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ABSTRACT

The amount of information available to a person is growing day by day; hence retrieving

the correct information in a timely manner plays a very important role. This thesis talks

about indexing document collections and fetching the right information with the help of a

database. The primary role of a database is to store the additional information which may

be or may not be available in the document collection by itself.

The indexing of document collection is performed by Lucene, while the search

application is strongly integrated with a database. In this thesis a highly efficient,

scalable, customized search tool is built using Lucene. The search tool is capable of

indexing and searching databases, PDF documents, word documents and text files.
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1. INTRODUCTION
The amount of information available to a human being is growing exponentially every day due to

the advancement in technologies and the internet. The increased availability of documents in

digital form has contributed significantly to the immense volume of knowledge and information

available to people.  Initially, the raw documents were given in various formats such as HTML,

PDF, and WORD without following any schemas. They are called unstructured documents.  Due

to their dynamic nature, fast growth rate, and unstructured manner, it is increasingly difficult to

identify and retrieve valuable information from these documents.  This problem has attracted a

number of research efforts in the Information Retrieval (IR) society [Crane]. Significant research

has been placed on the efforts to combine the IR techniques with the database technologies that

are for structured information searching [Moens].  Leading software firms such as IBM has

developed a powerful software development kit called Unstructured Information Management

Architecture (UIMA) [IBM]. UIMA supports ontology-based information retrieval for texts,

audio and video media.  As powerful as UIMA is, the deployment of UIMA carries a reasonable

technical burden including annotation based on the common analysis structure.  Unfortunately,

such complexity could prohibit a quick deployment in many simpler applications.

In this thesis, I report a simpler, more practical approach that combines one of the IR techniques

– keyword searching – with the database techniques through a filtering process.  The utilization

environment of my development is to support management of training courses from tens of

thousands of entries owned by a military branch.  Users need search for courses against specific

training needs.  Each search typically concerns two aspects of information.  On one hand, the

user has a set of requirements regarding the properties of the courses such as the delivery form,

the course length, and standards compliance.  These properties are stored in the course database.

One the other hand, keyword search is a practice of the military training professionals.  The

keyword search needs to be supported in two aspects.  First, searching keyword is facilitated in

four limited-length fields, namely title, abstract, description, and audience.  A more desirable

feature is to support keyword search from the entire contexts of the courses.  Typically, each

course has one or more large documents in PDF, Word or plain text formats.  In my

implementation, the constraints regarding the courses’ properties and the keywords occurrence in

the four limited-length fields are carried out by the typical database queries.  Searching keywords
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from the entire documents is supported by full-scale indexing. Considering the size, the

variations and the number of the documents, this indexing is a non-trivial task.  I have adopted

an Apache open-source indexing toolkit, Lucene.

Using off-the-shelf commercial or non-commercial software products as building blocks has

been a strong trend in businesses and organizations, as highlighted by the COTS-based systems

initiative at the Carnegie Mellon Software Engineering Institute [Carnegie]. The advantages of

using off-the-shelf software products are numerous including market-tested reliability, market-

approved features, and an opportunity for expanding software capabilities and improving system

performance by the marketplace. Using off-the-shelf software products often promises a rapid

system deployment. Yet, the promise of off-the-shelf products is too often not realized in

practice. There have been more failures than successes in using COTS software products

[Brownsword].  To a large extent, my project was an implementation based on utilizing off-the-

shelf software products.  In my experiments, even though adopting Lucene was straightforward,

integrating the Lucene indexing and the database querying were challenging.

My implementation has illustrated a framework of integrating the full-scale text indexing engine

Lucene with the database query techniques for a general approach of keyword search followed

by properties filtering. This can be a very useful framework for many applications for small and

middle businesses or organizations.

The remaining parts of this thesis are organized as the following.  Chapter 2 provides the

background information about Lucene.  Chapter 3 is Application design where I explain more

about my user interfaces and Chapter 4 provides insight about my system implementation.
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2. BACKGROUND
Lucene is a Java library that adds text indexing and searching capabilities to an application. It is

not a complete application that one can just download, install, and run. It offers a simple, yet

powerful core API. To start using it, one needs to know only a few Lucene classes and methods.

Lucene offers two main services: text indexing and text searching. These two operations are

relatively independent of each other.

2.1 History of Lucene
Doug Cutting is the primary developer of the Lucene and Nutch open source search projects. He

has worked in the search technology field for nearly two decades, including five years at Xerox

PARC, three years at Apple, and four years at Excite. Lucene was initially available for

download from its home at the Source Forge web site. Lucene joined the Apache Software

Foundation’s Jakarta family of high-quality open source Java products in September 2001. With

each release since then, the project has enjoyed increased visibility, attracting more users and

developers. Lucene derives its name from Doug’s wife’s middle name; Lucene is also her

maternal grandmother’s first name.

2.2 Installing Lucene
Lucene is distributed as pre-compiled binaries or in source form. One can download the latest

release from Lucene's release page. After downloading the Lucene jar file, the jar file is added to

the CLASSPATH environment variable.

2.3 Lucene ports
Lucene can be ported to other programming languages. Lucene was originally written in Java,

Lucene implementations in other languages are given in the following table. Lucene porting

helps developers to access Lucene indices from applications written in different languages.
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Lucene Port Description
CLucene Lucene implementation in C++

Lucene4c Lucene implementation in C

Lupy Lucene implementation in Python

Zend Search Lucene implementation in the Zend Framework for PHP 5

KinoSearch New version of Lucene implementation in PERL

MUTIS Lucene implementation in Delphi

dotLucene Lucene implementation in .NET

LuceneKit

Lucene implementation in Objective-C (Cocoa/GNUstep

support)

NLucene Another Lucene implementation in .NET (out of date)

Plucene Lucene implementation in PERL

PyLucene

GCJ-compiled version of Java Lucene integrated with

Python via SWIG

Ferret Lucene implementation in Ruby

2.4 Lucene Classes
Lucene consists of a set of key classes that are used to build a search application. The various

key classes are given below

IndexWriter – The IndexWriter class is used to create and maintain indices. This class also

determines whether a new index is created or whether an existing index is opened for the

addition of new documents.

Directory – The Directory class represents the location of a Lucene index.  A Directory is a flat

list of files. Files may be written once, when they are created. Once a file is created it may only

be opened for read, or deleted. Random access is permitted both when reading and writing.

Document - The Document class represents a document in Lucene.  Documents are the unit of

indexing and search. A Document is a set of fields. Each field has a name and a textual value. A

field may be stored with the document, in which case it is returned with search hits on the

document.
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Field - The Field class represents a section of a Document. The Field object will contain a name

for the section and the actual data. Values may be free text, provided as a String or as a Reader,

or they may be atomic keywords, which are not further processed. Fields are optionally stored in

the index, so that they may be returned with hits on the document.

Analyzer - The Analyzer class is an abstract class that is used to provide an interface that will

take a Document and turn it into tokens that can be indexed. There are several useful

implementations of this class but the most commonly used is the Standard Analyzer class. A

typical implementation involves building a tokenizer first, which breaks the stream of characters

from the reader into raw tokens.

IndexSearcher - The IndexSearcher class is used to search through an index. This class

implements a search over index reader.

Term - The Term is a basic unit for searching, consist of a pair of string elements, name of the

field and he value of that field. A Term represents a word from text. Terms may also represent

more than words from text fields, they can also represent things like dates, email addresses,

URL’s, etc.

QueryParser - The QueryParser class used to build a parser that can search through an index. A

Query is a series of clauses. A clause may be either a term, indicating all the documents that

contain a particular term or a nested query enclosed in parentheses. A nested query may be used

with a (+) or (-) prefix to require any of a set of terms. The BNF Query grammar can be written

as

Query  ::= ( Clause )*

Clause ::= ["+", "-"] [<TERM> ":"] ( <TERM> | "(" Query ")" )

Query - The Query class is an abstract class that contains the search criteria created by the

QueryParser.
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Term Query – The term query class is used for matching documents that contain fields with

specific values. This may be combined with other terms with a Boolean Query.

Hits - The Hits class contains the Document objects that are returned by running the Query

object against the index. It is a ranked list of documents that is used to hold search results.

2.5 Indexing
The heart of all search engines is the concept of Indexing; Indexing in short can be defined as the

processing of original data into a highly efficient cross reference lookup in order to facilitate

rapid searching.

Indexing can be defined in a much better manner by taking an example. Let us assume that a

person wants to search for a word or a phrase among a large number of files. The simplest

method would be to sequentially scan each file for the given word or phrase. The main

disadvantage with this approach is that it does not scale to larger file sets or cases where files are

large; hence to search large amounts of text quickly, one must first index that text and convert it

into a format that will let the person search it rapidly, eliminating the slow sequential scanning

process. This conversion process is called indexing, and its output is called an index.

2.5.1 Structure of a Lucene index

A Lucene index is stored in a single directory in the file system on a hard disk. The core

elements of a Lucene index are segments, documents, fields, and terms. In a Lucene index every

index consists of one or more segments. Each segment contains one or more documents. Each

document has one or more fields, and each field contains one or more terms. Each term is a pair

of Strings representing a field name and a value.  A segment consists of a series of files.

Pictorially the entire structure of a Lucene index can be represented as shown in figure.2.1.
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Figure 2.1: Structure of a Lucene index

The exact number of files that constitute each segment varies from index to index, and depends

on the number of fields that the index contains. All files belonging to the same segment share a

common prefix and differ in the suffix. One can think of a segment as a sub-index, although each

segment is not a fully-independent index.

2.5.2 Factors affecting Indexing Speed

The bottleneck of a typical text-indexing application is the process of writing index files onto a

disk. When new documents are added to a Lucene index, they are initially stored in memory

instead of writing immediately to the disk. The simplest way to improve Lucene's indexing

performance is to adjust the value of Index Writer’s merge Factor instance variable. This value

tells Lucene how many documents to store in memory before writing them to the disk, as well as

how often to merge multiple segments together. The default value is 10; Lucene will store 10

documents in memory before writing them to a single segment on the disk. The merge Factor
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value of 10 also means that once the number of segments on the disk has reached the power of

10, Lucene will merge these segments into a single segment. When the merge Factor value is set

to 10, a new segment will be created on the disk for every 10 documents added to the index.

When the 10th segment of size 10 is added, all 10 will be merged into a single segment of size

100. When 10 such segments of size 100 have been added, they will be merged into a single

segment containing 1000 documents, and so on. Therefore, at any time, there will be no more

than 9 segments in each power of 10 index size.

2.5.3 In-Memory Indexing

Lucene distribution contains the RAMDirectory class, which gives even more control over this

process. This class implements the Directory interface, just like FSDirectory does, but stores

indexed documents in memory, while FSDirectory stores them on disk. Because RAMDirectory

does not write anything to the disk, it is faster than FSDirectory. However, since computers

usually come with less RAM than hard disk space, RAMDirectory is not suitable for very large

indices.

2.5.4 Multi-Threaded Indexing

While multiple threads or processes are used to search a single Lucene index simultaneously,

only a single thread or process is allowed to modify an index at a time. If the indexing

application uses multiple indexing threads that are adding documents to the same index, one

must serialize their calls to the IndexWriter.addDocument (Document) method. If the calls are

not serialized then it may cause threads to get in each other's way and modify the index in an

undesired manner causing Lucene to throw exceptions. To prevent misuse, Lucene uses file-

based locks in order to stop multiple threads or processes from creating Index Writers with the

same index directory at the same time.

2.5.5 Optimizing a Lucene Index

To optimize an index, one has to call optimize () on an IndexWriter instance. When optimize() is

called, all in-memory documents are flushed to the disk and all index segments are merged into a

single segment, reducing the number of files that make up the index. However, optimizing an

index does not help improve indexing performance. As a matter of fact, optimizing an index
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during the indexing process will only slow things down. Despite this, optimizing may sometimes

be necessary in order to keep the number of open files under control. For instance, optimizing an

index during the indexing process may be needed in situations where searching and indexing

happen concurrently, since both processes keep their own set of open files. In fact, if more

documents are added to the index, one should avoid calling optimize (). If, on the other hand, one

should know that the index will not be modified for a while, and the index will only be searched,

and it should be optimized. That will reduce the number of segments, and consequently improve

search performance, the fewer files Lucene has to open while searching, the faster is the search.

2.6 Searching
In Computer Science, searching can be defined as an algorithm that takes a problem as an input

and returns a solution to the problem, usually after evaluating a number of possible solutions.

The set of all possible solutions to a problem is called the search space. Searching can be broadly

classified as follows

2.6.1 Uninformed search

An uninformed search algorithm does not take into account the specific nature of the problem.

Uninformed search algorithms are implemented in general, and then the same implementation is

used for a wide range of problems with the help of abstraction. The disadvantage in uninformed

search is that the search spaces are extremely large, and an uninformed search will take a

reasonable amount of time for small examples. Hence to speed up the process, one has to use an

informed search. Examples of uninformed search includes list search, tree search and graph

search.

2.6.2 Informed search

An informed search algorithm uses a heuristic that is specific to the problem. A good heuristic

will make an informed search really faster than a uniformed search. Examples of informed

search include Best-first search, and A*



- 10 -

2.6.3 Adversarial search

Adversarial search is basically used for games; Adversarial search takes a unique characteristic

that will account for any possible move that the opponent may take. Adversarial search is often

used in games and artificial intelligence.

2.6.4 Interpolation search

An interpolating search attempts to find the item by approximating how far the item is likely to

be from the current position. Interpolation search is analogous to searching a dictionary.

2.7 Analyzers
Analyzers can be defined as components that pre-process input text. They are also used when

searching. Because the search string has to be processed the same way that the indexed text is

processed, it is crucial to use the same Analyzer for both indexing and searching. Not using the

same Analyzer will result in invalid search results.

The Analyzer class is an abstract class, if there is a need to pre-process input text and queries in a

way that is not provided by any of Lucene's Analyzers, one will need to implement a custom

Analyzer.

2.8 Overview of Lucene Architecture and Lucene Applications
It is possible to add indexing and searching capabilities to any application using Lucene. It is

possible to index and make searchable any data that can be converted to a text format. Lucene is

independent of the source of data, its format, and even its language as long as it can be converted

to text. This means one can use Lucene to index and search data stored in files, web pages, on

remote web servers, documents stored in local file systems, simple text files, Microsoft Word

documents, HTML or PDF files, or any other format from which one can extract textual

information. Similarly, with Lucene one can index data stored in databases, giving users full-text

search capabilities that are absent in many databases. The basic architecture of a Lucene

application can be visualized as shown in figure 2.2
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Figure 2.2 Overview of Lucene applications

2.9 Lucene in action
Lucene is an information retrieval (IR) library written purely in Java. Lucene provides the core

API’s for adding full text indexing and searching functionalities for a given application; Hence

Lucene is not a complete framework for implementing a search engine, As a matter of fact

Lucene only helps the user with indexing and searching functions, more over to index any type

of given data the data has to be converted into text format as Lucene can only index text data and

search with given user queries.

In the older search engines indexing is done by keywords and it is represented by text pairs

determined by the user. Due to this type of design one has to use Boolean queries for creating

pairs (AND, OR, NOT). The main flaw in this kind of design is the amount of time consumed in

creating the pairs. But as technology advanced, the new mathematical models functionalities in

full-text search engines reached a new horizon. Lucene has grown to support the ranking feature

in which the result is the file that consists of the most number of user queries. Lucene also

supports Boolean queries term, range, prefix, phrase, wildcard and fuzzy queries.
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2.9.1 Indexing
Indexing is the heart of Lucene, during indexing the original data is processed into a highly

efficient cross reference lookup. This is done in order to search at a faster rate. Indexing is done

by analyzers. The unusable texts such as the stop words, word suffixes or prefixes are discarded

at the analyzer stage. At the end of an indexing stage an index is created.

A Lucene index consists of Lucene document class instances which defines the index documents.

Each document contains a pair consisting of a Field name and a Field value.

2.9.2 A Lucene index

A Lucene index is an inverted index. An inverted index means that the content of the documents

that are analyzed has their important terms indexed as a pair consisting of a field name and a

field value. A field contains many terms that point to the corresponding documents. To

summarize, an inverted index makes the process of retrieving documents from a system a breeze.

Finally, the documents are searched in the fields and in their values.

A Lucene index consists of many segments. A segment is created every time when new

documents are created and indexed. Hence each segment has many documents stored in it. The

documents consist of indexed Fields. An indexed field is a pair consisting of a field name and a

field value pairs.  Fields are used for calculating weights and ranking search results.
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Figure: 2.3 A Lucene index

An actual Lucene index screen capture is shown in figure2.4, it is the index of a PDF document,

as it can be seen in the figure it consists of three fields and it is the index of only one PDF

document.

Figure 2.4: Lucene index screen capture
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3. Application Design

To support management and utilization of tens of thousands of training courses, my system

facilitates the user with six aspects of functions.  They are listed below.

1. System configuration.  The user can set up the database connection and table information.

2. Collecting structured information including the course properties and short texts such as

the title, abstract, description and audience.  The user’s inputs are inserted into a table of

the database.

3. Collecting the unstructured information, mainly the course documents.  These documents

can be in plain text, PDF, HTML, or Word.

4. Creating indexes for the unstructured documents.  This is a critical step in providing

keyword search with satisfactory response time.

5. Facilitating course search.  The search takes account of three groups of information: (1)

course properties such as course length, course form (“instructor lead” or “asynchronous

online”); (2) keywords in the title, abstract, description and audience fields; (3) keywords

in the course contexts.

6. Course property management.  The user can setup or modify course property fields

according to specific needs without dealing with database tables.

3.1 System configuration

This function is implemented as the system configuration GUI that provides the user an interface

to enter the login credentials to get access to a particular database.  Apart from the connections,

the user can also select a particular table which contains the properties (the Meta data) of each of

the courses, the document of which will be indexed.  A text console is present in the GUI which

would report any errors encountered while establishing a connection to the database.  The system

configuration information in the text fields including the table that is selected for querying is

written to a CONFIG file that is used by other components of our system.
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Figure 3.1: System configuration GUI

3.2 Information collection

The course property information is comprehensive and tedious. Practically, it is loaded into our

system from the data files provided by the course vendor companies. We have used the Oracle

database’s SQL Loader to collect the course property information from plain textual files.

Loading such data in other popular formats such as Excel or XML will be a straightforward

programming task.

In daily maintenance, we also need to input or modify such information in the interactive mode.

Figure 3.2 shows my GUI.

Figure 3.2: Add/edit course properties information
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The buttons at the top are “Add course”, “Search course ID”, and “Add document”.  The entire

table is editable.  The “Add course” button will add a new row to the table.  “Search course ID”

help the user locate a specific course, with which editing can be done.  The “Add document”

button allows the user to associate a document file with the current selected course [Figure 3.3].

Figure 3.3: Add/edit GUI Buttons

3.3 Database table management

The course property information can be modified in the interactive mode, each course property

can be modified individually and saved by clicking the Save button which is provided for each

individual course as shown in my GUI below Figure 3.4.

Figure 3.4: Database management

When the user clicks the Save button a SQL insert statement is generated to insert the modified

values into the database Figure xx shows a SQL statement generated by my program.

INSERT INTO COURSE (COURSEID, COURSETYPEID, PROVIDERID, LANGUAGEID, CATALOGNUMBER,

TITLE, INSERTDATE, ISACTIVE) VALUES (75313, 1, 3, 1, 'HAR0001', 'Coaching For

Results', '18-MAY-05', '1')

The above SQL statement is generated in JAVA using Vectors and Strings. When the user clicks

the save button the individual course property is converted to a Vector and a SQL statement is

generated as shown in my code below.
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3.4 Indexing

The main motive behind this thesis was to build a successful indexer that is capable of indexing a

variety of documents. The Indexer GUI is used to index a directory of documents that contains

Rich Text Format Documents, PDF Documents, Word Documents and Text Documents. The

indexer indexes all the sub directories recursively in the user specified directory. In my GUI the

user can enter the source directory either manually or by using the file selector which is available

for both the text fields (Destination Directory and Source Directory), the destination directory

stores the indices for all the indexed documents, indexing is based on Lucene indexing as stated

in the previous chapters. All the details entered in the text field either manually or by using the

file selector are automatically written to the CONFIG file. The indexer also has an output

console that can report any errors encountered during the indexing of the documents as shown in

Figure 3.5.

Figure 3.5: Indexing GUI
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3.5 Searching

The relationship between constraints by the course properties and the keyword search results can

be best explained by considering the Searcher GUI in Figure 3.6.

Figure 3.6: Searcher GUI

The upper left part of the GUI lists the choice of desired text fields namely title, abstract,

description and audience.  The logical relation between different fields is “OR”.  In the example

shown in Figure 3.y, since all four fields (title, abstract, description and audience) are checked,

as long as the keyword “aviation” appears in any one of these four fields, the course will be a

candidate selection.  In addition, the four checkboxes “SCORN compliant”, “NMCI compliant”,

“Sec 508 compliant”, and “NCO compliant” are four Boolean conditions regarding the standard

compliance of the course (See Fig 3.7).  Note, all these eight pieces of information are managed

by the database.  Thus, these constraints will be enforced by a SQL query.

Figure 3.7: Searcher GUI Boolean Conditions
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Although there is only one word (“aviation”) shown in the left-hand side keyword area, my GUI

and SQL query are capable of processing any number of keywords given in the text area.  If the

user does not give any keyword in the left-hand side keyword area, then the title, abstract,

description, and audience checkboxes will be ignored.  On the other hand, if the user gives at

least one keyword in the left-hand side keyword area but does not select any checkbox for title,

abstract, description, and audience, then all the four checkboxes will be automatically selected.

The upper right part of the GUI is the text area for “Keywords in context”.  If no word is given in

this area, then the Lucene search engine will not be used.  Giving at least one word in this area

will kick off Lucene search engine which return course identifiers (course catalog codes) that

contains the given words based on the given index.  Furthermore, Lucene search engine will also

generate an HTML document with keywords highlighted for each returned course concurrently.

When multiple words can be given, the user should specify the logical operations, “OR”,

“AND”, “NOT” between words.  Lucene searcher can interpret Boolean queries effectively and

perform logical operations on a set of key words.  For examples, “aviation OR army” will return

the documents which contains either word “aviation” or “army”.  Similarly, “aviation AND

army” will return the documents containing both words “aviation” and “army”.  If “aviation

NOT army” is given, then the documents which contain the word “aviation” but not the word

“army” will be returned.  Logical operations can also be grouped.  For example, “(Aviation OR

naval) AND army” can be used as the searching criterion effectively.  In addition to the logical

operations in the searching words, Lucene can also perform wild card searches.  For example,

“av*” returns all the documents that contain words starting with “av”.

Lucene supports fuzzy searches based on the Edit Distance algorithm [Levenshtein]. To do a

fuzzy search one has to use the tilde, "~", symbol at the end of a Single word Term. For example

to search for a term similar in spelling to "roam" use the fuzzy search “roam~”.  This search will

find terms like foam and roams.  More advanced proximity search by using the tilde at the end of

a phrase. For example to search for a "apache" and "jakarta" within 10 words of each other in a

document use the search:
"jakarta apache"~10
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It is critical to integrate the query results returned by the database with the searching results

returned by Lucene.  Technically, the final results should be the logical intersection of both

results.  My program design is explained in the next section.

3.6 Integrating keyword search with course property query

Logically, the database query and the Lucene search engine run independently.  In a sense, the

database query computation serves as a filter that eliminates the courses selected by Lucene but

failed in satisfying the course property conditions.  A critical step is to compute the intersection

between the results produced by Lucene and the result returned by the database query as the final

result.  Figure 3.8 illustrates the architecture of my system.

Figure 3.8 Searcher architecture
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4. System Implementation

In my project, I have learned and utilized a number of technologies including Eclipse, JDBC,

Lucene indexer, and Lucene searcher.  An overview of my system is shown in Figure 4.1.

Lucene can index a variety of documents.  All the documents that are to be indexed are stored in

the same directory and location of the source documents folder has to be specified to the program

prior to indexing.

Figure 4.1: System Overview

4.1 Database queries

In my implementation, I need only two tables to accommodate the course properties and the

document locations associated with the courses.  They are course Table and course_document.

Table course_document has two fields only, (course_ID, document).  Table course has its

schemas shown in Figure 4.2.
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Figure 4.2: Table Schema

A challenge in the JDBC programming is to generate the query that searches multiple words in

up to four fields (title, abstract, description and audience).  I used the following Java code to

solve this problem.
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In my code I initially get the fields to search the keywords and then the keywords are split into

separate words using space as the delimiter. An example of the query generated by my code is

shown below.

SELECT CATALOGNUMBER, TITLE FROM COURSE WHERE (LOWER (TITLE) LIKE '%Aviation%' OR

LOWER (OVERVIEW) LIKE '%Aviation%' OR LOWER (DESCRIPTION) LIKE '%Aviation%' OR LOWER

(AUDIENCE) LIKE '%Aviation%')

4.2 Indexer

The document indexer indexes all the source documents. Indexing of multiple formats is handled

in a very simple manner using an If – then – else syntax trying to understand the file extension,

and calling the right method for a particular extension. The index of each document is appended

to the previous index to make the entire process efficient.  Documents can be present in multiple

directories and the indexer can index all the files and the subdirectories within the user specified

directory. Moreover the documents need not be sorted by their file types all the file types can co-

exist in the same directory and the indexer can sort the various file types automatically. To

utilize Lucene indexer, I had to study Lucene index classes. I used the following Java code to

handle multiple formats.
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4.2.1 Lucene Index Classes

During the indexing process there are five basic Lucene classes, they are the IndexWriter,

Analyzer, Directory, Document, and Field

IndexWriter

An IndexWriter creates and maintains an index. The IndexWriter takes an argument that

determines whether a new index is created, or whether an existing index is opened for the

addition of new documents.

Opening an IndexWriter creates a lock file for the directory in use. When we try to open another

IndexWriter on the same directory will lead to an IOException. As a matter of fact IndexWriter

is the only class that has write-access to the index and using its methods one can add documents

to the index for searching purposes.

Analyzer

An Analyzer builds TokenStreams, which analyze text. It thus represents a policy for extracting

index terms from text. The analyzer discards text that is not useful for a searching application.

Lucene has a number of analyzers some of them are BrazilianAnalyzer, ChineseAnalyzer,

CJKAnalyzer, CzechAnalyzer, SimpleAnalyzer, SnowballAnalyzer, StandardAnalyzer,

StopAnalyzer and a WhitespaceAnalyzer. The most generic and important analyzers are

explained below

SimpleAnalyzer

A SimpleAnalyzer uses a Tokenizer that converts all of the input to lower case.

StopAnalyzer

A StopAnalyzer includes the lower-case filter, and also has a filter that drops out any "stop

words", words examples of stop words include a, an, the, etc. A stop word can be defined as a

word that occurs commonly in a given language. A stop word is analogous to noise in an

electrical circuit. A StopAnalyzer always comes with a preset of stop words, but one can always

add or remove words from the preset list.
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StandardAnalyzer

A StandardAnalyzer does both lower case and stop word filtering, and in addition it also tries to

do some basic clean-up of words, for example taking out apostrophes ( ' ) and removes periods.

The current application which is designed uses the StandardAnalyzer.

To summarize the three analyzers, the output when given a particular string is tabulated below

Analyzer Analyzer Result

Simple Analyzer

[lucene] [is] [a] [gem] [in] [the] [open]

[source] [world]

Stop Analyzer [lucene] [gem] [open] [source] [world]

Standard Analyzer [lucene] [gem] [open] [source] [world]

Directory

The Directory class represents the location of the index. It consists of FSDirectory and

RAMDirectory classes.  FSDirectory class stores the index in the file system while

RAMDirectory class stores the index in the memory. Because RAMDirectory does not write

anything to the disk, it is faster than FSDirectory. However, since computers usually come with

less RAM than hard disk space, RAMDirectory is not suitable for very large indices.

Document

Documents are the unit of indexing and search. A Document is a set of fields. Each field has a

name and a textual value. A field may be stored with the document, in which case it is returned

with search hits on the document. Thus each document typically contains one or more stored

fields which uniquely identify it.

Field

A field is a section of a Document. Each field has two parts, a name and a value. Values are free

text, provided as a String or as a Reader, or they are atomic keywords, which are not further

processed. Such keywords are used to represent dates, urls, etc. Fields are optionally stored in the

index, so they are returned with hits on the document. The different types of fields, their

characteristics and common usage are listed in the table below.
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Finally, the entire indexing procedure can be summarized as shown in figure 4.3

Figure 4.3: Lucene indexing architecture

4.2.2 Indexing PDF files

Parsers

In order to index various documents like PDF, Word documents, HTML etc using Lucene one

has to convert it into textual format. Lucene does not have built in parsers like a search engine

library. Therefore to index various kinds of data one has to use external tools that can be easily

integrated with Lucene. An example is using PDFBox to index PDF files.

PDF (Portable Document Format) documents were originally created by Adobe, today the PDF

document has become a standard format among documents. PDF documents are virtually used
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everywhere in the electronic media. Hence it is important to have a good information retrieval

system for PDF documents.

PDFBox is used to extract text from a PDF document; this is done as Lucene can accept data that

is only in textual format. PDFBox is a free open source library that can be downloaded from their

website. One of the main features of PDFBox is its ability to quickly and accurately extract text

from a variety of PDF documents. This functionality is encapsulated in the PDFTextStripper

class which can extract text from the given PDF document. PDF files can be indexed using two

methods; both involve the usage of PDFBox.

Simple text extraction and Indexing

This method makes use of the PDFTextStripper class. This class takes a PDF document and

strips out all of the text and ignores the formatting and such. The output of the PDFTextStripper

class is written to a text document and the document is passed as such to the Lucene indexer. A

snippet using this method is shown below

This writeText class takes a PDF document and writes the text of that document to the print

writer. The entire procedure can be summarized as shown in figure 4.4

Figure 4.4: Indexing PDF files
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Lucene Integration

The main advantage of using PDFBox is the ease at which it can be integrated with Lucene.

PDFBox provides a simple approach for adding PDF documents into a Lucene index.

        Document luceneDocument = LucenePDFDocument.getDocument( ... );

Once a Lucene Document object is created, it can be added to the Lucene index as though it had

been created from a text or a HTML file. The LucenePDFDocument automatically extracts a

variety of metadata fields from the PDF to be added to the index, the details of those fields are

tabulated below.

Lucene Field Name Description
Path File system path if loaded from a file

url URL to PDF document

Contents

Entire contents of PDF document, indexed

but not stored

Summary First 500 characters of content

Modified

The modified date/time according to the

url or path

Uid

A unique identifier for the Lucene

document.

CreationDate From PDF meta-data if available

Creator From PDF meta-data if available

Keywords From PDF meta-data if available

ModificationDate From PDF meta-data if available

Producer From PDF meta-data if available

Subject From PDF meta-data if available

Trapped From PDF meta-data if available

Advanced Text Extraction

It is possible to perform advanced text extraction using PDFBox. One can utilize or extend the

PDFTextStripper class to perform the same.
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Limiting the Extracted Text

When using PDFBox it is possible to limit the text that is extracted during the extraction process.

The simplest way is to specify the range of pages in which the text needs to be extracted.  The

snippet shown below extracts text between page 7 and 8

                PDFTextStripper stripper = new PDFTextStripper();

                stripper.setStartPage( 7 );

                stripper.setEndPage( 8 );

                stripper.writeText( ... );

4.2.3 Indexing Microsoft Word and Rich Text Format (RTF) Documents

Indexing Microsoft Word Documents

Microsoft word documents can be indexed using Lucene when the text from the word document

is extracted. There are a number of packages that are available to extract text from a word

document. In this thesis the text mining package which is available with the Lucene sand box  is

used to extract the text from the document. This package is capable of extracting text from

Microsoft Word 6.0/95/97/2000/XP

The text can be extracted very easily from the word document as shown below

bodyText = new WordExtractor().extractText(new FileInputStream(f));

The document should be sent in as a File Input Stream for the word extractor to function

properly.

Indexing Rich Text Format (RTF) Documents

RTF documents can be indexed with the help of the RTFEditorkit supplied with the JAVA SDK.

The text from the RTF document is read by using the read method of the RTFEditorkit and the

text is extracted by using the getText method of the tool kit. This is demonstrated in the code

snippet shown below



- 30 -

new RTFEditorKit().read(new FileInputStream(f), styledDoc, 0);

bodyText = styledDoc.getText(0, styledDoc.getLength());

The read position can also be specified when reading and extracting text from a RTF document.

4.2.4 Using Lucene Index Classes

Once the text has been extracted from a document using any of the methods explained in the

previous sections, the text content has to be indexed. Lucene can accept only text to index. The

following code is used to index the text content.

A new document has to be created; the contents and the filename are added to a specific field

type. There are four types of fields Text, Keyword, UnIndexed and UnStored.

4.3 Searcher

Searching is the process that follows indexing. Once the required documents are indexed a

search method has to be implanted. A search method takes the user queries and they are parsed

using the searcher parser. The results of a search method consist of hits from the index.

4.3.1 Search Classes in Lucene

The main search classes in Lucene are IndexSearcher, Query, Term, and Hits.

IndexSearcher

An IndexSearcher searches a document from an index. An index is opened in read only mode

and uses its methods to return the search results. The final results can be printed or sorted or

listed.
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Query

A query class is used for defining user queries. There are a number of query types in Lucene, the

various query types are BooleanQuery, FilteredQuery, MultiTermQuery, PhrasePrefixQuery,

PhraseQuery, PrefixQuery, RangeQuery, SpanQuery and TermQuery. The QueryParser class can

automatically understand which type the user query belongs to. The Backus-Naur form (BNF)

grammar of a Lucene query is

Query ::= ( Clause )*

Clause ::= ["+", "-"] [<TERM> ":"] ( <TERM> | "(" Query ")"

<TERM> specifies the index field in which the terms are searched

["+", "-"]  ‘+’ specifies the query parser to include the clause in the search criteria while ‘-‘

specifies the query parser to remove the clause from the search criteria.

Term

The term class represents the text in a document while searching. The term class takes two

parameters, (a field and a text) the field is one in which the text will be searched. The term class

is used for constructing the user query.

Hits

After the construction of a query, the IndexSearcher class searches the documents from the

index. The results of the IndexSearcher class are pointed by the Hits class.

Scoring

Lucene scoring is fast and it hides almost all of the complexity from the user. Lucene scoring

uses a combination of the Vector Space Model (VSM) of Information Retrieval and the Boolean

model to determine how relevant a given Document is to a User's query. In VSM  the more times

a query term appears in a document relative to the number of times the term appears in all the

documents in the collection, the more relevant that document is to the query. It uses the Boolean

model to first narrow down the documents that need to be scored based on the use of Boolean

logic in the Query specification. Lucene also adds some capabilities and refinements onto this
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model to support Boolean and fuzzy searching, but it essentially remains a VSM based system at

the heart. In Lucene scoring is very much dependent on the way documents are indexed; the

objects that are scored are the Documents and a Document is a collection of Fields. Each Field

has semantics about how it is created and stored (i.e. tokenized, untokenized, raw data,

compressed, etc.).Lucene scoring works on Fields and then combines the results to return

Documents. This is important because two Documents with the exact same content, but one

having the content in two Fields and the other in one Field will return different scores for the

same query due to length normalization (assuming the DefaultSimilarity on the Fields).

The Lucene Scoring Formula

Lucene's scoring formula computes the score of one document d for a given query q across each

term t that occurs in q. The score attempts to measure relevance, so the higher the score, the

more relevant document d is to the query q.

score (q,d) = sum t in q( tf (t in d) * idf (t)^2 * getboost(t in q) *

getBoost (t.field in d) * lengthNorm (t.field in d) ) * coord (q,d) *

queryNorm (sumOfSquaredWeights)

where

sumOfSquaredWeights = sumt in q( idf (t) * getBoost (t in q) )^2

This scoring formula is mostly implemented in the TermScorer class, where it makes calls to the

Similarity class to retrieve values for the following. tf(t in d) - Term Frequency - The number of

times the term t appears in the current document d being scored. Documents that have more

occurrences of a given term receive a higher score.

1. idf(t) - Inverse Document Frequency - One divided by the number of documents in

which the term t appears. This means rarer terms give higher contribution to the total

score.

2. getBoost(t in q) - The boost, specified in the query by the user, that should be applied

to this term. A boost over 1.0 will increase the importance of this term; a boost under 1.0

will decrease its importance. A boost of 1.0 (the default boost) has no effect.
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3. lengthNorm(t.field in q) - The factor to apply to account for differing lengths in the

fields that are being searched. Typically longer fields return a smaller value. This means

matches against shorter fields receive a higher score than matches against longer fields.

4. coord(q, d) - Score factor based on how many terms the specified document has in

common with the query. Typically, a document that contains more of the query's terms

will receive a higher score than another document with fewer query terms.

5. queryNorm(sumOfSquaredWeights) - Factor used to make scores between queries

comparable.

4.3.2 Searching PDF documents

As described in Section 4.2.2, PDF documents are indexed.  A search application has to be

written to search index for the given query. The search application written for a PDF document is

similar to that of a normal text search. The searcher application uses the IndexSearcher and the

FSDirectory classes to open the index for Searching, the IndexSearcher constructor takes the

index directory as a parameter and the Query Parser takes the human readable query into

Lucene’s Query class, and a standard analyzer is used to index the PDF document; hence the

same analyzer is used to search the Lucene index also. Searching returns hits in the form of hits

object.  I have used the following code to search my Lucene index.
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4.3.3 Search Results

Once Lucene completes a search, the results are displayed in a very easy to use manner. A

HTML page is generated with all the search results. The search results page consists of

highlighting the search string and also extracting the best fragments. This is all achieved by using

the highlighter class supplied with Lucene.

The highlighter class is used to markup highlighted terms found in the best sections of a text,

using configurable Fragmenter, Scorer, Formatter, Encoder and Tokenizers. The search results

consist of a small fragment of the document containing the search string. The fragment that is

extracted has the maximum number of occurrences of the search string and this is achieved by

using the getBestFragment method. The getBestFragment method extracts the most relevant

sections and the document text is analyzed in chunks to record hit statistics across the document.

Formatter

After the best fragments are obtained they need to be formatted. The formatter processes terms

found in the original text, typically by applying some form of mark-up to highlight terms in

HTML search results pages  There are two types of formatter available with this API. The

GradientFormatter and the SimpleHTMLFormatter. A simple HTML formatter is used in this

application, the simple formatter highlights terms by applying a pre tag and a post tag.

Results formatting

Results are available for the search queries in a very friendly manner, there are two ways how the

results is displayed. A short summary of each document is presented when the user clicks the

Results button on the GUI or a List of results without the summary is automatically displayed in

the GUI.
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Figure 4.5: Formatted Results

When the user clicks on a document from the list, the user can view the entire document in the

output window which disables the summary view.

Figure 4.6: Result File View

It can be seen from the above figure all the results have the search query highlighted in yellow

color. This is made possible by using the Lucene highlighter class. The results that are displayed

in the result list or in the summary page are also ranked, meaning the documents with the

maximum number of hits occupy a higher position in the list or in the display of summary

results. Hits mean the documents that contain the maximum number of the search string.
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5. Results

A document indexer and a searcher that combines one of the IR techniques – keyword searching

with the database techniques through a filtering process were implemented successfully.

The indexer is capable of indexing a variety of document formats and a Graphical User Interface

based on the implementation of Lucene was built successfully as shown in the screen shot below.

Figure 5.1: Indexer Results (GUI)

A Lucene searcher capable of searching the Lucene document indices with filtering processes

and displaying the results in HTML format were implemented. The formatted results have the

search terms highlighted.

Figure 5.2: Formatted Results



- 37 -

A System configuration GUI where the user can set up the database connection and table

information was built successfully. This GUI provides the user an interface to enter the login

credentials to get access to a particular database.

Figure 5.3: Configuration GUI

A Graphical User Interface for Course property management was built where the user can setup

or modify course property fields according to specific needs without dealing with database

tables.  This GUI is capable of database management.

Figure 5.4: Table Modifier GUI
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6. CONCLUSION / FUTURE WORK

A successful indexing and searching application to support the management of training courses

from tens of thousands of entries owned by a military branch where the users need to search for

courses against specific training needs was built using Lucene.  This application integrated

information retrieval from unstructured documents and traditional database querying for the

structured information such as the courses’ properties.

For the unstructured documents, my system can index a variety of file formats and search in a

variety of applications.  By taking advantage of Lucene’s portability and scalability, my system

is highly customizable.  It supports a variety of keyword search queries such as wild card

searches, Boolean queries, and fuzzy searches.  While Lucene is a highly sophisticated search

engine, it is not possible to automatically search documents using Lucene.  Lucene provides a

framework for writing a customized search application.  Although Lucene only supports simple

text, I used a number of third-party software that can convert HTML, XML, Word and PDF

documents into simple text.  Once converted, the keyword-search based information retrieval

system was built. Additional plug-ins is available to expand the capabilities of search libraries

and the ability to fetch data from different sources.

For the structured information, I applied the relational database techniques especially the string

search features in SQL.  Upon my Java GUI components collecting search constraints from the

user, the application automatically forms very sophisticated SQL queries.  Experiments showed

that my database querying part performed cause little delay.

The complexity of my design and implementation came from the integration of Lucene indexing

engine and the database querying system.  My approach was to filter the Lucene search results

with the database query results, which has been effective in my experiments.

The application implemented in this project effectively fulfilled the core backend-server

functions.  The results produced by my system are ready for Web delivery.  In the future my

application can be embedded into a Web application or Web services.
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