
University of New Orleans University of New Orleans

ScholarWorks@UNO ScholarWorks@UNO

University of New Orleans Theses and
Dissertations Dissertations and Theses

12-15-2006

Detecting Routing Misbehavior In Mobile Ad Hoc Network Detecting Routing Misbehavior In Mobile Ad Hoc Network

Kejun Liu
University of New Orleans

Follow this and additional works at: https://scholarworks.uno.edu/td

Recommended Citation Recommended Citation
Liu, Kejun, "Detecting Routing Misbehavior In Mobile Ad Hoc Network" (2006). University of New Orleans
Theses and Dissertations. 1046.
https://scholarworks.uno.edu/td/1046

This Thesis is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with
permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright
and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-
holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the
work itself.

This Thesis has been accepted for inclusion in University of New Orleans Theses and Dissertations by an
authorized administrator of ScholarWorks@UNO. For more information, please contact scholarworks@uno.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of New Orleans

https://core.ac.uk/display/216836855?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.uno.edu/
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/etds
https://scholarworks.uno.edu/td?utm_source=scholarworks.uno.edu%2Ftd%2F1046&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uno.edu/td/1046?utm_source=scholarworks.uno.edu%2Ftd%2F1046&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uno.edu

Detecting Routing Misbehavior In Mobile Ad Hoc Network

A Thesis

Submitted to the Graduate Faculty of the
University of New Orleans
in partial fulfillment of the

requirements for the degree of

Master of Science
in

Computer Science

by

Kejun Liu

B.S. Tongji University, 1999

December, 2006

Copyright 2006, Kejun Liu

ii

To my parents, my sister and brother-in-law,

and my husband, for their support as always.

iii

Acknowledgments

First of all, I would like to give my sincere thanks to my advisor, Dr. Jing Deng. for giving

me such a wonderful opportunity to work with him. His patient guidance and precious

advices are tremendous treasure not only for this thesis, but also for my career in future. I

deeply appreciate for what he did.

I would also like to thank my committee members, Dr. Shengru Tu and Dr. Vassil

Roussev. Thanks for kindly serving as my committee members, and providing valuable

comments on my thesis work.

In addition, I would like to express my gratitude to Dr. Bin Fu. I had participated in

his cryptography class and got a chance to have some discussions with him, which helps me

a lot on this thesis.

Last but not the least, I would like to thank Dr. Pramod K. Varshney in Syracuse

University, Associate Editor, Dr. J.-P. Hubaux in IEEE Transactions on Mobile Computing

and the three anonymous reviewers for their valuable comments to improve this thesis. I

want to thank Y. Xue and K. Nahrstedt for providing the simulation code for the BFTR

scheme [35], too.

This work was supported in part by the SUPRIA program of the CASE Center at Syra-

cuse University and Louisiana EPSCoR Pfund LBOR0049PR00C.

iv

Contents

Abstract vii

1 Introduction 1

2 Related Work 6

2.1 Credit-Based Schemes . 6

2.2 Reputation-Based Schemes . 7

2.3 End-to-end Acknowledgment Schemes . 9

2.4 Other Prior State-of-the-art Schemes . 11

2.5 The TWOACK and S-TWOACK Schemes 12

3 Overview of Dynamic Source Routing 13

3.1 Route Discovery . 14

3.2 Route Maintenance . 16

4 Problem of Routing Misbehavior 18

4.1 Notations and Assumptions . 18

4.2 Routing Misbehavior Model . 20

4.3 Probability of Misbehaving Routes . 21

5 The 2ACK Scheme 26

v

5.1 Details of the 2ACK Scheme . 26

5.2 Comparison with Overhearing Techniques 29

5.3 Authenticating the 2ACK Packets . 30

5.4 Timeout for 2ACK Reception, τ . 34

5.5 Observation Period, Tobs, and Dynamic Behavior 35

5.6 Acknowledgment Ratio, Rack . 35

5.7 False Misbehavior Reports and Intentional Dropping of 2ACK 36

5.8 Partial Data Forwarding . 37

6 Performance Evaluation 39

6.1 Simulation Methodology and Performance Metrics 39

6.2 Simulation Implementation . 41

6.3 Simulation Results for UDP Traffic . 45

6.4 Simulation Results for TCP Traffic . 50

7 Conclusions 52

Appendix: Pseudo Code of the 2ACK Scheme 54

Bibliography 61

Vita 62

vi

Abstract

Routing misbehavior in MANETs (Mobile Ad Hoc Networks) is studied in this thesis. In

general, routing protocols for MANETs are designed based on the assumption that all par-

ticipating nodes are fully cooperative. However, due to the open structure and scarcely

available battery-based energy, node misbehaviors may exist. One such routing misbehavior

is that some selfish nodes will participate in the route discovery and maintenance processes

but refuse to forward data packets. Therefore, we propose the 2ACK scheme that serves

as an add-on technique for routing schemes to detect routing misbehavior and to mitigate

their adverse effect. The main idea of the 2ACK scheme is to send two-hop acknowledgment

packets in the opposite direction of the routing path. In order to reduce additional routing

overhead, only a fraction of the received data packets are acknowledged in the 2ACK scheme.

Analytical and simulation results are presented to evaluate the performance of the proposed

scheme.

vii

List of Figures

5.1 The 2ACK Scheme . 27

5.2 Data structure maintained by the observing node 28

5.3 Data structure of the RERR packet (the misbehavior report) 29

5.4 The Packet Format of 2ACK . 33

6.1 Packet Delivery Ratio of 2ACK, BFTR, S-TWOACK and DSR 46

6.2 Routing Overhead of 2ACK, BFTR, S-TWOACK and DSR 47

6.3 Packet Delivery Ratio of 2ACK for different Rack 48

6.4 Routing Overhead of 2ACK with different Rack 48

6.5 The Packet Delivery Ratio of 2ACK for different Vm 49

6.6 Number of False Alarms in 2ACK (pm = 0) 50

6.7 Packet Delivery Ratio of 2ACK & DSR for TCP traffic (Vm=20 m/sec) . . . 51

viii

List of Tables

4.1 Probability of misbehaving routes for different misbehavior ratio, pm 25

6.1 The relative throughput supported by 2ACK and DSR for TCP traffic . . . 50

ix

Chapter 1

Introduction

Since the world’s first wireless local area network (WLAN), ALOHANET, emerged in 1971

at the University of Hawaii, the growth of the wireless network is significantly. Contrasted to

the wired network, the wireless network is more flexible and convenient, especially for those

who like to use some mobile devices, such as laptop, Personal Digital Assistant (PDA) etc.

There is no need to look for an Ethernet port when network connection is needed. The news

and Email can be read even in a coffee shop or airport. People get access to the network

almost whenever and wherever they want.

However, such wireless connections actually are not really available anywhere. The con-

nection is constrained by the pre-existed base stations (or access points). In order to get

connected, people have to at least stay within the communication radius of one base station.

Ad Hoc network emerged under the demand of some special tasks, such as search/rescue

after an earthquake, or communication in a battle field, where the network infrastructures

are either destroyed or never existed.

A Mobile Ad Hoc Network (MANET) is a collection of mobile nodes (hosts) which

communicate with each other via wireless links either directly or relying on other nodes as

routers. The operation of MANETs does not depend on pre-existing infrastructure or base

1

stations. Network nodes in MANETs are free to move randomly. Therefore, the network

topology of a MANET may change rapidly and unpredictably. All network activities, such

as discovering the topology and delivering data packets, have to be executed by the nodes

themselves, either individually or collectively. Depending on its application, the structure

of a MANET may vary from a small, static network that is highly power-constrained to a

large-scale, mobile, highly dynamic network.

There are two types of MANETs: closed and open [27]. In a closed MANET, all mobile

nodes cooperate with each other toward a common goal, such as emergency search/rescue

or military and law enforcement operations. In an open MANET, different mobile nodes

with different goals share their resources in order to ensure global connectivity. However,

some resources are consumed quickly as the nodes participate in the network functions. For

instance, battery power is considered to be most important in a mobile environment. An

individual mobile node may attempt to benefit from other nodes, but refuse to share its own

resources. Such nodes are called selfish or misbehaving nodes, and their behavior is termed

selfishness or misbehavior [7]. One of the major sources of energy consumption in mobile

nodes of MANETs is wireless transmission [12]. A selfish node may refuse to forward data

packets for other nodes in order to conserve its own energy.

There are three misbehaving node models related to a routing protocol such as Dynamic

Source Routing (DSR [18])1 are defined in [26]:

• Selfish node of type 1 (SN1): An SN1 node does not perform any packet forwarding

function for the data packets unrelated to itself. However, it operates normally in the

Route Discovery and the Route Maintenance phases of the DSR protocol;

• Selfish node of type 2 (SN2): An SN2 node neither participates in the Route

Discovery/Maintenance phase nor in data packet forwarding. It only spends its battery

1Due to DSR’s popularity, we use it as the basic routing protocol to illustrate our proposed add-on scheme.
The details of DSR can be found in [18]. The implementation of our scheme on other routing schemes will
be discussed in Chapter 7.

2

energy to send or receive its own data packets;

• Selfish node of type 3 (SN3): An SN3 node’s behavior depends on the level of

its battery energy. When the energy level is higher than a threshold E1, the node

behaves normally. When the energy level is lower than E1 but still higher than a lower

threshold E2 (E2 < E1), it behaves as an SN1 node. When the energy level is lower

than E2, the node behaves as an SN2 node.

It is clear that SN3 represents a dynamic behavior involving the behaviors of a well-

behaving node, SN1, and SN2 depending on the energy level of a node. The difference

between SN1 and SN2 is whether or not the node participates in regular routing operations

such as Route Discovery and Route Maintenance. It is relatively easy to distinguish an

SN2 node from a well-behaved one. The neighbors can simply make their own judgment by

checking their records of routing topology. Once an SN2 node is found, the well-behaved

nodes may refuse to serve the traffic generated by the SN2 node. Therefore, an SN2 node

can be simply isolated and removed from the MANET.

On the contrary, distinguishing an SN1 node from a group of well-behaved nodes is much

more difficult. By participating in the routing process, an SN1 node will be included in the

routing topology and its data traffic will be forwarded by other well-behaved nodes. The

damage caused by SN1 nodes on MANETs is significant. Such misbehaving nodes support

the Route Discovery phase but interrupt data forwarding. When the source node of the data

traffic notices the problem with the chosen route, it can either choose an alternate route

from its route cache or initiate a new Route Discovery phase. The alternate route may again

contain misbehaving nodes and therefore data transmission may fail again. The new Route

Discovery phase will return a similar set of routes that may contain misbehaving nodes.

After a few failed tries, the source node may conclude that routes are unavailable to deliver

the data packets and the MANET fails to provide a reliable communication structure for

3

mobile nodes. Therefore, it is an important task to identify an SN1 node in a MANET (SN3

nodes may be identified using a similar dynamic method of identifying SN1 nodes.)2

The adverse effects of routing misbehavior caused by SN1 nodes can be explained in the

following.

SN1 nodes participate in the Route Discovery phase. Therefore, they may be included

in the routes chosen to forward the data packets from the source. However, the SN1 nodes

do not forward the data packets when such packets arrive. This leads to the source being

confused. The alternative route chosen from the route cache of the source or the results of

a new round of Route Discovery phase may contain SN1 nodes as well.

In order to mitigate the adverse effects of SN1 nodes, the nodes need to be detected so

that these nodes can be avoided by all well-behaved nodes. In this thesis, we focus on the

following problem:

(Misbehavior Detection and Mitigation) In MANETs, routing misbehavior can

severely degrade the performance at the routing layer. Specifically, nodes may participate

in the route discovery and maintenance processes but refuse to forward data packets. How

do we detect such misbehavior? How to make such detection process more efficient (i.e.,

with less control overhead) and accurate (i.e., with low false alarm rate and missed detection

rate)?

We propose the 2ACK scheme to mitigate the adverse effects of SN1 nodes. The basic

idea of the 2ACK scheme is that, when a node forwards a data packet successfully over

the next hop, the destination node of the next-hop link will send back a special two-hop

acknowledgment called 2ACK to indicate that the data packet has been received successfully.

Such a 2ACK transmission takes place only for a fraction of data packets, but not all. Such

a “selective” acknowledgment3 is intended to reduce the additional routing overhead caused

2Since SN3 nodes can be detected with techniques similar to those that detect SN1 nodes, we focus on
SN1 nodes henceforth.

3It will become clear later that the acknowledgment in the 2ACK scheme is different from SACK in TCP.

4

by the 2ACK scheme. Judgment on node behavior is made after observing its behavior for

a certain period of time.

In this thesis, we present the details of the 2ACK scheme and our evaluation of the 2ACK

scheme as an add-on to the Dynamic Source Routing (DSR [18]) protocol. The rest of the

thesis is organized as follows: In Chapter 2, we summarize the various approaches for route

misbehavior detection and mitigation that have been proposed and studied in the literature.

In Chapter 3, we briefly describe the DSR protocol. In Chapter 4, we present the problem

and discuss the performance degradation caused by the misbehaving nodes in MANETs. The

details of the 2ACK scheme and related discussion are given in Chapter 5. In Chapter 6, we

present our simulation results that compare the DSR scheme, the DSR+2ACK scheme, and

other related schemes. We conclude the work in Chapter 7.

5

Chapter 2

Related Work

The security problem and the misbehavior problem of wireless networks including MANETs

have been studied by many researchers, e.g., [21, 34, 37] and [2]. Various techniques have

been proposed to prevent selfishness in MANETs. These schemes can be broadly classified

into two categories: credit-based schemes and reputation-based schemes.

2.1 Credit-Based Schemes

The basic idea of credit-based schemes is to provide incentives for nodes to faithfully perform

networking functions. In order to achieve this goal, virtual (electronic) currency or similar

payment system may be set up. Nodes get paid for providing services to other nodes. When

they request other nodes to help them for packet forwarding, they use the same payment

system to pay for such services [8, 9, 15, 17].

In [8], Buttyan and Hubaux used the concept of nuggets (also called beans) as payments

for packet forwarding. They proposed two models: the Packet Purse Model and the Packet

Trade Model. In the Packet Purse Model, nuggets are loaded into the packet before it is

sent. The sender puts a certain number of nuggets on the data packet to be sent. Each

intermediate node earns nuggets in return for forwarding the packet. If the packet exhausts

6

its nuggets before reaching its destination, then it is dropped. In the Packet Trade Model,

each intermediate node “buys” the packet from the previous node for some nuggets, and

“sells” it to the next node for more nuggets. Thus, each intermediate node earns some

nuggets for providing the forwarding service, and the overall cost of sending the packet is

borne by the destination.

In [9], each node maintains a counter termed nuglet counter. The counter is decreased

when the node sends packets of its own, but increased when it forwards packets for the

other nodes. The counter should be positive before a node is allowed to send its packet.

Therefore, the nodes are encouraged to continue to help other nodes. Tamper resistant

hardware modules are used to keep nodes from increasing the nuglet counter illegally.

Another credit-based scheme, termed Sprite, was proposed by Zhong et al. in [36]. In

Sprite, nodes keep receipts of the received/forwarded messages. When they have a fast

connection to a Credit Clearance Service (CCS), they report all these receipts. The CCS

then decides the charge and credit for the reporting nodes. In the network architecture of

Sprite, the CCS is assumed to be reachable through the use of Internet, limiting the utility

of Sprite.

The main problem with credit-based schemes is that they usually require some kind of

tamper-resistant hardware and/or extra protection for the virtual currency or the payment

system. We focus on reputation-based techniques in this thesis instead.

2.2 Reputation-Based Schemes

The second category of techniques to combat node misbehavior in MANETs is reputation-

based [6,24]. In such schemes, network nodes collectively detect and declare the misbehavior

of a suspicious node. Such a declaration is then propagated throughout the network, so that

the misbehaving node will be cut off from the rest of the network.

7

In [24], Marti et al. proposed a scheme that contains two major modules, termed watchdog

and pathrater, to detect and mitigate, respectively, routing misbehavior in MANETs. Nodes

operate in a promiscuous mode wherein, the watchdog module overhears the medium to check

whether the next-hop node faithfully forwards the packet. At the same time, it maintains a

buffer of recently sent packets. A data packet is cleared from the buffer when the watchdog

overhears the same packet being forwarded by the next-hop node over the medium. If a

data packet remains in the buffer for too long, the watchdog module accuses the next-hop

neighbor to be misbehaving. Thus, the watchdog enables misbehavior detection at the

forwarding level as well as the link level. Based on watchdog’s accusations, the pathrater

module rates every path in its cache and subsequently chooses the path that best avoids

misbehaving nodes. Due to its reliance on overhearing, however, the watchdog technique

may fail to detect misbehavior or raise false alarms in the presence of ambiguous collisions,

receiver collisions, and limited transmission power, as explained in [24].

The CONFIDANT protocol proposed by Buchegger and Le Boudec in [6] is another

example of reputation-based schemes. The protocol is based on selective altruism and utili-

tarianism, thus making misbehavior unattractive. CONFIDANT consists of four important

components - the Monitor, the Reputation System, the Path Manager, and the Trust Man-

ager. They perform the vital functions of neighborhood watching, node rating, path rating,

and sending and receiving alarm messages, respectively. Each node continuously monitors

the behavior of its first-hop neighbors. If a suspicious event is detected, details of the event

are passed to the Reputation System. Depending on how significant and how frequent the

event is, the Reputation System modifies the rating of the suspected node. Once the rating

of a node becomes intolerable, control is passed to the Path Manager, which accordingly

controls the route cache. Warning messages are propagated to other nodes in the form of an

Alarm message sent out by the Trust Manager.

The Monitor component in CONFIDANT scheme observes the next hop neighbor’s be-

8

havior using the overhearing technique. This causes the scheme to suffer from the same

problems as the watchdog scheme.

In [27], Miranda and Rodrigues adopted a similar approach. Each node i maintains a

data structure Statusi[j] about every other node j, as an indication of what impression

node i has about node j. Along with a credit counter, node i also maintains lists of nodes to

which node j will and will not provide service. Every node periodically broadcasts relevant

information in the form of a self-state message. Other nodes update their own lists based

on the information contained in these self-state messages.

2.3 End-to-end Acknowledgment Schemes

There are several schemes that use end-to-end acknowledgments (ACKs) to detect routing

misbehavior or malicious nodes in wireless networks.

In the TCP protocol, end-to-end acknowledgment is employed. Such acknowledgments

are sent by the end-receiver to notify the sender about the reception of data packets up

to some locations of the continuous data stream. The Selective Acknowledgment (SACK)

technique is used to acknowledge out-of-order data blocks.

The 2ACK technique differs from the ACK and the SACK schemes in the TCP protocol

in the following manner: the 2ACK scheme tries to detect those misbehaving nodes which

have agreed to forward data packets for the source node but refuse to do so when data

packets arrive. TCP, on the other hand, uses ACK and SACK to measure the usefulness of

the current route and to take appropriate action. For example, congestion control is based

on the reception of the ACK and the SACK packets.

In order to identify malicious routers that draw traffic towards themselves but fail to

correctly forward the traffic, Padmanabhan and Simon proposed the secure traceroute pro-

tocol [29]. The normal traceroute protocol allows the sender to simply send packets with

9

increasing Time-To-Live (TTL) values, and wait for a warning message from the router at

which time the packet’s TTL value expires. The secure traceroute protocol authenticates

the traceroute packets and disguises them as regular data packets.

In [3], Awerbuch et al. proposed an On-Demand Secure Routing Protocol to adaptively

probe faulty links on the route being used. Similar to the secure traceroute scheme, binary

search is initiated on faulty routes. Asymptotically, log(n) probes are needed to identify a

faulty link on a faulty n-hop route. This technique only works with static misbehaviors and

needs to disguise the probing messages as regular routing control packets. Once a link is

identified as faulty, the link weight is increased so that the future link selections will avoid

this link.

The Best-effort Fault-Tolerant Routing (BFTR) scheme due to Xue and Nahrstedt [35]

also employs the end-to-end ACKs. The BFTR scheme continuously monitors the quality

(i.e., packet delivery ratio) of the path in use. This is compared with the predefined expected

behavior of good routes. If the behavior of the route in use deviates from the behavior of

good routes, it is marked as “infeasible” and a new route is used. Since BFTR throws

out the entire route before detecting the misbehaving nodes, the newly chosen route may

still include the same misbehaving nodes. Even though the new route will be detected as

infeasible by the source after a period of observation time, data packet loss will occur in traffic

flows when using protocols such as UDP. Such a repeated detection process is inefficient. In

contrast with BFTR, we try to identify such misbehaving links in this thesis. Therefore,

more accurate information on routing misbehavior can be obtained in the 2ACK scheme.

Compared with the schemes in [3,29,35], the 2ACK scheme does not rely on end-to-end

acknowledgment. Such an acknowledgment scheme may not exist in some traffic flows (such

as UDP). Instead, the 2ACK scheme tries to detect misbehaving links as the links are being

used. Such a proactive detection approach results in quicker detection and identification of

misbehaving links. Note that it may be beneficial to include end-to-end acknowledgments in

10

the 2ACK scheme. In such a combined scheme, the 2ACK transmission and the monitoring

processes are turned on only when routing performance degrades. It will further reduce the

routing overhead of the 2ACK scheme.

In [10], Conti et al. proposed a scheme to choose routes based on the reliability index of

each outgoing neighbor. Each node maintains a table of reliability indices of its neighbors.

Such a reliability index reflects the past success/failure experience of packet transmissions

through this neighbor. For example, a successful end-to-end transmission will result in an

increase of the reliability index of the neighbor associated with the route. When choosing

routes for data transmissions, nodes prefer those rooted at the neighbors with higher relia-

bility indices. Different policies for route selection were investigated in [10]. Since a source

node judges all potential routes through its immediate neighbors, the overall reliability of the

chosen route depends on how the neighbors choose the rest of the route. Here, we propose

a scheme to detect misbehaving links and to avoid them as much as possible.

2.4 Other Prior State-of-the-art Schemes

The misbehavior problem that we focus on in this thesis was referred to as the Black Hole

attack in [2, 14]. In [2], Aad et al. investigated the JellyFish attack for closed-loop flows

such as TCP. It was shown that a JellyFish attacker may stealthily re-arrange, delay, or

periodically drop packets while still remaining protocol-compliant. Such attacks may cause

end-to-end throughput of closed-loop flows to drop. Similarly, the Black Hole attack was

also shown to have adverse effect on open-loop flows such as UDP. Unlike [2], we propose a

2ACK technique to detect such misbehaviors.

Several other interesting techniques have been proposed to address the issue of potential

node misbehavior in MANETs. For example, Srinivasan et al. addressed the issue of user

cooperation in MANETs [33]. Behavior of nodes was assumed to be rational, i.e., their

11

actions were strictly determined by self interest. A Generous TIT-FOR-TAT (GTFT) scheme

was used to make sure that a Nash equilibrium would be achieved. Such an equilibrium will

lead to optimized throughput performance for all nodes in the network. The problem of a

few misbehaving nodes cannot be solved by this approach.

Mahajan et al. proposed a CATCH scheme to allow cooperative nodes to detect free-

riders in the neighborhood [23]. A free-rider is defined as a node that does not provide

service to other nodes but requests service from others. The CATCH scheme also allows

the cooperative neighbors of a free-rider to isolate it from the rest of the network. The

CATCH scheme is essentially built on top of the watchdog scheme in [24]. We will discuss

the difference between our proposed scheme and the watchdog scheme in Section 5.2.

2.5 The TWOACK and S-TWOACK Schemes

The TWOACK scheme was proposed in In [4]. The 2ACK and the TWOACK schemes have

the following major differences: 1) the receiving node in the 2ACK scheme only sends 2ACK

packets for a fraction of received data packets, while in the TWOACK scheme TWOACK

packets are sent for every data packet received. Acknowledging a fraction of received data

packets gives the 2ACK scheme better performance with respect to routing overhead; 2) the

2ACK scheme has an authentication mechanism to make sure that the 2ACK packets are

genuine.

The Selective TWOACK (S-TWOACK) scheme proposed in [4] is different from 2ACK

as well. Mainly, each TWOACK packet in the S-TWOACK scheme acknowledges the receipt

of a number of data packets, but a 2ACK packet in the 2ACK scheme only acknowledges

one data packet. With such a subtle change, the 2ACK scheme has an easier control over

the tradeoff between the performance of the network and the cost as compared to the S-

TWOACK scheme.

12

Chapter 3

Overview of Dynamic Source Routing

Based on routing information update mechanism, routing protocols for MANET can be

divided into three major categories: proactive (or table-driven) routing protocols, reactive

(or on-demand) routing protocols, and hybrid routing protocols.

In proactive routing protocols, every node maintains a routing table, which includes the

routes to all the destinations, even it is not necessary. In order to maintain the updated

routing information, the nodes exchange the routing information each other periodically by

flooding in the whole network. Therefore, the routing overhead may be extremely high for

a large network or high mobility network, but the route finding delay will be relatively low.

The Destination Sequenced Distance Vector (DSDV) [31] routing protocol, Wireless Routing

Protocol (WRP) [28], and the Optimized Link State Routing (OLSR) [16] protocol are some

examples of proactive routing protocols.

On the contrary, the reactive routing protocols, such as the Dynamic Source Routing

protocol [18], the Ad hoc On-Demand Distance Vector (AODV) routing protocol [30], etc.,

do not maintain such routing information all the time. They request a route finding process

only when a node needs to communicate with the others and does not know a route to the

destination node. Such on-demand routing protocol lowers the entire control overhead, but

13

may cause a longer route finding delay.

The hybrid routing protocols combines the advantages of both proactive routing protocol

and reactive routing protocol.

DSR [18] is one of the most popular routing protocols in MANETs. It is specifically

designed for multi-hop communication in wireless network with mobile nodes. DSR adapts

to the fully autonomous network, without the need of pre-existed infrastructure. The pro-

tocol is composed of two main processes which are Route Discovery and Route Maintenance

respectively. Route Discovery is a the process by which a node S tries to find a source route

reaching a destination node D to achieve its transmission. Route Discovery is used only when

S attempts to communication with D but does not know a route to D yet. Route Mainte-

nance is the process by which node S is able to get the knowledge of the recent topology

changes in the network, such as an unavailable path to destination D due to a broken link.

When Route Maintenance informs S of a source route is broken, S will either try to use an-

other route if it happens to have it cached, or will initiate a Route Discovery again to find a

new route for subsequent packets to D. These two mechanisms execute totally “on demand”.

DSR does not advertise any routing information periodically in the network, which lowers

the extra control overhead transmitted in the channel. The above two mechanisms work

together to allow mobile nodes to discover and maintain routes to arbitrary destinations in

MANET as needed.

We will only presents the aspects of DSR which is relevant to our research in this chapter.

More detail about DSR scheme can be found in [18].

3.1 Route Discovery

When a node S attempts to send the data packets to a destination node D, but does not

know a source route towards the destination D, it will initiate a route discovery process by

14

sending out a ROUTE REQUEST packet (RREQ). S is known as the initiator of RREQ

packet, and D is the Target. When a route to the target is found, a ROUTE REPLY (RREP)

packet will be sent back to the initiator, and the initiator will record this route into its Route

Cache.

The RREQ packet is propagated in the network by flooding. Each node receiving the

RREQ packet, will rebroadcast to its neighbors, unless one of the following situation hap-

pened: 1) It is the target of the RREQ packet. 2) It knows a route towards the target. 3) It

has already forward the packet. 4) The Time-To-Live (TTL) of the RREQ packet is expired.

When a source node creates an RREQ packet, it chooses a unique sequence number for

the RREQ packet, Upon receiving an RREQ packet, an intermediate node will execute the

following steps in sequence.

• If the target address field in the packet matches its own address, then it should return

an RREP packet to the initiator along the reverse direction of the path through which

the RREQ packet arrived.

• Else, the node must check the sequence number of the RREQ packet, to see whether

this is an “old” request which has been processed before. If so, the RREQ packet will

be discarded to avoid duplicate transmission of a same request and potential route

loop.

• Else, the node should check its route cache, to see whether it has known a route to the

target. If so, the node generates an RREP packet and sends back to the initiator, and

stops propagating the RREQ packet further.

• Else, the node will append its own address to the RREQ packet, and rebroadcast to

its neighbors if the Time-To-Live (TTL) value is not expired.

When initiating a route discovery, the initiator node records a copy of the original data

packet (that triggered the Discovery) in a local buffer called the Send Buffer. The send

15

buffer contains a copy of each data packet that cannot be sent out by this node due to the

unavailable source route to the destination. Each packet in the send buffer is stamped an

entry time. If it stays in the send buffer exceeding a certain period of time, the packet is

discarded. So if the send buffer of a node is not empty, the node should occasionally originate

a new route discovery for the packet’s destination address. However, the node MUST limit

such re-originate of RREQ at a certain rate to avoid the potential RERR flood, because it

is possible that the destination node is not currently reachable due to the probable network

partition issue.

3.2 Route Maintenance

When a node originates or forwards a packet using a source route, it is responsible to

make sure the availability of the link between itself and the next hop, and in some way to

guarantee the successful reception of its next hop. This acknowledgement is usually provided

at no cost in wireless network, either as a part of existing standard (such as the link-layer

acknowledgement frame defined by IEEE 802.11), or by a ”passive acknowledgement” [20]

(for example, the node confirms receipt at its next hop node by overhearing its next hop

node forwards the same packet).

If there is no such built-in confirmation mechanism in use, the node should request an

explicitly DSR-specific acknowledgement by setting an acknowledgement request option in

the DSR options header in the packet.

When a node is unable to verify the availability of the link to its next hop node after

exceeding a maximum number of retransmission attempts, it will send a ROUTE ERROR

(RERR) message to the source node of the data packet. All the node, upon receiving or

overhearing this RERR packet, will remove the route from its route cache. Furthermore,

the source node will resume the transmission of the subsequent packets or retransmit the

16

failed packets (if required by the upper layer. For example, TCP service.) either using an

alternate route (if existed) or initiating a fresh route discovery process.

17

Chapter 4

Problem of Routing Misbehavior

In this chapter, we describe the problems caused by routing misbehavior. But first, we

summarize our notations and assumptions used throughout this thesis.

4.1 Notations and Assumptions

This chapter outlines our assumptions regarding the properties of the physical and network

layers. Throughout this thesis, we assume bi-directional communication. Such a symmetry

of links is needed for the transmission of the designed 2ACK packets. Our scheme works

with source routing, such as DSR [18]. We further assume that there is no collusion among

misbehaving nodes. We argue that misbehavior caused by selfishness are usually limited to

individual nodes in MANETs.

We use the following notations throughout the thesis:

• X ∗ Y : the size of network area;

• N : the total number of nodes in the network;

• R: the transmission range of each node. We assume that the transmission of all nodes

is omni-directional and the transmission range is homogeneous. We assume R = 250

18

m in our simulations;

• Vm: the maximum speed of a mobile node;

• h: the average number of hops from the source node to the destination node;

• ℓ: the expected progress of one-hop transmission;

• d: the expected distance between the source node and the destination node;

• pm: the fraction of nodes that are misbehaving. This is also the probability of a node

being a misbehaving node. The misbehaving nodes are selected among all network

nodes randomly. In our simulations, pm ranges from 0 to 0.4;

• pr: the probability of a misbehaving route, i.e., the probability of a route with at least

one misbehaving router;

• Rmis: the threshold to determine the allowable ratio of the total number of 2ACK

packets missed to the total number of data packets sent;

• Rack: the acknowledgment ratio, the fraction of data packets that are acknowledged

with 2ACK packets (maintained at the 2ACK sender);

• τ : the value of timeout, beyond which time a data packet will be considered as un-

acknowledged;

• Tobs: the observation period prior to declaring node misbehavior;

• Cmis: the counter of missing 2ACK packets (maintained at the observing node);

• Cpkts: the counter of forwarded data packets (maintained at the observing node).

19

4.2 Routing Misbehavior Model

We present the routing misbehavior model considered in this thesis in the context of the DSR

protocol [18]. Due to DSR’s popularity, we use it as the basic routing protocol to illustrate

our proposed add-on scheme. The details of DSR can be found in [18]. The implementation

of our scheme as an add-on to other routing schemes will be discussed in Chapter 6.

We focus on the following routing misbehavior: a selfish node does not perform the packet

forwarding function for the data packets unrelated to itself.1 However, it operates normally

in the Route Discovery and the Route Maintenance phases of the DSR protocol. Since such

misbehaving nodes participate in the Route Discovery phase, they may be included in the

routes chosen to forward the data packets from the source. The misbehaving nodes, however,

refuse to forward the data packets from the source. This leads to the source being confused.

In guaranteed services such as TCP, the source node may either choose an alternate route

from its route cache or initiate a new Route Discovery process. The alternate route may

again contain misbehaving nodes and therefore the data transmission may fail again. The

new Route Discovery phase will return a similar set of routes including the misbehaving

nodes. Eventually, the source node may conclude that routes are unavailable to deliver the

data packets. As a result, the network fails to provide reliable communication for the source

node even though such routes are available. In best-effort services such as UDP, the source

simply sends out data packets to the next-hop node which forwards them on. The existence

of a misbehaving node on the route will cut off the data traffic flow. The source has no

knowledge of this at all.

In this thesis, we propose the 2ACK technique to detect such misbehaving nodes. Routes

1In some networks, a router may be considered well-behaved as long as it sends out the packet toward
the next-hop node. This, however, does not guarantee the successful reception of the packet at the next-hop
node. Such a behavior by the router, if consistently repeated, will be considered as misbehavior in this
work. After all, it is the router’s responsibility to make sure of the successful reception of the packet at the
next-hop node when it responded to the route-discovery process.

20

containing such nodes will be eliminated from consideration. The source node will be able to

choose an appropriate route to send its data. in this thesis, we use both UDP and TCP to

demonstrate the adverse effect of routing misbehavior and the performance of our proposed

scheme.

The attackers (misbehaving nodes) are assumed to be capable of performing the following

tasks:

• dropping any data packet;

• masquerading as the node that is the receiver of its next-hop link;

• sending out fabricated 2ACK packets;

• sending out fabricated hn, the key generated by the 2ACK packet senders;

• claiming falsely that its neighbor or next-hop links are misbehaving.

4.3 Probability of Misbehaving Routes

In order to demonstrate the adverse effect of routing misbehavior, we estimate the probability

of misbehaving routes in this section. A route is defined as misbehaving when there is at

least one router along the route that can be classified as misbehaving.

Our analysis is based on the following assumptions:

• The network nodes are randomly distributed over the entire network area. Each node’s

location is independent of all other nodes’ locations. There are N nodes in the network

area of size X ∗ Y ;

• The source and the destination of each transaction are chosen randomly among all

nodes;

21

• Nodes (other than the source and the destination) are chosen as misbehaving nodes,

independently, with probability pm.

We examine a route with an average number of hops, h. There are h−1 routers between

the source and the destination. Each of these routers may misbehave with probability pm.

The probability of the route with at least one misbehaving node is:

pr = 1− (1− pm)h−1 . (4.1)

In order to estimate pr, we need to know h, the average number of hops of a route. We

use the following approach: we first estimate the average progress of each hop, ℓ, in the

network; we then estimate the average distance, d, between the source and the destination;

the value of h can be estimated as d/ℓ.

The average one-hop progress, ℓ, can be approximated as the average of the maximum

distance between a sender and each of the neighbors within its transmission range.2 We

calculate the average number of nodes in the transmission circle, ξ:

ξ =
N

X ∗ Y
· πR2 , (4.2)

where X ∗ Y is the size of the network area and N
X∗Y

is the node density.

For simplicity of discussion, we assume that ξ is an integer. The probability of all ξ nodes

2Note that this is only an approximation, which assumes that the farthest neighbor from the sender is
always in the direction toward the destination. Our simulation results presented later in this subsection
show that our approximation works quite well.

22

residing within distance r from the center of the transmission circle can be expressed as

F (r) = Prob(All ξ nodes reside within a circle of radius r)

= [Prob(a node resides within r)]ξ

=

[

πr2

πR2

]ξ

=
r2ξ

R2ξ
,

where we have used the assumptions of node location independence and randomness.

The Probability Density Function (pdf) of progress r from the source is

f(r) =
∂

∂r
F (r) =

2ξ · r2ξ−1

R2ξ
.

The average progress is then the expected value of r with respect to pdf f(r),

ℓ =

∫ R

0

rf(r)dr =
2ξ · R
2ξ + 1

. (4.3)

Based on (4.3): when ξ = 0, no progress can be made (ℓ = 0); when ξ = 1, the progress is

the expected value of the distance at which the sole node is located from the center, ℓ = 2

3
R;

when ξ is large, the progress approaches R, ℓ→ R.

In a network area of size X ∗ Y , the average distance between the source and the desti-

nation can be approximated by

d ≈ (0 +
√

X2 + Y 2)/2 . (4.4)

Therefore, the expected number of hops can be estimated as

h ≈ d

ℓ
≈
√

X2 + Y 2

2ℓ
≈ (2ξ + 1) ·

√
X2 + Y 2

4ξR
, (4.5)

23

where we have implicitly assumed that the average progress made on a hop is independent

of the average progress made on the previous hops.

Combining (4.1) and (4.5), we have

pr = 1− (1− pm)
(2ξ+1)·

√
X2+Y 2

4ξR
−1 , (4.6)

where ξ is given by (4.2).

We have compared the numerical results based on (4.6) and simulation results. Our

simulation results were obtained through 20 runs with different seeds in NS2 [1]. In Table 4.1,

we show the results for different network areas and number of nodes. The transmission range

is R = 250 m for every node.

Based on Table 4.1, we can conclude that, as expected, the probability of misbehaving

route, pr, increases with pm. This probability also increases with network area because the

routes are longer. The values of pr obtained analytically are larger than those obtained

using simulation. This is due to our estimation of d in (4.4) that is higher than the actual

values. In addition, the estimation of ℓ in (4.3) is smaller than the actual value. The adverse

effects of misbehaving nodes in MANETs can be seen clearly in Table 4.1. For example, in a

network of 5R∗5R and pm = 0.2, around 50% of the routes contain at least one misbehaving

node. With such a high probability of misbehaving route, pr, the throughput performance

of the MANET will be severely degraded. This motivates our development of an efficient

approach for detection and mitigation of routing misbehavior.

24

Table 4.1: Probability of misbehaving routes for different misbehavior ratio, pm

Results for pm = 0.1
Network Area, X*Y 4R*4R 5R*5R 10R*10R
Number of Nodes, N 70 100 400
Analytical Results 0.18 0.25 0.49
Simulation Results 0.17 0.22 0.43

Results for pm = 0.2
Network Area, X*Y 4R*4R 5R*5R 10R*10R
Number of Nodes, N 70 100 400
Analytical Results 0.35 0.45 0.76
Simulation Results 0.31 0.39 0.65

Results for pm = 0.3
Network Area, X*Y 4R*4R 5R*5R 10R*10R
Number of Nodes, N 70 100 400
Analytical Results 0.50 0.62 0.90
Simulation Results 0.42 0.52 0.76

25

Chapter 5

The 2ACK Scheme

The watchdog detection mechanism in [24] has a very low overhead. Unfortunately, the

watchdog technique suffers from several problems such as ambiguous collisions, receiver

collisions, and limited transmission power. The main issue is that the event of successful

packet reception can only be accurately determined at the receiver of the next-hop link, but

the watchdog technique only monitors the transmission from the sender of the next-hop link.

Noting that a misbehaving node can either be the sender or the receiver of the next-hop

link, we focus on the problem of detecting misbehaving links instead of misbehaving nodes.

In the next-hop link, a misbehaving sender or a misbehaving receiver has a similar adverse

effect on the data packet: it will not be forwarded further. The result is that this link will

be tagged [3]. Our approach discussed here simplifies the detection mechanism significantly.

5.1 Details of the 2ACK Scheme

The 2ACK scheme is a network-layer technique to detect misbehaving links and to mitigate

their effects. It can be implemented as an add-on to existing routing protocols for MANETs,

such as DSR. The 2ACK scheme detects misbehavior through the use of a new type of

acknowledgment packet, termed 2ACK. A 2ACK packet is assigned a fixed route of two

26

S D... ...

Data traffic direction

N1 N2 N3

2ACK: N3 −N2 −N1

Figure 5.1: The 2ACK Scheme

hops (three nodes), in the opposite direction of the data traffic route.

Figure 5.1 illustrates the operation of the 2ACK scheme. Suppose that N1, N2, and N3

are three consecutive nodes (triplet) along a route. The route from a source node, S, to a

destination node, D, is generated in the Route Discovery phase of the DSR protocol. When

N1 sends a data packet to N2 and N2 forwards it to N3, it is unclear to N1 whether N3

receives the data packet successfully or not. Such an ambiguity exists even when there are

no misbehaving nodes. The problem becomes much more severe in open MANETs with

potential misbehaving nodes.

The 2ACK scheme requires an explicit acknowledgment to be sent by N3 to notify N1 of

its successful reception of a data packet: when node N3 receives the data packet successfully,

it sends out a 2ACK packet over two hops to N1 (i.e., the opposite direction of the routing

path as shown), with the ID of the corresponding data packet. The triplet [N1 → N2 → N3] is

derived from the route of the original data traffic. Such a triplet is used by N1 to monitor the

link N2 → N3. For convenience of presentation, we term N1 in the triplet [N1 → N2 → N3]

as the 2ACK packet receiver or the observing node and N3 as the 2ACK packet sender.

Such a 2ACK transmission takes place for every set of triplets along the route. Therefore,

only the first router from the source will not serve as a 2ACK packet sender. The last router

just before the destination and the destination will not serve as 2ACK receivers.1

1The 2ACK packet is different from the selective acknowledgement (SACK) [25] in TCP. The SACK
packets are used by the TCP data receiver to acknowledge non-contiguous blocks of data that are not
covered by the Cumulative Acknowledgement field. A 2ACK packet, on the other hand, acknowledges the
received data packet. In addition, the SACK packets are sent by the data traffic receiver, but the 2ACK
packets are sent by the third node in every set of triplets along the traffic route.

27

Next Hop
Receiver

Second Hop Packets 2ACK packets List of data
Receiver Transmitted Missed packet IDs

LISTN2 N3 Cpkts Cmis

Figure 5.2: Data structure maintained by the observing node

To detect misbehavior, the 2ACK packet sender maintains a list of IDs of data packets

that have been sent out but have not been acknowledged. For example, after N1 sends a

data packet on a particular path, say, [N1 → N2 → N3] in Fig. 5.1, it adds the data ID

to LIST (refer to Fig. 5.2, which illustrates the data structure maintained by the observing

node), i.e., on its list corresponding to N2 → N3. A counter of forwarded data packets, Cpkts,

is incremented simultaneously.

At N1, each ID will stay on the list for τ seconds, the timeout for 2ACK reception. If

a 2ACK packet corresponding to this ID arrives before the timer expires, the ID will be

removed from the list. Otherwise, the ID will be removed at the end of its timeout interval

and a counter called Cmis will be incremented.

When N3 receives a data packet, it determines whether it needs to send a 2ACK packet

to N1. In order to reduce additional routing overhead caused by the 2ACK scheme, only

a fraction of the data packets will be acknowledged via 2ACK packets. Such a fraction

is termed the acknowledgment ratio, Rack. By varying Rack, we can dynamically tune the

overhead of 2ACK packet transmissions.

Node N1 observes the behavior of link N2 → N3 for a period of time termed Tobs. At the

end of the observation period, N1 calculates the ratio of missing 2ACK packets as Cmis/Cpkts

and compares it with a threshold Rmis. If the ratio is greater than Rmis, link N2 → N3 is

declared misbehaving and N1 sends out an RERR (or the misbehavior report) packet. The

data structure of RERR is shown in Fig. 5.3. Since only a fraction of the received data

packets are acknowledged, Rmis should satisfy Rmis > 1 − Rack in order to eliminate false

alarms caused by such a partial acknowledgment technique (see Section 5.6).

28

 Error Type
2ACK Report
Misbehavior (Misbehaving report sender)

S
Report receiver Misbeheving Link

 Reserved

Destination Type−specific information

Type

error source address
Salvage

 len
Option Opt data

N1 N2− > N3

Figure 5.3: Data structure of the RERR packet (the misbehavior report)

Each node receiving or overhearing such an RERR marks the link N2 → N3 as misbe-

having and adds to the blacklist of such misbehaving links that it maintains. When a node

starts its own data traffic later, it will avoid using such misbehaving links as a part of its

route.

The 2ACK scheme can be summarized in the pseudo-code provided in Appendix for the

2ACK packet sender side (N3) and the observing node side (N1).

5.2 Comparison with Overhearing Techniques

Compared with the overhearing techniques such as watchdog in [24], the 2ACK scheme solves

the problems of ambiguous collisions, receiver collisions, and limited transmission power:

• Ambiguous Collisions: Ambiguous collisions may occur at node N1. When a well-

behaved node N2 forwards the data packet toward N3, it is possible that N1 cannot

overhear the transmission due to another concurrent transmission in N1’s neighbor-

hood. The 2ACK technique solves this problem by requiring N3 to send a 2ACK

packet explicitly.

• Receiver Collisions: Receiver collisions take place in the overhearing techniques

when N1 overhears the data packet being forwarded by N2, but N3 fails to receive the

packet due to collisions in its neighborhood. A misbehaving N2 will not retransmit

the data packet, which costs extra energy. Again, the 2ACK technique overcomes this

problem due to the explicit 2ACK packets.

29

• Limited Transmission Power: A misbehaving N2 may maneuver its transmission

power such that N1 can overhear its transmission but N3 cannot. This problem is

similar to the Receiver Collisions problem. It becomes a threat only when the distance

between N1 and N2 is less than that between N2 and N3. The 2ACK scheme is immune

to limited transmission power problem.

• Limited Overhearing Range: A well-behaved N2 may use low transmission power

to send data toward N3. Due to N1’s limited overhearing range, it will not overhear

the transmission successfully and will thus infer that N2 is misbehaving, causing a false

alarm. Both this problem and the limited transmission power problem are caused by

the potential asymmetry of communication links. The 2ACK scheme is immune to the

limited overhearing range issue.

With the explicit requirement of 2ACK transmissions, the 2ACK scheme solves the above

problems. Compared with overhearing techniques, the 2ACK scheme has a disadvantage of

higher routing overhead. This additional routing overhead is caused by the transmission of

2ACK packets. However, we will show later that, by reducing the acknowledgment ratio,

Rack, the number of 2ACK transmissions can be significantly lowered (Section 5.6).

5.3 Authenticating the 2ACK Packets

We look into the problem of 2ACK packet fabrication in this subsection. Since the 2ACK

packets are forwarded by an intermediate node (e.g., node N2 in Fig. 5.1). Without proper

protection, a misbehaving node N2 can simply fabricate 2ACK packets and claim that they

were sent by node N3. Therefore, an authentication technique is needed in order to protect

2ACK packets from being forged.

A straightforward way to stop N2 from forging the 2ACK packets is to use the digital

signature algorithm. A digital signature is a small number of extra bits of information

30

attached by node N3. The signature is unique and usually computationally impossible to

forge unless the security key of node N3 is disclosed. Furthermore, the signature may be used

to assure the integrity of the transmitted data, i.e., any changes on the signed information

will be detected. Typically, the digital signature is implemented relying on asymmetric

cryptography, using techniques such as RSA [19]. However, such asymmetric operations are

too expensive for the mobile nodes in MANETs which are usually resource constrained.

In [13], an efficient algorithm termed one-way hash chain [22] was used to guard against

security attacks such as DoS and resource consumption attacks in the destination-sequenced

distance vector (DSDV) routing protocol [31]. A one-way hash chain can be constructed

based on a one-way hash function, H . The hash function is a transformation that takes a

variable-length input and returns a fixed-length bit string, that is, H : {0, 1}∗ → {0, 1}ρ,

where ρ is the length, in bits, of the output of the hash function. An ideal hash function H

should have the following properties:

- The input can be of any length;

- The output has a fixed length;

- H(x) is relatively easy to compute for any given input x;

- It is computationally infeasible to calculate x from H(x);

- H(x) is collision-free.

The collision-free property assures that the hash results are unique. Examples of such

hash functions include MD5 [32] and SHA1 [11].

To create a one-way hash chain, a node picks up a random initial value x ∈ {0, 1}ρ and

computes its hash value. The first number in the hash chain h0 is initialized to x. By using

the general formula hi = H(hi−1), for 0 < i ≤ n, for some n, a chain of hi is formed:

h0, h1, h2, h3, · · · , hn . (5.1)

31

It can be proven that, given an existing authenticated element of a one-way hash chain, it

is feasible to verify the other elements preceding it. For example, given an authenticated

value of hn, a node can authenticate hn−3 by computing H(H(H(hn−3))) and comparing the

result with hn [13].

Our scheme uses the above one-way hash chain to protect the 2ACK packets against

fabrication. In order to use the one-way hash chain in (5.1) to authenticate 2ACK packets,

node N3 must distribute the hn element to N1. A traditional approach for such information

distribution is through a trusted certificate authority. However, in a MANET, nodes roam

from one place to another and there is usually no central server or base station to act as a

trusted certificate entity. We propose two techniques to distribute the initial authentication

element hn from node N3 to node N1.

The first technique is the “transmission extension” mechanism. Using this technique,

N3 increases the transmission power to send the hn element directly to N1. This technique

bypasses N2, the potential threat to the distribution of hn. While such a technique consumes

more energy from node N3, it takes place rather infrequently. It will be seen later that every

2ACK packet uses one element in the one-way hash chain in (5.1). The distribution of a new

hn element is only needed when the entire chain has been used.

An alternative technique to deliver the hn element is the “multi-path transmission” mech-

anism. In this method, N3 sends its hn through a number of different paths. For instance, a

packet carrying the hn element may be flooded to the local neighborhood. The packet has

a Time-To-Live (TTL) value of 2 or 3 hops. This is similar to the broadcast of the RREQ

packets in DSR. N1 employs a majority vote technique to obtain hn after it receives several

copies of hn. Note that only the misbehaving N2 is interested in forging a new hn. Since a

majority of the nodes are well-behaved, the true value of hn can be obtained.

Once the hn element is distributed from N3 to N1, N3 can use hi (0 ≤ i < n) sequentially

to sign the 2ACK packets to be sent to N1. The hi elements will be disclosed by N3 one at

32

Next Hop
Receiver

ID
Destination sequence

number
hash releaseSignature

N2 N1 hiMAC

MAC = [N2, N1, ID]hi−1

Figure 5.4: The Packet Format of 2ACK

a time.

Assume that hi+1 has been disclosed (initially i = n − 1). When node N3 needs to

send a 2ACK packet, it calculates a Message Authentication Code (MAC) based on hi−1,

[N2, N1, ID]hi−1
, and attaches the MAC and the hi value to the 2ACK packet. Figure 5.4

illustrates the packet format of a 2ACK packet. The fields in Fig. 5.4 are explained below:

• N2: the receiver of next hop, in the opposite direction of the route;

• N1: the destination of the 2ACK packet, the observing node, that is two-hop away

from the 2ACK packet sender;

• ID: the sequence number of the corresponding data packet;

• [N2, N1, ID]hi−1
: Message Authentication Code (MAC), signed with hi−1;

• hi: the newly disclosed element in the one-way hash chain, 0 < i < n.

Since hi+1 is known to N1, it compares H(hi) with hi+1. If the results match, the hi

element is accepted and recorded. The 2ACK message must have been sent from node N3.

However, the integrity of the 2ACK packet can only be proven when the next 2ACK packet

arrives (with hi−1). When hi−1 is disclosed to N1, it can be used to verify the integrity of the

2ACK packet received last time by calculating the MAC and comparing it with the received

one. This is the so-called “delayed disclosure” technique due to Hu et al. [13].

in this thesis, we do not study the overhead caused by the authentication of the 2ACK

packets. Compared to traditional security measures, the computation cost of the one-way

33

hash function is relatively low [13]. The communication overhead depends on the length of

each element and the value of n, i.e., the size of the one-way hash chain. When n and the

size of each element are chosen reasonably, we expect low overhead due to the transmission

of hn.

5.4 Timeout for 2ACK Reception, τ

The parameter timeout, τ , will be used to set up a timer for 2ACK reception. If the timer

expires before the expected 2ACK packet is received, the missing 2ACK packet counter,

Cmis, will be incremented. Thus, an appropriate value of τ is important for the successful

operation of the 2ACK scheme.

It is clear that false alarms may be triggered if τ is too small. On the other hand, if τ is

too large, the observing node will have to maintain a longer list, requiring a large memory

size. Therefore, τ should be set at a value that is large enough to allow the occurrence of

temporary link failures (for example, the unsuccessful transmission due to node mobility or

local traffic congestion).

It is essential that τ should satisfy

τ > 4 ∗ [single-hop transmission delay] ,

where a single-hop transmission delay includes packet transmission delay, random back-off

delay at the Medium Access Control (MAC) layer, data processing delay, and potential

retransmission delay.

34

5.5 Observation Period, Tobs, and Dynamic Behavior

The 2ACK scheme distinguishes link misbehaviors and temporary link failures by observing

the reception of 2ACK packets over a certain period of time, termed observation period,

Tobs. Since the temporary link failures do not usually last long, such a technique is able to

distinguish temporary link failures from link misbehavior.

The value of Tobs should be large enough so that several 2ACK packets are transmitted

from the 2ACK packet sender to the observing node. This is especially important when the

acknowledgment ratio Rack is small. For example, when Rack = 0.1, one 2ACK packet will

be transmitted for every 10 data packets received. However, the observation period should

not be too long. A long observation period means that the observing node takes more time

to observe the behavior of the next-hop link before a misbehavior is declared. Data packets

may be dropped over this extended period of time and the effectiveness of the misbehavior

detection algorithm is reduced.

The observation process should be initiated by the observing node randomly and repeat-

edly. Therefore, the 2ACK packet sender or forwarder has to transmit 2ACK packets for the

entire data duration (based on the acknowledgment ratio, Rack). Such repeated observations

will help in the detection of misbehaving nodes which have dynamic behavior depending on

their energy levels. When such nodes are well-behaved, the links associated with them will

be treated as normal links and used. Once such nodes misbehave, the links associated with

them will be detected as misbehaving and other nodes will stop using them.

5.6 Acknowledgment Ratio, Rack

The additional routing overhead caused by the transmission of the 2ACK packets can be

controlled by the parameter acknowledgment ratio, Rack, at the 2ACK packet sender. With

35

the use of the parameter Rack in the 2ACK scheme, only a fraction of the received data

packets will be acknowledged. Therefore, the parameter Rack provides a mechanism to tune

the overhead.2

The reduction of overhead comes with a cost: the shrinking of the range over which Rmis

can take values. When only Rack of the data packets received are acknowledged via the

2ACK packet, 1−Rack of them are not acknowledged. Since 1−Rack of all data packets are

not acknowledged at all, Rmis should be greater than 1−Rack. That is

Rmis > 1−Rack . (5.2)

In a sense, the difference between Rmis and 1 − Rack serves as the buffer to avoid false

alarms. Therefore, increasing Rack lowers the potential buffer to avoid false alarms. We

investigate the effect of Rack on routing overhead in Section 6.

5.7 False Misbehavior Reports and Intentional Drop-

ping of 2ACK

A misbehaving node N1 as shown in Fig. 5.1 may send false misbehavior reports regarding

the next-hop link, N2 → N3. However, the 2ACK scheme makes sure that such a behavior

will not benefit node N1: 1) N1 may still be included in alternative routes; 2) N1 needs

to forward data packets to N2 as necessary. Otherwise, it will be detected as part of a

misbehaving link (by the node preceding it on the route).

A misbehaving node N3 may refuse to send any 2ACK packet for the data packets that

have been received. As a result, N1 declares the link N2 → N3 as misbehaving and sends a

2In practice, the value of an appropriate Rack may depend on the actual extra-cost of sending a 2ACK
packet and projected traffic load of the network. It is also possible to change Rack dynamically. We leave
this as a future work.

36

misbehavior report to the source. Since N3, as a misbehaving node, refuses to forward data

packets, N2 will also declare the link of N3 → N4 (the node following N3) as misbehaving.

Thus, links around node N3 are declared misbehaving and will be avoided by future route

selections.

Note that this might seem to have achieved the goal of slandering node N2 by N3. On

the contrary, our mechanism of misbehaving link detection instead of misbehaving node

detection protects node N2. The link N2 → N3 will be marked as misbehaving, but there

is no accusation of N2 (or N3). Other links associated with node N2 might still be used.

Detection of the misbehaving node N3 and its punishment are trickier. Essentially, consensus

needs to be developed among the majority of neighbors of node N3 to punish it.

Similarly, when there are consecutive misbehaving nodes on the route, the first misbe-

having node and its forwarding link will be detected and reported to the source. Such a

route will be avoided in the next round of route-discovery.

Topology changes may also lead to false misbehavior reports. When two well-behaved

neighboring nodes move out of each other’s range, the link between them will fail in terms

of data delivery. In 2ACK, this is taken care of by the routing scheme in use (DSR). When

the sender of the link notices that the receiver is out of range, it will submit a Route Error

(RERR) message to report the link failure.

5.8 Partial Data Forwarding

A misbehaving node may forward data packets partially by forwarding a fraction of the

packets and try to cheat the monitoring system. Such a behavior will be detected by the

2ACK scheme. We use the triplet N1 → N2 → N3 in Fig. 5.1 as an example for explanation:

Assume a misbehaving node N2 receives ND data packets from N1 successfully and only

forwards a fraction of data packets, say, Rpart (0 ≤ Rpart ≤ 1), of ND toward N3. We further

37

assume that all data packets forwarded by N2 are received successfully by N3. Thus, N3

receives Rpart ·ND data packets, and only Rack ·Rpart ·ND of them will be acknowledged by

2ACK packets sent from N3.

Therefore, in order to cheat the system, a misbehaving node N2 has to make sure that

1− Rack · Rpart < Rmis . (5.3)

As the gap between 1 − Rack and Rmis shrinks, the feasible value of Rpart approaches 1.

Therefore, the 2ACK scheme effectively guards against partial forwarding. Rearranging

(5.3), we have

Rpart >
1−Rmis

Rack

. (5.4)

Thus, by increasing 1−Rmis

Rack
, we force N2 to forward more data packets. The disadvantage of

such an approach is the loss of protection from false alarms.3

3While we provide some suggested values for the parameters such as Rmis and Rack, the system managers
of such operating networks will have the flexibility to vary them.

38

Chapter 6

Performance Evaluation

In this section, we present our implementation and simulation results for performance eval-

uation. Since the 2ACK scheme works as an add-on technique for the DSR protocol, the

performance of the 2ACK scheme is actually the performance of the DSR+2ACK scheme.

6.1 Simulation Methodology and Performance Metrics

In the simulations, we used a version of Network Simulator (ns-2) [1] that includes wireless

extensions developed by the CMU Monarch project group. We modified the DSR module

in ns-2 to simulate misbehaving nodes. The observation period of the 2ACK scheme was

set to Tobs = 0.8 second. Unless specified otherwise, the 2ACK scheme used Rack = 0.20,

Rmis = 0.85, and a timeout value of τ = 0.15 second.

The IEEE 802.11 MAC was used with a channel data rate of 11 Mbps. The data packet

size was 512 bytes. The wireless transmission range of each node was R = 250 m. In the

simulations, N = 50 mobile nodes were randomly distributed in a 700 m by 700 m flat

area. The source and the destination nodes were randomly chosen among all nodes in the

network. The total simulation time was 800 seconds. For each data point, 20 simulations

(with different seeds) were run to obtain the average value. The 95% confidence intervals of

39

all results are shown as vertical line segments.

Both UDP and TCP traffics have been simulated to evaluate the performance of 2ACK.

A random way-point mobility model was assumed with a maximum speed of Vm = 0, 10, 20

m/sec and a pause time of 0 second. The mobility scenarios were generated by the “random

trip” generic mobility model due to La Boudec and Vojnović [5]. Constant Bit Rate (CBR)

traffic was used. Each simulation included 10 CBR sessions, each of which generated 4

packets per second. In simulations for TCP traffic, the maximum node speed was Vm = 20

m/sec with a pause time of 0 second. Each simulation ran 10 Telnet sessions.

We used the following metrics to measure the performance of the 2ACK scheme with

respect to UDP traffic:

• Packet Delivery Ratio, PDR: the ratio of the number of packets received at the

destination and the number of packets sent by the source;

• Routing Overhead, RO: the ratio of the amount of routing related transmissions

(RREQ, RREP, RERR, and 2ACK) to the amount of data transmissions. The amounts

are in bytes. Both forwarded and transmitted packets are counted;

• Number of False Alarm, NFA: the number of false misbehavior reports.

For TCP traffic flows, the packet delivery ratio as defined in the UDP traffic scenario

would be similar for different schemes. This is because the TCP senders automatically

detect end-to-end transmission failures. When misbehaving links appear on a route and the

acknowledgments from the destination are missing, the source node of a TCP session may

slow down or even stop sending packets. Therefore, a more reasonable performance metric

is the total number of packets that are received at the destination. We compared a relative

throughput, normalized number of packets that are received, of different schemes in the TCP

traffic scenario.

40

6.2 Simulation Implementation

The simulation is written in Tcl script. The mobile node is configured as follows:

$ns node-config -adhocRouting $opt(rp) � ;# Routing Protocol

-llType $opt(ll) � ;# Link Layer Type

-macType $opt(mac) � ;# Mac Type

-ifqType $opt(ifq) � ;# Interface Queue Type

-ifqLen $opt(ifqlen) � ;# Maximum number of packets in IFQ

-antType $opt(ant) � ;# Antenna Model

-propType $opt(prop) � ;# Radio Propagation Model

-phyType $opt(netif) � ;# Network Interface Type

-topoInstance $topo � ;# Topography

-movementTrace OFF � ;# Movement Trace Set

-agentTrace ON � ;# Agent Trace Set

-routerTrace ON � ;# Routing Trace Set

-macTrace OFF ;# Mac Layer Trace Set

The above configures a mobilenode with all the given values of adhoc-routing protocol,

network stack, channel, topography, propagation model, and tracing turned on or off at

different levels (router, mac, agent). In case hierarchical addressing is being used, the hier

address of the node needs to be passed as well.

Then the mobile node is created.

41

for {set k 0} {$k < $opt(nn)} {incr k} {

dsr-create-mobile-node $k $misRV ($k) $simMisFrac ;# Create DSR Node

}

RANDOM MOTION

for {set j 0} {$j < $opt(nn)} {incr j} {

set node ($j) [$ns node]

$node ($j) random-motion 1

$ns initial node pos $node ($j) 20

}

simMisFrac is the percentage of the misbehavior in the network. misRV is the proba-

bility of a node being misbehavior. dsr-create-mobile-node creates the misbehaving node

or well-behaved node by comparing the value of misRV and simMisFrac. If misRV <

simMisFrac, the node is a misbehaving node. The node is created with random movement

by $node ($j) random-motion 1.

Then, to start the nodes’ random motion by applying the following.

START Nodes

for {set j 0} {$j < $opt(nn)} {incr j} {

$node ($j) start

}

It starts the mobile node with a random position and updates to change the direction

42

and speed of the node periodically. The destination and speed values are generated in a

random fashion.

The source nodes and destination nodes are chosen randomly and independently within

all N = 50 mobile nodes. A node can either be a traffic source or destination. Each

communication duration is also arranged randomly and independently.

DURATION SRC DST

for {set num 0} {$num < $opt(numCBR)} {incr num} {

set duration($num) [$duration value] ;# Set the Traffic Duration

set src($num) [expr round([$srcdst value])] ;# Pick the Source Node

set dst($num) [expr round([$srcdst value])] ;# Pick the Destination Node

if {$src($num) == $dst($num)} {

puts ”SRC = DST ($num)”

set num [expr ($num - 1)]

}

}

Next, we setup the traffic for each pair of source node and destination. We use the UDP

traffic to illustrate the setup configuration.

43

SETUP TRAFFIC

for {set i 0} {$i < $opt(numCBR)} {incr i} {

set udp($i) [new Agent�UDP]

$ns attach-agent $node ($src($i)) $udp($i) ;# Setup the UDP Traffic

set cbr($i) [new Application�Traffic�CBR] ;# Using CBR

$cbr($i) set packetSize $simCBRPktSize ;# Setup Packet Size

$cbr($i) set interval $simCBRInterval ;# Setup Packet Interval

$cbr($i) attach-agent $udp($i) ;# Using UDP to Transmit CBR Traffic

set null($i) [new Agent�Null]

$ns attach-agent $node ($dst($i)) $null($i) ;# Setup the Destination

$ns connect $udp($i) $null($i) ;# UDP Traffic is Done

}

The UDP source was initiated by set udp($i) [new Agent�UDP], and destination was

set null($i) [new Agent�Null]. CBR traffic is used for the UDP connections. To attach

the UDP source and destination with the source node and destination node respectively,

then create the connection by $ns connect $udp($i) $null($i).

After the setup, the traffic flow can start.

44

START

for {set i 0} {$i < $opt(numCBR)} {incr i} {

set cbrstart($i) [expr ($opt(cbrstart) + [$arrival value])]

$ns at $cbrstart($i) ”$cbr($i) start”

$ns at [expr $cbrstart($i) + $duration($i)] ”$cbr($i) stop”

}

Stop the traffic after it reaches the arranged traffic duration, then stop the simulation.

END of Simulation

for {set i 0} {$i < $opt(nn) } {incr i} {

$ns at $simTime.0 ”$node ($i) reset”

}

$ns at $simTime.0 ”stop”

$ns at $simTime.01 ”puts �”NS EXITING...�” $ns halt”

6.3 Simulation Results for UDP Traffic

Figure 6.1 compares the packet delivery ratio of the 2ACK scheme, the BFTR scheme [35],

the S-TWOACK scheme and the original DSR protocol as a function of misbehavior ratio,

pm. We varied pm from 0 (all the nodes are well-behaved) to 0.4 (40% of nodes misbehave).

The maximum speed is Vm = 20 m/sec. From the figure, we can observe that most packets

were delivered by all four schemes when pm = 0 (no misbehaving nodes). The packet delivery

ratio decreases as pm increases. Compared with the original DSR scheme, the 2ACK scheme

45

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0.4

0.5

0.6

0.7

0.8

0.9

1

Misbehavior Ratio, p
m

P
ac

ke
t D

el
iv

er
y

R
at

io
, P

D
R

2ACK, R
ack

=0.2

S−TWOACK
BFTR
DSR

Figure 6.1: Packet Delivery Ratio of 2ACK, BFTR, S-TWOACK and DSR

maintains a much higher PDR. For example, the 2ACK scheme delivered over 90% of data

packets even when pm = 0.4. The rest of the packets were dropped because no well-behaved

routes could be found from the source to the destination. On the other hand, DSR delivered

about 40% of the packets in the same scenario.

Based on Fig. 6.1, the BFTR scheme and the S-TWOACK scheme with maxi-

mum IDs Carried set to 5, i.e., one TWOACK packet is sent for every 5 consecutively

received data packets [4], have similar PDR performance. Both are outperformed by the

2ACK scheme. For example, the BFTR scheme delivered roughly 82% and the S-TWOACK

scheme delivered about 85% data packets when pm = 0.4. Compared with the 2ACK scheme,

the BFTR scheme does not detect misbehaving node/link, it may choose an alternate route

which still contains the misbehaving node. The S-TWOACK scheme takes more time to

detect misbehaving links, causing more packets being dropped before an alternate route is

used.

In Fig. 6.2, we compare the routing overhead of the 2ACK scheme (with Rack = 0.2), the

BFTR scheme, the S-TWOACK scheme (with maximum IDs Carried = 5), and the DSR

scheme. The higher routing overhead in the 2ACK and the S-TWOACK schemes is due to

46

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Misbehavior Ratio, p
m

R
ou

tin
g

O
ve

rh
ea

d,
 R

O

2ACK, R
ack

=0.2

S−TWOACK
BFTR
DSR

Figure 6.2: Routing Overhead of 2ACK, BFTR, S-TWOACK and DSR

the transmission of extra acknowledgment packets. The extra routing overhead of the BFTR

scheme is caused by the extra route discovery processes. The overhead of 2ACK increases

with the increase of misbehavior percentage. This is because more RERR (the misbehavior

report) and RREQ packets are sent to report misbehaviors and to find alternate routes in a

more hostile network environment.

In Fig. 6.3, we show the PDR of the 2ACK scheme with different acknowledgment ratios,

Rack. The acknowledgement ratio Rack was set to 0.05, 0.2, 0.50, and 1.0, respectively. The

corresponding Rmis was 0.98, 0.85, 0.6, and 0.33, respectively. Note that Rmis and Rack

need to satisfy (5.2). Based on Fig. 6.3, we can see that the PDR performance of the 2ACK

scheme is not appreciably affected by Rack.

We compare the routing overhead of the 2ACK scheme with different Rack values in

Fig. 6.4. As expected, the routing overhead of the 2ACK scheme is the highest when Rack =

1. This is due to the large number of 2ACK packets transmitted in the network. As the

value of Rack decreases, the routing overhead reduces dramatically. Therefore, Rack in the

2ACK scheme provides an effective “knob” to tune routing overhead.

Comparing Figs. 6.4 and 6.2, we have the following observations on routing overhead: as

47

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0.88

0.9

0.92

0.94

0.96

0.98

1

Misbehavior Ratio, p
m

P
ac

ke
t D

el
iv

er
y

R
at

io
, P

D
R

2ACK, R
ack

=1

2ACK, R
ack

=0.5

2ACK, R
ack

=0.2

2ACk, R
ack

=0.05

Figure 6.3: Packet Delivery Ratio of 2ACK for different Rack

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Misbehavior Ratio, p
m

R
ou

tin
g

O
ve

rh
ea

d,
 R

O

2ACK, R
ack

=1

2ACK, R
ack

=0.5

2ACK, R
ack

=0.2

2ACK, R
ack

=0.05

Figure 6.4: Routing Overhead of 2ACK with different Rack

48

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0.88

0.9

0.92

0.94

0.96

0.98

1

Misbehavior Ratio, p
m

P
ac

ke
t D

el
iv

er
y

R
at

io
, P

D
R

2ACK, V
m

=0

2ACK, V
m

=10

2ACK, V
m

=20

Figure 6.5: The Packet Delivery Ratio of 2ACK for different Vm

Rack decreases, the routing overhead of the 2ACK scheme reduces to a level that is slightly

higher than that of the DSR scheme but cannot be lowered further. This can be explained by

the additional route discovery processes initiated by the sources receiving the misbehavior

reports. The DSR scheme does not initialize such new route discovery processes (note that

these simulations were based on UDP traffic).

In Fig. 6.5, we present the packet delivery ratio of the 2ACK scheme as a function of

misbehavior ratios pm with different maximum speeds Vm. We can observe that the packet

delivery ratio reduces when mobility increases, regardless of pm. There are two possible

reasons causing PDR to decrease: packets being dropped due to node mobility and false

alarms in the 2ACK scheme. We investigate the false alarm issue in Fig. 6.6.

In Fig. 6.6, we show the number of false alarms as a function of timeout value, τ , for

different maximum speeds Vm. It can be observed that the number of false alarms reduces as

timeout increases. The number of false alarms increases when the nodes move more rapidly.

This is due to the fact that routes are broken more frequently in a high mobility network,

and, in some rare cases, the 2ACK scheme may treat such broken routes as misbehaving.

The results reveal the appropriate values for timeout, τ . Based on the results, τ = 0.1−0.15

49

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

2

4

6

8

10

12

14

16

18

20

Timeout for 2ACK, τ, [second]

N
um

be
r

of
 F

al
se

 A
la

rm
, N

F
A

2ACK, V
m

=0

2ACK, V
m

=10

2ACK, V
m

=20

Figure 6.6: Number of False Alarms in 2ACK (pm = 0)

Table 6.1: The relative throughput supported by 2ACK and DSR for TCP traffic
pm 0 0.1 0.2 0.3 0.4

2ACK 0.963 0.884 0.777 0.697 0.614
DSR 0.974 0.783 0.606 0.513 0.472

seconds works well in networks with Vm ≤ 20 m/sec.

6.4 Simulation Results for TCP Traffic

In Fig. 6.7, we compare the PDR value of the 2ACK scheme and the regular DSR scheme

for TCP sessions. Relatively close PDR values for both schemes can be observed. This is

expected, as the senders of the TCP sessions slow down or even stop their transmissions when

the acknowledgments from the destination are missing. Comparing the results in Figs. 6.7

and 6.1 or 6.5, we can see that the 2ACK scheme supports slightly higher PDR for the TCP

traffic than for the UDP traffic. This is due to the additional acknowledgment and route

selection performed in the TCP protocol.

In Table 6.1, we present the relative throughput, normalized number of packets received,

when the 2ACK scheme and the DSR scheme are used. Based on Table 6.1, the relative

50

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Misbehavior Ratio, p
m

P
ac

ke
t D

el
iv

er
y

R
at

io
 o

f T
C

P
 tr

af
fic

, P
D

R

2ACK, R
ack

=0.25

DSR

Figure 6.7: Packet Delivery Ratio of 2ACK & DSR for TCP traffic (Vm=20 m/sec)

throughput reduces when pm increases, due to higher chances of using routes with misbe-

having links and longer time being spent to switch to good routes. From the table, we can

observe that the 2ACK scheme outperforms the DSR scheme in terms of relative throughput,

especially in the networks with larger pm. For instance, when pm = 0.4, the 2ACK scheme is

able to support a relative throughput of 0.614 but the DSR scheme can only support 0.472.

The relative throughput of the 2ACK scheme is slightly lower than that of the DSR scheme

at pm = 0. This is due to the false alarm reports in the 2ACK scheme in a high mobility

network, as shown in Fig. 6.6.

Note that comparisons cannot be made directly between the values in Fig. 6.1 and the

numbers in Table 6.1. The former represents packet delivery ratio (PDR); the latter rep-

resents the total number of packets that are received (normalized over a fixed number, the

average number of packets transmitted).

51

Chapter 7

Conclusions

Mobile Ad Hoc Networks (MANETs) have been an area for active research over the past few

years, due to their potentially widespread application in military and civilian communica-

tions. Such a network is highly dependent on the cooperation of all its members to perform

networking functions. This makes it highly vulnerable to selfish nodes. One such misbehav-

ior is related to routing. When such misbehaving nodes participate in the Route Discovery

phase but refuse to forward the data packets, routing performance may be degraded severely.

In this thesis, we have investigated the performance degradation caused by such selfish

(misbehaving) nodes in MANETs. We have proposed and evaluated a technique, termed

2ACK, to detect and mitigate the effect of such routing misbehavior. The 2ACK technique

is based on a simple 2-hop acknowledgment packet that is sent back by the receiver of

the next-hop link. Compared with other approaches to combat the problem, such as the

overhearing technique, the 2ACK scheme overcomes several problems including ambiguous

collisions, receiver collisions, and limited transmission powers. The 2ACK scheme can be

used as an add-on technique to routing protocols such as DSR in MANETs.

We have presented the 2ACK scheme in detail and discussed different aspects of the

2ACK scheme. Extensive simulations of the 2ACK scheme have been performed to evaluate

52

its performance. Our simulation results show that the 2ACK scheme maintains up to 91%

packet delivery ratio even when there are 40% misbehaving nodes in the MANETs that we

have studied. The regular DSR scheme can only offer a packet delivery ratio of 40%. The

false alarm rate and routing overhead of the 2ACK scheme are investigated as well. One

advantage of the 2ACK scheme is its flexibility to control overhead with the use of the Rack

parameter.

in this thesis, we have focused only on link misbehavior. It is more difficult to decide the

behavior of a single node. This is mainly due to the fact that communication takes place

between two nodes, and is not the sole effort of a single node. Therefore, care must be taken

before punishing any node associated with the misbehaving links. When a link misbehaves,

either of the two nodes associated with the link may be misbehaving. In order to decide the

behavior of a node and punish it, we may need to check the behavior of links around that

node. This is a potential direction for our future work.

The 2ACK scheme has been implemented on top of DSR. It is also possible to implement

the 2ACK scheme over other routing schemes. The main challenge is how to derive the

triplet information so that the 2ACK sender and the observing node are informed of such

information. Knowledge of topology of the 2-hop neighborhood may be used. In addition,

the 2ACK scheme can only work in managed MANETs (as compared to open MANETs).

The main reason is that the parameters such as Rack and Rmis need to be set. In our future

work, we will investigate how to add the 2ACK scheme to other types of routing schemes

and open networks. Theoretical analysis of the performance gain of the 2ACK scheme is of

interest as well.

53

Appendix: Pseudo Code of the 2ACK

Scheme

We use the triplet of N1 → N2 → N3 in Fig. 5.1 as an example to illustrate 2ACK’s pseudo

code. Note that such codes are run on each of the sender/receiver of the 2ACK packets.

A. 2ACK packet sender side (node N3)

1 : publish hn // Send authenticated element to node N1

2 : Cpkts ← 0, Cack ← 0, i← n // Initialization at node N3

3 : while true do

4 : if (data packet received) then

5 : Cpkts ++ // Increase the counter of received packets

6 : if (Cack/Cpkts < Rack) then // The data packet needs to be acknowledged

7 : prepare MAC with hi−1

8 : prepare 2ACK with ID, MAC, hi // Add authentication to 2ACK packet

9 : send 2ACK

10 : Cack + +, i - - // Increase the counter of acknowledged packets

11 : end

12 : end

13 : end

54

B. Receiver (Observer) side (node N1)

Parallel process 1 (receiving hn)

1 : while true do

2 : if receive hn from the 2ACK packet sender then

3 : record hn, i← n

4 : end

5 : end

Parallel process 2 (Forwarding the data packet to N2)

6 : while true do

7 : randomly select Tstart > current time // Start the observation

8 : while current time < Tstart do

9 : // null

10 : end

11 : LIST← φ, Cpkts ← 0, Cmis ← 0 // Initialization at node N1

12 : while current time < Tstart + Tobs do // Observation period is not expired

13 : if (data packet forwarded) then

14 : LIST ← LIST ∪ data ID // Add a data ID to LIST

15 : Cpkts ++ // Increase the counter of forwarded packets

16 : setup timer (τ) for data ID // Record the time

17 : end

55

Parallel process 3 (receiving 2ACK packets from N3)

18 : if (2ACK packet received) then

19 : search data ID carried by 2ACK from LIST

20 : if (found) then // A 2ACK packet for a data ID received

21 : check validity of hi

22 : LIST ← LIST - data ID // Remove data ID from LIST

23 : clear timer for ID

24 : end

25 : end

26 : if (timeout event happens) then // 2ACK packet for a data ID is not received

27 : LIST ← LIST - data ID // Remove data ID from LIST

28 : Cmis ++ // Increase misbehavior counter

29 : end

30 : end

31 : if (Cmis/Cpkts > Rmis) then // The observation period expires

32 : send link misbehavior report

33 : end

34 : end

56

Bibliography

[1] The network simulator(ns-2). http://www.isi.edu/nsnam/ns/.

[2] I. Aad, J-P. Hubaux, and E-W. Knightly. Denial of service resilience in ad hoc networks.

In IEEE/ACM Mobicom, 2004.

[3] B. Awerbuch, D. Holmer, C-N. Rotaru, and H. Rubens. An on-demand secure routing

protocol resilient to byzantine failures. In ACM Workshop on Wireless Security (WiSe),

September 2002.

[4] K. Balakrishnan, J. Deng, and P. K. Varshney. TWOACK: preventing selfishness in

mobile ad hoc networks. In Proc. of IEEE Wireless Communications and Networking

Conference(WCNC), New Orleans, LA, March 2005. IEEE.

[5] J. Y. Le Boudec and M. Vojnović. Perfect simulation and stationarity of a class of

mobility models. In Proc. of Infocom’05, Miami, FL, USA, March 13-17 2005.

[6] S. Buchegger and J-Y. Le Boudec. Performance analysis of the CONFIDANT protocol:

Cooperation of nodes, fairness in dynamic ad-hoc networks. In Proc. of MobiHoc’02,

June 2002.

[7] L. Buttyan and J-P. Hubaux. Security and cooperation in wireless networks. available

at http://secowinet.epfl.ch/.

57

[8] L. Buttyan and J-P. Hubaux. Enforcing service availability in mobile ad-hoc WANs.

In Proc. of First IEEE/ACM Workshop on Mobile Ad Hoc Networking and Computing

(MobiHoc), Boston, MA, USA, August 2000.

[9] L. Buttyan and J.-P. Hubaux. Stimulating cooperation in self-organizing mobile ad hoc

networks. ACM/Kluwer Mobile Networks and Applications, 8(5), 2003.

[10] M. Conti, E. Gregori, and G. Maselli. Towards reliable forwarding for ad hoc networks.

In Proc. of Personal Wireless Communications (PWC ’03), September 2003.

[11] D. Eastlake and P. Jones. RFC 3174 - US secure hash algorithm 1 (SHA1). Technical

report, Motorola and Cisco Systems, September 2001.

[12] L. M. Feeney and M. Nilsson. Investigating the energy consumption of a wireless network

interface in an ad hoc networking environment. In IEEE INFOCOM, 2001.

[13] Y. Hu, D. B. Johnson, and A. Perrig. SEAD: Secure efficient distance vector routing

for mobile wireless ad hoc networks. Ad Hoc Networks, 1(1):175–192, 2003.

[14] Y. Hu, A. Perrig, and D. B. Johnson. Ariadne: A secure on-demand routing protocol

for ad hoc networks. In Proc. of the Eighth ACM Annual International Conference on

Mobile Computing and Networking (MobiCom’02), September 2002.

[15] J-P. Hubaux, T. Gross, J-Y. Le Boudec, and M. Vetterli. Toward self-organized mobile

ad hoc networks: The terminodes project. In IEEE Communications Magazine, January

2001.

[16] P. Jacquet, P. Mhlethaler, T. Clausen, A. Laouiti, A. Qayyum, and L. Viennot. Opti-

mized link state routing protocol. In IEEE INMIC’01, 28-30 December 2001, Lahore,

Pakistan, pages 62–68, December 2001.

58

[17] M. Jakobsson, J-P. Hubaux, and L. Buttyan. A micropayment scheme encouraging

collaboration in multi-hop cellular networks. In Proc. of Financial Crypto 2003, January

2003.

[18] D. Johnson, D. Maltz, Y. C. Hu, and J. Jetcheva. The dynamic source routing protocol

for mobile ad hoc networks (DSR). Internet-draft, February 2002.

[19] D. B. Johnson. Future resiliency and high security systems. ECC, March 1999. available

from www.certicom.com.

[20] J. Jubin and J-D. Tornow. The darpa packet radio network protocols. In Proceedings

of the IEEE, pages 21–32, January 1987. 75(1).

[21] J. Kong, P. Zerfos, H. Luo, S. Lu, and L. Zhang. Providing robust and ubiquitous

security support for mobile ad-hoc networks. In Proc. of IEEE International Conference

on Network Protocols (ICNP’01), Riverside, CA, USA, 2001.

[22] L. Lamport. Password authentication with insecure communication. Proc. of Commu-

nications of ACM, November 1981. 24(11), 770-772.

[23] R. Mahajan, M. Rodrig, D. Wetherall, and J. Zahorjan. Sustaining cooperation in

multi-hop wireless networks. In Proc. of the 2nd Symposium on Networked Systems

Design and Implementation, April 2005.

[24] S. Marti, T. Giuli, K. Lai, and M. Baker. Mitigating routing misbehavior in mobile

ad hoc networks. In Proc. of the Sixth Annual International Conference on Mobile

Computing and Networking (MobiCom), August 2000.

[25] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. RFC 2018 - TCP selective ac-

knowledgement options. Technical report, PSC, LBNL, Sun Microsystems, October

1996.

59

[26] P. Michiardi and R. Molva. Simulation-based analysis of security exposures in mobile

ad hoc networks. In Proc. of European Wireless Conference, February 2002.

[27] H. Miranda and L. Rodrigues. Preventing selfishness in open mobile ad hoc networks.

In Proc. of the Seventh CaberNet Radicals Workshop, October 2002.

[28] S. Murthy and J-J. Garcia-Luna-Aceves. An efficient routing protocol for wireless net-

works. ACM/Baltzer Journal on Mobile Networks and Applications, Special Issue on

Routing in Mobile Communication Networks, 1(2):183–197, October 1996.

[29] V-N. Padmanabhan and D-R. Simon. Secure traceroute to detect faulty or malicious

routing. SIGCOMM Computor Communication Review, 33(1), January 2003.

[30] C. Perkins, E. Belding-Royer, and S. Das. Ad hoc on-demand distance vector (AODV)

routing. Internet-draft, July 2003.

[31] C. E. Perkins and P. Bhagwat. Highly dynamic destination-sequenced distance-vector

routing (DSDV) for mobile computers. In Proc. of ACM Special Interest Group on Data

Communications(SIG-COMM)’94, pages 234–244, August 1994.

[32] R. L. Rivest. RFC 1321 - the MD5 message-digest algorithm. Technical report, MIT

Laboratory for Computer Science and RSA Data Security, Inc., April 1992.

[33] V. Srinivasan, P. Nuggehalli, C. F. Chiasserini, and R. R. Rao. Cooperation in wireless

ad hoc networks. In Proc. of Infocom’03, San Francisco, CA, USA, March 30 - April 3

2003.

[34] F. Stajano and R. Anderson. The resurrecting duckling: Security issues in ad-hoc

wireless networks. In Bruce Christianson, Bruno Crispo, and Mike Roe, editors, Security

Protocols, 7th International Workshop Proceedings. Springer-Verlag, 1999.

60

[35] Y. Xue and K. Nahrstedt. Providing fault-tolerant ad-hoc routing service in adversarial

environments. Wireless Personal Communications, Special Issue on Security for Next

Generation Communications, Kluwer Academic Publishers, 29(3-4):367–388, 2004.

[36] S. Zhong, J. Chen, and Y. R. Yang. Sprite: A simple, cheat-proof, credit-based system

for mobile ad-hoc networks. In Proc. of Infocom’03, San Francisco, CA, USA, March

30 - April 3 2003.

[37] L. Zhou and Z. J. Haas. Securing ad hoc networks. IEEE Network Magazine, 13(6),

November/December 1999.

61

Vita

Kejun Liu was born in Shanxi province, P.R.China. She recieved her B.S. degree in Computer

Communication from Tongji University in Shanghai, in 1999. Then she moved to Beijing

to work in Beijing Hangyu System Institute (CASC-BHSI) from 1999 to 2002, as a Net-

work/System Administrator (Jul.1999 - Oct.2001) and Network/System Manager (Nov.2001

- Dec.2002) respectively. She has started her study for Master’s Degree in Computer Science

department of University of New Orleans since 2004. Her research focuses on Mobile Ad

Hoc Networks and wirless network security. Her Email is kliu@uno.edu.

62

	Detecting Routing Misbehavior In Mobile Ad Hoc Network
	Recommended Citation

	Contents
	Abstract
	List of Figures
	List of Tables
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Appendix:
	Bibliography

