ê2j)TAAj…j 

29  (ê2j)TAG (Similar to above) (Same as above) … (Similar to above) (Similar to above) 
30  (ê2j)TGA       “              “       “              “ …       “              “       “              “ 
31  je0 je0e1…e(F-1)mod3 e0e1…e(F)mod3 … jj…je0 jj…je0e1 
32  jê0 j…jê0 jj…j … jê0…ê(F-1)mod3 jjê0…ê(F+1)mod3 

 
The transitions of the second type share the property that they do introduce a new c/nc 

transition in the second footprint state.  These transitions comprise a group of size 20 and thus in 
each case involve a transition from an xx-type footprint to an eij-type footprint. 

These transitions can be subdivided, in turn, depending on whether they involve junk, as 
listed in Table 7 and Table 8 below, respectively. 
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Table 7  All 12 footprint transitions introducing a new c/nc transition and not involving junk 

Dimer Index Xx-type Generating Dimer 

c/nc-type Footprint Transition 

Generated Source 

Footprint State 

Destination Footprint 

State 

0  i0i0 i0i0…i0 i0…i0e1 
1  i1i1 i1i1…i1 i1…i1e2 
2  i2i2 i2i2…i2 i2…i2e0 
3  î0î0 î0î0…î0 ê0î0…î0 
4  î1î1 î1î1…î1 ê1î1…î1 
5  î2î2 î2î2…î2 ê2î2…î2 
6  e0e1 e0e1…e(F)mod3 e1…e(F)mod3i(F)mod3 
7  e1e2 e1e2…e(F+1)mod3 e2…e(F+1)mod3i(F+1)mod3 
8  e2e0 e2e0…e(F-1)mod3 e0…e(F-1)mod3i(F-1)mod3 
9  ê0ê1 ê0ê1…ê(F)mod3 î2ê0…ê(F-1)mod3 
10  ê1ê2 ê1ê2…ê(F+1)mod3 î0ê1…ê(F)mod3 
11  ê2ê0 ê2ê0…ê(F-1)mod3 î1ê2…ê(F+1)mod3 

Table 8  All 8 footprint transitions introducing a new c/nc transition and involving junk 

Dimer Index 
Xx-type Generating 

Dimer 

c/nc-type Footprint Transition 

Generated Source 

Footprint State 

Destination Footprint 

State 

6 +(2-F) mod3 e(2-F)mod3e(-F)mod3 e(2-F)mod3e(-F)mod3…e2 e(-F)mod3…(e2j)TAA 
6 +(2-F) mod3 e(2-F)mod3e(-F)mod3 e(2-F)mod3e(-F)mod3…e2 e(-F)mod3…(e2j)TAG 
6 +(2-F) mod3 e(2-F)mod3e(-F)mod3 e(2-F)mod3e(-F)mod3…e2 e(-F)mod3…(e2j)TGA 
9 ê0ê1 ê0ê1…ê(F)mod3 jê0…ê(F-1)mod3 
12 jj jj…j j…je0 
12 jj jj…j (ê2j)TAAj…j 
12 jj jj…j (ê2j)TAGj…j 
12 jj jj…j (ê2j)TGAj…j 

 
Thus, we have shown by enumeration that both the number of footprint states as well as 

the number of allowed transitions between footprint states are both limited to linear growth in the 
footprint size F.  (See also 2.11.3 HOHMM Testing Complexity, page 41.)  More precisely, we 
have the following relations: 

 
# footprint states = 13 + 20(F) 
# footprint state transitions = 13 + 20(F+1) 

 
In Table 9 and Table 10 below, we consolidate and repeat the enumeration, first of the 

footprint states and then the allowed footprint transitions, respectively, with the inclusion of 
some additional index columns.  Each of the tables includes an additional column of indices used 
in the actual implementation in order to refer to the states and transitions, respectively. 
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Table 10 also includes yet another column with title “Dom. footprint” for dominating 

footprint, which is used in the actual implementation to denote the type of calculation performed 
for the corresponding transition probability. 

There is one possible source of confusion to be pointed out.  The values for dominating 
footprint shown here have only a binary interpretation, indicating whether or not there is more 
than one allowed footprint transition sharing the common starting footprint state of the given 
transition.  Moreover, the dominating footprint value should not be confused with the total 
number of allowed footprint transitions sharing the common starting footprint, since there are 
cases where this total as such exceeds the value 2, as in the following: 

1. 5 Allowed forward transitions with starting footprint e(2-F)mod3…e1e2 
a. e(2-F)mod3…e1e2   →   e(-F)mod3…e2e0 
b. e(2-F)mod3…e1e2   →   e(-F)mod3…e2i2 
c. e(2-F)mod3…e1e2   →   e(-F)mod3…(e2j)TAA 
d. e(2-F)mod3…e1e2   →   e(-F)mod3…(e2j)TAG 
e. e(2-F)mod3…e1e2   →   e(-F)mod3…(e2j)TGA 

2. 3 Allowed reverse transitions with starting footprint ê0ê1…ê(F)mod3 
a. ê0ê1…ê(F)mod3   →  ê2ê0…ê(F-1)mod3 
b. ê0ê1…ê(F)mod3   →  î2ê0…ê(F-1)mod3 
c. ê0ê1…ê(F)mod3   →  jê0…ê(F-1)mod3 
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Table 9 Enumeration of footprint states 

Enumeration of Footprint States 

Dimer Index i Dimer Footprint state(f) Footprint index(es) Notes 

0 i0i0 (i0i0)0 0  
 
 
 
 
 

xx transitions 
 

(Dominator index 
defaults to 
1=origin) 

1 i1i1 (i1i1)0 1 

2 i2i2 (i2i2)0 2 

3 î0î0 (î0î0)0 3 

4 î1î1 (î1î1)0 4 

5 î2î2 (î2î2)0 5 

6 e0e1 (e0e1)0 6 

7 e1e2 (e1e2)0 7 

8 e2e0 (e2e0)0 8 

9 ê0ê1 (ê0ê1)0 9 

10 ê1ê2 (ê1ê2)0 10 

11 ê2ê0 (ê2ê0)0 11 

12 jj (jj)0 12 

13 e0i0 (e0i0)[ j=0,…,F-1)] 13,33,...,13+20(F-1)  
 
 
 
 
 
 
 
 
 

eij transitions 
 

(total=20= 
index offset) 

14 e1i1 (e1i1)[ j=0,…,F-1)] 14,34,...,14+20(F-1) 

15 e2i2 (e2i2)[ j=0,…,F-1)] 15,35,...,15+20(F-1) 

16 ê0î0 (ê0î0)[ j=0,…,F-1)] 16,36,...,16+20(F-1) 

17 ê1î1 (ê1î1)[ j=0,…,F-1)] 17,37,...,17+20(F-1) 

18 ê2î2 (ê2î2)[ j=0,…,F-1)] 18,38,...,18+20(F-1) 

19 i0e1 (i0e1)[ j=0,…,F-1)] 19,39,...,19+20(F-1) 

20 i1e2 (i1e2)[ j=0,…,F-1)] 20,40,...,20+20(F-1) 

21 i2e0 (i2e0)[ j=0,…,F-1)] 21,41,...,21+20(F-1) 

22 î0ê1 (î0ê1)[ j=0,…,F-1)] 22,42,...,22+20(F-1) 

23 î1ê2 (î1ê2)[ j=0,…,F-1)] 23,43,...,23+20(F-1) 

24 î2ê0 (î2ê0)[ j=0,…,F-1)] 24,44,...,24+20(F-1) 

25 e2j-TAA (e2j-TAA)[ j=0,…,F-1)] 25,45,...,25+20(F-1) 

26 e2j-TAG (e2j-TAG)[ j=0,…,F-1)] 26,46,...,26+20(F-1) 

27 e2j-TGA (e2j-TGA)[ j=0,…,F-1)] 27,47,...,27+20(F-1) 

28 ê2j-TAA (ê2j-TAA)[ j=0,…,F-1)] 28,48,...,28+20(F-1) 

29 ê2j-TAG (ê2j-TAG)[ j=0,…,F-1)] 29,49,...,29+20(F-1) 

30 ê2j-TGA (ê2j-TGA)[ j=0,…,F-1)] 30,50,...,30+20(F-1) 

31 je0 (je0)[ j=0,…,F-1)] 31,51,...,31+20(F-1) 

32 jê0 (jê0)[ j=0,…,F-1)] 32,52,...,32+20(F-1) 



24 
 

Table 10 Enumeration of footprint state transitions 

Enumeration of Footprint State Transitions 

Dimer 
Index i 

Footprint 
state(f) 

Footprint transition (σ) 

Dom. 
foot 
print  
{1, 2} 

σ Index 

0 (i0i0)0 (i0i0)0  (i0i0)0 2 0 

1 (i1i1)0 (i1i1)0  (i1i1)0 2 1 

2 (i2i2)0 (i2i2)0 (i2i2)0 2 2 

3 (î0î0)0 (î0î0)0  (î0î0)0 2 3 

4 (î1î1)0 (î1î1)0  (î1î1)0 2 4 

5 (î2î2)0 (î2î2)0  (î2î2)0 2 5 

6 (e0e1)0 

{i  [6+(i+1)%3]} 

2 6 

7 (e1e2)0 2 7 

8 (e2e0)0 2 8 

9 (ê0ê1)0 

{i  [9+(i+2)%3]} 

2 9 

10 (ê1ê2)0 2 10 

11 (ê2ê0)0 2 11 

12 (jj)0 (jj)0 2 12 

13 (e0i0)j 
j=0: i  [(i-1)%3]} 
j0: i  i, j  (j-1) 

1 13,33,...,13+20(F-1) 

14 (e1i1)j 1 14,34,...,14+20(F-1) 

15 (e2i2)j 1 15,35,...,15+20(F-1) 

16 (ê0î0)j 
j=0: i  [9+(i+1)%3]} 
j0: like above 

1 16,36,...,16+20(F-1) 

17 (ê1î1)j 1 17,37,...,17+20(F-1) 

18 (ê2î2)j 1 18,38,...,18+20(F-1) 

19 (i0e1)j 
j=0: i  [6+i%3]} 
j0: like above 

1 19,39,...,19+20(F-1) 

20 (i1e2)j 1 20,40,...,20+20(F-1) 

21 (i2e0)j 1 21,41,...,21+20(F-1) 

22 (î0ê1)j 
j=0: i  [3+(i-1)%3]} 
j0: like above 

1 22,42,...,22+20(F-1) 

23 (î1ê2)j 1 23,43,...,23+20(F-1) 

24 (î2ê0)j 1 24,44,...,24+20(F-1) 

25 (e2j-TAA)j 
j=0: i  12 
j0: like above 

1 25,45,...,25+20(F-1) 

26 (e2j-TAG)j 1 26,46,...,26+20(F-1) 

27 (e2j-TGA)j 1 27,47,...,27+20(F-1) 
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Enumeration of Footprint State Transitions, cont. 

Dimer Index 
i 

Footprint 
state(f) 

Footprint transition (σ) 

Dom. 
foot 
print  
{1, 2} 

σ Index 

28 (ê2j-TAA)j 
j=0: i  10 
j0: like above 

1 28,48,...,28+20(F-1) 

29 (ê2j-TAG)j 1 29,49,...,29+20(F-1) 

30 (ê2j-TGA)j 1 30,50,...,30+20(F-1) 

31 (je0)j j=0: i  6;   j0: like above 1 31,51,...,31+20(F-1) 

32 (jê0)j j=0: i  12; j0: like above 1 32,52,...,32+20(F-1) 

0  
(i0i0)0  (i0e1)(F-1) 

i  [19 + i%3 + 20(F-1)] 

2 33+20(F-1)  (=#f.p.) 

1  2 33+20(F-1)+1 

2  2 33+20(F-1)+2 

3  
(î0î0)0  (ê0î0)(F-1) 

i  [16 + i%3 + 20(F-1)] 

2 33+20(F-1)+3 

4  2 33+20(F-1)+4 

5  2 33+20(F-1)+5 

6  (e0e1)0  (e 0i0)(F-1), for F%3 = 0 
                (e 1i1)(F-1), for F%3 = 1 
                (e 2i2)(F-1), for F%3 = 2 
i  [13 + (F+i)%3 + 20(F-1)] 

2 33+20(F-1)+6 

7  2 33+20(F-1)+7 

8  2 33+20(F-1)+8 

9  (ê0ê1)0  (î0ê1)(F-1), for F%3 = 0 
                  (î1ê2)(F-1), for F%3 = 1 
                  (î2ê0)(F-1), for F%3 = 2 
i  [22 + (2F+i)%3 + 20(F-1)] 

2 33+20(F-1)+9 

10  2 33+20(F-1)+10 

11  2 33+20(F-1)+11 

8-(F%3)  (e(-F-1)%3e-F%3)0  (e2j-TAA)F-1 2 33+20(F-1)+12 

8-(F%3)  (e(-F-1)%3e-F%3)0  (e2j-TAG)F-1 2 33+20(F-1)+13 

8-(F%3)  (e(-F-1)%3e-F%3)0  (e2j-TGA)F-1 2 33+20(F-1)+14 

11-(F%3)  (ê(F-1)%3êF%3)0  (jê0)[ j=0,…,F-1)] 2 33+20(F-1)+15 

12  (jj)0  (je0)F-1  2 33+20(F-1)+16 

12  (jj)0  (ê2j-TAA)F-1 2 33+20(F-1)+17 

12  (jj)0  (ê2j-TAG)F-1 2 33+20(F-1)+18 

12  (jj)0  (ê2j-TGA)F-1 2 33+20(F-1)+19 
 
2.4.4 Complexity of Extended States Without the Minimum Length Assumption 

We consider the complexity of a higher order HMM without the minimum length 
assumption.  In such a model, we still have the fundamental set of 33 dimers as explained in 
2.4.1 Enumeration of the 33 Dimer States above.  Furthermore, we observe that for every 
primitive state, there are at least two dimer states for which the given primitive occurs as the first 
primitive of a dimer state.  These two observations provide lower bounds for both the number of 
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states and the number of transitions for the case of higher order HMM without the minimum 
length assumption as 

 
# extended states without minimum length assumption ≥ 33 * 2

F-1 
# extended state transitions without minimum length assumption ≥ 33 * 2

F 
 
For purposes of theoretical comparison, we assume no additional overhead in the 

prediction testing process other than the computation of the transition probabilities for the 
extended states.  The graphs in Figure 3 and Figure 4 show in linear and log scale, respectively, 
the comparison of the theoretical relative time complexity for the extended states and extended 
state transitions without the minimum length assumption to that of the HOHMM with the 
minimum length assumption.  Figure 3 with its linear scale clearly shows the linear behavior of 
the HOHMM used here, whereas Figure 4 with its log scale is included to indicate the 
exponential behavior of complexity without the minimum length assumption.  (See also 2.11 

Algorithmic Complexity, page 40.) 
 

Figure 3 Comparison of theoretical relative time complexity – linear scale 
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Figure 4 Comparison of theoretical relative time complexity – log scale 

 
2.5 Factorization 1 of Total Probability 

Starting from the expression for total probability for the observations and states 
introduced in 2.3 Higher Order HMM (HOHMM) Specifications, page 10, we now factor the 
total probability using the chain rule such that the observation model and the state model remain 
coupled – contrary to the traditional HMM factorization – as follows: 

 
P(B, Λ) = P(b0 , …, bn+L+R-2 ; -R -l+1, …, n+L+r-1) =  (chain rule) 

  
P(b0 ; -R- l+1, …,  -R+r+1 ) 
P(b1,  -R+r+2 | b0 ; -R- l+1, …,  -R+r+1 ) 
P(b2,  -R+r+3 | b0 b1 ; -R- l+1, …,  -R+r+2 ) 
… 
P(bi+R, i+r+1 | b0, …, bi+R-1 ; -R- l+1, …, i+r) 
… 
P(bn+L+R-2, n+L+r-1 | b0, …, bn+L+R-3 ; -R- l+1, …, n+L+r-2), 
 

Referring back to the illustration of extended observations and states in Figure 2, page 12, we 
then introduce the assumption that the conditional dependencies on both the observations and the 
states for each of the above factors are limited accordingly. 

 
P(B, ) =      (assumption of limited dependency of both 

b‟s and ‟s on previous b‟s and ‟s) 
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P(b0 ; -R- l+1, …,  -R+r+1 ) 
P(b1,  -R+r+2 | b0 ; -R- l+1, …,  -R+r+1 ) 
P(b2,  -R+r+3 | b0, b1 ; -R- l+2, …,  -R+r+2 ) 
… 
P(bi+R, i+r+1 | bi-L+1 , …, bi+R-1 ; i-l, …, i+r ) 
… 
P(bn+L+R-2, n+L+r-1 | bn-1, …, bn+L+R-3 ; n+L- l-1, …, n+L+r-2 ) 
 

=        (substituting f‟s for ‟s) 
P(b0 ; f-R ) 
P(b1, f-R+1 | b0 ; f-R ) 
P(b2, f-R+2 | b0, b1 ; f-R+1 ) 
… 
P(bi+R, fi | bi-L+1 , …, bi+R-1 ; fi-1 ) 
… 
P(bn+L+R-2, fn+L-2 | bn-1, …, bn+L+R-3 ; fn+L-3 ) 
 

= (substituting ŵ‟s – suitably truncated at the 
boundaries – for conditional b‟s) 

P(b0, f-R) 
P(b1, f-R+1 | ŵ-R+1 ; f-R ) 
P(b2, f-R+2 | ŵ-R+2 ; f-R+1 ) 
… 
P(bi+R, fi | ŵi, fi-1) 
… 
P(bn+L+R-2, fn+L-2 | ŵn+L-2 ; fn+L-3 ) 
 

=       (using Π to denote iterated product) 
 

P(b0, f-R) { Πi=-R+1 
n+L-2 [P(bi+R, fi | ŵi, fi-1)] } 

 
=      (definition of conditional probability) 
 

P(b0, f-R) { Πi=-R+1 
n+L-2 [P(bi+R, fi-1, fi) / P(ŵi, fi-1)] } 

=          (chain rule) 
P(b0, f-R) { Πi=-R+1 

n+L-2 [P(bi+R|fi-1, fi) P(fi-1, fi) / P(ŵi, fi-1)] } 
 
We observe at this point that the numerator can be expressed as a product of observation 

and state probability estimates tabulated from training data.   As for the denominator, we 
demonstrate how the denominator can also be expressed in terms of those same tabulated 
estimates in the next section. 

The work to date involves the additional step of replacing b‟s in the numerator with w‟s, 

since the additional b‟s are all incorporated in the symbol ŵ appearing in the conditionals.  
 
P(bi+R, fi|ŵi, fi-1) = P(wi, fi|ŵi, fi-1)   (wi = ŵi , bi+R = bi-L+1, ..., bi+R) 
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With the above substitution in the numerator, the previous total probability becomes 
 

P(b0, f-R) { Πi=-R+1 
n+L-2 [P(bi+R, fi | ŵi, fi-1)] } =  (substituting w – suitably 

truncated at the boundaries –   
for b) 

 
P(w-R, f-R) { Πi=-R+1 

n+L-2 [P(wi, fi | ŵi, fi-1)] } 
 

=      (definition of conditional probability) 
 

P(w-R, f-R) { Πi=-R+1 
n+L-2 [P(wi, fi-1, fi) / P(ŵi, fi-1)] } 

 
We now apply the state dependent Markov order function, M(fi-1, fi, j), defined above.  

We proceed to factor the numerator in the ith term of the above product and simply note that the 
denominator may be handled similarly.  Hence for the numerator we write 

 
P(wi, fi-1, fi) = 

(intermediate result from above & for values of i such that i  L – 1) 
 

P(bi-L+1 , …, bi+R, fi-1, fi) 
=       (chain rule & for j, -L+2  j  R) 

P(bi-L+1, fi-1, fi) 
... 
P(bi+j|bi-L+1 , ..., bi+j-2, bi+j-1, fi-1, fi) 
... 
P(bi+R|bi-L+1, ..., bi+R-1, fi-1, fi) 

=      (Markov order M(fi-1, fi, j) defined above) 
P(bi-L+1, fi-1, fi) 
... 
P(bi+j|bi+j-M(fi-1, fi) 

, ..., bi+j-2,, bi+j-1, fi-1, fi) 
... 
P(bi+R|bi+R-M(fi-1, fi)

, ..., bi+R-1, fi-1, fi) 
 

2.5.1.1 Calculations for Factorization 1 

Recall the iterated product for the total probability  
 
P(b0, …, bn-1, -R-l+1, …, n-R+r) =   (substituting f and w from above) 
 

P(w-R, f-R) { Πi=-R+1 
n+L-2 [P(wi, fi-1, i+r+1) / P(ŵi, fi-1)] } 

 
In order to evaluate the iterated factor above, we now consider the two different cases – 

as determined by the two possible types of values, eij-type and xx-type, of the footprint state fi-1.  
We observe in the following that for both cases, the iterated factor can be expressed in terms of 
probabilities that can be tabulated and estimated from training data. 

We may express the numerator of the iterated factor above in terms of an indicator 
function, D (an indicator function referred to as the “dominator” function [24] ), indicating the 



30 
 

footprint type for fi-1  
 
P(wi, fi-1, i+r+1) =      (substituting for i+r+1) 

P(wi, fi-1, fi) 
=       (splitting fi-1 into xx- and eij-types) 
 

P(wi, fi-1=eij-type, fi)D(fi-1) + P(wi, fi-1=xx-type, fi)(1-D(fi-1)) 
where 

D(fi-1) = 1, for fi-1=eij-type 
0, otherwise, or fi-1=xx-type 

 
2.5.1.1.1 Case 1 for Factorization 1:  fi-1 Footprint State Type = eij  

An eij-type footprint state by definition contains a heterogeneous or eij-type dimer, such 
as the eij-type footprint state e0i0…i0 containing the eij-type dimer e0i0.  In such cases when the 
footprint state fi-1 is an eij-type footprint state, it follows from the minimum length assumption 
that there is only one allowed target footprint state.  For example, the transition 

 
e0i0…i0 → i0i0…i0 

 
is allowed but not 

 
e0i0…i0 → i0…i0e1. 

 
Otherwise this would violate the assumption of minimum length for introns.  Hence, the 
subsequent primitive state, i+r+1, is completely determined with certainty.  Thus we write 

 
 P(i+r+1|…, fi-1=eij-type) = P(i+r+1|, …, (i-l, …, i+r)=eij-type) = 1. 
 

It follows then that for such cases, the factor in the iterated product above can be simplified. 
 
P(wi, fi-1=eij-type, i+r+1) / P(ŵi, fi-1=eij-type) = 

(definition of conditional probability) 
 P(bi+R, i+r+1|bi-L+1… bi+R-1, fi-1=eij-type) 
 
=        (chain rule) 
 

P(i+r+1|bi-L+1… bi+R, fi-1=eij-type) P(bi+R|bi-L+1… bi+R-1, fi-1=eij-type) 
 

=       (since P(i+r+1|, …, fi-1=eij-type) = 1) 
P(bi+R|bi-L+1… bi+R-1, fi-1=eij-type) 

=       (substituting f and ŵ from above) 
P(bi+R|ŵi, fi-1=eij-type) 

 
We observe that such values can be estimated from training data and stored in tables for use 
during the Viterbi algorithm. 

It is worth noting here that whereas this simplification represents a substantial 
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computational savings, it cannot be used in any implementation where a vector-based 
discriminant, such as an SVM, is desired as there is only one factor, hence only one component,  
to compute.  However, this particular state context is intended to model a coding/non-coding 
(c/nc) transition that has already been encountered recently in the Viterbi algorithm and hence, 
by the minimum length assumption, there is no competition among the allowed transitions for 
the occurrence of yet another c/nc transition. 
2.5.1.1.2 Case 2 for Factorization 1:  fi-1 Footprint State Type = xx 

Recall that xx-type footprint states are those that do not contain any of the eij-type 
dimers, such as e0i0.  Hence, each xx-type footprint state can be generated by a single primitive 
state, such as i0i0…i0.  In such cases, we do not attempt any simplification as was done in Case 
1.  Nonetheless, we would like to express the iterated factor appearing in the iterated product 
above in terms of probabilities that can be tabulated and estimated from training data. 

We pause here in order to show by contradiction that no further reduction is possible for 
evaluating the joint probability appearing in the numerator of the iterated product above: 

 
P(wi, fi-1, fi)  for values of fi-1 such that  fi-1 = xx-type footprint.   
 

Recalling the splitting of probability into the two terms – one for each of eij-type and xx-type – 
from above, the claim can be stated as 

 
P(wi, fi-1=xx-type, fi) =   (definition of function D(fi-1=xx-type)=0) 
 

P(wi, fi-1=xx-type)D(fi-1=xx-type) + P(wi, fi)(1-D(fi-1=xx-type)) 
≠          (claim) 

P(wi, fi) 
 

We assume the contrary and arrive at a contradiction by counterexample in the following.  We 
first apply the chain rule to factor the original expression in the numerator. 

 
 P(wi, fi-1=xx-type, fi) =      (chain rule) 
  P(fi-1=xx-type | wi, fi) P(wi, fi) 
 

We can then infer from the above that the first factor would be identically equal to unity. 
 
 P(fi-1=xx-type | wi, fi) = 1. 
 

However, we can now demonstrate that the above identity does not hold in general due to the 
following counterexample.  We consider the case for the specific footprint state 

 
 fi = i0i0...i0 
 

It follows from the definition of the allowed transitions that this footprint state can only be the 
result of precisely two possibilities for the preceding footprint state fi-1, namely 

 
 fi-1= i0i0...i0 or fi-1= e0i0...i0 
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Hence, it follows that 
 

 P(fi-1=i0i0...i0|wi, fi=i0i0...i0) = p  and 
  P(fi-1=e0i0...i0|wi, fi=i0i0...i0)= 1-p  for some p, 0  p  1.  
 
Now, since the training data are assumed to be eukaryotic and thus to contain instances of 

observations, wi, for which both values of the footprint state fi-1 = i0i0...i0 and e0i0...i0 are 
attained, it then follows that p must be between – but substantially different from either one of – 
0 and 1. 

 
 0 << p << 1 

 
However, this contradicts the identity that 

 
P(fi-1=xx-type | wi, fi) = 1 

 
as inferred from above and hence proves the original claim of irreducibility for the case of  fi-1 = 
xx-type.  Rather we generally have 

 
P(wi, fi-1=xx-type, fi)(1-D(fi-1=xx-type)) =  (chain rule, and D(fi-1=xx-type)=0) 
 P(wi|fi-1=xx-type, fi) P(fi-1=xx-type | fi) P(fi) 
=       (P(wi|fi-1=xx-type, fi)= P(wi|fi)) 
 P(wi|fi) P(fi-1=xx-type | fi) P(fi) 
=        (chain rule alternative ) 
 P(wi|fi-1=xx-type, fi) P(fi|fi-1=xx-type) P(fi-1=xx-type) 
 

Note that the first chain rule option above indicates that the conditional probability is essentially 
determined by fi and not fi-1 . 

It is worth noting here that we have observed from earlier trials of HOHMM/Viterbi 
predictions that the inclusion of the state transition probability factor in the above result is 
essential for prediction performance and that it‟s omission can have substantial negative impact 

on the accuracy of the resulting Viterbi predictions. 
We now proceed further with the calculation in the case fi-1=xx-type. 
 
P(wi, fi-1, i+r+1) / P(ŵi, fi-1) =     (definition of marginal probability) 
 
 P(wi, fi-1, i+r+1) /  ( allowed) P(ŵi, fi-1, i+r+1=) 
=           (chain rule) 
 P(wi|fi-1, i+r+1) P(i+r+1|fi-1) P(fi-1) / 

 ( allowed) [P(ŵi,|fi-1, i+r+1=) P(i+r+1=|fi-1) P(fi-1)] 
 
=        (simplifying by canceling P(fi-1)) 
 
 P(wi|fi-1, i+r+1) P(i+r+1|fi-1) /  ( allowed) [P(ŵi,|fi-1, i+r+1=) P(i+r+1=|fi-1)] 
 
=        (substituting P(fi|fi-1) for P(i+r+1|fi-1) 
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and P(wi|fi) for P(wi|fi-1, i+r+1), etc.) 
 

 P(wi|fi) P(fi|fi-1) /  (f  allowed) [P(ŵi,|fi=f ) P(fi=f |fi-1)] 
 

We observe the similarity between the expression in the numerator and any of the terms of the 
sum in the denominator.  Also, we note that all of the emission and transition factors 

 
 P(i+r+1|fi-1), P(i+r+1=|fi-1) 
 

occurring in both the numerator and denominator can be tabulated and estimated from training 
data. 

We now factor the conditional probability for the observation wi in the numerator above 
over the observations and simply note that a similar factorization can be applied to the various 
conditional probabilities for the observation ŵi in the terms in the denominator. 

 
P(wi|fi-1, i+r+1) =      (substituting for w) 
 P(b max(0,i-L+1), …, bi+R|fi-1, i+r+1) 
=        (chain rule) 
 P(bi+R|b max(0,i-L+1), …, bi+R-1, fi-1, i+r+1) 

P(bi+R-1|b max(0,i-L+1), …, bi+R-2, fi-1, i+r+1) 
… 

 P(b max(0,i-L+1)|fi-1, i+r+1) 
=       (using Π to denote iterated product) 
 

Π j= max(0,i-L+1) 
i+R [P(bj|b max(0,i-L+1), …, bj-1, fi-1, i+r+1) 

=      (for M = M(fi-1, i+r+1, j) = Markov order) 
 

Π j= max(0,i-L+1) 
i+R [P(bj|b max(0, j-M), …, bj-1, fi-1, i+r+1) 

 
Here in the last step of the above we have departed further from the traditional HMM by 

assuming that the observations in this context have a Markov property whose order is dependent 
on the footprint state transition as well as the position, j, of the observation primitive relative to 
that transition.  Hence, the length of the string of conditional bases in the factors above will vary 
depending upon the specific footprint state and target state fi-1, i+r+1. 

For a sample calculation, we let n=4, R=1, L=0, l=r=2, M=1, and we compute the total 
sequence and state probability as 

 
P(B, ) = 

P(w-R, f-R) { Πi=-R+1 
n+L-2 [P(wi, fi-1, fi) / P(ŵi, fi-1)] } 

 
=       (n = 4, R = 1, L=0, l=r=2, M=1 ) 

 
 P(w-1, f-1) { Πi=0 

2 [P(wi, fi-1, i+3) / P(ŵi, fi-1)] } 
=         (expanding Π ) 
 P(w-1, f-1) 
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[P(w0, f0, 3) / P(ŵ-1, f-1)] 
[P(w1, f1, 4) / P(ŵ0, f0)] 
[P(w2, f2, 5) / P(ŵ1, f1)] 

=       (substituting b and  for w and f) 
 P(b0, -2, …, 2) 

[P(b1, -2, …, 3) / P( -2, …, 2)] 
[P(b2, -1, …, 4) / P( -1, …, 3)] 
[P(b3, 0, …, 5) / P( 0, …, 4)] 

 
Also, the result for the trace back in the Viterbi algorithm can be expressed as follows 

 
Λ* = argmax Λ P(B, Λ) = (-2*, …, 4*) 
 

where 
(-2*, …, 2*) = argmax ()  [P(b0, -2=, -1=, 0=, 1=, 2=) ]  
 

and 
i* = argmax   {P(bi, i-3, …, i+2 = ) / P(i-2, …, i+1)}  for i= 3, 4, 5. 
 

2.6 Factorization 2 of Total Probability (Alternate Factorization) 
Using the chain rule we now factor the total probability of the observations and states – 

initially according to the traditional HMM – into the observation model and the state model as 
follows: 

 
P(B, ) =        (chain rule) 

P(B | ) P() 
=         (chain rule on P(B|) ) 

P(b0 | ) 
P(b1 | b0 ; ) 
… 
P(bi+R | b0, …, bi+R-1 ; ) 
… 
P(bn+L+R-2 | b0, …, bn+L+R-3 ; ) P() 

 
We recognize in the 2nd step above the departure from the conventional HMM by 

conditioning the observation model on previous observations.  This type of model is not without 
precedent and has been referred to in the literature as an autoregressive HMM [26].   

First we consider further factorization of the observation model, P(B|).  Referring back 
to the illustration of extended observations and states in Figure 2, page 12, we again introduce 
the assumption that the conditional dependencies on both the observations and the states for each 
of the above factors are limited accordingly. 

 
P(B | ) =       (assumption of limited dependency) 

P(b0 | -R-l+1, …, -R+r+1 ) 
P(b1 | b0 ; -R-l+2, …, -R+r+2 ) 
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… 
P(bi+R | bi-L+1 , …, bi+R-1, i-l+1, …, i+r+1 ) 
… 
P(bn+L+R-2 | bn-1, …, bn+L+R-1, n+L-l-1, …, n+L+r-1 ) 

=        (substituting f‟s for ‟s) 
P(b0 | f-R ) 
P(b1| b0 ; f-R+1 ) 
… 
P(bi+R|b i-L+1 , …, bi+R-1; fi ) 
… 
P(bn+L+R-2 | bn-1, …, bn+L+R-1 ; fn+L-2 ) 

=        (substituting w & ŵ for b‟s) 
P(w-R|f-R) 
P(w-R+1 | ŵ-R+1 ; f-R+1 ) 
… 
P(wi | ŵi ; fi) 
… 
P(wn+L-2 | ŵn+L-2 ; f n+L-2 ) 

=       (using Π to denote iterated product) 
P(w-R|f-R) { Πi=-R+1 

n+L-2 [P(wi | ŵi ; fi )] } 
 

=      (definition of conditional probability) 
 
P(w-R|f-R) { Πi=-R+1 

n+L-1 [P(wi, fi) / P(ŵi, fi )] } 
 

We observe here that the numerator and denominator of the factors in the iterated product 
above are similar in form to the result of 2.5 Factorization 1 of Total Probability and that they 
may be further factored using the chain rule and the function M(fi-1, fi, j) similarly applied to the 
resulting factors. 

 
Now turning to the state model, we first write using the chain rule 
 
P() =        (chain rule) 

P(-R-l+1) 
P(-l-R+2|-R-l+1) 
… 
P(i+r+1|-R-l+1, …, i+r ) 
… 
P(n-R+r|-R-l+1, …, n-R+r-1 ) 
 

Next we use the simplifying assumption that the state model is of Markov order l + r + 1, 
so that we may write 

 
P() =       (Markov assumption on states) 

P(-R-l+1) 
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P(-l-R+2 | -R-l+1) 
… 
P(i+r+1 | i-l, …, i+r ) 
… 
P(n-R+r | n-R-l-1, …, n-R+r-1 ) 

=        (substituting f for ‟s) 
P(f-R) 
P(f-R+1| f-R) 
… 
P(fi | fi-1) 
… 
P(fn+L-1 | fn+L-2) 

=       (using Π to denote iterated product) 
P(f-R) { Πi=-R+1 n+L-1 [P(f-i | f-i-1)] } 

 
By combining with the observation model above we have the total probability result 
 
P(B, ) = (substituting for observation 

& state models from above) 
P(b0|f-R) { Πi=-R+1 

n+L-1 [P(bi+R | ŵi ; f-i)] } 
P(f-R) { Πi=-R+1 n+L-1 [P(f-i | fi-1)] } 

=        (combining Π expressions) 
P(b0, f-R) { Πi=-R+1 

n+L-1 [P(bi+R | ŵi ; f-i) P(fi | fi-1)] } 
 
Here again, as in 2.5 Factorization 1 of Total Probability, we pause to observe that we 

use this last result and proceed to an implementation with less complexity than in the following 
based on estimates of the above probabilities tabulated from training data.  However, here also 
we have the motivation to replace b with w in order to allow a vector-based state discriminant. 

 
P(B, ) =       (substituting w for b) 
 

P(w-R | f-R) { Πi=-R+1 
n+L-1 [P(wi | ŵi ; fi) P(fi | fi-1)] } 

 
=      (definition of conditional probability) 
 

P(w-R, f-R) { Πi=-R+1 
n+L-1 [P(wi ; fi ) P(fi | fi-1) / P(ŵi ; fi)] } 

 
Time did not allow testing using this factorization.  Also, this factorization appears to share the 
same complexity as that of factorization 1, since both require the same number of table lookups 
per Viterbi table element. 

For a sample calculation using the same parameters as that used in 2.5 Factorization 1 of 

Total Probability, we let n=4, R=1, L=0, l=r=2, M=1, and we compute the total sequence and 
state probability as 

 
P(B, ) =  
       (n = 4, R = 1, L=0, l=r=2, M=1 ) 



37 
 

 
P(w-1, f-1) { Πi=0 

3 [P(wi ; fi ) P(fi | fi-1) / P(ŵi ; fi)] } 
 

=        (expanding Π ) 
 P(w-1, f-1) 

[P(w0 ; f0) P(f0 | f-1) / P(ŵ0 ; f0 )] 
[P(w1 ; f1) P(f1 | f0) / P(ŵ1 ; f1 )] 
[P(w2 ; f2) P(f2 | f1) / P(ŵ2 ; f2 )] 

=       (substituting b and  for w and f) 
 P(b0, -2, …, 2) 

[P(b1, -1, …, 3) P(3|-2, …, 2) / P(-1, …, 3)] 
[P(b2, 0, …, 4) P(4|-1, …, 3) / P(0, …, 4)] 
[P(b3, 1, …, 5) P(5|0, …, 4) / P(1, …, 5)] 
 

=        (chain rule) 
 P(b0, -2, …, 2) 

[P(b1 | -1, …, 3) P(3|-2, …, 2) 
[P(b2 | 0, …, 4) P(4|-1, …, 3) 
[P(b3 | 1, …, 5) P(5|0, …, 4) 
 

Here again, the result for the trace back in the Viterbi algorithm can be expressed as follows 
 
Λ* = argmax Λ P(B, Λ) = (-2*, …, 4*) 
 

where 
(-2*, …, 2*) = argmax ()  [P(b0, -2=, -1=, 0=, 1=, 2=) ]  
 

and 
i* = argmax   [P(bi-2 | i-4, …, i = ) P(i = | i-5, …, i-1)],  for i=3, 4, 5. 
 

2.7 Factor Graph Representation 
It has been shown that any higher order HMM can be reduced through a series of steps to 

a 1st order HMM [31].  Hence, we simply assume that for each HOHMM there is an equivalent 
factor graph representation corresponding to the equivalent 1st order HMM. (See, for example, 
[30].) 
2.8 Estimates of Probabilities from Counts 

We note that all predictions in this effort are based on state prior, state transition, and 
emission probabilities which are estimated directly from counts in the training data and without 
any further refinement.   The parameter M in the HOHMM is a key parameter in this regard, 
indicating whether the resulting estimates for the state prior probabilities have sufficient support 
from the training data and that the resulting transition and emission estimates are reasonable 
approximations of the corresponding maximum likelihood estimates (MLE).  In such cases, we 
then assume also that the predicted states of the DNA test sequence are themselves reasonably 
close to the MLE state predictions. 

In Durbin, et al. in [32], the authors suggest specific approaches to address the dual 
concerns of inadequate counts in the training data as well as inadequate approximation to the 
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maximum likelihood estimates for the transition and emission probabilities.  For the concern of 
inadequate data, the authors provide a sample calculation of the posterior mean estimate (PME) 
using a multinomial distribution for the count likelihood along with a Dirichlet distribution for 
the prior probability of the multinomial parameters.  The resulting PME differs from the MLE 
for the pure multinomial distribution (the specific count divided by the total count over the 
training data) by the inclusion of additional parameters effectively serving as pseudocounts.  We 
assume throughout in this effort that counts in the training data are sufficiently large unless 
indicated otherwise, for example, by an observed reduction in prediction performance due to 
inappropriate choice for the HOHMM parameter M, the (maximum) base Markov order.  (See 
for example, 3.4.2 Summary of Results for Entire_1_contig of C. elegans, page 50.) 

Moreover, the issue of inadequate estimates for the state prior probabilities appears to 
have an impact in only the 1st few columns of the Viterbi algorithm in the HOHMM and is 
typically not a concern in structural gene prediction where coding regions are not expected to be 
present at the very beginnings of test sequences.  The HOHMM appears to recover from the use 
of fairly poor estimates for the state prior probabilities (such as a uniform distribution [24]) after 
only a few columns into the Viterbi algorithm.  The use of inadequate priors, however, is of 
much greater importance for prediction of amino acid components of proteins where the 
prediction at the outset becomes more critical.  In such cases, it would be necessary to obtain 
better estimates of state prior probabilities, etc. using a procedure such as the one cited. 

The authors also include a treatment of the Baum-Welch form of expectation 
maximization (EM) in order to obtain at least a set of local maximum likelihood estimates of the 
transition and emission probabilities.  This iterative calculation would have a substantial impact 
on training complexity of the HOHMM – not for the transition probabilities where growth is 
linear in footprint size, F –  but for the emission probabilities, where the number of parameters to 
compute iteratively via the Baum-Welch algorithm would be significant.  For example, with a 
training sample window size, W=40, and a maximum base Markov order, M=8, the number of 
parameters to be estimated would be bounded below as in the following relation: 

 
# parameters in estimate ≥ 4

M+1[Nxx + NeijNp] 
= (5 + 8*(40-8))4M+1 
≈ 6.8 * 10

7 
 
where Nxx = 5 = # static emission tables (for xx-to-xx-type footprint transitions), 
Neij= 8 = # position-dependent emission tables (for eij-to-eij-type footprint transitions), 
and 
Np = W – M = # supportable sample positions for window, W, and base Markov order M 
 

In general, such estimates are beyond the scope of this effort, and the issue of probability 
estimates is managed with a sufficiently large training data set along with the optimization of 
other parameters in the HOHMM, such as M, F, L, and R. 
2.9 Limitations on Footprint State Size 

We observe for sufficiently large footprint state size, F, that the prediction performance 
eventually becomes degraded.  (See for example 3.6.2 Summary of Results for Chromosomes 

I-V of C. elegans, page 61.)  The optimum size for F is limited usually by the spatial extent of 
the anomalous statistics in the region surrounding the coding/non-coding transitions in the DNA 
sequence data.  Moreover, by assumption the base Markov order can be varied as a function of 
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position from the c/nc site in the DNA data.  (See 2.3.1 Assumptions, page 13.)   This implies 
that we are then free to consider only the maximum of the anomalous extents mentioned above in 
determining the limiting footprint state size, F. 
2.10 Alternate Proof of Linear Upper Bound on Footprint States and Transitions 

As an additional contribution in this effort, we proceed to show that the growth of the 
number of allowed transitions among footprint states is linear in the hidden state length F when 
taken in units of overlapping dimer states, s. 

 
Assumptions: 

 
1) The alphabet, , of primitive hidden states has the fixed size N. 
2) The allowed alphabet, AF  

F+1, of hidden, footprint states of length F in dimers is a 
proper subset of (the Cartesian product) F. 

 
Consider the many-to-one mapping in which all heterogeneous footprints (i.e. of type xy, 

or eij in our application) by definition are associated with one and only one pair of distinct 
primitives, x and y.  There are (at most in our application) (N

2) eij-type dimers and each eij-type 
dimer generates its own set (of size F) of footprints indexed by i=0,1,...,F-1.  The splitting factor, 
K, is introduced to account for the case of the footprint type e2j being split into the three 
footprint state types, e2jTAA, e2jTAG, and e2jTAG.  Also, there are only N distinct xx-type 
footprint states.  

As a consequence of the above, we observe that an upper bound for |AF|, the size of AF, is 
provided by... 

 
|AF| = # footprint states of size F in dimers 

≤ KF(N
2) + N 

= (FK(N-1)/2 + 1)N     (since (N
2) = N(N-1)/2) 

 
where K = splitting factor defined above, 
F = footprint state size in dimers, and 
N = # of xx-type footprint states. 
 

We observe that the expression above is clearly linear in F, the length in dimers of the footprint 
states. 

Finally, we observe that (by definition) the set of allowed transitions among footprints 
states of length F in dimers essentially serves as the new set of footprint states of length F+1 in 
dimers.  Hence, for an upper bound on the number of such transitions we simply substitute F+1 
for F in the above relation. 

 
|AF+1| = # footprint states of size F+1 in dimers 
 = # allowed transitions among footprint states of size F in dimers 

≤ (F+1)K(N-1)/2 + 1)N 
 

Since the above argument was formulated for fixed but arbitrary F, it follows that the footprint 
state transition space as well as the footprint state space are both bounded by linear growth in F.  
QED.  
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2.11 Algorithmic Complexity 
In this section we compare the algorithmic complexity in both time and memory of the 

traditional, 1st order HMM with that of the HOHMM.  It should be pointed out that the Viterbi 
algorithm used in the HOHMM testing phase is a special case of message passing algorithms, for 
which the complexity in general depends upon the number of iterations [30].  In the following, 
and as is typically done for the special case of the Viterbi algorithm, we assume that only one 
iteration is to be performed for both the 1st order HMM and the HOHMM.  (For applications 
involving iterative execution in the testing phase of the HOHMM – or multiple Viterbi passes – 
see 3.5.3 In-frame Stop Filtering, page 58 and 4.1 Additional Applications of Iterative 

HOHMM, page 68.)  Also in the following, in order to specify algorithmic complexity, we use 
the notation referred to as “big Oh”.  (See, for example, [33].) 
2.11.1 HMM Complexity in Comparison 

For comparison with the HOHMM, we first consider the complexity of the traditional 1st 
order HMM.  During HMM training, the accumulating and storing of the frequency of 
occurrence of transitions among the hidden states in the training data set requires time and 
memory according to the following:  

 
C HMM, train, time = O(Ttrain) 
 

and 
 
C HMM, train, memory = O(N2) 
 

where 
 
Ttrain = the length of the training data set, 
N = the number of hidden states, and 
N2= the number of transitions, assuming all possible transitions are allowed. 
 
Next, during HMM testing, the Viterbi algorithm is used in order to dynamically 

determine (and track via back pointer) the most probable previous state (and hence the most 
probable path of states ending) at each state, while doing so at each point in the testing data set.  
Thus, the time and memory complexity involved in the Viterbi algorithm is given by 

 
CHMM, test, time = O(Ttest N

2) 
 

and 
 
C HMM, test, memory = O(Ttest N) 
 

where 
 
Ttest = the length of the testing data set and N as above. 
 
In the following section we compare the above results with the algorithmic complexity of 

the HOHMM. 
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2.11.2 HOHMM Training Complexity 

We examine the complexity of the HOHMM for a genome of DNA nucleotide base size, 
T; coding density D, incorporating the number of genes as well as some notion of average 
number of exons and/or introns per gene; and S denoting an average length for both features, 
exons and  introns, as well as for the junk extents between genes.  We will also need to designate 
the (maximum) base Markov order, M; footprint state size (in dimers), F; and both the left and 
right base emission extents, L and R, respectively.  Finally, we will need to designate a sampling 
window size, W, that is chosen sufficiently large as to accommodate both the L and R base 
extents along with the maximum base Markov order, M. 

For convenience we consider only the theoretical training context, where strings of the 
maximum base string length, M=8, are counted as the sample window is advanced along the 
testing data set.  (In actual implementation, the samples are first extracted and written to disc for 
future analysis off line.)  

Training consists of counting the frequency of occurrence of substrings in the sample 
window as that window advances along the test data according to the given dimer type.  Recall 
that there are 2 major dimer types, eij and xx, with each type including 8 and 5 dimer subtypes, 
respectively.  The training process can be itemized as follows. 

 
1) O(8) for eij dimers (pre-base ≠ post-base), 8 subtypes: e0i0, e1i1, e2i2, i0e1, 

i1e2, i2e0, e2j, je0. 
a.  (O(TD)) for each annotated c/nc transition.. 
b. (O(W)) for each position in the sample window(with support permitting 

according to maximum base Markov order, M).. 
c. (O(4M+1)) count the frequency of occurrence of string size M+1 (storage only) 

2) O(5) for xx dimers (pre-base = post-base) – 5 subtypes: exon0(e0e1), exon1(e1e2), 
exon2(e2e0), ii, jj. 

a. Case C/NC 
i. Coding (exon) (O(TD)) for each annotated c/c transition.. 

ii. Non-coding (intron, junk) (O(T(1-D)) for each annotated nc/nc 
transition.. 

b. (O(1)) for center position only in the sample window.. 
c. (O(4M+1)) count the frequency of occurrence of string size M+1 (storage only) 
 

Thus, the time and memory complexity of the HOHMM training process is given by.. 
 
 C HOHMM, train, time = O(TDW) 
 C HOHMM, train, memory = O(W4M) 
 

for training set size T, coding density D, sample window size W, and maximum base Markov 
order M. 
2.11.3 HOHMM Testing Complexity 

2.11.3.1 HOHMM Testing Time Requirement 

Recall that testing consists of the following: 
1) Constructing the Viterbi table (considering columns advancing left to right). 

a. Initializing the first column with state prior probabilities 
b. for each observation string.. 
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i. Computing a new column of greatest path probabilities, and 
ii. Computing a new column of back pointers in order to record a most 

probable state path – at each row in the column. 
2) Retracing the most probable path of states through the table of back pointers as 

constructed above. 
 
The size of the Viterbi table is determined by 
1) length = T + R + F/2 -1 
2) width = # footprint transitions = 13 + 20F 
 
The footprint transition types are 
1) for Dom=1: 20(F-1) 
2) for Dom=2: 13 + 20 = 33] 
 
The time and memory requirements are detailed as follows. 
 
1) O(13 +20F) = O(F) Initialization of allowed transitions. 
2) O(T+R+F/2) Construction of Viterbi table for each column. 

a. O(20(F-1)) = O(F) For each eij-to-eij (Dom-1) footprint transition. 
i. Lookup the (log) emission probability of the emitted base located at 

extent R for the given transition. 
ii. Lookup the (log) probability of the given transition. 

b. O(33) = O(1) For each xx-to-xx or xx-to-eij (Dom=2) footprint transition. 
i. O(1) For each allowed transition originating from the given xx source 

footprint. 
ii. O(L +R) For each base position in the base emission extent, L+R, 

lookup the (log) emission probability of the observed, emitted base for 
the given transition. 

3) O(T+R+F/2) Viterbi traceback 
 
Based on the above, the complexity of the HOHMM testing process is written initially 
and then further simplified as follows. 
 
 CHOHMM, test, time = O(F +(T+R+F/2)(F+L+R) + T+R+F/2) 
 
         = O( (T+R+F/2)(F+L+R) + T + R)  for T > F 
 
         = O( (T+R+F/2)(F+L+R) )   for T > F 
 
         = O( T(F+L+R) )    for T > F, since R+F/2 < F+L+R 
 
In comparison with the HMM, we observe that the role of N2 in the HMM is now filled 

by the expression (F + L + R).  In particular we point out the linearity in F for fixed L and R, as 
indicated in the sample set of time trials shown in Figure 5. 
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Figure 5 A sample of HOHMM test times for test data length 1Mb 
 

2.11.3.2 HOHMM Testing Memory Requirement 

We observe that only two consecutive columns of the Viterbi probability table are 
required at any step in the Viterbi decoding.  Thus the maximum memory requirement in testing 
the HOHMM is similar to that of training with the exception of an added term for storage of 
Viterbi traceback information.   This additional term scales according to both footprint size and 
data length. 

 
 CHOHMM, test, memory = O(W*4M + FT) 
 

for sample window size W, maximum order M, footprint size F, and data length T. 
2.12 HOHMM Summary 

We have provided two alternative factorizations for the HOHMM including the 
following: 

 
1) an emission-dependent emission model, where the emission probabilities depend not 

only on the hidden states as in the traditional HMM but also on other (here 
neighboring) observations (also referred to as autoregression [26]), 

2) a higher order state transition model, where the state transitions at the single primitive 
level of the traditional, 1st order HMM have been replaced by higher order state 
transitions encoded as extended states. 

 
Also, the complexity of the first factorization was shown to be linear in the footprint state size 
and confirmed with sample time trials.  Finally, from the formal similarity of the two 
factorizations, the second factorization appears to have the same complexity as the first, though 
time did not allow confirmation via sample time trials for the second factorization.  
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3 HOHMM Implementation and Results 

3.1 Implementation - Hardware/Software Setup 
All (additional) high-level coding for this work was done in Perl – predominantly for the 

following purposes: 
 
1) data preprocessing 
2) distribution and control of computational tasks, and 
3) post processing and summarizing of results 
 

( For an overview of the code, see 7.6 Code Design for HOHMM, etc., page 141.) 
3.1.1 Perl and SMP for Genomic Signal Processing 

 It is worth noting that although Perl has become the de facto choice for most purposes in 
genomic signal processing, it appears that Perl development per se has lagged substantially in its 
support of symmetric multiprocessing (SMP) hardware.  Using the facilities in the core packages 
“threads” and “threads::shared”, the application developer, can use multiple Perl system threads 
at once, but whether such threads are allowed to run simultaneously depends upon the OS-
implementation [34].  Experience has shown, predominantly in the Linux/Ubuntu environment, 
that that no more than 2 OS-level processes are allocated at any one time though as many as 8 
Perl threads – one per core processor on Sun UltraSparc hardware –  have been requested by the 
application.  This leaves any remaining processors in any multicore hardware platform unused by 
the Perl code and hence idle – contrary to the impression that the programmer might have had 
that his or her threads were being executed simultaneously. 

Admittedly, additional support exists in Perl via add on modules (e.g. “forks”) for true 

concurrency via native threading (including the extra complexity of managing inter-process 
shared memory).  However, the HOHMM training and testing processes involves extensive 
sampling and counting tasks, which may take great advantage in the use of shared memory for 
the accumulation of counts.  (Testing tasks are fundamentally sequential as done here, though 
parallelizable as such but not without the added complexity of splicing together sequential 
prediction results.) Such processing certainly lends itself to the recent increase in availability of 
multicore, SMP hardware platforms – rather than just distributed processing.  Nonetheless, some 
simple preliminary tests of the extension modules for native threading have indicated that (the 
shared memory portion of ) run time execution during training per se would have increased by a 
factor of ~106. 

Thus the future use of Perl as the de facto choice for higher volume genomic data 
processing appears to be in question.  For that reason, though time did not allow in this effort, 
further investigation is warranted into future porting/converting of the Perl portion of the 
HOHMM to another language with perhaps better integration with native-OS threading.  
Whereas Python, in its core modules, does not appear to use native-OS threads, extensions exist 
such as the Python module “multiprocessing” and Jython (Python + Java) which may work well 
but for which time did not allow further investigation in this effort.  (See also [35].) 
3.1.2 HOHMM Application Features 

The following are some features worth noting of the training and testing code developed 
in this effort. 

1) Support for a single, Perl-based, hence fully programmable, user configuration input 
file for specifying both training and testing tasks to be run within a given session, 
where all training tasks must complete before any testing tasks are initiated. 
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2) Support for remotely concurrent, locally multi-threaded (via Perl threads – see 
limitations above in 3.1.1 Perl and SMP for Genomic Signal Processing) 
processing as specified in the user configuration file on multiple instances of 
hardware running Unix/Linux with public key-authentication. 

3) Support for task submittal via user configuration file (though in separate sessions) in 
the following environments: 

a. Platforms with direct job scheduling (vis-à-vis see next item) with any such 
Perl-supported operating system, including MS Windows, Unix, and Linux. 

b. Controlled task scheduling via LoadLeveler on IBM/AIX. 
4) A well defined, job-scheduling interface, allowing for the support for any other such 

environment with special job scheduling, proprietary or otherwise – with the 
moderate, incremental development of a task scheduling module compliant to that 
interface. 

5) Support for reuse of a single user configuration file across multiple sessions involving 
different groups of training and/or testing tasks – via the specification by the user of 
two additional (typically quote-delimited) runtime, input parameters (in addition to 
the configuration file name) defining lists of regular expressions to be used as search 
strings in order to select the desired subset of training and testing task names, 
respectively, as defined in the configuration file. 

6) An extensive list of diagnostic options supported in the user configuration file for 
training and testing, including the following. 

a. (training) global sample output, in-frame stop sample filtering, short sample 
inclusion policy, relative entropy logging,  

b. (testing) sequence gain factor, maximum count of Viterbi passes for in-frame 
stop filtering, in-frame stop penalty log-factor, several options for logging in-
frame stop filtering, and options for logging values from consecutive columns 
of the Viterbi probability and backpointer tables. 

7) Limited support is provided for protection against denial of service attacks due to 
multiple submissions of the same job. This is accomplished on the client platform by 
checking whether a server task process is already in progress with the given runtime 
parameters on the given server (local or remote). 

3.1.3 OS Environments Used 

The OS environments used in this effort include the following: 
1) 5 Sun UltraSparc, dual quad-core servers each with 8GB of RAM (though not without 

inconsistencies in available RAM due to variations in policy of memory acquisition 
of the various graphics driving software) 

2) Various IBM/AIX clusters of the LONI (Louisiana Optical Network Initiative [28]) 
network, including predominantly Neptune and Lacumba, where each such cluster 
includes one front end node and 13 compute nodes, where each node houses 8 
processors and 16GB of RAM. 

3.1.4 Software Tools Used 

The software tools used in this effort include the following: 
 
1) Perl development: Easy Eclipse for LAMP, Version 1.2.2.2 for WindowsXP [36] 
2) C development: Easy Eclipse for C and C++, Version 1.3.1.1 for WindowsXP [37] 
3) C compilation: GCC, the GNU Compiler Collection [38] 
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4) 3D Plotting: Gnuplot [39] 
5) 2D Plotting: Charts in MS Excel 2007 for WindowsXP 

3.2 Method of Measurement for Prediction Performance 
In general, the measure of prediction performance was taken at the two levels, full exon 

and individual base (nucleotide) levels, according to the specifications established by Burset and 
Guigo in [17].  In particular, there is one point of departure from the cited method. (See 3.2.3 

Expectation of the Measure vs. Measure of the Expectation below.)  The need for both base-
and exon-level measurements is based on the existence of 2 types of discernible variations in 
information content present in the DNA sequence data – 1) over the extent of coding regions 
compared to non-coding regions and 2) in the vicinity of coding/non-coding (c/nc) boundaries.  
For reference, the following excerpt is worth noting from the authors‟ discussion of 

measurement. 
“Evaluation at the exonic structure level provides complementary information about the 

accuracy of the programs compared to that provided by evaluation at the coding nucleotide level.  
At the coding nucleotide level we are measuring how well the sequence coding regions are 
located – the search by content component of the gene structure prediction programs – while at 
the exonic structure level, we are measuring how well the sequence atomic signals (splice sites 
and start and stop codons) are identified – the search by signal component of the programs.  High 
accuracy at the coding nucleotide level does not necessarily imply high accuracy at the exonic 
structure level.  For instance, a program can have high sensitivity at the coding nucleotide level, 
because most of the coding nucleotides have been identified, but very low sensitivity at the 
exonic structure level, because most splicing signals have been incorrectly predicted.” 
3.2.1 Accuracy at the Base or Nucleotide Level 

The first of the two accuracy measures used in this effort, at the base or nucleotide level, 
is given by 

 
snsp_avg = (sn + sp)/2, 
 
where 
sn = TP/(TP + FN) and 
sp = TP/(TP + FP), 
 
such that 
TP = true positive count (correctly predicted actual coding) 
FP = false positive count (falsely predicted actual non-coding) 
FN = false negative count (falsely predicted actual coding) 
 

We note that the authors have used an alternative form of specificity from the usual form  
 

sp=TN/(TN+FP), as explained, for example, in [40]. 
 
In the context of gene prediction, with typically high concentrations of junk, the contribution 
from the quantity TN= true negative (or correctly predicted actual non-coding) can overwhelm 
FP in an otherwise moderately accurate prediction.  Thus it seems reasonable to exclude any 
contribution from TN in order to avoid “very large noninformative values” of the resulting 

specificity measurements. 
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For the sake of convenience, their “Approximate Correlation(AC)” for the base level 

accuracy measure was replaced with the simple average of base level sensitivity and specificity.  
Moreover, the published results were converted to the simpler measure, the average of  sn and sp, 
for the sake of reference in the test results for this effort as is reported below in 3.5 The 

Benchmark Data Set ALLSEQ. 
As the authors explain, AC is derived from the measure referred to as “Average 

Conditional Probability” or ACP, where ACP in general is a combination of 4 ratios and is 

defined as the average over those ratios of  the 4 that are defined. 
 
ACP = (1/4) [ TP/(TP + FN) + TP/(TP + FP) + TN/(TN + FP) + TN/(TN + FN) ] 
 

Thus ACP has the dual advantage over all other measures considered that: 
 

1) by convention, it is defined for all values of TP, TN, FP, and FN, and 
2) it provides equal weighting for coding and non-coding regions regardless of their 

relative size. 
 

The quantity AC mentioned above is simply a transformation of ACP to cover the interval [-1, 1]. 
 
AC = (ACP – 0.5) * 2 

 
As such, AC then provides a ready comparison to the traditionally preferred measure, the 
Pearson product-moment correlation coefficient, which is not defined for all values of TP, TN, 
FP, and FN. [17] 
3.2.2 Accuracy at the Full Exon Level 

The second of the two accuracy measures, at the full exon level, presents a much greater 
challenge as it requires the successful prediction of multiple events or positions in the DNA test 
sequence.  These events include the start and end positions of exons as well as the continuation 
of the exon at all intermediate points.  The full exon accuracy is given by 

 
SNSP_AVG = (SN + SP)/2, 
 
where 
SN = (number of correct exons)/(number of actual exons) and 
SP = (number of correct exons)/(number of predicted exons) 
 

It should be noted that this measure for full exon accuracy does not allow for any 
improvement due to partial exon prediction.   More specifically, the exon level accuracy can 
only be improved by the precise prediction of one or more entire exons – at both start and end 
positions. 
3.2.3 Expectation of the Measure vs. Measure of the Expectation 

Besides the use of the simpler average (sn + sp)/2 for the base accuracy in this effort in 
place of the AC measure mentioned above,  there is another point of departure from the method 
of measurement used by the authors Burset and Guigo as discussed in their work [17] as well as 
in [4], concerning the handling of multiple sequences.  In both of the cited evaluations, the base 
or nucleotide accuracy for the entire test data set was taken as the average or expectation of the 



48 
 

base accuracy measurements of the individual DNA test sequences.  This same approach using 
expectation was taken for the exon accuracy as well.  This has the effect of weighting genes with 
shorter and fewer exons more heavily in the base and exon level accuracy measurements, 
respectively.  Moreover, this effect can become extremely pronounced in cases such as both of 
the cited evaluations, where all DNA sequences tested contain only a single gene. 

In contrast in this effort the numbers of correct (and separately incorrect) predictions 
were first summed over all test sequences and then the measurements were computed from those 
sums for the exon and base level measurements, respectively.  Consider an extreme case, for 
example, where these two different methods can yield different results as shown in Table 11 
below. 

 

Table 11 Comparison of methods for testing performance on multiple sequences 

Sequence 
name 

# of exons in 
sequence (N) 

Case 1 Case 2 
# of true 

positives (TP) SN(=TP/N) 
# of true 

positives (TP) SN(=TP/N) 
Sequence A 10 10 1 9 .9 
Sequence B 1 0 0 1 1 

E(SN)   .5  .95 
SN(E)   10/11=.91  10/11=.91 

 
 
As we see from the examples in the table, the latter method as used here in this effort 

does not discriminate between the two cases where only one exon was missed as such in the two 
different contexts.  Granted that in the context of the cited evaluations, this method of 
measurement appears appropriate for the data sets used, where it is known in advance (and may 
be leveraged as such in the design of the program being tested) that one and only one gene is 
contained in every instance for the test sequences in the test data set.  However, in what is a more 
realistic context of raw genomic data there are extenuating circumstances. 

1) Raw genomic sequences can contain unknown amounts of genes. 
2) Raw genomic can involve significant local variations in coding density, in which case 

the detection of motifs signaling the starts and ends of genes becomes a higher 
priority. 

3) In principal, scoring at the exon level in effect designates the exon as the fundamental 
unit being counted rather than the gene, whereas according to the method cited more 
complex genes would be weighted the same as simpler genes with fewer exons. 

As indicated above, in each case of the 3 data sets used in this effort, the measurements 
for both the exon and base level prediction differ somewhat from the method used in the cited 
evaluations.   Moreover, of the 3 data sets tested in this effort, ALLSEQ is the only data set 
consisting entirely of only single-gene, DNA sequences.  Hence, it is the only case in this effort 
where the cited method of measurement is somewhat more appropriate.  Thus, for reference 
purposes, the results of the HOHMM for ALLSEQ in this effort have been measured precisely 
according to the cited method – in addition to the method used here and more appropriately so 
for DNA sequences containing many genes.  (See 5.1 Conclusions from HOHMM Results, 
page 79.) 
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3.3 HOHMM Results 
For a discussion of method of measurement, see 3.2 Method of Measurement for 

Prediction Performance, page 46. 
There are 4 main sections of results.  The first 3 sections are for reporting on results of 

the HOHMM per se and the last section shows the results of computations of relative entropy as 
will be explained.  In general, all results for the HOHMM in this effort have been determined 
using the method of measure of the expectation (of true positives, for example, over all 
sequences) rather than the expectation of the measure (of sensitivity and/or specificity).  (See 
3.2.3 Expectation of the Measure vs. Measure of the Expectation, page 47.)  As an exception 
and for direct comparison with the results cited in [17] for the ALLSEQ data set, the results using 
the cited method of measure have also been included in 5.1 Conclusions from HOHMM 

Results, page 79.   
The first 3 sections include extensive testing results of the HOHMM for 3 different data 

sets, respectively, taken in order of increasing size of the data sets.  For each of these 3 sets of 
testing trials, the results include a set of 2D graphs summarizing the best accuracy (where the 
maximum is taken over parameters L and R) plotted vs. (maximum) base Markov order M and 
footprint size, F.  Moreover, in the case of each data set, the summary plots are accompanied in 7 

Appendix by an extensive set of 3D graphs plotting accuracy for individual values of L and R.  
In each of the 3D graphs, by the smoothness of the surfaces depicted, these 3D plots serve 
overall as a demonstration of stability of the HOHMM prediction over variations in all 4 
parameters, M, F, L, and R. 

In particular, the first 2 of the 3 sections of prediction results are simple, brute force 
parameter searches with data sets of increasing size, the first ~200kb (entire_1_contig) and the 
second ~2Mb (ALLSEQ), where the training and testing data sets are identical.  For reference 
purposes in the latter, we also display the published results in [17].  (See also 3.2 Method of 

Measurement for Prediction Performance above for the discussion on the method used to 
determine accuracy for a collection of sequences.)  The third section shows the results of 5-fold 
cross validation with the largest data set tested, ~70Mb (Chromosomes I-V of C. elegans). 
3.4 The Data Set Entire_1_contig for C. elegans 
3.4.1 Data Preparation 

Concerning the term contig, in quoting the original paper [41] the website [42] defines 
contig as follows. 

 
„Definition of a contig  
 

In order to make it easier to talk about our data gained by the shotgun method of sequencing we 
have invented the word "contig". A contig is a set of gel readings that are related to one another 
by overlap of their sequences. All gel readings belong to one and only one contig, and each 
contig contains at least one gel reading. The gel readings in a contig can be summed to form a 
contiguous consensus sequence and the length of this sequence is the length of the contig.‟ 
 

Moreover, in a BLAST analysis performed on entire_1_contig [43], the variety of 
alignments returned indicates that it is most likely a training contig, where evidently the 
segments of DNA in question were not necessarily overlapping yet have simply been 
concatenated into a single file. 
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The properties of the resulting data set are summarized below in Table 12.  In particular 
we note the data size ~200Kb, the smallest but not the least dense of the 3 data sets studied here. 

Table 12 Properties of the entire_1_contig data set 

# Bases 
Coding 
Density 

Sequences Introns Exons 
Total BP Avg. Len. Total BP Avg. Len. Total BP Avg. Len. 

265018 0.21 64 111375 1740.23 221 55650 251.81 285 55725 195.53 
 
3.4.2 Summary of Results for Entire_1_contig of C. elegans 

For detailed results for entire_1_contig, including combined 3D surface and contour 
graphs of both exon- and base-level accuracy for all values of the parameters M, F, L, and R 
tested, see 7.1 Detailed Results for Entire_1_contig of C. elegans, page 88. 

As mentioned above, both here and in the case of the 2nd data set tested, ALLSEQ, the 
training and testing data sets are identical.  Thus we consider these results as ideal only and as a 
(brute force) parameter search rather than a valid test of prediction accuracy.  Time did not allow 
to complete the parameter search with this data set for a local maximum in the exon nor in the 
base level predictions.  (See, however, 3.6.2 Summary of Results for Chromosomes I-V of C. 

elegans, page 61.) 
Figure 6 and Figure 7 below are graphs of  exon- and base-level maxima, respectively, of 

HOHMM‟s prediction performance, where each plotted value represents a maximum taken 

independently of the other plotted values over the parameters L and R.  These graphs illustrate 
the enhanced performance of HOHMM, e.g. M5 (nucleotide=.99, exon=.99) over simpler 
HMM‟s, e.g. M0 (.81, .63) using only the intrinsic information in the data – excluding any 
extrinsic information, such as EST‟s, protein homology, etc. 

In comparing the results of this data set to the other results in this effort, the quality of the 
best result (SNSP average = 99.6% for M=5, F=12) can be attributed to the small size of the 
training data set as well as adherence among the donor and acceptor splice sites to the consensus 
sequences, gt and ag, respectively.  Moreover, the reduced performance at full exon level for 
M=8 compared to that for M=5 is an additional indication of insufficient training size reflected in 
lack of support for M=8 probability estimates at splice sites.  (Time did not allow the 
computation and inclusion of relative entropy values for entire_1_contig.  See 3.7 Relative 

Entropy of C/NC Transitions, page 65.) 
For raw genomic data, preconditioning would include a removal of the majority of the 

junk state portion of the training set prior to training, such as extraction of open reading frames 
(ORF‟s) or ORF filtering. (See also [44]).  For an HOHMM-based approach to ORF filtering, see 
4.1.1 Sequence-gain Preprocessing, page 68. 
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Figure 6 Maximum full exon HOHMM performance for data entire_1_contig  

 

Figure 7 Maximum base level HOHMM performance for data entire_1_contig 
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3.5 The Benchmark Data Set ALLSEQ 
3.5.1 Data Preparation 

In [17], the authors include the steps used in order to arrive at the ALLSEQ data set [45], 
which we quote here and reiterate in itemized form further below. 

 
“The sequences that constituted the test set to benchmark the pro- 

grams analyzed were obtained from the vertebrate divisions of Gen- 
bank Release 85.0 (October 15, 1994). The set of all genomic DNA 
sequences from these divisions encoding at least one complete protein 
coding gene was initially considered. In practice the sequences were 
extracted, annotated with the keyword „„DNA‟‟ in the LOCUS field, 
containing at least one „„CDS Key‟‟ in the FEATURES table. 
From this initial set, the following sequences were discarded: the 
sequences encoding at least one incomplete protein product (the 
„„CDS Location‟‟ indicated an incomplete protein product or the „„CDS 
Key‟‟ was labeled with the Qualifier „„/partial‟‟), the sequences for 
which the exact location of the protein coding regions was not unam- 
biguously determined (the „„CDS Location‟‟ contained the Operator 
„„one-of‟‟), the sequences encoding protein coding genes in the comple- 
mentary strand (the „„CDS Location‟‟ contained the Operator „„comple- 
ment‟‟), the sequences encoding protein coding genes defined in data-  
entries other than the one corresponding to the sequence (the 
Operator „„join‟‟ in the „„CDS Location‟‟ contained the Accession Num- 
ber of a database entry), the sequences encoding pseudogenes (the 
“CDS Key‟‟ was labeled with the Qualifier „„/pseudo‟‟), the sequences 
more than one gene or alternatively spliced forms of the 
same gene (containing more than one „„CDS Key‟‟ in the FEATURES  
table), and the sequences encoding protein coding genes without in 
trons (the „„CDS Location‟‟ described a single continuous coding region).” 

“We obtained, in this way, the set of all vertebrate genomic DNA 
and sequences in the database encoding one complete (and only one) 
spliceable functional protein product in the forward strand. There 
were 1410 sequences in this set. The integrity of the data set was 
further enforced by discarding the following sequences: the se- 
quences whose protein coding segment did not start with the codon  
ATG (74 sequences), the sequences whose protein coding segment 
did not end with a stop codon (100 sequences), the sequences whose 
protein coding segment was not a multiple of three (15 sequences), 
the sequences with donor sites lacking the dinucleotide GT as the 
first dinucleotide after the termination of the exons and with acceptor  
sites lacking the dinucleotide AT as the first dinucleotide before the 
initiation of exons (133 sequences), and the sequences whose protein 
coding segment contained stop codons in-frame (1 sequence).” 

“Finally, sequences corresponding to immunoglobulins and histo- 
compatibility antigens were also discarded, as well as additional 
pseudogenes - as indicated in the sequence entry DEFINITION 
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field; 1043 sequences remained.  After discarding three sequences 
longer than 50,000 bp, the final test set was obtained by selecting 
only the sequences with „„date of entry‟‟ after January 1993, essen- 
tially equivalent to selecting the sequences entered into GenBank or 
modified since Release 74. We attempted, in that way, to minimize 
the overlap between the test set constructed here and the training  
sets used during the development of the programs analyzed. Al 
though it is not always possible to infer from the published papers 
the database release used to build the sequence set on which a given 
program has been trained, it appears that only Xpound and GenLang 
among the programs analyzed may have included sequences in  
their training sets entered into GenBank after Release 74. Total lack of  
overlap between the test set used here and the training sets of the 
programs analyzed, though, cannot be guaranteed for those pro- 
grams accessed through Internet servers, which may have been up- 
dated since they were first published.” 

“There were 570 sequences in the final test set, totaling 2,892,149  
bp. There were 2649 coding exons, corresponding to 444,498 coding  
bp (which gives a coding density of about 15%). We will refer to 
this set as the ALLSEQ set. A subset of ALLSEQ was considered 
separately. It comprised those sequences in ALLSEQ that did not 
show a significant similarity to the vertebrate sequences entered into 
the database prior to January 1993. We will refer to this set as  
NEWSEQ. Our aim here was to build a test set of sequences that  
did not show similarity to the sequences used in the training sets of 
the programs analyzed. Performance of the programs in this set may 
provide the most objective estimation of the real performance of the 
programs, or at least of their ability to implement the general properties 
of the genic sequences and not only the particularities of the 
examples they learn from. In practice, to build the NEWSEQ set we 
compared the protein sequence encoded by each sequence in the 
ALLSEQ set with the set of protein sequences encoded by the verte- 
brate genomic DNA sequences among the 1043 sequences resulting 
from the above procedure that had been entered into the GenBank 
database prior to January 1993. To compare the protein sequences 
we used the BLASTP program (Altschul et al., 1990). Only the se- 
quences in ALLSEQ for which no HSP score greater than 100 was 
found when compared with the above set of sequences were included 
in the NEWSEQ set. There were 196 sequences in this set. Although 
sequences in the NEWSEQ data set are on average substantially 
longer (6838 bp) than sequences in the overall ALLSEQ data set 
(5073 bp), coding density and G / C content were essentially identi- 
cal in both sets (coding density is 0.14 in NEWSEQ and 0.15 in 
ALLSEQ; G / C content is 0.50 in NEWSEQ and 0.49 in ALLSEQ). 
It does not therefore appear that genes encoded by the NEWSEQ 
sequences are intrinsically more difficult to predict than genes en- 
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coded by sequences in the overall ALLSEQ set.”  
 
1) Select the set of all sequences encoding at lease one complete protein from the 

vertebrate divisions of GenBank Release 85.0 (October 15, 1994). 
2) From the above discard the following: 

a. Any sequence encoding at least one incomplete protein. 
b. Any sequence for which the exact coding regions was not unambiguous. 
c. Any sequence encoding a protein in the complementary (reverse encoding) 

strand. 
d. Any sequence containing a gene or part of a gene associated with other 

sequences. 
e. Any sequence encoding a pseudogene 1 (via “CDS Key‟‟ value „„/pseudo‟‟). 
f. Any sequence encoding more than one gene or alternative splicing of a gene. 
g. Any sequence encoding a gene without introns. 

3) From the 1410 sequences resulting from the above the following further discards 
were made: 

a. Any sequence whose coding segment did not start with the start codon ATG. 
b. Any sequence whose coding segment did not end with a stop codon (TAA, 

TAG, TGA). 
c. Any sequence whose coding segment was not a multiple of 3 in length. 
d. Any sequence with any intron not beginning with GT and/or ending with AT 

(sic). 
e. Any sequence whose coding segment contained an in-frame stop codon. 

4) The following additional discards were made: 
a. Sequences for immunoglobulins, histocompatibility antigens and additional 

pseudogenes not discarded using previous criteria. 
b. 3 sequences longer than 50,000 bp. 

5) One final selection was made from the sequences surviving the above in that the 
sequence‟s date of entry postdated Release 74 of Genbank (January, 1993) – intended 
as such to minimize the overlap of the resulting test set with training sets for the 
programs tested in [17]. 

 
As mentioned previously, because the training and testing sets were identical, we 

consider these results as a brute force parameter search yielding what to expect in the ideal case 
and not necessarily a valid test of prediction performance.  At this writing, no suitable, separate 
training set is attainable, since a recent query via web-based utilities at NCBI [46] indicated that 
Genbank no longer contains any vertebrate sequence entries dated during or prior to December, 
1992.  Thus a cross-validation analysis would seem to be the only viable alternative for testing 
with the ALLSEQ data set.  However, it is worth noting that whereas the authors in [17] did 
physically separate the test set from the training set by a date of entry criterion, no direct 
determination was made as to the actual degree of overlap between the testing and training data 
sets. This observation is duly noted in [4], with the additional observation that such overlap was 
inevitable since the ALLSEQ data set did contain the “vast majority” of vertebrate sequences 
available at the time.  It is reasonable then to consider these results a fair comparison with those 

                                                   
1 “Pseudogenes are defunct relatives of known genes that have lost their protein-coding ability or are 

otherwise no longer expressed in the cell.” [64] 
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reported by Burset and Guigo, though perhaps still at risk of overestimating performance 
accuracy for the same reason. 

The authors of [4] also provide an informative discussion and collection of references on 
exon and intron durations among others.  In characterizing one reference in particular [47], the 
authors observe “that the in-phase hexamer measure, which measures the frequency of 
occurrence of oligonucleotides of length six in a specific reading frame, is the most effective” for 
inclusion in gene finding.  Moreover, the authors have assembled their own test data set, called 
HMR195 [48], based on sequences submitted to Genbank after August 1997. Whereas this may 
once again raise concern of overlap similar that of the ALLSEQ tests, the authors and others [49] 
argue that an independent test data set “should not necessarily exclude the sequences that are 
similar to the sequences in the training set, because, realistically, the unannotated sequence 
submitted to the gene-finding program might also be similar to an already known and 
characterized sequence that has been use in the program's training set.”  As such, this data set 
was chosen after the time had passed for the training of the programs tested, thus addressing the 
authors‟ dual purposes of bypassing the training/testing overlap issue of the ALLSEQ data set as 
well as constructing a more appropriate test of the more recently developed gene finding 
software at that time.  By such time, many gene finding programs had begun to incorporate 
higher order dependencies in genomic data into their models. 

Though time did not allow here, the HMR195 test set and reported results would likely 
present a more appropriate comparison to HOHMM performance than those using ALLSEQ for 
the following reasons. 

 
1) The data set HMR195 is more recent than ALLSEQ. 
2) The tests reported using HMR195 have substantially less risk of overestimating 

performance accuracy due to less overlap with the training sets involved, and 
3) The authors indicate that all 7 programs tested in their report used intrinsic 

information only – “coding statistics and signal models” learned directly from the 

respective training sets. 
 

Thus, a valid performance test would conceivably involve a training set formed from the 
complement of the test set – or vertebrate sequence entries during or before August, 1997. 

We proceed nonetheless for now with the results of the parameter search using the 
ALLSEQ dataset, whose properties are summarized below in Table 13. 

Table 13 Properties of the ALLSEQ data set 

# Bases 
Coding 
Density 

Sequences Introns Exons 
Total BP Avg. Len. Total BP Avg. Len. Total BP Avg. Len. 

2892149 0.15 570 1754950 3078.86 2079 1310452 630.33 2649 444498 167.80 
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3.5.2 Summary of Results for Benchmark Data ALLSEQ 

For detailed results for ALLSEQ, including combined 3D surface and contour graphs of 
both exon- and base-level accuracy for all values of the parameters M, F, L, and R tested, see 7.2 

Detailed Results for ALLSEQ,  page 99.  
Figure 8 and  Figure 9 below contain plots for exon- and base-level maxima, respectively, 

over the parameters L and R of HOHMM‟s prediction performance.  Here again for ALLSEQ, 
they illustrate the enhanced performance of  HOHMM over simpler prediction models, including 
the (null hypothesis result) HOHMM for which the base Markov parameter, M=0.  It is worth 
noting that the HOHMM uses only the intrinsic information in the data – making no use of 
extrinsic information, such as EST‟s, protein homology, etc.  Also, here as for the 
entire_1_contig data set, time did not allow to complete the parameter search with this data set 
for a local maximum in the exon nor in the base level predictions.  (See, however, 3.6.2 

Summary of Results for Chromosomes I-V of C. elegans, page 61.) 
In comparing the results of this data set to the other results in this effort, the quality of the 

best result can be attributed to the increased size of the training data set (despite the decreased 
coding density) as well as adherence among the donor and acceptor splice sites to the consensus 
sequences, gt and ag, respectively.  Moreover, the enhanced performance at full exon level for 
M=8 compared to that for M=5 is an additional indication of sufficient training size in support 
for M=8 probability estimates at splice sites.  (Here, as for entire_1_contig, time did not allow 
the computation and inclusion of relative entropy values.  See 3.7 Relative Entropy of C/NC 

Transitions, page 65.) 

4 For reference to the original benchmark results, the plots also 

best performing predictors from the original benchmark study, 

intrinsic and extrinsic genomic information, respectively.  (See 

measurement, 3.2 Method of Measurement for Prediction 

Performance, page 46.)  At both the full exon- and base- levels, 

the HOHMM measurements for M=8 and as such for all values 

of F tested (again using only intrinsic information from the data) 

appear higher consistently and by a discernable margin than 

both the top performing, intrinsic-only competitor, FGENEH, as 

well as the top performing, intrinsic-and-extrinsic competitor, 

GeneID+.  For further discussion including testing methodology, 

see 5 Discussion and Future Work Discussion and Future Work 
, page 79. 
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Figure 8 Maximum full exon HOHMM performance for data ALLSEQ 

 

 Figure 9 Maximum base level HOHMM performance for data ALLSEQ 
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4.1.1 In-frame Stop Filtering 

The occurrence of a stop codon (TAA, TAG, or TGA) that is in frame (starting at reading 
frame 0) and located internally in an exon – rather than in the expected last codon position in the 
last exon of a gene – is referred to as an “in-frame stop”. 
4.1.1.1 In-frame Stop Data Preparation 

The authors state that no sequence with an in-frame stop was allowed in forming the 
ALLSEQ data set.  However, in one sequence with 3 exons, OCTNFBETA, an in-frame stop was 
artificially introduced in its internal exon as the result of our method in practice of 
disambiguating any ambiguous nucleotide position in the data simply by overwriting it with the 
nucleotide A.  The annotation supplied by the website for the sequence OCTNFBETA is shown 
here among its neighbors in the annotation file provided. 

 
OCAPOAIG 510 552 701 854 1319 1919 
OCTNFBETA 502 576 660 765 963 1375 
OCUTGLOB 3302 3356 5643 5830 6158 6190 

 
The annotation above for OCTNFBETA indicates there are 3 exons in the base positions 

502-576, 660-765, and 963-1375.  In this case, an ambiguously sequenced codon, TNA, 
occurring at base position 687 in the internal exon 660-765 was inadvertently changed into the 
in-frame stop codon TAA, but was used nonetheless as a convenience for this investigation into 
in-frame stop filtering.  Also, training was performed using all 570 sequences, excluding the 
single exon from OCTNFBETA containing the (artificially introduced) in-frame stop.  
Nonetheless, testing did include the sequence OCTNFBETA in its entirety. 

Otherwise, the issue of in-frame stops and their filtering is not present per se in the 
ALLSEQ data set nor in the raw C. elegans genomic data nor the entire_1_contig of C. elegans. 
4.1.1.2 In-frame Stop Filtering Algorithm 

In general, in-frame stops are known to occur in some organisms, but such occurrences 
are considered rare, and such organisms require special biomolecular  mechanisms in order to 
avoid premature termination of the translation process.  We make no effort here to distinguish the 
true genomic in-frame stops from those that are false, presumably as artifacts of the curation 
process.  As such, we view the in-frame stop as an error in the curation process and thus (provide 
the option to) attempt to actively filter such an event out by penalizing it during possibly multiple 
passes of the Viterbi prediction process.  This is done according to user-specified values for both 
penalty factor and maximum number of passes.  It is worth noting that a tradeoff has been made 
in the design of the algorithm, where reduced complexity of implementation was favored over 
the impact to execution time.  This tradeoff involves the use of multiple passes through the 
Viterbi prediction results, first for counting, then for recording the locations of in-frame stops, 
etc.  These locations are then penalized in subsequent Viterbi passes. 

The pseudo-code for iterative, in-frame stop filtering is as follows. 
 

1) Perform the 1st pass of Viterbi table construction and optimum path traceback as 
usual. 

2) Scan the predicted exon coding segments and make note of the e0 (frame 0) positions 
of all the in-frame stops – including any in-frame stops interrupted by introns as well. 
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3) Perform the next Viterbi pass, encountering each such flagged position and penalizing 
any footprint transition contributing to the continued e0 prediction of the base emitted 
at the flagged site. 

4) Repeat steps 2 and 3 above until either all in-frame stops have been removed or the 
specified maximum number of passes has been met. 

 
4.1.1.3 Results of In-frame Stop Filtering on OCTNFBETA 

Again only the one sequence, OCTNFBETA, was tested due to its (artificially 
introduced) in-frame stop.  Recall from above that the goal of in-frame stop filtering is to 
discover the in-frame stop codon and heavily penalize the corresponding Viterbi probability 
sufficiently so that some alternate path is chosen as more probable in the subsequent Viterbi pass. 

A value of -10 was chosen for the log-penalty factor and used throughout.  This was 
informed by observations of the change in log-probability values in the Viterbi probability table.  
The average decrease in log-probability between consecutive columns in the Viterbi probability 
table was on the order of -1 for most rows, including those rows responsible for promoting the 
in-frame stop interpretation e0e1e2 where the penalty was applicable, though decreases as much 
as -4 were observed in some other rows. 

In order to test the in-frame stop filtering, it was first necessary to identify all those 
prediction results without the iterative, in-frame stop filtering where the in-frame stop was 
predicted as such.  As shown in Table 14 below, of all the combinations of HOHMM parameters 
tested, only 4 specific combinations resulted in the detection of any portion of the internal exon, 
660-768, whose predicted start position is highlighted in the table.  More specifically, 2 of those 
combinations naturally excluded the in-frame stop after the 1st Viterbi pass, but the other 2 
combinations required a 2nd  Viterbi pass in order to filter out the in-frame stop.  In all 4 cases, 
both boundary exons were successfully predicted after the 1st Viterbi pass. 

Table 14 Combinations of HOHMM parameters resulting in in-frame stop after 1st Viterbi pass 

M F L R 

HOHMM predicted exons for OCTNFBETA  

After Viterbi pass 1 After Viterbi pass 2 

Start End Start End 

5 4 8 0 
502 576 502 576 
660 768 711 768 
963 1375 963 1375 

5 4 8 1 
502 576 502 576 
711 768 711 768 
963 1375 963 1375 

5 4 9 0 
502 576 502 576 
660 768 711 768 
963 1375 963 1375 

5 4 9 1 
502 576 502 576 
711 768 711 768 
963 1375 963 1375 
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In order to show the results via the standard 3D graphs, it would be necessary to modify 
the annotation provided for the sequence OCTNFBETA by deleting the internal exon 660-768.  
Time did not allow for the generation of the standard 3D graphs, but in place of those graphs, we 
simply state the result here as already shown in Table 14 above.  Though limited in scope, these 
results are a positive indication of the efficacy of this approach for in-frame stop filtering. 
4.2 Chromosomes I-V of C. elegans With 5-fold Cross-validation) 

The data for Chromosomes I-V of C. elegans were obtained from release WS200 of 
Wormbase [18].  We note that the sixth and final chromosome of C. elegans, designated for 
legacy reasons as Chromosome X, was excluded from this analysis as it is known to have 
substantial differences in gene encoding properties as compared to Chromosomes I-V [24]. 
4.2.1 Data Preparation and Procedure for Chromosomes I-V of C. elegans 

The following steps were used in order to prepare the data prior to training and testing. 
 
1) The data was scanned for in-frame stops, and ultimately no in-frame stops were 

detected as confirmed by Wormbase curator Paul Davis [43]. 
2) The data was scanned for alternative splicing, and 2974 (14.5%) out of a total of 

20515 sequences represent alternative splicing – including some forward encoded 
alternative splicings interfering with other, reverse encoded alternative splicings. 

3) In order to avoid the complexities involved in the prediction of alternative splicings, 
the transitive closure with respect to overlap of all alternative splicings was deleted 
from the data and the remaining annotation was appropriately offset in compensation 
for the deletions.  For all branches of all alternative splicing sequences – along with 
any sequences interfering with them - the following segments, s, were deleted: 

a. s=the 5‟- UTR, where (15b< length(s) <=200b) (15=WS/2: See item 7 below) 
b. s=the 3‟- UTR, where (15b< length(s) <=3kb), and 
c. s=the entire coding sequence, CDS, including exons and introns 

4) In order to avoid both the complexity of segmented prediction as well as any bias 
toward any specific subset of chromosomes during cross-validation, the following 
were performed: 

a. Both data and annotation files for all 5 chromosomes were divided into a total 
of 70 autonomous chunks of nominal size 1Mb and minimum size 500kb. 

b. The resulting 70 chunks were then evenly distributed into five (5) groups for 
5-fold cross-validation. 

5) Training was performed independently on each of the above chunk groups with a 
sampling window size of first WS=30, then WS=40. 

6) Counts from training on chunk groups 1-4 were combined to form probability 
estimates used to test on chunk group 5, then training on 2-5 for testing on 1, and so 
on. 

7) Results reported are derived from the sums of the various corresponding counts (such 
as full exon match, exon-base match, etc.) resulting from the 5 sets of test trials 
above. 
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Table 15 Summary of data reduction in C. elegans, Chromosomes I-V 

Summary of data reduction in C. elegans, Chromosomes I-V 

File # sequences # alt. % alt. # exons # alt. % alt. 

CHROMOSOME_I 3537 619 17.50% 24295 5251 21.61% 

CHROMOSOME_II 4161 629 15.12% 25427 5106 20.08% 

CHROMOSOME_III 3277 590 18.00% 21541 4400 20.43% 

CHROMOSOME_IV 3886 560 14.41% 24390 4478 18.36% 

CHROMOSOME_V 5654 576 10.19% 32135 4201 13.07% 

Total 20515 2974 14.50% 127788 23436 18.34% 

Table 16 Properties of data set C. elegans, Chromosomes I-V (reduced) 

# Bases 
Coding 
Density 

Sequences Introns Exons 
Total BP Avg. Len. Total BP Avg. Len. Total BP Avg. Len. 

69024243 0.20 14813 28391591 1916.67 67093 14742264 219.73 81906 13647511 166.62 

 

4.2.2 Summary of Results for Chromosomes I-V of C. elegans 

For detailed results for Chromosomes I-V of C. elegans, including combined 3D surface 
and contour graphs of both exon- and base-level accuracy for all values of the parameters M, F, 
L, and R tested, see 8.3 Detailed Results for Chromosomes I-V of C. elegans, page 110. 

It is worth noting that for this data set, twice as many trial sets were run – corresponding 
to twice as many values of the parameter F for footprint size.  The reason for this is to capture at 
least a local maximum in prediction performance for both the full exon and base level 
predictions.  The tabulated results indicate that a local maximum for the exon and base level 
predictions were attained at F=15 and F=12, respectively. 

Table 17 and Table 18 below show the resulting values and Figure 10 - Figure 13 below 
contain plots for the average over the 5 folds of HOHMM‟s prediction performance for exon- 
and base-level, respectively, with maxima implicitly taken over the parameters L and R. 

In comparing the results of this data set to the other results in this effort, the reduced 
performance at full exon level for M=8 compared to that for M=5 (as in entire_1_contig) is an 
indication of insufficient training size reflected in lack of support for M=8 probability estimates 
at splice sites.  (See 4.3 Relative Entropy of C/NC Transitions, page 65.) 

In spite of a coding density greater than ALLSEQ, the lower prediction accuracy for this 
data set compared to those of entire_1_contig and ALLSEQ can be attributed in part to the 5-fold 
cross-validation procedure used for this data set and not for the latter.  Moreover, the level of 
preconditioning is lower for this data set, such as allowance in the data for disagreement with the 
consensus sequences, gt and ag, at donor and acceptor splice sites, respectively, as well as the 
allowance of reverse encodings. 

In order to improve the prediction accuracy for this data set and others so conditioned, we 
would seek to include additional, similar genomes such as other round worms besides C. elegans 
for incorporation in the training data set.  With this data set alone the number of c/nc sample 
instances is on the order of 103.  In general, this is short of the support required (49 or ~105) for 
the use of 8th order Markov dependency among the bases at the c/nc transition sites. 
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Finally, there are other pending modifications to the core HOHMM application.  (See 6  

Discussion and Future Work, page 79.) 
 

Table 17 Exon level HOHMM accuracy of 5-fold cross-validation trials on C. elegans I-V 

F\M 0 2 5 8 

2 0.39985 0.60708 0.66158 0.49026 

4 0.40564 0.6231 0.67501 0.51028 

6 0.43967 0.71362 0.71037 0.52767 

8 0.45253 0.72424 0.71945 0.54618 

10 0.47289 0.73006 0.72376 0.55752 

12 0.48044 0.73376 0.72772 0.568 

14 0.48529 0.73995 0.7022 0.5438 

16 0.49135 0.74236 0.69982 0.54655 

18 0.49534 0.74172 0.70111 0.54737 

20 0.49858 0.74303 0.70267 0.55007 

 

Table 18 Base level HOHMM accuracy of 5-fold cross-validation trials on C. elegans I-V 

F\M 0 2 5 8 

2 0.68591 0.8715 0.88803 0.81979 

4 0.69029 0.87465 0.89216 0.82666 

6 0.69809 0.88878 0.89734 0.83259 

8 0.70397 0.89225 0.89914 0.83991 

10 0.71345 0.89408 0.90027 0.84244 

12 0.71832 0.89529 0.90123 0.84541 

14 0.72336 0.89796 0.89587 0.83792 

16 0.72617 0.89893 0.89601 0.83902 

18 0.72882 0.89886 0.89655 0.83852 

20 0.73082 0.89913 0.89682 0.83938 
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Figure 10 Full exon level accuracy for C. elegans 5-fold cross-validation (F view) 

Figure 11 (Nucleotide) Base level accuracy for C. elegans 5-fold cross-validation (F view) 

  



64 
 

Figure 12 Full exon level accuracy for C. elegans 5-fold cross-validation (M view) 
 

Figure 13 (Nucleotide) Base level accuracy for C. elegans 5-fold cross-validation (M view) 
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4.3 Relative Entropy of C/NC Transitions 
In addition to their extensive bibliography in [32], the authors include an informative 

example of a relative entropy analysis comparing 1st order to 0th order dependence of consecutive 
bases in a sample of 757 acceptor splice sites taken from the human genome.  The example 
clearly indicates a significant level of 1st order to 0th order relative entropy in the two positions of 
the AG consensus.  Moreover, in the typical eukaryotic genome, there are significant levels of 
relative entropy between transition and non-transition states for higher orders of dependency 
between consecutive bases. (See, for example, the discussion and coding and signal strength in 
[50].) 

Thus, as part of a comprehensive parameter search for the HOHMM, this higher order 
relative entropy can be an invaluable input in parameter tuning of the HOHMM, including the 
determination of optimal base Markov order, M, as a function of both the eij-transition state as 
well as the position of the base in question relative to the eij-dimer generating the given eij-
transition state.  In this effort, time did not allow the variation of the base Markov order as such – 
one specific scheme for specifying the base Markov order as a function of state and position was 
chosen at the outset and used throughout. 

There is yet another aspect of parameter tuning for the HOHMM.  As already suggested 
above in 2, the HOHMM with its extended observation or base emission string allows for the use 
of a vector-based state transition, e.g. splice site, sensor as an alternative to the typical scalar-
based discriminator of both the HMM and the HOHMM.   In the work reported in [25], such an 
alternative sensor was used – with promising results – in a scope limited to donor and acceptor 
splice sites.  There the kernel of an SVM was constructed based on vectors whose components 
were taken, among other possibilities, as the emission probabilities of positions in a window 
centered on donor and acceptor splice sites, respectively.  The resulting set of SVM-based 
discriminators attained promising results when used to determine locations of splice sites in test 
sets containing true and false splice sites for several different vertebrate species.  Again, though 
time did not allow the incorporation of an SVM-based classifier into the HOHMM, the scalar 
discriminator of the generalized Viterbi algorithm of the HOHMM (for stepwise determination of 
the most probable state) could readily be replaced with an SVM-based, vectorized discriminator 
– for each of 8 different transition contexts as listed in the following.   

Recall that the HOHMM used herein includes 8 distinct c/nc transitions (4 each of c→nc 

and nc→c).  For each such transition probability there is the corresponding non-transition 
probability as the prediction proceeds from left to right along the testing data, such as in the 
ordered pairs (ei, ee)x3, (ie, ii)x3, (je0, jj), and (e2j, ee).  Thus we compute of the 
relative entropy of the transition probability relative to the corresponding non-transition 
probability for all positions, i, (as support allows) in a sampling window of fixed and uniform 
length, as enumerated in the following:  

 
1. H(P(je0,M,i;P(jj,M))  
2. H(P(e0i0,M,i;P(ee(i), M))  
3. H(P(e01i01,M,i;P(ee(i), M))  
4. H(P(e02i02,M,i;P(ee(i), M))  
5. H(P(i0e1,M,i;P(ii, M))  
6. H(P(i1e2,M,i;P(ii, M))  
7. H(P(i2e0,M,i;P(ii, M))  
8. H(P(e2j,M,i;P(ee(i),M)) 



66 
 

 
where M represents the base Markov order, and 
ee(i) represents the cyclical variation among the three frame specific dimers e0e1, e1e2, 
and e2e0. 
 
For detailed results of relative entropy, including individual graphs of relative entropy for 

each of the 8 c/nc transition types enumerated above, see 8.4 Detailed Results of Relative 

Entropy for Chromosomes I-V of C. elegans, page 131. 
As a summary, Figure 14, is a 3-by-4 arrangement of 12 graphs of the same information 

as in the initial 16 but grouped differently according to the transition dimer classes, je0/e2j, ei, 
and ie, signifying gene boundaries, donor splice sites, and acceptor splice sites, respectively.  
These graphs are arranged vertically according to the base Markov order of the related 
probabilities and horizontally according to the transition dimer classes just mentioned above.  In 
general, any extended region of elevated relative entropy could serve as a promising source of 
(position-dependent) emission probabilities.  The corresponding emission probabilities would in 
turn be used as vector components, possibly in combination with emission probabilities of 
different Markov orders, in an SVM-based, c/nc transition discriminator. 
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Figure 14 Summary of relative entropy, H(P(eij, M, i), P(xx, M,i)), for reduced C.E., I-V with 
log scaling.  (Graphs are arranged vertically according to base Markov order, M, and horizontally 
according to classes of transition dimer, je0/e2j(left), ei(middle), and ie(right).) 
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5 Other HMM Applications 

5.1 Additional Applications of Iterative HOHMM 
The following sections outline uses of an iterative HOHMM for various preprocessing 

applications. 
5.1.1 Sequence-gain Preprocessing 

We suggest the use of an iterative HOHMM as a preprocessing tool for identification of 
open reading frames2 to be used on genome-scale data sets where sufficient annotation is already 
known and available for use in training. The term sequence gain refers to the factor applied to 
the computed probability of transition from primitive state j to e0 – or the onset of a coding 
sequence.  The pseudo-code for this application is as follows. 

 
1) Pass 1: Run HOHMM  with train=test in order to determine optimum HOHMM 

parameters, M, F, L, R. 
2) Pass 2: Rerun HOHMM, again with train=test and optimum parameter values 

determined above but variable sequence gain, G – in order to determine coding 
sequence neighborhoods as well as optimum sequence gain, G, according to genomic 
sequence density. 

3) Pass 3: Rerun HOHMM, with same training set as above and optimum M, F, L, R, but 
G=1 on sequence segments resulting from previous step. 

 
5.1.2 Iterated Motif Detection/Boosting 

Here also, we assume that the training has been performed using a genome-scale data set.  
The identification of motifs can help to predict gene start- and stop-sites, where the signals are 
usually weaker than that of splice sites. 

 
1) Pass 1: Run HOHMM on test data with optimum M, L, F, and R. 
2) Pass 2: Count 12/15-mers and identify those instances (and their predicted state 

context from above) occurring well above, for example, 2x the otherwise average 
count according to uniform distribution.  Also determine ratio of peak-to-uniform-
average frequency. 

3) Pass 3: Rerun HOHMM on test data applying gain (in the predicted context) to 12/15-
mers identified above, where gain is equal to ratio determined above. 

 
5.1.3 Alternative In-frame Stop Filtering 

As an alternative method to that investigated above (see 3.5.3 In-frame Stop Filtering, 
page 58), the same procedure as for motif boosting above could be performed, only applying a 
penalty factor (< 1) instead of gain factor (> 1). 
5.2 HMM with Duration 
5.2.1 Revisiting the Conventional HMM 

An HMM consists of 2 main computations (by Durbin et al. in [5]): 
 

1. Baum-Welch Iteration of recursively defined forward/backward probabilities 
 

                                                   
2 “Strings of codons uninterrupted by stop codons are known as open reading frames (ORFs) and are a 

distinguishing feature of many prokaryotic and eukaryotic genes.” [61] 
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fl(i+1) = P(x1...xi+1 , πi+1 = l) = el(xi+1) πk fk(i)akl 

bk(i) = P(xi+1...xL|π i = k) = π l aklel(xi+1)bl(i +1) 
2. Viterbi Path Determination 

vl(i) = el(xi)maxk(vk(i-1)akl) 
ptrl (i) = argmaxk (vk(i-1)akl) 

 
(We note as mentioned in [29] that yet a 3rd type of computation can be made in order to 
determine the probability that a given sequence of observations would be emitted by a given 
HMM, once having been fully specified by the appropriate transition and emission probabilities.)  

In the HMMwD described here, each of the stationary transition probabilities akl are 
replaced by a dwell-time dependent update factor. The forward/backward probabilities used in 
the standard HMM-EM algorithm occur when evaluating the sequence probability p(Z0…L-1) by 
breaking p(Z0…L-1) into two pieces via use of a single hidden variable treated as a Bayesian 
parameter: p(Z0…L-1) = Σk p(Z0…i,si=k)p(Zi+1…L-1,si=k) = Σk fkibki, where fki = p(Z0…i,si=k) and bki 
= p(Zi+1…L-1,si=k). Given stationarity, the state transition probabilities and the state probabilities 
at the ith  observation satisfy the trivial relation pqi = Σkakqpk(i-1), where pqi = p(Si=q), and pq0 = 
p(S=q), and the latter probabilities are the state priors. The trivial recursion relation that is 
implied can be thought of as an operator equation, with the operation of the product by akq 
followed by summation (contraction) on the k index. The operator equation can be rewritten 
using an implied summation convention on repeated Greek-font indices (Einstein summation 
convention): pq = aβqpβ. Transition-probabilities in a similar operator role, but now taking into 
consideration local sequence information via the emission probabilities, are found in recursively 
defined expressions for the forward variables, fki = eki(aβkf -1)), and backward variables, bki = 
akβeβ(i+1) bβ(i+1). The recursive definitions on forward and backward variables permit efficient 
computation of observed sequence probabilities using dynamic programming tables. It is at this 
critical juncture that side information must mesh well with the states (column components in the 
table), i.e., in a manner like the emission or transition probabilities. Length information, for 
example, can be incorporated via length-distribution-biased transition probabilities (introduced in 
[23]), and that is what is experimentally validated done here. 
5.2.2 HMM with Duration via Cumulant Transition Probability 

The material in this and following sections is taken largely from [19].  The transition 
probabilities for state e to remain in state e, an ee transition can be  computed as: Prob(ee|Le = 
L) = Prob(Le ≥ L+1)/Prob(Le ≥ L). The transition probabilities out of state „e‟ can have some 

subtleties, as shown in the following where the states are exon (e), intron (i), and junk (j). In 
this case, the transition probabilities governing the following transitions,  (jj) –> (je), (ee) –> 
(ej), (ee) –> (ei), (ii) –> (ie) are computed as: Prob(ei| Le = L) = Prob(Le = L)/Prob(Le ≥ 

L) x 40/(40 + 60)  and Prob(ej| Le = L) = Prob(Le = L)/Prob(Le ≥ L) x 60/(40 + 60), where the 

total number of (ej) transitions is 60 and the total number of (ei) transitions is 40. 
The pseudo code to track the critical length information, on a cellular basis in the 

dynamic programming table, goes as follows: 
 
1) Maintain separate counters for the junk, exon and intron regions. 
2) The counters are updated as follows: 

a. The exon counter is set to 2 for a (je) – (ee) transition 
b. The exon counter gets incremented by 1 for every (ee) – (ee) transition 
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3) Prob(Le ≥ L+1) is computed as: Prob(Le ≥ L+1) = 1 - ∑i=1..L Prob(Le = i). Hence we 
generate a list such that for each index k > 0, the value 1 - ∑i=1..k Prob(Le = i) is 
stored. 

 
As a brief aside, simplifying from a 3-state model, {e,i,j}, to a 2-state model, {e,i}, 

after n occurrences of state e, the 2 cases of update factor to handle are: 
 
P(en+1|ee..en) = P(Le  n+1)/P(Le  n) 
P(i|ee..en) = P(Le = n)/P(Le  n) 
 

Similarly for n occurrences of state i, and there are no probability splitting ambiguities upon 
exiting state e as there is only one state to exit to in the 2-state system, (and there are no 
differences in the Viterbi and Forward/Backward transition probability alterations).  

Consider, as an example, a simple extension of our 2-state notation to cover [a time series 
of ] N+1 states: {e, i1,...,iN}. Suppose we are interested in the probability of an i after seeing a 
length 4 segment of e-states: 

 
P(i|eeee) = 1-P(e|eeee) = 1- P(Le=5)/P(Le=4) 
 

There are two types of transition rule that appear to result, one for Viterbi, with its maximum 
operation on paths, and one for Forward/Backward, with its sum operation. For the 2-state case, 
N=1, and these update rules involving “splitting” factors all become the same (see Results in 
[19]): 

 
Viterbi update:  

(1) Difference splitting: p(ik|eeee)=[1-P(Le=5)/P(Le=4)] * [1+P(ik|e)–Avgz P(Z|e)] 
(2) Ratio splitting:         p(ik|eeee)=[1-P(Le=5)/P(Le=4)] * P(ik|e)/[Avgz P(Z|e)] 
 

In this situation we are not maintaining a sum rule on probabilities, here we are viewing each 
path thru the table in a manner consistent with the maxprob evaluation. 

 
Forward/Backward update: 

(1) Difference splitting: p(ik|eeee)=[1-P(Le=5)/P(Le=4)] * [1+P(ik|e)–Avgz P(Z|e)]/N 
(2) Ratio splitting:         p(ik|eeee)=[1-P(Le=5)/P(Le=4)] * P(ik|e)/[N*Avgz P(Z|e)] 
 

The equation above with the factor  [1+P(ik|e)–Avgz P(Z|e)]/N provides a suitable “splitting 

factor”, as i
k and e probabilities sum to one, remain positive, and have other nice properties. 

The splitting factor is not unique, however, as case (2) makes clear. 
It is important to note that we appear to have some freedom on splittings of probabilities 

upon exiting a state (when we are using the length distribution cumulants to describe transition 
probabilities, etc.). This is merely an associated effect of that length distribution incorporation – 
now upon exiting that length distribution our main factor is P(ik|some prior length of e), that 
factor is blind to the appropriate splittings amongst the “not e” states, and we must incorporate 

another factor to deal with the probability splitting – in the case of forward/backward, this is 
chosen to obey a probability sum to 1 on all cases, on Viterbi this must maintain each path‟s 
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probability with proper weighting with respect to the others (consistent with the max-path 
operation). 
5.2.3 Real-time Application – Cheminformatics 

The conventional Hidden Markov Model (HMM) is first order and uses fixed transition 
probabilities for remaining in a given state, which leads to a geometric length distribution for 
remaining in that state [32] – i.e., conventional HMMs automatically impose geometric length 
distributions on their same-state regions, like exon or intron lengths or blockade level durations. 
An HMM-with-Duration (HMMwD) is an HMM where true, or a much more complete, 
knowledge of the length distributions on same-state regions is incorporated into the model. (See, 
for example, [32].) Here we describe a novel HMMwD where the non-geometric length 
distribution information is incorporated via dwell-time dependent transition probabilities for 
transitions from a state to itself [19]. New experimental results are shown, and compared to an 
exact HMMwD (described in [51]). 

Part of the novelty of the new “cellular” HMMwD that is proposed is that it is defined at 

the cell-level in its dynamic programming table construction, much like the conventional HMM, 
with one column‟s computation only dependent on information held in the prior column (in an 
overall table computation involving a single pass through the table). Our HMMwD can be 
defined for either the Viterbi or the Forward/Backward algorithms (see Methods in [19]). This is 
convenient because we have a method for distributed HMM processing based on such table 
computations (see [23]). That method is shown to work very effectively for the Viterbi algorithm 
(similar distribution methods for the Forward/Backward distribution algorithm are also discussed 
there). The end-result of all of this is that very sophisticated feature extraction tools can be 
brought to bear for real-time pattern recognition informed (PRI) operation. 
5.2.4 Real-time Processing Hardware/Software Setup 

For reference in the following, we provide in this section an overview of the real-time 
setup for the cheminformatic context.  Though time did not allow application of the HMMwD to 
actual cheminformatic signals in this effort, we include results of this (implicit) HMMwD on 
synthetic signals in the following section, 5.2.5 HMM with Duration Experimental Tests.  (For 
an additional, offline analysis of cheminformatic signals with explicit HMMwD see [51].)   

In the real-time setup, a client machine is configured with a data acquisition interface 
(DAQ [52]) for direct transfer of control signals and data to and from the lab apparatus.  The 
client is also placed on a network with compute servers available for requesting HMM-based 
feature extraction from signals acquired by the client from the lab apparatus.  The client is able to 
concurrently perform the following using a single 1.5GHz processor with no hyper-threading: 

 
1. Acquire data from the DAQ buffer at 50 KHz sample rate. 
2. Update the client GUI screen with the acquired data – though a 10x data 

decimation was required in order to avoid DAQ overflow due to delays in reading 
from the DAQ buffer 

3. Perform tFSA logic to screen for signals resulting from molecular capture events 
at the nanopore channel 

4. Send capture-signals as long as 100ms in duration at a rate 10 per second to a 
waiting 1.5GHz processor, Linux-based TCP/IP server for HMM-based feature 
extraction 

5. Receive extracted HMM features from the TCP/IP server 
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6. Compute the classification of the HMM features with tolerance via a binary SVM 
previously trained on 9gc and 9at bphp signals. 

7. According to the user‟s preset preference, issue a control signal to the DAQ 

resulting in ejection of the undesirable molecule so determined from the nanopore 
channel site. 

 
5.2.5 HMM with Duration Experimental Tests 

Results for the implicit HMMwD are presented below in Figure 15 - Figure 22, along 
with the comparative results from an explicit HMMwD (for a 2-state system) included for 
comparative analysis (a detailed analysis with the explicit HMMwD is given in [51]). The 
explicit 2-state HMMwD has 2n states, where n is the number of dwell bins in the quantization 
of the dwell-time distribution. The computations needed scale quadraticly in n. So, for n=1000, 
the explicit HMMwD can take 1,000,000-times longer to compute than the HMMwD described 
here (or the conventional HMM). Performance of the new HMMwD is given in comparison to 
the conventional HMM also shown in the figures. The simplicity of the binary signal case 
actually provides a challenging case for differentiating the performance of the HMMwD methods 
from the conventional HMM, so the preliminary results shown here show promise for the overall 
validity and utility of the method. 

In another test, we compare the performance of our 2-state HMMwD to explicit 
HMMwD and conventional HMM (see Table 19 and Table 20 below), with varying size data 
generation and length distribution representation. The comparative scores shown are not 
optimised for use of the internal HMMwD, but are meant to explore the validity of the model and 
the behaviour of the prediction accuracy of the different methods – which consistently appear in 
the graphs in order of increasing performance as conventional HMM (good), implicit HMMwD 
(better), explicit HMMwD (best) – but the latter at much greater computational cost. The results 
clearly demonstrate the superior performance of the HMM-with-duration over its simpler, HMM 
without Duration, formulation. With use of the EVA-projection method this affords a robust 
means to obtain kinetic feature extraction. The HMM with duration is, thus, critical for accurate 
kinetic feature extraction, via a pairing of the HMM-with-Duration stabilization with EVA-
projection [19]. 
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Figure 15  Average accuracy of Viterbi decoding using 1-step approximation of 1k-step 
generating duration model 

 Figure 16  Standard deviation of accuracy of Viterbi decoding using 1-step approximation of 1k-
step generating duration model  



74 
 

Figure 17  Average accuracy of Viterbi decoding using 10-step approximation of 1k-step 
generating duration model 

Figure 18 Standard deviation of accuracy of Viterbi decoding using 10-step approximation of 1k-
step generating duration model  
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Figure 19 Average accuracy of Viterbi decoding using 100-step approximation of 1k-step 
generating duration model 

Figure 20 Standard deviation of accuracy of Viterbi decoding using 100-step approximation of 
1k-step generating duration model  
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Figure 21 Average accuracy of Viterbi decoding using same 1k-step decoding duration model as 
1k-step generating duration model 

Figure 22 Standard deviation of accuracy of Viterbi decoding using same 1k-step decoding 
duration model as 1k-step generating duration model  

 
In Table 19 below, for all row entries the average dwell time of both the upper and lower 

signal levels increases proportionately with bin-count. Thus the resolution of the duration 
distribution for both the signal-generating and the signal-decoding HMM's are identical for all 
row entries.  Upper and lower mean durations are .2 and .6 times that of the bin count, 
respectively. Upper and lower mean emissions are 50.0 and 45.0, respectively, whereas the 
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emission variance for both upper and lower is 20.0. In other tests (see Figure 15 - Figure 22 
above), the decoding duration distribution is an increasingly refined step function approximation 
of the generating duration distribution. For the data shown in this table, both upper and lower 
dwell-time distributions are 2-component beta-mixtures that are monotonically decreasing. The 
numbers shown represent the accuracy of Viterbi decoding out of an input signal 1 M samples in 
length. 

Table 19 Compared accuracy of Viterbi decoding for 2-component beta-mixture duration models 

Bin # 
2-state Geometric 

HMM 

2n-state Explicit 

HMMwD 

2-state Implicit 

HMMwD 

10  743876  832514 756765 
100 951916  960272  953151 
1000 995388  995408  995381 

 
In Table 20 below, as with Table 19 above, for all row entries the average dwell time of 

both the upper and lower signal levels increases proportionately with bin-count.  Thus the 
resolution of the duration distribution for both the signal-generating and the signal-decoding 
HMM's are identical for all row entries.  Upper and lower mean durations are .2 and .6 times that 
of the bin count, respectively. Upper and lower mean emissions are 50.0 and 45.0, respectively, 
whereas the emission variance for both upper and lower is 20.0. In other tests (see figures 
above), the decoding duration distribution is an increasingly refined step function approximation 
of the generating duration distribution. For the data shown in this table, both upper and lower 
durations are 3-component beta-mixtures with humps in the aggregate. 

Table 20 Compared accuracy of Viterbi decoding for 3-component beta-mixture duration models 

Bin # 
2-state Geometric 

HMM 

2n-state Explicit 

HMMwD 

2-state Implicit 

HMMwD 

10  720050  795723  741579 
100 947062  957753  948505 
1000 994978  995013  995005 

 

5.3 Controlled Acquisition via SVM 
This and the following section are taken from [21] for a more detailed perspective of a 

first functioning prototype for controlled cheminformatic signal acquisition using SVM-base 
signal classification in real time. 

Single biopolymers (DNA, RNA, or polypeptide) can be examined using an alpha-
hemolysin channel detector. When a biopolymer is present in an alpha-hemolysin channel it can 
produce a highly structured ionic current blockade pattern, where the lifetimes at various sub-
blockade levels reveal information about the kinetics of the biopolymer (resulting from 
interactions with the channel, other molecules, or from conformational changes). Here we 
describe integration of LabVIEW/LabWindows [53] automation capabilities with our “in-house” 

Channel Current Cheminformatics (CCC) software. Data acquired with LabVIEW/LabWindows 
is passed to the CCC software, on a streaming real time basis, for analysis and classification. The 
classification results are then quickly returned to the LabVIEW/LabWindows automation 
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software for experimental feedback control. The prototype signal processing architecture is 
designed to rapidly extract useful information from noisy blockade signals. A fast, specially 
designed, generic Hidden Markov Model is used for the channel current feature extraction. 
Classification of feature vectors obtained by the HMM (for each individual blockade event) is 
then done by Support Vector Machine, an approach which automatically provides a confidence 
measure on each classification. SVMs are fast discriminators (once trained), for which strong 
discrimination is possible without the over-fitting complications common to neural net 
discriminators. SVMs also offer numerous multiclass and clustering formulations for managing 
complicated channel current signals (or for analyzing a stochastic sequential signal in general).  

Real-time control of a nanopore detector, based on live, streaming measurements, and 
sufficiently fast pattern recognition identification of any blockading (“captured”) analyte, holds 

great promise for single molecule experiments. Real-time sampling control of a nanopore 
detector, alone, can boost nanopore detector sampling productivity by orders of magnitude, 
depending on the mix of desirable signal classes vs. undesirable in the data being analyzed, and 
an example of such an experiment is the focus of the proof-of-principle experiment performed 
here. If there is a 1 to 100 ratio of desirable to undesirable, for example, then one obtains 
desirable signal sampling only about 1% of the time with a passive sampling system. With 
pattern recognition informed sampling this can potentially be changed to desirable signal 
sampling almost 99% of the time. In a real-time setting the challenge is to perform the HMM 
feature extraction sufficiently quickly (whereas the SVM is trained off-line, so operates very 
quickly on-line). In this work we show that this can be accomplished, with pattern recognition 
used to identify DNA molecules within the first few hundred milliseconds of their blockade of 
the detector channel.  

We establish a real-time experimental setup for PRI sampling control via integration of 
LabWindows automation capabilities with our "in-house" Channel Current Cheminformatics 
(CCC) methods. Data acquired with LabWindows is passed to a network of CCC software 
clients, on a streaming real time basis, for analysis and classification. The classification results 
are then quickly returned to the LabWindows automation software for experimental feedback 
control. 
5.4 Pattern Recognition Informed Feedback via LabWindows Automation 

A typical blockade signal has phases with stationary statistics, which reveals information 
about the kinetics of the biopolymer resulting from interactions with surroundings, or from 
undergoing conformational changes. LabVIEW Automation software is used to help manage the 
feedback linkage between patch-clamp amplifier measurements and in-house cheminformatics 
software. This has been used to demonstrate molecular identification in the first 100 ms of 
capture, with return of classification information to the control of the amplifier – for voltage-
controlled sample ejection if desired.  

The LabWindows Server initiates the distributed CCC computations by sending data to a 
cluster of Linux Clients via a TCP/IP channel. The Linux clients run the expensive HMM 
analysis as distributed processes (similarly for off-line SVM training). The sample classification 
is then used by the Server to provide feedback to the nanopore apparatus to increase the effective 
sampling time on the molecules of interest (meant to boost nanopore detector productivity by 
magnitudes, as described in the Background [21]). 
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6  Discussion and Future Work 

6.1 Conclusions from HOHMM Results 
For reference, in the following discussion, the top performing results from the evaluations 

performed in [17] and [4] are included in Table 21 and Table 22 below, including values for the 
(nucleotide) base level accuracy converted from the AC measurement to the simpler 
E[(sn+sp)/2].  (See 3.2.1 Accuracy at the Base or Nucleotide Level, page 46.) 

Table 23 shows the top results of the HOHMM for the data sets and parameter values 
tested in this effort, including in each case the optimum values for the parameters M and F, 
though optimum values for L and R are not shown.  Recall that the method of measurement used 
in this effort differs somewhat from that of the cited evaluations.  (See 3.2.3 Expectation of the 

Measure vs. Measure of the Expectation, page 47.)  For additional reference, Table 24 shows 
the maximum accuracy specifically for the ALLSEQ data set at both the base and exon levels 
using the method of measurement in the cited evaluations. 

Table 21 Top 2 performers in the evaluation by Burset and Guigo testing with ALLSEQ  

Software 
Name 

Nucleotide level Full Exon Level 
E[sn] E[sp] AC E[(sn+sp)/2] E[SN] E[SP] E[(SN+SP)/2] 

FGENEH 0.77 0.88 0.78±0.26 0.825 0.61 0.64 0.64±0.33 
GeneID+ 0.91 0.91 0.88±0.16 0.91 0.73 0.70 0.71±0.29 

 

Table 22 Top 3 performers in the evaluation by Rogic, et al., testing with HMR195 

Software 
Name 

Nucleotide level Full Exon Level 
E[sn] E[sp] AC E[(sn+sp)/2] E[SN] E[SP] E[(SN+SP)/2] 

Genie 0.91 0.90 0.89±0.16 0.905 0.71 0.70 0.71±0.30 
Genscan 0.95 0.90 0.91±0.12 0.925 0.70 0.70 0.70±0.32 

HMMgene 0.93 0.93 0.91±0.13 0.93 0.76 0.77 0.76±0.30 
 

Table 23 Maximum accuracy of HOHMM for the parameter values tested 

Data set Name 
Nucleotide level Full Exon Level 

sn sp (sn+sp)/2 M F SN SP (SN+SP)/2 M F 
entire_1. 1 0.999 0.999 5 12 1 0.993 0.997 5 12 
ALLSEQ 0.978 0.954 0.966 8 4 0.919 0.803 0.861 8 12 
Chr. I-V 0.938 0.864 0.901 5 12 0.775 0.711 0.743 2 20 

 

Table 24 Maximum accuracy of HOHMM for ALLSEQ using the cited method of measurement 

Data set Name 
Nucleotide level Full Exon Level 

E[sn] E[sp] E[(sn+sp)/2] M F E[SN] E[SP] E[(SN+SP)/2] M F 
ALLSEQ 0.987 0.961 0.974 8 12 0.917 0.847 0.882 8 12 
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Thus in the case of the ALLSEQ data set, the HOHMM appears to perform better with 
the cited method of measure than the method used otherwise in this effort.  Recall that the cited 
measure weights those sequences with fewer and shorter exons more heavily in that it is more 
forgiving of prediction errors in sequences with more and longer exons – or greater genomic 
complexity.  Hence, the difference between the two measures of the same HOHMM outcome 
serves as indication that those sequences in the ALLSEQ data set on average with greater 
genomic complexity pose more of a challenge than the other sequences in the same data set. 

This effectively places additional conditioning on the ALLSEQ data set, which could 
have contributed to the authors‟ choice of measurement method over the method used otherwise 

in this effort.   These two methods of measurement have been termed averaging by gene and by 

base, respectively [54].  The authors‟ argue in [17] that averaging by base “appears to have little 

justification from a statistical standpoint” for the following reasons. 
1) Averaging by gene provides an “[u]nbiased estimation of...the expected performance 

of the programs when analyzing a given anonymous DNA sequence.” 
2) Determination of protein product similarity necessarily restricts the focus of testing to 

a gene-centric perspective and measurement. 
Nonetheless, it appears that these arguments have been chosen to suit the context of data sets 
such as ALLSEQ, where all DNA sequences (not entirely anonymously) are chosen to contain 
only a single gene – or, in other words (with pun intended), the end justifies the means. 

Moreover, in the case of Table 24 above, it is worth noting that this measure of HOHMM 
performance for the data set ALLSEQ has been obtained using the cited method of measurement 
and can now be directly compared with that of the programs in the cited evaluation [17] for the 
same data set, ALLSEQ.  Thus we observe that the HOHMM‟s performance clearly exceeds that 

of the top performing program, GeneID+, of the cited evaluation by substantial margins (~7% 
and ~24%) at both base- and exon-levels, respectively.  It should also be noted that the program 
cited, GeneID+, among others uses such extrinsic information as “amino acid similarity 

searches” in the process of forming its prediction, whereas the HOHMM used in this effort uses 
only the intrinsic information contained in the DNA sequence data alone. 
6.2 Future Work 

Within the de facto testing framework that has evolved from [17] and more so in [4], 
have promoted the co-evolution of certain properties of the competing gene finders that would 
not serve any useful purpose in the wider context of testing with less preconditioned, raw 
genomic data. 
6.2.1 Advantages of Other Gene Finders 

The advantages of other gene finding methods that are supported in the current testing 
framework are as follows. 

1) They assume that a single gene exists in the window of the given test sequence.  (This 
can be a substantial advantage in the identification of extended-length motifs.) 

2) They assume that a single read/encoding direction is sufficient, with no added 
complexity of simultaneous modeling of reverse encodings. 

3) They assume no alternative splicing, where encodings can interleave and overlap. 
4) Gene finders in [4] incorporated explicit HMM-with-Duration (HMMwD) modeling 

at the cost of significant increase in computational time.  (In [19], we have 
demonstrated an approximation (exact in the 2-state case) in order to accomplish the 
same modeling process.  This in turn helped motivate the exact HMM with binned 
duration by Dr. Winters-Hilt and Zuliang Jiang [20].  Thus we have yet to incorporate 
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the HMMwD in order to gain the advantage of excluding anomalously short or weak 
exons or introns, as such at significantly less cost in computational time.) 

5) Gene finders in [4] also used signal recognition at splice sites, etc. in order to boost 
performance. 

6) Depending on the structure of the information used in the incorporated HMM signal 
sensors, some of the (other) gene finders introduce extrinsic information. (For 
example, see [55].) 

6.2.2 Other Issues of Other Gene Finders 

Other issues stemming from the above are: 
1) In principal, the added structure of the testing framework cited above, promotes a 

restricted machine learning environment, where intervention is required at first to 
isolate single-gene sequences, etc. 

2) The result is a restriction of evolution towards a clean formalism of identification of 
alternative splicing, etc. 

3) An object-oriented, Perl code base has been developed by Dr. Winters-Hilt in order to 
extend the HOHMM developed here to handle more complex, overlapping 
annotations [23], but is beyond the scope of this thesis and hence not discussed any 
further here. 

6.3 Summary 
Here we provide a more detailed summary of the main contribution in this thesis.  (For a 

summary of all contributions in this effort, see 1.4 Contributions, page 4.)  The main 
contribution in this thesis is a new type of generalized HMM (or HOHMM) is described.  This 
model involves both observations and states of extended length in a generalized clique structure, 
where the extents of the observations and states are incorporated as parameters in the new model.  
This clique structure was intended to address the following 2-fold hypothesis. 

1) The introduction of extended observations would take greater advantage of the 
information contained in the observed tables of strong, higher order, position-
dependent, signal statistics in DNA sequence data taken from extended regions 
surrounding donor and acceptor splice sites and 

2) The introduction of extended states would attain a natural boosting by repeated look-
up of the tabulated statistics associated in each case with the given type of 
coding/non-coding (c/nc) boundary. 

Moreover, an efficient implementation for the HOHMM method is proven theoretically 
and demonstrated experimentally.  The HOHMM approach enables a stronger HMM-based 
framework for the identification of complex structure in stochastic sequential data.  One of the 
main applications of the HOHMM is the identification of eukaryotic gene structure.  It is shown 
that the performance of the HOHMM-based gene-finder is equal to that of the 3 best gene-
finders in use today, GENIE, GENSCAN and HMMgene [4].  The method shown here, however, 
is the bare-bones HMM implementation and an early version not yet benefitting, for example, 
from the use of signal sensors to strengthen localized encoding information, such as splice site 
recognition.  An SVM-based improvement has been designed by Dr. Winters-Hilt to integrate 
directly with the approach introduced here, as discussed in [23]).  Support Vector Machines are 
found to outperform neural-net-based, splice site discriminators (as used in the GENIE gene 
finder [55]).  Thus, once incorporated into a future gene-finder implementation, the approach of 
HOHMM with SVM, etc. is expected not simply to tie, comparatively, with the best gene finders, 
but significantly outperform them. 
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By analogy the context of this work can be described as building a chassis and engine for 
a faster, more powerful car.  The standard work that remains to make it competitive for racing -- 
modified exhaust, suspension, choice of tires, airfoils, etc., is less critical, standard, and not 
pursued in the thesis (an area of interest for future work).  The standard work that remains would 
include – but would not be limited to – the following: 

1) pre-processing including the following: 
a. filtering raw genomic data in order to restrict minimum ORF length, 
b. genetic algorithms for optimized search for HOHMM parameters; 

2) additional in-line processing such as the following: 
a. correlation of predicted genes with known post-splicing and post-transcription 

products, 
b. incorporate 2-state subsystems with duration modeling of introns and exons 

for enhanced splice site recognition, 
c. multi-track transition tracking for alternative splicing, 
d. gap interpolation for enhanced detection of motifs as well as gene starts and 

ends; and 
3) post processing including identification of extremely short ORF lengths. 
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8 Appendix 

8.1 Detailed Results for Entire_1_contig of C. elegans 
The graphs in Figure 23 - Figure 42 depict the detailed results of prediction accuracy of 

the HOHMM on the data set entire_1_contig for C. elegans using the HOHMM parameters 
values M (=0, 2, 5, 8), F(=4, 6, 8, 10, 12), L(=0-9) and R(=0-9).  In each figure, the smoothness 
of each plotted surface serves as an indication of the stability of the HOHMM over the entire 
range of parameter values used. 
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Figure 23 HOHMM performance for data entire_1_contig using m=0, F=4, L=0-9,R=0-9 

Figure 24 HOHMM performance for data entire_1_contig using m=0, F=6, L=0-9,R=0-9 
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Figure 25 HOHMM performance for data entire_1_contig using m=0, F=8, L=0-9,R=0-9 

Figure 26  HOHMM performance for data entire_1_contig using m=0, F=10, L=0-9,R=0-9 
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Figure 27 HOHMM performance for data entire_1_contig using m=0, F=12, L=0-9,R=0-9 

 

Figure 28 HOHMM performance for data entire_1_contig using m=2, F=4, L=0-9,R=0-9 
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Figure 29 HOHMM performance for data entire_1_contig using m=2, F=6, L=0-9,R=0-9 

 

Figure 30 HOHMM performance for data entire_1_contig using m=2, F=8, L=0-9,R=0-9 
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Figure 31 HOHMM performance for data entire_1_contig using m=2, F=10, L=0-9,R=0-9 

 

Figure 32 HOHMM performance for data entire_1_contig using m=2, F=12, L=0-9,R=0-9 
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Figure 33 HOHMM performance for data entire_1_contig using m=5, F=4, L=0-9,R=0-9 

 

Figure 34 HOHMM performance for data entire_1_contig using m=5, F=6, L=0-9,R=0-9 
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Figure 35 HOHMM performance for data entire_1_contig using m=5, F=8, L=0-9,R=0-9 

 

Figure 36 HOHMM performance for data entire_1_contig using m=5, F=10, L=0-9,R=0-9  
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Figure 37 HOHMM performance for data entire_1_contig using m=5, F=12, L=0-9,R=0-9   

 

Figure 38 HOHMM performance for data entire_1_contig using m=8, F=4, L=0-9,R=0-9 
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Figure 39 HOHMM performance for data entire_1_contig using m=8, F=6, L=0-9,R=0-9 

 

Figure 40 HOHMM performance for data entire_1_contig using m=8, F=8, L=0-9,R=0-9  
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Figure 41 HOHMM performance for data entire_1_contig using m=8, F=10, L=0-9,R=0-9 

 

Figure 42 HOHMM performance for data entire_1_contig using m=8, F=12, L=0-9,R=0-9 
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8.2 Detailed Results for ALLSEQ 
The graphs in Figure 43 - Figure 62 depict the detailed results of prediction accuracy of 

the HOHMM on the benchmark data set ALLSEQ assembled by Burset and Guigo [17] using the 
HOHMM parameters values M (=0, 2, 5, 8), F(=4, 6, 8, 10, 12), L(=0-9) and R(=0-9).  In each 
figure, as in the previous data set entire_1_contig, the smoothness of each plotted surface serves 
as an indication of the stability of the HOHMM over the entire range of parameter values used. 
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Figure 43 HOHMM performance for B & G data using m=0, F=4, L=0-9,R=0-9  

Figure 44 HOHMM performance for B & G data using m=0, F=6, L=0-9,R=0-9 
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Figure 45 HOHMM performance for B & G data using m=0, F=8, L=0-9,R=0-9 

 

Figure 46 HOHMM performance for B & G data using m=0, F=10, L=0-9,R=0-9  



102 
 

Figure 47 HOHMM performance for B & G data using m=0, F=12, L=0-9,R=0-9 

 

Figure 48 HOHMM performance for B & G data using m=2, F=4, L=0-9,R=0-9  



103 
 

Figure 49 HOHMM performance for B & G data using m=2 , F=6, L=0-9,R=0-9 

 

Figure 50 HOHMM performance for B & G data using m=2, F=8, L=0-9,R=0-9 

  



104 
 

Figure 51 HOHMM performance for B & G data using m=2, F=10, L=0-9,R=0-9 

 

Figure 52 HOHMM performance for B & G data using m=2, F=12, L=0-9,R=0-9 
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Figure 53 HOHMM performance for B & G data using m=5, F=4, L=0-9,R=0-9 

 

Figure 54 HOHMM performance for B & G data using m=5, F=6, L=0-9,R=0-9 
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Figure 55 HOHMM performance for B & G data using m=5, F=8, L=0-9,R=0-9 

 

Figure 56 HOHMM performance for B & G data using m=5, F=10, L=0-9,R=0-9 
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Figure 57 HOHMM performance for B & G data using m=5, F=12, L=0-9,R=0-9 

 

Figure 58 HOHMM performance for B & G data using m=8, F=4, L=0-9,R=0-9 
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Figure 59 HOHMM performance for B & G data using m=8, F=6, L=0-9,R=0-9 

 

Figure 60 HOHMM performance for B & G data using m=8, F=8, L=0-9,R=0-9  
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Figure 61 HOHMM performance for B & G data using m=8, F=10, L=0-9,R=0-9 

 

Figure 62 HOHMM performance for B & G data using m=8, F=12, L=0-9,R=0-9 
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8.3 Detailed Results for Chromosomes I-V of C. elegans 
The following sequence of plots in Figure 63 - Figure 102 depicts the results of 5-fold 

cross-validation analysis of prediction accuracy of the HOHMM on Chromosomes I-V of C. 

elegans using the parameter values M (=0, 2, 5, 8), F(=2, 4, 6, 8, 10, 12, 14, 16, 18, 20), L(=0-9) 
and R(=0-9).  Note that no iterative, in-frame stop filtering was performed. Here also, as in the 
previous data sets entire_1_contig and ALLSEQ, in each figure, the smoothness of each plotted 
surface serves as an indication of the stability of the HOHMM over the entire range of parameter 
values used. 
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Figure 63 HOHMM performance using C.E. I-V (alt. splicing deleted) m=0, F=2, L=0-9,R=0-9 

Figure 64 HOHMM performance using C.E. I-V (alt. splicing deleted) m=0, F=4, L=0-9,R=0-9 
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Figure 65 HOHMM performance using C.E. I-V (alt. splicing deleted) m=0, F=6, L=0-9,R=0-9 

 

Figure 66 HOHMM performance using C.E. I-V (alt. splicing deleted) m=0, F=8, L=0-9,R=0-9 
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Figure 67 HOHMM performance using C.E. I-V (alt. splicing deleted) m=0, F=10, L=0-9,R=0-9 

 

Figure 68 HOHMM performance using C.E. I-V (alt. splicing deleted) m=0, F=12, L=0-9,R=0-9 
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Figure 69 HOHMM performance using C.E. I-V (alt. splicing deleted) m=0, F=14, L=0-9,R=0-9 

Figure 70 HOHMM performance using C.E. I-V (alt. splicing deleted) m=0, F=16, L=0-9,R=0-9 
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Figure 71 HOHMM performance using C.E. I-V (alt. splicing deleted) m=0, F=18, L=0-9,R=0-9 

Figure 72 HOHMM performance using C.E. I-V (alt. splicing deleted) m=0, F=20, L=0-9,R=0-9 
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Figure 73 HOHMM performance using C.E. I-V (alt. splicing deleted) m=2, F=2, L=0-9,R=0-9 

 

Figure 74 HOHMM performance using C.E. I-V (alt. splicing deleted) m=2, F=4, L=0-9,R=0-9 
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Figure 75 HOHMM performance using C.E. I-V (alt. splicing deleted) m=2, F=6, L=0-9,R=0-9 

 

Figure 76 HOHMM performance using C.E. I-V (alt. splicing deleted) m=2, F=8, L=0-9,R=0-9 

  



118 
 

Figure 77 HOHMM performance using C.E. I-V (alt. splicing deleted) m=2, F=10, L=0-9,R=0-9 

 

Figure 78 HOHMM performance using C.E. I-V (alt. splicing deleted) m=2, F=12, L=0-9,R=0-9 
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Figure 79 HOHMM performance using C.E. I-V (alt. splicing deleted) m=2, F=14, L=0-9,R=0-9 

Figure 80 HOHMM performance using C.E. I-V (alt. splicing deleted) m=2, F=16, L=0-9,R=0-9 
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Figure 81 HOHMM performance using C.E. I-V (alt. splicing deleted) m=2, F=18, L=0-9,R=0-9 

Figure 82 HOHMM performance using C.E. I-V (alt. splicing deleted) m=2, F=20, L=0-9,R=0-9 
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Figure 83 HOHMM performance using C.E. I-V (alt. splicing deleted) m=5, F=2, L=0-9,R=0-9 

Figure 84 HOHMM performance using C.E. I-V (alt. splicing deleted) m=5, F=4, L=0-9,R=0-9 
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Figure 85 HOHMM performance using C.E. I-V (alt. splicing deleted) m=5, F=6, L=0-9,R=0-9 

 

Figure 86 HOHMM performance using C.E. I-V (alt. splicing deleted) m=5, F=8, L=0-9,R=0-9 
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Figure 87 HOHMM performance using C.E. I-V (alt. splicing deleted) m=5, F=10, L=0-9,R=0-9 

 

Figure 88 HOHMM performance using C.E. I-V (alt. splicing deleted) m=5, F=12, L=0-9,R=0-9 
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Figure 89 HOHMM performance using C.E. I-V (alt. splicing deleted) m=5, F=14, L=0-9,R=0-9 

 

Figure 90 HOHMM performance using C.E. I-V (alt. splicing deleted) m=5, F=16, L=0-9,R=0-9 
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Figure 91 HOHMM performance using C.E. I-V (alt. splicing deleted) m=5, F=18, L=0-9,R=0-9 

Figure 92 HOHMM performance using C.E. I-V (alt. splicing deleted) m=5, F=20, L=0-9,R=0-9 
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Figure 93 HOHMM performance using C.E. I-V (alt. splicing deleted) m=8, F=2, L=0-9,R=0-9 

 

Figure 94 HOHMM performance using C.E. I-V (alt. splicing deleted) m=8, F=4, L=0-9,R=0-9 
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Figure 95 HOHMM performance using C.E. I-V (alt. splicing deleted) m=8, F=6, L=0-9,R=0-9 

 

Figure 96 HOHMM performance using C.E. I-V (alt. splicing deleted) m=8, F=8, L=0-9,R=0-9 
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Figure 97 HOHMM performance using C.E. I-V (alt. splicing deleted) m=8, F=10, L=0-9,R=0-9 

 

Figure 98 HOHMM performance using C.E. I-V (alt. splicing deleted) m=8, F=12, L=0-9,R=0-9  
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Figure 99 HOHMM performance using C.E. I-V (alt. splicing deleted) m=8, F=14, L=0-9,R=0-9 

 

Figure 100 HOHMM performance using C.E. I-V (alt. splicing deleted) m=8, F=16, L=0-9,R=0-
9  
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Figure 101 HOHMM performance using C.E. I-V (alt. splicing deleted) m=8, F=18, L=0-9,R=0-
9 

Figure 102 HOHMM performance using C.E. I-V (alt. splicing deleted) m=8, F=20, L=0-9,R=0-
9  
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8.4 Detailed Results of Relative Entropy for Chromosomes I-V of C. elegans 
In  Figure 103 - Figure 118 below, we show the results of the computations of relative 

entropy for the reduced data set of Chromosomes I-V of C. elegans for a sampling window of 
size 40.  In general, the periodicity of length 3 observed among the curves is an indication of the 
relative strengths of dependency within base strings of sizes 1, 3, 6, and 9 as such between the 
respective pairs of corresponding eij and xx probability models, for example, the model for je0 
corresponding to that of jj. 

Each pair of figures (with 2 different plotting scales per pair) represent the relative 
entropy values for one of the 8 different eij-dimer types, je0, e0i0, e1i1, e2i2, i0e1, i1e2, 
i2e0, and e2j.  The first graph in each pair of graphs uses the scaling factor log10(4

M+1), where 
M is the base Markov order with the chosen values 0, 2, 5, and 8.  This value is the log of the 
maximum absolute entropy for a distribution of base strings of length M+1. 
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Figure 103 Relative entropy, H(P(je0, M, i), P(jj, M)), for reduced C.E., I-V with log scaling.  

Figure 104 Relative entropy, H(P(je0, M, i), P(jj, M)), for reduced C.E., I-V with max scaling. 
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Figure 105 Relative entropy, H(P(e0i0, M, i), P(ee, M,i)), for reduced C.E., I-V with log 
scaling. 

Figure 106 Relative entropy, H(P(e0i0, M, i), P(ee, M,i)), for reduced C.E., I-V with max 
scaling.  
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Figure 107 Relative entropy, H(P(e1i1, M, i), P(ee, M,i)), for reduced C.E., I-V with log 
scaling. 

Figure 108 Relative entropy, H(P(e1i1, M, i), P(ee, M,i)), for reduced C.E., I-V with max 
scaling.  
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Figure 109 Relative entropy, H(P(e2i2, M, i), P(ee, M,i)), for reduced C.E., I-V with log 
scaling. 

Figure 110 Relative entropy, H(P(e2i2, M, i), P(ee, M,i)), for reduced C.E., I-V with max 
scaling.  
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Figure 111 Relative entropy, H(P(i0e1, M, i), P(ii, M)), for reduced C.E., I-V with log scaling. 

Figure 112 Relative entropy, H(P(i0e1, M, i), P(ii, M)), for reduced C.E., I-V with max scaling. 
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Figure 113 Relative entropy, H(P(i1e2, M, i), P(ii, M)), for reduced C.E., I-V with log scaling. 

Figure 114 Relative entropy, H(P(i1e2, M, i), P(ii, M)), for reduced C.E., I-V with max scaling. 
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Figure 115 Relative entropy, H(P(i2e0, M, i), P(ii, M)), for reduced C.E., I-V with log scaling. 

Figure 116 Relative entropy, H(P(i2e0, M, i), P(ii, M)), for reduced C.E., I-V with max scaling. 
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Figure 117 Relative entropy, H(P(e2j, M, i), P(ee, M,i)), for reduced C.E., I-V with log scaling. 

Figure 118 Relative entropy, H(P(e2j, M, i), P(ee, M,i)), for reduced C.E., I-V with max 
scaling.  
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8.5 SVM Classification Used in Pattern Recognition Informed (PRI) Sampling 

Selection 
Support Vector Machines (SVMs) are variational-calculus based methods that are 

constrained to have structural risk minimization (SRM) such that they provide noise tolerant 
solutions for pattern recognition [21] [56]. Simply put, an SVM determines a hyper plane that 
optimally separates one class from another (see Figure 119). Once learned, the hyper plane 
allows data to be classified according to the region (separated by the hyper plane) in which it 
resides. Currently there are two approaches to implementing multiclass SVMs. One arranges 
several binary classifiers as a decision tree such that they perform a multi-class decision-making 
function (SVM-external classification). The second approach involves solving a single 
optimization problem corresponding to the entire data set (with multiple hyper planes), with 
multi-class discriminator optimization performed internally. The SVM-internal approach, when it 
is stable and properly generalizable (an active area of research), is preferred, since a tuning over 
Decision tree topologies and weightings is avoided [57]. The on-line discriminatory speed of a 
trained SVM is simply that of evaluating an inner product, so it‟s operational constraint on the 

PRI feedback process is negligible compared to that of the HMM feature extraction stage. For 
this reason, there is little discussion of SVMs in this paper, even though SVMs comprise much of 
the complexity of the HMM/SVM PRI feedback system. 

Figure 119 SVM: Hyper plane separability with a Margin (thickness).  Support vectors consist of 
both the blue and red points occurring on the blue and red margin surfaces, respectively.  Unlike 
HMM-based classification, the SVM-classification provides built-in confidence levels as part of 
the classification output. 
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8.6 Code Design for HOHMM 
8.6.1 High Level Design Description 

The HOHMM application performs both training and/or testing tasks according to the 
specifications in the input configuration file.  For each configured task, a client task context is 
created in order to monitor the progress – according to the configured wait time, if any – of the 
corresponding server task process. 

Protection is provided to some degree against multiple submittal attacks in the following 
manner.  For each configured task, the client task context performs a status check on the assigned 
server before starting the corresponding task process on the server.  During the status check, the 
client task context inquires as to whether a process with the given runtime parameters for the 
given server (local or remote) task is already in progress on the given server platform.  If so, then 
the client task context avoids starting the task process on the server and either continues to 
monitor the progress of the existing process on the server or exits – according to the configured 
specifications. 

The sequence in Figure 120 - Figure 126 depicts a single, fully connected flowchart 
representing the operations and collaborations of the key modules according to the following list 
of major code categories.  

1. Training Code 
a. Training Code – Client Side 
b. Training Code – Server Side 

2. Testing Code 
a. Testing Code – Client Side 
b. Testing Code – Server Side 

See 8.6.2 Interfaces of Key Modules, page149, for a list of the key modules and their interface 
features. 
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Figure 120 Flowchart for Main Sequence on Client – Includes 1)Training and 2)Testing  
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Figure 121 Flowchart for Client Task List Processing - Applies to 1)Training or 2)Testing  
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Figure 122 Flowchart for Client Task - Applies to 1)Training or 2)Testing  
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Figure 123 Flowchart for Server Training Task  
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Figure 124 Flowchart for Server Training Task, cont.  
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Figure 125 Flowchart for Server Testing Task  
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Figure 126 Flowchart for Server Testing Task, cont. 
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8.6.2 Interfaces of Key Modules 

8.6.2.1 Generic Code for Training and Testing 

8.6.2.1.1 GenePredictor.pl 

Parameters: 
1) Name of user configuration file, where the file contents must be in Perl syntax 
2) (Optional in general but required for 3) below) String containing Perl syntax for list 

of strings, where each string is taken as a regular expression to be used to select by 
name specific training task(s) to be performed from those defined in the user 
configuration file 

3) (Optional) String containing Perl syntax for list of strings – similar to 2) above for 
selecting by name specific testing tasks to be performed from those defined in the 
user configuration file 

Outputs: elapsed time message 
8.6.2.1.2 ClientTaskHandler.pm 

 (function) create 
 Parameters: 

1) List of regular expressions (See 8.6.2 Interfaces of Key Modules 
2) Generic Code for Training and Testing 
3) GenePredictor.pl) 

 Returned value: An instance of ClientTaskHandler for processing only those 
configured tasks selected by the inputs 

 Outputs: none 
8.6.2.1.3 ClientTask.pm 

 (function) create 
 Parameters 

1) $task_type (“ClientTestingTask”, “ClientTrainingTask”) 
2) $task_name 

 Returned value: An instance of Task of the specified type with the specified 
task_name attribute 

 Outputs: none 
8.6.2.1.4 ServerTask.pm 

 (function) create 
 Parameters 

1) $task_type (“training”, “testing”) 
2) $task_name 

 Returned value: An instance of ServerTask of the corresponding type 
(ServerTrainingTask, ServerTestingTask) with the specified task_name attribute 

 Outputs: none 
8.6.2.2 Training Code 

8.6.2.2.1 Training Code – Client Side 

8.6.2.2.1.1 ClientTrainingTaskHandler.pm 

 (function) create (See 8.6.2.1.2 ClientTaskHandler.pm) 
8.6.2.2.2 Training Code – Server Side 

8.6.2.2.2.1 ServerTraining.pl 

 Parameters 
1) Name of user configuration file (See 8.6.2.1.1 GenePredictor.pl) 
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2) Name of training task to be performed as defined in the user configuration file 
 Outputs: elapsed time message 

8.6.2.2.2.2 ServerTrainingTask.pm 

 (function) perform 
 Parameters: none 
 Outputs: 

1) Various status messages 
2) Elapsed time message 

8.6.2.2.2.3 WindEx.pm 

 (function) create 
 Parameters 

1) $sample_window_size – sample window size 
2) $bad_exon_scan – flag (1 if performing in-frame stops, 0 otherwise) 
3) $ee_sample_period – exon sampling period (default = 3) 
4) $ii_sample_period – intron sampling period (default = 1) 
5) $jj_sample_period – junk sampling period (default = 1) 

 Returned value: An instance of Windex 
 Outputs: none 

(function) read 
 Parameters 

1) $gff – name of gff annotation file 
2) $dna – name of DNA sequence file 
3) $directory – name of directory containing $gff and $dna files 
4) $dimer – one of the 13 strings denoting the 13 possible dimers „je0‟, „e0i0‟, 

„e1i1‟, „e2i2‟, „i0e1‟, „i1e2‟, „i2e0‟, „e2j‟, „e0e1‟, „e1e2‟, „e2e0‟, „ii‟, or „jj‟ 
5) $max_chunk_size – (largest) size of substring of DNA sequence 
6) $chunk_index – index of chunk using 0-origin 
7) $bad_exon_hash_ref – reference to hash structure containing in-frame stops 
8) $boundary_sampling_policy – flag („pad‟ to pad truncated samples, omit 

otherwise) 
 Returned value: an array of substrings sampled from the DNA sequence for the 

specified dimer 
 Outputs: 

1) (file)<dna-name>_bad_exon (containing in-frame stops) 
2) (file)<dna-name>_internal_stops (containing all internal stops, in-frame and 

otherwise) 
3) $dna – name of DNA sequence file 

8.6.2.2.2.4 Profile.pm 

 (function) create 
 Parameters 

1) $dimer – (See 8.6.2.2.2.3 WindEx.pm) 
2) $sample_window_size – sample window size 
3) $filter – flag (1 if filtering out in-frame stops, 0 otherwise) 

 Returned value: An instance of Profile 
 Outputs: none 

(function) read_sample_list 
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 Parameters 
1) @sample_list – an array of substrings sampled from the DNA sequence for 

the owner‟s dimer 
 Returned value: none 
 Outputs: none 

(function) write_counts 
 Parameters: none 
 Returned value: none 
 Outputs:  

1) (file) <dimer>_profile_count – containing frequency of occurrence of 1-
strings of all previously encountered sample lists since time of creation 

8.6.2.2.2.5 Context.pm 

 (function) create 
 Parameters 

1) $dimer – (See 8.6.2.2.2.3 WindEx.pm) 
2) $sample_window_size – sample window size 
3) $filter – flag (1 if filtering out in-frame stops, 0 otherwise) 
4) (optional) $counts – array containing previously determined frequencies of 

occurrence of DNA substrings 
 Returned value: An instance of Context of the type Context_EIJ or Context_XX 

as appropriate for the specified $dimer 
 Outputs: none 

 (function) read_sample_list 
 Parameters 

1) @sample_list – an array of substrings sampled from the DNA sequence for 
the owner‟s dimer 

 Returned value: none 
 Outputs: none 

8.6.2.2.2.6 Context_EIJ.pm 

 (function) create (See 8.6.2.2.2.5 Context.pm) 
(function) read_sample_list (See Context.pm) 
(function) write_counts 

 Parameters: none 
 Returned value: none 
 Outputs:  

1) (file) <dimer>_context_count – containing frequency of occurrence of 2-, 3-, 
6-, and 9-strings at all window positions as support allows in all previously 
encountered sample lists since time of creation 

8.6.2.2.2.7 Context_XX.pm 

 (function) create (See 8.6.2.2.2.5 Context.pm) 
 (function) read_sample_list (See Context.pm) 
(function) write_counts 

 Parameters: none 
 Returned value: none 
 Outputs:  
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1) (file) <dimer>_context_count – containing frequency of occurrence of 2-, 3-, 
6-, and 9-strings at center window positions only in all previously encountered 
sample lists since time of creation 

8.6.2.3 Testing Code 

8.6.2.3.1 Testing Code – Client Side 

8.6.2.3.1.1 ClientTestingTaskHandler.pm 

 (function) create (See 8.6.2.1.2 ClientTaskHandler.pm) 
8.6.2.3.2 Testing Code – Server Side 

8.6.2.3.2.1 ServerTesting.pl 

 Parameters 
1) Name of user configuration file (See 8.6.2.1.1 GenePredictor.pl) 
2) Name of testing task to be performed as defined in the user configuration file 

 Outputs: elapsed time message 
8.6.2.3.2.2 ServerTestingTask.pm 

 (function) perform 
 Parameters: none 
 Returned value: none 
 Outputs: 

1) Various status messages 
2) Cumulative prediction scores for all DNA files tested 
3) Elapsed time message 

8.6.2.3.2.3 <x>_m8520_viterbi_driver.c 

 (function) main 
 Parameters 

1) dna_file – DNA sequence file 
2) chunk_start – starting position in DNA sequence (0-origin) 
3) max_chunk_size – size of DNA subsequence for testing 
4) max_viterbi_passes – maximum # of Viterbi passes for in-frame stop removal 
5) log_stop_penalty – log (base-10) of probability penalty for in-frame stop 

removal 
6) Markov – maximum Markov order in DNA sequence (0, 2, 5, or 8) 
7) footprint_size – size of footprint state in dimers 
8) left_base_extent – left extent, L, of emitted DNA subsequence at each Viterbi 

table position 
9) right_base_extent – right extent, R, of emitted DNA subsequence at each 

Viterbi table position 
10) sequence_gain – defaults to 1 
11) viterbi_output_prefix – prefix of gff output file 
12) dump_stop_filter_log – flag (1 to log in-frame stops, none otherwise) 
13) dump_traceback – flag (>0 to log Viterbi traceback including symbolic state 

sequence printed in rows of specified width, none otherwise) 
14) dump_viterbi_probabilities – flag (1 to log Viterbi probabilities, none 

otherwise) 
15) dump_viterbi_pointers – flag (1 to log Viterbi back pointers, none otherwise) 
16) dump_viterbi_start – starting column index for Viterbi probability and/or 

pointer log (-1 for all columns) 



153 
 

17) dump_viterbi_end – ending column index for Viterbi probability and/or 
pointer log (ignored if dump_viterbi_start = -1) 

 Outputs: 
1) Various status messages 
2) Predicted gff annotation files with file name format 

<viterbi_output_prefix>_pass_<n>.gff, with one such file for each of the 
Viterbi iterations performed and n=1, …, max_viterbi_passes 

3) Elapsed time message 
8.6.3 Future Infrastructure 

Besides the extensions indicated above in 6.2 Future Work, the following additional 
modifications to the existing system‟s infrastructure with moderate levels of additional design 

and coding effort. 
1. Full job checkpoint/restart capability. 
2. Full support in a single configuration input file for multi-fold cross validation – with non-

redundant sharing of training results from folds for use in subsequent testing.  Current 
support for cross-validation is limited due to lack of support for shared results of training 
among the various folds of cross-validation in a single session. 

a. Currently, all training tasks in a given configuration input are assumed to share a 
single set of count file output. 

b. Currently, only testing tasks in a given configuration input are allowed to 
selectively share summed score file output. 

3. Generalization of the above to a user-configurable work flow for support of a many-to-
many mapping of training tasks to testing tasks.   
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